
i

A model-based systems engineering approach for the
specification of test means for flight control computers

Hasti Jahanara

A Thesis

in the department

of

Mechanical, Industrial and Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

April 2019

© Hasti Jahanara. 2019

ii

Concordia University

 School of Graduate Studies

This is to certify that the thesis prepared

By: Hasti Jahanara

Entitled: A Model-Based Systems Engineering Approach for the Specification of

Test Means for Flight Control Computers

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Mechanical Engineering)

complies with the regulations of this University and meets the accepted standards with respect

to originality and quality.

Signed by the Final Examining Committee:

 Chair
Dr. Ida Karimfazli

 External Examiner
Dr. Fereshteh Mafakheri

 Examiner
Dr. Catharine Marsden

 Supervisor
Dr. Susan Liscouët-Hanke

Approved by
Martin D. Pugh, Chair

Department of Mechanical, Industrial and Aerospace Engineering

 2019
Dr. Amir Asif, Dean

Gina Cody School of Engineering and Computer Science

iii

Abstract

The aerospace industry is a competitive environment, in which aircraft system suppliers need to

develop innovative, increasingly complex systems in ever-shorter time, serving various customer

needs. Therefore, aircraft system suppliers need to improve all steps of their development process,

from specification through testing.

This thesis proposes a model-based system engineering (MBSE) approach to improve the

specification process. As part of a collaborative project with Thales Avionics Canada, this thesis

focuses on specifically on the development of test means for flight control computers (FCC). There

are two challenges regarding development of test means: (1) tight timeline from the specification

to the entry into service and (2) complexity of the architecture. Implementing an MBSE approach

to the development of test means is promising to reduce the development time and to increase the

quality.

The ARCADIA/Capella MBSE framework is used to develop a generic, re-usable specification

model for various flight control computer test means. To develop a generic model, various

categories, types and component of FCC test means are analyzed. A variability management model

is developed to manage efficiently common and optional feature and components. To do so,

Pure::Variants, a product line engineering tool is used. The developed MBSE specification

provides an overview of the test means entities, functions, interfaces and components.

In summary, this thesis establishes a more efficient approach for the FCC test means development,

potentially decreasing development time and increasing the competitiveness of the system

developer.

iv

Contents

Abstract .. iii

Table of figure.. vi

Acronyms .. x

Chapter 1. Introduction ... 1

1.1. Background and motivation ... 1

1.2. Flight control systems .. 2

1.5. Organisation of the thesis... 16

Chapter 2. The need for a model-based approach for test means development 17

2.1. Testing of flight control system and FCC .. 17

2.2. Analysis of current process in Thales .. 18

2.2.1. Challenges in current process ... 21

2.3. Potential benefits to model-based systems engineering... 22

2.4. Objective of the thesis .. 22

Chapter 3. Methodology ... 24

3.1. Methodology overview .. 24

3.2. Analysis of test means types and components ... 25

3.2.1. Test Means categories and sub-categories .. 26

3.2.2. Description of test means components ... 31

3.3. Specification model development .. 36

3.3.1 Arcadia ... 37

3.3.2. Variability management .. 39

Chapter 4. Model implementation .. 42

4.1. Capella model implementation .. 42

4.1.1. Operational analysis level ... 42

4.1.2. System analysis level .. 47

4.1.3. Logical architecture level .. 60

4.1.4. Physical architecture level .. 75

4.2. Variants management model.. 83

4.3. Model-based specification process .. 87

v

4.4. Additional aspects for model-based specification ... 91

4.4.1. Linking requirements .. 91

4.4.2. Documentation generation .. 92

Chapter 5. Conclusion and future work .. 94

5.1 Summary and conclusion .. 94

5.2 Future work ... 95

References ... 97

Appendix A: Capella diagrams ... 101

A.1. Operational analysis .. 101

A.1.1. Operational capabilities [OCB] .. 101

A.1.2. Operational architecture [OAB] ... 102

A.2. System analysis ... 103

A.2.1. Missions and capabilities [MCB] ... 103

A.2.2. System architecture [SAB]... 104

A.2.3. Functional dataflow [SDFB] .. 108

A.2.4. Functional breakdown [SFBD] .. 111

A.3. Logical architecture... 112

A.3.1. Logical architecture [LAB] ... 113

A.3.2. Logical dataflow [LDFB].. 116

A.3.3. Logical breakdown [LFBD] .. 120

A.4. Physical architecture ... 121

A.4.1. Physical architecture [PAB] .. 121

A.4.2. Physical dataflow [PDFB] .. 125

A.4.3. Physical functional breakdown [PFBD] ... 128

Appendix B: How to select a configuration in Pure::Variants ... 132

B.1. Pure Variants .. 132

B.2. Mappings view in Capella ... 134

Appendix C: How to use M2Doc.. 134

vi

Table of Figure

Figure 1. Primary flight control axis and surfaces (adapted from [44]) .. 3

Figure 2. Mechanical flight control system [8] ... 3

Figure 3. Hydro-mechanical flight control system (adapted from [45]) .. 4

Figure 4. Fly-by-light architecture [46] .. 5

Figure 5. Basic architecture of A330 flight control system [15] .. 6

Figure 6. Architecture of a FCC of Airbus (adapted from [17]) ... 7

Figure 7. Schematic of flight control computer interaction with aircraft systems and components

... 8

Figure 8. V-diagram of the aircraft development process .. 12

Figure 9. Relationship between the development V-cycle of the aircraft, the flight control

computer and its test means .. 15

Figure 10. Life cycle of a typical FCC, adapted from [29] ... 17

Figure 11. Current and improved test means development process ... 23

Figure 12. Overview of the methodology steps to develop a re-usable MBSE approach for test

means specification ... 24

Figure 13. Overview of test means of flight control system ... 26

Figure 14. Categories and sub-categories of test means ... 27

Figure 15. Architecture of different categories ... 29

Figure 16. Architecture of different sub-categories .. 29

Figure 17. Test means components ... 32

Figure 18. [OCB] Operational capability diagram ... 44

Figure 19. [OAB] Operational architecture diagram .. 45

Figure 20. [MCB] Mission and capabilities diagram.. 48

Figure 21. [SFBD] Functional breakdown of system analysis level .. 50

Figure 22. [SAB] General model diagram .. 51

Figure 23. [SAB] Simulating signal diagram ... 54

Figure 24. [SAB] Detecting response diagram ... 55

Figure 25. [SAB] Managing SUT diagram ... 56

vii

Figure 26. [SDFB] Simulating signal diagram ... 58

Figure 27. [SFBD] System functional breakdown diagram ... 59

Figure 28. [LAB] General model diagram .. 63

Figure 29. [LAB] Simulating signal ... 66

Figure 30. [LAB] Detecting response diagram ... 67

Figure 31. [LAB] Managing SUT diagram ... 68

Figure 32. [LDFB] Scenario file vs. manual simulation ... 70

Figure 33. [LDFB] Detecting response signal .. 71

Figure 34. [LDFB] Detecting simulation signal ... 72

Figure 35. [LFBD] Functional breakdown of aircraft equipment simulation control 74

Figure 36. [LFBD] Functional breakdown of aircraft equipment simulation 75

Figure 37. An example of node and behavioral components.. 76

Figure 38. [PAB] General model diagram .. 78

Figure 39. [PAB] General model/ breakdown of the SUT installation component 79

Figure 40. [PAB] Simulating signal diagram ... 80

Figure 41. Functional breakdown of "simulate aircraft equipment status behavior" function 82

Figure 42. Feature model of test means .. 85

Figure 43. Model-based specification process .. 87

Figure 44. Variant editor in Capella ... 88

Figure 45. A sample of the diagram while variant mode is activated... 89

Figure 46. Example of model-based specification process ... 90

Figure 47. Sample of requirements definition in Capella ... 92

Figure A. 1. Operational capability diagram [OCB] ... 102

Figure A. 2. Operational architecture diagram [OAB] ... 103

Figure A. 3. Mission and capabilities diagram [MCB] ... 104

Figure A. 4. General model diagram [SAB] ... 105

Figure A. 5. Simulating signal diagram [SAB].. 106

Figure A. 6. Detecting response diagram [SAB] .. 107

Figure A. 7. Managing SUT diagram [SAB] .. 107

viii

Figure A. 8. General model diagram [SDFB] ... 108

Figure A. 9. Simulating signal diagram [SDFB] .. 109

Figure A. 10. Detecting response diagram [SDFB] .. 110

Figure A. 11. Managing SUT [SDFB] .. 111

Figure A. 12. System functional breakdown diagram [SFBD] ... 112

Figure A. 13. General model diagram [LAB] ... 113

Figure A. 14. Simulating signal diagram [LAB] .. 114

Figure A. 15. Detecting response diagram [LAB] .. 115

Figure A. 16. Managing SUT diagram [LAB] .. 116

Figure A. 17. Simulating signal diagram [LDFB] .. 117

Figure A. 18. Detecting response diagram [LDFB] .. 118

Figure A. 19. Managing SUT diagram [LDFB] ... 119

Figure A. 20.Functional breakdown of aircraft equipment simulation control [LFBD] 120

Figure A. 21. Functional breakdown of aircraft equipment simulation [LFBD] 120

Figure A. 22. General model diagram [PAB] ... 122

Figure A. 23. Simulating signal diagram [PAB]... 123

Figure A. 24. Detecting response diagram [PAB] .. 124

Figure A. 25. Managing SUT diagram [PAB] .. 125

Figure A. 26. Simulating signal diagram [PDFB] .. 126

Figure A. 27. Detecting response diagram [PDFB] .. 127

Figure A. 28. Control aircraft equipment status simulation breakdown diagram [PFBD] 128

Figure A. 29. Control aircraft equipment sensor simulation breakdown diagram [PFBD] 128

Figure A. 30. Control aircraft equipment status failure simulation breakdown diagram [PFBD]

... 129

Figure A. 31. Control aircraft equipment sensor failure simulation breakdown diagram [PFBD]

... 129

Figure A. 32. Aircraft equipment status simulation breakdown diagram [PFBD] 130

Figure A. 33. Aircraft equipment sensor simulation breakdown diagram [PFBD] 130

Figure A. 34. Aircraft equipment status failure simulation breakdown diagram [PFBD] 131

ix

Figure A. 35. Figure A. 34. Aircraft equipment sensor failure simulation breakdown diagram

[PFBD] .. 131

Figure B. 1 Perspectives in Pure Variants. ... 133

Figure C. 1. . M2Doc template editor ... 136

Figure C. 2. Generated configuration file view in Capella ... 136

x

Acronyms

ARCADIA ARChitecture And Design Integrated Approach

CLAW Control LAWs

CAS Crew Alerting System

FBL Fly-By-Light

FBW Fly-By-Wire

FCC Flight Control Computer

FCPS Flight Control Primary Computers

FCS Flight Control System

FCSC Flight Control Secondary Computers

HIL Hardware-In-The-Loop simulation

IRS Inertial Reference System

IVV Integration, Validation and Verification

LAB Logical Architecture Blank

LDFB Logical Data Flow Blank

LFBD Logical Function Breakdown

MBSE Model Based System Engineering

MCB Missions Capabilities Blank

OAB Operational Architecture Blank

OCB Operational Capabilities Blank

PAB Physical Architecture Blank

PDB Power Distribution Box

PDFB Physical Data Flow Blank

PFBD Physical Function Breakdown

PLE product line engineering

SAB System Architecture Blank

SDFB System Data Flow Blank

SFBD System Function Breakdown

SOI System of Interest

SOF Safety of Flight

xi

SPOST System Power-On Self Tests

SUT System Under Test

UUT Unite Under Test

VDM Variant Description Model

1

Chapter 1. Introduction

This chapter explains the background and motivation for the thesis, introduces the scope of the

work performed and outlies the structure of the thesis.

1.1. Background and motivation

The aerospace industry is driven by technological innovation in a competitive environment. The

key to success is to bring innovative products to the market in the shortest possible development

time. Due to the complexity of the modern aircraft, there are challenges regarding the development

process which often lead to delays in delivery to the customer [1].

Aircraft manufacturers and aircraft system suppliers experience these challenges. Therefore, they

need to improve efficiency and effectiveness of the development process. Most of the challenges

are inevitable but can be foreseen. For example, it is expected to face issues while developing a

system that is being built for the first time. Many of recent aircraft programs, such as the Boeing

B787 struggled with significant delays during the development. These delays are caused by several

factors such as software issues, incorrect fastener installation, etc. [2]. All the potential obstacles

must be considered while planning different stages of development to avoid delay. Moreover, there

are precautions to take to avoid some of these difficulties. For instance, writing the specification

of systems based on fully defined requirements in early stage of the design is a factor that could

contribute to reduction in development time.

In this context, the role of the system suppliers and integrators is important. Before the system is

integrated into the aircraft, it needs to be validated and verified at the supplier facility. Therefore,

the system suppliers need to have efficient development processes at system, subsystem or

2

component level. In addition, they also need to have efficient process to design the test means

associated with their system, which are required for verification. The particular challenge for the

system supplier is to adapt quickly their products to the aircraft manufacturer needs. Furthermore,

suppliers work with different companies with various types of request and criteria, which adds to

complexity of their work.

This thesis is part of collaborative project with Thales Avionics Canada. Thales Avionics, as a

supplier to different aircraft manufacturers develops and tests flight control systems, in particular

the flight control computers (FCCs), as well as the associated test means. The test means are used

to validate the design of the FCC, verify its proper functioning and troubleshoot it while in service.

The objective of the thesis is to improve the process of the test means specification by establishing

a model-based system engineering (MBSE) approach.

The following sections first introduce the context of flight control systems and provide background

on their development process.

1.2. Flight control systems

Any flying vehicle needs to be controlled to perform appropriate maneuver. Aircraft use the flight

control system (FCS) to control the motion around the roll, pitch and yaw axes. As shown in Figure

1 the flight control is performed by the deflection of flight control surfaces (such as aileron,

elevator, rudder, etc.).

3

The flight control system’s function is to convey the pilot or autopilot’s command to control

surfaces. There are different types of flight control system technologies: Mechanical, Hydro-

mechanical and electrical.

Mechanical system has been in use since the invention of the aircraft. Figure 2 shows the

implementation of a mechanical FCS. Pilot’s orders are transmitted to the actuators through cables,

Figure 2. Mechanical flight control system [8]

Figure 1. Primary flight control axis and surfaces (adapted from [44])

4

rods, levers and cranks [3]. In mechanical system, pilot is supposed to overcome aerodynamic

forces on the control surfaces manually which means that the forces to maneuver the airplane is

limited by pilot’s physical capabilities [4].

 As aircraft became larger and faster, it became impossible to control aircraft by muscular strength.

Hence, hydro-mechanical flight control systems, as shown in Figure 3 were invented which

facilitated control of the aircraft using hydraulic power [4]. In hydro-mechanical system, the

pulleys and rod are moved by assist of hydraulic system. Hydro-mechanical flight control systems

require hydraulic systems (consisting of pumps, reservoir, pipes and valves) in addition to

mechanical system (rods, pulleys and cables) which results in increment of weight of aircraft. It is

also difficult to maintain a hydraulic system. Boeing 727 is an airplane with hydro-mechanical

FCS [5]. Figure 3 shows the architecture of hydro-mechanical flight control system.

Nowadays, most of the aircraft have fly-by-wire (FBW) control system. In a FBW system the pilot

command is transmitted to the actuators and through electronic signals, enhanced by a Flight

Figure 3. Hydro-mechanical flight control system (adapted from [45])

wing

Control surface

Mechanical control

actuator

5

Control Computer (FCC) [6]. However, mechanically controlled systems are still used for some

surfaces in some aircraft such as Boeing 777 which has two mechanically controlled spoilers [7]

or in small aircraft where the aerodynamic forces are not excessive [8] such as the Eclipse 500 [9].

There are several advantages to FBW systems, such as lighter weight, easier maintenance [10],

replacing complicated mechanical linkage to signals [11] easier manufacturing and flexible to

changes after initial design and production [12].

Earlier generation of FBW system are using electrical signals. However, the latest generation uses

optic fibres and optical sensors. For example, the Gulfstream 650’s FCS. This technology is known

as Fly-by-Light (FBL). Figure 4 shows the architecture of a FBL system. Note that the only

difference between FBW and FBL is regarding the type of signal that is being used. FBL systems

Figure 4. Fly-by-light architecture [46]

6

are lighter and can transmit higher data rates over FBW. However, FBL is more expensive to

develop and test comparing FBW system [5].

Within the flight control system, the flight control computers (FCCs) are critical components that

implement the flight control laws. Typically, an aircraft with full fly-by-wire on all three axis of

control will have dual or triple redundancy [13] such as Airbus 330/340 [14].

Airbus 330 has five FCCs: three flight control primary computers (FCPS) and two flight control

secondary computers (FCSC) [15]. Each computer has two elements: the monitor element (MON)

and the command element (COM)), each with different software and architecture [16]. The MON

channel monitors the function of command channel. Both channels are active simultaneously [17].

For this aircraft, all surfaces are hydraulically actuated and electrically controlled, except for the

rudder which is mechanically controlled [15]. The FCSC control the surfaces in standby mode

[16]. For any given function, one computer is active and others are standby. As soon as the active

computer interrupts its operation, one of the standby computers becomes active [17]. Figure 5

shows the basic architecture of Airbus A330 FCS.

Figure 5. Basic architecture of A330 flight control system [15]

7

Figure 6 shows the architecture of FCC of Airbus, which has two channels (MON and COM). The

difference between the results of MON and COM channels are compared considering a threshold.

If the difference is above the threshold, a failure can be detected. The sign P in the Figure 6

represents the protection against over-voltage and under-voltage [17].

There are several types of flight control system architectures. For instance, Boeing 777 is the first

Boeing commercial aircraft which employs FBW system [12]. It has three primary flight control

computers. Each FCC has three lanes: command, standby and monitor [18]. Command lane

outputs the flight control command. In case command lane fails, standby lane outputs the

command to actuators. Standby and monitor lane perform the same calculation as the command

lane [16].

Figure 6. Architecture of a FCC of Airbus (adapted from [17])

8

Figure 7 shows a generalized view of the flight control system, focusing on the interactions

between the flight control computers (FCC), actuators and surfaces. Depending on the design of

the aircraft, FCC interacts with these various systems.

The FCC receives commands either from the autopilot or from cockpit instrument (which is

controlled by the pilot). It also receives inputs for sensors, such as air data information and current

position of the aircraft. Based on these inputs, the FCC calculates the needed change of the position

for the control surfaces and sends the command signal to actuators. Actuators change the position

of the surfaces based on the FCC’s command. Then, the FCC needs to detect the new position of

the control surfaces through a feedback loop. There are two types of feedback. One the feedback

from the surfaces and the other from the sensors (inertial reference system (IRS) and air data)

Figure 7. Schematic of flight control computer interaction with aircraft systems and components

9

which is the position of the aircraft. In a fly-by-wire system, there is no direct link between the

pilot and control surfaces. Therefore, an artificial feel and feedback is used to avoid damage to the

system [4]. Artificial feedback produces an artificial feel of movement of the control surfaces with

the use of spring. The artificial feel is proportional to spring stiffness [16]. In most recent transport

and military aircraft, actuators are controlled electrically but powered hydraulically [19].

Test means are developed to validate, verify and troubleshoot the FCCs before they are integrated

into the aircraft, using hardware and software simulation. There are challenges regarding the

development of the test means, especially for the FCCs. As the test means is required to verify the

FCC, it should be fully developed before FCC’s design and assembling ends. Moreover, the design

of the test means is dependent on the design of the aircraft, mission of developing the test means

(whether it is single-project, multi-project, etc. (section 3.2.1.)) and customer’s need. This means

that from one FCC to another, the design is different which makes it more complicated to identify

the requirements and design. The flight control computers in an aircraft are safety critical

components that interact with many different aircraft systems and components. Therefore, their

development process, and particularly the validation, verification and integration is a complex task.

The next section discusses the background for the FCS and FCC and test means development

process.

1.3. Test means as part of the aircraft development process

Development of complex, safety-critical aircraft systems, such as the flight control system, needs

to follow a rigorous process to be able to obtain certification by the authorities. In particular, the

10

SAE ARP4754 “Guidelines For Development Of Civil Aircraft and Systems” [20] needs to be

followed.

Generally, the life cycle process involves three main phases (if retirement is neglected):

1. Concept

This phase is the preliminary step in design. In the concept phase, the overall characteristics of the

aircraft are determined such as the number and locations of engines, payload, range and aircraft

size. Also, the flight control systems’ technology and high-level architecture will be evaluated and

selected, without detailed specification.

2. Development

The development as shown in Figure 8, including design, integration and verification is the longest

phase of life cycle process. It starts with definition of aircraft-level functions, interfaces and

requirements. Then, it moves on to the definition of system-level and item-level functions and

requirements and allocation of them to systems and components. Once the requirements are

defined and the functions are allocated, hardware and software are designed, built and integrated.

Integration starts with item by item integration until the system is completely assembled. During

early stages of the programme, a delivery schedule is established. Items that take more time to

build, are ordered ahead of time [16].

The verification process takes place along with integration. This facilitates detection of

deficiencies and troubleshooting.

The validation, verification and integration process includes analysis, modelling and functional

testing. Functional testing starts with ground tests and then the flight tests. Once the tests are done,

the aircraft is certified to enter the market and be in operation [16].

11

3. Operation

Once the aircraft is in operation, it is working regularly and its performance is monitored. In case

of any fault, it is reported to manufacturer for troubleshooting [16].

The aircraft development phases are illustrated through the so-called V-diagram, depicted in

Figure 8. The left-hand leg represents analytical steps, while the synthesis steps are followed in

the right side [4]. The process starts from left side and ends on the right side. The first step is to

define the scope of the system, which is being designed and developed. Then, the requirements

have to be defined and based on the requirements, specification and details of design are

documented. The bottom of the diagram shows the building process, which is the step of

developing the system. The right side of the diagram is where the system is integrated and verified

based in the requirements defined in the left-side of the diagram. The progressive testing from

subsystems to complete product is referred to as “integration” [21]. In each level of right-hand leg,

system or subsystem is verified by the same level at left-side.

In the validation process, the question to answer is: “are we building the right product?” [22]. In

other words, does the designing product meet the high level requirements and the customer’s

request?

However, in verification, the attempt is to find out whether “we are building the product right?”

[22]. In other words, is the developed product compatible with the defined requirements? [22]

As shown in Figure 8, the process starts at high-level systems, breaks into subsystems and then

components. As it progresses into the details, the requirements are evaluated based on the higher-

level requirements (validation). However, the right-hand leg follows a bottom-up approach. In

12

other words, it initiates the verification process with components and integrates them until the

desired product is developed.

The testing has two objectives: to ensure that the system performs its intended function and to

guarantee that the system does not perform unintended functions [20].

Testing of components and whole aircraft needs facilities and equipment. Facilities must be

designed, built and calibrated before integration begins. The equipment must meet standards in

terms of:

• Accuracy: The measurements must be more precise than the tolerance on the system input

and response.

• Reliability: It must be highly reliable to minimize test discrepancies as a result of

equipment error.

• Flexibility: Test equipment should be designed to serve several purposes. Thus the cost is

minimized. However, the flexibility should not be at the expense of accuracy and reliability [23].

Figure 8. V-diagram of the aircraft development process

13

Tests are performed using a so-called test means, which can be considered as a system itself. Thus,

it follows its own development process, including specification, building, validation and

verification. The test means involves hardware equipment and software for simulation of physical

or functional component [23]. The testing tools are verified based on the DO-178 [24] which is a

guideline used by certification authorities.

The aircraft, systems and test means development processes can be approached as systems

engineering processes. “Systems engineering is a methodical, multi-disciplinary approach for the

design, realization, technical management, operations and retirement of a system” [25].Systems

engineering is a logical sequence of activities and decisions that transforms an operational need

into a description of system performance parameters and a preferred system configuration [26]. In

a systems engineering approach, the test plan defines and specifies the parameters that should be

tested. In addition, the test plan specifies how to diagnose discrepancies and how the test results

should be analyzed [23].

In this thesis, a model-based systems engineering approach is investigated. “Model-Based Systems

Engineering (MBSE) is the formalized application of modeling to support system requirements,

design, analysis, verification and validation activities beginning in the conceptual design phase

and continuing throughout development and later life cycle phases” [27]. In traditional systems

engineering, the primary products are documents, while in MBSE the product is a model [23].

If a model (digital representation) of the to-be-built system is available, the individual views

filtered through the perspective of the model have a better chance of being representative of reality.

In other words, without the model, everyone’s view on the model can be different from others. The

14

model can also optimize the validation process by providing a representation of desired outcome

for customers and evaluating whether it is what the customer is looking for or not [28]. Moreover,

identification of requirements and writing the specification is an iterative process. The document

based specification process is difficult to manage in terms of changes and traceability. This leads

often to increased development duration.

1.4. Problem statement

Figure 9 shows the relationship between the development cycles of the aircraft, the FCC and its

test means, in form of the V-diagram. For the development of the FCC, the verification process

(right-side of the diagram) is performed by use of the test means. Therefore, the test means has to

be developed before the FCC is tested. However, the design and development of the test means

has its own process. It means that the test means development process has the same procedure as

the FCC and aircraft: definition of the requirements and specification, building, integration,

validation and verification.

15

The test means development is completed before the FCC enters the integration and verification

process. To achieve this, the test means specification needs to start at the same time as the FCC

development. This is difficult, as the FCC requirements may not be mature yet.

Figure 9 clearly illustrates that the timely development of the test means is critical to the on-time

development of the FCC, which is generally on the critical path in the aircraft development

process. Failing to deliver the FCC on time could lead to delay in launching an aircraft and have

economic impact on the system supplier and the aircraft manufacturer. It is therefore important to

develop methodologies that increase the efficiency and effectiveness of the specification process

of the test means.

Figure 9. Relationship between the development V-cycle of the aircraft, the flight control

computer and its test means

Aircraft development cycle

Flight control computer development cycle

FCC`s test means development cycle

16

This thesis aims to improve the test means development process by introducing a model-based

system engineering approach.

1.5. Organisation of the thesis

The thesis is organized in following way: Chapter 2 discusses the problems and challenges

regarding the current process of test means development. It also discusses how a model-based

systems engineering approach, can help to address these challenges. Chapter 3 explains the taken

approach and introduces the methodology for creating the specification models within the chosen

MBSE framework and managing the variability. Chapter 4 represents the specification model

implementation in different levels. In addition, it is presented how requirements are integrated into

the specification model, how documents can be generated and how variable and common features

are defined. Moreover, it provides an overview on the new, model-based process for the generation

of the test-means specifications. Finally, the thesis wraps up by stating the conclusion and provides

axes for future research.

17

Chapter 2. The need for a model-based approach for test means

development

This section provides an overview on potential benefits associated with a Model-Based Systems

Engineering (MBSE) approach and outlines the current process for test means development.

2.1. Testing of flight control system and FCC

This thesis is focused on FCC. However, the available literature is specific to the development

process of the FCS. Thus, this section reviews the development process of the FCS. The typical

development process of the FCS is defined in six steps as shown in Figure 10. The first step is

where the mission-related requirements are defined. Then, system specifications and development

specifications are written. System specifications documentation allocates the requirements to

functions. Development specifications defines the performance, interfaces and technical

requirements for items.

After that, the FCS is developed. The first version of FCS built based on the design is the prototype

which is tested using the test means. At the implementation stage, different subsystems of FCS are

integrated and verified. At the production stage, the developed FCSs are verified to ensure that

they are working as good as the prototype. The final stage, fielded system, is post-production and

maintenance service for FCSs in operation. [29]

Figure 10. Life cycle of a typical FCC, adapted from [29]

18

There are different types of tests to verify a FCS. These tests are done in different stages of design

for different purposes. The tests start at subcomponent level and then the complete system.

Subcomponents of FCS are e.g. actuators, FCCs, wiring, etc. which are tested individually and

then combined to ensure that the implemented system works well and subcomponents function

efficiently. A large portion of time and effort in the verification process of the FCS is allocated to

software tests. Since software testing is complex, software is broken into small modules. Each

module is tested individually and then the integrated software is verified. One type of verification

tests common for FCS is the so-called Hardware-In-The-Loop simulation (HIL). At its simplest

level, it is used to verify that the software acts as designed in actual FCC hardware [30].

Another type of testing is the simulation with a so-called Iron Bird, which is higher level than HIL.

In an Iron Bird, all subsystems of FCS (including actuators, electrical power system, etc.) are

integrated and tested. Ground testing with the real aircraft is the tests to verify that the FCS works

efficiently under different conditions and also to ensure that the structure of the aircraft does not

disturb FCC’s performance. The last test is the flight test where the aircraft is fully-developed and

prepared to enter the market [30].

Thales develops the HIL simulator to verify the FCC and a type of test means used in aircraft

ground testing which is the environmental qualification test means.

2.2. Analysis of current process in Thales

No literature is available on the detailed development steps of test means for flight control systems.

This section describes the current process for development of test means at Thales, in general

terms. The current process comprises the following steps:

19

• Step 1: Request of development of the test means

• Step 2: Establishing the specification of the test means

• Step 3: Development of the test means, including trouble shooting

• Step 4: Internal delivery and entry into service

• Step 5: In-service life of test means

Step 1: This first step is initiated and driven by the customer (aircraft manufacturer). The customer

specifies the required features, which should be included in the test means.

Step 2: The needed functions for the test means are defined according to the contract with

customer, the aircraft design and the goal of developing the test means (whether it is an

environmental qualification test means, a conventional one, etc.). Generally, there are two types

of documents for specification of test means.

a. System Specification

This specification explains what we need the test means to have. In other word, it indicates

functions that the test means must have. It also involves a description of the function of the

FCCs.

b. Design Specification

This document gives a description of the elements of the test means and their requirements and

functions. Most of the components are identical in different types of test means. The simulation

20

is different from one project to another. Thus, the difference would be for components doing

simulation.

The process of writing the specification takes around four weeks of full-time work. There would

be two or three iterations to produce the final document. It is written by the test means team and

will be reviewed by the systems team (who designs the flight control computer), the IVV

(Integration, Validation and Verification) team and the quality team.

Step 4: The test means are not delivered to the customers who ordered the flight control computers.

It will be used by the IVV team, which is a team in Thales performing the tests on the flight control

computers.

Step 5: A test means should be in operation for as long as the aircraft, whose flight control systems

is being tested, is in service. After the certification phase of FCC is finished and the FCC is in

service, the test means is used to troubleshoot the FCC. It could be more than twenty years.

There are different phases of testing:

a. Tests before Safety of Flight (SOF): Before a software can be authorized for flight tests

(SOF - Safety of Flight, also named Red Label), all system requirements concerning inputs and

outputs management (especially what is interfacing with other systems), the Control Laws

(CLAW), the System Power-On Self Tests (SPOST), the Crew Alerting System (CAS) must be

tested. Some other tests are optional and dependent on the agreement with the customer (aircraft

manufacturer), such as regression tests, robustness tests or maintenance tests.

21

b. Tests before aircraft certification: These tests are performed before entering into service

(certification, also named Black Label). It is the completion of the optional tests (defined above)

that are performed in the first phase and some additional performance tests.

c. Tests during the service life of the aircraft: In this phase, there are normally less tests to be

performed, but having test means in operation is an obligation.

Currently, the test means design and development begins approximately six months before the first

software of flight control computer is created. During the first two phases, another test rig is usually

required because of the large amount of testing. For the rest of the aircraft life cycle, only one is

needed. That is why it is essential that components of test means be re-usable.

2.2.1. Challenges in current process

There are challenges regarding development of FCC test means. Any of the challenges could result

in increase of the development cost and delays. The following are some of the difficulties

associated with test means building process:

• Since the design of a test means must be compatible with the design of the aircraft, from

one test means to another, the architecture is diverse. Moreover, the mission of the test means and

the customer’s request are also factors that influence configurations of test means. Variety in types

may make the identification of the required and proper architecture difficult to manage.

• As mentioned in previous section (1.4), the development of the FCC and its test means are

done in parallel. For this reason, it is likely that the FCC’s functions and requirements are not

22

completely defined and change through the development process. Once the test means is built,

modifying the system or changing a function would be expensive and lengthy task.

• It might be confusing for the user of the test means (IVV team) to fully understand the

architecture of the test means. As they (IVV team) write the test plan and evaluate the FCC based

on the standards using the test means, it is important that they understand the tasks that the test

means is capable of performing.

2.3. Potential benefits to model-based systems engineering

Based on the current problems of developing the test means, it is expected that a model-based

system engineering (MBSE) approach would be a solution and facilitate the progress. By applying

an MBSE approach, the implementation of the system (test means) is represented in graphical form

in terms of the components and functions. This model would be simple to grasp.

Different MBSE frameworks and tools exist today. The most common ones are UML [31], SysML

[32]. Due to the specific needs of the aerospace systems engineering process, Thales developed its

own methodology and tool, which is now available in the open source as ARCADIA

(methodology) and Capella (tool) [33]. This thesis will use ARCADIA / Capella as MBSE

framework. More details about the underlying methodology a given in section 3.3.1.

2.4. Objective of the thesis

The purpose of this thesis is to improve the efficiency and effectiveness of the test means

development process. The aim is to reduce the development time of the test means, and to be able

to start the test means design earlier.

23

Figure 11 illustrates how the development time of the test means would be different once it is

improved. In improved process, the left wing of the V diagram is slightly more steep which

indicates less time spent on requirements identification and specifications writing. In addition, it

is aimed to start earlier, even before the FCC’s development process starts.

The question is how a generic and re-usable model of the test means architecture would result in

shorter development process. Basically, the generic specification model could address the

challenges mentioned earlier which will affect the total development time.

• The generic model which includes all the components and functions that may or may not

be in one specific test means, gives a wide picture of the whole system. Thus, implementation of

the test means is already modeled when the requirements are being defined.

• The generic model assists to recognize all the potential features that could exist in a specific

type of test means in early stage of design. When the developers are missing a feature, the model

helps them correct the specifications. Moreover, if they are in doubt of what feature will be needed,

they would consider applying all the possible features. It will be a more efficient approach

compared to selecting one of them and ending up reforming entire system.

The next chapter describes the methodology of developing the generic and re-usable model.

Figure 11. Current and improved test means development process

Current process

Optimized process

24

Chapter 3. Methodology

This chapter provides an overview on the methodology employed to develop generic MBSE

approach for test means specification. The different types and associated components of test means

are analyzed and categorized. Finally, an overview of the ARCADIA methodology is given. The

implementation into the Capella tool is discussed in Chapter 4.

3.1. Methodology overview

To achieve the objective of establishing a re-usable specification framework for test means using

model-based systems engineering, an analysis of the different test means is performed. The generic

model needs to include all potential functions and the associated the components that could

potentially exist in a test means architecture. Figure 12 shows an overview of the pursued

methodology. The process starts with test means categorization and continues with analysis of

components. The next step is to create a generic model in Capella and finally managing the generic

model using variability management.

Figure 12. Overview of the methodology steps to develop a re-usable MBSE approach for test means specification

25

The next section explains the first part of the methodology, which is the analysis of the test means

categories and components.

3.2. Analysis of test means types and components

In this section the diverse categories and components of the test means are explained. To

understand the architecture and types of test means it is essential to clarify the purpose and the

associated functions of different test means types. By analyzing eight different test means

developed by Thales such as the Cessna M700, the CRJ 700/900/1000 and by discussing with the

engineers responsible to develop the test means, the following three key tasks are identified:

1. Simulating of aircraft equipment: When the FCC is inside the aircraft, it is interacting with

various systems (dependent on the design of the aircraft). The test means simulates all these

systems.

2. Detecting the response of the FCC under test: To test and troubleshoot the FCC, the

operator (the person who runs the test) needs to detect the response of the FCC. The response is

the command to actuators. Based on the response, the FCC is evaluated.

3. Managing FCC’s software: Another task of test means is to manage the software installed

in FCC. The test means is able to read the signals that are being exchanged inside different channels

of the FCC, to modify the variables, and to calibrate it once there is a change in hardware or

software.

26

Figure 13 shows the test means and its capabilities. The test means substitutes all the systems

that are interacting with the FCC and connects directly to the FCC.

3.2.1. Test Means categories and sub-categories

There are different types of test means for FCCs. To classify them, the terms categories and sub-

categories are introduced.

Figure 14 shows a breakdown of categories and sub-categories of FCC’s test means. Three

categories are proposed and each of them has three sub-categories. The coming sections explain

categories and sub-categories in details.

Figure 13. Overview of test means of flight control system

27

Figure 14. Categories and sub-categories of test means

Any type of test means is classified within only one of the categories. In other words, it is either

single-project, multi-project or environmental qualification. The test means can have multiple sub-

categories. However, single-unit and multi-unit sub-categories cannot exist together. Thus, the

sub-categories in test means are either single-unit, multi-unit, single-unit and actual equipment or

multi-unit and actual equipment.

Test Means Categories:

The term “Category” is referring to the differences that result of the different purpose of building

the test means. There are three categories of test means:

28

1. Single-project test means: A single-project test means is a type of test means that is built for one

specific FCC. The FCC of different projects may comprise different controllers or they could have

the same controllers but with different connection and input/output signals. Therefore, one cannot

replace the other. In other words, one can use the single project FCC only for one specific FCC.

The purpose of having this category is to do tests of one type of aircraft in a certain location (not

transportable). There can be different sub-categories to this category, depending on the type of

aircraft.

2. Multi-project test means: This kind of test means is built to host different type of FCCs. It is

adaptable to different aircraft development projects. Since many tests need to be performed in a

short time frame during the FCC certification phase, the validation and verification team might

need to work simultaneously with two units of the same test means. As it is not possible to manage

that with a single test means, the multi-project test means type is used. Once the certification phase

is over, the multi-project test means can be adapted to other project.

3. Environment qualification test means: This type of test means is the transportable type, which

is to perform environment qualification test on the aircraft. Environment qualification tests are

tests against external conditions. For example perturbations such as lightning or electromagnetic

fields, or other as specified in the DO-160 [34]. It needs to be transported to different locations to

be integrated with other equipment of the aircraft and at a specific laboratory where environment

condition can be reproduced.

Figure 15 compares and illustrates schematically the architecture of different categories of test

means. Figure 15.a shows the test means that is built for one specific project, b shows multi-project

29

test means and c depicts the environmental qualification test means, which has environmental

protection.

Figure 15. Architecture of different categories Figure 16. Architecture of different sub-categories

a) Single-project

b) Multi-project

c) Environmental qualification

a) Single-unit

b) Multi-unit

c) Actual equipment

30

Test Means sub-categories:

Sub-categories are variants of test means features, which can exist in each category. These features

are dependent on the customer’s need and the design of the aircraft under development.

1. Single-Unit Test Means: In single unit test means, there is only one FCC being tested. Usually

fly-by-wire test means have multiple FCCs. However, in some cases, only one FCC is tested. For

example, if there is a new technology introduced to FCC, firstly it can be tested as a single unit

under test. Figure 16.a represents single-unit test means.

2. Multi-Unit Test Means: In this kind of test means, there are several FCC units under test e.g.

two FCCs and one Back-up Flight Control Units (BFCU). Since there are more units under test,

the signals to detect multiply. Moreover, the exchanged signals between units has to be detected

as well. Thus, this kind of test means needs larger test rig. Figure 16.b represents multi-unit test

means.

3. Actual Equipment Test Means: The actual equipment that can be used for FCC’s test means are

actuators and cockpit instruments. In test means with actual equipment, the particular physical

equipment is used instead of a software simulation. Therefore, beside the test rig, where the

harnesses, power supply and simulation computers are installed, actual actuators, which are

powered hydraulically or electrically, and actual cockpit instruments need to be integrated. In

addition, the aerodynamic load acting on flight control surfaces is mimicked by a physical object

pushing against surfaces representing the flight control surfaces. Figure 16 c) represents an actual

equipment test means. In this figure, the actual equipment is shown as a separate system interacting

with the test means. In the model, the actual equipment is considered separated from the test means.

31

However, if there is actual equipment, the test facilities need to be larger for the installation and it

needs to track signals (input and output) of the actual equipment. Thus, it affects the configuration

of test means.

Figure 16 illustrates and compares different sub-categories of test means. Figure 16. a) shows one

single project test means, b) depicts multi-unit test means and c) shows the actual equipment test

means.

3.2.2. Description of test means components

There are different components in test means performing various tasks. In this section, these

components are identified, described and categorized. As a result of analyzing various test means

implementations, Figure 17 presents a generic view of test means components. The components

are categorized as hardware, software, common (blue) and variant (orange). In each test means,

there are three computers: one for equipment simulation, one for data acquisition and one for

software management. In the following, first the various software components are described, then

the hardware components. This high-level description made to provide an understanding of the

components purpose and function, which will be translated into a specification model in chapter

4.

32

3.2.2.1. Overview of software components

There are three groups of software applications used to preform testing and troubleshooting:

environment simulation system, data acquisition system and software management system. The

following explains each group and their functions.

Environment Simulation Computer

This system performs the simulation of the environment that the FCC is interacting with in real

aircraft. There are two kinds of input to the software. The first input is the so-called “scenario file”

which consists of a list of simulation signals, their values and their sequence. The second input is

given by operator, for example, to change the value of signals during a simulation activity. The

simulation control panel is classified into two categories: (a) system panel and (b) sensor panel.

The system panel is used to change the state of the aircraft. The sensor panel is used to modify

data being measured by sensors in order to simulate failures. For example, for air data, there is a

Figure 17. Test means components

33

parameter which represents the state of the airplane such as altitude, speed, etc. There is also sensor

measuring this parameter and generating another parameter. These two parameters must have same

value since they are representing the same thing. These values can be modified separately. Since

the state can affect several sensors, altering the value of one state, would result in having all signals

detected by sensors changed. As the test involves different scenarios, it is required to have value

of only one sensor changed, thus these parameters have been separated. This configuration would

enable the operator to simulate the condition of the sensors failing or put incorrect value to

verify/troubleshoot the system.

In the test means, there are two software allocated to the environment simulation system. One is

the control panel and the other is to perform real-time simulation (section 4.1.3/ [LAB] simulating

signal). As shown in Figure 17, both control panel and real time definition includes variability.

This variability is related to the type of equipment to be simulated which is dependent on the design

of the aircraft and the scope of the test means.

Data Acquisition Computer

Data acquisition system has two software as well. The signal generation, which receives data from

simulation computer and generates the signals which are compatible to FCC and also detects the

response of the FCC.

The other computer, which is a variable, is acquisition and recording tool that detects the response

of the FCC, records them and displays them to operator for test or troubleshooting report.

34

Software Management Computer

The system management system is one computer with several applications. The word “software”

refers to the software that is installed to the FCC. The management system is the part of the test

means which is controlling the FCC by installing new software, modifying the variables, detecting

internal signals, etc. The application of software management systems are:

I. Internal Data Monitoring: This software monitors internal signals. Internal signals are data

being exchanged between different unit under tests (UUT) or different channels or lines of a

UUT. UUT refers to one FCC while system under test (SUT) refers to one or multiple FCCs.

II. Internal Data Modification: This software modifies the internal variables. In the software

uploaded on the FCC, there are some variables in formulas to calculate the actuator

movement. The output of the FCC goes as a signal to actuators to move it. This tool modifies

these variables.

III. Plotting acquired signal: It is used to plot signals, which have been detected. It could be

simulation and response signals acquired by data acquisition system or could be internal

signal detected by internal data monitoring.

IV. Maintenance: This application simulates the maintenance system of the aircraft, which does

the maintenance of FCC. The operator must change the mode of FCC to maintenance and

run this application. Maintenance needs to be done when there is a new version of FCC or

simulated components of aircraft has been replaced.

V. Synoptic: This tool simulates the synoptic information sent by the FCC. It shows the status

of cockpit instrument and control surfaces.

35

VI. Software Management: Changing the software of FCC and getting the version of uploaded

software is done using this application

3.2.2.2. Overview of hardware components

Hardware parts of the test means are shown in Figure 17 in grid boxes. Main components are:

Power Distribution Box (PDB)

Power distribution box is a device that divides the power coming from the power supply to

different components of test means.

Power supply

There are two types of power supply. Electrical one which is used to power the test means and

actual equipment power supply which consists of two types. Hydraulic power supply which is to

power actuators and electrical one is to supply power to actual cockpit instrument and actuators.

Actual equipment installation

The actual instrument itself is considered a separate system interacting with test means (entity).

However, its installation to the test means is part of the architecture and it needs to be part of the

specification.

Environmental protection

Environmental testing is performed to verify the behavior of the FCC in real condition of

operations. The FCC is monitored while being exposed for instance to vibration, extreme

temperature, high-intensity radiated field (HIRF) and lightning. In the case of HIRF and lightning,

the injected signals are propagating along the harnesses, and since the test means must be

36

connected to the FCC to monitor it, they are exposed to same signals. The FCC is protected (the

environmental testing objective is to verify it) but the test means are not. Therefore, protection

needs to be added in the form of diodes between the signal and the ground. When very high

voltages occur, the diodes lead them to the ground and prevent them from reaching the test means.

Break-out Box

The break-out box is a hardware with ports mounted on it for electrical jumpers to read signals or

to inject failure to them without the use of software.

Tray

The tray is a device which exists on the actual aircraft as well. The FCC is placed inside tray. The

harnesses are usually connected to the FCC through tray.

Now that the types, components and implementation of test means are identified, the next step

would be to develop the generic model. The next section discusses the methodology of generating

the generic model and managing variabilities.

3.3. Specification model development

The model was developed following the steps of the ARCADIA methodology. Using Capella tool,

which implements the ARCADIA methodology, a generic model is developed, including all

components and functions that could exist in the architecture. Hence, it is essential for the user to

be able to manage the variants. The methodology regrading the variability management is

explained later in this section.

37

3.3.1 Arcadia

This section provides an overview on the ARCADIA (ARChitecture And Design Integrated

Approach) methodology which Capella is based on. It also explains how variable functions and

components are categorized.

ARCADIA methodology was defined by Thales and has been used since 2011 [35]. There are four

main levels on ARCADIA methodology:

• Operational analysis:

This first level identifies what the users of system must accomplish [35]. At this level, only the

users (which are called entities in ARCADIA methodology) are considered. Functions and

capabilities that the users need to perform are also specified. The system itself remains abstract

[33].

• System analysis:

The purpose of this level is to specify what the system has to accomplish for the users. To do so,

the functions and interfaces of the system need to be identified, considering the system itself as a

black box [35]. Moreover, mission and capability of the system are defined in this level. The

mission is the purpose of the system, while capability refers to the tasks that the system needs to

perform, with respect to the users.

• Logical architecture:

The logical architecture level aims to identify how the system will work to fulfill the expectations,

identified at operational and system level [35]. At the logical level, the specification of the system

38

starts, by identifying the logical components and their relations. The term “logical component”

refers to notional breakdown of the system into the components [36]. In other words, it is not

specified whether it is a hardware or software and whether it is designed by the system developer

or is purchased form a supplier.

• Physical architecture:

Physical architecture level is the last level where the model illustrates “how the system will be

developed and built” [35]. It defines the final architecture of the system [36]. In other words, it is

the representation of the system based on blocks symbolizing functions and components. Functions

and components are modeled in detail. Type of components (hardware, software, computers, etc.)

is specified and functions are allocated to subsystems and components.

Note that the final model in Capella must be consistent which means that each component and

function at any level must be referenced to function or component at higher level. It also needs to

be referenced by lower-level functions and components. Which means, any function or component

that is introduced in any level must exist in lower levels and it is not possible to create a function

or component, which is not represented at upper level in generic form or as a part of another

function/component.

The methodology suggests a top-down approach, but it does not necessarily need to be. For

example, if the system already exists, the purpose of applying model-based system engineering is

to study the architecture. Therefore, the focus would be on logical and physical architecture.

39

There are various types of diagrams available in Capella for representing different aspects of the

system. Depending on the purpose and detail of the model, any of them can be used. For this thesis,

only certain types of diagrams have been employed because the model of the test means is being

developed for the first time and it needs to be focused on the functions, components and the

implementation of the test means. Chapter 4 provides the details of the specification model in

Capella.

3.3.2. Variability management

Nowadays, the size and complexity of systems are increasing. Moreover, the customers are

demanding products that specifically address their segment. This could result in constant increase

of cost of development due to increase of complexity and customer-specific adaptations [37]. As

a result, companies deploy the so-called Product Line Engineering (PLE) technic. “PLE is an

approach that aims at exploiting reuse potential between products developed in an organization

by identifying the commonalities between the products and systematizing the variabilities” [38].

In PLE, “variabilities have to be identified, modeled, stored, resolved, instantiated and changed”.

Thus, they have to be managed through the lifecycle of PLE [38].

All test means share same core functions. However, there are differences in components, sub-

functions and implementations. The variability management is applied to manage the product-

specific features. This section explains the variability management methodology exercised in this

thesis.

The created model in Capella is a generic model, which means it includes all the potential features

that could exist in the system. However, for one specific test means only some of those features

40

are required which means the rest features must be filtered. In this thesis, the word “feature”

indicates functions or components which are defined in the Capella model. Features could be

mandatory or optional. Mandatory features are those which are always in the system. However,

the optional ones are those which only exist as needed.

In the developed model, variability exist at different levels and are of various types (function,

component, etc.). For example, “protect signal” is a function for environmental qualification type

of test means which exists in the system analysis level. However, different types of simulation

function (based on the type of signals) are defined in the physical level which are variant as well.

Therefore, variables need to be defined in different levels.

For defining all the variants of the different modelling levels in Capella, a list is created. This list

includes both mandatory and variable features. Also, the list identifies the feature in different

levels. For example, the feature “power supply” has two sub-features: electrical and actual

equipment power supply. The electrical power supply (controller power supply) is for the test

means, therefore it is mandatory and must be in all types of test means. However, actual equipment

power supply only exists in actual equipment type of test means, thus it is a variable feature. The

actual equipment power supply could be electrical or hydraulical. The purpose of categorizing the

features into different level was to show the hierarchical relationship between them and to simplify

managing it.

After defining the list of features, it must be integrated to the model. For this purpose, they are

allocated to the components and functions in the model. The variant management software used

41

for this project is Pure::Variants [39] and it is linked to Capella with use of an add-on called

Pure:variants connector to Capella [40]. Section 4.2 illustrates variability management model.

The next chapter illustrates various diagrams of Capella in different levels and discusses the

requirement management and document generation from the model.

42

Chapter 4. Model implementation

This chapter illustrates the implementation of the developed generic specification model in

Capella. Moreover, it discusses how the requirements are integrated into the model and

variabilities and commonalities are managed using additional software for variability

management.

4.1. Capella model implementation

As introduced in Section 3.3.1., Capella is a software used for Model Based System Engineering

(MBSE) based on ARCADIA methodology, having four modelling levels: operational analysis,

system analysis, logical architecture and physical architecture. Lower the level, more detailed the

function and components.

This section explains how the specification model for the test means is structured and implemented

using various diagrams in each modelling level of Capella. Note that in this section the word

“system/ system of interest (SOI)” refers to the test means. Moreover, “simulation” refers to

software simulation.

A complete lest of developed diagrams can be found in Appendix A.

4.1.1. Operational analysis level

As explained in section 3.3.1., the purpose of operational analysis level is to identify what the

future users of the system need to accomplish. In other words, it discusses what the users must

execute for the system. In this level, the other systems (called “entities” in Capella) which are

43

interacting with SOI (the system we are modelling), the capabilities of SOI and the activities of

entities are defined. Here the SOI is the test means.

To model the test means at operational level, the following diagrams are selected to represent the

operational analysis:

• [OCB] Operational capability diagram

• [OAB] Operational architecture diagram

For the purpose of modelling the test means, these types of diagrams provide the best platform to

illustrate the architecture of test means. Capabilities and functions of the entities (while interacting

with SOI) and their exchanges are defined using these diagrams.

The activities defined are only between entities. Test means is introduced to the model at the next

level, system level. Functions of test means could be a part of the activities, which have been

defined in this level or be separated.

a. [OCB] Operational capability diagram

Figure 18 shows the operational capability diagram which is used to specify entities, actors and

operational capabilities.

44

Operational capability represents the task that the entities are capable of performing for the system.

Entities are the systems, groups or organizations interacting with SOI. Actors are the people who

are using the SOI. The entities and actor of the test means are:

In Figure 18, system under test is one of the entities. Depending on the test means, the system

under test (SUT) is different. SUT could be a combination of FCCs or a single one. What the SUT

does for the system is to response to the input signal sent by the system. Since the system is

replicating the aircraft environmental behavior, the SUT is acting as it is in an actual aircraft. Thus

its capability is to “act as in actual aircraft”.

The actual equipment is basically the actuators and cockpit instrument which mimics the aircraft’s

instrument like actuators or cockpit instrument. Actual equipment’s installation is a part of test

means (section 3.2.2.) whereas the equipment itself is an entity. They could be parts of SUT along

with FCCs and be tested. If so, their capabilities would be the same as SUT’s. However, if they

are applied to reproduce the aircraft’s environment, their capability would to “replicate equipment

Figure 18. [OCB] Operational capability diagram

45

of aircraft”. Whether the actual equipment is a part of test facilities or it is being tested itself, the

design of the test means is the same.

The operator is the person who operates the test means, gives the inputs and monitors the outputs,

detects the problem, etc. The operator is an actor of the test means.

b. [OAB] Operational architecture diagram

Operational architecture diagram shows the operational activities and the interactions which are

performed by the entities and actors. Operational activities are allocated to entities and actor.

Figure 19 illustrates the activities that each entity and actor is expected to perform while interacting

with the SOI (test means).

Figure 19. [OAB] Operational architecture diagram

46

Operational processes are series of activities and interactions that are performed consecutively to

fulfill a purpose. There are two operational processes shown in Figure 19.

• Verification: Once a new FCC is programmed, it must be tested to assure that it works

correctly and meets the requirements. In Figure 19, the operational process is represented by blue

lines. The process starts by the operator who reads the test procedure, sets the simulation input,

then the FCC responds to the inputs and the operator monitors the response and compare them

with the expected results. Finally, the results are to be documented. If there is actual equipment,

it has to respond to the changes of simulation and will be monitored by the operator.

• Troubleshooting: in case FCC has a problem while it is in operation, the test means is used

to identify the origin of the fault. The exchanged signals would be detected and the problem will

be caught. The process starts with operator running the test. He has the expected results that should

be sent by the FCC (output of FCC). If the response of the test means does not match the expected

result, there is a problem with software. To detect the problem, operator must read the internal

signal of FCCs software using SUT management system. Once the problem is detected, it will be

reported to the system team to be solved. The troubleshooting process is represented by the red

lines in Figure 19.

These two operational processes are the objectives of developing test means. The black lines show

those operational activities that are common between both processes. Basically, for test means

design, there is no difference between these operational activities. But the activities of actor

(operator) are different for each objective. Objectives in operational level are introduced as

missions in system analysis level which will be explained in the next section.

47

4.1.2. System analysis level

In System Analysis level, the tasks of the system while interacting with entities are identified.

System analysis mostly focuses on the functional exchanges of the system and the entities. There

are four types of diagrams used in this level:

• [MCB] Mission and capabilities diagram

• [SAB] System architecture diagram

• [SDFB] System dataflow diagram

• [SFBD] System functional breakdown diagram

a. [MCB] Mission and capabilities diagram

To specify the mission of a system, this question needs to be answered: What customer pays for

when purchasing the system? By this definition, missions of the test means would be

troubleshooting and verification of the SUT. As defined in section 4.1.1., this could be for new

software or hardware of the SUT.

 How does the system realize the mission? Answer to this question will specify the capability.

Capability can also be defined as this: “It is the ability of the system to provide a service that

supports the achievement of high-level operational goals.” [36]

Figure 20 shows the mission and capabilities diagram of test means. Test means has three

capabilities: “simulating signal”, “detecting response” and “managing the SUT”. Simulating signal

is the task of generating the signal input and sending it to SUT. Detecting response refers to the

48

act of receiving the output signals from SUT and running the simulation based on that. Lastly,

managing the SUT consists of several tasks like modifying and detecting the variables of the

software, maintenance, etc. (section 3.2.2.1/ software management computer)

b. [SAB] System architecture diagram

In the system architecture diagram, the functions of the system of interest (test means) and actors

are defined. Note that, according to Capella definition, from system level to physical architecture

level, the word “actor” refers to both “actor” and “entity” defined in operational analysis. To keep

the model consistent, each actor defined in system level is referenced to its counterpart in

operational level.

Figure 20. [MCB] Mission and capabilities diagram

49

To generate well-structured models, for each capability, there are separate diagrams (of same type)

modeled in each level. For example, in system level, there are four diagrams of system architecture

type [SAB]. Three of them are specifically for the capabilities mentioned in Figure 20. The generic

one which is an overview diagram, represents of all these capabilities together, but in high-level

functions.

1. [SAB] General model

2. [SAB] Simulating signal

3. [SAB] Detecting response

4. [SAB] Managing SUT

For example, in general model [SAB] (Figure 22), the high-level function “Simulate Aircraft

Environment” consists of four sub-functions: “Simulate aircraft equipment”, “Simulate

invalidation”, “Simulate internal signal failure” and “simulate power supply”. These sub-functions

are modelled in the [SAB] simulating signal (Figure 23).

Figure 21, is used to specify breakdown relations between functions. In general model, the function

“simulate aircraft environment” is defined as a representative of all sub-functions. However, in

detailed model, sub-functions are employed.

50

[SAB] General model

The general model provides overview of all the functions related to all capabilities together in one

diagram. As the diagram, which contains all sub-functions, makes the model large and hard to

perceive, high-level functions have been introduced in a general model.

An example of the breakdown of a high-level function (“Simulate aircraft equipment”) into detail

is shown in functional breakdown diagram [SFBD], Figure 21.

Figure 21. [SFBD] Functional breakdown of system analysis level

51

Figure 22 shows the model of the system architecture type of diagram. According to this diagram,

test means has six main functions, which will be in more detail in Figure 23 , Figure 24 and Figure

25.

In system level, dark blue blocks represent system of interest while the light blue blocks are the

actors. Moreover, functions are shown with green color. The dotted orange lines represent input

while green ones show the output of the system (SOI or actors). The solid line between test means

and actors represent the “component exchange” between the system. Furthermore, the solid line

between functions represent the “functional exchanges” of the functions of the test means.

Figure 22. [SAB] General model diagram

52

There are six high-level functions for test means: simulation of aircraft environment, signal

acquisition, signal generation, SUT management, SUT management signal generation and

protection. Test means receives the command from operator, sends the simulation data to signal

generation software. Then, it acquires the SUT’s response and sends it back to simulation part (the

function “Simulate aircraft equipment”) to complete simulation loop. Operator also manages

software of SUT by sending command to SUT management system. This system receives the

command and sends the management data to signal generation part and then to SUT. The feedback

on software management from SUT is also recorded by the SUT management system. The

functions defined for the operator are in more detail comparing to what is specified in Figure 19.

[SAB] Simulating signal

Figure 23 shows the functions regarding the capability “Simulating Signal”. To start the process,

there should be a command from the operator. Typically, there are four types of simulation.

a. The Power Supply Simulation is a simulation of the actual power in the aircraft. It can be

electrical and hydraulic power supply. If there are actuators (as actual equipment) in test means,

the hydraulic power supply is employed. Otherwise, only electrical power supply is used for test

means and actual equipment.

b. The Aircraft Equipment Simulation is the simulation of the equipment existing in the

aircraft, interacting with the SUT such as avionics system.

c. The Internal Signal Failure simulation is used to verify the FCC. This function disconnects

the connection between two FCCs.

53

d. The last one is Invalidation Simulation which will create the condition for the SUT to

declare itself invalid, for instance, stop the communication between the command and monitor of

an FCC channel. The simulation is in the form of data. It needs to be converted to signal. This is

done by the function “generate signal”.

If the type of test means is Environmental Qualification, there should be a protection from the

lightening, temperature, etc. Protection is a variable feature, which may or may not exist. Another

variable feature is “Actual Equipment” which represents actuators and cockpit instrument. This

variable feature is an actor.

According to Figure 23, operator changes the input of the simulation (basically starts the

simulation or modify the input), then test means simulates the environment by generating data and

converts the data to signals which is readable for SUT and sends it to the SUT and actual equipment

(if exists). Based on the type of the test means, there might be protection (environmental

qualification test means). Thus, there are two functional exchanges coming from “generate signal”.

One goes to the protect signal and one directly to the SUT and actual equipment. Only one of these

exchanges exist at a time.

54

[SAB] Detecting response

The other capability is the “detecting response” which is represented in Figure 24. There are two

types of signals detected by the test means and displayed to operator: 1) The simulation signal

generated by the test means. 2) The response of SUT. The response signals are read by the operator

to check the performance of the SUT. Plus, these signals are detected to keep the simulation loop

of the environment according to the SUT response. Therefore, a functional exchange exists

Figure 23. [SAB] Simulating signal diagram

55

between the function “Acquire Signal” and the function “Simulate Aircraft Equipment”. In other

words, the response signal is sent to simulation system for the next loop of simulation.

As shown Figure 24 the function “acquire signal” receives signals from SUT and actual equipment

and also from the function “generate signal” which is the simulation signal. In an environmental

qualification test means, there is no detection of response signal. That is why the “protection”,

which is a feature of environmental qualification test means is not included in here. However,

detection of simulation signal exists in environmental qualification test means.

Figure 24. [SAB] Detecting response diagram

56

[SAB] Managing SUT

The capability of managing the SUT software is for modifying the software variable, changing the

software version, reading its variable, etc. which is shown in Figure 25. There are six functions for

management of the SUT. Each function is fulfilled by a separate software. Operator controls the

management through the software control panel. The management data is sent to signal generation

and then the SUT. The response is acquired by the system as well.

c. [SDFB] Functional dataflow diagram

The SDFB type of diagram shows functions and functional exchanges. In system architecture type

of diagram, functional exchanges between test means and other entities are not shown. The

Figure 25. [SAB] Managing SUT diagram

57

dataflow between functions are important to understand as they represent input and output of

functions. Note that green blocks represent functions of test means while blue blocks are for

functions of entities. Same as system architecture type of diagram, there are four diagrams of this

type in the generated specification model.

1. [SDFB] General model

2. [SDFB] Simulating signal

3. [SDFB] Detecting response

4. [SDFB] Managing SUT

Figure 26 shows the dataflow diagram of simulating signal capability. It is the same process as

Figure 23 with same functions except that the functional exchanges are displayed as well. The blue

functions represent actor’s functions, which are allocated to actors in Figure 23 while the green

block are functions of the test means. The process starts with operator running the simulation. The

test means sends the simulation data to signal generation part and then to the SUT and actual

equipment. If there is protection in the architecture, the generated signals would pass through it

before entering SUT.

58

d. [SFBD] System functional breakdown diagram

Functional breakdown diagram represents the hierarchy of functions. It is helpful to represent how

lower level functions are related to a high-level function. In the system level, the two functions.

“Simulate Aircraft Environment” and “Manage SUT” are used in generic model and their subsets

are in detailed model. Figure 27 shows functional breakdown of system analysis. Part of this

diagram is shown in Figure 21.

Figure 26. [SDFB] Simulating signal diagram

59

Figure 27. [SFBD] System functional breakdown diagram

 There are more diagrams modelled in system level which are shown in appendix A. In system

level, the high-level functions and functional exchanges have been defined. Moreover, mission

and capabilities of the test means are identified. The next section discusses the logical level.

60

4.1.3. Logical architecture level

In the logical level, the components of the system and their implementations are modeled and

functions are allocated to them. These components are logical components, meaning that the type

and the quantity of them are not discussed.

In ARCADIA methodology, logical level is where the internal functions are defined. The term

“internal function” refers to the functions that are allocated to different components of the system

of interest (SOI). The functions in this level are specified in more detail. There are three main types

of diagrams that are used in this level.

• [LAB] Logical architecture diagram

• [LDFB] Logical dataflow diagram

• [LFBD] Logical functional breakdown diagram

The logical architecture [LAB] diagram represents the allocation of the functions to components.

The dataflow model, [LDFB], represents the functions and functional exchanges of different

components.

There are several equipment of the aircraft to be simulated. Depending on the mission, only some

of them exist. Hence, the functions of these simulations are separated into more detailed functions

so the variability is managed easier. The breakdown is shown in functional breakdown diagram

[LFBD]. Following sections explain each type in detail.

61

a. [LAB] Logical architecture diagram

Logical Architecture is a diagram consisting of the components and allocated functions. Same as

the system level, modelling all functions and components in one diagram is not feasible. Thus,

there are four different architecture diagrams. These diagrams are similar to those in system level,

except that components are introduced and functions are more specific:

1. [LAB] General model

2. [LAB] Simulating signal

3. [LAB] Detecting response

4. [LAB] Managing SUT

[LAB] General model

The general model involves all the main functions of the system in logical level. The purpose of

this diagram is to have an overview of the logical components and their functions at once. Figure

28 represents all the logical component of the test means and their functions. Within, there are the

main three computers (simulation, acquisition and SUT management), which are explained in

section 3.2.2. Inside each computer, there are blocks, which represent the various software

installed. The components modelled in Figure 28 are representing the components introduced in

Figure 17. Only the power supply is different: here in the logical level, it is defined as one

component. It will be broken into two components at physical level.

62

In general model, all the components are represented. However, type of the components is not

identified. The dark blue blocks represent test means and its components. The light blue blocks

represent actors and green ones are functions.

As the model is consistent, the functions and components introduced at high level must exist in

lower level whether themselves or their derivatives. Moreover, any functions or components that

are in the model must be part of the upper level function/ components. Thus, all the functions

defined here are traced back to system level’s functions. For example, the red-framed blocks

represent the functions that are referenced to the function ”simulate power supply” in Figure 23.

In other words, one function in system level is represented by four functions in logical level.

However, it is possible that a function is not broken in several ones as the levels proceed. Because

the specified function in upper level is elaborative and generic. For instance, all the functions of

SUT management system stayed as represented in system level (Figure 25.).

The defined components are based on the architecture of test means in Thales. For test means

developed by other companies, the logical components might differ slightly. The presented model

can be considered a generic representation of FCC test means.

6
3

Figure 28. [LAB] General model diagram

64

[LAB] Simulating signal

Figure 29 repesents the architecture of “simulating signal” capability in logical level. In logical

level, the simulation function is broken into control panel and real-time. The Equipment

Simulation System consists of two parts: the interface, which enables user to manage the

simulation and the real-time part, where the simulation data are generated.

There are two ways to provide inputs for simulation:

• Using a scenario file: The user prepares the file containing the scenario. The file is loaded

to the simulation system and executed. During the execution, the signals from scenario file cannot

be modified.

• Providing manual input through user interface: the signals, which do not exist in scenario

file are modifiable through control panel while the test is running. For instance, if the operator

wants to simulate aircraft turning at different altitude, the simulation signals of turning are in

scenario files, however, the altitude would be a variable controlled by the operator through the

control panel.

The control panel provides platform for scenario file to be selected and uploaded. It is then

executed and read by the real time simulation.

The function “display feedback” in control panel of simulation system indicates the representation

of simulation data to the operator through control panel.

In this diagram, some of the functions of general model (Figure 28) have been broken into sub-

functions. For example, the black-framed blocks represent the sub-functions of the generic logical

function “Simulate aircraft equipment” in real-time simulation system in Figure 28.

65

As mentioned in section 3.2.2., when there is actual equipment, there should be a separated power

supply for the actual equipment. The type of the power supplies for actual equipment is hydraulic

and electrical. That is why there are two different functions for power sources shown in red-framed

block in Figure 29.

The process starts by operator performing the test through control panel. Simulation data is sent to

real-time part of data acquisition system. Invalidation and power supply simulation signals

proceeds to PDB and others is sent to SUT through “SUT installation”. If there is a protection the

signals pass through that before entering SUT installation (yellow line). If not it goes straight to

SUT installation (black line).

6
6

Figure 29. [LAB] Simulating signal

67

[LAB] Detecting signal

As mentioned in section 4.1.2., there are two types of signal detection. One detection of the

response from the SUT and for detection of the simulation. Figure 30 shows the logical architecture

of “detecting signal” capability which traces back to Figure 24. The function “acquire signal” is

performed by real time part of data acquisition system. It receives both type of signals and sends

them to the control panel of the acquisition system for display. It also sends the response signal to

the simulation system. As explained in system level, the acquisition of SUT’s response does not

exist in environmental protection test means,

 [LAB] Managing SUT

As described in section 4.1.2., the “managing SUT” capability involves six functions. For each

function, there is a software with an interface. Figure 31 shows the logical architecture diagram of

Figure 30. [LAB] Detecting response diagram

68

this capability. Each software is represented by one block and one function. There is a component

called “SUT managing signal server” which has two functions: generation and acquisition of

signals which is the real time part of the SUT management system. In general model (Figure 28)

there is one function representing these two functions which is “generate and acquire SUT

management signal”.

Figure 31. [LAB] Managing SUT diagram

69

b. [LDFB] Functional dataflow diagram

The dataflow type of diagram represents functions and functional exchanges. In logical

architecture type of diagram, functional exchanges between components and between components

and actors are not shown. In dataflow diagrams, all of functional exchanges are shown. Note that

Green blocks represent functions of test means while Blue blocks are for functions of entities.

Same as system level, there are three diagrams of dataflow type modelled in this level which are:

1. [LDFB] Simulating signal

2. [LDFB] Detecting response

3. [LDFB] Managing SUT

 [LDFB] Simulating signal

The Figure 32 represents the difference between the use of the scenario file and the manual input.

In the scenario file simulation, the test means reads and performs the scenario file, then the

command is sent to real time part to produce simulation data. In simulation through control panel,

the command is sent by the operator. In Figure 32, the blue lines represent the procedure of

simulation using control panel while the red line shows the simulation process through scenario

file.

7
0

Figure 32. [LDFB] Scenario file vs. manual simulation

71

[LDFB] Detecting signal

As mentioned earlier, there are two types of signal detection: SUT`s response detection and

simulation signal detection. These two types of detection are shown using functional chains

(functional chain describes a path through the functions) which are explained in this section.

• SUT response detection functional chain

The response signal is sent to the acquisition system (acquire signal function) through the SUT

installation. Then it is recorded and displayed to the operator. Figure 33 represents this procedure.

Figure 33. [LDFB] Detecting response signal

72

• Simulation signal detection functional chain

The simulation data is sent to generation signal and then is acquired by the system to be displayed

to operator. Figure 34 shows this procedure in the “detecting signal” of dataflow type of diagram.

c. [LFBD] Functional breakdown diagram

In the generic model (Figure 28), two functions represent the simulation of equipment: “Control

Aircraft Equipment Simulation” and “Simulate Aircraft Equipment”. Each of these functions is

broken down into four functions in “simulating signal” model. The relations are well defined in

breakdown diagrams. There are two breakdown diagrams at this level. One showing the sub-

functions of “Control Aircraft Equipment Simulation” and one for “Simulate Aircraft Equipment”:

Figure 34. [LDFB] Detecting simulation signal

73

[LFBD] Aircraft equipment simulation breakdown: It is for real-time simulation part is where

the simulation data is generated. The response from SUT is detected by the same part and based

on that new simulation data is calculated and the loop of simulation continues.

[LFBD] Aircraft equipment simulation control breakdown: It is for simulation control of the

equipment simulation system which is the control panel enabling operator to command and receive

the simulation data parameter.

As mentioned in section 3.2.2, there are two types of data to simulate: status and sensor. Status

simulation refers to the simulation of the data like air data (temperature, pressure, etc.) or inertial

reference data (position of the aircraft). Sensor simulation refers to data that is sent to the FCC by

the sensors in aircraft such as cockpit sensor or actuation sensor. Note that some equipment has

both sensor and status simulation. The status and sensor data must have the same value of

parameter. However, as the status affects other sensors, in test means status and sensor data are

separated to be able to change or disable the sensor without changing the status. However,

change/failure of one sensor parameter does not affect the status data and the other sensors. Thus,

they have been separated to avoid conflict. Figure 35 shows the breakdown of the simulation

functions of control panel. At first, the function “control aircraft equipment simulation” is broken

into four sub-functions: status, sensors and their failures. These four are presented in Figure 29.

However, in general model (Figure 28) only the high-level function, “control aircraft equipment

simulation”, is depicted. Cockpit instrument, inertial reference system, actuators and surfaces are

the systems that have both status and sensor part. The air data system, however, is only status and

aircraft system is only sensors.

74

Figure 36 shows the breakdown of functions of real-time simulation . Any function in this diagram

has a counterpart in diagram of Figure 35 which means it exists in both control panel and real time

parts of simulation system.

The logical level concludes with the breakdown diagrams. There are more functions in this level

that can be found in the Appendix A.3. The next level, which is the physical level, involves detail

of functions, specificity of components and their implementation.

Figure 35. [LFBD] Functional breakdown of aircraft equipment simulation control

75

4.1.4. Physical architecture level

Physical level is the last modelling level considered in this proposed specification model. It

involves the highest level of detail. The following diagrams are used in this level:

• [PAB] Physical architecture diagram

• [PDFB] Physical dataflow diagram

• [PFBD] Physical functional breakdown diagram

In this level, the number of each component, their types (node or behavior) are specified. Node

components, which are shown in yellow color, are those components which are not designed by

the developer of the system of interest and are purchased from suppliers. Behavior Components,

shown as blue, are components that are designed by the developer.

Figure 36. [LFBD] Functional breakdown of aircraft equipment simulation

76

For example, the computer case of test means is purchased. Thus, it is a Node component. The

software of the test means is programmed by the developer. therefore, it is a behavior component

(Figure 37).

Following section explains the physical level and the diagrams modelled.

a. [PAB] Physical architecture diagram

This type of diagram, contains the components (Node and Behavior component), functions

allocated to them and functional exchanges. Same as the two previous levels, there are four

diagrams of this type modelled which are:

1. [PAB] General model

2. [PAB] Simulating signal

3. [PAB] Detecting response

4. [PAB] Managing SUT

Figure 37. An example of node and behavioral components

77

[PAB] General model

The general model includes all the actors, components (both behavior and node) and their

functions. Figure 38 shows the general model of physical level.

There are two SUTs and trays in this model. One tray and one SUT are variants. It means, they

only exist in the model if the type of test means is multi-unit. If not, only one of each would be in

configuration, representing single-unit type. There could be three SUTs, as well. However, it has

not been added, since the implementation is the same.

Comparing Figure 38 and Figure 28, it is perceived that the specified components in the models

are the same except for “power supply” and “SUT installation” which are broken into sub-

components. In Figure 38, there are two source of power introduced. One for the test means

(controller) which is a common component and one for actual equipment which is a variant. There

also two functions allocated to actual equipment power supply: hydraulic and electrical. The

hydraulic power supply is for actuators (section 3.2.1.).

As specified in Figure 17, there is a SUT installation which includes different components some

of which are variant. In logical level, the SUT installation is represented as a single component.

However, at this level, it is broken into three components: break-out box and two trays (Figure

39). All these components have the same function, which is to provide installation of SUT to the

test means and to route the signal. However, they are different physical implementations. That is

why they are introduced as a single component in logical level and broken into detail in physical

level.

7
8

Figure 38. [PAB] General model diagram

79

[PAB] Simulating signal

Figure 40 shows the physical architecture for “simulating signal” capability. There are two SUTs

and trays shown in the figure representing the multi SUT test means (one of them is variant). The

installation of SUT to the test means and actual equipment is through the break-out box.

The simulation is controlled by the operator through two control panels: simulation system and

data acquisition system. As shown the data acquisition system’s control panel is for internal signal

failure simulation. The data is sent from real time part of the simulation system to signal

generation. The generated signals move forward to PDB, actual equipment and the SUT passing

the break-out box and trays. If there is a protection, signals move through the protection before

entering the break-out box.

Figure 39. [PAB] General model/ breakdown of the SUT installation component

80

Figure 40. [PAB] Simulating signal diagram

81

In summary, section 4.1 presented an overview of the Capella implementation of the model-based

specification of test means. The specification model spans the operational level, system level,

logical level and physical level. The model starts by specifying the actors and their capability,

determining the mission and capability of test means and high level function. Then, the

components are introduced and functions are allocated to them. Finally, in physical level, there is

a detail representation of the test means architecture and its implementation.

Now that the generic and re-usable model is developed, it is essential to be able to use the model

efficiently for specification. Following section discusses the tools and methods deployed to fulfill

this purpose.

c. [PFBD] Physical functional breakdown diagram

Each simulation function represented in Figure 40 (the black-framed boxes) is broken into sub-

functions in the functional breakdown diagram. For example, the function “simulate aircraft

equipment status behavior” which is shown in red-framed box is broken into several functions as

depicted in Figure 41.

There are five types of equipment status to be simulate. Moreover, there are various types of signal

to simulate. The breakdown diagrams involve each status and type of signal as a separate function.

For example, the cockpit instrument status can be simulated with four different type of signals.

That is why there are four functions regarding this simulation. However, for other types, there are

less form of signals used for simulation.

82

Figure 41. Functional breakdown of "simulate aircraft equipment status behavior" function

83

4.2. Variants management model

As mentioned in section 3.3.2., the developed test means specification model is a generic model

that includes all potential features of various test means types. To manage the variants of the test

means and to efficiently build a specification of a specific test means, a variability management

approach is introduced.

Pure::variants provides the platform for defining different features and linking them to the Capella

model. This section discusses the variability management method applied to the thesis using

Pure::variants.

Pure::Variants is a software linkable to Capella used to develop the feature model and generate

new configuration. In Pure::variants a feature is defined as: “Features are an abstract concept for

describing commonalities and variabilities”. “A feature can be a requirement, a technical function

or function group or a non-functional (quality) characteristic.” [41].

Pure ::Variants enables users to define features, sub-features and it types of the features (whether

it is mandatory, optional, etc.). It also defines the relation between features and sub-features. For

example, one feature could be required by another one, which means that the second feature only

exist if the first one does. Moreover, it provides a graphical representation of the generated

configuration (distinguishes and shows which components and functions are and are not in the

configuration).

There are two models, which have to be created. One is the Feature Model, which is a list of all

the features of the generic model. The other one is Variant Description Model (VDM), which is a

configuration of the features, which will be in a single product.

84

1. The “mandatory” feature represents the commonalities. It represents the feature that must exist

in the system. However, Optional, Or and Alternative features represent variants.

2. The “optional” features represent the variants in the model. Both mandatory and optional type

of features can be sub-features.

3. “Or” and “alternative” features are a group of sub-features which belong to a parent feature. If

the types of the sub-features are Alternative, then Only one of them can be selected for one specific

configuration. However, for “or” type of sub-features, multiple of them can be chosen. Or and

Alternative can only be defined as sub-features. Table 1 shows the sign of these features. Based

on these definitions, the features of the test means are defined as shown in Figure 42.

Table 1. Sign of different type of features

85

Figure 42. Feature model of test means

86

The optional features are defined based on the variant in Figure 17. According to Figure 17, there

are seven optional features in the test means:

Simulation system: the simulation system is a common feature that exists in all type of test means.

However, there are various types of equipment to simulate. Moreover, each system can be

simulated using different type of signals. In the feature list, the simulation system is defined

mandatory, while the equipment to simulate are optional features. For each three type of

equipment, there are a group signals defined that are in “Or” relationship, which means that one

or more of them can be selected for one specific test means. For the other three type of equipment,

there is only one type simulation signal available.

Acquisition and recording: which is a function of data acquisition system along with signal

generation.

Actual equipment power supply: In Figure 42., the “requires” relation indicates the fact that

actual equipment power supply only exists if there is actual equipment.

Break-out box: which is part of the SUT installation system. It does not exist in environmental

qualification test means. That is why it is in conflict with “signal protection” feature.

Signal protection: which is a feature that involves the protection function and component

regarding environmental qualification test means.

Actual equipment: this feature is regarding to actual equipment installation to the test means

which is specified in Figure 17.

Multi SUT: This feature refers to multiple system under tests.

87

Once the feature model is created, the components and functions of the Capella model are allocated

to the proper features. The selection of features for one specific type of test means is performed

through .vdm type of diagram which is discussed in following section.

4.3. Model-based specification process

The objective of the presented thesis is to reduce time of the specification process by creating a

generic and re-usable model. In the previous sections, the various aspects of a new, model-based

approach have been detailed. This section summarizes and illustrates the steps of generating the

specification based on the developed model. Once the feature model is imported to Capella model,

selection of the features can be managed using vdm diagram. Figure 43 depicts the model-based

specification process which is explained in the coming paragraph.

Figure 43. Model-based specification process

Step 1: The features of to-be-built test means has to be specified and chosen in vdm file format in

instance of Pure::Variants in Capella. Figure 44 shows selection of features in variant description

model. For this specific test means, the optional features needed is actual equipment, acquisition

and simulation of aircraft, air data and inertial reference system.

88

Figure 44. Variant editor in Capella

89

Step 2: The variant mode is activated and in each diagram, the functions/components that exist in

the specified architecture are shown differently from those which do not exist. The difference is

shown using transparency. Those which are not in the architecture are less transparent. Figure 45

(same as Figure 38) shows an example of a diagram while the variant mode activated. As it is

depicted, the second SUT and the protection are less transparent. Since they are not in the selected

configuration in Figure 44.

Step 3: In this step, functions and components that are not in the architecture can be removed from

the model. Then, a model is obtained which is consistent and includes all the features needed for

the new project. From the final model, a specification document is generated and handed over to

the test means designer.

Figure 46 shows another example of the process. In the left side of the figure, there is the variant

description model. Based on the selected features, the actual equipment power supply does not

exist in the specific architecture. The right side represents the Capella diagram of physical

Figure 45. A sample of the diagram while variant mode is activated.

90

architecture type. As it is shown, the actual equipment power supply and its functions are less

transparent comparing to controller power supply (power supply of the test means which is

electrical). Using different transparency, the Pure::Variants provides a representation

distinguishing the component existing in a single product from those that do not. The Capella

model shown in Figure 46 in the same as Figure 38. A complete step-by-step approach is described

in the Appendix B.

Figure 46. Example of model-based specification process

91

4.4. Additional aspects for model-based specification

As mentioned in section 2.4, the purpose of the thesis is to optimize the process of test means

development. In addition to variability management, there are other tools used in the model to

facilitate the process of defining a new specification. This section explains the additional aspects.

4.4.1. Linking requirements

As mentioned in section 1.3., the requirements are identified in left hand-side of the V diagram

and the specification is written based on the identified requirements. Requirements are in different

levels and of various types: safety requirements, customer requirements, performance

requirements, etc. [20]. The requirements of test means are also in different levels. Thus, they are

allocated to functions or components at different levels in the Capella model. Some requirements

are not needed to be defined separately as they are included in the architecture of the test means.

Definition of requirements is one of the Capella’s feature. However, it is basic and does not provide

a good platform to manage requirements. Requirements are defined and allocated to functions and

components. At each level, requirements are defined and allocated to elements of that level.

However, it is possible to allocate requirements to components and functions of lower level too.

Figure 47. Sample of requirements shows a sample of requirements of the test means in system

analysis level.

92

It is also possible to link requirement management tools like Doors [42] to Capella model.

However, for this project, the available feature was enough to illustrate the functionality.

4.4.2. Documentation generation

The developed model involves several diagrams in different level. the model needs to be generated

in document format for the users who are not familiar with Capella or do not have access to it.

There are different tools available to generate a document format of the model.

Capella has features itself or provides connection to generate documentation from the developed

model. The type of document that Capella generates is in HTML format. There are other tools like

M2Doc by Obeo which is an open source tool that generates file in MS Word format from the

Capella model [43]. It takes a template of Word file and inserts the screenshots of the diagrams,

the functions/components and their requirements. The HTML format is easier to work with as it

enables the user to navigate through diagrams faster. However, the MS Word is more advisable

for documentation since it is the common format for all documents and enables the user to add or

omit information. Appendix C explains how to generate a document using M2Doc.

Figure 47. Sample of requirements definition in Capella

93

This chapter overviewed the diagrams of Capella in different levels. Moreover, additional aspects

of the model and variability management approach has been discussed. Next chapter discusses the

result and benefits of the created model.

94

Chapter 5. Conclusion and future work

5.1 Summary and conclusion

This thesis aims to improve the development process of test means of flight control computers by

implementing a model-based system engineering approach. This is achieved by first analyzing the

current process of test means development and its challenges, as part of a case study at Thales

Canada. Based on the studies, the current process can become more efficient by creating a generic

and re-usable model that provides an overview of all the potential features and different

implementations of test means. Then, the thesis proceeds to identifying the types of the test means

and their common and variant components. Test means are classified into three categories and

three sub-categories. Each category and sub-category has its own features (function/component).

Finally, the test means are modelled using Capella based on the ARCADIA methodology.

The developed generic model of the test means enables a efficient design process by providing an

overview of the architecture and elements of the test means. Moreover, with use of variant

management software, the model of one specific test means is generated within few minutes. The

generated model covers four levels, starting by the mission and external system interacting with

the test means, to the detailed functions and component while it is consistent in all levels.

Another result of the project is the complete analysis on test means architecture and categorization

of different types of test means based on their missions, functions and components. The categories

and sub-categories are defined and used in variant management tool, which eases the process of

identifying the required features for test means.

95

There are two benefits of the developed generic model in test means development: more efficient

and effective specification process by reducing the time and ambiguity. As it was explained in

section 2.4. Objective of the thesis, the developed model aims to reduce the specification process.

Having the model alleviates the challenge of identifying the needed features in to-be-built test

means. Therefore, the process becomes faster. Furthermore, the categorization of various types

provides a clear overview of the different possible implementation for test means, which eliminates

any vagueness about the architecture.

However, the model has not yet been applied in design process of a new test means. Hence, the

benefits are predicted, not proven. There are potentially more benefits. For example, the generic

and consistent model assist members of the test means team with different tasks to have a better

knowledge of the system they are developing.

In general, the developed specification model is valid beyond its application in Thales; it is generic

enough to be considered valuable for the development of test means for flight control computers.

5.2 Future work

In terms of the Capella model, additional diagrams can be generated to improve the specification

of test means and to ease subsequent activities such as validation and verification. For example,

scenario diagrams (which indicates the sequence of functions happening), interface diagrams

(which provides information on what is being exchanged between functions), data models, etc. can

be explored in the future. Moreover, components and functions can be modeled in more detail.

The same applies to the Pure Variants model.

96

For generating the MS Word file from the model, the template was written according to the M2Doc

1.0.0. This template enables automatic generation of reports, but it not very user-friendly. Future

versions of M2Doc will provide more features to manage the document more efficiently.

In conclusion, this project is the first step towards model-based development of test means. As

such, it provides a starting point for more efficient test means development.

97

References

[1] J. Schmidt, “A Major Aerospace Concern: Manufacturing Delays And Ways To Solve

Them.” [Online]. Available: https://www.manufacturing.net/article/2014/02/major-

aerospace-concern-manufacturing-delays-and-ways-solve-them. [Accessed: 03-Mar-

2019].

[2] Telegraph;, “Boeing 787 Dreamliner: a timeline of problems,” Jul-. [Online]. Available:

https://www.telegraph.co.uk/travel/comment/Boeing-787-Dreamliner-a-timeline-of-

problems/. [Accessed: 03-Mar-2019].

[3] J.-C. Mare, Aerospace Actuators 2: Signal-by-Wire and Power-by-Wire. John Wiley &

Sons, 2017.

[4] R. Fielding, C; Luckner, “Flight Control Systems,” W. Pratt, Ed. 2012.

[5] H. Al-lami, A. Aslam, T. Quigley, J. Lewis, R. Mercer, and P. Shukla, “The Evolution of

Flight Control Systems Technology Development, System Architecture and Operation,”

2015.

[6] J. P. Sutherland, “Fly-By-Wire Flight Control Systems,” 1968.

[7] G. Bartley F., “Boeing 777: Fly-by-wire Flight Controls,” in The Avionics Handbook,

2001.

[8] United States Federal Aviation Administration, Pilot’s Handbook of Aeronautical

Knowledge. Washington, D.C: U.S. Dept. of Transportation, Federal Aviation

Administration, 2016.

[9] EclipseAerospace, “ECLIPSE 500 Aircraft Overview.”

[10] A. Garg, R. I. Linda, and T. Chowdhury, “Evolution of Aircraft Flight Control System and

Fly-By-Light Flight Control System,” Certif. J., vol. 3, no. 12, 2013.

[11] I. Moir, A. Seabridge, and M. Jukes, Civil Avionics Systems, 2nd ed. 2013.

[12] E. Uzuncaova and M. Ayala, “Boeing 777 Flight Control System,” pp. 1–16, 2003.

98

[13] “Flight Control Computers | Flight Control Systems.” [Online]. Available:

https://www.curtisswrightds.com/applications/aerospace/mission-management/flight-

control.html. [Accessed: 06-Mar-2019].

[14] “System Specification Airbus A330/A340 Flight Control System Contents,” 2001.

[15] Airbus, “A330 Flight Crew Operating Manual - Flight Controls.”

[16] I. Moir and A. Seabridge, Aircraft Systems, 3rd ed. John Wiley & Sons, 2008.

[17] D. Briere and P. Traverse, “Airbus A320/A330/A340 Electrical Flight Controls,” pp. 616–

623, 1993.

[18] J. D. Aplin, “Primary flight computers for the Boeing 777,” Microprocess. Microsyst., pp.

473–478, 1997.

[19] D. McLean, Automatic Flight Control Systems, 1st ed. United Kingdom: Prentice Hall

International, 1990.

[20] Society of Automotive Engineers, “Guidelines For Development Of Civil Aircraft and

Systems,” 2010.

[21] A. Moir, Ian; Seabridge, Design and Development of Transport Aircraft Systems, Second

Edi. 2013.

[22] “Verification vs Validation - Software Testing Fundamentals.” [Online]. Available:

http://softwaretestingfundamentals.com/verification-vs-validation/. [Accessed: 11-Mar-

2019].

[23] A. Kossiakoff, W. Sweet, and S. Seymour, Systems Engineering: Principles and Practice,

2nd ed. 2003.

[24] RTCA, “Software Considerations in Airborne Systems and Equipment Certification,”

2012.

[25] NASA, “NASA Systems Engineering Handbook,” 2007.

[26] Department of Defence, “Military Standard Engineering Management,” 1974.

[27] INCOSE, “Systems engineering vision 2020,” 2007.

99

[28] C. Piaszczyk, “Model Based Systems Engineering with Department of Defense

Architectural Framework,” 2011.

[29] G. Belcher, D. McIver, and K. Szalai, “Validation of Critical Flight Control Systems,”

1991.

[30] F. Webster and T. D. Smith, “Flying Qualities Flight Testing of Digital Flight Control

Systems,” 2001.

[31] “What is UML | Unified Modeling Language.” [Online]. Available:

https://www.uml.org/what-is-uml.htm. [Accessed: 14-Apr-2019].

[32] “SysML Open Source Project - What is SysML? Who created SysML?” [Online].

Available: https://sysml.org/. [Accessed: 14-Apr-2019].

[33] J.-L. Viorin, Model-based System and Architecture Engineering with the Arcadia Method.

ISTE Press Ltd, Elsevier Ltd, 2018.

[34] RTCA, “Environmental Conditions and Test Procedures for Airborne Equipment,” 2010.

[35] P. Roques, Systems Architecture Modeling with the Arcadia Method, 1st ed. United

Kingdom: ISTE Press and Elsevier, 2018.

[36] THALES GLOBAL SERVICES., “Capella Guide,” 2017.

[37] R. Capilla, J. Bosch, and K. C. Kang, Eds., Systems and software variability management:

Concepts, tools and experiences. 2013.

[38] K. Schmid and I. John, “A customizable approach to full lifecycle variability

management,” pp. 259–284, 2004.

[39] “pure-systems - The leading provider of software for product line and variant management

tools | pure::variants.” [Online]. Available: https://www.pure-systems.com/products/pure-

variants-9.html. [Accessed: 15-Mar-2019].

[40] pure-systems GmbH, “pure :: variants Connector for Capella Manual,” 2017.

[41] pure-systems GmbH, “pure :: variants User ’ s Guide,” 2017.

[42] “Overview of Rational DOORS.” [Online]. Available:

100

https://www.ibm.com/support/knowledgecenter/en/SSYQBZ_9.6.1/com.ibm.doors.require

ments.doc/topics/c_welcome.html. [Accessed: 10-Apr-2019].

[43] “Reference Documentation - M2Doc.” [Online]. Available: http://www.m2doc.org/ref-

doc/nightly/index#overview. [Accessed: 05-Apr-2019].

[44] “Cessna Citation Sovereign Flight Controls,” 2017.

[45] “Flight Control System | pritamashutosh.” [Online]. Available:

https://pritamashutosh.wordpress.com/2012/11/17/flight-control-system/. [Accessed: 04-

Mar-2019].

[46] Aviation Dictionary, “fly-by-light.” [Online]. Available:

http://aviation_dictionary.enacademic.com/2976/fly-by-light. [Accessed: 05-Mar-2019].

101

Appendix A: Capella diagrams

This section provides an overview of all the diagrams in Capella model developed for this thesis.

There are different types of diagrams for various purposes available in Capella. For example,

scenario diagram which provides an overview of the sequence of functions or breakdown diagrams

which specifies the sub-functions of functions. Based on the system of interest, some or all of them

are used.

A.1. Operational analysis

The first level of ARCADIA methodology where the users of the system’s capabilities and

activities are identified. There are two diagrams for this level.

A.1.1. Operational capabilities [OCB]

Operational capabilities diagram shows the entities and actors of the system. Moreover, it identifies

the capabilities of them. “operational capability” is the term used in Capella to refer to capabilities

of the system stakeholders (OC). Figure A. 1 shows the operational capability diagram.

102

Figure A. 1. Operational capability diagram [OCB]

A.1.2. Operational architecture [OAB]

This diagram depicts the operational activities which are the activities performed by actors and

entities. Figure A. 2 shows the operational architecture diagram.

103

Figure A. 2. Operational architecture diagram [OAB]

A.2. System analysis

This level introduces the system to the model and defines its high level functions.

A.2.1. Missions and capabilities [MCB]

This diagram specifies the missions and capabilities of the test means. Figure A. 3 shows this

diagram. Entities and actors of the operational level (previous level) are all considered actors in

system level.

104

Figure A. 3. Mission and capabilities diagram [MCB]

A.2.2. System architecture [SAB]

This kind of diagram illustrates the relation of the test means and its actors and allocate the

functions of actors and the test means to them.

There are four diagrams of this type in the developed model:

A.2.2.1. General model

The general model involve the high level functions of the test means. Figure A. 4 shows the general

model of system architecture type of diagram.

105

Figure A. 4. General model diagram [SAB]

A.2.2.2. Simulating signal [SAB]

This diagram illustrates the process of simulation with four high-level simulation functions of test

means. Figure A. 5 the simulating signal diagram of system architecture type.

106

Figure A. 5. Simulating signal diagram [SAB]

A.2.2.3. Detecting signal [SAB]

This action is for detecting the response signal of the SUT. These signals would be read by the

operator to check the SUT and also would be detected to keep the simulation of the environment

which is according to the SUT response. Therefore, there is a functional exchange between the

“acquire signal” and “simulate aircraft equipment”. Figure A. 6 shows the detecting signal diagram

of system architecture type.

107

Figure A. 6. Detecting response diagram [SAB]

A.2.2.4. Managing SUT [SAB]

Figure A. 7. Managing SUT diagram [SAB]

108

Figure A. 7 shows the managing SUT diagram of system architecture type.

A.2.3. Functional dataflow [SDFB]

This type of diagram depicts the functions and functional exchanges. Sam as architecture type,

there are four types of this diagram as well.

A.2.3.1. General signal [SDFB]

The general model of dataflow type depicts the functional exchanges of the functions defined in

Figure A. 4.

Figure A. 8. General model diagram [SDFB]

109

A.2.3.2. Simulating signal [SDFB]

The simulating signal diagram of dataflow type is shown in Figure A. 9.. This diagram show the

functional exchanges of Figure A. 5..

Figure A. 9. Simulating signal diagram [SDFB]

110

A.2.3.3. Detecting response [SDFB]

The detecting response diagram of dataflow type is shown in Figure A. 10. This diagram show

the functional exchanges of Figure A. 6..

Figure A. 10. Detecting response diagram [SDFB]

A.2.3.4. Managing SUT [SDFB]

The managing SUT diagram of dataflow type is shown in Figure A. 11. This diagram show the

functional exchanges of Figure A. 7..

111

Figure A. 11. Managing SUT [SDFB]

A.2.4. Functional breakdown [SFBD]

Functional breakdown diagram shows the sub-functions of the high level functions. High level

functions are mostly used in genera model while the sub-functions are used in detail diagrams

which are for specific capability.

112

Figure A. 12. System functional breakdown diagram [SFBD]

A.3. Logical architecture

Logical Architecture is a diagram consisting the components and allocated functions. It is the most

completed diagram. Since having all functions and components in one diagram is not feasible,

there are four different architecture diagrams. These diagrams are similar to those in upper level,

but in more detail. There are three types of diagrams used in this level to model the test means.

113

A.3.1. Logical architecture [LAB]

Logical architecture type of diagram specifies the components and allocates the functions of each

component to it.

A.3.1.1. General model [LAB]

The general model involves all the main functions of the system in logical level. The purpose of

this diagram is to have an overview of the logical components and their function at once. Figure

A. 13 represents all the logical component of the test means and their functions.

 Figure A. 13. General model diagram [LAB]

114

A.3.1.2. Simulating signal [LAB]

Figure A. 14 represents the architecture of “Simulating Signal” capability in logical level.

Figure A. 14. Simulating signal diagram [LAB]

115

A.3.1.3. Detecting signal [LAB]

Figure A. 15. Detecting response diagram [LAB]

116

A.3.1.4. Managing SUT [LAB]

Figure A. 16. Managing SUT diagram [LAB]

A.3.2. Logical dataflow [LDFB]

Dataflow diagram shows the functional exchanges between the functions allocated to components

in architecture diagram.

A.3.2.1. Simulating signal [LDFB]

The simulating signal diagram of dataflow type in logical level is shown in Figure A. 17. This

diagram show the functional exchanges of Figure A. 5.

1
1

7

Figure A. 17. Simulating signal diagram [LDFB]

118

A.3.2.2. Detecting response [LDFB]

The detecting response diagram of dataflow type in logical level is shown in Figure A. 18.. This

diagram show the functional exchanges of Figure A. 5..

Figure A. 18. Detecting response diagram [LDFB]

A.3.2.3. Managing SUT [LDFB]

The managing SUT diagram of dataflow type in logical level is shown in Figure A. 19. This

diagram show the functional exchanges of Figure A. 16..

119

Figure A. 19. Managing SUT diagram [LDFB]

120

A.3.3. Logical breakdown [LFBD]

Figure A. 20.Functional breakdown of aircraft equipment simulation control [LFBD]

Figure A. 21. Functional breakdown of aircraft equipment simulation [LFBD]

121

A.4. Physical architecture

Physical level is the last level of the model. It involves the highest level of detail of the model.

Diagrams which are used in this level, are physical architecture [PAB], physical dataflow [PDFB]

and functional breakdown diagram [PFBD]. The number of each component, their types (node or

behavior) are determined in this level.

A.4.1. Physical architecture [PAB]

Physical architecture type of diagram depicts the components, their types, implementations and

quantity. There are four diagram of this type modeled in physical level.

A.4.1.1. General model [PAB]

The general model includes all the actors, components (both behavior an node) and their functions.

Figure A. 22 shows the general model of physical level (The same picture as Figure 38).

122

Figure A. 22. General model diagram [PAB]

123

A.4.1.2. Simulating signal [PAB]

Figure A. 23. Simulating signal diagram [PAB]

124

A.4.1.3. Detecting response [PAB]

Figure A. 24. Detecting response diagram [PAB]

125

A.4.1.4. Managing SUT [PAB]

Figure A. 25. Managing SUT diagram [PAB]

A.4.2. Physical dataflow [PDFB]

Dataflow diagram shows the functional exchanges between the functions allocated to components

in architecture diagram (section A.4.1.). At this level, there are two diagrams of this type modelled.

A.4.2.1. Simulating signal [PDFB]

The simulating signal diagram of dataflow type in physical level is shown in Figure A. 26.. This

diagram show the functional exchanges of Figure A. 5..

126

Figure A. 26. Simulating signal diagram [PDFB]

A.4.2.2. Detecting response [PDFB]

The detecting response diagram of dataflow type in physical level is shown in Figure A. 27.. This

diagram show the functional exchanges of Figure A. 24..

127

Figure A. 27. Detecting response diagram [PDFB]

128

A.4.3. Physical functional breakdown [PFBD]

There are eight breakdown of functions in the physical level.

Figure A. 28. Control aircraft equipment status simulation breakdown diagram [PFBD]

Figure A. 29. Control aircraft equipment sensor simulation breakdown diagram [PFBD]

129

Figure A. 30. Control aircraft equipment status failure simulation breakdown diagram [PFBD]

Figure A. 31. Control aircraft equipment sensor failure simulation breakdown diagram [PFBD]

130

Figure A. 32. Aircraft equipment status simulation breakdown diagram [PFBD]

Figure A. 33. Aircraft equipment sensor simulation breakdown diagram [PFBD]

131

Figure A. 34. Aircraft equipment status failure simulation breakdown diagram [PFBD]

Figure A. 35. Figure A. 34. Aircraft equipment sensor failure simulation breakdown diagram [PFBD]

132

Appendix B: How to select a configuration in Pure::Variants

The general model consists of all the features (components, functions and entities) that could exist

in the test means. To generate a new model, which means the selection of features needed in the

test means, the pure variants is used. There are tow ways to define a new configuration. 1) using

the Pure Variants. 2) using the instance of Pure Variants in Capella (Mappings view). In this

section, both of these approaches are discussed.

B.1. Pure Variants

The first step to choose the features is to open a .vdm file (Variant Description Model file type) in

the project. There are several modes available in Pure Variants. To manage the modes:

Windows → Open Perspective → Other

133

To generate a VDM, the “Variant Management” mode must be enabled.

In the top-right corner of the Pure Variants window,

the selected mode can be checked. Then, right-click on the project “TestMeans” in “Variants

Project” view → New → Configuration Space. Note that in other modes will not able you to create

a “Configuration Space”.

Right-click on the configuration space file → New → Variant Model. this is the “vdm” file. When

it is opened, the desired configuration can be selected. Mandatory features are already in the

configuration, there is no need to select them. Then, save the file and import copy the project in

Capella workspace. To import it: File → import → Existing projects into Workspace → Browse

→ find the workspace and select the Pure Variants project.

Then, open the Mappings view in Capella.

Windows → Show View → Other → Variant Management → Mappings

Figure B. 1 Perspectives in Pure Variants.

134

B.2. Mappings view in Capella

Mappings view only enables you to edit the file. In other words, it is not possible to create a VDM

type of file using Mappings view. The file must be already created in Pure Variants and imported

to Capella workspace.

Then, open the Mappings view in Capella.

Windows → Show View → Other → Variant Management → Mappings

Appendix C: How to use M2Doc

M2Doc is an add-on of Capella that enables the user to generate a Microsoft Word type of file

from the model. To generate the document, a template must be created which means a simple MS

Word file must be coded. To do so, open a new Word. Click Alt+F9 to change the mode to the

coding mode. After coding it, save the file in the project file in Capella’s workspace. The add-on

needs one other Word file to generate the document. Therefore, there should be two Word files in

the project. One the template (the coded) and one other is a blank file which the model document

will be generated in.

After creating the template and the blank files inside project, refresh the project in Capella.

Right-click on the project in Project Explorer window in Capella → Refresh. Now the Word files

must be visible.

135

The template must become compatible to Capella. To do that, follow the following procedure:

1. Open the template file in M2Doc editor: right-click on the template file → Open with → Other

→ M2Doc Template Editor. The opened window has three sections as shown in Figure C. 1

2. Right-click in on “Package nsURI” section → Add → search “ *Capella” and select all the

found packages.

3. Right-click on the first block (variables) → Add missing variables. (it will automatically find

variables from the word file. Then you need to define the type of variable by selecting a eClass

from Capella data model). for the template the missing variable was

“capellamodeller::SystemEngineering”.

4. Close the M2Doc editor and right-click on the template Word file in project explorer → Initial

Documentation Configurations. A .genconf type of file has been generated. Click on it to get it

open. The opened view is shown in Figure C. 2.

5. in “Destination URL” part, determine the destination file (the Word file which you want the

model to be generated in).

6. In the selection tab (at the bottom of the window), in resource set, do right click → Load

Resource → browse workspace → select the .melodymodeller file of the project.

7. Back in the overview tab, set the variable value: you have to select by hand the model element

corresponding to your variable base on the type declared at step 3 (you will be offered the choice

only between the model elements matching the type previously selected).

8. Convert your project in modeling project. Right click on the project folder → configure →

convert to modeling project

9. In the option block of the .genconf file, right click → Initialize Option.

136

Figure C. 1. . M2Doc template editor

Figure C. 2. Generated configuration file view in Capella

