
FORKLIFT ROUTING OPTIMIZATION IN A

WAREHOUSE USING A CLUSTERING-BASED

APPROACH

Saif Muhammad Musfir Rahman

A thesis

in

The Department

of

Department of Mechanical, Industrial & Aerospace Engineering

(MIAE)

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Industrial

Engineering

Concordia University

Montréal, Québec, Canada

May 2019

c© Saif Muhammad Musfir Rahman, 2019

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Saif Muhammad Musfir Rahman

Entitled: Forklift Routing Optimization in a Warehouse using a

Clustering-based Approach

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Industrial Engineering

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Ida Karimfazli Chair

Dr. Mingyuan Chen Internal Examiner

Dr. Farnoosh Naderkhani External Examiner

Dr. Daria Terekhov Supervisor

Dr. Satyaveer S. Chauhan Co-supervisor

Approved
Chair of Department or Graduate Program Director

20

Amir Asif, Ph.D.,ing., FEIC, FCSME, FASME, Interim

Dean

Faculty of Engineering and Computer Science

Abstract

Forklift Routing Optimization in a Warehouse using a

Clustering-based Approach

Saif Muhammad Musfir Rahman

Order picking in a warehouse is considered to be a time-consuming and costly process

that results in loss of profit for the management. Hence a warehouse management

team is always looking to improve their picking process and increase their efficiency.

In this research, a warehouse with narrow aisles is studied. The aisles are so narrow

that a forklift is only allowed to traverse them in one direction thus making them uni-

directional. The picking process is modeled first as an uncapacitated vehicle routing

problem and then as a capacitated vehicle routing problem. The objective is to min-

imize the total travel distance. Since the Mixed Integer Programming model takes a

long time to solve large instances, we develop a heuristic algorithm both for the un-

capacitated and capacitated problems by combining two methodologies of heuristics

and machine learning. The algorithm is able to solve the instances to near optimality

quickly, finding practical solutions that could potentially be implemented into actual

warehouses to reduce order picking time and hence, overall warehouse costs.

iii

Acknowledgements

I would first like to express my earnest thanks to my academic supervisors Dr. Daria

Terekhov and Dr. Satyaveer Chauhan for their constant support, guidance and mo-

tivation. It would never have been possible for me to take this work to completion

without their incredible support and encouragement. I would also like to thank my

parents and brother, without their constant support and affection this would never

be possible. Lastly, my appreciation goes to my friends and labmates who helped me

with their knowledge and advice in every step of the journey.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivations . 2

1.2 Outline . 3

1.3 Summary of Contributions . 4

2 Literature review 5

2.1 Order Picking Problems . 5

2.2 Warehouse Routing Solving Techniques 7

2.2.1 Polynomial-time heuristics . 8

2.2.2 Mixed Integer Programming Formulations 9

2.2.3 Meta-Heuristic Methods . 13

2.3 Clustering . 14

2.4 Conclusion . 16

3 Uncapacitated Problem 17

3.1 Problem Statement . 17

3.1.1 Warehouse Layout . 18

3.1.2 Directionality . 20

3.1.3 Assumptions . 21

3.2 MIP Formulation . 22

3.2.1 Graphical Representation . 22

3.2.2 Objective . 24

v

3.2.3 Parameters . 25

3.2.4 Decision variables . 26

3.2.5 Model . 26

3.3 Heuristic . 29

3.3.1 Preprocessing . 29

3.3.2 Initialization . 30

3.3.3 Iteration . 32

3.3.4 Termination . 35

3.4 Experimental Results . 36

3.4.1 Experimental Setup . 36

3.4.2 Results and Discussions . 37

3.5 Conclusion . 41

4 Capacitated Problem 42

4.1 Problem Statement . 42

4.1.1 Assumptions . 42

4.2 MIP Formulation . 44

4.2.1 Graphical Representation . 44

4.2.2 Objective . 46

4.2.3 Parameters . 46

4.2.4 Decision variables . 47

4.2.5 Model . 47

4.3 Heuristic . 53

4.3.1 Clustering . 53

4.3.2 Choosing the best cluster . 58

4.3.3 Modifying the cluster . 61

4.4 Experimental Results . 64

4.4.1 Experimental Setup . 65

4.4.2 Results and Discussions . 67

4.5 Conclusion . 71

5 Conclusions and Future Work 72

5.1 Concluding Remarks . 72

5.2 Future research directions . 72

vi

List of Figures

1 General overview of a distribution center with narrow aisles [11] . . . 2

2 Typical order picker’s time distribution 6

3 Different order picking routing strategies [29] 9

4 Simple Warehouse . 18

5 Lattice model of the warehouse as shown in Figure 4 (with the same

set od orders) . 19

6 Lattice model of the warehouse in Figures 4 and 5 with aisle directions 21

7 An example of a scenario . 23

8 Simplified model of scenario . 24

9 Mean Error for different scenarios with minimum and maximum values 38

10 Variation of runtime (seconds) for different scenarios. 40

11 An example of a scenario . 44

12 Simplified model of scenario . 45

13 Cluster modification . 62

14 Uniform Distribution . 66

15 Skewed Distribution . 66

16 Mean Error for different scenarios with minimum and maximum values 68

17 Variation of runtime (seconds) for different scenarios. 70

vii

List of Tables

1 System Requirements for Uncapacitated Heuristic 36

2 System Requirements for Capacitated Heuristic 65

viii

Chapter 1

Introduction

The main goal of this thesis is to develop a heuristic algorithm for a warehouse

vehicle routing problem. The algorithm solves a warehouse forklift routing problem

for large instances where it is too time consuming to be solved by a Mixed Integer

Programming model. Order picking creates great concern for warehouse managers

and routing imposes the biggest challenge in terms of time consumption. In order to

solve the forklift routing problem of the warehouse of our industry partner, we develop

a heuristic algorithm that generates a near-optimal solution quickly. In particular, in

this thesis we

• Formulate a Mixed Integer Programming (MIP) model for two versions of a

warehouse routing problem with unidirectional aisles, i.e., one where the forklift

is uncapacitated and one where it has capacity,

• Develop a heuristic algorithm for both the uncapacitated and capacitated vari-

ants of the warehouse routing problem.

In order to develop the heuristic, we combine two methodologies: heuristics and

unsupervised clustering. In particular, we use

• The S-shaped heuristic developed by Roodbergen [46]

• A variation of the K-means clustering algorithm [18].

The combination of these two algorithms is used to develop a heuristic that results in a

near-to-optimal solution in smaller processing time compared to the MIP model. The

contributions of this thesis therefore lie at the intersection of unsupervised clustering

1

and operations research. Only a handful of papers have addressed the problem of

vehicle routing through clustering, as we will see in Section 2 (Literature Review).

1.1 Motivations

De Koster et al. [16] defined order picking as “a warehousing operation that deals with

picking products from storage locations in order to satisfy customer orders”. Order

picking is one of the most challenging and expensive processes in a distribution center.

It has been estimated that order picking accounts for nearly half of the total ware-

house operating costs [19]. This situation is mostly due to the fact that order picking

often requires involvement of human order pickers, as automating the process would

be costly [16]. Hence, order picking has in recent years become an area of increased

interest among warehouse professionals for improving productivity in warehouses [19].

This dissertation is completed in partnership with a company based in Québec similar

to the work done by Chabot et al. [11] which operates in the warehouse, logistics and

delivery service industry and possesses a large number of SKUs and large number of

orders, each having few items. The products are stored in both sides of narrow aisles,

as depicted in Figure 1.

Figure 1: General overview of a distribution center with narrow aisles [11]

As mentioned by Chabot et al., narrow aisles are advantageous to maximize floor

space utilization, and they facilitate the picking process as the picker can pick items

from shelves on both sides of the aisles directly [11, 23]. However, special narrow

aisle forklift trucks are needed which are required to be driven according to some

specific rules due to safety reasons [11]. In narrow aisle warehouses, traffic is often

an important issue, but similar to Chabot er al. [11] in our case traffic problems are

2

eliminated since only one forklift is allowed to enter an aisle at a given time and the

aisles have pre-defined directions through which the forklift can traverse them. Ware-

house control comprises numerous challenges, namely operating, receiving, storing,

order picking and shipping. Some of the most fundamental issues in order picking

are batch processing and routing methods [16]. The constraints and specifications

discussed above lead to challenges in terms of designing an efficient routing strategy,

a problem that we address in this thesis.

In particular, the motivation for the work presented in this thesis is the need for

effective methods for solving vehicle routing problems in large warehouses in short

runtime. Order picking is an arduous task in warehouse processes that may take up

more than half of all labor time of a warehouse [51]. These order pricking problems

are modeled in the literature as a Vehicle Routing Problems (VRPs) which are solved

by Mixed Integer Programming [38]. The problem with VRP MIP models lie in the

fact that they may take a long time to find an optimal solution. When the number

of products increases, solution time of the MIP model grows exponentially which is

highly undesirable by warehouse management. The main contribution of this thesis

is that we propose a heuristic algorithm that allows us to deal with a large size ware-

house VRP and to solve this problem in a short time using combination of a heuristic

method and a clustering method.

1.2 Outline

In Chapter 2 of this thesis, the necessary background for the work presented in this

thesis is provided. The chapter commences by discussing warehouse order picking

problems in general and then goes on to focus on warehouse routing solving tech-

niques. This section includes four main subsections: Order picking problems, Ware-

house routing solving techniques, Clustering and finally, Conclusion. Chapter 3 pro-

vides a specialized mixed integer programming mathematical model for the vehicle

routing problem of the warehouse in concern. In this chapter we assume that the

forklift does not have any capacity, i.e., is uncapacitated. We develop the heuristic

for the uncapacitated case and discuss the results obtained from our experiments. In

Chapter 4, the mixed integer programming model and the heuristic algorithm for the

3

capacitated case are developed. We no longer assume that a forklift is uncapacitated,

rather it has a finite capacity which is more aligned to a realistic scenario. We run

experiments for our model through several capacitated scenarios and discuss the re-

sults obtained from our experiments. Chapter 5 concludes this thesis by re-stating

its main contributions and suggesting some areas for future work.

1.3 Summary of Contributions

The core contribution of this thesis is that it designs and develops a heuristic to solve

the vehicle routing problem in a warehouse with a large number of unidirectional

aisles where completing each route in the shortest time is paramount. To do so, this

thesis combines a heuristic approach with a clustering technique, thus contributing

in the combined domain of operations research and unsupervised clustering. First,

we formulate specialized MIP models for the warehouse routing problem with uni-

directional aisles both for uncapacitated and capacitated cases. Second, we develop

heuristic algorithms for both cases. Third, we show that the developed heuristic,

using unsupervised clustering technique, provides near-to-optimal solutions in very

short time for large instances.

4

Chapter 2

Literature review

This chapter provides an overview of the main topics and the most relevant studies

in order to identify and highlight the recent state of the art methods in the research

areas relevant to the problem studied in this thesis. This chapter is divided into four

different sections:

(1) Section 2.1 - Order picking problems

(2) Section 2.2 - Warehouse routing solving techniques

(3) Section 2.3 - Clustering

(4) Section 2.4 - Conclusion

2.1 Order Picking Problems

Order picking is a source of headache for warehouse operations management still

since it often requires involvement of human order pickers, as automating order pick-

ing systems requires large investments [16]. Hence, order picking has become an area

of increased interest among warehouse and logistics professionals to increase produc-

tivity in warehouses [16]. The term “warehouse” refers to “a facility where the main

purpose is storage and buffering of products” [47]. In such facilities products are not

stored for a long time and are transferred directly from receiving to shipping dock

[32]. Warehouse operations can be divided into several functions [32], but in this the-

sis, we are concerned with the order picking problem of the warehouse. According to

5

Dallari et al. [14], the design of order picking systems depends on several warehous-

ing elements, ranging from products (e.g. number, size, value), customer orders (e.g.

number, size), to design and layout of warehouse areas. In this thesis, our problem

falls under the “picker-to-parts” order picking system which Dallari et al. [14] defined

as a system which involves human pickers moving along the aisles picking products

on foot using carts or riding on specialized vehicles. Pickers can pick a single order

at a time or multiple orders in a batch [14]. Order picking optimization focuses on

minimizing the total order picking time [57]. The time of a single picking tour is

composed of travel time, search time, pick time and set-up time [17].

Figure 2: Typical order picker’s time distribution

Figure 2 shows a typical order picker’s time distribution on average as studied by

Tompkins et al. [52]. Traveling is the most time consuming subtask of order picking.

Pick and search times are often constant irrespective of picking sequence while set-

up time is most often ignored [27]. Hence, we are only left with travel time as the

objective. Moreover, assuming that order pickers travel in constant speed results in

optimization of total travel distance [27, 21].

Order picking problem with the objective of minimizing the total distance has

been studied extensively in literature in different warehouse layouts. Chabot et al.

[11] looked at minimizing the travel time to collect all ordered items distributed in a

warehouse with 3D narrow aisles. In 3D aisles, different products can be placed in

6

front of each other, giving the notion of “depth” for each slot or shelf. The problem

that we consider is a simpler version of this, where each slot corresponds to one

kind of pallet or product. Lu et al. [36] look at a warehouse routing problem with

narrow aisles but can be traversed in both directions. One of the characteristics

of our problem, however, is that the aisles are unidirectional. Mohr [38] studied a

warehouse with multiple zones where the picking policy is manual picker-to-part and

pick by order. The problem that this thesis tackles is also similar to the problem

addressed in this paper in terms of the picking policy being “picker-to-part”. Hassan

and Ferrell [24] introduced the idea of a stackability matrix where the items can be

stacked on top of another during transport and the objective is to determine time

optimal routes for the picker in a manual warehouse. We, however, do not consider

any stackability matrix for our problem. Roodbergen et al. [46] considered routing

and layout issues for parallel aisle warehouses with multiple cross aisles. A cross

aisle is defined as “an aisle which is perpendicular to the storage aisles in which the

products are stored. Its main function is to enable aisle changing” [55]. However, our

warehouse does not contain any cross aisle. Despite these special cases, most order

picking problems in the real world are much more complex as they need to handle

multiple operation specific constraints. One of theses constraints is the presence of

narrow aisles. Narrow aisles allow the maximum utilization of floor space and allow

the picker to pick products from both sides of the aisles [11, 23]. The literature of

warehouse routing can be vast and varied since each warehouse can have specific

constraints that are distinct to that warehouse.

2.2 Warehouse Routing Solving Techniques

Routing policy is concerned with ordering a list of items to be picked that will mini-

mize the travel distance of an order picker [29]. The optimization problem is a variant

of the well-known Traveling Salesman Problem (TSP) [44]. Such cases are usually

solved using meta heuristic algorithms which provide suboptimal solutions. However,

for some warehouse configurations, optimal polynomial-time algorithms do exist, as

proposed by Ratliff and Rosenthal [44].

7

2.2.1 Polynomial-time heuristics

The optimal algorithm presented in Ratliff and Rosenthal [44] is complex and not eas-

ily adaptable to different warehouse layouts [17]. Moreover, the sequences produced

with such algorithms are often not straight-forward and seem illogical to order pick-

ers, who then as a result deviate from the routes calculated [17, 21], thus defeating

the purpose optimizing picking tours. However, to tackle these issues, standardized

routing with various routing strategies is often used in practice [57]. As discussed in

[29], such routing strategies include:

• S-shaped strategy: The order picker traverses an entire aisle containing at least

one item. This results in the order picker changing between entering aisles from

front and back cross aisle.

• Return strategy: The order picker visits an aisle depending on whether there

are pick locations in that aisle or not. He/She enters it from the front cross

aisle and picks the products from the order list in that aisle. After picking

the farthest placed product, he/she returns to the front cross aisle. The return

strategy requires the aisles to be bi-directional.

• Largest Gap strategy: This strategy tries to maximize the distance in the aisle

that is not traversed. A gap is the distance between the start of an aisle and

the first location where an item is located, two adjacent pick locations, and last

pick location and end of the aisle. The order picker returns to the start of the

aisle at the pick location that is part of the largest gap.

The three routing strategies above are depicted in Figure 3. Petersen [43] com-

pared six routing strategies including return, S-shaped and largest gap for different

warehouse layouts [29]. The results as also discussed in [38] showed largest gap and

composite were the best routing strategies that were closest to giving an optimal

solution. However from the above routing strategies, it is seen that both return

and largest gap require the aisles to be bi-directional. Hence, if the aisles are uni-

directional, the S − shaped routing strategy needs to be implemented.

8

Figure 3: Different order picking routing strategies [29]

2.2.2 Mixed Integer Programming Formulations

The MIP formulations used to solve warehouse routing problems are based on clas-

sical formulations, in particular the Traveling Salesman Problem, the Directed Rural

Postman Problem and the Vehicle Routing Problem.

9

Traveling Salesman Problem

The pursuit of finding an optimal or near-optimal order picking route of an order-

picker problem in a typical rectangular warehouse with multiple aisles is classified

as the Steiner Traveling Salesman Problem (STSP) [16, 50]. There are two general

methods to solve the STSP [50]: the first one is to transform a STSP into the classic

TSP by computing the shortest paths between every pair of nodes [16] (this is the

methodology applied in this thesis) and the other is to apply algorithms such as the

polynomial-time heuristic algorithms discussed above.

Goetschalckx and Ratliff [22] proved that the optimal aisle traversal problem can

be modeled and solved as a shortest path problem. Roodbergen and de Koster [46]

developed an algorithm to find the shortest picking tour in a parallel aisle warehouse

with a middle aisle. An exact approach using dynamic programming had been pro-

posed for the first time by Ratliff and Rosenthal in the case of a single cross-aisle

[44]. Cambazard and Catusse developed a dynamic programming approach which is

able to solve any rectilinear TSP [10], but the algorithm is exponential in number of

horizontal lines.

Vehicle Routing Problem

Laporte et al. [34], however, used a VRP model to solve a family of multi-depot

vehicle routing and location-routing problems. The delivery and pick-up problem

is a generalization of the VRP, which is a generalization of the traveling salesman

problem (TSP), the well-known hard combinatorial optimization problem [41]. An-

buudayasankar and Mohandas [2] developed a mixed-integer programming model for

VRP with simultaneous delivery and pick-up with an additional constraint of maxi-

mum route-length.

The capacitated vehicle routing problem (CVRP) is more similar to the problem

tackled in this thesis since it requires the truck to return to the starting point after

having visited a subset of nodes. More recently Chabot et al. [11] described the

Capacitated Narrow Aisle Order Picking Problem (CNA-OPP) and showed how to

10

model it as a VRP. Their work is very similar to the problem addressed in this thesis.

However, the paper does not address the issue of uni-directional aisles.

The formulation followed in this paper is the VRP, hence we introduce a short liter-

ature review for the VRP model in warehouse scenario.

The VRP was originally proposed by Dantzig and Ramser in 1959 [15]. There is a

significant amount of literature regarding the VRP. The standard definition of VRP

is described by Laporte [33] as given in [38]: Let G = (V,A), where V is a set of

vertices, and A is a set of arcs representing the path from one node to another. Dis-

tance, cost or time is typically represented by ci,j. The main objective of the VRP is

to minimize the total distance or time traveled by a set of vehicles while respecting a

set of constraints. VRP constraints are typically of the following nature:

• Each location represented by a vertex, apart from the depot, must be visited at

least once.

• Each trip by a vehicle starts and ends at the depot.

• A set of additional constraints specific to the particular problem.

A comprehensive summary of several basic VRP and their formulations is provided

by Toth and Vigo (2002) [53] which have been summarized further by Mohr [38] as

follows:

• Capacitated VRP (CVRP): This problem is a VRP in which every vehicle has a

capacity. The customers usually represent deliveries or pickups and the demands

are deterministic. If split deliveries are not permitted (as in this thesis), then

the entire demand must be met by one vehicle in order to be eligible to visit

that node.

• VRP with Time Windows (VRPTW): Time windows represent the span of

time during which the order nodes should be visited. The service time at each

customer along with the depot exit time for the vehicle and its traveling time

to the customer is tracked. Early arrival to the customer is allowed, but the

vehicle has to wait before the beginning of its service time.

11

• VRP with backhauls: The problem is structured such that customers are divided

into two parts: those that are visited on the way out from the depot and those

that are visited on the way back to the depot. A constraint is imposed such

that all the outbound customers are visited before visiting any of the inbound

customers.

• VRP with Pickup and Delivery: This type of VRP consists of delivery demands

and pickup quantities at each customer or location.

Directed Rural Postman Problem

The problem of unidirectional aisles was studied by Benavent and Soler [5] when

they introduced a generalization of the Directed Rural Postman Problem (DRPP)

for turns that are forbidden and other turns are allowed but with penalties. More

recently, Colombi and Mansini [12] studied the known mathematical DRPP formula-

tion and added valid inequalities and developed a branch and cut algorithm.

Summary and Justification of the Chosen Representation

As mentioned above, the formulation that we opt for in our problem is the VRP.

This is because TSP requires the vehicle to return to the starting point (depot) after

visiting all the nodes but it only allows the vehicle to make a single return. Hence,

we cannot incorporate the capacity constraint of the problem in capacitated case.

The Uncapacitated case though can be modeled as a TSP. The VRP, however, is

a multiple-route node-service-combination problem with vehicle capacity limitation

that allows the vehicle to make multiple tours with each tour visiting different set of

nodes, which is exactly what we want in our solution.

The DRPP is a specialized form of TSP visiting each route between nodes at least

once while returning to the origin and taking the shortest route among all possible

routes that fulfill this criteria. It requires all edges of a given set of required edges

be visited, not that all vertices be visited. In other words, DRPP tries to find an

Eulerian cycle rather the Hamiltonian cycle. But, the problem in our case focuses on

12

the nodes rather than the edges connecting the nodes. We model the location of the

items as nodes and therefore our focus is on visiting nodes, and not on using specific

arcs. At first glance, it looks like the model should have a node for every location of

every item. This is the approach that was chosen by Bant et al. in [48]. However,

given the size of the warehouse as they found in their work, doing so is going to lead

to a prohibitively large model. Second, we could consider nodes as the start and end

of each aisle and that as long as we visit an edge, we have picked up all the items on

that edge — this will give us the DRPP. Although this DRPP would be able to solve

the uncapacitated case, for the capacitated case again, we are unable to incorporate

the constraint of maximum capacity and hence resort to VRP as choice of our model.

Finally, a modeling approach that overcomes both of the above issues is to model

the locations of items as nodes, and furthermore to have the edges represent the

shortest path between those two locations and solve it by VRP model. The graphical

representation of our problem is discussed in detail in Chapters 3 and 4. We take

motivation from the vehicle flow model of the VRP discussed in the work done by

Toth and Vigo [53] and the VRP model introduced by Achutan and Caccetta [1].

2.2.3 Meta-Heuristic Methods

For large scale instances of any of the formulations above, it is nearly impossible

to solve problems to optimality in reasonable amount of time using exact methods.

Hence researchers turn to meta heuristics that search the solution space much quicker

and more effectively often resulting in near optimal solutions. Vidal et al. [56] pro-

vide a comprehensive overview of many meta heuristics developed throughout the

literature and comparison of their performances for various types of Vehicle Rout-

ing Problem [38]. The meta heuristics were categorized as neighborhood searches,

population-based methods, hybrid and parallel or cooperative [38].

In the neighborhood category there is Simulated Annealing and Tabu Search [38].

Brandao and Mercer [8] uses a tabu search heuristic for a multi-trip VRP with time

windows and a vehicle fleet that is heterogeneous in terms of capacity [38]. Chabot et

al. [11] developed an Adaptive Large Neighborhood Search heuristic to compare the

solution to their CVRP model of the 3D narrow aisle warehouse. Jin et al. [30] ap-

plies a tabu search algorithm for a classical CVRP that is based on the use of several

13

different neighborhood structures and performs parallel search [38]. Nguyen et al.

[42] use tabu search to solve a VRP with time windows in a warehouse featuring one

depot and multiple zones. Wang et al. [20] proposed a Genetic-Ant Colony algorithm

that had good overall search ability for a VRP.

With population-based category, there is Genetic Algorithms (GAs). Mohr [38] ap-

plied and compared genetic algorithm to a capacitated vehicle routing problem in a

warehouse with multiple zones. Baker and Ayechew [4] use genetic algorithm to solve

a basic CVRP considering one depot and deterministic demand but no constraint in

the direction of aisle traversal. Berger and Barkaoui [6] develops a parallel hybrid

GA to solve a VRP where time windows are present [38]. Ursani et al. develop a

novel GA which they separately applied to various independent locations. They called

this Localized Genetic Algorithm and applied it to small scale CVRP [38]. We take

motivation from this paper that a problem can be subdivided into smaller parts and

solved independently. The initial population is generated using a nearest neighbor

algorithm. The next customer visited for each vehicle is assigned based on its current

nearest customer [38]. We adopt a similar idea to our model based on clustering.

2.3 Clustering

The method of dividing a problem into smaller problems and then solving each inde-

pendently has already been applied in literature. Clustering adopts a similar approach

and with the advent of machine learning techniques, this field is of particular interest.

The vehicle routing problem in a warehouse is a pickup problem and one of the most

reasonable improvements for pick up routing optimization is the idea of partitioning

a graph into a subgraph, where a subgraph contains a limited number of untraversed

vertices [49, 31].

The practical application of subgraph partitioning to the pick path problem lies in

the fact that there is no need to take into consideration an area of a warehouse if

no order locations are present in that side of the warehouse. The drawback with the

subgraph concept, however, is that there must be an algorithm run to determine what

subgraph should be looked at and then construct that subgraph [39, 31].

14

Another algorithm to explore that has similar attributes to clustering is Nearest

Neighbor. The Nearest neighbor as discussed in [31] starts at a random point closest

to the current point, until all the points have been visited. This algorithm, however,

cannot guarantee any degree of accuracy as to how close it will be to the optimum

solution [35]. Hence, clustering is considered to be a better alternative as is also seen

in the literature. Clustering can be defined as “an unsupervised learning that divides

data into groups or clusters. Cluster analysis is based on the principle of maximizing

similarity within groups and minimizing between-group similarity” [9]. Clustering

has several applications, mostly in machine learning, but it has also been used in

operations research and routing problems specifically, as shown below.

One method to solve VRP is through hierarchical methods for which different meth-

ods can be applied [9]. Cluster first and then solve the routing problem or tackle the

routing problem first and then the clustering can be given as examples of the hierar-

chical methods [9]. Dondo and Cerdã [18] used a cluster based optimization approach

to solve a multi depot VRPTW with heterogeneous fleet. Hiquebran et al. [28] used

simulated annealing algorithm based on a “cluster first, route second” approach to

solve a VRP. Crainic et al. [13] applied a clustering based heuristic algorithm for two

echelon VRP.

Boyzer et al. [7] developed a heuristic algorithm for the VRP where they first solved

the clustering problem and then the routing problem. For the clustering stage, they

used a fuzzy C-Means method and then used tabu search to improve the routing

routes in the second stage [9]. Moolman et al. [40] implemented the DBSCAN to

incorporate the predictive sharing of a resource which is used to solve the VRP [9].

He et al. [26] presented a balanced K-Means algorithm for partitioning areas in large

scale vehicle routing problem. The traditional K-means was used to partition cus-

tomers into several areas in the first stage and a border adjustment algorithm aims

to adjust the unbalanced areas to be balanced in the second stage. Reed et al. [45]

demonstrated the use of Ant Colony System to solve the capacitated vehicle rout-

ing problem associated with collection of recycling waste from households. K-Means

clustering greatly improves the efficiency of the solution in networks where the nodes

15

are concentrated in separate clusters. More recently, Cömert et al. [9] developed a

two stage hierarchical approach to solve a vehicle routing problem with time win-

dows where they use three different clustering algorithms (i.e., K-Means, K-Medoids

and DBSCAN) in the first stage and in the second stage, MILP is used to solve a

VRPTW.

2.4 Conclusion

Our study is similar to those of Dondo and Cerdã [18], Moolman et al. [40] in

terms of using clustering analysis to solve a capacitated vehicle routing problem. The

first part of our study, i.e., the formulation of the MIP model is derived from the

work done by Achutan and Caccetta [1], Christopher Mohr [38] and Toth and Vigo

[53]. In the second part we develop an S-shaped routing algorithm [29] combined

with a balanced K-Means algorithm of He et al. [26] to solve the vehicle routing

problem. However, neither of these papers address a warehouse facility with narrow,

uni-directional aisles which is what we consider for our problem.

16

Chapter 3

Uncapacitated Problem

In this chapter, we describe and analyse the uncapactitated case of the forklift routing

problem. The chapter is divided as follows. We first define the problem and give the

general description of the uncapacitated case. We then formulate the Mixed Integer

Programming (MIP) model for the problem followed by our designed heuristic. We

then compare the exact and heuristic methods and conclude.

3.1 Problem Statement

The warehouse management receives several orders throughout the course of a par-

ticular time period. Here we define “orders” as a set of products that are present

in specific locations throughout the warehouse for the forklift to travel and pick up.

The forklift can only be said to have completed an order once all the items present

in the set have been picked up and brought to the depot. The problem looks at

picking of an optimum route taken by the forklift in a warehouse when it receives an

order to pick up. In this chapter, we ignore the capacity of a forklift. That means,

a forklift can start its journey, pick up all the products ordered and return to the

depot in a single tour. The goal is to minimize the order picking time, i.e., reducing

travel distance thus reducing travel time and cost. However, designing the route has

substantial obstacles which are described in the following subsections.

17

3.1.1 Warehouse Layout

The layout of the warehouse in context is a typical warehouse with equidistant

shelves/aisles along with gangways/pathways and inbound/outbound area. The ware-

house has a depot or a docking point where the forklift drops off the picked up items.

The warehouse consists of several aisles with slots. The products are placed in these

shelves. The aisles are

• Adjacent to one another

• Equidistant to one another

• Accessible through the gangways on either end of the warehouse

• Very narrow (such that U-turn is restricted) and possess no middle aisles or a

gangway in between

A simple layout of the warehouse is shown in Figure 4.

Figure 4: Simple Warehouse

18

Modelling the warehouse using Graph Theory

Due to the layout described in the previous section, the particular type of graph that

can be used to model it is a lattice graph. Since the aisles are completely straight and

none of the aisles are diagonal, there is a constant gap between each of the aisles, a

lattice graph can be used to represent the layout of the warehouse. A lattice graph,

also known as mesh graph or grid graph can be defined as “a graph, whose graph,

embedded in some Euclidean space Rn, forms a rectangular tiling” [54]. The entrance

and the exit points of each aisle are modelled as nodes whereas the aisles themselves

and the gangways can be modeled as the edges of the graph respectively. This lattice

graph representation of the warehouse is shown in Figure 2. This is the layout and

the graph model that will be referenced to in solving the routing problem.

Figure 5: Lattice model of the warehouse as shown in Figure 4 (with the same set od orders)

As discussed above, the depot is modelled as two nodes of “Start” and “End”

points. The graph has the geometrical property of a rectangular tiling and can hence,

be labelled as a “lattice” graph. The horizontal lines are the gangways with nodes

on them denoting the entry and exit points for the aisles. The marked points can be

considered as the location of items of a random order.

19

3.1.2 Directionality

As mentioned above in section 3.1.1, one of the major difficulties is the fact that the

aisles are very narrow. This narrow gap between the aisles prevents the forklift from

making a U-turn for safety reasons while it is traversing the aisle. Once it has entered

the aisle, it is required to traverse the entire length of the aisle and exit the aisle from

the opposite end. Safety is a major concern in warehouse operations and the Envi-

ronment, Health and Safety (EHS) policy of the company hinders the forklift from

driving in reverse mode while it is inside the aisle. This further forces the forklift to

have to exit the aisle by driving through the entire length of the aisle. The warehouse

management, as a result, has forced the aisles to be unidirectional. Each aisle has a

pre-assigned direction through which the forklift can enter and this direction remains

unchanged for each set of ordered products.

Modeling the directionality

As discussed above, due to safety issues and unique geometry of the aisles, the forklifts

can only travel in only one direction along the aisles. This is modelled by enforcing

uni-directional edges when representing the aisles. The gangways however, can be

traversed along both directions and are thus represented as bi-directional edges. This

is illustrated in Figure 6.

20

Figure 6: Lattice model of the warehouse in Figures 4 and 5 with aisle directions

3.1.3 Assumptions

In this chapter, we work under the assumption that the forklift used has an unlimited

capacity and has the ability to pick up all the ordered items and return to the depot

within the same tour. The following assumptions have also been made which are

essential for solving the optimization problem.

1. The geographical locations of the ordered items are fixed and known.

2. The docking point is modeled as a single node. Realistically, the docking point

is a platform where vehicles can arrive and arrange themselves in a line to unload

the products. Since we are analyzing the case of one vehicle, it would make sense to

model the docking point as a single node.

3. The forklift travels at a constant speed. This assumption also makes sense since

for EHS (Environmental, Health and Safety) issues, a standard warehouse has strict

restrictions on the speed that a forklift can be driven at. Moreover, since the accel-

eration time is negligible, the speed is considered to be uniform.

4. Only single tier aisles are considered. The objective for us is to minimize the

21

total time taken by the forklift to complete a tour and pick up all the products. If

multiple products are at the same location in terms of aisle number and position along

the aisle, but are in different vertical slots in that position,we assume them to be at

the same location. We discuss the possibility of relaxing this assumption in Chapter

5 as part of future work. In this problem, we are not considered with the height of

the storage shelves.

5. When being loaded on the forklift, all items can be stacked on one another and

the weights of the items are not considered while stacking. The problem only looks

at finding an efficient route and we are neither looking at the stackability condition

of items nor are we considering any stackability matrix.We discuss the possibility of

relaxing this assumption in Chapter 5 as part of future work.

Given an order consisting of a set of times that represent how far they are from

the depot and assuming knowledge of the warehouse layout, the goal of the problem

is to find a route that minimizes the total time needed to pick up all the products in

the order after imposing the above assumptions.

3.2 MIP Formulation

The graph used to formulate the problem is the one used in the previous section

(Figure 5). Let G(V) be a directed graph, where V = 1, ..., n is the node set that

represents the items in the order-list or the points where the items are located. The

node set comprises only the location of the items.

3.2.1 Graphical Representation

Before moving on to the MIP model, we describe the mapping of our directed graph

into a simplified version. The simplified version is based on one of the approaches of

Theys et al. [50] of simplifying a problem by computing the shortest paths between

every pair of nodes.

Illustrative Example We take a scenario as shown in Figure 7 where an order

contains 3 items to be picked up (all weights in kg) and the capacity of the forklift is

22

infinite.

Figure 7: An example of a scenario

Figure 7 shows a 5 aisle warehouse with 3 items to be picked up. The individual

weights of the items are redundant in the uncapacitated case as we are assuming

that the forklift has infinite capacity and is capable of picking up all the products

irrespective of their weights. The ci,j parameters represent the shortest distance

between two points. For example, the distance value from “Start” to “Item A” is

given as

cStart,A = (Start,1) + (1,3) + (3,4) + (4,A)

By using arcs to represent the shortest path between two item locations, the above

representation can be simplified into a graph as shown in Figure 8.

23

Figure 8: Simplified model of scenario

To be consistent with the model the “Start” node is replaced by 0 and the “End”

node by N. The nodes A,B,C represent the item nodes. We can see that Node 0

only has leaving arcs and node N only possesses entering arcs signifying that node

0 is only for departure and node N is only for arrival. An item node, however,

possesses both an entering arc and a leaving arc. The arcs themselves represent

the distance between two nodes, ci,j parameter of the MIP model. For example

the arc between node 0 and node A represents the distance between the “Start”

point of the depot and the location of item A, the calculation of which is shown

above. The item nodes A,B,C are interconnected to one another representing that

a forklift can move from one item location to another. We walk through our MIP

model while referring to Figure 8 for explanation in the latter parts of the section.

This method of graphical representation only needs to be carried out once and the

shortest distance of every pair can be stored in a database from which the necessary

values can be extracted according to the order that arrives.

3.2.2 Objective

The objective of the problem is to find an optimal route for a given order. The first

task is to define what we mean by an “optimal” route in this case. The management

24

is always looking to reduce the time it takes to collect all the ordered items and

return to the depot, which is a complete tour. Since one of our assumptions is that

the forklift travels at a uniform speed, minimizing the total distance of a route or

tour is equivalent to minimizing the time taken to complete that tour. Hence, the

objective of the problem is set as minimizing the total distance that the forklift has

to travel in order to pick up all the order items.

3.2.3 Parameters

The parameters are stated below.

• n : The number of items ordered

• V : Node set that represents the ordered items or the points where the items

are located 1, ..., n

• ci,j : The shortest distance between nodes i and j ∈ V

• qi : The weight of a product i

• Qmax : The maximum capacity of a forklift, defined as the limit or the sum of

weights that the forklift can carry in a single tour

• LB : Lower bound on the number of tours that the forklift needs to take to

collect all the items, defined as

LB =
∑
qi

Qmax

The equation above is dividing the sum of weights of all the ordered products

by the capacity of the forklift. For the uncapacitated case, since the maximum

capacity is assumed to be very high, we practically assign LB to be the value

1.

The direction is modeled using ci,j parameter. It should be remembered that

the distance matrix is the array of shortest distances from each point to another.

The cost of traversing an aisle in the reverse direction is assigned as a very large

number in order to take care of the unidirectional characteristic of the problem

25

3.2.4 Decision variables

We define xi,j as the variable to denote whether an aisle is visited or not during the

course of a tour. This is modeled by assigning a binary variable to each aisle, where

the value 1 would denote that the aisle is visited and the value 0 would signify that

the aisle has not been visited:

xi,j =

1 if arc (i, j) is visited

0 otherwise
(1)

The variable yi is assigned at node i to keep track of how many nodes have been

visited by the forklift.This variable allows us to formulate a constraint that ensures

that all ordered items are picked up.

yi = cumulative number of nodes visited at node i.

3.2.5 Model

We base our model on the work done by Achutan and Caccetta [1], Mohr [38] and

the vehicle flow model mentioned by Toth and Vigo [53]. Since we now know the

parameters and decision variables associated with our problem, we can go on to state

the Mixed Integer Programming model. The start point of the depot is represented

by the 0 node whereas the end point is represented by N node.

26

Minimize
∑
i∈V

∑
j∈V

ci,jxi,j (2)

s.t.
∑

i∈V \{j}

xi,j + x0,j = 1 ∀j ∈ V, (3)

∑
j∈V \{i}

xi,j + xi,N = 1 ∀i ∈ V, (4)

∑
j∈V

x0,j = 1 , (5)

∑
i∈V

xi,N = 1 , (6)

yj − yi ≥ (n+ 1)xi,j − n ∀(i, j) ∈ V | i 6= j, (7)

yN ≥ n+ 1 (8)

y0 = 0 (9)

xi,j ∈ {0, 1} ∀(i, j) ∈ V, i = 0, i = N (10)

yi ≥ 0 ∀i ∈ V (11)

The objective function (2) minimizes the total distance traversed by the forklift

to collect all the items. Constraints (3) and (4) impose flow conservation. In other

words, (4) is implying that for all nodes within the set of ordered items, a forklift can

either go to another order point or go to the “End” node, ie, return to the depot.

Similarly, (3) implies that the edges entering any of the order nodes must either come

from the “Start” node or from any of the other order nodes. Constraint (5) states

that forklift can use only one arc for leaving the “Start” node since the number of

tours in this uncapacitated case can only be one. Similarly constraint (6) signifies

that there can be only one node entering the “End” node for the very same reason.

We add constraints (7) to (11) to the model to signify that the forklift has to visit all

the order nodes. (7) makes sure that the cumulative number of nodes is increasing as

the forklift moves through the graph (i.e., the number of visited nodes is increasing).

(8) implies that a forklift can never visit directly from start point to end point, it has

to pass through all order nodes before visiting the “End” node.

In order to better understand our MIP model, we refer back to our Illustrative Ex-

ample and in particular to the simplified graphical representation of Figure 8. The

27

objective function (2) minimizes the total distance traversed by the forklift to collect

all the items. Referring to Figure 8, this is the summation of all the arcs being used

to traverse in order to collect all the items A,B and C. Constraints (3) and (4) impose

flow conservation. Referring to Figure 10 again, if we consider only node A we see that

node A can either be reached from Node 0 or from any of the other item nodes (B and

C). Similarly, any arc leaving out from node A is either directed to the node N or to

any of the other item nodes (B and C). This characteristic is modeled by constraints

(3) and (4). The value of LB in this case is calculated according to the formula for LB.

Since, the maximum capacity (Qmax) is infinity the value for LB is 1, which as we

defined is the lower bound on the number of tours that the forklift needs to take to

collect all the items Hence, (5), in reference to the example of Figure 8, states that

in order to collect all the items (A, B and C) the forklift has to make only one tour

and hence there has to be at least one arc leaving the depot (node 0). Same logic

applies to the “End” node (node N) and hence is represented by (6) stating that

there should be at least one arc entering node N. We now focus on the node visiting

constraints. Constraint (9) states the the cumulative number of nodes visited when

the forklift is at node 0 is 0. This makes sense since we are starting our tour from

node 0, which is the “Start” node and there are no prior nodes where the forklift

has actually visited. Constraint (8) prevents the forklift from directly visiting the

“End” node from the “Start” node. The constraint states that the difference between

cumulative nodes visited at node N and cumulative nodes at node 0 has to be more

than or equal to n+1 number of nodes. Referring to our example, we see that this

constraint translates to the difference between cumulative node at N (yN) and cumu-

lative node at node 0(y0) to be at least 4. In doing so, we ensure that the forklift

will not be visiting the “End” nodes until it has visited all the item nodes (which is

3) plus the node it already started from, i.e, “Start” node thus making the total 4.

If we assume that the forklift is currently in node “A” and we wish to move to node

“B”. Constraint (7) states that while moving between the nodes that contain items

the difference between cumulative node visited of the two respective nodes becomes

at least one. Referring to our example, if we move from node “A” to node “B”, the

variable xA,B becomes 1. This results in the difference between cumulative node at

“A” (yA) and cumulative node at “B” (yB) to take the value of at least 1, implying

28

that the forklift can immediately travel from “A” to “B”.

This is the MIP model for the uncapacitated case that we are going to solve and

will refer to in this chapter.

3.3 Heuristic

The primary goal behind solving this problem is to ensure that the company can find

an optimal route for its forklifts in the shortest possible time. Finding the optimal

route is the objective but the solution also needs to be found in the shortest possible

time. Every second the management spends in finding the optimal route is loss in

profit. The MIP model is very effective in solving for small instances, but for large

instances as we will see further in the Experimental Results section 3.4, the MIP model

takes a long time to solve. Hence, it is paramount that we look for an alternative

in a heuristic approach that is able to provide us with a near to optimal result in a

very quick time. The heuristic developed in this case has several major components

as part of its skeleton. It is explained according to the following stages :

• Preprocessing: described in Section 3.3.1

• Initialization: Section 3.3.2

• Iteration: Section 3.3.3

• Termination: Section 3.3.4

The complete algorithm is presented as pseudocode (Algorithm 1) at the end of

Section 3.3. In Secion 3.4, we will present experimental results comparing the perfor-

mance of MIP and heuristic methods.

3.3.1 Preprocessing

The first stage in solving any problem is to make the problem simplified so that it can

be mathematically computable. The problem in hand is no different case. Several

methods and steps are involved in our preprocessing stage which are discussed below.

It is important to remember the inputs or the parameters that we have on hand once

an order is received. They are, for the reader’s ease of reading, discussed below again.

29

• The uncapacitated case is only considered with the location of the products.

Hence we can ignore the weights of the items and only consider their location.

• Narrow aisles is one of the key obstacles of the problem as previously mentioned

in Chapter 1. Hence when a forklift enters an aisle it has to traverse the entire

aisle. Since there is no restriction on the amount of objects that it can pick up,

it only makes sense for the forklift to pick up all the ordered items in an aisle

once it has entered that particular aisle. Hence, we do not need to focus on the

exact location of the products, but just in which aisle the product is located.

So the entire tuple of information of a product’s weight and location can be

simplified as we just focus on the aisle where it is located.

• All the aisles having one direction are grouped as one set and all the aisles

having opposite direction are grouped as a different set. They are labeled as

“Direction Up order aisles” and “Direction Down order aisles”.

• Another grouped set is created for all the aisles, irrespective of containing orders

or not. These are basically all the aisles divided into two sets of directions. They

are labeled as “Direction Up non-order aisles” and “Direction Down non-order

aisles”.

Algorithm 1 PREPROCESSING{
Order} ← all aisles that contain at least one ordered item{
Up} ← all Up direction aisles with orders{
Down} ← all Down direction aisles with orders{
Non− order Up} ← all Up direction aisles in the layout{
Non− order Down} ← all Down direction aisles in the layout

3.3.2 Initialization

A crucial part of any heuristic is deciding where to start the heuristic from. The

heuristic developed here is no different. When an order arrives, the tour starts from

the “Start” point of the depot. The task of the initialization phase is to decide which

aisle the forklift should go to first in order to begin picking up all the products. The

procedure of making this decision is discussed below.

30

• All the ordered products present in the “Up” direction aisles are considered.

Since we are only interested with the aisles the products are present in, rather

than the exact locations, we only measure the distances from the starting point

of the depot to each of these selected aisles.

• The aisle that results in the largest distance from the depot is chosen. This

concept relates to the fact that we want to start our tour from one end of the

warehouse and then proceed on in such a way that we do not have to return to

pick up an item on that side of the warehouse again.

• Choosing an aisle with “Up” direction makes sense since in order to enter the

lattice network we have to enter it through an “Up” direction aisle. Hence, it

is almost trivial that the best case scenario would be to actually look for those

aisles where an ordered item is actually present so as to minimize the distance

traveled by the forklift

• If there are no “Up” direction aisles with any ordered item present, we then opt

for the farthest “Down” direction aisle containing a product. But in order to

access it, we have to pass through an “Up” directional aisle first. This aisle is

chosen according to the one that is closest to the “Down” direction aisle but

also nearest to the depot.

31

Algorithm 2 INITIALIZATION

Start from “Depot”
if
{
Up} 6= ∅ then
for each a in

{
Up} do

dist[a] ← distance of aisle a from depot

go to a* = farthest aisle
remove aisle from

{
Order}

else
for each a in

{
Down} do

dist[a] ← distance of aisle from depot

auxiliary aisle ← aisle with max
(
dist)

for each element in
{
Non− order Down} do

dist ← distance of aisle from auxiliary aisle

go to a* = nearest aisle
remove aisle a* from

{
Order}

decision aisle ← go to aisle

3.3.3 Iteration

The initialization phase leaves us at the farthest most “Up” direction aisle or the

“Up” direction aisle that is the maximum distance from the depot. This point will

be defined as our “decision point” since it is at this point we will look to traverse

through an opposite direction aisle. The iteration stage is summarized according to

the following steps:

1. The first stage in iteration is to count the number of “Down” direction aisles on

both sides of the decision point. This stage is crucial as it will help us decide

where the forklift should go to next. Once they are counted, we opt for the

direction which contains the least number of “Down” direction aisles. Let this

be assigned as D1. If there is only one direction to traverse, in other words, the

number of “Down” aisles in any one direction is zero, we can skip to Step 2.

2. Once we have the direction to traverse next, we now choose the nearest “Down”

direction aisle. After traversing that aisle, we return to the “static point”,

defined in the previous step again and repeat until all the “Down” direction

aisles in the D1 directions are finished.

3. Now we shift our focus to the D2 direction. We again consider only the “Down”

32

direction aisles. We choose the aisle which is closest to the decision point and

move there. This aisle now becomes our decision point. If there are no “Down”

direction aisles, or in other words, if the “Down” direction aisle set is empty,

we skip to step 5.

4. We then look at the “Up” direction aisles and choose the one that is closest to

the decision point. If there are more orders left to pick up we repeat from step

3 again. If there are no “Up” direction aisles or the “Up” direction set is empty,

we skip to step 6.

5. If no “Down” direction aisles are left, or the “Down” direction set is empty, we

turn our attention to the non-order “Down” direction aisles and choose the one

that is closest and continue with step 4.

6. If no “Up” direction aisles are present, we look at the non-order “Up” direction

aisles and choose the one that is closest. We move repeat with step 3 again.

Basically, this stage is traversing all the aisles that contain the orders by adopting a

strategy where we try to minimize the number of aisles traversed between two aisles

containing one or more ordered items.

33

Algorithm 3 ITERATION{
DL} ← order containing down direction aisles on Left side of decision aisle{
DR} ← order containing down direction aisles on Right side of decision aisle

if |DL| ≤ |DR| then
for each a in

{
DL} do

go to a
remove a from

{
Order}

return to decision aisle
while

{
Order} 6= ∅ do

if
{
Down} 6= ∅ then
for each a in

{
Down} do

dist[a] ← distance from current aisle

go to nearest aisle from current aisle
remove aisle from

{
Order}

else
for each a in

{
Non− order Down} do

dist[a] ← distance from current aisle

go to nearest aisle that is also nearest to depot

if
{
Up} 6= ∅ then
for each a in

{
Up} do

dist[a] ← distance from current aisle

go to nearest aisle
remove aisle from

{
Order}

else
for each element in

{
Non− order Up} do

dist ← distance from current aisle

go to nearest aisle that is also nearest to depot

end while

34

3.3.4 Termination

The iteration stage consisted of repeating the mentioned steps. But, the algorithm

has to terminate at one point. Let us remind ourselves once again that the objective

is to find an optimal route in terms of least time taken to travel in collecting all

the products. Hence the algorithm terminates as soon as all the products have been

collected. After running the iteration stage and collecting all products, the final stage

is to return to the depot.

• If the last product collected was in a “Down” direction aisle, we simply return

to the depot from that specific aisle.

• If the last product collected was in a “Up” direction aisle, we choose the nearest

“Down” directional aisle that is also closest to the depot. Then we return to

the depot.

Algorithm 4 TERMINATION

if direction of current aisle is “Up” then
for each element in

{
Non− order Down} do

dist ← distance from current aisle

go to nearest aisle that is also nearest to depot
return to Depot

else
return to Depot

A complete pseudocode for the algorithm is given on the next page as Algorithm

5.

Algorithm 5 Heuristic for the Uncapacitated Forklift Setting

1: Preprocessing
2: Initialization
3: Iteration
4: Termination

35

MIP model Heuristic

Processor 2.3 GHz 2.3 GHz
RAM 4 GB 4GB

Operating System 64-bit 64-bit
Solver CPLEX 12.7 Python 3.6

Table 1: System Requirements for Uncapacitated Heuristic

3.4 Experimental Results

Both the Mixed Integer Programming model and the Heuristic were implemented for

different scenarios and their results are discussed in this section. We use the following

computer system and software to run our experiments

3.4.1 Experimental Setup

The experiment is set up to test and analyse the results both from the MIP model

and the heuristic. We vary our parameters according to the number of aisles and

number of products. In other words, we run instances for different combinations of

aisles and product numbers. The experimental setup summary is given below.

• The experiment is repeated for a set of aisles. For the purpose of this thesis,

we run experiments of the uncapacitated problem for scenarios of 5, 10, 15, 20

and 30 aisles respectively.

• For each scenario of aisle, we run different instances with number of products

being the variant as 5, 10, 15, 20 and 30 products. Hence each scenario is a

combination of products and aisles, for example, 5 aisles with 5 products, 20

aisles with 15 products, etc. Altogether we run experiments for 25 different

scenarios.

• Each scenario, that is, a combination of number of aisles and number of products

has 50 instances.

• The key metrics that we are interested in finding or will be used to compare the

different scenarios are mean relative error and run time.

Relative Error Relative Error will be used to indicate the optimality gap. The

36

lower the value of the mean error, the closer we are to the optimal result or the

best result. The relative error is calculated according to the following formula.

relative error =
heuristic solution− best solution

best solution
(12)

Runtime The runtime is the total run time of our heuristic or MIP model. It

will give us an idea of how fast our models are. The runtime is measured in

seconds.

Since we are interested to find the optimal route but also want it to find it in

the quickest time possible, it justifies to use relative error and runtime as our

comparison indicators.

3.4.2 Results and Discussions

We now look at the results according to the setup described in the previous section.

Mean Relative Error

The mean error of each instance is calculated according to the formula described

before and the results are plotted below.

As we can see, each of the plots represent a warehouse with a fixed number of

aisles. For example, plot (b) shows the scenario of a ten-aisle warehouse where we

run instances for five product, ten products, etc.

• For each graph, we see that the general trend is that the mean error decreases

as we increase the number of products. This implies that our heuristic is per-

forming better as we are increasing the number of products in a fixed scenario

of aisle number. This is because, since the instances are randomly generated,

as we increase the product numbers they are more likely to be distributed uni-

formly covering a greater range of aisles than for smaller number of product.

For example, consider a scenario of 5 aisles. As we increase the number of

products, there is an increasing probability that the products are distributed

in the same set of aisles and since for the algorithm of the uncapacitated case,

we are only interested in knowing in which aisles the products are located, the

algorithm ends up solving a simplified scenario and gives efficient results.

37

• The next point to note is the change in standard deviation. We run each

scenario for 50 instances. We see from the figures that the standard deviation

too decreases with increasing number of products. This too is due to the fact

explained above. As the number of products keep on getting significantly larger

compared to the number of aisles, we end up with instances where we have to

traverse the same set of aisles due to random uniform distribution.

(a) Error trend for 5 aisles (b) Error trend for 10 aisles

(c) Error trend for 15 aisles (d) Error trend for 20 aisles

(e) Error trend for 30 aisles

Figure 9: Mean Error for different scenarios with minimum and maximum values

38

Run Time

The next parameter we compare is the runtime. This is an important factor to our

model since the the current system is slow and it requires a very long time to obtain

the best result. The plots for the runtime are shown in Figure 8. There are several

points to be noted about the results.

• Looking at the MIP model curve we see that as we increase the number of

products in a scenario the run time increases. This makes sense since a higher

number of products implies bigger network/route to cover and hence more com-

putation by the MIP model and hence a greater runtime.

• The standard deviation of mean runtime also increases with the number of

products in a scenario. This signifies that a scenario with higher number of

products has more variation in its runtime than a scenario with fewer products.

The reason for this is, for example, in a scenario with 30 aisles and 30 products

the MIP model has a much larger number of branches to explore in a branch

and cut algorithm. In some instances, it reaches optimality fairly quickly but

in other instances the time can be significantly large.

• It should be noted that the heuristic algorithm is faster than the MIP model

in literally all of the scenarios. Furthermore, the runtime of the heuristic stays

pretty much constant compared to the MIP model, which increases significantly

for larger scenarios in terms of products and aisles.

• Figure (f) perfectly depicts the relative speed of the heuristic algorithm. We can

see that for smaller instance scenarios, the MIP model and heuristic algorithm

are very close in terms of runtime. However, for large instances (e.g, 30 aisles

and 30 products), the mean runtime for trip significantly increases where as the

heuristic runtime is almost always the same.

39

(a) Runtime (seconds) for 5 aisles (b) Runtime (seconds) for 10 aisles

(c) Runtime (seconds) for 15 aisles (d) Runtime (seconds) for 20 aisles

(e) Runtime (seconds) for 30 aisles (f) Runtime (seconds)

Figure 10: Variation of runtime (seconds) for different scenarios.

40

3.5 Conclusion

This section has dealt with the uncapacitated case of the forklift routing problem. We

developed a Mixed Integer Programming model and a Heuristic model. The heuristic

was developed primarily to overcome the time complexity of scenarios with large

number of aisles and products. We used mean error and runtime as our performance

indicators for both MIP and heuristic. From the set of experiments performed, we

saw that the heuristic developed was always faster in terms of runtime and the error

only slightly changes with complex scenarios. Hence, based on the results obtained,

it is safe to conclude that the heuristic is a very good alternative to the MIP model

when the MIP model gets to very large scenarios and takes significant time to reach

optimality.

41

Chapter 4

Capacitated Problem

In this chapter, we describe and analyse the capaciated case of the forklift routing

problem. The chapter is divided as follows. We first define the problem and give

the general description of the capacitated case. We then formulate the Mixed Integer

Programming (MIP) model for the problem based on the work done by Christopher

Mohr [38] and Achutan and Caccetta [1] followed by our designed heuristic based on

a clustering technique. We then compare the exact and heuristic methods and finish

off with conclusion and discussion.

4.1 Problem Statement

In this chapter, we extend the problem in Chapter 3 by assuming that the forklift

has a finite capacity. Every time the capacity is reached the forklift needs to return

to the depot, drop off the items and start its journey again to collect the remaining

items until all the items have been collected and returned to the depot. The layout

of the warehouse, the model used to define the layout and all other directionality

constraints remain the same as in Section 3.1.

4.1.1 Assumptions

In this chapter, we relax the assumption that we had imposed in the previous chapter

stating that the forklift had infinite capacity and had the ability to pick up all the

items within the same tour. Instead, we now assume that the forklift has a specific

maximum capacity beyond which it cannot sustain the load. Whenever this load is

42

reached, it has to return to the depot and drop off the collected items. The remain-

ing assumptions are same as they were in the previous chapter, but they are restated

below for easier reference.

1. The geographical locations of the items ordered are fixed and known.

2. The docking point is modeled as a single node. Realistically, the docking point

is a platform where vehicles can arrive and arrange themselves in a line to unload

the products. Since we are analyzing the case of one vehicle, it would make sense to

model the docking point as a single node.

3. The forklift travels at a constant speed. This assumption also makes sense since

for EHS (Environmental, Health and Safety) issues, a standard warehouse has strict

restrictions on the speed that a forklift can be driven at. Moreover, since the accel-

eration time is negligible, the speed is considered to be uniform.

4. Only single tier aisles are considered. The objective for us is to minimize the

total time taken by the forklift to pick up all the products. If multiple products are

at the same location in terms of aisle number and position along the aisle, but are in

different vertical slots in that position, we assume them to be at the same location.

We discuss the possibility of relaxing this assumption in Chapter 5 as part of future

work. In this problem, we do not consider the height of the storage shelves.

5. When being loaded onto the forklift, all items can be stacked on one another

and the weights of the items are not considered while stacking. The problem only

looks at finding an efficient route and we are neither looking at the stackability condi-

tion of items nor are we considering any stackability matrix. We discuss the possibility

of relaxing this assumption in Chapter 5 as part of future work.

Given an order consisting of a set of items and assuming knowledge of the ware-

house layout, the goal of the problem is to find a route that minimizes the total time

needed to pick up all the items in the order after imposing the above assumptions.

43

4.2 MIP Formulation

Let G(V) be a directed graph, where V = 1, ..., n is the node set that represents the

ordered items or, equivalently, the points where the items are located.

4.2.1 Graphical Representation

Before moving on to the MIP model, we describe the mapping of our directed graph

into a simplified version.

Illustrative Example We take a scenario as shown in Figure 11 where an order

contains 3 items to be picked up (all weights in kg) and the capacity of the forklift is

15 kg.

Figure 11: An example of a scenario

Figure 11 shows a 5 aisle warehouse with 3 items to be picked up. The individual

weights of the items are given beside each product.The ci,j parameters are represented

as the shortest distance between two points. For example, the distance value from

“Start” to “Item A” is given as

cStart,A = (Start,1) + (1,3) + (3,4) + (4,A)

The above representation can be simplified into a graph as shown in Figure 12.

44

Figure 12: Simplified model of scenario

To be consistent with the model the “Start” node is replaced by 0 and the “End”

node by N. The nodes A,B,C represent the item nodes. We can see that Node 0

only has leaving arcs and node N only possesses entering arcs signifying that node

0 is only for departure and node N is only for arrival. An item node, however,

possesses both an entering arc and a leaving arc. The arcs themselves represent

the distance between two nodes, ci,j parameter of the MIP model. For example

the arc between node 0 and node A represents the distance between the “Start”

point of the depot and the location of item A, the calculation of which is shown

above. The item nodes A,B,C are interconnected to one another representing that

a forklift can move from one item location to another. We walk through our MIP

model while referring to Figure 12 for explanation in the latter parts of the section.

As mentioned in previous chapter, this calculation for the representation only needs

to be carried out once and stored in a database from which the necessary distance

value can be extracted according to the order. Hence, this step has minimal effect in

the processing time of the model.

45

4.2.2 Objective

The objective of the problem is to find an optimal route for a forklift picking up all

the required items. The first task is to define what we mean by an “optimal” route

in this case. As for any warehouse, the management is always looking to reduce the

time it takes to pick up all the items and return to the depot, which can be defined

as a complete tour. However, since the forklift has capacity, if the summation of the

weights of the items exceeds the capacity, the forklift has to make more than one

tour. In this case, we are looking to minimize the total time taken by the forklift to

complete all the tours and pick up all of the products that are ordered. Since one of

our assumptions is that the forklift travels at a uniform speed, minimizing the total

distance of a tour is equivalent to minimizing the time taken to complete that tour.

Hence, the objective of the problem is set as minimizing the total distance that the

forklift has to take in order to pick up all the items.

4.2.3 Parameters

The parameters are stated below.

• n : The number of items ordered

• V : Node set that represents the ordered items or the points where the items

are located {1, ..., n}

• ci,j : The shortest distance between nodes i and j ∈ V

• qi : The weight of a product i

• Qmax : The maximum capacity of a forklift, defined as the sum of weights that

the forklift can carry in a single tour

• LB : Lower bound on the number of tours that the forklift needs to take to

collect all the items, defined as

LB =
⌈ ∑

qi
Qmax

⌉
The equation above is dividing the sum of weights of all the items by the capacity

of the forklift.

46

4.2.4 Decision variables

A very important decision variable that directly affects our objective is the decision

whether an aisle is visited or not during the course of a tour. This decision can be

modeled by assigning a binary variable to each aisle, where the value 1 would denote

that the aisle is visited and the value 0 would signify that the aisle is not visited.

xi,j =

1 if arc (i, j) is visited

0 otherwise
(13)

The variable ui is assigned at node to keep track of how much weight has been

collected by the forklift as well as how much weight remains to be collected. When

the forklift arrives at a node where an order is present, it has to make a decision

whether to pick up the item or not depending on the remaining capacity. This deci-

sion is made by this variable which determines the entering weight of the forklift at

every node:

ui = weight of forklift on entering node i.

4.2.5 Model

Since we now know the parameters and decision variables associated with our problem,

we can go on to state the Mixed Integer Programming model below via expressions

(13) to (21). The start point of the depot is represented by the node 0 and the end

point is represented by node N .

47

Minimize
∑
i∈V

∑
j∈V

ci,jxi,j (14)

s.t.
∑

i∈V \{j}

xi,j + x0,j = 1 ∀j ∈ V, (15)

∑
j∈V \{i}

xi,j + xi,N = 1 ∀i ∈ V, (16)

∑
j∈V

x0,j ≥ LB , (17)

∑
i∈V

xi,N ≥ LB , (18)∑
j∈V

x0,j =
∑
i∈V

xi,N , (19)

ui − uj +Qmaxxi,j ≤ Qmax − qixi,j 0 ≤ i 6= j ≤ N, (20)

u0 = 0 (21)

ui ≤ Qmax ∀i ∈ V, i = 0, i = N (22)

ui ≥ 0 ∀i ∈ V (23)

xi,j ∈ {0, 1} ∀(i, j) ∈ V, i = 0, i = N (24)

(25)

The objective function (14) minimizes the total distance traversed by the forklift

to collect all the items. Constraints (15) and (16) impose flow conservation. In other

words, (16) is implying that for all nodes, a forklift can either go to another node that

represents an item to be picked up or go to the “End” node, i.e., return to the depot.

Similarly, (15) implies that the arcs entering any of the nodes representing an item to

be picked has to be coming from another such node or the “Start” node. Constraint

(17) states that there has to be at least “LB” arcs leaving the “Start” node since the

lower bound on the number of tours was found to be LB. Similarly constraint (18)

signifies that there can be at least LB arcs entering the “End” node for the very same

reason. Constraint (19) ensures that the number of arcs leaving the “Start” point

and entering the “End point” are the same, thus ensuring that all tours start and

end at the same point. Constraints (20) is the subtour breaking constraint wihich

also represents the capacity constraint. (21) initializes the weight of the forklift at

“Start” node to be zero since there is no item present there. Constraint (22) provides

48

an upper bound for the weight of the forklift at a particular node to be the maximum

capacity of the forklift. (23) and (24) are the non-negativity and binary constraints

respectively.

In order to better understand our MIP model, we refer back to our Illustrative Ex-

ample and in particular to the simplified graphical representation of Figure 12. Let

us assume that the capacity of the forklift is 15kg. The objective function (14) min-

imizes the total distance traversed by the forklift to collect all the items. Referring

to Figure 11, this is the summation of all the arcs being used to traverse in order to

collect all the items A,B and C. Constraints (15) and (16) impose flow conservation.

Referring to Figure 11 again, if we consider only node A we see that node A can either

be reached from Node 0 or from any of the other item nodes (B and C). Similarly,

any arc leaving out from node A is either directed to the node N or to any of the

other item nodes (B and C). This characteristic is modeled by constraints (15) and

(16). The value of LB in this case is calculated according to the formula for LB.

LB =
⌈ ∑

qi
Qmax

⌉
= d(10 + 15 + 5)/15e = 2

The value for LB, in this example, comes out to be 2 which as we defined is the lower

bound on the number of tours that the forklift needs to take to collect all the items

Hence, (17), in reference to the example of Figure 11, states that in order to collect

all the items (A, B and C) the forklift has to make at least two tours and hence there

has to be at least two arcs leaving the depot (node 0). Same logic applies to the

“End” node (node N) and hence is represented by (18) stating that there should be

at least two arcs entering node N. We now focus on the capacity constraint (20). This

constraint also acts as a subtour elimination constraint. We defined our ui variables

to be the weight of the forklift on entering node i. Hence, the weight at the very be-

ginning of each tour, i.e., at node 0 will always be zero. This is modeled by constraint

(21). In order to understand (20), let us analyse two solutions. We first analyse to

see how the constraint is eliminating subtour. Suppose, there lies a solution with a

subtour where we get the tours to be the following:

tour 1: “Start” - A - B - End

tour 2: B - C - B

tour 3: “Start - C - End

49

The second tour cannot be part of a feasible solution because it is a subtour. How-

ever, the constraint (20) ensure to remove such cases. If such a solution did exist,

(20) would generate the following equations:

For tour 1:

uStart - uA + 15*1 ≤ 15

uA - uB + 15*1 ≤ 5

uB - uEnd = 15 ≤ 0

Adding the above constraints gives

uStart - uRnd + 45 ≤ 20

For tour 2:

uB - uC + 15*1 ≤ 0

uC - uB + 15*1 ≤ 10

Ading the above constraints gives

30 ≤ 10

Hence we see that there can never be any values of uB and uC for which the above

equation will hold true. Hence, this set of tour is not possible and hence violates

the constraint. Thus, such a tour is eliminated. In this way, (20) ensures that all

subtours are eliminated.

Now, let us see how the equation takes care of capacity constraints. Once again,

let us consider an imaginary solution with the following tours:

tour 1: Start - A - B - End

tour 2: Start - C - End

There are no subtours in this solution but as we can see tour 1 will return to

the depot with a total weight of the forklift being 25 kg whereas the capacity of the

forklift is 15 kg. Hence, this is clearly not a feasible solution. Let us analyse how (20)

ensures to eliminate such cases.

50

If tour 1 exists, all the corresponding xi,j values will take the value 1. If that is

the case, then the following sets of constraints will be generated for tour one where

xi,j=1.

uStart - uA + 15 ≤ 15

uA - uB + 15 ≤ 5

uB - uEnd + 15 ≤ 0

Adding the above wo constraints gives

uStart - uE + 45 ≤ 20

which simplifies to

uEnd ≥ uStart + 25

This cannot be possible since this will be violating constraint (22) which states that

the maximum value of ui at any node is Qmax. Hence, it shows that such a tour is not

possible. This is how the constraint removes any such tour and keeps the capacity of

the forklift in check.

We now analyse the constraint (20) further to see its validity. Once again the

constraint is written as

ui - uj + Qmaxxi,j ≤ Qmax - qixi,j

When xi,j = 1, the equation reduces to

ui - uj + Qmax ≤ Qmax - qi

ui - uj ≤ - qi

uj ≥ ui + qi

The above equation means that the weight of the forklift when it enters node j

from node i has to be greater than the summation of its weight at node i and the

weight of the product it is supposed to pick up at node i. This makes perfect sense,

and hence the constraint is valid and consitent with real-life scenario. Now let us take

xi,j = 0. We get the following reduced constraint

ui - uj ≤ Qmax

uj ≥ ui - Qmax

51

This constraint is also valid since we know that all ui are non-negative variables

and since ui cannot be more than Qmax, the constraint is satisfied.

Since all constraints are now explained and valid, this is the MIP model that we

are going to implement for our problem.

52

4.3 Heuristic

The primary goal behind solving this problem is to ensure that the company can find

a near to optimal route for its forklifts in the shortest possible time. Every second the

management spends in finding the optimal route is loss in profit due to time wasted.

The MIP model can be very effective in solving for small instances, but for large

instances, just as was the case for the uncapacitated problem, the MIP model can

take a long time to solve. Hence, it is of paramount importance to develop a heuristic

approach that would be able to provide us with a near to optimal result quickly. The

heuristic developed in this case has the following major components.

• Clustering: described in Section 4.3.1

• Choosing the best cluster: Section 4.3.2

• Modifying the cluster: Section 4.3.3

The complete algorithm is presented as pseudocode at the end of Section 4.3.3. In

Secion 4.4, we will present experimental results comparing the performance of MIP

and heuristic methods.

4.3.1 Clustering

Due to the constraint of forklift capacity, it may not be possible to pick up all the

products in a single tour.Thus, deciding which products to pick up on single tour is a

major challenging feature of the capacitated problem. One way to do this would be

by exhaustive search, ie checking the combination of all the n products in the order.

A major drawback of this method is that as n increases, the number of combinations

would increase significantly, and thus increasing the processing time. To overcome

this drawback, we use a clustering algorithm based on the location of the products in

the warehouse. The clustering algorithm applied is a variant of the popular K-means

algorithm [47]. The following sections describe the features, their design and the steps

for the K-means clustering method.

Why K-Means Clustering?

We assume that in order for a tour to be optimal the best case is that items are

near to one another, but also their total weight does not exceed the capacity of the

53

forklift. It only makes sense for the forklift to look to fill up its capacity as much as

possible with products that are geographically located near to one another in order

for it to travel the least distance. In order to make clusters of such products, we de-

cided to implement a clustering algorithm. In machine learning literature, a problem

can fall under three broad categories- supervised learning, unsupervised learning and

reinforcement learning [37]. The description of the three categories are too broad to

discuss and beyond the scope of this dissertation. However, the problem that we are

concerned with falls under the category of unsupervised learning. Broadly unsuper-

vised learning is “a branch of machine learning that learns from test data that has

not been labeled, classified or categorized [25]. For our problem, we do not have any

prior knowledge as to which product should be collected in which tour. The only

knowledge we do possess is a lower bound on the number of tours necessary to collect

all the products.

There are many techniques in unsupervised learning literature for clustering. We

choose the K-Means algorithm for the following reasons:

• The K-Means algorithm is easy and simple to implement. We are only using

the K-Means as an initial starting point for our cluster of products. Most other

sophisticated algorithms are much harder to implement efficiently and have

many more parameters to set.

• The time complexity of K-Means makes it a great method to use in this case.

One of the prime criterias of our heuristic is time and the K-Means is pretty

fast compared to other clustering techniques. The time complexity of K-Means

is O(knm) where k is the number of centers, n is the datapoints and m is the

dimensionality of data [47]. All these will be further discussed in this chapter.

• It uses random re-starts to get better local optimum.Hence, there is lower prob-

ability to get stuck in a local minima/maxima.

54

Feature Design

For any unsupervised learning algorithm, it is important to design a good feature set.

For our problem, the features are chosen to be the shortest distance between each

pair of items. The clusters formed by our heuristic will be the starting point for our

routing heuristic. An ideal cluster of products should be in minimum geographical

proximity to one another as well as the sum of all the products in the cluster is to

be within the maximum capacity of the forklift. In order to have nearby items in

the same cluster, we find the distance between every pair of products in the order. If

we have n products in the order, the shortest distance between every pair of items is

calculated and recorded as a matrix below where di,j is the shortest distance between

product i and product j.
d11 d12 d13 . . . d1n

d21 d22 d23 . . . d2n
...

...
...

. . .
...

dn1 dn2 dn3 . . . dnn

At this stage, we have considered only the distances between the products. This

form of the matrix can result in two very heavy products to be in the same cluster.

This situation is undesirable if the summation of the two weights exceed the maxi-

mum capacity of the forklift. Hence, in order to avoid such situations the matrix is

modified. If the summation of the weights of the two products exceeds the maximum

capacity of the forklift, the distance between the two products is multiplied by a large

number, M . This results in the two products to be placed far apart in the Euclidean

space and when K-Means is run, these items will likely be in separate clusters which

is desirable. For instance, if product 1 and product 2 have weights whose summation

exceed the maximum capacity of the forklift, the matrix would look like the following
d11 d12 ∗M d13 . . . d1n

d21 ∗M d22 d23 . . . d2n
...

...
...

. . .
...

dn1 dn2 dn3 . . . dnn

55

This is the feature matrix that is used to run the K-Means algorithm.

Algorithm 6 FEATURE DESIGN

n ← number of products ordered
products ordered ←

{
p1, p2, . . . , pn}

for each item i in products ordered do
for each item j in products ordered do

distance ← shortest distance(i, j)
if distance > Qmax then

feature value ← distance × M
else

feature value ← distance

K-Means Algorithm

The K-Means algorithm uses iterative refinement to produce a final result. The

algorithm inputs are the number of clusters K and the data set, which in this case

is the feature matrix above. The algorithm starts with initial estimates for the K

centroids, which can either be randomly generated or randomly selected from the

data set. The algorithm then iterates over two steps [47]:

1. Data assignment step: Each centroid defines one of the clusters. In this step,

each data point is assigned to its nearest centroid, based on the squared Eu-

clidean distance. More formally, if ci is the collection of centroids in set Ci then

each data point p is assigned to a cluster based on

arg max
ciεC

dist(ci, p)
2

where dist() is the standard (L2) Euclidean distance. Let the set of data point

assignments for each ith cluster centroid be Si.

2. Centroid update step: In this step, the centroids are recomputed. This is done

by taking the mean of all data points assigned to that centroid’s cluster.

ci =
1

|Si|
∑
piεSi

pi

56

The algorithm iterates between steps one and two until a stopping criteria is met

(i.e, no data points change clusters, the sum of the distance is minimized, or some

maximum number of iterations is reached).

K-Means Pseudo code

The K-Means clustering algorithm [47] used is summarized in the form of pseudo code

below: χ : Set of points p {p1, p2, . . . , pk}
Input: Data points D, number of clusters k

Step 1: Arbitrarily choose an initial k centers ζ = {c1, c2, . . . , ck}
Step 2: For each i ε {1, . . . , k}, set the cluster Ci to be the set of points in χ that

are closer to ci than they are to cj for all j 6= i

Step 3: For each i ε {1, . . . , k}, set ci to be the center of mass of all points in Ci: ci

= 1
|Ci|
∑

pεCi
p

Step 4: Repeat Steps 2 and 3 until ζ no longer changes.

Output: Data points with cluster members.

It is standard practice to choose the initial centers uniformly at random from χ

[47]. For Step 2, ties may be broken arbitrarily.

Determining the value of K

The algorithm described above finds the clusters and data set labels for a particular

pre-chosen K. The parameter K in K-Means clustering denotes the number of clusters

that the data will be divided into. It is a parameter that needs to be set before the

algorithm is started. In general, there is no method to determine the exact value of

K but in the case of our problem, K can be the number of tours that need to be

made by the forklift to collect all the items ordered.

Since the capacity of forklift and the total weight of all the ordered items are

known, the number of tours can be easily found. We are concerned with finding the

combination of products that need to be collected in each tour. In other words, each

tour consists of a cluster of products that are to be collected. Hence we approximate

the number of clusters, K.

57

Optimizing centroid initialization

As mentioned in the pseudo code, the first step in K-Means is the random initial-

ization of K centroids. This stage is crucial for the clustering in our application,

since product being assigned to one cluster or the other could greatly affect the final

heuristic solution. Although K-Means offers no accuracy guarantees, its simplicity

and speed are very appealing in practice. However, optimizing the initialization of

k centroids would give us a better chance to end up with good clusters. But, it is

also important that this optimization phase be quick. Therefore, we use a variant of

K-Means known as K-Means++, an O(log k)-competitive algorithm which augments

K-means with a randomized seeding technique [3]. It is known that this augmenta-

tion improves both the speed and the accuracy of K-Means, often quite dramatically.

K-Means++ is a specific way of choosing centers for the K-Means algorithm. In par-

ticular, let S(x) denote the shortest distance from a data point to the closest cluster

center we have already chosen. Then, K-Means++ can be summarized as the follow-

ing pseudo code.

Step 1: Initialization of k centroids

• 1a. Take one center c1, chosen uniformly at random from χ

• 1b. Take a new center ci, choosing x ε χ with probability

S(x)2∑
xεχ S(x)2

• 1c. Repeat Step 1b. until we have taken k centers altogether

Step 2 to Step 4: Proceed as with the standard K-Means algorithm

4.3.2 Choosing the best cluster

In the clustering phase, we apply the K-Means algorithm to separate the products

into clusters based on their geographical locations and weight. Once this phase is

done, we are left with k clusters of products. However, since each cluster rep-

resents a tour, the forklift can only visit one cluster at a time. Hence, we need

to select one cluster for the forklift to visit. This selection is done in this step.

58

The first task is to define what we actually mean by a “good” cluster. Ideally, we

want to collect as many product as possible into the forklift, respecting its capacity,

but we also want the products to be close to one another since our final objective is

to obtain the minimum distance needed to travel. Hence we define a ratio called the

compactness ratio of a cluster as the ratio between distance traveled to collect all the

products in a cluster and the total weight of all the products in that cluster.

compactness ratioclusterk =
total distance travelled in cluster k

total weight of cluster k

The compactness ratio is a measure of the distance required to collect per unit weight

of product. The lower this ratio, the better the cluster since it signifies that products

whose collective weight is large are geographically located close to one another and

can be collected in the same tour. So this step of the heuristic involves finding the

compactness ratio for each cluster and then selecting the “best” cluster which has the

lowest compactness ratio.

Estimating the total distance

As described above, in order to find out the compactness ratio of a cluster we need the

total distance traveled by the forklift to collect all the products in that cluster. This

distance is a rough estimate since we are only interested with the comparative value

rather than the exact value. At this stage, we are only interested in identifying the

“best” cluster more than anything else. We assume that we will reach the same con-

clusion in the compactness ration whether we use the exact distance or the estimated

distance. Hence, for ease of calculation we opt to use the estimated distance.

• The first step involves finding the number of aisles in the clusters containing

products with “Up” and “Down” directions respectively.

• The total weight of the products in the cluster is then found along with the

number of tours required to collect all the products in this cluster. This is given

the name of “capacity tour” since it gives an upper bound of the number of

tours needed to fill the forklift to its maximum capacity.

capacity tour =

⌈∑
wi

Qmax

⌉
59

qi = weight of product i

• Every time the forklift traverses an “Up” aisle, it has to traverse a corresponding

“Down” aisle. We call this combination of “Up” and ”Down” aisles a cycle. If

the difference between the number of “Up” aisles and “Down” aisles is greater

than two, “cycle” is assigned as the minimum count of “Up” and “Down” aisles.

Otherwise, it is assigned as the maximum value between the two.

• The difference between the “capacity tours” and “cycles” is then evaluated.

|U |: number of “Up” direction aisles in the cluster

|D|: number of “Down” direction aisles in the cluster

1: |U | ← number of “Up” direction aisles
2: |D| ← number of “Down” direction aisles
3: if |U −D| > 2 then
4: cycles ← min {U, D}
5: else
6: cycles ← max {U, D}

The algorithm for choosing the best cluster is

Parameters

L = length of an aisle

h = distance between two aisles

60

Algorithm 7 Summary of Choosing Best Cluster

1: procedure Choose best cluster
2: cluster weight ← sum of all products in cluster (

∑
wi)

3: up count ←
∣∣{U}∣∣

4: down count ←
∣∣{D}∣∣

5: capacity tour ←
⌈∑

wi

Qmax

⌉
6: if |up count− down count| > 2 then
7: cycles ← min {up count, down count}
8: else
9: cycles ← max {up count, down count}

10: difference ← capacity tour - cycles
11: if difference > 0 then
12: distance inside cluster ← (2L+2h)×difference + 2L×cycles +

(max(aisles present)−min(aisles present))×h×2
13: else
14: distance inside cluster ← 2L×cycles + (max(aisles present) −

min(aisles present))×h×2

15: total distance ← distance inside cluster + (depot to cluster +
cluster to depot)×capacity tour

16: ratio ← total distance
cluster weight

17: best cluster ← cluster with min(ratio)
18: for each item in best cluster do item weight ← weight of item

19: cluster weight ←
∑

(item weights)

At the end of this stage, we are left with one cluster that, according to our

definition of compactness ratio, is the best cluster to visit. However, it is possible for

the cluster to have a total weight that exceeds the maximum capacity of the forklift.

Hence, such a cluster might need to be modified in order for the total weight to be

within the capacity of the forklift.

4.3.3 Modifying the cluster

This stage will be carried out only if the total weight of a cluster found in the previous

step of the algorithm exceeds the capacity of the forklift. The goal in this case is to

bring down the total weight below the capacity so that the forklift can collect all the

products within the cluster.

The modification stage involves removing products from the cluster until the ag-

gregate weight of the cluster falls below the maximum capacity. But, there are certain

61

constraints. While removing the products, we have to be careful that we do not re-

move too many products so as to make the cluster contain too few products, which

otherwise would contradict the original purpose of forming the cluster. Furthmore,

we need to ensure that subsequent clusters that are formed would also be “good”.

The process of “product drop” selection is depicted below.

Figure 13: Cluster modification

Figure 13 shows an instance where we have two clusters. Assume that cluster

1 is the cluster that has been found to be the “best cluster” after the compactness

ratio comparison. But, having calculated the aggregate weight of the products inside

the cluster, it is found that cluster 1 exceeds the maximum capacity of the forklift.

In such a case, we need to remove products from the cluster in order to make its

aggregate weight feasible.

It is important to remember that our final objective is to minimize the total

distance traveled by the forklift to collect all the products in the order set. To

achieve this objective, it is important not only to have a good cluster at the current

iteration, but also to ensure that the clustering phase in the next iteration has a “well

structured” scenario. For example, according to figure 9, if we are dropping products

form cluster 1 it is best to remove the products from the aisle that is closest to the

adjacent cluster. In this case, cluster 2 consists of aisles 7, 8, 9 and cluster 1 consists

of aisles 2, 3, 4 that have distances of x1, x2 and x3 respectively where we can see that

x1 is the smallest of the three. Hence, we will prioritize the removal of products from

the aisles according to this distance. On the other hand, if we had removed a product

from the aisle 2 having the largest distance x3, the products left for clustering in the

62

next iteration would be widespread and we would end up having clusters where we

had to travel greater distances. Hence by removing product(s) from the aisle 4, we

ensure that product(s) left for next clustering phase are close to one another to avoid

having to travel large distances.

A pseudo code of this step is given below.

Algorithm 8 Summary of Modifying a Cluster

1: procedure Modify Cluster
2: aisles here ← aisles in cluster containing products
3: other aisles ← aisles outside cluster containing products
4: extreme aisles ← two corner aisles in cluster
5: for each element in extreme aisles do
6: for each aisle in other asiles do
7: distance ← distance between element and aisle
8: choose min(distances)
9: chosen aisle ← extreme aisle with min(distances)

10: n ← number of items in chosen aisle
11: for each item in choses aisle do
12: item weight ← weight of item

13: S ← set of item weights
14: combinations ←

(
S
n

)
15: for each combination in combinations do
16: combination weight ←

∑
(weights in combination)

17: cluster weight ← Qmax − combination weights
18: for each cluster weight in cluster weights do
19: if cluster weight ≤ Q then
20: consider cluster weight

21: choose max(cluster weights)
22: remove item from extreme asile not in combination
23: return reduced cluster

Once a “good” cluster has been obtained based on the criteria discussed above

we can then implement the “Uncapacitated problem” heuristic developed in chapter

3 on the cluster. The idea is to solve each cluster as an uncapacitated problem. This

is because as long as the sum of the weights of the products in the cluster is less

than or equal to the maximum capacity of the forklift, it is as if we are solving an

uncapacitated instance of the problem.

63

Algorithm 9 Call Uncapacitated Heuristic

1: tour distance ← uncapacitated heuristic(best cluster)
2: for each item in best cluster do
3: remove item from products ordered

4: total distance ←
∑

(tour distances)

The above steps are repeated until all the products have been collected. A com-

plete summary of the algorithm is described in the form of the following pseudo code.

Algorithm 10 Complete Heuristic for Capacitated problem

1: Feature Design
2: while products ordered 6= ∅ do
3: Perform K-Means Clustering
4: clusters ← K-Means++(feature value)
5: Choose best cluster
6: for each item in best cluster do
7: item weight ← weight of item

8: cluster weight ←
∑

(item weights)
9: if cluster weight > Qmax then

10: Modify the cluster
11: else
12: pass

13: Call Uncapacitated Heuristic

14: total distance ←
∑

(tour distances)

4.4 Experimental Results

Similar to chapter 3, both the Mixed Integer Programming model and the Heuristic

were evaluated for different scenarios. We use the computer system and software as

shown in Table 1 to run our experiments

64

MIP model Heuristic

Processor 2.3 GHz 2.3 GHz
RAM 4 GB 4GB

Operating System 64-bit 64-bit
Solver CPLEX 12.7 Python 3.6

Library N/A Sci-kit Learn

Table 2: System Requirements for Capacitated Heuristic

4.4.1 Experimental Setup

The experimental setup summary is given below.

• The experiment is repeated for a set of aisles. For the purpose of this thesis,

we run experiments for scenarios of 10, 20, 30 and 50 aisles respectively.

• For each scenario for the number of aisles, we consider 5, 10, 20, 30 and 50

products. Hence each scenario is a combination of products and aisles, for

example, 5 aisles with 5 products, 20 aisles with 30 products, etc. Altogether

we run experiments for 20 different scenarios.

• Each scenario, that is, a combination of number of aisles and number of products

has 50 instances. These instances are generated by generating items to be at

a location, i.e., aisle number and location of the item in the particular aisle

according to a certain distribution (described below).

Performance Metrics

The key factors that we are interested in finding or will be used to compare the

different scenarios are mean relative error and run time.

Mean Relative Error Mean Error will be used to indicate the optimality gap. The

lower the value of the mean relative error, the closer we are to the optimal result

or the best result. The mean relative error is calculated according to the following

formula.

mean relative error =
best solution− heuristic solution

best solution
(26)

Runtime The runtime is the total run time of our heuristic or MIP model. It will

give us a notion of how fast our models are compared to the other. The runtime is

65

measured in seconds.

Distribution of distances between products

The generated instances in this section contain products that are assumed to be dis-

tributed according to a particular distribution. We run instances where the products

are distributed according to two different distributions.

• Uniform Distribution: Here, the products are distributed according to a

uniform distribution where the probability of a product being in an aisle is

same for all the aisles. The uniform distribution generates instances where

products are placed similar to the as shown in Figure 14.

Figure 14: Uniform Distribution

• Skewed Distribution Here, the products are distributed so that majority

of the products are skewed towards one end of the warehouse. The skewed

distribution generates instances where products are placed similar to as shown

in Figure 15.

Figure 15: Skewed Distribution

This distribution is generated by assigning greater weights to the extreme aisle as

shown in 15. This implies that the instance will have a greater probability of having

an order on the end aisles compared to the uniform distribution where the probability

of the order being in any one of the aisles was equal.

66

4.4.2 Results and Discussions

We now look at the results according to the setup described in the previous section.

Mean Relative Error

Figure 16 shows the mean relative error for a warehouse with a certain number of aisles

as the number of products increases.As we can see, plot 16 (a) to 16 (d) represent a

warehouse with a fixed number of aisles. For example, plot (b) shows the scenario of

a twenty-aisle warehouse where we run instances for five product, ten products, etc.

• For each graph, we see that the general trend is the decrease in mean error

with the increase in number of products for a given number of aisles. This is

because as we increase the number of products for the same maximum capacity

of the forklift, we end up with clusters that are equal in total weight and less

clusters containing only one or two products. This allows the forklift to fill its

capacity as much as it can when it is choosing a cluster and thus implies that

there are significantly less number of products in the latter clustering stages.

Moreover, the more the number of products the more the data available for the

K-Means algorithm to process, which means that the algorithm has a better

chance of finding a pattern and generating better clusters which is the general

requirement for a unsupervised learning algorithm to run better.

• The next point to note is the change in standard deviation. We run each scenario

for 50 instances. We see from the figures that the standard deviation does not

differ too much along with the increase in number of products.

• We get a similar pattern graph for skewed distribution as well. This suggests

that the model performs consistently for both the uniform and skewed distribu-

tion. Even if all the products are skewed to one side of the warehouse, we can

see that the model is behaves in the same way if the products were distributed

uniformly.

67

(a) Error trend for 10 aisles (b) Error trend for 20 aisles

(c) Error trend for 30 aisles (d) Error trend for 50 aisles

Figure 16: Mean Error for different scenarios with minimum and maximum values

68

Run Time

The next parameter we compare is the runtime. Figure 17 shows the runtime plots.

There are several points to note about the results.

• Looking at the MIP model line we see that as we increase the number of products

in a scenario the run time increases rapidly. This makes sense since a higher

number of products implies more computation by the MIP model and hence a

greater runtime.

• It should be noted that the heuristic algorithm and the MIP model have almost

the same runtime for small instances. However, as we keep on increasing the

number of products for a particular set of aisles, the MIP model takes expo-

nentially longer time to reach optimal. The rate of increase in runtime for the

heuristic, however, is very low. Hence even for instances where there are large

number of products, in terms of runtime, the heuristic is much faster than the

MIP model.

• We can see that for smaller instance scenarios, the MIP model and heuristic

algorithm do not vary by a great extent in terms of runtime. However, the

mean runtime for the MIP significantly increases when there are more than 30

products, while the heuristic runtime increases only slightly.

69

(a) Runtime (seconds) for 10 aisles (b) Runtime (seconds) for 20 aisles

(c) Runtime (seconds) for 30 aisles (d) Runtime (seconds) for 50 aisles

Figure 17: Variation of runtime (seconds) for different scenarios.

70

4.5 Conclusion

This chapter has dealt with the capacitated case of the forklift routing problem. We

developed a Mixed Integer Programming model and a Heuristic model. The heuristic

was developed primarily to overcome the time complexity of scenarios with large

number of aisles and products. We used mean error and runtime as our performance

indicators for both MIP and heuristic. From the set of experiments performed, we

saw that for large instance sizes, the MIP model took a long time to reach optimality.

However, the heuristic is able to obtain a good solution in comparative much faster

times. Hence, based on the results obtained, we conclude that the heuristic is a good

alternative to the MIP model for problems of size greater than 30 products.

71

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

In this thesis we have proposed a formulation for the capacitated narrow aisle-order

picking problem that is a special case of the well-known Capacitated vehicle Routing

Problem (CVRP). We have been able to use classical CVRP MIP model to solve

this problem arising in warehousing operations of our industry partner. However, the

MIP model tends to take large time to solve large instance. Hence, we developed a

heuristic approach using clustering of products and S-shaped exact heuristic to solve

large instances to near-optimality in short time. We have successfully shown that the

developed heuristic is a very good alternative to the MIP model both in capacitated

and uncapacitated case when the MIP model becomes large and takes significant time

to reach optimality.

5.2 Future research directions

To extend the current direction of this thesis, we separately suggest possible im-

provements for chapters. In chapters 3 and 4, further work includes modifying the

clustering algorithm so that the final clusters are optimal in terms of product alloca-

tion to tours. This would ensure that all products that are possible to be collected in

the next tour have been clustered in such a way that the final total distance traveled

is minimum. This modification can be done in the form of designing a reward system

to the clusters when removing items for clusters that are over-capacity. This kind of

72

reward system cn be traced to the realms of Reinforcement Learning which could be a

good alternative algorithm for the clustering approach and a good starting direction

in terms of future work.

In this thesis, we have implemented the K-Means algorithm for the clustering stage.

However, there are many other unsupervised learning clustering algorithms that can

be implemented for the clustering phase along with other exact heuristics other than

S-shaped heuristics. Using other clustering techniques and exact heuristics and com-

paring the results with the current ones is recommended as a future research direction.

Chapters 3 and 4 of this thesis solve the models without considering the height of the

storage shelves. Modifying the model as an attempt to relax this assumption can be

a direction for future research along with taking into account a stackability matrix

which will be used to track the product that can be stacked on top of each other.

73

Bibliography

[1] NR Achuthan and L Caccetta. Integer linear programming formulation for a

vehicle routing problem. European Journal of Operational Research, 52(1):86–

89, 1991.

[2] SP Anbuudayasankar and K Mohandas. Mixed-integer linear programming for

vehicle routing problem with simultaneous delivery and pick-up with maximum

route-length. International Journal of Applied Management and Technology,

6(1):2, 2008.

[3] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of care-

ful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on

Discrete algorithms, pages 1027–1035. Society for Industrial and Applied Math-

ematics, 2007.

[4] Barrie M Baker and MA Ayechew. A genetic algorithm for the vehicle routing

problem. Computers & Operations Research, 30(5):787–800, 2003.

[5] Enrique Benavent and David Soler. The directed rural postman problem with

turn penalties. Transportation Science, 33(4):408–418, 1999.

[6] Jean Berger and Mohamed Barkaoui. A parallel hybrid genetic algorithm for the

vehicle routing problem with time windows. Computers & operations research,

31(12):2037–2053, 2004.

[7] Z Boyzer, A Alkan, and A Fığlalı. Cluster-first, thenroute based heuristic algo-

rithm for the solution of capacitated vehicle routing problem. Int. J. Inf. Technol,

7(2):29–37, 2014.

74

[8] José Brandao and Alan Mercer. A tabu search algorithm for the multi-trip

vehicle routing and scheduling problem. European journal of operational research,

100(1):180–191, 1997.

[9] Mackenna Callum. A new approach for solution of vehicle routing problem with

hard time window: an application in a supermarket chain. Sādhanā, 42(12):2067–

2080, 2017.

[10] Hadrien Cambazard and Nicolas Catusse. Fixed-parameter algorithms for recti-

linear steiner tree and rectilinear traveling salesman problem in the plane. arXiv

preprint arXiv:1512.06649, 2015.

[11] Thomas Chabot, Leandro C Coelho, Jacques Renaud, and Jean-François Côté.

Mathematical model, heuristics and exact method for order picking in 3d narrow

aisles. Journal of the Operational Research Society, 69(8):1242–1253, 2018.

[12] Marco Colombi and Renata Mansini. New results for the directed profitable rural

postman problem. European Journal of Operational Research, 238(3):760–773,

2014.

[13] Teodor Gabriel Crainic, Simona Mancini, Guido Perboli, and Roberto Tadei.

Clustering-based heuristics for the two-echelon vehicle routing problem, vol-

ume 46. CIRRELT Montreal, 2008.

[14] Fabrizio Dallari, Gino Marchet, and Marco Melacini. Design of order picking

system. The international journal of advanced manufacturing technology, 42(1-

2):1–12, 2009.

[15] George B Dantzig and John H Ramser. The truck dispatching problem. Man-

agement science, 6(1):80–91, 1959.

[16] René De Koster, Tho Le-Duc, and Kees Jan Roodbergen. Design and control of

warehouse order picking: A literature review. European journal of operational

research, 182(2):481–501, 2007.

[17] René De Koster, Kees Jan Roodbergen, and Ronald Van Voorden. Reduction

of walking time in the distribution center of de bijenkorf. In New trends in

distribution logistics, pages 215–234. Springer, 1999.

75

[18] Rodolfo Dondo and Jaime Cerdá. A cluster-based optimization approach for

the multi-depot heterogeneous fleet vehicle routing problem with time windows.

European Journal of Operational Research, 176(3):1478–1507, 2007.

[19] Edward Frazelle. World-class warehousing and material management, 2001.

[20] Chao Fu, Yiqiang Wang, Yan Gu, Mingyang Ma, and Tianyi Xue. Routing op-

timization of high-level orderpickers in a rectangular warehouse. In Consumer

Electronics, Communications and Networks (CECNet), 2011 International Con-

ference on, pages 4388–4391. IEEE, 2011.

[21] Noud Gademann and Steef Velde. Order batching to minimize total travel time

in a parallel-aisle warehouse. IIE transactions, 37(1):63–75, 2005.

[22] Marc Goetschalckx and H Donald Ratliff. Order picking in an aisle. IIE trans-

actions, 20(1):53–62, 1988.

[23] Kevin R Gue, Russell D Meller, and Joseph D Skufca. The effects of pick density

on order picking areas with narrow aisles. IIE transactions, 38(10):859–868, 2006.

[24] Ahmed Hassan and Bill Ferrell. Forklift routing in warehouses using dual-

commands and stackable pallets. In Proceedings of the International Material

Handling Research Colloquium, 2010.

[25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learning.

In The elements of statistical learning, pages 485–585. Springer, 2009.

[26] Ruhan He, Weibin Xu, Jiaxia Sun, and Bingqiao Zu. Balanced k-means algo-

rithm for partitioning areas in large-scale vehicle routing problem. In Intelligent

Information Technology Application, 2009. IITA 2009. Third International Sym-

posium on, volume 3, pages 87–90. IEEE, 2009.

[27] Sebastian Henn, Sören Koch, and Gerhard Wäscher. Order batching in order

picking warehouses: a survey of solution approaches. In Warehousing in the

global supply chain, pages 105–137. Springer, 2012.

[28] DT Hiquebran, AS Alfa, JA Shapiro, and DH Gittoes. A revised simulated

annealing and cluster-first route-second algorithm applied to the vehicle routing

problem. Engineering Optimization, 22(2):77–107, 1993.

76

[29] Matic Horvat. An approach to order picking optimization in warehouses. Ljubl-

jana: University of Ljubljana Faculty of computer and Information Science, 2012.

[30] Jianyong Jin, Teodor Gabriel Crainic, and Arne Løkketangen. A parallel multi-

neighborhood cooperative tabu search for capacitated vehicle routing problems.

European Journal of Operational Research, 222(3):441–451, 2012.

[31] Ryan Key and Anurag Dasgupta. Warehouse pick path optimization algorithm

analysis. In 11 th International Conference on Foundations of Computer Science

(FCS 2015), 2015.

[32] Douglas M Lambert, James R Stock, and Lisa M Ellram. Fundamentals of

logistics management. McGraw-Hill/Irwin, 1998.

[33] Gilbert Laporte. The vehicle routing problem: An overview of exact and ap-

proximate algorithms. European journal of operational research, 59(3):345–358,

1992.

[34] Gilbert Laporte, Yves Nobert, and Serge Taillefer. Solving a family of multi-

depot vehicle routing and location-routing problems. Transportation science,

22(3):161–172, 1988.

[35] Anany Levitin. Introduction to the design & analysis of algorithms. Boston:

Pearson,, 2012.

[36] Wenrong Lu, Duncan McFarlane, Vaggelis Giannikas, and Quan Zhang. An

algorithm for dynamic order-picking in warehouse operations. European Journal

of Operational Research, 248(1):107–122, 2016.

[37] Stephen Marsland. Machine learning: an algorithmic perspective. Chapman and

Hall/CRC, 2011.

[38] Christopher M Mohr. Optimization of warehouse order-picking routes using ve-

hicle routing model and genetic algorithm. State University of New York at

Binghamton, 2014.

[39] Rolf H Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas

Willhalm. Partitioning graphs to speed up dijkstra’s algorithm. In International

77

Workshop on Experimental and Efficient Algorithms, pages 189–202. Springer,

2005.

[40] Alwyn Jakobus Moolman, K Koen, and J Van der Westhuizen. Activity-based

costing for vehicle routing problems. South African Journal of Industrial Engi-

neering, 21(2):161–172, 2010.

[41] Gur Mosheiov. The travelling salesman problem with pick-up and delivery. Eu-

ropean Journal of Operational Research, 79(2):299–310, 1994.

[42] Phuong Khanh Nguyen, Teodor Gabriel Crainic, and Michel Toulouse. A tabu

search for time-dependent multi-zone multi-trip vehicle routing problem with

time windows. European Journal of Operational Research, 231(1):43–56, 2013.

[43] Charles G Petersen. An evaluation of order picking routeing policies. Inter-

national Journal of Operations & Production Management, 17(11):1098–1111,

1997.

[44] H Donald Ratliff and Arnon S Rosenthal. Order-picking in a rectangular ware-

house: a solvable case of the traveling salesman problem. Operations Research,

31(3):507–521, 1983.

[45] Martin Reed, Aliki Yiannakou, and Roxanne Evering. An ant colony algorithm

for the multi-compartment vehicle routing problem. Applied Soft Computing,

15:169–176, 2014.

[46] Kees Jan Roodbergen and René De Koster. Routing order pickers in a warehouse

with a middle aisle. European Journal of Operational Research, 133(1):32–43,

2001.

[47] Jim Rowley. The Principles of Warehouse Design. 01 2005.

[48] Catherine Gouveia Issac Jenne Sabrina Bant, Tristan Dowbiggin and Arshad

Lasania. Fedex supply chain project, 2017.

[49] Qing Song and Xiaofan Wang. Partitioning graphs to speed up point-to-point

shortest path computations. In Decision and Control and European Control Con-

ference (CDC-ECC), 2011 50th IEEE Conference on, pages 5299–5304. IEEE,

2011.

78

[50] Christophe Theys, Olli Bräysy, Wout Dullaert, and Birger Raa. Using a tsp

heuristic for routing order pickers in warehouses. European Journal of Opera-

tional Research, 200(3):755–763, 2010.

[51] James A Tompkins, John A White, YA Bozer, EH Frazelle, JMA Tanchoco, and

J Trevino. Facility planning. John Wiley & Sons, Inc., New York, 1996.

[52] James A Tompkins, John A White, Yavuz A Bozer, and Jose Mario Azaña

Tanchoco. Facilities planning. John Wiley & Sons, 2010.

[53] Paolo Toth and Daniele Vigo. An overview of vehicle routing problems. In The

vehicle routing problem, pages 1–26. SIAM, 2002.

[54] Charles W Trigg. What is recreational mathematics? Mathematics Magazine,

51(1):18–21, 1978.

[55] University and Erasmus University Rotterdam the Erasmus School of

Economics. Material Handling Forum. https://www.erim.

eur.nl/material-handling-forum/research-education/tools/

calc-order-picking-time/what-to-do/short-explanation-on-layout/,

2008. [Online; accessed 19-July-2008].

[56] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins.

Heuristics for multi-attribute vehicle routing problems: A survey and synthesis.

European Journal of Operational Research, 231(1):1–21, 2013.

[57] Gerhard Wäscher. Order picking: a survey of planning problems and methods. In

Supply chain management and reverse logistics, pages 323–347. Springer, 2004.

79

https://www.erim.eur.nl/material-handling-forum/research-education/tools/calc-order-picking-time/what-to-do/short-explanation-on-layout/
https://www.erim.eur.nl/material-handling-forum/research-education/tools/calc-order-picking-time/what-to-do/short-explanation-on-layout/
https://www.erim.eur.nl/material-handling-forum/research-education/tools/calc-order-picking-time/what-to-do/short-explanation-on-layout/

	List of Figures
	List of Tables
	Introduction
	Motivations
	Outline
	Summary of Contributions

	Literature review
	Order Picking Problems
	Warehouse Routing Solving Techniques
	Polynomial-time heuristics
	Mixed Integer Programming Formulations
	Meta-Heuristic Methods

	Clustering
	Conclusion

	Uncapacitated Problem
	Problem Statement
	Warehouse Layout
	Directionality
	Assumptions

	MIP Formulation
	Graphical Representation
	Objective
	Parameters
	Decision variables
	Model

	Heuristic
	Preprocessing
	Initialization
	Iteration
	Termination

	Experimental Results
	Experimental Setup
	Results and Discussions

	Conclusion

	Capacitated Problem
	Problem Statement
	Assumptions

	MIP Formulation
	Graphical Representation
	Objective
	Parameters
	Decision variables
	Model

	Heuristic
	Clustering
	Choosing the best cluster
	Modifying the cluster

	Experimental Results
	Experimental Setup
	Results and Discussions

	Conclusion

	Conclusions and Future Work
	Concluding Remarks
	Future research directions

