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ABSTRACT 
 

 

 

Convolutional Autoencoder for Studying Dynamic Functional Brain Connectivity 

in Resting-State Functional MRI 

Fatemeh Mohammadi 

 

 

Brain is the most complex organ in human body. Understanding how different regions of the brain 

function and interact with one another is a challenging task. One of the most important topics in 

the study of the brain is the functional brain connectivity, which is defined as the correlations, each 

between a pair of the activation signals from the different regions of the brain. Study of the 

functional connectivity in the human brain provides new insights into the understanding of the 

healthy and diseased brains and their differences. Functional magnetic resonance imaging (fMRI) 

is an imaging technique that allows researchers to study the brain activity and functional 

connectivity. While many researchers have focused on static functional connectivity in the resting-

state fMRI to study the functions of the brain, dynamic functional connectivity has received more 

attention recently for such a study, since it provides more detailed information about the brain 

functions. Within the literature for studying the dynamic brain connectivity, k-means clustering 

has been applied to the connectivity matrices in order to find the functional connectivity patterns. 

However, it is known that the k-means clustering technique is not suitable for applying it to high 

dimensional data such as the functional brain connectivity matrices. In this thesis, in order to 

overcome this problem, we propose a deep learning-based convolutional autoencoder to obtain  
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latent representations of the connectivity matrices prior to applying to them the k-means clustering. 

Use of the convolutional autoencoder, not only reduces the dimension of the connectivity matrices, 

but also provides a more semantic representation of these matrices. It is shown that the proposed 

method of clustering that consists of the use of the autoencoder followed by k-means clustering 

results in improving the clustering of the connectivity matrices, and consequently, to a better 

capturing of the functional connectivity patterns. In order to show the effectiveness of the proposed 

clustering method, synthetic connectivity matrices for patterns, with their classes known, are 

generated. The proposed method is then first applied to these syntactically generated connectivity 

matrices and the resulting patterns are compared with that obtained by applying k-means clustering 

technique to the synthetic connectivity matrices. It is shown that the proposed method classifies 

the various patterns more accurately.  

 

The proposed method is then used to study the dynamic functional brain connectivity by applying 

it to real fMRI data captured from a group of healthy subjects and another group of subjects 

affected by schizophrenia. For this purpose, after preprocessing the raw fMRI data for each subject 

in these two groups, the group independent component analysis (ICA) is applied in order to 

decompose the fMRI data into statistically independent components (map of the entire brain) and 

their corresponding time-courses. Each independent component corresponds to a specific region 

of the brain. The connectivity matrix whose elements corresponds to the correlation between the 

time-courses within a segment of the time-courses enclosed inside a sliding window is then 

obtained. Next, the proposed clustering method is used to cluster all the connectivity matrices, 

each corresponding to one segment, into a finite number of functional connectivity patterns 

(states). A two-sample t-test is then performed on each state in order to determine each pair of the 

regions in the group of the healthy control subjects for which weather or not the correlation value 
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is significantly different from that of the corresponding pair of the regions in the group of 

schizophrenia patients. It is observed through this test that there are indeed pairs of the brain 

regions where significant differences do exist between the two groups. It is also seen that such a 

difference between the two groups is even more pronounced in the visual network of the brain. 

 

Finally, in this thesis, a study is undertaken for the evaluation of the dwell time, which is defined 

to be the duration for a functional connectivity pattern to remain in one state before switching to 

another state. It is shown through this study that the dwell time for the healthy group to stay in the 

state with more connectivity is longer than that for the group with schizophrenia. On the other 

hand, the dwell time for the group with schizophrenia to stay in the state with less connectivity is 

longer than that for the healthy group.  
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CHAPTER 1: Introduction 

 

1.1 Background 

Functional MRI (fMRI) has the potential to open novel insights to the understanding of the brain 

functions. It is considered to be a noninvasive and safe technique for visualizing and mapping 

functional brain activity. Functional MRI is also used to investigate the connectivity patterns 

among the different brain regions. This functional connectivity study can be carried out using fMRI 

in resting-state or during task-related experiments. In this thesis, we focus on the functional 

connectivity in resting-state fMRI. Functional connectivity (FC), which is the correlation between 

activation signals of different brain regions, has been assumed for a long time to have a stationary 

nature. It has been only recently that the dynamic behavior of FC is revealed, showing the 

functional connectivity between different brain regions have meaningful variations in resting-state 

fMRI [1]. Therefore, some works have been done to assess and characterize the dynamic FC (dFC) 

in order to explore how the brain functions in healthy people and in people with different 

psychological disorders. 

In order to study the functional connectivity using fMRI data, it is necessary to understand the 

basis of the brain structure and the functional imaging tool. 

 

1.2 Human Brain 

Brain is the most complex organ inside human body that has billions of nerves communicating 

through passing electrical signals at junctions called synapses.  Anatomically, brain tissue consists 

of grey matter (GM) and white matter (WM). The grey matter that includes neuron cell bodies and 

dendrites is responsible for the most of high-level brain functional processes. The white matter 
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(a) (b) 

that consists of bundles of long myelinated axons is responsible for transferring of the information 

to different grey matter regions. There is also a clear liquid in the brain and spinal cord called 

cerebrospinal fluid (CSF) [2]. Figure 1.1. (a) and Figure 1.1. (b) demonstrate a typical neuron in 

human brain and a vertical cut of the brain, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Functional and Anatomical Brain Connectivity 

 Our brain is a network of many different brain regions. Each brain region is specialized in 

performing specific tasks and functions. Structural connections in the brain mainly refer to 

anatomical pathways that directly interconnect spatially separated brain regions. Diffusion tensor 

imaging (DTI) is an imaging technique for visualizing anatomical connections [5] as shown in 

Figure 1.2. (a). On the other hand, the functional connectivity is defined as the pattern of temporal 

correlation made by the interactions between segregated brain region pairs [6]. In other words, 

Figure 1.1.  a) The structure of a typical neuron in human brain [3]. b) A vertical cut of 

brain showing grey matter and white matter tissues [4]. 
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functional connectivity shows the statistical relationship between the signals of different brain 

regions. Study of the functional connectivity among brain regions can be done by using the 

functional magnetic resonance imaging (fMRI). Figure 1.2. (b) illustrates an example of functional 

map showing the relationship between the activity of brain regions. 

 

 

 

 

 

  

 

 

 

 

 

1.4 Functional MRI 

Functional magnetic resonance imaging (fMRI) is an imaging tool providing a high spatial 

resolution, noninvasive and safe technique for visualizing and mapping the functional brain 

activity. It is used in a growing number of studies [8-11] to understand the functionality of a human 

brain and to explore interaction, connection and coordination of different parts of the brain. It is 

also used to study the differences in the brain functionality of healthy people and people affected 

by some psychiatric brain disorders [12-14]. 

(a) (b) 

Figure 1.2.  a) White matter fiber tracking using DTI. b) Functional connectivity map 

showing the coactivation between some brain regions [7]. 
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Figure 1.3. Increasement in blood flow resulted from brain neural activity leads 

to increasing glucose and oxygen and decreasing in deoxyhemoglobin [17]. 

The basis of the fMRI sensitivity to the brain neural activity arises from the local magnetic field 

changes. Oxygenated and deoxygenated blood have different paramagnetic properties. In contrast 

to deoxygenated blood that is paramagnetic, oxygenated blood is diamagnetic i.e. it causes almost 

no effect on the magnetic field. Upon neural activation of a local brain area, blood flow increases 

in order to provide more oxygen and glucose to that area. Consequently, the blood 

deoxyhemoglobin concentration decreases, as shown in Figure 1.3. This causes a distortion in the 

magnetic field and an increase in the blood-oxygen-level dependent (BOLD) signal. In fMRI, the 

contrast in the BOLD signal is used to observe the different areas of the brain, activated at a given 

time [15, 16]. 

 

 

 

 

 

 

  

 

Compared with other methods, such as EEG and MEG, fMRI provides a higher spatial resolution 

and thus has got a lot of interest from researchers [8-11]. In fMRI, scans of the whole brain are 

acquired over time. Each scan includes slices of the brain volume. The time resolution (TR) is 

defined as the time between two sequential scans of the same point in the brain. The temporal 

resolution (TR) is usually 2–3 seconds. Each scan of fMRI is a three-dimensional image (a 3D 

volume) and the term voxel is referred to an element of this 3D volume. The value of each voxel 
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Figure 1.4. fMRI data as a time sequence of 3D images [18]. 

changes from one scan to another scan over time. Hence, as shown in Figure 1.4, fMRI is a 4D 

data where three dimensions are used to reconstruct voxels in the space and fourth dimension 

(time) measures the activation of each voxel over time.  

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Resting-State fMRI 

 

Brain consumes 20% of the energy in the body during spontaneous brain activity. Only a small 

percentage of the energy consumed by the brain is used for task-related activities [19]. In view of 

this, study of the resting-state fMRI is shown to be important. In the resting-state fMRI, a subject 

who lies inside the fMRI scanner is trained to let his mind wonder without doing any specific task. 

In contrast, there is another type of study for task-related fMRI that tries to find spatial activation 

pattern of human brain when a subject performs a cognitive task. Figure 1.5 illustrates an fMRI 

scanner where a subject lies inside it. 
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Biswal et al. [20] were the first researchers who found out that the left and right hemispheric 

regions of the primary motor network show a high synchronization between their BOLD time  

courses during resting-state experiment. Since then, researchers have been able to map the intrinsic 

functional connection diagram of brain without using any designed tasks and resting-state studies 

have received lots of attention [21, 22]. Also, the resting-state fMRI allows researchers to study 

the brain function of patients who are not able to do complicated tasks or long experiments. In 

contrast to the task-based functional imaging that typically highlights a single brain region 

associated to any given task, the resting-state fMRI highlights the activity among different brain 

regions at once. Hence, study of the resting-state fMRI is valuable for varieties of research topics 

including the study of psychological brain disorders [14]. The resting-state fMRI can also be used 

to study and compare the functional activities in the different brain regions of two different groups, 

such as patients with Schizophrenia and healthy subjects [23].  

 

 

 

 

 

 

 

                                                                                                                                                                                          

 

 

 

 

Figure 1.5. A fMRI scanner; a functional magnetic resonance imaging 

equipment with a strong magnetic field to measure brain activity [24]. 
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Figure 1.6. Common resting-state networks [25]. 

1.6 Resting-State Networks  

 It has been shown in the resting-state functional studies that there are some groups of brain regions 

in which a strong functional connectivity exists. In other words, these regions activate and 

deactivate together during rest. These brain regions are the same across all subjects and are referred 

to as resting-state networks (RSNs) [21, 22]. Default Mode, Visual, Auditory, Cognitive 

Control/Attention, Sensorimotor and Cerebellum are some of the most common RSNs in different 

studies, their locations in the brain are shown in Figure 1.6. 

 

   

  

 

 

 

  

 

 

1.7 Static and Dynamic Functional Connectivity 

Study of the functional connectivity (FC) can be carried out by considering FC to be static or 

dynamic. Static functional connectivity is obtained by finding the correlation between activation 

signals of different brain regions over the course of many minutes, assuming the FC does not 
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change in time. Although the static functional connectivity provides useful information, many 

years of research has shown that the brain activity is not constant and varies in time [26-28]. In 

view of this, finding the correlation between the activation signals of different brain region pairs 

across 5-10 minutes of fMRI recording results in losing a lot of information about their functional 

connectivity. Hence, the functional connectivity should be measured within time in a dynamic 

way. The dynamic functional connectivity is measured by obtaining the time-varying correlation 

between activation signals of different brain region pairs within fMRI recording time. There are 

different methods for analyzing fMRI functional connectivity. Generally, these methods are 

grouped into two types: model-based methods and data-driven methods [29]. 

1.8 Functional Connectivity Analysis 

In many studies [30-32], the analyses of the functional brain connectivity are carried out by using 

the model-based approaches. In the model-based analysis, the connection between the regions of 

interest (ROI) is calculated by using some matrices, such as cross-correlation to generate the 

functional connectivity map of the human brain. Selecting the regions of interest needs some prior 

knowledge about the anatomy of brain. By using the model-based analysis, we need to make 

decisions on the size, shape and location of the regions of interest that may lead to the different 

outcomes in the functional connectivity analysis.    

On the other hand, there are some data-driven approaches that are based on the features extracted 

from the input data (fMRI data). The advantage of using these approaches is that they do not 

require a prior selection of the brain regions and are able to decompose the captured fMRI data 

into a set of separated brain regions. It is helpful to evaluate the functional connectivity in fMRI 

data without considering any prior information about its spatial or temporal pattern. The most 
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commonly used methods to achieve such a decomposition are independent component analysis 

(ICA) and principle component analysis (PCA) [21,29]. 

 

1.9 Brief Literature Review Survey  
 

Assessment of the functional connectivity using the resting-state fMRI underlines specific 

information across the whole brain. The recent studies have shown that the functional brain 

connectivity in the healthy people is different from that in the people affected by mental diseases 

[11,12,13,22]. For many years, researchers have studied the static functional connectivity 

assuming the temporal dependency among different brain regions is global and constant during a 

few minutes of resting-state fMRI recording [33, 34]. However, other studies using high temporal 

resolution techniques such as electroencephalogram (EEG) and magnetoencephalography (MEG) 

have shown the problem with this assumption and have observed that there are spontaneous 

changes in the brain activity [35, 36]. Hence, the assumption of the functional connectivity being 

static and constant during a resting-state fMRI experiment is an over-simplification despite its 

convenience. Given the increasing evidence on the importance of dynamic functional connectivity 

in the resting-state fMRI for assessing intrinsic function of the brain, the researchers’ focus has 

shifted from static functional connectivity to time-varying or dynamic functional connectivity.  

The study by Allen et al. in 2013 [8] is one of the first major works on time-varying functional 

connectivity, usually referred to as dynamic connectivity, using resting-state fMRI. In this study, 

the assessment of the whole-brain dynamic functional connectivity was investigated employing 

three major steps. First, a data driven technique (spatial independent component analysis) is 

applied to the fMRI data to decompose it into independent components and the corresponding time 

courses. In the second step, by passing a sliding window through time-courses, correlation matrices 

that show the degree to which each region is correlated with other regions of brain are obtained. 
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Finally, the correlation matrices are clustered for the purpose of studying the dynamic properties 

of functional brain connectivity. There are some other studies based on the pipeline proposed in 

[8] to investigate the dynamic functional connectivity in different brain diseases including the work 

done by Yao et al. [38,39] and [40] for studying the time-varying functional connectivity in autism 

and bipolar disorder, respectively. The limitation of the proposed procedure in [8] for finding the 

dynamic functional connectivity is that the clustering of the correlation matrices for capturing 

different dynamic functional connectivity patterns has been carried out by k-means method. 

However, the k-means method has been shown to be suboptimal for being applied to the high 

dimensional data. In 2015, Yaesoubi et al. [37] proposed a novel pipeline to characterize the 

functional interactions among the different brain regions using time-frequency analysis. One 

advantage of the pipeline proposed in [37] over the one in [8] is that there is no need to exploit the 

sliding windows to capture the dynamic functional connectivity. However, the problem with the 

proposed method in [37] is that the interpretability of the functional connectivity results is so 

difficult in time-frequency domain. Hence, the pipeline proposed in [8] is more dominant in 

neuroscience community for studying the dynamic functional connectivity in the healthy and 

diseased brains using the resting-state fMRI. It should be noted that the proposed method in [37] 

also has the same limitation as [8] that is the use of k-means for clustering the different functional 

connectivity patterns.  

 

1.10 Motivation and Thesis Objective 

As mentioned in previous section, applying the k-means clustering to the functional connectivity 

matrices for finding the reoccurring functional connectivity patterns is one of the common steps 

in most of the works [8, 37, 38, 40]. In general, the k-means clustering is a suitable option for the 
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clustering of low dimensional data. However, this method does not perform well for high 

dimension data such as images. It is resulted from the fact that using Euclidian distance over high 

dimensional spaces (such as images with lots of pixels) is not intuitive. An example of high 

dimensional data is the 28×28 images of MNIST handwritten digits in which the k-means has been 

shown to fail in clustering them properly [41]. In view of this, we concluded that applying the k-

means method to the correlation matrices for finding the connectivity patterns (as done in most of 

the other works) is not optimal and can lead to an inaccurate result. In this thesis, as the main 

contribution we address this issue by using a convolutional autoencoder for obtaining the 

correlation matrices with the common functional connectivity patterns. By using these 

connectivity patterns, we can study the differences between the functional brain connectivity in 

the healthy control subjects and that in patients. 

 

1.11 Organization of the Thesis 

This thesis is organized as follows. In Chapter 2, the background materials used in this thesis for 

studying the functional brain connectivity are presented. This chapter is divided into three main 

parts. In the first part, the preprocessing steps that are typically applied to the raw fMRI data for 

reducing the artifact and noise are explained. In the second part, the theoretical background about 

the independent component analysis and its extension, called group ICA are presented. Then, we 

explain about applying the group ICA to the fMRI images and obtaining the correlation matrix 

from pairwise correlation between time-courses corresponding to independent components. In the 

last part of Chapter 2, we explain the process of obtaining the dynamic functional brain 

connectivity using sliding windows. In Chapter 3, the whole procedure for obtaining the dynamic 

functional connectivity in this study is presented. The Chapter 3 is divided into two main parts. In 
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the first part, the neural networks and convolutional autoencoders for extracting latent 

representations are explained. In the second part of the chapter, for the first time, we propose using 

the convolutional autoencoders for obtaining the dynamic functional brain connectivity patterns. 

In Chapter 4, the procedure developed in Chapter 3 is applied to the data gathered from 72 healthy 

control subjects and 74 patients affected by schizophrenia. After following the procedure given in 

Chapter 3, including the preprocessing, group ICA and using the convolutional autoencoder for 

clustering the connectivity matrices, a two-sample t-test is performed on each cluster in order to 

determine each pair of the brain regions in the group of the healthy control subjects for which the 

correlation value is significantly different from that of the corresponding pair of in the group of 

patients. 

. 
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CHAPTER 2: Background Material 
 

 

2.1 Introduction 

In this chapter, the background materials that are directly linked to study of the functional brain 

connectivity are presented. First, the preprocessing steps for fMRI data is explained in detail in 

Section 2.2. In Section 2.3 and 2.4, the concept of independent component analysis (ICA), its 

statistical characteristics and its usage for the extraction of fMRI components are described. Next, 

in Section 2.5 group ICA method for overcoming the limitation of ICA in the group study of fMRI 

data are explained. Selecting the suitable ICA components (output of group ICA) and excluding 

the artifact components is then discussed in Section 2.6. In Section 2.7, the framework for 

obtaining the dynamic functional brain connectivity is presented. Finally, the two-sample t-test 

method for finding the group differences is described. 

2.2 Preprocessing of fMRI Images 

 In order to reduce the artifact and noise in the fMRI data, preprocessing procedures are commonly 

applied to raw functional MRI data prior to applying any other statistical method. The common 

preprocessing steps, including slice timing correction, realignment, coregistration, normalization 

and spatial smoothing are explained in detail in the following subsections.  

 

 2.2.1 Slice Timing Correction 

In fMRI, scans of the whole brain are acquired over time. Each scan itself includes slices of the 

brain volume. These slices are not acquired at the same time. For example, for a scan of 30 slices 

and a TR of 3 seconds, the last slice is taken 3 seconds after the first slice. Since for analyzing the 
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fMRI data, the assumption is that all the slices of each scan are acquired at once, slice timing 

correction preprocessing step is exploited to overcome the problem of time differences among the 

slices in a scan. In more detail, in this preprocessing step, one of the slices of each scan (commonly 

the middle slice) would be considered as the reference slice, all the other slices of its corresponding 

scan would be shifted in time according to the reference slice as shown in Figure 2.1. Hence, after 

applying time-slicing correction to the fMRI data, all the slices in each scan can be considered to 

be acquired at the same time.  

 

 

 

 

 

 

Figure 2.1 Time slicing, a preprocessing step for fMRI data [42, 43]. 

 

2.2.2 Realignment 

Another preprocessing step applied to the fMRI data is realignment. During the recording of the 

fMRI data, subjects might move their head slightly. It can result in adding noise to the fMRI data 

and consequently making the analysis of fMRI data difficult. During analysis of fMRI data, we 

have to make sure that a time course represents values from the same voxel location in each fMRI 

scan. Hence, the head movement problem should be addressed by applying the realignment 

procedure to the fMRI data prior to starting the fMRI analysis. In the realignment procedure, the 

difference between consecutive slices of fMRI images are minimized and the slices are aligned by 

using 6 parameters (3 translations in X, Y and Z directions and 3 rotations around the X, Y and Z 
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Figure 2.2 Realignment of slices. 

Figure 2.3 Coregistration, aligning the functional MRI data with structural image. 

axes), so that all the slices would have the same orientation. Figure 2.2 shows the realignment of 

the slices in a scan of the fMRI data.  

 

 

 

 

 

 

 

2.2.3 Coregistration 

 

Coregistration is another important step in the preprocessing of fMRI data. Coregistration refers 

to the alignment of the functional images to the structural image from the same subject brain by 

maximizing the mutual information. An example of the coregistered anatomical and functional 

fMRI data are shown in Figure 2.3. As the result, the coregisteration is useful for visualizing the 

brain activation on a higher spatial resolution image of the brain. 
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Figure 2.4 MNI space, averaged anatomical images of 152 subjects [45]. 

2.2.4 Normalization 

Normalization is an important preprocessing step that is applied to the fMRI data after 

coregistration. Since people have different shape of brain, the normalization step is required for 

aligning the fMRI data of different subjects to a standard template such as the one shown in Figure 

2.4 that is Montreal Neurological Institute (MNI) space. The MNI template is obtained from taking 

the average of brain anatomical images of 152 subjects. After transforming the fMRI data of all 

subjects into the same space, the location of a voxel remains the same across all the subjects. 

Hence, after applying the normalization, we are able to compare the fMRI data across subjects. 

 

 

 

 

 

 

 

 

2.2.5 Spatial Smoothing 

The last preprocessing step for fMRI data is spatial smoothing. In the spatial smoothing step, the 

main goal is to remove the high frequency noise and artifact from fMRI data. For this purpose, a 

gaussian kernel is spatially convolved to the fMRI images in order to increase the signal to noise 

ratio. After convolving a gaussian kernel with the image, the value at each voxel will be replaced 

by a weighted average of the values in surrounding voxels.  
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Figure 2.5. Separating mixed speech data recorded by microphones using ICA [47]. 

(2.1) 

After applying the above-mentioned preprocessing procedures to the fMRI data, the resulting 

fMRI data are prepared for further analysis, such as applying ICA. 

 

2.3 Independent Component Analysis 

Independent component analysis (ICA) is a statistical method used to extract unknown source 

signals from their linear mixtures based on an assumption that the source signals are statistically 

independent and non-gaussian [46]. In other words, ICA tries to decompose a data into a linear 

combination of the independent source signals (independent components) without having any prior 

information about these source signals. A classic example of ICA is shown in Figure 2.5. 

 

 

 

 

 

 

 

 

If our data consist of 𝑇 signals, each with length 𝑉, we can arrange them into a matrix 𝑋𝑇×𝑉 with 

𝑇 rows and 𝑉 columns. Then, by applying ICA, the data decomposes to 𝑁 independent component 

as shown bellow  

𝑋 = 𝐴𝑆 = ∑𝐴𝑖𝑆𝑖

𝑁

𝑖=1
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Figure 2.6.  Applying ICA to fMRI data.  

fMRI data 
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where 𝑆 is a N × V matrix, 𝑆𝑖 is the 𝑖𝑡ℎ row of matrix S (𝑖𝑡ℎ independent component) and A is a T 

× N mixing matrix. The 𝑖𝑡ℎ column of 𝐴, 𝐴𝑖, represents the coefficients corresponding to the 

component 𝑆𝑖. It should be noted that we only observe the data 𝑋, and both 𝐴 and 𝑆 need to be 

estimated.  

 

 

                                                        =                    ×                  

   

 

 

The matrix 𝑆 can be obtained by multiplication of matrix 𝑋 by matrix 𝑊 as 

𝑆 = 𝐶𝑋 

where 𝐶 is the inverse of the matrix 𝐴.  Hence, a linear combination of the  𝑥𝑖, 𝑥𝑖 is the 𝑖𝑡ℎ column 

of 𝑋, can estimate one of the independent components. In other words, if 𝑐 be one of rows of 𝐶, 

𝑦 = 𝑐𝑇𝑥 is a linear combination that result in one of the independent components. According to 

the central limit theorem the distribution of sum of independent random variables is closer to 

gaussian distribution than the distribution of the original variables. In order to estimate 𝑐, we first 

consider a change of parameter as 𝑧 = 𝐴𝑇𝑐 so that 𝑦 = 𝑐𝑇𝑥= 𝑐𝑇𝐴𝑠 =  𝑧𝑇𝑠. Based on the central 

limit theorem, 𝑧𝑇𝑠 is more gaussian than any of the 𝑠𝑖 and the gaussianity of 𝑧𝑇𝑠 is minimized 

when it equals to one of the independent components (𝑠𝑖). In other words, taking 𝑐 to maximize 

the nongaussianity of 𝑐𝑇𝑥 = 𝑧𝑇𝑠 is equivalent to have the vector 𝑧 with only one non-zero element. 

In this case, 𝑐𝑇𝑥 gives one of the independent components [45]. Quantitative measures of the non-

gaussianity for ICA estimation are using kurtosis, negentropy and approximation of negentropy. 

Mixing 

Matrix 
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For example, in FastICA, a popular algorithm for estimation of independent components, non-

gaussianity is maximized by using the approximation of negentropy which is faster and more 

robust than kurtosis. Another approach for estimation of independent components in ICA is 

minimization of mutual information that is shown to be equivalent to maximizing the nongusianity. 

In the Infomax ICA algorithm that is one of the most popular ICA algorithms, the independent 

components are estimated by minimizing the mutual information. 

 

2.4 ICA in fMRI 

Since in the resting state fMRI we have no prior information in time and in location, there is an 

increasing interest in applying ICA algorithm to the resting-state fMRI data for studying the spatial 

and temporal properties of fMRI data [8, 21, 23, 25, 26, 38, 48]. ICA works based on an assumption 

that BOLD fMRI time series are generated by linear mixture of neural activities. 

 

There are two approaches for applying ICA to achieve maximal independence components in 

space or in time for analyzing fMRI data. 1- Spatial ICA, which extracts independent spatial 

images and a set of corresponding time courses, 2- temporal ICA, which extracts independent time 

courses and a corresponding set of images [49]. Analysis of spatially independent components is 

by far the most common approach in fMRI studies. In our work, the application of ICA is to 

determine spatially separate brain regions and their corresponding time courses with aim to 

studying functional brain connectivity. Therefore, spatial ICA, is more appropriate for the task of 

this research. A schematic representation of the spatial ICA applied to the fMRI data is shown in 

Figure 2.7. 

 

As explained in chapter 1, fMRI data is a 3D data (scan) at any given time. In order to prepare our 

data, we can flatten each of these scans and put it into a row of a matrix, 𝑋. Hence, each row in 
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Figure 2.7.  Decomposition of fMRI images using ICA. Each row of 𝑿 is a scan of brain flattened at a 

certain time point; Each column of 𝑨 is a coefficient (time course) of the corresponding component; 

Each row of 𝑺 is an independent component [50]. 

Time 1 

matrix 𝑋 represents all the voxels of a fMRI scan at a fixed time point and each column represents 

a single voxel time series. The matrix 𝑋 is a 𝑇 by 𝑉 matrix, where 𝑇 and 𝑉 are the number of time 

points and the number of voxels in a fMRI scan, respectively. ICA decomposes the matrix X (the 

original fMRI data) into an independent component matrix S and its respective mixing matrix 𝐴 

as shown in Figure 2.7 by maximizing the statistical independence of the estimated components 

through an iterative optimization procedure.  

 

 

 

 

 

 

 

 

 

 

 

𝑆 is a N × V matrix (𝑁 is the number of components and 𝑉 is the number of voxels in each scan) 

and 𝑆𝑖 is the 𝑖𝑡ℎ independent component of fMRI data. Matrix 𝐴 is a T × N mixing matrix and each 

column of 𝐴 with length 𝑇 is called the time course corresponding to 𝑖𝑡ℎ IC in matrix S (𝑠𝑖). 

Therefore, there is a time course corresponding to each independent component. The statistical 

relationship between each pair of the time-courses specifies the functional connectivity between 

the corresponding pair of the components.  

 

Time n 
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Figure 2.8 Applying ICA to the concatenated dimension reduced data of different subjects. 

 

2.5 Group ICA 

 ICA is suitable to be applied to a single subject fMRI data. However, the problem with using ICA 

in fMRI data comes from the arbitrary order of the obtained components for each subject. Hence, 

the result of the individual ICA applied to each subject’s fMRI data does not directly correspond 

to that of the ICA applied to other subjects’ fMRI data. However, the components correspondence 

across all the subjects is necessary for statistical analysis and multi-subject studies. Group ICA 

(GICA) has been proposed in 2001 by Calhoun et al. [48] to solve the problem of establishing 

subject correspondence in group studies.   

Prior to applying group ICA to fMRI data, two levels of data-reduction are carried out to reduce 

the computational burden. These two data reduction steps are done by using principal component 

analysis (PCA) method. The first data reduction step is done to reduce the dimension of the data 

for each individual subject (performing a subject-level PCA). After dimension reduction of each 

subject’s functional MRI data, the dimension-reduced data of the different subjects are vertically 

concatenated into one single matrix as shown in Figure. 2.8. Then, another data reduction step is 

applied to the concatenated matrix (performing a group-level PCA) [48]. 
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(2.3) 

(2.4) 

(2.5) 

(2.6) 

To explain the procedure in more detail, assume there are M subjects. Let 𝑌𝑖 be a L-by-V 

dimension-reduced data matrix from subject i and it is obtained by multiplication of matrix 𝑋𝑖 by  

𝐹𝑖, where 𝑋𝑖 and 𝐹𝑖 are the T-by-V preprocessed data matrix (spatially normalized data), and the 

L-by-T reducing matrix (determined by the PCA decomposition), respectively. 

𝑌𝑖 = 𝐹𝑖𝑋𝑖 

In terms of fMRI data, V is the number of voxels, T is the number of fMRI time points, and L is 

the size of the time dimension following reduction.  

After vertical concatenation of 𝑀 dimension-reduced subject data, a second-level PCA is applied 

at the group level to reduce the dimension to N (the number of components to be estimated).  

 

𝑌 = 𝐺

[
 
 
 
𝐹𝑀𝑋1.

.

.
𝐹𝑀𝑋𝑀]

 
 
 

 

 

where 𝐺 is an N × LM reducing matrix determined by a PCA decomposition. This matrix 𝐺 is 

multiplied by the LM × V concatenated data matrix for the M subjects to obtain 𝑁 × 𝑉 reduced 

matrix. This matrix is then used in the ICA estimation stage.   

 

After carrying out ICA estimation, 𝑌 would be decomposed as 𝐴𝑆 where A is the N×N mixing 

matrix and 𝑆 is the N × V component map. By substituting this expression for 𝑌 into 

Equation 2.4 and multiplying both sides of Equation 2.4 by 𝐺−1, we have 

𝐺−1𝐴𝑆 = [

𝐹1𝑋1
.

.

.
𝐹𝑀𝑋𝑀

] 

 If we partition the matrix 𝐺−1𝐴 by referring to each subject, we have the following expression 
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(2.7) 

(2.8) 

      

[
 
 
 
 
𝐺1

−1𝐴1.
.
.

𝐺𝑀
−1𝐴𝑀]

 
 
 
 

𝑆 =

[
 
 
 
𝐹1𝑋1.

.

.
𝐹𝑀𝑋𝑀]

 
 
 

 

Then, the equation for subject i can be written such that 

𝐺𝑖
−1𝐴𝑖𝑆 = 𝐹𝑖𝑋𝑖 

 

We now multiply both sides of Equation 2.7 by 𝐹𝑖
−1 and write 

𝑋𝑖 = 𝐹𝑖
−1𝐺𝑖

−1𝐴𝑖𝑆 

 

Equation 2.8 provides the ICA decomposition of the data, 𝑋, for subject i. The N-by-V matrix 𝑆 

contains N independent components and the 𝐹𝑖
−1𝐺𝑖

−1𝐴𝑖 matrix is the single subject mixing matrix. 

In other words, back-reconstruction allows projecting group-level ICA results at the single subject 

level. 

After estimation of independent components and obtaining subject-level time-courses a post-

processing step need to be done to remove unsuitable components. 

2.6 Component Selection  

The fMRI data contain a lot of noise and artifacts resulted from heart-beat, breathing, head motion 

and the MRI acquisition system. After applying the group ICA to the fMRI data for obtaining the 

independent components, each component needs to be evaluated and the problematic components 

resulted from the artifacts in fMRI data should be excluded. In other words, in order to select the 

best components of the fMRI data, all the independent components and their corresponding time 

courses are required to be visually inspected. There are two main criteria for selecting the proper 

independent components of fMRI data for further analysis as follow,  
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1)Spatial feature of component 

The independent component (IC) spatial maps should be inspected visually for us to be able to 

decide on keeping or excluding each component. First, the independent components and their peak 

activations should be in grey matter (GM) area for being qualified to be considered as the proper 

components. In other words, the components located in white matter (WM), cerebrospinal fluid 

(CSF) or those having overlap with brain arteries should be excluded. Also, the components 

located near brain edges and those with ring-like shape are due to the head motion artefact and 

should be excluded in the component selection process [51].  

 

 2)Time-course and power spectra 

Inspecting the time-courses (TCs) corresponding to the independent components can also help us 

to find out which independent components are resulted from the artifact and should be excluded. 

In BOLD signals, the highest power is between 0.01 - 0.1 Hz. Hence, one of the main criteria to 

decide if a time-course indicates a BOLD-related signal is to inspect the presence of low frequency 

power.  Power spectra of TCs should exhibit low frequency power with presence of the highest 

power between 0.01 – 0.1 Hz. However, sometimes the physiological noise due to cardiac 

pulsation (~ 1 HZ) or respiratory cycles (~ 0.3 HZ) becomes aliased into the low frequency fMRI 

time-course [51].  
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2.7 Dynamic Functional Brain Connectivity 
 

The simplest way to investigate the degree to which each component is functionally related to the 

other components is to capture the pairwise Pearson correlation between the corresponding time-

courses. By considering 𝑁 different brain components, a 𝑁 × 𝑁 symmetric matrix of connectivity 

can be obtained. Each element of this matrix is the correlation value between the time-courses of 

each pair of the components. Figure 2.9 shows an example of a connectivity matrix. Since the 

matrix of connectivity is a symmetric matrix, it has 𝑁 × (𝑁 − 1)/2 unique features. In 

connectivity matrix, the components based on their functional and anatomical location are grouped 

to form some networks such as auditory network, visual network, sensorimotor network and so on. 

The positive value of the correlation between the time-courses corresponding to a pair of brain 

regions is shown by the red color in Figure 2.9. Also, the negative correlation is represented by the 

blue color. If we calculate the correlation between the whole length of the time-courses 

corresponding to each pairs of the brain regions, the resulting correlation matrix would show the 

static functional connectivity.  

 

 

 

 

Figure 2.9. An example of the brain functional connectivity matrix. The independent brain 

components are separated into seven groups. Sub-cortical (SC), auditory (AUD), visual 

(VIS), sensorimotor (SM), cognitive control (CC), default mode (DM) and cerebellum (CB). 
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As mentioned before, by studying the static functional connectivity, we are unable to understand 

the changes in the functional connectivity within the time. In 2013, Allen et al. [8] published one 

of the first major works on capturing dynamic functional brain connectivity. In this work, the 

functional connectivity was measured by using a set of temporal windows. Hence, for obtaining 

dynamic functional connectivity, a sliding window was applied to the time-courses, and then the 

correlation matrix was calculated inside each window as shown in Figure 2.10. In other words, 

first, by considering the length of window as 𝑊, the correlation matrix is calculated from time   

𝑡 = 1 to time 𝑡 = 𝑊. Then, by shifting the window by time 𝜏 repeatedly, the same calculation is 

carried out in each window over the time, from the beginning of time-courses to the end of the 

time-courses. Considering length of window 𝑊 to be too short leads to the reduction of the signal 

to noise. It also results in having few samples for a reliable computation of correlation. In contrast, 

by having the long window length, we would not be able to detect the temporal changes in dFC. 

In other words, the length of window must be short enough to capture all the variations in dFC and 

long enough to get the reliable information of correlation. The size of 30–60s for the windows are 

suggested by the most studies for capturing the changes in resting-state dFC [1]. It also has been 

shown that, in most cases, different window lengths, when chosen in this interval, do not give 

significantly different results. Beside choosing the window length, defining the shape of the 

window is important. The most basic window is the common rectangular window. The limitation 

of using this window is that it has high the sensitivity to the outliers in the detection of dFC.  To 

overcome this limitation tapered windows were used in many studies for capturing dFC. The size 

of the sliding window (tapered window) can be chosen based on the periodic behavior of the time 

courses.  By using these sliding windows, it is possible to evaluate the amount of variability in the 

resulting FC time series. 
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Figure 2.10. Obtaining the functional connectivity matrices by using a sliding window [52]. 

.  

 

 

2.8 K-means Technique 

K-means is a well-known technique used for clustering the data [53]. This clustering technique 

has been used in different fields and applications for separating the data such as image 

segmentation and market segmentation. In k-means algorithm, 𝐾 non-overlapping clusters with 𝐾 

centroids are picked and then each sample of the data is assigned to the nearest centroid. The 

centroids are estimated in such a way to minimize the total error. The error for each sample is 

defined as a function that measures the distance between a sample and its cluster centroid.  The 

basic k-means algorithm for finding 𝐾 clusters is applied by following the steps given below, 
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Figure 2.11. K-means clustering fails to put image (b), (c) and (d) in the same cluster 

as image (a) [54]. 

  (a)                         (b)                             (c)                            (d)           

1. Select 𝑲 points (samples) as the initial centroids.  

2. Assign all the samples to the closest centroid.  

3. Recompute the centroid of each cluster.  

4. Repeat steps 2 and 3 until the centroids don’t change (or change very little).  

Even though the k-means is a well-known clustering method and has very simple implementation, 

it is worth mentioning one of its disadvantages. K-means clustering might not be well-suited for 

clustering of high dimensional data such as images. It results from the fact that using the distance 

measures such as Euclidian distance over the high dimensional spaces is not intuitive. For instance, 

in the case of the high dimensional images, k-means considers the pixel-wise distance for 

clustering the images that does not correspond to perceptual or semantic distance. Figure 2.11 

shows an example that k-means clustering might fail, and the original image and three other images 

might fall into the different clusters based on their pixel-wise distance while we expect them to be 

in the same cluster based on their perceptual or semantic similarity.  
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(2.9) 

2.9 Two Sample T-Test  
 

T-statistics is a statistical method that is employed for comparing the means of two groups and 

assessing if this two groups are different or not. In other words, this method helps to investigate 

the degree of difference between two groups and the possibility that this difference could have 

happened by chance. This degree of difference is obtained based on: 1- The distance between the 

mean intensities of the two groups and 2- The spread of distribution of each group and the degree 

of overlap in distributions. As shown in Figure 2.12.  

 

T-value is computed as, 

𝑡 =
𝜇1 − 𝜇2

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 

where 𝜇1and 𝑠1
2 are the mean and sample variance of group 1, whereas 𝜇2 and 𝑠2

2 are the mean and 

sample variance of group 2. Every t-value has a corresponding  p-value.  The p-value for a t-

statistic gives the probability that the difference between two groups happens by chance.  

 

 

  𝜇1                           𝜇2 

Figure 2.12 Two independent populations [55]. 

http://www.statisticshowto.com/p-value/
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2.10 Summary 

The purpose of this chapter was to present some background materials in study of the functional 

brain connectivity in the resting state fMRI. First, we explained how to preprocess and prepare the 

fMRI data. Then, group ICA which is an extension of ICA method was introduced. We explained 

how to use group ICA to capture independent components in this study. Then, we discussed how 

to choose appropriate components and exclude the artifact components. After that, we explained 

about functional connectivity matrix and how to capture dynamic functional connectivity using 

sliding windows. Finally, the two-sample t-test method for obtaining group difference was 

described. 
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Preprocessed fMRI data 

 

Figure 3.1. The pipeline of dynamic functional brain connectivity study. 

CHAPTER 3 

 

Group Difference Study Using Convolutional Autoencoder  
 

3.1 Introduction 

 In this chapter, we study the dynamic functional brain connectivity in fMRI data by using a 

convolutional autoencoder for obtaining the different connectivity patterns. A brief introduction 

of artificial neural networks is given in Section 3.2. The convolutional neural networks as a type 

of neural networks used for 2D data are described in Section 3.3.  In Section 3.4, the convolutional 

autoencoders and their architecture are explained. In Section 3.5, we present the steps carried out 

to obtain dynamic functional connectivity. First, we apply the group ICA technique on the 

preprocessed resting-state fMRI data to get the independent components of fMRI data (brain 

regions) and the corresponding time-courses. A sliding window is then passed through the time-

courses and a correlation matrix is obtained for each segment of the time-courses. As our main 

contribution, we use a convolutional autoencoder for the first time in order to obtain the correlation 

matrices with the common functional connectivity patterns. By using these connectivity patterns, 

we are able to study the differences in the functional connectivity in brain regions of the healthy 

control subjects and that of patients. The Figure 3.1 shows the pipeline for studying the dynamic 

functional connectivity.  
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Figure 3.2. The physiological representation of a neuron [57]. 

3.2 Introduction to Neural Networks 

 

Our brain uses the extremely large interconnected network of neurons for information processing. 

A neuron, such as the one shown in Figure 3.2, collects inputs from other neurons 

using dendrites. The neuron sums all the inputs and is fired if the resulting value is greater than a 

threshold. The signal from the fired neuron is then sent to other connected neurons through the 

axon. 

 

 

 

 

 

 

 

 

 

Artificial neural network (ANN) is a computing system inspired by the brain neural networks [56]. 

An artificial neural network is a function (f: 𝑍→ 𝑂) that takes each sample from the input data 𝑍 

and maps it to an output, 𝑂. This mapping is carried out by making meaningful connections 

between a number of neurons. Each neuron in a neural network gets a value determined by a 

weighted sum of all the inputs followed by an activation function [58] as shown in Figure 3.3. 

Activation function plays an important role in the artificial neural networks. The activation 

function decides whether a neuron should be activated or not. So, for each neuron 𝑗 in the network, 

its output 𝑂𝑗  is defined as: 
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Figure 3.4. The most common activation functions [59]. 

  Figure 3.3. The computation in a neuron. 
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(3.1) 

 

𝑂𝑗 = ∅(∑ 𝑤𝑖𝑗
𝑛
𝑘=1 𝑧𝑖 + 𝑏𝑗) 

 

where ∅ is the activation function, 𝑛 is the number of inputs to neuron 𝑗,   𝑤𝑖𝑗 is the weight between 

neurons 𝑖 and 𝑗, and 𝑏 is the bias value. The commonly used activation functions in neural networks 

are Sigmoid, Tanh and ReLU as shown in Figure 3.4.  
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∅(𝑥) = tanh (𝑥) 

 
∅(𝑥) = max (0, 𝑥) 
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(3.2) 

A neural network consists of a sequence of layers. Each layer uses the output of its previous layer 

as the input. Figure 3.5 shows a simple multi-layer neural network. Beside input and output layers, 

other layers of the network are called hidden layers. The input data are processed using the hidden 

layers and the results are passed to the output layer. In fact, the neural network maps the input data 

in the first layer to a set of prediction scores in the output layers using a set of weights in each 

layer. A cost function is defined to quantify the agreement between the prediction scores at output 

layer and the expected output (ground truth labels). Mean square error and cross entropy cost 

function are the most popular cost functions used in the neural networks. The weights of the neural 

network should be adjusted during training in such a way that minimize this cost function. In order 

to minimize the cost function, the weights in the neural network are optimized using a method 

called backpropagation. Backpropagation is a method used for training a neural network by 

calculating a gradient that is needed for updating the network weights. This process is carried out 

by computing the error at the output and distributing it backwards throughout the network layers. 

During the backpropagation, each weigh of the network is updated using the gradient descent as 

given by, 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 −  𝛼 
𝜕𝐽

𝜕𝑤𝑖𝑗
 

where 𝑤𝑖𝑗 is the weight between neurons 𝑖 and 𝑗,  𝐽 is the cost function of the neural network and  

𝛼 is the learning rate used for updating the weight. In fact, the gradient descent is a way to minimize 

the cost function 𝐽 parameterized by the model weights by updating the weights in the opposite 

direction of the gradient of the cost function with respect to the weights. The learning rate 𝛼 

determines the size of the steps that is taken in the gradient descent direction to reach to the local 

minimum of cost function. Stochastic gradient descent (SGD) is a variation of gradient descent 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Artificial_neural_network#Components_of_an_artificial_neural_network
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Figure 3.5. A typical structure of a multi-layer neural network. 
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that estimates the gradient from a small number of samples chosen randomly from training data in 

each iteration (minibatches). SGD converges much faster than the original gradient descent in 

which all the data in the training set are used for estimation of the gradient in each iteration. Hence, 

SGD is used more often for training the neural network. 

 

 

 

 

   

   

 

                           

 

3.3 Convolutional Neural Networks 

 

Convolutional neural network (CNN) is a type of neural networks that is typically used for 2D data 

such as images. The architecture of a Convolutional neural network is inspired by the organization 

of the Visual Cortex in which the individual neurons respond to stimuli in a restricted region of 

the visual field known as the receptive field.  The convolutional neural network takes advantage 

of spatial structures in the input data by convolving a kernel to the input data to detect local features 
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Figure 3.6. A typical architecture of a convolutional neural network [60]. 

of the input [59]. Since the same kernel with the same parameters is used on every unit of the input 

data (parameter sharing), the number of parameters required to train a neural network drastically 

decreases. The convolutional neural network learns the feature representations of the input in each 

layer in a hierarchy by obtaining the low-level features in first layers and high-level features in the 

last layers. A typical convolutional neural network is shown in Figure 3.6. A convolutional neural 

network consists of two main building blocks called convolutional layers and pooling layers. 

 

 

 

 

3.3.1 Convolutional Layer 

The convolutional layer is the main building block of a convolutional neural network. In a 

convolutional layer, the convolution is performed by sliding a kernel over the input and carrying 

out a matrix multiplication and summation.  A set of kernels is used in each convolutional layer to 

extract different kinds of features from the input data [61] and generate the layer output, called 

feature map.  Stride and zero-padding are two important properties of each convolutional layer. 

 

- Stride:  Stride is the number of steps by which we slide the kernel over the input image. When the 

stride is 1 then we move the kernels by one step at a time. Using a larger stride leads to have smaller 

feature maps at the output of the layer.  
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(3.3) 

(3.4) 

 

- Zero-Padding: The spatial size of the feature map gets smaller than input size after performing the 

convolution on the input. In order to prevent the feature map from shrinking, zero-padding is 

applied to input image by adding zero-value pixels around the input image as shown in Figure 3.7. 

The size of a convolution layer output (feature map) would be the same as that of the input if we 

employ zero padding with the size of: 

 

𝑝 = (
𝑓 − 1

2
) 

 

where f is the width of the kernel used in the convolutional layer  

The depth of the output volume (feature map) in each convolutional layer is determined by the 

number of kernels used in that layer. Also, the spatial size of output can be calculated by having 

input size, width of the kernel, the number of padding and stride.  If we convolve the kernels 

with width 𝑓  to a 𝑃 × 𝑃 image with padding of 𝑝 and stride of 𝑞, the spatial size of the output 

(feature map) is determined by, 

 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 =
𝑃 + 2𝑝 − 𝑓

𝑞
+ 1 

 

 

0 0 0 0 0 0 

0 4 8 30 23 0 

0 13 25 2 16 0 

0 36 3 1 7 0 

0 9 17 12 3 0 

0 0 0 0 0 0 

 

 

Figure 3.7. An example of zero padding operation. 
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The rectified linear unit (RELU) is the most commonly used activation function in convolutional 

neural network that is placed after convolutional layers to introduce the non-linearity to the feature 

maps. 

 

3.3.2 Pooling Layer 

 

Pooling layer is often used in CNNs to reduce the spatial size of the input and feature maps. This 

reduction in the size is carried out by breaking the input into different non-overlapping regions. 

Each region is then replaced by a single value. It results in decreasing the size of the layer output 

(feature map) while preserving the most important information contained within each region [62]. 

The operation that is performed on each region determines the type of the pooling layer. This 

operation can be an average operation within each region, selecting the maximum value in each 

region or any other types of operation. Selecting the maximum value is the most common type of 

pooling operation. In that case, the layer is called max-pooling layer. The advantage of max-

pooling layer is that extracted features would be the same even with a small shift of the input data. 

An example of max-pooling operation is illustrated in Figure 3.8. 

 

 
                    

                    Figure 3.8. Max pooling operation [63]. 
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A convolutional neural network consists of a sequence of convolutional and pooling layers. In 

supervised learning applications such as classification, some fully connected layers are usually 

added after the last layer of CNN followed by an output layer for classification. A cost function is 

defined to quantify the agreement between the given label for each input of the convolutional 

neural network and the score obtained in the output layer. Backpropagation algorithm is used to 

update all the weights of the network in order to minimize the cost function [61]. In other words, 

the weights of the network are updated in such a way to make the output in agreement to the ground 

truth label. Convolutional neural network can also be used for unsupervised learning. In this case, 

it is not required to have any labels for training. One of convolutional neural networks used for 

unsupervised learning is called convolutional autoencoder. 

 

3.4 Convolutional Autoencoders  

 

A convolutional autoencoder is a type of convolutional neural networks that is used for 

unsupervised learning. The convolutional autoencoder is based on an encoder-decoder paradigm 

as shown in Figure 3.9.  The encoder of autoencoder consists of several convolutional and pooling 

layers that transforms an input image and produces a low-dimensional representation of the image. 

This low-dimensional representation of the input is also referred to latent representation of the 

input. The decoder of autoencoder consists of deconvolutional layers or up-sampling layers 

followed by convolutional layers. The decoder is responsible to reproduce the input at the output 

by using the latent representation of the input. In other words, the encoder compresses the input 

data and the decoder reconstructs the input from the compressed data.  
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(3.5) 

A convolutional autoencoder is trained end-to-end in an unsupervised way by using the input data 

as the label. The training is carried out through the minimization of the mean squared error (MSE) 

cost function given by, 

J =  min 
        𝑊,𝑈

1

𝑛
∑‖𝑔𝑢(𝑓𝑤(𝑥𝑖)) − 𝑥𝑖‖2

2
𝑛

𝑖=1

 

 

where 𝑓𝑤(. ) is the output of the encoder (latent representations) and 𝑤 is the set of weights used 

in the encoder. Also, 𝑔𝑢(. ) is the output of decoder and 𝑢 is all the weights in the decoder. The 

weights of the autoencoder (𝑤 and 𝑢 ) are updated during the training using the backpropagation 

and gradient descent in order to minimize the cost given in Equation 3.5.  After the training, the 

autoencoder learns to reconstruct the input at the output.  

The autoencoders can be employed in different tasks such as feature extraction, dimensionality 

reduction, and clustering.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. The general architecture of a convolutional autoencoder [64]. 
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3.5 The Pipeline of Dynamic Functional Brain Connectivity Study 

 

In this section, we present the pipeline for the capturing dynamic functional brain connectivity in 

the resting-state fMRI data along with the convolutional autoencoder as the novel method for 

obtaining of the FC patterns. 

 

3.5.1 Group ICA and Windowing 

 As explained in Section 2.5, the group ICA is applied to the preprocessed fMRI data of all the 

subjects to obtain the independent components and the corresponding time-courses. A sliding 

window is then moved on the time-courses of each subject to obtain a different correlation matrix 

for each slice of time courses as shown in Figure 2.10. Hence, 𝐷 × 𝑀 number of correlation 

metrices are generated, where 𝐷 is the number of sliding windows for each subject and 𝑀  is the 

number of subjects. Dynamic functional connectivity can be summarized into a finite number of 

functional connectivity patterns usually referred to as “functional connectivity states”. In order to 

capture the functional connectivity states, all the correlation metrices should be clustered. The 

clustering of high dimensional data has some limitations. When the number of dimensions is high, 

the distance between any two points in the dataset converges. It means the maximum distance and 

minimum distance between any two points of dataset will be close. To solve the problem of 

clustering of high dimensional data, convolutional autoencoder is used to capture connectivity 

states. 

 

3.5.2 Convolutional Autoencoder for Obtaining FC States 

 

The convolutional autoencoder explained in Section 3.4 is used for the first time for obtaining the 

connectivity states as the main contribution of this thesis. After designing a convolutional 



42 

 

autoencoder, all the 𝐷 × 𝑀 correlation matrices obtained in the previous section are used as an 

input to the autoencoder. First, the autoencoder needs to be trained using these correlation matrices. 

During training of the convolutional autoencoder, all the weights in the kernels are updated in such 

a way that the reconstruction error (defined by MSE) between the reconstructed connectivity 

matrices at the output of autoencoder and the original connectivity matrices in the input is 

minimized. The update of the weights is carried during training by using stochastic gradient 

descent (SGD) and backpropagation. The training procedure continues until there is no sensible 

reduction in reconstruction error.  After training the convolutional autoencoder is finished, the 

correlation matrices are passed through the encoder of convolutional autoencoder one by one and 

the output of the encoder (output of the middle layer of autoencoder), known as the latent 

representation of the input is extracted.  

 

Instead of clustering correlation metrices directly, we cluster their corresponding latent 

representation obtained at the middle layer of autoencoder. Each cluster represent a state of 

connectivity for dynamic functional connectivity analysis.  All the correlation matrices that 

correspond to the latent representations in a cluster are then considered to have the same pattern 

and belong to the same connectivity state. Hence, if there are 𝐾 clusters, each correlation matrix 

is assigned to one of the 𝐾 states. 

 

We use a k-means algorithm to cluster the latent representations of the obtained connectivity 

matrices at the middle layer of the autoencoder and partition them into a set of separate clusters. 

The optimal number of centroid states is estimated using the elbow criterion, defined as the ratio 

of within the cluster distances to the between the cluster distances. A search window of 𝐾 from 2 

to 9 was used to obtain the best cluster number. 
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3.5.3 Group Analysis 

 

After clustering all the functional connectivity matrices by using their latent representations, the 

median of the connectivity matrices with the similar pattern (with the same cluster ID) is calculated 

for both healthy subjects and patients. A two-sample t-test is then performed on each cluster in 

order to determine each pair of the brain regions in the group of the healthy control subjects for 

which the correlation value is significantly different from that of the corresponding pair of the 

regions in the group of patients. 

The duration of a functional connectivity matric to remain in one state before switching to another 

state is referred as dwell time. In order to distinguish the FC in the healthy people from that in the 

people affected by mental disorders, the average dwell time for each group in each state is 

computed and compared. 

 

3.6 Summary 

In this chapter, a convolutional autoencoder as a novel method for clustering the connectivity 

matrices was proposed. First, we introduced the neural networks. Then, convolutional neural 

networks as a type of neural networks and their advantages over typical neural network were 

presented. Next, a convolutional autoencoder that is a type of CNNs for unsupervised learning was 

explained. In the last part of this chapter, three main steps of the pipeline used in this study for 

obtaining the dynamic functional connectivity in the resting-state fMRI data was presented. As the 

main contribution of this study, a convolutional autoencoder is used to obtain different functional 

connectivity patterns. For this purpose, after training the convolutional autoencoder by using all 

the correlation matrices, the latent representations of the correlation matrices are obtained at the 

output of encoder (middle layer of the convolutional autoencoder). K-means algorithm is then 
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applied to the latent representations to partition them into a set of separate clusters.  Finally, a two-

sample t-test is applied on each cluster in order to determine each pair of the brain regions in the 

group of the healthy control subjects for which the functional connectivity is significantly different 

from that of the corresponding pair of the regions in the group of patients. 
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CHAPTER 4: Results and Discussions 

 
 

4.1 Introduction 
 
 

In this chapter, the dynamic functional brain connectivity for a group of healthy subjects and a 

group of patients affected by schizophrenia is studied by using the proposed method for obtaining 

the connectivity patterns from fMRI data. First, a brief description about the schizophrenia mental 

disorder is given. The scanner parameters used for the acquisition of fMRI data from healthy 

subjects and schizophrenia patients are provided. Then, different steps of the preprocessing applied 

to the raw fMRI data of all subjects are presented. The results for each step of the procedure carried 

out for obtaining the dynamic functional connectivity, including the group ICA, component 

selection, windowing and finding the connectivity matrices are explained. Then, the proposed 

method based on the convolutional autoencoder is used to find the different functional connectivity 

patterns from the connectivity matrices. In order to demonstrate the effectiveness of using the 

convolutional autoencoder, some synthetic connectivity matrices are generated. It is shown that 

the proposed method based on the convolutional autoencoder is able to cluster the connectivity 

matrices with the same patterns more accurately in comparison to the traditional k-means 

clustering method. The proposed method is then used to cluster the real connectivity matrices in 

order to obtain the different functional connectivity patterns. A two-sample t-test is then performed 

on each functional connectivity pattern in order to determine the pairs of brain regions in the group 

of healthy subjects in which the functional connectivity is significantly different from those in the 

group of schizophrenia patients. 
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4.2 What Is Schizophrenia? 

Schizophrenia is a severe mental disorder that occurs in 1 percentage of the world population. This 

disease is usually characterized by losing the ability to understand the reality (hear voices or see 

things that are not real), having problem with social interaction, sleeping problem, and difficulty 

in memorizing. Schizophrenia is thought to be related to a combination of genetic and 

environmental factors, although the exact cause is not yet known. Unfortunately, there is no 

clinical test for schizophrenia, and the diagnosis is based on self-reported questionnaires and 

abnormalities in behavior [65]. 

 

4.3 fMRI Data Analysis 

 

In this study, the resting-state data come from the Center for Biomedical Research Excellence 

(COBRE) [66]. 72 patients with schizophrenia and 74 healthy controls are studied from the 

released data set. None of the subjects had a history of neurological disorder, mental deficiency, 

sever head trauma with more than five minutes loss of consciousness and history of drug abuse or 

drug dependence during the last 12 months before the test. A demographic representation of the 

COBRE data is shown in Table 4.1. 

 

                                      Table 4.1. Summary of subject demographics. 

 Healthy Patients 

Number of subjects 74 72 

Age 35.5(18-65) 38.1(18-65) 

Gender (M/F) 51/23 58/14 
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The resting-state fMRI was captured with a single shot echo-planar imaging (EPI). The fMRI 

scanner parameters that were used for acquisition of the fMRI data are as follows, 

 

TR: 2 s 

TE: 29 ms 

 FOV: 256 mm × 256 mm 

Number of slices: 33 slices 

Voxel size: 3 × 3 × 4 mm3 

Total scan time: 5 minutes (150 TR) 

 

It should be noted that the resting-state fMRI data, anatomical MRI (structural data) and 

phenotypic features (gender, age, handedness and diagnostic information) are available for every 

subject.  

 

Pre-processing of fMRI data is carried out using the Statistical Parametric Mapping software 

(SPM12) [67] implemented in MATLAB. Several steps of preprocessing are applied to the fMRI 

data as follow,  

 

• Discarding the first 5 image volumes from the fMRI data of each subject to avoid T1 

equilibration effect. 

 

• Slice timing correction:  The slice timing correction is carried to address the problem of 

time difference between the slices in a scan of the brain. Since each scan of our fMRI data 

contains 33 slices, 17th slice (the middle slice) is used as the reference slice for time-slicing 

correction.  
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• Realignment: For overcoming the head-motion problem that happens during fMRI data 

acquisition, all the fMRI slices are required to be aligned. For the realignment, 6 

parameters are estimated, three parameters for translation and 3 parameters for rotation. 

Hence, by applying this transformation to fMRI data, all the slices in a scan of fMRI data 

are aligned to the first image.  

 

• Coregistration: Coreregistration is carried out to align the functional MRI images of each 

subject to the structural data (MRI data). 

 

•  Spatial normalization:  Prior to carrying out any group analysis, it is required to normalize 

the fMRI data of each subject and transform them into the same space. For this purpose, 

we use MNI (Montreal Neurological Institute) template. 

 

• Smoothing: A spatial Gaussian smoothing with a kernel size of 6 × 6 × 6 mm3 is applied 

to the normalized fMRI data for removing the noise and artifact. 

 

After applying the preprocessing steps, group ICA is carried out by using the GIFT toolbox [68]. 

In the group ICA method, a set of independent components are estimated from the fMRI data of a 

group of subjects. Prior to applying the group ICA to the fMRI data, two levels of data-reduction 

are carried out to reduce the computational burden. These two data reduction steps are done by 

using the principal component analysis (PCA) method. The first data reduction step is done to 

reduce the dimension of the data for each individual subject (subject-level PCA), resulting in 

estimating 120 principle components for each subject. After reducing the dimension of the fMRI 

data for each subject, the dimensionally-reduced fMRI data of all the subjects are vertically 

concatenated into a single matrix. Then, another data reduction step is applied to this concatenated 

matrix (group-level PCA) to estimate 100 principle components at the group level. In order to 
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make these 100 principle components maximally independent, an ICA transform based on the 

infomax algorithm is applied to these principle components to obtain 100 independent components 

(ICs) for the fMRI data. ICA algorithm can give different independent components when run 

multiple times, this may happen from the fact that these algorithms may converge to a local 

minimum. Hence, the stabilization of ICA results is guaranteed by using ICASSO [69] in which 

ICA algorithm is run for several times. Thus, we have run the ICA algorithm for 10 times and 

combined the results from several runs of the ICA algorithm and obtained a set of independent 

components that is more accurate than any of the independent component sets provided by a single 

run of ICA. After obtaining 100 independent components using the group ICA, we need to explore 

and select only a subset of them by considering several aspects and properties as follows, 

1) The location of component: In order to check the location of the components, MRIcron 

software [70] is used. This software is an image viewer for neuroimaging data and is able 

to show the region of interest. By using this software, we make sure that the peak of each 

component obtained by the group ICA is located in the grey matter (GM) area of the brain 

and also the components are not ring-shaped resulted from head motion. In other words, 

the ring-shaped components and the components located in the white matter (WM), 

cerebrospinal fluid (CSF) or those having overlap with the brain arteries should be 

excluded from the set of independent components in our study. For example, Figure 4.2 

shows a ring-shaped component removed from the set of independent components. 

 

2) The frequency spectrum of the time courses: The power spectral of the time-courses 

corresponding to the estimated independent components should exhibit the low frequency 

power with presence of the highest power between 0.01- 0.1 Hz. Figures 4.3 shows a 
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component that is excluded from the set of components since its corresponding time-course 

has high frequencies. 

 

 

 

Hence, after exploring all the 100 independent components, 52 ICs have been selected based on 

the location of the components and spectral characteristic of their corresponding time-courses.  The 

appropriate components are then grouped into seven networks based on their anatomical location 

and functions. These seven networks are called subcortical (SC), auditory (AU), visual (VIS), 

sensorimotor (SM), cognitive control (CC), default mode (DM), and cerebellar (CB) networks as 

described by Allen et al [8]. 

 

 

 

 

 

 

 

 

 

 

 Figure 4.1. An independent component (IC) and the corresponding time-course. 
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Figure 4.2. The output of GIFT software showing an independent component, its 

corresponding time-course and frequency spectra. 
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Figure 4.3. The output of GIFT software showing an independent component, its 

corresponding time-course and frequency spectra. 
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Then, a tapered window is passed through the time-courses corresponding to the 52 selected 

components by the step of 1TR (2 sec). This tapered window is created by using a rectangle with 

width = 30*TRs = 60 s convolved to a Gaussian filter with the standard deviation of 3*TRs. The 

52x52 connectivity matrix is computed within each segment of the time-courses enclosed inside 

the sliding window. Since the length of the time-courses and window size are 145*TR and 30*TR, 

respectively, 115 connectivity matrices are obtained for each subject. Hence, we get a total of 

115×146 =16590 correlation matrices for all the subjects. It should be noted that for obtaining a 

meaningful connectivity matrix in each window, we estimate the correlation matrix from the 

regularized precision matrix to overcome the problem of information insufficiency in short-time 

segment in each window [71]. Also, all the correlation matrices are fisher transformed (𝑧 =

arctanh (𝑟)) for variance stabilization. 

 

In order to obtain different functional connectivity patterns occurring over time, all the 

connectivity matrices need to be clustered. For this task, we design a 7- layer convolutional 

autoencoder that consists of an encoder and a decoder, as shown in Figure 4.4. The encoder of 

autoencoder consists of 4 convolutional layers and 3 pooling layers that reduces the spatial 

dimension of the 2D input to obtain its latent representation. The decoder of autoencoder consists 

of 3 up-sampling, each followed by a convolutional layer. The decoder is responsible to reconstruct 

the 2D input at the output of autoencoder from the latent representation (encoder output). The 

3 × 3 convolutional kernels with stride of 1 (q:1) are used in each convolutional layer of 

autoencoder. A Relu activation function is used after each convolutional layer to obtain the output 

of each layer (feature map). Also, a 2 × 2 max pooling with stride of 2 (q:2) is used in each layer 

of encoder to reduce the spatial dimension of the feature maps by half. The properties of different 

layers of the designed autoencoder are given in Table 4.2.   
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All of the 16590 connectivity matrices obtained in the previous step are turned into 2D grayscale 

images. These images are then used for the training of the convolutional autoencoder. 

The convolutional autoencoder is trained on a NVIDIA GTX-1070 GPU using TensorFlow. For 

the training, a stochastic gradient descent (SGD) optimizer with initial learning rate 0.005 and the 

batch size of 32 are used. The loss is defined as the square difference between input image and the 

decoded image at the output of the autoencoder network. Figure 4.5 shows that the loss gradually 

decreases during the training of the autoencoder. 

 

 

Figure 4.4.  The architecture of the designed convolutional autoencoder for   

obtaining functional connectivity patterns. 

        Figure 4.5.  Loss curve for the convolutional autoencoder during the training. 
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Table 4.2. Convolutional autoencoder layers. 

 

Autoencoder 

layers 

Kernel size stride Input size Output size 

Conv layer 3x3 q:1 1x52x52 32x52x52 

Pooling layer 2x2 q:2 32x52x52 32x26x26 

Conv layer 3x3  q:1 32x26x26 16x26x26 

Pooling layer 2x2 q:2 16x26x26 16x13x13 

Conv layer 3x3  q:1 16x13x13 8x13x13 

Pooling layer 2x2 q:2 8x13x13 8x7x7 

Conv Layer 3x3  q:1 8x7x7 8x7x7 

Up-sample _ _ 8x7x7 8x13x13 

Conv Layer 3x3 q:1 8x13x13 16x13x13 

Up-sample _ _ 16x13x13 16x26x26 

Conv Layer 3x3 q:1 16x26x26 32x26x26 

Up-sample _ _ 32x26x26 32x52x52 

Conv Layer 3x3 q:1 32x52x52 1x52x52 

 

 

After training the convolutional autoencoder using the 16590 sample for 160000 steps, the outputs 

of encoder in the autoencoder (Latent representations) with the size of 8 × 7 × 7 are obtained for 

all of these 16590 samples. Hence, 16590 latent representations, each correspond to one of 16590 
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original 52 × 52 correlation matrices are obtained. Then, these latent representations are clustered 

using the k-means method.  

  

There are no ground truths for the evaluation of the proposed method performance for clustering 

the connectivity matrices. Hence, in order to show the superiority of the proposed method for 

clustering the connectivity matrices over that of k-means, 16000 matrices with the same size as 

the connectivity matrices (52×52) and four different patterns are generated (4000 matrices for each 

pattern). These matrices can be considered as the synthetic connectivity matrices. Figure 4.6 shows 

one sample of the generated 52×52 matrices presented by greyscale image for each of the four 

patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. One sample of synthetic connectivity matrices from each pattern. 
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These 16000 generated matrices are turned into grayscale images and are then passed one by one 

through the encoder part of the convolutional autoencoder trained by the real connectivity 

matrices. Hence, 16000 latent representations of the input matrices (synthetic connectivity 

matrices) are obtained at the output of the encoder. Finally, the k-means is applied to these 16000 

latent representations to cluster them. 

T-distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality 

reduction technique that is suitable for embedding high-dimensional data in a low-dimensional 

space (two or three dimensions) for visualization. T-SNE models each high-dimensional data by a 

two- dimensional or three-dimensional point in such a way that similar objects are modeled by 

nearby points and dissimilar objects are modeled by distant points. In Figures 4.7 and 4.8, t-SNE 

is used for the 2D visualization of the synthetic connectivity matrices and their corresponding 

latent representations obtained by the designed convolutional autoencoder, respectively.  Four 

different colors are used to distinguish the samples with different patterns. 

 

 

Figure 4.7. Visualization of the synthetic connectivity matrices using t-SNE. 

 

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
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Figure 4.7 shows that t-SNE is unable to separate the high dimensional synthetic connectivity 

matrices with the same pattern from those with other patterns. However, it is observed from t-SNE 

in Figure 4.8 that the latent representations of the synthetic connectivity matrices with the same 

pattern are grouped together and are far from those with other patterns. Hence, it is expected that 

clustering the latent representations of the connectivity matrices obtained by the designed 

autoencoder is more precise than clustering of connectivity matrices directly. Table 4.3 shows the 

result of k-means applied directly to the synthetic connectivity matrices. It also shows the results 

of k-means applied to the latent representations of connectivity matrices obtained by the designed 

convolutional autoencoder (CAE). The values in the table show the number of samples (out of 

16000) in each cluster and the percentage of error. 

 

 

Figure 4.8. T-SNE visualization of the latent representations of the generated connectivity 

matrices obtained by the designed CAE. 
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                                Table 4.3. Number of matrices in different clusters. 

 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Error 

K-means 3951 4295 3754 4000 3.7% 

CAE +k-means 4000 4000 4000 4000 0 

  

The results in Table 4.3 shows that the performance of the proposed clustering method in which 

the k-means is applied to the latent representations obtained by autoencoder is much better than 

that of k-means directly applied to the generated connectivity matrices.  

 

Now, in order to capture the reoccurring FC patterns in fMRI data, we use the proposed method 

by applying the k-means to the latent representations of 16590 correlation matrices obtained by 

the designed autoencoder (output of the middle layer of autoencoder).  The ‘elbow’ criterion is 

used to select the optimum number of clusters for the latent representations. By changing the 

number of clusters in a search window from 2 to 9, an elbow is observed when the number of 

clusters is 4. Hence, the number of clusters that is the number functional connectivity patterns 

(states) is considered to be 4 in our study.  The averages of the correlation matrices corresponding 

to all the latent representations with the same cluster id (state) are shown in Figure 4.9.  Figures 

4.10 and 4.11 show the group-specific medians for each state of schizophrenia subjects and healthy 

subjects, respectively.  
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                           Figure 4.9. Average of the correlation matrices in each state. 
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       Figure 4.10. Median of correlation matrices in each state for the healthy control subjects. 
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Figure 4.11. Median of correlation matrices in each state for the schizophrenia patients.   

 

4.4 Analysis of Group Differences in Dynamic FC 

 

After clustering all the correlation matrices for obtaining the functional brain connectivity patterns, 

the group difference between dynamic functional connectivity of the healthy control subjects and 

that of schizophrenia subjects is studied in this section. For this purpose, a two-sample t-test with 
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p-value of 0.05 is carried out to detect the group differences for the four identified functional 

connectivity patterns shown in Figure 4.12. This allows us to determine each pair of the brain 

regions in the group of the healthy control subjects in which their functional connectivity is 

significantly different from that in the same pair of brain regions in the group of schizophrenia 

patients. 

 

By exploring the group-specific median matrices illustrated in Figure 4.10 and Figure 4.11, a 

moderate to high correlation among the independent components of the VIS, SM and AUD 

networks are observed in the state 1 and state 2. The moderate and high functional connectivity 

value between the brain regions (independent components) are demonstrated by the light and dark 

red color in the correlation matrix. In the states 3 and 4, it is observed that a set of ICs in CC and 

SM category have antagonism with those in DM. This antagonism is shown by the blue color in 

the correlation matrix. 

 

 

From the two-sample t-test results in Figure 4.12, it is shown that there are some brain regions in 

the healthy control group with the functional connectivity that is significantly different from those 

in the group of SCZ patients. For example, in Figure 4.12, in the state 2, it can be seen that the 

functional connectivities between putamen in SC category and some of the components in VIS 

network in HC group is significantly different from that in the SCZ group. This difference can also 

be noticed in Figures 4.10 and 4.11 by observing the correlation between the activation signals of 

SC and VIS in the state 2 of both HC and SCZ groups. It can be seen that there is almost no 

correlation between the SC and VIS ICNs for the SCZ group while antagonism is observed 

between these two sets of ICNs for the HC group. Also, it can be seen in the state 3 of Figure 4.12 

that the functional connectivity among the components in VIS network of the HC group is different 

from that of SCZ group. This difference can also be observed from the correlation matrices shown 
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in Figures 4.10 and 4.11. It can be seen from these figures that there are high correlations among 

the components in the VIS network for HC group while there is almost no correlation among the 

same components for the SCZ group. The discussed regions in VIS network in which we have 

observed difference in the functional connectivity between HC and SCZ groups are also shown on 

a brain atlas in Figure 4.13. 
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Figure 4.12. Two-sample t-test results showing FC differences between pairs of the brain 

regions in the healthy control (HC) subjects and corresponding brain regions in the 

schizophrenia (SCZ) subjects in each state obtained by using the proposed clustering method. 
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Lingual Gyrus 

Cuneus Cortex 

 Occipital Gyrus 
 

 

 

 

 

Also, Figure 4.14 shows the result of two sample t-test when the k-means is applied directly to the 

connectivity matrices for finding the functional connectivity patterns. Since the performance of 

the proposed method for clustering the correlation matrices has been shown to be superior to that 

of k-means clustering, we expect the group difference result shown in Figure 4.12 to be more 

reliable in compare to that in Figure 4.14.  

 

Dwell time is defined as the time that the functional connectivity remains in one state before 

switching to another state. In order to show the effectiveness of the proposed method in 

distinguishing the FC in the healthy people from that in the people affected by schizophrenia, the 

average dwell times for each group in different connectivity states are computed. Figure 4.15 

shows the average dwell time in each state for the HC and SCZ groups after using the proposed 

method for clustering the connectivity matrices. It can be seen in this figure that the average dwell 

time for the HC group in the state 2 and state 4 is significantly different from those for SCZ group.  

In other words, in average, the HC subjects spend significantly more time in the state 2 compared 

to the SCZ subjects, whereas the patients affected by SCZ spend significantly more time in the 

state 4 before transition to the other states. Hence, as expected, SCZ subjects remain longer in the 

Figure 4.13.  Visualization of the regions in the brain visual network where the difference 

between FCs in the group of HC and those in SCZ is significant by using Freesurfer software. 

.  

Fusiform Gyrus 
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state in which the corresponding average correlation matrix in Figure 4.9 shows the lowest amount 

of connectivity among brain regions. In contrast, the HC subjects remain longer time in the state 

in which the corresponding average correlation matrix shows more connectivity between brain 

region pairs. 
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Figure 4.14. Two-sample t-test results showing FC differences between pairs of the brain 

regions in the healthy control (HC) subjects and corresponding brain regions in the 

schizophrenia (SCZ) subjects in each state obtained by using the traditional clustering 

method of k-means. 
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Also, Figure 4.16 shows the average dwell time in each state for the HC and SCZ groups after 

clustering the connectivity matrices using the traditional k-means clustering method. It can be seen 

from this figure that after using the traditional k-means for clustering the connectivity matrices, no 

significant difference can be observed between the average dwell time of the HC group and that 

of SCZ group in the state 4. It is against our expectation that SCZ subjects stay longer in the state 

corresponding to the average correlation matrix showing the less connectivity (state 4 in this case). 

Hence, it can be concluded that the proposed method for obtaining dynamic functional 

connectivity provides more meaningful interpretation about the difference in the functional brain 

connectivity of the HC and that of SCZ subjects. 

 

 

                     Figure 4.15. Average dwell time in each state for the HC and SCZ groups. 
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4.5 Summary 

 

In this chapter, the proposed method for obtaining dynamic functional connectivity using the 

convolutional autoencoder was evaluated by presenting some experimental results. First, the 

information about the fMRI data in this study and the parameters used for preprocessing steps were 

provided. Then, the results for each step of the procedure, including group ICA, component 

selection, windowing and finding the connectivity matrices were obtained and discussed. The 

designed convolutional autoencoder was then used for obtaining the latent representations of the 

correlation matrices. In order to demonstrate the effectiveness of the autoencoder, connectivity 

matrices with different patterns of known classes are syntactically generated and the performance 

of the proposed method was compared to that of the k-means applied directly to the connectivity 

Figure 4.16.  Average dwell time in each state for the HC and SCZ groups after applying 

traditional k-means clustering method. 
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matrices. The results showed the superiority of the proposed method over k-means. Then, the 

correlation matrix medians in each state were obtained for both healthy control (HC) and 

schizophrenia (SCZ) subjects. Finally, a two-sample t-test was performed to detect the group 

differences between dynamic FC (dFC) of the healthy control (HC) and that of schizophrenia 

(SCZ) subjects for four the identified connectivity states. We obtained a set of connections in the 

visual network of HC group with a significant difference to that of SCZ patients. Also, the average 

dwell time in each state is computed for each group. It was observed that the dwell time for the 

healthy group to stay in the state with more connectivity was longer than that for the group with 

schizophrenia. While, the dwell time for the group with schizophrenia to stay in the state with less 

connectivity is longer than that for the healthy group.  
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CHAPTER 5: Conclusion and Future Work 

 

5.1 Conclusion 

 

Study of functional connectivity provides a better understanding as to how the brain functions. In 

the process of studying the dynamic functional connectivity, the independent component analysis 

(ICA) is performed in order to decompose the functional magnetic resonance imaging (fMRI) data 

into independent components (map of the entire brain) and their corresponding time-courses. A 

sliding window is then passed through the time-courses and a correlation matrix is obtained for 

each segment of the time-courses. In order to obtain the functional connectivity patterns (states), 

the set of correlation metrices needs to be segmented into cluster of functional connectivity 

patterns. For this purpose, the k-means for clustering is used. However, it is well-known that the 

k-means clustering method is not suitable for applying it to high dimensional data such as 

functional brain connectivity matrices. In this thesis, we have proposed using a deep learning-

based convolutional autoencoder to obtain a latent representation of the connectivity matrices prior 

to applying the k-means clustering. Use of the convolutional autoencoder not only reduces the 

dimension of the connectivity matrices, but also provides a more semantic representation of these 

matrices. In order to demonstrate the effectiveness of the autoencoder, connectivity matrices with 

different patterns of known classes are syntactically generated and the autoencoder is applied to 

the generated data. The t-distributed stochastic neighbor embedding (t-SNE) is used to visualize 

the synthetic connectivity matrices and the corresponding latent representations obtained from the 

convolutional autoencoder. It has been shown through this visualization that the latent 

representations of the connectivity matrices with the same pattern are close together, whereas they 

are far apart from those with different patterns. The performance of the proposed method in which 
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the k-means operation is applied to the latent representations resulting from the convolutional 

autoencoder has been compared to that of the k-means applied directly to the connectivity matrices. 

The results have shown the superiority of the proposed method over that of using k-means alone 

by classifying the various patterns more accurately.  

 

The proposed method has then been used to study the dynamic functional brain connectivity by 

applying it to real fMRI data captured from 72 healthy subjects and 74 subjects affected by 

schizophrenia. The group ICA is applied to a preprocessed version of the fMRI data acquired from 

all the subjects in order to obtain the independent components and their corresponding time-

courses. A sliding window is then passed through the time-courses of all the subject to obtain a 

correlation matrix of the time-courses within each location of the sliding window. Next, the 

convolutional autoencoder is trained with the connectivity matrices thus obtained. The k-means 

operation is then applied to the semantic features (latent data) resulting from the convolutional 

autoencoder to cluster the connectivity matrices into classes of matrices each with a different 

functional connectivity pattern (state). A two-sample t-test is then performed on each state in order 

to determine each pair of the regions in the group of the healthy control subjects for which a 

correlation value is significantly different from that of the corresponding pair of regions in the 

group of schizophrenia patients. It has been observed from this test that there are indeed pairs of 

brain regions where such a difference exists between the two groups. It has also been seen that 

such a difference between the two groups is even more pronounced in the visual network part of 

the brain. 

 

Finally, in this thesis, a study has been carried out to obtain the average dwell time for the healthy 

control and schizophrenia subjects in each state. It has been observed that the dwell time for the 

healthy group to stay in the state with more connectivity is longer than that for the group with 
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schizophrenia. On the other, the dwell time for the group with schizophrenia to stay in the state 

with less connectivity is longer than that for the healthy group.  

It is expected that the work of this thesis in developing a new scheme for providing a more accurate 

dynamic connectivity patterns of the brain regions and applying it to determine the differences in 

the connectivity patterns and in the dwell times between healthy and diseased brain, would help 

the neurologists and physicians in a more insightful understanding of the brain activities of these 

groups. 

 

5.2 Future Work 

 

Although the dynamic functional connectivity in resting-state fMRI was studied in this thesis, there 

are still some limitations that need to be addressed in future.  One of the difficulties in this study 

was to choose the suitable window size for obtaining the correlation matrix within a segment of 

time-courses enclosed by this window. The length of window must be short enough to capture all 

the variations in dFC and long enough to get the reliable information of correlation. In future, more 

research needs to be done for either finding a suitable window size or using variable-sized windows 

for obtaining functional connectivity matrices. Also, more research for using time-frequency 

approaches such as wavelet coherence can be carried out to overcome the limitation of window 

size for study of dynamic functional connectivity. 

Finally, it should be noted that the interpretability of results is also an important challenge in the 

study of dynamic functional connectivity that needs a high level of expertise from neurology 

experts. 
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