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Abstract

Classifying Transport Proteins Using Profile Hidden Markov Models and Specificity
Determining Sites

Qing Ye

This thesis develops methods to classifiy the substrates transported across a membrane by a

given transmembrane protein. Our methods use tools that predict specificity determining sites (SDS)

after computing a multiple sequence alignment (MSA), and then building a profile Hidden Markov

Model (HMM) using HMMER. In bioinformatics, HMMER is a set of widely used applications for

sequence analysis based on profile HMM. Specificity determining sites (SDS) are the key positions

in a protein sequence that play a crucial role in functional variation within the protein family during

the course of evolution.

We have established a classification pipeline which integrated the steps of data processing,

model building and model evaluation. The pipeline contains similarity search, multiple sequence

alignment, specificity determining site prediction and construction of a profile Hidden Markov

Model.

We did comprehensive testing and analysis of different combinations of MSA and SDS tools

in our pipeline. The best performing combination was MUSCLE with Xdet, and the performance

analysis showed that the overall average Matthews Correlation Coefficient (MCC) across the seven

substrate classes of the dataset was 0.71, which outperforms the state-of-the-art.
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Chapter 1

Introduction

Our work develops and evaluates classifiers for the class of substrates that are transported across

a membrane by a transmembrane transport protein. The substrate class is typically categorized as

amino acid, sugar, ion (electron, anion, cation), protein, phosphate, etc. Each represents a class of

specific chemical compounds.

Our classifiers are constructed as Hidden Markov Model (HMM) using a pipeline of multiple

sequence alignment (MSA), prediction of specificity determining sites (SDS), and the HMMER tool

hmmbuild.

In this chapter, Section 1.1 provides a brief summary on the basic biological knowledge of

membrane and transmembrane proteins; Section 1.2 presents the state of the art; Section 1.3 shows

the contribution of this thesis; Section 1.4 is the layout of this thesis.

1.1 Biological Background

The cell’s plasma membrane separates the inside and outside of a cell, as Figure 1.1 shows. For

eukaryotes, membranes also define the intracellular organelles [32]. All of these biomembranes are

a phospholipid bilayer that contain embedded proteins, as shown in Figure 1.1.

Membrane proteins are important proteins for organisms. In the yeast Saccharomyces cere-

visiae, for example, about one-third of its genes encode membrane proteins. In multicellular or-

ganisms the ratio is even higher. Membrane proteins are responsible for vital functions, such as,

1



Figure 1.1: The Cell Surrounded by a Plasma Membrane
The cell membrane separates the inside and outside of the cell, and in eukaryotes, there
is also a membrane for organelles separating the inside and outside of the organnelle
[32].

molecule and ion transport between inside and out of cells and organelles, and adhesion and inter-

actions between cells [32].

There are three classes of membrane proteins: integral membrane proteins (IMP), lipid-anchored

membrane proteins and peripheral membrane proteins. In this thesis, we concentrate on the integral

membrane proteins, which are also called transmembrane proteins. In particular, we are concerned

with the transmembrane transport proteins.

Membrane proteins play an important role in the living cells for energy production, regulation

and metabolism [29]. Nowadays around half of the new drugs target membrane proteins [9], espe-

cially for their important function of moving signals and compounds through the membrane.

However, the structure and function information available for membrane proteins is very lim-

ited. The main reason is that membrane proteins have partially hydrophobic surfaces and can only

be extracted from the cell membrane with detergents: the protein’s flexibility and lack of stability

make the extraction very difficult. Furthermore, the crystallization, expression, and structure deter-

mination of membrane proteins is also difficult [12]. That is why, in 2015, the Protein Data Bank

(PDB) contains only 1% membrane proteins amongst its more than 112,000 protein structures. So

we rely on computational techniques to predict the function and structure of a membrane protein

based on its similarity with other well-characterized proteins [32].

2



Figure 1.2: Biomembrane and Embedded Proteins
Membranes are composed of a phospholipid bilayer that can accommodate embedded
transmembrane proteins and form attachment or adhesion points for other membrane
proteins [32].

3



1.2 Transmembrane Protein Classification Methods

Previous work has applied machine-learning methods for the classification of transport proteins

[4]. The Zhao Lab has developed TransportTP, a two phase algorithm that combines homology

and machine learning to predict Transporter Classification TC family of one or more proteins. The

first phase uses homology methods to predict the TC family based on sequence similarity to the

classified proteins in the TCDB database. The second phase integrates different machine learning

methods on a variety of features to refine the initial predictions [31]. Gromiha and Yabuki [23] have

utilized different machine learning algorithms, such as, Bayes rule, Logistic regression, Neural

network, Support Vector Machine (SVM), and Decision tree to discriminate different classes of

transporter proteins. They also report a k-nearest neighbor method using amino acid composition to

discriminate transporters and non-transporters. Furthermore, amino acid composition [44] is used to

measured the similarity of membrane transporters from Arabidopsis thaliana, and a more accurate

result was obtained by splitting the amino acid composition of TMS and non-TMS regions [43]. The

state-of-the-art is TrSSP [33] which uses a SVM with input from a profile PSSM and the AAIndex

physico-chemical properties of the amino acids in the protein sequence.

Some methods for classification are based on sequence similarity. The principle is that proteins

of high sequence similarity are typically related by evolution — so-called homologous sequences —

and thus belong to the same family. However homologous sequences do not always share significant

sequence similarity, and homologous proteins often have different functions [10]. The specificity

of substrate for a transport protein can depend on a small number of residues at specific sites in

the protein [4], and the previous methods all ignore the specificity determining sites (SDS). So this

thesis incorporates SDS to aid the classification.

1.3 Research Contributions

The contributions of this thesis are as follows:

(1) This work is the first to apply Hidden Markov Models to classify the substrate class of a

transmembrane transport protein, and the first to combine the specificity determining sites

4



with profile Hidden Markov Model to the classification for the substrate class transported

across a membrane by a given transmembrane transporter protein.

(2) We have established a classification pipeline which integrated the steps of data pre-processing,

model building and model evaluation. The pipeline contains similarity search, multiple se-

quence alignment, specificity determining site prediction and construction of a Hidden Markov

Model.

(3) We discuss and analyze the impact of the using different MSA tools, SDS tools and parame-

ters on the classification of the substrate class. We find a combination which outperforms the

state-of-the-art.

1.4 Organization of Thesis

This thesis is organized as follows: Chapter 2 introduces the background necessary for under-

standing the work in this thesis. Chapter 3 presents the details of our pipeline implementation.

Section 3.1 presents the material, that is, datasets and databases, used in the project; Section 3.2

specifically describes the approach and its steps. Section 3.3 and Section 3.4 respectively shows

the experimental results and discussion on our work. Chapter 4 concludes the thesis. Section 4.2

presents the limitations in our work, and section 4.3 suggests some directions worthy of further

investigation.

5



Chapter 2

Background

2.1 Membrane Proteins

2.1.1 Protein: A Sequence of Amino Acids

As one of the most important chemical building blocks of cells, the amino acid has a central

alpha carbon atom, and four chemical groups bonded to it: an amino −NH2, a carbboxyl or car-

boxylic acid −COOH , a hydrogen atom H , and a side chain. The distinctive property of amino

acids are determined by their side chains. Along with other characteristics: the size, shape, charge,

hydrophobicity, the amino acids are divided into several categories, shown in Figure 2.1.

Proteins are polymers of amino acids. As Figure 2.2 shows, the function of the protein is deter-

mined by its structure. In detail, the protein function is derived from its 3-Dimensional structure,

and the 3-Dimensional structure is determined by both its amino acid sequence and intramolecular

noncovalent interactions[32]. So the linear sequence of amino acids is called the protein primary

structure, which is shown in Figure 2.1.1. A single letter code can be used to represent the 20 nat-

urally occurring amino acids. The 20 amino acids detailed in Figure 2.1.1. There is an example

for sequence of amino acids in Table 2.1, which is the protein sequence of human beta globin taken

from Swiss-Prot database.

6



Figure 2.1: The 20 Amino Acids and Side Chains

The chemical structure of the 20 amino acids showing side chains in red [32].

>sp |P68871| HBB_HUMAN Hemoglobin subunit beta OS=Homo sapiens OX=9606 GN=HBB PE=1 SV=2
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK
EFTPPVQAAYQKVVAGVANALAHKYH

Table 2.1: Example of Protein Sequence in Fasta Format.
The fasta format is a text-based format for representing either nucleotide sequences or peptide se-
quences, in which base pairs or amino acids are represented using single-letter codes. A sequence
in fasta format begins with a single-line description, followed by lines of sequence data. The de-
scription line is distinguished from the sequence data by a greater-than (">") symbol in the first
column. It is recommended that all lines of text be shorter than 80 characters in length.
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Figure 2.2: Protein Structure and Function
An illustration of the primary, secondary, tertiary and quaternary structures of a protein and protein
complexes, together with larger supermolecular combinations of proteins (a). The structure determines
function. The figure shows the various functional roles (b). [32]
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Figure 2.3: Four Levels of Protein Structure
An illustration of the primary, secondary, tertiary and quaternary structures of a protein and protein
complexes. [32]
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2.1.2 Integral Membrane Proteins

As discussed in Section 1.1, the cell’s plasma membrane separates the inside and outside. The

integral membrane proteins transport specific ions, sugars, amino acids, and vitamins to cross the

impermeable phospholipid bilayer into the cell and export metabolic products out. They also process

a similar exchange for intracellular organelles.

The integral membrane proteins contain three domains: the membrane-spanning segments usu-

ally consisting of hydrophobic amino acids whose side chains interact with the the phospholipid

bilayer; the cytosolic and exoplasmic domains have hydrophilic exterior surfaces that interact with

the aqueous environment of each side of the membrane. Until now, all the membrane-spanning do-

mains are built by one or more α-helices or of multiple β-strands. The integral membrane proteins

create a protein-lined pathway across the membrane, to transport hydrophilic substances through

the membrane without touching its hydrophobic interior.

Figure 2.4: Three Main Types of Integral Membrane Proteins
The three main types of integral membrane proteins: channels, transporters, and pumps. Channels trans-
port water, ions, or hydrophilic small molecules by their concentration or electric potential gradients.
Transporters move a wide variety of molecules, and have three types: uniporters transport a molecule
down its concentration gradient; symporters move a molecule against its concentration gradient by al-
lowing a different molecule down its concentration gradient, that is in the same direction; antiporter
move a molecule against its concentration gradient by allowing a different molecule down its concen-
tration gradient, that is in the opposite direction; ATP-powered pumps use ATP to move ions or small
molecules against a gradient or an electric potential. [32]

There are three types of main types of integral membrane proteins, shown in Figure 2.4. Chan-

nels transport water, ions, or hydrophilic small molecules by their concentration or electric potential

gradients. Transporters move a wide variety of ions and molecules across cellular membranes, but

at a much slower rate: uniporters transport only type of molecule down its concentration gradient;
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antiporters and symporters move one type of ion or molecule against its concentration gradient by

allowing one or more different ions down its concentration gradient. ATP-powered pumps are ATP

powered to move ions or small molecules against a chemical concentration gradient, an electric

potential, or both. Figure 2.5 shows the structure and function of one ATP-powered pump.

Figure 2.5: Structure and Function of the Cystic Fibrosis Transmembrane Regulator
An illustration of the mechanism by which an ATP-powered pump is opened and closed to control the
transport of a molecule. [32]

2.2 Multiple Sequence Alignment

2.2.1 Protein: A Sequence of Amino Acids

The primary structure of a protein is the linear sequence of amino acids [42]. A single letter

code can be used to represent each of the 20 naturally occurring amino acids, detailed in Table 2.2.

2.2.2 Mathematical Definition of Multiple Sequence Alignment

A protein sequence s of length l is a string of l characters derived from the alphabet

A = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }
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Amino Acid Letter Amino Acid Letter
Alanine A Arginine R

Asparagine N Aspartic acid D
Cysteine C Glutamic acid E

Glutamine Q Glycine G
Histidine H Isoleucine I
Leucine L Lysine K

Methionine M Phenylalanine F
Proline P Serine S

Threonine T Tryptophan W
Tyrosine Y Valine V

Table 2.2: The 20 Naturally Occurring Amino Acid Notations.

. Given a sequence S containing N sequences: S = {S1, S2, ..., SN}, N > 2, Si = Si1, Si2, ..., Sili ,

for 1 6 i 6 N , and Sij ∈ A, for 1 6 j 6 li, where li is the length of the ith sequence, then a

multiple sequence alignment can be defined as a matrix A = (aij), 1 6 i 6 l, max(li) 6 l 6∑N
i=1 li, shown as Figure 2.6. The matrix must meet the following three conditions:

(1) aij ∈ A ∪ {−}, where "–" stands for gap.

(2) After the "–" is removed from the ith line in the matrix, the string Si is obtained.

(3) The matrix does not contain columns whose characters are all gaps.

Figure 2.6: Multiple Sequence Alignment
Three polypeptide chains from the globin family aligned by the ClustalW program and
shown together with their UniProt accession code (and short name in the database).
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2.2.3 Scoring Multiple Sequence Alignments

The purpose of scoring for multiple sequence alignment is to provide a measure of the similarity

between multiple sequences. The objective function is a metric used to check the quality of a

multiple sequence alignment, and all multiple sequence alignment methods rely on an objective

function to illustrate the quality of the alignment, which reflects the accuracy and effectiveness of

the method. The most common objective function used is the sum-of-pairs function (SP). The SP

function needs to set two important parameters: substitution matrix M and gap penalties (including

open gap penalties and extension gap penalties).

The calculation formula of the Sum-of-Pairs function can be expressed by score equal to the

sum of the residue scores and the penalty scores. The score is defined as a positive number, where

the higher the score, the better the alignment. The total reside score is defined by the formula

L∑
h=1

m−1∑
i=1

m∑
j=i+1

cost(Sih, Sjh)

where

cost(Sih, Sjh) =


M(Sih, Sjh) If both are the same residue (match);

M(Sih, Sjh) If both are residues, but different (non-match);

0 If either is a gap.

where L is the length of the alignment; m is number of sequences to participate in the alignment;

Sih is h-th residue of the i-th sequence. The scores for matching and mismatching are usually given

by the substitution scoring matrix.

For protein sequences, the substitution scoring matrix is primarily used to record the similarity

of two corresponding residues in sequence alignment. Once the matrix is defined, the alignment

program can take advantage of this matrix and try to rank similar residues together to achieve the

best alignment. Commonly used substitution scoring matrices are point accepted mutation(PAM)

and blocks substitution matrix (BLOSUM) [25]. The most commonly used are the PAM250 matrix

and the BLOSUM-62 matrix. The PAM250 similarity score matrix is equivalent to a 20% residue

match between the two sequences.
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In the alignment process, a gap is introduced to indicate insertion and deletion. In general,

because multiple sequences participating in the alignment are not identical, to align them, you need

to insert gaps.

In multiple sequence alignment, if you choose to insert a large number of gaps, then any two

random unrelated sequences can be aligned, but such alignment results may have no biological

significance, so the gap must be limited to some extent. The number is used to produce a biologically

meaningful alignment result, using a scoring strategy: the matched residues get a positive score,

while the gaps get a negative score or a penalty.

The gap penalty consists of two parts: the gap open penalty and the gap extend penalty. In

general, the gap open penalty is higher than the gap extend penalty. The gap open penalty refers to

the first gap inserted in a sequence when the sequence is aligned. The gap extend penalty means

that after introducing one or more gaps, the continuation of the next consecutive gap is continued.

The scores of the gap open penalty and the gap extend penalty directly affect the results of the

sequence alignment, as shown in Table 2.3 [25].

Gap Open
Penalty

Gap Extend
Penalty

Effect on Results of the Sequence Alignment

Large Large Very few insertions and deletions, suitable for
sequence alignments withhigher similarity

Large Small Small amount of large gaps inserted
Small Large Large number of small block inserts, suitable for

sequence alignment with lower similarity

Table 2.3: The Effect of the Gap Penalties

2.2.4 Algorithm for Multiple Sequence Alignment

Heuristic, approximate algorithms are used for multiple sequence alignment due to the fact that

an exact algorithm based on multi-dimensional dynamic programming is simple too complex and

computationally expensive.

There are several main types of heuristic algorithms: progressive algorithm, iterative algorithm

and consistency-based algorithm. The idea of the progressive algorithm is to first construct a

distance matrix by pairwise alignment of the sequences to show the relationship between two se-

quences; then calculate a phylogenetic guide tree according to the distance matrix, and weight the
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closely related sequences. Then, beginning with the two closest sequences, the adjacent sequences

are gradually introduced and the alignment is continuously re-established until all sequences have

been added. Due to its simple and fast characteristics, the progressive algorithm is one of the most

commonly used methods in multiple sequence alignment. However, since the nature of the progres-

sive algorithm is a greedy algorithm, the results of initial steps of the algorithm cannot be changed

during the processs. This results in a “local minimization” problem. The representative progressive

algorithms include ClustalW and Clustal Omega. An iterative alignment algorithm is an effec-

tive strategy. It iteratively refines an alignment until the alignment results are no longer improved.

The disadvantage of this type of algorithm is that it does not provide guarantees for obtaining op-

timized results, and the speed cannot be compared with the progressive algorithm. The advantage

is that the objective function and the optimization process are conceptually separated, and it has

the characteristics of robustness and insensitivity to the number of sequences. The representative

progressive algorithms include MAFFT and MUSCLE. The idea behind consistency-based meth-

ods is that, for sequences x, y and z, if residue xi aligns with residue yj and yj aligns with zk,

then xi aligns with zk. The consistency of each pair of residues to the residue pairs from all other

alignments is examined and weighted in such a way as to reflect the extent to which these residues

are consistent with other residues. The consistency-based approach often generates final multiple

sequence alignments that are more accurate than those achieved by progressive alignments, based

on benchmarking studies [38]. The representative consistency-based algorithms include T-Coffee.

2.3 Specificity Determining Sites

This section discusses the important processing stage to discover the specificity determining

sites (SDS), which are the key positions in the sequences of a protein for functional divergence [14].

2.3.1 Functional Divergence

After gene duplication events, the chromosome contains one gene copy which maintains the

original function, and multiple copies of the gene which accumulate amino acid changes that can

lead to functional divergence [24]. As a result, genes are represented as paralogs in the genome
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with related but distinct functions. However most amino acid changes are not related to functional

divergence but represent neutral evolution [28]. So it is crucial to distinguish between these two

possibilities. Similarity search and multiple sequence alignment are not enough to solve this prob-

lem.

2.3.2 Types of Sites

It is generally believed that the more important in function of amino acid site is, the less possible

for its evolutionary change of amino acid, because the variance in this kind of site will highly reduce

the possibility of its host to survive and reproduce [28]. When the function of the protein changes

due to the change in amino acid, then the site is an example of a specificity determining site for the

protein subfamilies, based on a general function for the family. The SDS have special conservation

or evolutionary role within a protein family [14], comparing to the neutral, non-function-related

mutations in the majority of amino acid sites.

Three types of functional divergences are distinguished, mainly based on the pattern of evo-

lution giving rise to evolutionary rate-based approaches to SDS prediction. Type I functional

divergence is the result of significant rate difference at a given site between two subgroups of a pro-

tein family indicating that the function constraints at this position are different in the two groups.

Type I functional divergence after gene duplication is highly correlated with the change in evolu-

tionary rate, which is analogous to a fundamental rule in molecular evolution: functional importance

is highly correlated with evolutionary conservation [28]. The site of type I functional divergence

is conserved for one subfamily and is variable in another, which is shown in Table 2.4. The type

II specificity determining sites may show a subfamily-specific conservation pattern, which is con-

served in all subfamilies but using different amino acids in different subfamilies. This type II di-

vergence is a consequence of the rate change where selection causes similar levels of conservation

of different amino acid types for different protein subfamilies. Recent studies have also identified a

third type of site (type MC; marginally conserved) involved in subfamily specificity determination

where no apparent conservation of amino acids is observed within any of the subfamilies [13]. An

example is given in Figure 2.7 [13].

Chakrabarti et al. [13] indicate that almost half of the SDS belong to MC type. So using
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Figure 2.7: Types of Sites
In this figure, the Rab protein family has two subfamilies and all three types of SDS. The corresponding
amino acid sequences (A), 3D structure (B) and evolutionary rates (C) are shown. the multiple sequence
alignment (A) shows that type I and type II sites have regular conservation pattern, but type MC sites are
not regular and are hard to recognize. The evolutionary rate of change graph (C) shows that significant
changes have happened for type I and type II sites, but much smaller changes for type MC sites. [14]

Subfamilies Sequences Type I Type II Type MC

Subfamily 1

Sequence 1 A S H A C R
Sequence 2 A S H A C R
Sequence 3 A S H A C R
Sequence 4 G N H A A K

Subfamily 2

Sequence 5 R G R I T T
Sequence 6 R G R I T T
Sequence 7 R G R I A T
Sequence 8 R G R I T T
Sequence 9 R G R I S N
Sequence 10 R G R I T T

Table 2.4: Three Types of Specificity Determining Sites
For type I functional divergence, the site is conserved for one subfamily and is variable in another. The

type II divergence causes similar levels of conservation of different amino acid types for different
protein subfamilies. The type MC sites are marginally conserved and no apparent conservation of

amino acids is observed within any of the subfamilies. [13]
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only conservation/evolution information to distinguish SDS from a strong background signals is

extremely difficult. Different algorithms have been developed during the past decades, combining

at least some of the signals from MSA, phylogenetic tree, amino acid physico-chemical properties

and the protein’s 3D structure [14].

2.3.3 Prediction Methods

Diffferent computational algorithms have been developed during the past years. During them,

there three basic approaches: evolutionary rate-based, entropy-based, and amino acid physicochem-

ical properties-based. The approach based on evolution was discussed above. The details of the

other two approaches will be discussed below.

Here we introduce entropy-based approaches as an example [1, 48]. Given an MSA, the amino

acid distribution pc of each column c is computed by:

pc(x) =
nx +AKx

N +A
(1)

where nx is the number of occurrences of amino acid x in column c, N is the total number of amino

acids in the column, A is weighting factor, and Kx is the frequency of the amino acid x derived

from the Swiss-Prot protein sequence database[5].

The relative entropy pc(x) and qc(x)in one position between two subfamilies p and q is com-

puted as:

REp =
∑
x

pc(x) log
pc(x)

qc(x)
(2)

REq =
∑
x

qc(x) log
qc(x)

pc(x)
(3)

and the cumulative relative entropy (CRE)is

CRE = REp+REq (4)
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The CRE metric for each position was then converted into a Z-score, computed as

Z =
CRE − µ

σ
(5)

where µ is the arithmetic mean and σ is the standard deviation of the CRE values observed in all

positions of the subfamily comparison.

The Z-score is normalization for the similarity between two distributions of amino acids. The

larger the Z-score value, the more the amino acid distributions in both subfamilies differ from one

another. By using the Z-score normalization we can treat different families in the same scale. The

SDS site will be detected by the amino acid sites whose Z-score value exceed a threshold 0.5.

Figure 2.8: Amino Acid Attributes of the Three Groups
The table defines the three groups, based on physico-chemical properties, behind the 21-dimensional

vector. [17]

There are several ways to capture amino acid properties as used by the physico-chemical

properties-based approaches. Dubchak et al [17] divided 20 amino acids into three groups ac-

cording to the values in four attributes, which is shown in Figure 2.8. For each attribute, every

amino acid is assigned by the value 1, 2, or 3 according to one of the three groups to which it
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belongs. Based on the values, they calculate the features of composition (C), transition (T) and

distribution (D) for the given amino acid sequence. The C-features, Ck = nk
N , k = 1, 2, 3, repre-

sent the weight of each group in any attribute of amino acids in the total sequence. The T-features,

Tk,t =
nkt+ntk
N−1 , tk = 12, 23, 13, represent the percent frequency with which (1) a polar residue is

followed by a neutral residue, or a neutral residue by a polar residue; (2) a polar residue is followed

by a hydrophobic residue, or a hydrophobic residue by a polar residue; and (3) a neutral residue is

followed by a hydrophobic residue, or a hydrophobic residue by a neutral residue. The D-features

consist of the five numbers for each of the three groups, where each number is the fraction of the

entire sequence, where the first residue of a given group is located, and where 25%, 50%, 75%, and

100% of those are contained. The complete parameter vector contains 21 scalar components.

Chou et al [15] use sequence-order features for protein subcellular localization, which highly

concerns the protein function classification. Their method uses the physicochemical distance be-

tween amino acids to calculate the set of sequence-order-coupling numbers, which is used to reflect

quasi-sequence-order effect. They use the physicochemical information of hydrophobicity, polar-

ity and side chain volume. Shi et al [46] develop a different pseudo amino acid composition with

the multi-scale energy approach. They use the same amino acid distribution and physicochemical

information but different process method to generate the 50 feature values.

See Section 2.6.1 for how physico-chemical properties are used to determine SDS.

2.4 Profile Hidden Markov Model

The Markov model was proposed by Russian organic chemists Vladimir V. Markovnikov. The

hidden Markov model (HMM), as a statistical analysis model, was developed in the 1920s. The

hidden Markov model is a kind of Markov chain. Its state cannot be directly observed, but it can

be observed by the observation vector sequence. Each observation vector is expressed in various

states through probability distributions. Since the 1980s, it has been applied to speech recognition

with great success. In recent years, it has also been widely studied and applied in the fields of

bioinformatics.

For a random event, there is a sequence of observations, denoted as O1, O2, ..., OT , in which
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a sequence of states is hidden: denoted X1, X2, ..., XT . Three hypotheses are made in the hidden

Markov model:

Markov hypothesis: The state constitutes a first-order Markov chain;

Immobility hypothesis: The state is independent of the specific event, and p(Xj+1|Xj) = p(Xi+1|Xi)

is established for arbitrary i, j;

Output independence hypothesis: The output is only relevant to the current state P (O1, O2, ...Ot|X1, X2, ...Xt) =∏t
i=1 p(Oi|Xi).

The Hidden Markov Model contains two stochastic processes, which are:

(1) the transitions between states described by the transition probability matrix, namely the Markov

chain.

(2) the general stochastic process, using the observed value probability to describe the relation-

ship between the state space and the observed value space.

The relationship between the observation value and the state is not a one-to-one correspondence,

but a probability relationship.

The hidden Markov model is a five-tuple: (Ωx,Ωo, A,B, π), where there is: a finite set of

states Ωx = {q1, q2, ...qN}; a finite set of observed values Ωo = {V1, V2, ...VM}; a probability of

transition A = {aij}; an emission probability B = {bik}, bik = p(Ot = Vk|Xt = qi); an initial

state distribution π = {πi}, πi = P (X1 = qi). The meaning of the parameter in the hidden Markov

model is shown in Table 2.5

Parameter Meaning
N Number of States
M Number of Possible Observations Per State
A Time-independent State Transition Probability Matrix
B Probability Distribution of Observed Values in a Given State
π Probability Distribution of Initial State Space

Table 2.5: The Meaning of the Parameter in the Hidden Markov Model.

The profile Hidden Markov Model contains left-right structures of the three states of matching

state (M), insertion state (I) and missing state (D), which is shown in Figure 2.9. For the profile
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hidden Markov model, each node is a matching state (represented by a rectangle), an insertion state

(represented by a diamond), a deleted state (represented by a circle), and a start state and an end

(end) state, which do not emit any symbols. The match state indicates that the sequence has one

character in the column; the delete state indicates that no characters are emitted in the column; the

insert state allows additional characters to be emitted between the columns; therefore, each sequence

passes through these states through the model from start to finish. Each column has a distribution

of residues and a transition between states.

Figure 2.9: Profile Hidden Markov Model
A profile HMM showing matching states (M), insertion states (I) and missing states (D). A matching
state is represented by a rectangle, an insertion state by a diamond, a deleted state a circle.

The main steps to create a profile HMM:

(1) Determine the matching status (main status). The gaps tend to be line up within one protein

family multiple sequence alignment, and the model considers the ungapped regions. The

probability of a new sequence x according to this model is P (x|M) =
∏l

i=1 ei(xi). It is

easier to evaluate the log-odds ratio S =
∑l

i=1 log
ei(xi)
qxi

, where qxi is the probability of the

x under a random model. So there is an ungapped score matrices for the main status. The

matrix is a position specific score matix (PSSM).

(2) Calculate the number of times the match status and the insert status symbol are issued and the

number of transitions of various states.

(3) Convert the number of times the symbol is sent and the number of state transitions to the
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corresponding probability.

The most common problems solved by HMMs are:

(1) Full probability calculation problem, that is, given a sequence and a hidden Markov model,

calculate the model to generate this sequence. This is a forward algorithm or a backward

algorithm.

(2) The decoding problem, given the sequence and model, calculates the state chain that is most

likely to generate this sequence. It uses the Viterbi algorithm.

(3) Learning problem, given a series of character sequences, and estimate the parameters of the

hidden Markov model, which is using Welch-Baum algorithm.

2.4.1 Viterbi Algorithm

The Viterbi algorithm solves the problem of, given a known string, find the sequence most

likely to produce the string; this is the decoding problem. An intuitive idea is to calculate the

probability that all possible state sequences produce a string and then find the largest one. The

amount of calculation of exponential growth makes this idea almost impossible to achieve. This

problem can be solved with the idea of dynamic programming.

Defining Viterbi variables δt(k) = max
S1,...,SK−1∈S

P (C1C2...Ct, S1S2...St−1St = Sk), its intu-

itive meaning is along S1S2...St−1St = Sk, and the state at time t is a state chain of Sk, which

produces the maximum probability of a given string.

The Viterbi variable satisfies the following relationship: δt(k) = B(k, ct) × max
l=1,2,...,N

[δl(t −

1)A(l, k)], t = 2, ...n; k = 1, 2, ..., N . In addition to calculating the probability, you also need to

know which path is along. To do this, use a new variable to record the subscript for each max value.

Definition ϕt+1(Sk) = arg max
l=1,2,...,N

[δt(l)A(l, k)], t = 1, 2, ..., n − 1, k = 1, 2, ..., N . This vari-

able is used to backtrack the maximum value subscript at each moment. Starting from the last

moment n, step back and back, you can find the best path. If s∗n = argmax
l=1,2,...,N

[δt(l)A(l, k)], s∗t =

ϕt+1(S
∗
k+1), t = n − 1, ..., 1, then the optimal path is S∗ = s∗1s

∗
2...s

∗
n. The Viterbi algorithm

returns the most probable alignment between a given sequence and the profile HMM. It finds
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the maximum probability path for the profile HMM to generate the query sequence. Let Vi,j be

the maximum probability of a path from start state Si to the the end state Sj , so the Vi+1,j =

max
0≤k≤j−1

(Vi,kP (k, j)P (qi+1|j))

V M
j (i) = log

eMj (xi)

qxi

+max


V M
j−1(i− 1) + logaMj−1Mj

V I
j−1(i− 1) + logaIj−1Mj

V D
j−1(i− 1) + logaDj−1Mj

V I
j (i) = log

eIj (xi)

qxi

+max


V M
j (i− 1) + logaMjIj

V I
j (i− 1) + logaIjIj

V D
j (i− 1) + logaDjIj

V D
j (i) = max


V M
j−1(i) + logaMj−1Dj

V I
j−1(i) + logaIj−1Dj

V D
j−1(i) + logaDj−1Dj

where aij is the transition probability from state i to j and ei is the emission probability in state i,

and V M
j (i) is the log-odds score of the best path matching subsequence x1,...,i to the submodel up

to state j, ending with xi being emitted by state Mj . Similarly V I
j (i) is the score of the best path

ending in xi being emitted by Ij , and V D
j (i) is for the best path ending in state Dj .

2.5 Alignment Tools

2.5.1 BLAST

Protein functional sites are often composed of short sequence fragments, although mutations

such as insertions and deletions may happen in other parts in the sequence, but these key functional

sites are often quite conservative. Local alignments tend to be more sensitive to these functional

segments than global alignments, so the results are more biologically significant. BLAST [2] (Basic

Local Alignment Search Tool) is a program based on matching short sequence segments and has a

powerful statistical model to determine the best local alignment of a query sequence against database

sequences.
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BLAST first filters the query sequence of low compositional complexity regions to prevent the

production of large numbers of statistically significant but biologically uninteresting results. Then

BLAST splits the query sequence into consecutive subsequences of lenght w, which is so called

w-letter word pairs. BLAST is only interested in the high score word pairs, so there is a threshold

T for the score of words. After compiling a list of word pairs at or above threshold T, the BLAST

algorithm scans the word pairs against the database for sequences that match the words, which are

called seeds. The seeds are the starting point of the ungapped local alignment between the query

sequence and the database sequence. BLAST extends seeds to the right and left with a gapped

extension [3]. The extension process is terminated when a score falls below a cutoff. BLAST

reports the extended alignments or hits that have a score S at or above threshold and e-value E

below threshold. Such! hits are called High Scoring Pairs (HSPs).

The substitution matrix is used to score the HSPs. So the higher the similarity, the higher the

score S. The e-value E [37] is the probability (expected value) that BLAST program can randomly

find a sequence with such a high score in the search space, so the higher the e-value, the more likely

the result is randomly obtained and the less credible.

The program used the following parameters: Maximum target sequences: 10; E-value: 10;

Word Size: 3; Substitution Matrix: BLOSUM 62; Gap Open Penalty: 11 as default; Gap Extension

Penalty: 1 as default.

BLAST can be downloaded from: https://blast.ncbi.nlm.nih.gov/Blast.cgi?

CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download.

2.5.2 ClustalW

ClustalW [49] is a progressive alignment algorithm. Progressive alignment iteratively uses a

pairwise dynamic programming alignment algorithm. It starts with the alignment of two sequences

and gradually adds new sequences until all sequences are added. Different order of addition will

produce different results. Thus determining the proper alignment order is a key issue for the pro-

gressive alignment algorithm. The more similar the two sequences are, the more confident people

are in aligning them. So the alignment begins with the two most similar sequences.

In ClustalW, multiple sequences are paired to be aligned by dynamic programming approach
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[34]. For N sequences, there is (N-1)(N)/2 pairwise alignments with scores calculated using penal-

ties for opening or extending gaps, and a substitution matrix. These scores are divided by the number

of residues compared respectively, and generate a percent identity score. Both scores are converted

to distances and generate a distance matrix. Second, using the distance matrix and neighbor-joining

method [41], ClustalW builds a phylogenetic guide tree with topology (branching order and length).

The progressive alignments follow the branching order in the guide tree. These trees are also used

to derive a weight for each sequence. The weights are dependent upon the distance from the root of

the tree, but sequences which have a common branch with other sequences share the weight derived

from the shared branch [49].

The default parameters are: Gap Open Penalty: 10.0; Gap Extension Penalty: 0.1; Substitution

Matrix: BLOSUM 62.

ClustalW can be downloaded from: http://www.clustal.org/clustal2/.

2.5.3 Clustal Omega

Clustal Omega [47] is another progressive alignment method from the Clustal family. The key

to making the progressive alignment is the method used to make the guide tree. Clustal Omega uses

a modified version of mBed [7]. Each sequence is embedded in a vector space of n dimensions,

where each element is the distance to one of n reference sequences. The pair-wise alignments are

computed using the very accurate HHalign package [45], which aligns sequences by two profile

hidden Markov models [18].

Clustal Omega can be downloaded from: http://www.clustal.org/omega/.

2.5.4 MAFFT

MAFFT [27] is a multiple sequence alignment method based on fast Fourier transform. It treats

sequence information as a signal for processing. The frequency of amino acid substitutions strongly

depends on the difference of physico-chemical properties. Each amino acid is converted into a

vector, which includes two values: volume and polarity. The algorithm calculates the relationship

between two sequences, the result is transformed to Fourier signal information. This transform

can reduce the cpu time. If two sequences compared have homologous regions, there will be a

26

http://www.clustal.org/clustal2/
http://www.clustal.org/omega/


peak corresponding to these regions. MAFFT applies standard dynamic programming to obtain an

optimal path, which corresponds to the optimal arrangement of similar segments. MAFFT is an

iterative method. In the program package MAFFT, there are several different modes: progressive

methods FFT-NS-1 and FFT-NS-2, and an iterative refinement method FFT-NS-i. FFT-NS-1 uses

a guide tree and progressively aligns ! the sequences. FFT-NS-2 repeats the alignments on the

base of FFT-NS-1. FFT-NS-i divides the alignment into two groups and realigns until there is no

improvement in score.

MAFFT can be downloaded from: http://mafft.cbrc.jp/alignment/software/.

2.5.5 T-Coffee

T-Coffee [35] is the short name which stands for “tree-based consistency objective function for

alignment evaluation”. T-Coffee is also a progressive alignment algorithm, which is basically sim-

ilar to the algorithm step of ClustalW. The difference between them is that, in T-Coffee, extension

library is used instead of the substitution matrix in ClustalW. So the scoring information used in

each step of the progressive alignment process is taken from the relationship within all sequences,

not just the sequence that is currently being aligned. hence, it is consistency-based. This minimizes

the greedy effects of the progressive alignment algorithm. Since both the local alignment and the

global alignment are considered in the extension library, all the pair-wise sequences alignment data

is preprocessed, and the result is more accurate.

T-Coffee algorithm has five steps. The first one is generating a primary library. In this step,

T-Coffee uses two alignment sources for each pair of sequences, one is local (Lalign [26]) and the

other one is global (ClustalW [49]). The second step is the derivation of the primary library weights.

There is a weight which is generated on each pair of aligned residues, and it is equal to sequence

identity within the pair-wise alignment. So there are two libraries (local and grobal) for each set

of sequences. Third, T-Coffee combines these two libraries by merging the duplicated pair-wise

residues and adding the sum of the two weights. The fourth step is extending the library. This

enormously increases the value of the information in the library by examining the consistency of

each pair of residues with residue pairs from all of the other alignments. A triplet approach is used.

For example, for sequences A, B and C, where A(G) aligned with B(G), and there is a! primary
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weight, then the weight(A(G), B(G)) will be changed depending on the weight(A(G), C(G)) and

weight(B(G), C(G)). The specific changes are described in detail in the paper [35]. Lastly, the

progressive alignment strategy uses the the extension library as substitution matrix to align the

sequences according to the phylogenetic tree [41].

T-Coffee can be downloaded from: http://www.tcoffee.org/Projects/tcoffee/

index.html#DOWNLOAD.

2.5.6 MUSCLE

MUSCLE [20] is analgorithm which combines the progressive method and the iterative method.

The steps are shown in Figure 2.5.6. There are two parts in the algorithm. The first part uses two

approaches to calculate the distances between sequences. The first distance calculation is by kmer

distance (for an aligned pair). By progressive alignment, MUSCLE makes a preliminary alignment,

MSA1. The second distance is Kimura distance (for an aligned pair), which is generated from the

pairwise identity of MSA1. Then it builds another progressive alignment MSA2. The guide trees

of these two progressive alignments are both built by the UPGMA method. In the second part,

MUSCLE uses a group aligning idea to do iterative alignment. According to the branching point

of the second guide tree, the sequences are divided into two groups. The profile of the multiple

sequence alignment in each subtree is computed. Then MUSCLE uses log-expectation to calculate

the two profile scores. A new alignment MAS3 is made, and if the score is improved, the new

alignment is kept, otherwise it is discarded.

MUSCLE can be downloaded from: https://www.drive5.com/muscle/downloads.

htm.

2.5.7 TM-Coffee

Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-

membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Mul-

tiple alignment techniques use scoring schemes tailored for soluble proteins and are therefore, in

principle, not optimal to align membrane-bound proteins [39]. TM-Coffee [22] is designed for this

situation by using homology extension. Although this method gives much more accurate alignment,
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Figure 2.10: MUSCLE Algorithm
The steps of the MUSCLE algorithm showing the three multiple sequence alignments MSA1, MSA2,
MSA3, and their relationship. [20]
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performing an alignment takes several orders of magnitude longer than the standalone applications

[21].

The algorithm of TM-Coffee follows. First, run BLAST against a specified database for each

sequence that is going to be aligned. Then TM-Coffee turns the BLAST output into a profile by

removing all columns corresponding to positions unaligned to the query (i.e. gaps in the query) and

the query positions unmatched by BLAST are filled with gaps [22]. Third, TM-Coffee produces

a T-Coffee library by aligning every pair of profiles with a pair-HMM, and every pair of matched

columns with a posterior probability of being aligned higher than 0.99 is added to the library. Last,

this library is uesd to do the progressive alignment.

TM-Coffee can be downloaded from: http://www.tcoffee.org/Projects/tcoffee/

index.html#DOWNLOAD.

2.6 Tools for Specificity Determining Sites

2.6.1 SPEER SERVER

SPEER is an ensemble approach that encodes the conservation patterns of amino acid types

using their physicochemical properties and the heterogeneity of evolutionary changes between and

within the subfamilies [13].

The first SPEER term, which accounts for the variability of sites between and within the sub-

families, is the Euclidean distance based on amino acid physico-chemical properties. SPEER uses

matrices containing quantitative values for amino acid physico-chemical properties which were ob-

tained from the UMBC AAIndex database [8]. To quantify the difference between any two se-

quences p and q at a given site, SPEER uses a weighted Euclidean distance (ED). The ED score

is positive and low values correspond to the situation where amino acid properties are very well

conserved within the subfamilies and non-conserved between them. The second SPEER term is

evolutionary rate. SPEER uses the approach implemented in the rate4Site [40] program to calculate

the evolution rate (ER) at each site separately for each subfamily and then average it among all

subfamilies. A low average ER value would indicate that there is a slowly evolving site in certain
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subfamilies. The third SPEER term is combined relative entropy. SPEER calculates relative en-

tropy for each pair within one subfamily, and gets the combined relative entropy (CRE). A large

CRE value corresponds to large differences between amino acid distributions within the subfamily.

This experiment used the weights of 1.0, 1.0 and 1.0 for the parameters relative entropy,

PC property distance and ER, respectively.

Speer Server can be download from: http://www.hpppi.iicb.res.in/ss/download.

html.

2.6.2 SimGroup

GroupSim [11] uses a score-based approch. In GroupSim, the average similarity between each

pair of amino acids within a subgroup is calculated using a similarity matrix to obtain a column

score, based on which the SDS predictions are done [14]. A protein family may be grouped into

subfamilies that share specific functions that are not common to the entire family. Often, the amino

acids present in a small number of sequence positions would determine each protein’s particular

functional specificity. GroupSim presents a sequence-based method to predict this kind of SDS.

First, it calculates the average similarity between each pair of amino acids in a subfamily ac-

cording to a similarity matrix for each subfamily. Second, GroupSim computes, for each subfamily,

the average similarity of all amino acid pairs containing one amino acid in the group and one not in

the group. When the subfamilies are more different, the column is more likely to be a SDS. Last,

the column score is the average within-subfamily similarity minus the average between-subfamily

similarity. Higher scores mean a greater likelihood to be a SDS.

GroupSim can be download from: http://compbio.cs.princeton.edu/specificity/.

2.6.3 Xdet

Xdet [36] implements two methods: one is the mutational behaviour (MB) method, and the

second one is a version of the MB-method, which uses an external arbitrary functional classification

instead of relying on the one implicit in the alignment. It detects residues responsible for functional

specificity in multiple sequence alignments. This kind of site, representing a family-dependent (or

function-dependent) conservation pattern, complements the fully-conserved positions as predictors
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of functionality.

For each position in the alignment, there is a matrix generated to calculate the amino acid

changes for all pairs of proteins based on the substitution matrix. Each entry in this matrix represents

the similarity between the residues of two proteins at that position. Second, another matrix is

constructed by an external arbitrary functional classification. Each entry in this matrix represents the

functional similarity between the corresponding proteins. Last, Xdet uses the Spearman rank-order

correlation coeficient to compare these two matrices:

rk =

∑
pq(Apqk

′ −A
′
)(Fpq

′ − F
′
)√∑

pq (Apqk
′ −A

′
)
2
√∑

pq (Fpq
′ − F

′
)
2

(6)

where rk is the score for position k, Apqk is the similarity between the amino acids of proteins p and

q at position k, and Fpq is the functional similarity between proteins p and q. Positions with high

rk values are the ones for which similarities between amino acids are correlated with the functional

similarities between the corresponding proteins, and hence are predicted as the ones related with

functional specificity [36].

Xdet can be download from: http://pdg.cnb.uam.es/pazos/Xdet/.

2.7 HMMER for Profile Hidden Markov Models

HMMER [19] is a free and commonly used software package for sequence analysis based on

profile Hidden Markov Models. For the multiple sequence alignment of the protein sequences in

a protein family, there are functional sites, which are corresponding to conserved amino acid sites;

and non-specific feature sites, which are corresponding to less conserved amino acid sites. So each

site has a different probability distribution over 20 amino acids, which measures the likelihood of

each amino acid occurring at that site in the protein family. Multiple sequence alignments can then

be modeled by capturing a probabilistic model of the shared nature of multiple sequence alignments

[30].

In HMMER, the application hmmbuild is used to build a profile HMM using a multiple se-

quence alignment, or single sequence as input. The hidden state is one of insert state, delete state
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and match state, while the observation layer consists of sequence letters, as shown in Figure 2.9.

The transition probability and emission probability are calculated from the given multiple sequence

alignment of the protein sequences, and a profile HMM for a protein family is built. The second

application is hmmscan, which scans a single protein sequence against a database of profile HMMs.

The program parameters used are: e-value: 0.1.

HMMER can be run download from: http://hmmer.org/download.html.
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Chapter 3

Constructing and Evaluating Classifiers

Several existing classifiers target the classification of substrates, however, they are able to clas-

sify the type of the substrates being transported, but not the specific substrate. There are not enough

examples of transporters where the specific substrates are known — that is, have been experimen-

tally determined — to allow machine learning approaches to achieve good performance. Therefore,

we propose a new approach to classify the class of substrates transported across a membrane by a

given transmembrane protein. We develop a classification pipeline which integrates the steps of data

rocessing, model building and model evaluation. The pipeline contains similarity search, multiple

sequence alignment (MSA), specificity determining site (SDS) prediction and construction of a pro-

file Hidden Markov Model. We evaluate the pipeline across a combination of existing MSA tools

and SDS tools. We discuss and analyze the impact of the using different MSA tools, SDS tools and

parameters on the classification of the substrate class. We find a combination which outperforms

the state-of-the-art.

This work is the first to apply profile Hidden Markov Models to classify the substrate class

of a transmembrane transport protein, and the first to combine the specificity determining sites

with profile Hidden Markov Model to the classification for the substrate class transported across a

membrane by a given transmembrane transport protein.

This chapter is organized so Section 3.1 presents the material used in the project, including the

datasets and tools called during the experiment; Section 3.2 specifically describes the experimental

procedure. Section 3.3 shows the experimental results; Section 3.4 discusses the results.
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3.1 Materials

3.1.1 Datasets

We used two datasets in this work

(1) The small dataset [44] has 61 sequences and covers four substrate classes. See Table 3.1.

(2) The large dataset [33] has 780 sequences in the training set and 120 sequences in the test set,

and which covers seven substrate classes, one of which is “Other”. See Table 3.2.

Complete lists of the sequences for each dataset are available in the Appendices.

Substrate Class Set Size Number of TCDB Families TCDB Families
Amino Acid 14 2 2.A.18, 2.A.3

Hexose 15 2 2.A.1.1, 2.A.123
Oligopeptide 17 2 2.A.67, 2.A.17

Phosphate 15 5 2.A 1.9, 2.A.1.14 2,A.20,
2.A.29, 2.A.7

Table 3.1: Dataset 1.

Substrate Class Training Dataset Size Test Dataset Size
Amino Acid 70 15

Anion 60 12
Cation 260 36

Electron 60 10
Protein/mRNA 70 15

Sugar 60 12
Other 200 20
Total 780 120

Table 3.2: Dataset 2.

3.1.2 Databases

We use the Swiss-Prot database when searching for similar sequences in BLAST and TM-

Coffee. Since both datasets consist of sequences from Swiss-Prot, we remove them from the

database used for similarity searches.
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3.2 Methods

We use a classification pipeline which integrates the steps of data rocessing, model building and

model evaluation. The pipeline contains similarity search, multiple sequence alignment (MSA),

specificity determining site (SDS) prediction and construction of a profile Hidden Markov Model.

We evaluate the pipeline across a combination of existing MSA tools and SDS tools. We dis-

cuss and analyze the impact of the using different MSA tools, SDS tools and parameters on the

classification of the substrate class. We find a combination which outperforms the state-of-the-art.

3.2.1 BLAST

The first step of our experiment is to run BLAST on each sequence in training dataset to get

similar sequences. BLAST need a local database, which is made of Swiss-Prot by removing any

copy of sequences in the test dataset. For each sequence s, a BLAST search is performed to retrieve

a maximum of 10 similar sequences.

Algorithm 1 BLAST
Input: the training dataset as .fasta file of protein sequences;
Input: the test dataset as .fasta file of protein sequences;
Output: result is up to 10 similar sequences for each sequence in the training datase;t
1: LocalDB ⇐ Search(Swiss-Prot, removing any copy of sequences in the test dataset)
2: for each sequence s in training dataset do
3: SimilarSeq[s] ⇐ blastp(DB=LocalDB, query=s, maxseq=10)

Our BLAST command was the following:

b l a s t p −que ry q u e r y _ s e q . f a s t a −db c l e a n e d _ s w i s s _ p r o t −e v a l u e 0 .001 \

−o u t f m t 5 −o u t b l a s t _ o u t . xml −m a x _ t a r g e t _ s e q s 10

where query_seq.fasta contains the query sequence(s); cleaned_swiss_prot is the database

to be searched; for a maximum of 10 matching sequences; the threshold e-value is 0.001; the chosen

format for the output is 5 which gives an XML file blast_out.xml.
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3.2.2 MSA

We compute a MSA of the set SimilarSeq[s] of similar sequences to s, using an MSA tool, such

as ClustalW. Algorithm 2 shows the process of multiple sequence alignment.

We also use a variety of different MSA tools: ClustalW, Clustal Omega, MAFFT, T-Coffee,

MUSCLE and TM-Coffee. Figure 3.1 shows the process of using different MSA tools to align the

sequences.

Algorithm 2 MSA
Input: the sequences S = s and SimilarSeq[s];
Output: result is an alignment MA of the sequences;
1: MA ⇐ ClustalW(S)

Figure 3.1: The Pipeline showing the MSA Tools

Our MSA commands are the following:

c l u s t a l w 2 − i n f i l e =myseqs . f s a −o u t f i l e =mymsa . f s a −OUTPUT=FASTA

c l u s t a l o − i n f i l e =myseqs . f s a −o u t f i l e =mymsa . f s a

m a f f t myseqs . f s a > mymsa . f s a

t _ c o f f e e myseqs . f s a −o u t f i l e mymsa . f s a −o u t p u t f a s t a

musc le −i n myseqs . f s a −o u t mymsa . f s a
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t _ c o f f e e myseqs . f s a −o u t f i l e mymsa . f s a −o u t p u t f a s t a \

−mode p s i c o f f e e −b l a s t _ s e r v e r LOCAL \

−p r o t e i n _ d b c l e a n e d _ s w i s s _ p r o t

where myseqs.fsa contains the imput sequence(s) in fasta format; mymsa.fsa contains the

multiple sequence alignment in fasta format; and cleaned_swiss_prot is the database to be

searched for TM-Coffee.

Figure 3.2: The Pipeline showing the SDS Tools

3.2.3 SDS

The prediction of SDS is used to filter an MSA, and focus on the important posiions in the

sequence when building a profile HMM. We process the alignment, so all entries in the columns

of non-SDS positions are changed to ’-’, and other entries are unchanged. Algorithm 3 shows the

process to predict the SDS from the MSA, and to filter the MSA.

We also use a variety of different SDS tools: Speer Server, GroupSim, Xdet (Figure 3.2).

Our SDS commands are the following:

. / SPEER −wRE 1 −wEDist 1 −wERate 1 \

− i mymsa . f s a −o o u t _ f i l e 6 5
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Algorithm 3 SDS
Input: an MSA MA;
Output: result is fMA, a filtered MSA;
1: SDS ⇐ SpeerServer(MSASeq)
2: fMA ⇐ MA
3: for each position p not in SDS do
4: fMA[r, p]⇐ ’-’, for each row r of alignment

py thon groups im . py −n −m blosum62 . b l a −w 3 −o o u t _ f i l e \

mymsa . f s a group1 group2

. / x d e t _ o s x mysmsa . f s a blosum62 . t x t > o u t _ f i l e −S 10

where mymsa.fsa contains the multiple sequence alignment; blosum62.bla and blosum62.txt

is a amino acid scoring matrix in the required format; and out_file is a text output file containing

score information on each position (in different formats for each SDS tool). For Speer Server, the

numbers "6" and "5" indicate the size of each of the two subfamilies in the input, and that the first

6 sequences belong to subfamily one, and the next 5 to subfamiliy two. For GroupSim, the header

lines for the sequences in the input file, must include either "group1" to indicate the sequence is

in subfamily one, or ""group2" to indicate it is in subfamily2; and these strings are given on the

command line. The "w" parameter is the window size. For Xdet, the "S" parameter is the number

of random sequences generated by the Xdet.

3.2.4 Build HMM

A profile HMM is built by HMMER’s hmmbuild from the filtered MSA (see Algorithm 4).

Algorithm 4 HMM
Input: fMA, a filtered or non-filtered MSA;
Output: result is a profile HMM;
1: profile HMM ⇐ hmmbuild(fMA)

Our HMMBuild command is the following:

. / hmmbuild o u t .hmm mymsa . f s a
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where mymsa.fsa contains the multiple sequence alignment; and out.hmm is the profile HMM

model.

3.2.5 Classification

Classification of a test sequence p is done by running the sequence against each profile HMM,

selecting the one with the bext score, and selecting the corresponding substrate class (see Algorithm

5). The score is computed using HMMER’s hmmscan. This requires that the profile HMM be

compressed, which is done by hmmpress.

Algorithm 5 Classification
Input: a sequence p of a transport protein to classify;
Input: a collection of profile HMMs;
Output: classification of p;
1: for each profile HMM do
2: compressed profile HMM ⇐ hmmpress(profile HMM)
3: for each compressed profile HMM m do
4: score[m] ⇐ hmmscan(m,p)
5: classify p to the substrate class corresponding to m which generated the highest score

Our HMMScan command was the following:

. / hmmscan −o o u t _ f i l e −E 0 . 1 i n .hmm myseq . f s a

where myseq.fsa contains the query sequence; in.hmm is the profile HMM model; and out_file

is the output file. We use a reporting threshold of 0.01 so only targets with e-value less than this are

reported. Hence, some sequences may be “unclassified”.

3.2.6 Evaluation

Four statistical measures were considered to measure the performance:

sensitivity which is the proportion of positives that are correctly identified:

Sensitivity =
TP

TP + FN
(7)
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specificity which is the proportion of negatives that are correctly identified:

Specificity =
TN

TN + FP
(8)

accuracy which is proportion of correct classifications made amongst all the classifications:

Accuracy =
TP + TN

TP + FN + TN + FP
(9)

Matthews correlation coefficient (MCC) which is a single measure taking into account true and

false positives and negatives:

MCC =
(TP × TN − FP × FN)√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(10)

where TP is the number of true positives, TN is the number of true negatives, FP is the number

of false positives, and FN is the number of false negatives.

We use the MCC because it is less influenced by imbalanced data and is arguably the best single

assessment metric in this case [16, 50, 6].

3.2.7 Experiments

With each dataset, we follow the methodology of the source literature. So for Dataset 1, we use

Leave-One-Out-Cross-Validation (LOOCV), and for Dataset 2, we form classifiers from the training

set, and evaluate them using the independent test set.

We perform experiments to analyze the impact of the using different MSA tools, SDS tools and

parameters on the classification of the substrate class.

For each dataset, we consider each combination of MSA tool and SDS tool to determine the

bst combination. We determine the impact of the use of MSA, and the use of SDS by including

baseline pipelines. The primary baseline uses no MSA tool and no SDS tool, and simply builds a

profile HMM from the sequence itself. For each MSA tool, we have a baseline pipeline that uses no

SDS tool.
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We perform experiments to gauge the effect of the parameter settings for the SDS tools.

For our best performing pipeline, we do a comparison against the state-of-the-art TrSSP [33].

3.3 Results

3.3.1 First Dataset

Table 3.3 presents the overall accuracy and MCC of the 25 combinations, including the base-

lines. They are sorted by Accuracy, from low to high, as the MCC is consistently 1.00. The highest

accuracy was achieved by TM-Coffee-GroupSim, so we present its detailed performance in Table

3.4, and its confusion matrix in Table 3.5.

3.3.2 Second Dataset

Table 3.6 presents the overall accuracy and MCC of the 25 methods, including the baselines.

They are sorted by MCC, from low to high. The highest MCC was achieved by MUSCLE and Xdet,

so we present its detailed performance in Table 3.7, and its confusion matrix in Table 3.8.

3.3.3 Parameters

To see the impact of SDS on the classification, we set different parameters for the SDS tools.

Table 3.9 and Table 3.10 show the impact of the SDS threshold for the first dataset. The first

table in terms of actual counts, and the second table in terms of the performance metrics.

Table 3.11 shows the result of varying parameters for Speer Server. There are three param-

eters in Speer Server: relative entropy (-wRE), evolutionary distance (-wDist),

evolutionary rate (-wERate). The program uses a linear combination of three terms, each

with a weight between 0 and 1, with at least one having a non-zero value.

For GroupSim, there are two parameters: the substitution matrix, and the conservation window

size. Varying the window size did not affect the results. For Xdet, there are two parameters: the

substitution matrix, and random alignments. the random alignments are used to associate Z-scores

and P-values to the correlation scores. We tried generating 1, 5 and 10 random alignments, however,

it did not affect the result.
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MSA SDS Accuracy MCC
T-Coffee (baseline) - 0.951 1.00
ClustalW (baseline) - 0.967 1.00
ClustalOmega - 0.967 1.00
MUSCLE (baseline) - 0.967 1.00
ClustalW SpeerServer 0.980 1.00
MAFFT SpeerServer 0.980 1.00
TM-Coffee SpeerServer 0.980 1.00
MAFFT (baseline) - 0.984 1.00
TM-Coffee (baseline) - 0.984 1.00
ClustalOmega SpeerServer 0.984 1.00
T-Coffee SpeerServer 0.984 1.00
MUSCLE SpeerServer 0.984 1.00
T-Coffee GroupSim 0.984 1.00
T-Coffee Xdet 0.984 1.00
- (baseline) - 0.988 1.00
ClustalOmega Xdet 0.988 1.00
MUSCLE Xdet 0.988 1.00
TM-Coffee Xdet 0.988 1.00
ClustalW Xdet 0.992 1.00
ClustalOmega Xdet 0.992 1.00
ClustalW GroupSim 0.996 1.00
ClustalOmega GroupSim 0.996 1.00
MAFFT GroupSim 0.996 1.00
MUSCLE GroupSim 0.996 1.00
TM-Coffee GroupSim 0.996 1.00

Table 3.3: Overall Performance of the Combinations (First dataset).
The results come from the Leave-One-Out-Cross-Validation test using the first dataset. The combina-
tions are ranked by Accuracy. Note the baseline entries.

Class Sensivity Specificity Accuracy MCC Unclassified
Amino Acid 1.000 1.000 1.000 1.000 0.000
Hexose 1.000 1.000 1.000 1.000 0.000
Oligopeptide 1.000 1.000 1.000 1.000 0.000
Phosphate 0.933 1.000 0.984 1.000 0.067
Overall 0.996 1.000 0.016

Table 3.4: Detailed Performance of TM-Coffee and GroupSim Combination (First dataset).
The results come from the Leave-One-Out-Cross-Validation test using the first dataset. The column
“Unclassified” records the percentage of sequences that were not a match to any profile HMM.
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Actual
Predicted

Amino Acid Hexose Oligopeptide Phosphate Unclassified

Amino Acid 14 0 0 0 0
Hexose 0 15 0 0 0
Oligopeptide 0 0 17 0 0
Phosphate 0 0 0 14 1

Table 3.5: Confusion Matrix of the TM-Coffee and GroupSim Combination (First dataset).
The results come from the Leave-One-Out-Cross-Validation test using the first dataset. The column
“Unclassified” records the number of sequences that were not a match to any profile HMM.

MSA SDS Accuracy Average MCC
Accuracy

MAFFT SpeerServer 0.508 0.914 0.591
MUSCLE SpeerServer 0.517 0.914 0.593
ClustalOmega SpeerServer 0.525 0.914 0.593
TM-Coffee SpeerServer 0.533 0.918 0.605
ClustalW SpeerServer 0.525 0.919 0.612
T-Coffee (baseline) - 0.608 0.925 0.636
T-Coffee GroupSim 0.608 0.926 0.638
T-Coffee Xdet 0.608 0.926 0.638
T-Coffee SpeerServer 0.600 0.925 0.639
MAFFT GroupSim 0.650 0.931 0.668
TM-Coffee Xdet 0.683 0.936 0.675
- (baseline) - 0.650 0.933 0.676
ClustalOmega Xdet 0.667 0.933 0.681
ClustalOmega (baseline) - 0.683 0.933 0.683
ClustalW GroupSim 0.667 0.935 0.685
MAFFT (baseline) - 0.683 0.935 0.686
ClustalOmega GroupSim 0.667 0.933 0.688
TM-Coffee GroupSim 0.667 0.933 0.689
MUSCLE GroupSim 0.675 0.936 0.690
ClustalW Xdet 0.683 0.936 0.692
ClustalW (baseline) - 0.692 0.936 0.693
TM-Coffee (baseline) - 0.692 0.937 0.697
MAFFT Xdet 0.683 0.938 0.702
MUSCLE (baseline) - 0.700 0.938 0.703
MUSCLE Xdet 0.700 0.940 0.716

Table 3.6: Overall Performance of the Combinations (Second dataset).
These are the results obtained using the independent test set of size 120. The combinations are ranked by
MCC. For each combination, the table presents accuracy (calculated accuracy as proportion of correct
predictions divided by the total number of predictions), average accuracy (calculated as the average
across the seven classes) and MCC. Note the baseline entries.
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Class Sensivity Specificity Accuracy MCC Unclassified
Amino Acid 0.73 0.98 0.95 0.76 0.07

Anion 0.67 0.96 0.93 0.63 0.00
Cation 0.86 0.99 0.95 0.88 0.14

Electron 0.50 1.00 0.96 0.69 0.50
Protein 0.60 1.00 0.95 0.75 0.40
Sugar 0.75 0.97 0.95 0.72 0.17
Other 0.55 0.96 0.89 0.57 0.15

Overall 0.94 0.72 0.21

Table 3.7: Detailed Performance for the MUSCLE and Xdet Combination (Second dataset).
The results come from the independent test set of size 120. The column “Unclassified” records the
number of sequences that were not a match to any profile HMM.

Actual
Predicted

Amino Acid Anion Cation Electron Protein Sugar Other Unclassified

Amino Acid 11 0 1 0 0 1 1 1
Anion 1 8 0 0 0 1 2 0
Cation 0 0 31 0 0 0 0 5

Electron 0 0 0 5 0 0 0 5
Protein 0 0 0 0 9 0 0 6
Sugar 0 0 0 0 0 9 1 2
Other 1 4 0 0 0 1 11 3

Table 3.8: Confusion Matrix for the MUSCLE and Xdet Combination (Second dataset).
The results come from the independent test set of size 120. The column “Unclassified” records the
number of sequences that were not a match to any profile HMM.

Threshold TP TN FP FN SDS/length
0 60 183 0 1 27475 / 34588
0.05 60 183 0 1 27109 / 34588
0.10 60 183 0 1 25953 / 34588
0.15 59 183 0 2 23064 / 34588
0.20 59 183 0 2 18142 / 34588
0.25 36 183 0 25 12276 / 34588
0.30 0 183 0 61 7799 / 34588

Table 3.9: Results for Different Thresholds for SDS Tool GroupSim (First dataset).
This is the result of the combination of TM-Coffee and GroupSim. The first column, threshold, is set
for the score given by GroupSim. The GroupSim score t is bewteen 0 and 1. GroupSim returns the sites
with a GroupSim score higher than t. The last column, “SDS/length”, is the number of SDS and the
length of the MSA.
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Threshold Sensitivity Specificity Accuracy MCC Unclassified
0 0.984 1.000 0.996 1.000 0.016
0.05 0.984 1.000 0.996 1.000 0.016
0.10 0.984 1.000 0.996 1.000 0.016
0.15 0.967 1.000 0.992 1.000 0.033
0.20 0.967 1.000 0.992 1.000 0.033
0.25 0.590 1.000 0.898 1.000 0.410
0.30 0.000 1.000 0.000 1.000 0.000

Table 3.10: Performance for Different Thresholds for SDS tool GroupSim (First dataset).
This is the result of the combination of TM-Coffee and GroupSim. The first column, threshold, is set
for the score given by GroupSim. The GroupSim score t is bewteen 0 and 1. GroupSim returns the

sites with a GroupSim score higher than t.

Parameter Sensitivity Specificity Accuracy MCC Unclassified
RE Dist ERate
1 1 1 0.685 1.000 0.600 0.639 0.314
0 1 1 0.685 1.000 0.600 0.639 0.314
1 0 1 0.707 1.000 0.625 0.661 0.292
1 1 0 0.685 1.000 0.600 0.639 0.314

Table 3.11: Performance for Different Parameters of Speer Server (Second dataset).
This is the result of the combination of T-Coffee and Speer Server. Thefirs columns show three

parameters in Speer Server: relative entropy, evolutionary distance, and
evolutionary rate. Only one combination of parameter settings has any effect.
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3.3.4 Comparison with State of the Art

Table 3.12 compares the performance of the MUSCLE-Xdet combination to the state-of-the-art

TrSSP [33] on the independent test set of size 120 from the second dataset.

Class Specificity Sensitivity Accuracy MCC
TrSSP MUSCLE TrSSP MUSCLE TrSSP MUSCLE TrSSP MUSCLE

-Xdet -Xdet -Xdet -Xdet
Amino acid 82.42 98.10 93.33 73.33 83.33 95.00 0.49 0.76

Anion 69.05 96.30 75.00 66.67 69.44 93.33 0.23 0.63
Cation 74.31 98.81 75.00 86.11 74.44 95.00 0.41 0.88

Electron 91.78 100.00 80.00 50.00 91.11 95.83 0.50 0.69
Protein 82.42 100.00 93.33 60.00 83.33 95.00 0.49 0.75
Sugar 76.79 97.22 91.67 75.00 77.78 95.00 0.38 0.72
Other 73.13 96.00 60.00 55.00 71.67 89.17 0.23 0.57

Overall 78.88 94.04 0.41 0.72

Table 3.12: Comparison between the MUSCLE-Xdet Combination and TrSSP (Second dataset).
The table presents our data for MUSCLE-Xdet built with the training set and run on the test set. The
corresponding results for TrSSP are taken from their original paper. The table shows specificity, sen-
sitivity, accuracy and MCC for each of the seven substrate types; and the average accuracy and MCC.
The TrSSP results were calculated as the average across the seven classes; if we adopt the same method
the average accuracy is 94.04% and the average MCC is 0.72.

3.4 Discussion

3.4.1 Outperforming the State of the Art

Table 3.12 compares the performance of the MUSCLE-Xdet combination to the state-of-the-art

TrSSP [33]. It shows that we outperform TrSSP on each individual substrate class in terms of both

accuracy and MCC. Overall, our average MCC is 0.72 compared to 0.41 for TrSSP.

TrSSP does have better sensitivity than our the MUSCLE-Xdet combination, which may be due

to the number of unclassified sequences.

3.4.2 Combination of MSA Tools and SDS Tools

For the first dataset, Table 3.3 shows the performance for the combination of MSA and SDS

tools. The best performing combinations based on accuracy are ClustalW-GroupSim, ClustalOmega-

GroupSim, MAFFT-GroupSim, MUSCLE-GroupSim and TM-Coffee-GroupSim with an accuracy

(99.6%) compare to the accuracy of the baseline of 98.8%. For the second dataset, Table 3.6 shows
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the performance of the combinations of MSA and SDS tools. Here they are ranked by MCC, which

is the preferred metric for the imbalanced datasets that we have. The best performing combination

is MUSCLE and Xdet with an MCC of 0.716 compared to the baseline of 0.676.

So we can conclude there is a benefit to including SDS tools in the pipeline with MSA, and

there is a benefit to including MSA tools in the pipelne.

We believe that the improved performance is due to the MSA tools incorporating the evolution-

ary information, and the SDS tools identifying important positions in the protein.

We expected combinations with TM-Coffee to outperform the other MSA tools, because TM-

Coffee produces alignments consistent with the transmembrane segments, but this was not the case.

3.4.3 Parameters

The results of our experiments with various parameter setting for the SDS tools showed that

they had no impact on performance of the classifiers, in general. Setting the threshold, as shown in

Table 3.10, does impact the accuracy. We can clearly observe that as the number of SDS decreases,

the accuracy of the classification also decreases.

3.4.4 Unclassified Sequences

The number of unclassified sequences was small for both the first and second datasets, The same

sequences, in general, were unclassified by each combination of tools. We have not done further

analysis to see why that is the case.

Table 3.13 show the unclassified sequences from the first dataset for combinations of the dif-

ferent MSA tools and Speer Server. Table 3.14 shows the unclassified sequences from the second

dataset for combinations of the different MSA tools and Xdet.

3.4.5 Impact of MSA ans SDS

Table 3.6 presents a mixed picture of the impact of individual MSA tools and SDS tools. We

analyzed the impact more closely by calculating the differences betwwen the MCC of a combination

and its baseline. the so-called Delta, ∆.
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Substrate Sequence ClustalW Clustal MAFFT T-Coffee MUSCLE TM-Coffee
Omega

P92962 X
Amino Q9SF09 X X X

Q84MA5 X X X X X
Acid Q9ZU50 X X X X X X

Q9FFL1 X X X X X X
Phosphate Q38954 X X X X X X

Table 3.13: Unclassified Sequences (First dataset).
This is the result of the combination of different MSA tools and Speer Server. A tick in the column for

the MSA tool indicates that the sequence was unclassified by the combination.

Table 3.15 shows the impact of each MSA tool. The MSA tools, except for T-Coffee, have a

positive impact on MCC. The most impact is for MUSCLE, with ∆ = 0.027. The average ∆ is

0.007.

Table 3.16, 3.17 and 3.18, respectively, show the impact of each SDS tool. Overall, Xdet is the

only SDS tool with a positive avergae impact, but with average δ being 0.001. The largest impact is

Xdet on MAFFT of 0.016, and the largest negative impact is Speer Server on MUSCLE of -0.110.
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Substrate Sequence ClustalW Clustal MAFFT T-Coffee MUSCLE TM
Omega -Coffee

Amino Acid
Q7TNK0 X X X X X X
Q8BLE7 X
O35633 X

Anion P39414 X X X

Cation

P60678 X X X X X X
P60698 X X X X X X
Q99JR1 X X X X X X
Q3TMP8 X X X X X X
Q9CPC8 X X X X X
P36606 X X
Q9NY26 X

Electron

P0AAK4 X X X X X X
P09152 X X X X X X
P33599 X X X X X X
P09193 X X X X X X
P0AFE0 X X X X X
P0A616 X

Protein

P46970 X
Q96QU8 X
P0ABU9 X X X X
P40477 X X X X X
Q6URK4 X X X X X X
P52870 X X X X X X
P33754 X X X X X X
P0AG99 X X X X X X
Q7Z412 X X X X X X

Sugar

P39344 X X X X X X
O64503 X
Q29Q28 X
P71067 X X X X X X

Other
P0AFF4 X X X X X X
O49929 X X X X X X
Q9BZV2 X X X X X X
P38206 X X X X X

Table 3.14: Unclassified Sequences (Second dataset).
This is the result of the combination of different MSA tools and Xdet. A tick in the column for the

MSA tool indicates that the sequence was unclassified by the combination.
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MSA SDS MCC MSA SDS MCC ∆

- - 0.676 T-Coffee - 0.636 -0.040
- - 0.676 ClustalOmega - 0.683 0.007
- - 0.676 MAFFT - 0.686 0.010
- - 0.676 ClustalW - 0.693 0.017
- - 0.676 TM-Coffee - 0.697 0.021
- - 0.676 MUSCLE - 0.703 0.027

Average 0.007

Table 3.15: Impact of MSA Tools (Second dataset).
The results come from the independent test set of size 120. The third column “MCC” is the MCC for
baseline, which uses no MSA nor SDS. The sixth column “MCC” is the MCC for the MSA baselines,
which use MSA and no SDS The seventh column “∆” is the differences between the MCCs. This table
is sorted by the last column.

MSA SDS MCC MSA SDS MCC ∆

T-Coffee - 0.636 T-Coffee Speer Server 0.639 0.003
ClustalOmega - 0.683 ClustalOmega Speer Server 0.593 -0.070

MAFFT - 0.686 MAFFT Speer Server 0.591 -0.095
ClustalW - 0.693 ClustalW Speer Server 0.612 -0.018

TM-Coffee - 0.697 TM-Coffee Speer Server 0.605 -0.092
MUSCLE - 0.703 MUSCLE Speer Server 0.593 -0.110

Average -0.064

Table 3.16: Impact of Speer Server (Second dataset).
The results come from the independent test set of size 120. The third column “MCC” is the MCC for
the MSA baseline, which uses no SDS. The sixth column “MCC” is the MCC for the combination of
the MSA and Speer Server. The seventh column “∆” is the differences between the MCCs. This table
is sorted by the third column “MCC”.

MSA SDS MCC MSA SDS MCC ∆

T-Coffee - 0.636 T-Coffee GroupSim 0.638 0.002
ClustalOmega - 0.683 ClustalOmega GroupSim 0.688 0.005

MAFFT - 0.686 MAFFT GroupSim 0.668 -0.018
ClustalW - 0.693 ClustalW GroupSim 0.685 -0.008

TM-Coffee - 0.697 TM-Coffee GroupSim 0.689 -0.008
MUSCLE - 0.703 MUSCLE GroupSim 0.690 -0.013

Average -0.007

Table 3.17: Impact of GroupSim (Second dataset).
The results come from the independent test set of size 120. The third column “MCC” is the MCC for
the MSA baseline, which uses no SDS. The sixth column “MCC” is the MCC for the combination of
the MSA and GroupSim. The seventh column “∆” is the differences between the MCCs. This table is
sorted by the third column “MCC”.
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MSA SDS MCC MSA SDS MCC ∆

T-Coffee - 0.636 T-Coffee Xdet 0.638 0.002
ClustalOmega - 0.683 ClustalOmega Xdet 0.681 -0.002

MAFFT - 0.686 MAFFT Xdet 0.702 0.016
ClustalW - 0.693 ClustalW Xdet 0.692 -0.001

TM-Coffee - 0.697 TM-Coffee Xdet 0.675 -0.022
MUSCLE - 0.703 MUSCLE Xdet 0.716 0.013

Average 0.001

Table 3.18: Impact of Xdet (Second dataset).
The results come from the independent test set of size 120. The third column “MCC” is the MCC for
the MSA baseline, which uses no SDS. The sixth column “MCC” is the MCC for the combination of
the MSA and Xdet. The seventh column “∆” is the differences between the MCCs. This table is sorted
by the third column “MCC”.
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Chapter 4

Conclusion

In this thesis we have investigated using profile Hidden Markov Models and specificity deter-

mining sites to classify the substrate class of a transmembrane transport protein. We followed the

evaluation methodology and used the same dataset as two earlier works on the topic, namely the

small dataset and methodology of the Helms lab [44], and the large dataset and methodology of the

Zhao lab [33]. In the end, our approach led to a combination of the MUSCLE MSA tool and the

Xdet SDS tool that achieved superior MCC to the state-of-the-art system, TrSSP [33].

This chapter will present our contributions in Section 4.1, the limitation of our work in Section

4.2, and then Section 4.3 provides recommendations for the future work.

4.1 Contributions

The contributions of this thesis are as follows:

(1) This work is the first to apply Hidden Markov Models to classify the substrate class of a

transmembrane transport protein, and the first to combine the specificity determining sites

with profile Hidden Markov Model to the classification for the substrate class transported

across a membrane by a given transmembrane transport protein.

(2) We have a classification pipeline which integrates the steps of data pre-processing, model

building and model evaluation. The pipeline contains similarity search, multiple sequence

alignment, specificity determining site prediction and construction of a Hidden Markov Model.
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(3) We discuss and analyze the impact of the using different MSA tools, SDS tools and parame-

ters on the classification of the substrate class. We find a combination of MUSCLE and Xdet

which outperforms the state-of-the-art TrSSP.

4.2 Limitations of the Work

The small dataset [44] has only 61 sequences. It did not provide enough examples to see dif-

ferences between the combinations of tools in the pipeline. The large dataset with 780 sequences

in the training set and 120 sequences in the test set was much better for comparing combinations of

tools in the pipeline.

The literature has a large number of tools, methods, algorithms for both multiple sequence

alignment (MSA) and prediction of specificity determining sites (SDS). We did not try all of them.

For MSA, we focused on the most widely used tools, but could have tried more. For SDS, many of

the tools in the literature are not available: we used the ones that we could find software to install

and work on our systems. There may be others that we did not try.

The small dataset covers only four substrate classes. The large datatset contains examples from

seven substrate classes, one of which is “Other”. In the literature, when scientists apply the TCDB

database to annotate transmembrane transport proteins in a genome, they typically distinguish 27

substrate classes. Hence, our field should develop larger datatsets with coverage of more substrate

classes.

Classifying the substrate class of a transmembrane transport protein is important, but on many

occasions scientists want more detailed information. They would like to know the specific substrate,

not the class of the substrate, that is actually transported. At the moment, we do not have enough

examples where the specific substrate is known, in order to attempt the classification of the specific

substrate.

4.3 Future Work

The limitations noted in the last section call attention to several areas that we deem worthy of

further investigation.
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• Extend the dataset in size and in coverage of the substrate classes.

• Apply the pipeline with other classifiers beyond Hidden Markov Models, such as Support

Vector Machines.

• Classify the specific substrate (e.g. Lysine) rather than the substrate class (e.g. amino acid),

at least for those cases where there is sufficent data available.
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Appendix A

The First Dataset

Uniprot ID TCDB Family
P92934 2.A.18 The amino acid/auxin permease (AAAP)
P92961 2.A.18 The amino acid/auxin permease (AAAP)
P92962 2.A.18 The amino acid/auxin permease (AAAP)
Q38967 2.A.18 The amino acid/auxin permease (AAAP)
Q39134 2.A.18 The amino acid/auxin permease (AAAP)
Q42400 2.A.18 The amino acid/auxin permease (AAAP)
Q8GUM3 2.A.18 The amino acid/auxin permease (AAAP)
Q9FN04 2.A.18 The amino acid/auxin permease (AAAP)
Q9SF09 2.A.18 The amino acid/auxin permease (AAAP)
Q9SJP9 2.A.18 The amino acid/auxin permease (AAAP)
Q9ZU50 2.A.3 The amino acid-polyamine-organocation (APC)
Q84MA5 2.A.3 The amino acid-polyamine-organocation (APC)
Q9FFL1 2.A.3 The amino acid-polyamine-organocation (APC)
Q8W4K3 2.A.3 The amino acid-polyamine-organocation (APC)

Table A.1: Amino Acid
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Uniprot ID TCDB Family
O04036 2.A.1.1 The sugar porter (SP)
P23586 2.A.1.1 The sugar porter (SP)
Q0WWW9 2.A.1.1 The sugar porter (SP)
Q39228 2.A.1.1 The sugar porter (SP)
Q56ZZ7 2.A.1.1 The sugar porter (SP)
Q8L6Z8 2.A.1.1 The sugar porter (SP)
Q9C757 2.A.1.1 The sugar porter (SP)
Q9FMX3 2.A.1.1 The sugar porter (SP)
Q2V4B9 2.A.1.1 The sugar porter (SP)
Q6AWX0 2.A.1.1 The sugar porter (SP)
Q8GW61 2.A.1.1 The sugar porter (SP)
Q8GXR2 2.A.1.1 The sugar porter (SP)
Q9LNV3 2.A.123 The sweet; PQ-loop; saliva; MtN3 (Sweet)
Q8L9J7 2.A.123 The sweet; PQ-loop; saliva; MtN3 (Sweet)
Q9SMM5 2.A.123 The sweet; PQ-loop; saliva; MtN3 (Sweet)

Table A.2: Hexose

Uniprot ID TCDB Family
O04514 2.A.67 The oligopeptide transporter (OPT)
O23482 2.A.67 The oligopeptide transporter (OPT)
O82485 2.A.67 The oligopeptide transporter (OPT)
Q9FG72 2.A.67 The oligopeptide transporter (OPT)
Q9FJD1 2.A.67 The oligopeptide transporter (OPT)
Q9FME8 2.A.67 The oligopeptide transporter (OPT)
Q9SUA4 2.A.67 The oligopeptide transporter (OPT)
Q9T095 2.A.67 The oligopeptide transporter (OPT)
Q9FJD2 2.A.67 The oligopeptide transporter (OPT)
P46032 2.A.67 The oligopeptide transporter (OPT)
Q05085 2.A.17 The oligopeptide transporter (OPT)
Q9LFX9 2.A.17 The proton-dependent oligopeptide transporter (POT/PTR)
Q9LSE8 2.A.17 The proton-dependent oligopeptide transporter (POT/PTR)
Q9M172 2.A.17 The proton-dependent oligopeptide transporter (POT/PTR)
Q9M174 2.A.17 The proton-dependent oligopeptide transporter (POT/PTR)
Q9M175 2.A.17 The proton-dependent oligopeptide transporter (POT/PTR)
Q9SZY4 2.A.17 The proton-dependent oligopeptide transporter (POT/PTR)

Table A.3: Oligopeptide
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Uniprot ID TCDB Family
O48639 2.A.1.9 The phosphate: H+ symporter (PHS)
Q8VYM2 2.A.1.9 The phosphate: H+ symporter (PHS)
Q96243 2.A.1.9 The phosphate: H+ symporter (PHS)
Q9S735 2.A.1.9 The phosphate: H+ symporter (PHS)
Q96303 2.A.1.14 The anion:cation symporter (ACS)
Q9FKV1 2.A.1.14 The anion:cation symporter (ACS)
O82390 2.A.1.14 The anion:cation symporter (ACS)
Q3E9A0 2.A.1.14 The anion:cation symporter (ACS)
Q38954 2.A.20 The inorganic phosphate transporter (PiT)
Q7DNC3 2.A.29 The mitochondrial carrier (MC)
Q9FMU6 2.A.29 The mitochondrial carrier (MC)
Q9M2Z8 2.A.29 The mitochondrial carrier (MC)
Q8H0T6 2.A.7 The drug/metabolite transporter (DMT)
Q8RXN3 2.A.7 The drug/metabolite transporter (DMT)
Q94B38 2.A.7 The drug/metabolite transporter (DMT)

Table A.4: Phosphate
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Appendix B

The Second Dataset

Uniprot ID TCDB Family
B0R9X2 2.A.35.1.4 the nhac Na(+):H(+) antiporter (NHAC) family
P38084 2.A.3.10.6 the amino acid-polyamine-organocation (APC) family
P15365 2.A.1.14.4 the major facilitator superfamily (MFS)
P36837 2.A.17.1.3 the proton-dependent oligopeptide transporter (POT/PTR) family
Q9Z127
Q8TF71 2.A.1.13.8 the major facilitator superfamily (MFS)
Q06593 2.A.67.1.4 the oligopeptide transporter (OPT) family
O01840 2.A.17.4.10 the proton-dependent oligopeptide transporter (POT/PTR) family
Q6YBV0 2.A.18.8.5 the amino acid/auxin permease (AAAP) family
Q9H2J7 2.A.22.6.7 the neurotransmitter:sodium symporter (NSS) family
Q7TNK0
P38967 2.A.3.10.8 the amino acid-polyamine-organocation (APC) family
Q8BLE7
Q10901 2.A.23.2.10 the dicarboxylate/amino acid:cation (Na(+) or H(+)) symporter

(DAACS) family
O35633 2.A.18.5.3 the amino acid/auxin permease (AAAP) family

Table B.1: Amino Acid.
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Uniprot ID TCDB Family
P51788 2.A.49.2.12 the chloride carrier/channel (CLC) family
P21439 3.A.1.201.3 the ATP-binding cassette (ABC) superfamily
A0QQ70 3.A.1.9.2 the ATP-binding cassette (ABC) superfamily
P39535 2.A.47.2.3 the divalent anion: Na(+) symporter (DASS) family
Q8RX77 2.A.17.3.15 the proton-dependent oligopeptide transporter (pot/ptr) family
Q80UJ1 2.A.1.19.16 the major facilitator superfamily (MFS)
Q5DTL9 2.A.31.2.3 the anion exchanger (AE) family
Q9NPD5 2.A.60.1.12 the organo anion transporter (OAT) family
P39414 2.A.47.3.3 the divalent anion: Na(+) symporter (DASS) family
P37020 2.A.49.1.1 the chloride carrier/channel (CLC) family
Q02785 3.A.1.205.3 the ATP-binding cassette (ABC) superfamily
P44543 2.A.56.1.3 the tripartite ATP-independent periplasmic transporter (TRAP-t)

family

Table B.2: Anion.
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Uniprot ID TCDB Family
Q8AYS8 R-GGA-1296052 Ca2+ activated K+ channels

R-RNO-1296072 Voltage gated Potassium channels
Q02280 1.A.1.20.6 the voltage-gated ion channel (VIC) superfamily
Q03721
Q9UJ96
O00180
Q9ES08
P51787 1.A.1.15.6 the voltage-gated ion channel (VIC) superfamily
Q6UVM4
Q9YDF8 1.A.1.17.1 the voltage-gated ion channel (VIC) superfamily
P40260 1.A.11.3.1 the ammonium transporter channel (amt) family
P60678 2.A.63.1.3 the monovalent cation (K(+) or Na(+)):proton antiporter-3 (CPA3)

family
P60698 2.A.63.1.3 the monovalent cation (k(+) or NA(+)):proton antiporter-3 (CPA3)

family
Q9ZT63 2.A.4.3.4 the cation diffusion facilitator (CDF) family
P13738 2.A.33.1.1 the nhaa NA(+):H(+) antiporter (NHAA) family
Q68KI4 2.A.36.5.1 the monovalent cation:proton antiporter-1 (CPA1) family
Q8BHK1
Q8N130 2.A.58.1.3 the phosphate:NA(+) symporter (PNAS) family
Q96SN7
Q10177 2.A.55.1.4 the metal ion (mn(2+)-iron) transporter (NRAMP) family
Q8BUX5
Q9BXP2 2.A.30.1.6 the cation-chloride cotransporter (CCC) family
Q9NY26 2.A.5.3.2 the zinc (zn(2+))-iron (fe(2+)) permease (ZIP) family
P04775
Q62968 1.A.1.10.6 the voltage-gated ion channel (VIC) superfamily
Q99JR1
Q96T83 2.A.36.1.3 the monovalent cation:proton antiporter-1 (CPA1) family
Q3TMP8 1.A.62.1.1 the homotrimeric cation channel (TRIC) family
P28584 2.A.38.2.3 the K(+) transporter (TRK) family
P42839 2.A.19.7.1 the Ca(2+):cation antiporter (CACA) family
Q8IUH5 9.B.37.1.1 the huntington-interacting protein 14 (HIP14) family
P34240 2.A.5.5.3 the zinc (Zn(2+))-iron (Fe(2+)) permease (ZIP) family
P19657
P32842 3.A.2.2.3 the H(+)- or NA(+)-translocating f-type, v-type and a-type ATPase

(f-ATPase) superfamily
Q9CPC8
P36606 2.A.36.1.21 the monovalent cation:proton antiporter-1 (CPA1) family

2.A.36.4.3 the monovalent cation:proton antiporter-1 (CPA1) family

Table B.3: Cation.
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Uniprot ID TCDB Family
Q97K92
P0A8Q0
P0AAK4
P09152 5.A.3.1.1 the prokaryotic molybdopterin-containing oxidoreductase (pmo)

family
Q00141
P33599 3.D.1.1.1 the H(+) or NA(+)-translocating NADH dehydrogenase (ndh) family
P0AFE0 3.D.1.1.1 the H(+) or NA(+)-translocating NADH dehydrogenase (ndh) family
P09193 3.E.2.2.2 the photosynthetic reaction center (prc) family
P0A616
Q97D82

Table B.4: Electron transporter

Uniprot ID TCDB Family
P0ADC3 3.A.1.125.1 the ATP-binding cassette (abc) superfamily
P46970
P40477 1.I.1.1.1 the eukaryotic nuclear pore complex (e-npc) family
Q6URK4
P52870 3.A.5.8.1 the general secretory pathway (sec) family
P33754 3.A.5.8.1 the general secretory pathway (sec) family
P0AG99 3.A.5.1.1 the general secretory pathway (sec) family
P69428 2.A.64.1.1 the twin arginine targeting (tat) family
P32830
P39515 3.A.8.1.1 the mitochondrial protein translocase (mpt) family
Q9Y5J7
P0ABU9 1.A.30.2.2 the H(+)- or NA(+)-translocating bacterial flagellar motor/exbbd

outer membrane transport energizer (mot/exb) superfamily
Q96QU8
P33331
Q7Z412 3.A.20.1.1 the peroxisomal protein importer (ppi) family

Table B.5: Protein/mRNA.
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Uniprot ID TCDB Family
Q9JIF3 2.A.1.1.46 the major facilitator superfamily (mfs)
P39344 2.A.8.1.2 the gluconate:H(+) symporter (gntp) family
P68183 3.A.1.1.1 the ATP-binding cassette (abc) superfamily
Q57071 4.A.1.1.13 the pts glucose-glucoside (glc) family
P33026 2.A.1.20.2 the major facilitator superfamily (mfs)
Q94AZ2 2.A.1.1.50 the major facilitator superfamily (mfs)
O80605 2.A.2.4.3 the glycoside-pentoside-hexuronide (gph): cation symporter family
A1Z8N1 2.A.1.1.99 the major facilitator superfamily (mfs)
P0AGC0 2.A.1.4.1 the major facilitator superfamily (mfs)
O64503 2.A.7.11.4 the drug/metabolite transporter (dmt) superfamily
Q29Q28
P71067 2.A.14.1.3 the lactate permease (lctp) family

Table B.6: Sugar.

Uniprot ID TCDB Family
P0AFF4 2.A.1.10.1 the major facilitator superfamily (mfs)
O49929 1.B.28.1.1 the plastid outer envelope porin of 24 kda (oep24) family
P53860
Q9LU77 2.A.69.1.2 the auxin efflux carrier (aec) family
P43286 1.A.8.11.4 the major intrinsic protein (mip) family
P69874 3.A.1.11.1 the ATP-binding cassette (abc) superfamily
Q04671 2.A.45.2.1 the arsenite-antimonite (arsb) efflux family
P38206 2.A.66.3.1 the multidrug/oligosaccharidyl-lipid/polysaccharide (mop) flippase

superfamily
Q9BZV2 2.A.48.1.4 the reduced folate carrier (rfc) family
Q60714
Q14542 2.A.57.1.8 the equilibrative nucleoside transporter (ent) family
Q9Y345 2.A.22.2.10 the neurotransmitter:sodium symporter (nss) family
D0ZXQ3
Q41963 1.A.8.10.9 the major intrinsic protein (mip) family
P53099 2.A.39.2.2 the nucleobase:cation symporter-1 (ncs1) family
P04633
Q8VHL0
Q60932
P67444 2.A.40.4.3 the nucleobase/ascorbate transporter (nat) or nucleobase:cation

symporter-2 (ncs2) family
Q12675 3.A.3.8.5 the p-type ATPase (p-ATPase) superfamily

Table B.7: Other transporter.
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