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Abstract

Recent research has shown that global quadratic hedging, also known as variance-optimal

hedging and mean-variance hedging, can significantly reduce the risk of hedging call and put

options with long-term maturities (one year or more), such as Long-Term Equity AnticiPa-

tion Securities (LEAPS). We propose a modification to global quadratic hedging that is more

profitable on average to the hedger without substantially increasing his downside hedging

risk, if at all. We prove mathematically that the expected terminal hedging gain of our mod-

ified strategy is greater than that of the global quadratic hedging strategy. The performance

of our strategy is evaluated under simulated return paths from GARCH, regime-switching

and jump-diffusion models, and under empirical S&P 500 return paths.
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1 Introduction

Global quadratic hedging, also known as variance-optimal hedging and mean-variance hedg-

ing, is an alternative to delta hedging that was proposed in the seminal contribution of

Schweizer (1995) to more appropriately address the hedging problem in incomplete markets.

Augustyniak et al. (2017) recently showed that this hedging strategy can significantly reduce

the risk of hedging European call and put options with long-term maturities (one year or

more). Its use is therefore advocated for hedging Long-Term Equity AnticiPation Securities

(LEAPS), which are actively traded call and put options on the Chicago Board Options

Exchange (CBOE) that expire two to three years from their issuance.

The objective of global quadratic hedging is to find a self-financing trading strategy that

minimizes the expected value of the squared terminal hedging error, defined as the squared

shortfall between the payoff of the derivative and the terminal value of the self-financing

hedging portfolio. The mathematical solution to this problem in a discrete time setting is

obtained via a recursive scheme based on explicit expressions derived by Schweizer (1995).

The availability of these expressions follows from the use of a quadratic penalty function

in the optimization problem and considerably simplifies the strategy’s implementation by

way of dynamic programming (see Bertsimas et al., 2001; Černý, 2004). However, the use

of a quadratic criterion also leads to an undesirable feature from a practical perspective:

hedging gains are penalized in the same way as hedging losses. In other words, the strategy

is aimed at replicating the derivative’s payoff with minimal error, and sees discrepancies

as bad even if they are to the advantage of the hedger. Hence, after a period of hedging

gains, the strategy will put undue pressure to lose money. Although it is possible to solve

the underlying optimization problem under a non-quadratic penalty function, implementing

such a strategy is much more involved computationally, as illustrated by François et al.

(2014). Moreover, Augustyniak et al. (2017) showed that global quadratic hedging performs

well in reducing the downside risk of hedging, as measured for example by the 95% Value at

Risk (VaR) of the terminal hedging error. It must also be noted that in a complete market,
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global quadratic hedging allows us to recover the riskless self-financing hedging strategy.

The main contribution of this article is to propose a modification to global quadratic

hedging that reduces the adverse effects of using a quadratic penalty function. This strategy

is more profitable on average to the hedger without substantially increasing his downside

hedging risk, if at all. The main idea is to withdraw the hedging gain each time the value

of the hedging portfolio is above that of the contingent claim and to reset the strategy.

We prove mathematically that the expected terminal hedging gain of our modified strategy

is greater than that of the global quadratic hedging strategy so that our strategy is more

profitable on average. Moreover, the proposed modification does not come at an increased

computational cost.

The paper is structured as follows. Section 2 introduces our modified global quadratic

hedging strategy, discusses its properties, and explains how it can be implemented in prac-

tice. Section 3 illustrates the performance of our strategy under simulated return paths from

GARCH, regime-switching and jump-diffusion models, whereas Section 4 repeats this anal-

ysis on empirical S&P 500 return data covering the period 2008–2018. Section 5 concludes.

Detailed proofs of mathematical results are provided in appendix.

2 Modified global quadratic hedging

Let (Ω,F ,P) be a probability space endowed with a filtration {Ft}t=0,1,...,T that satisfies the

usual conditions, where P denotes the physical (real-world, objective) probability measure.

Consider a non-negative square-integrable adapted stochastic process X := {Xt}t=0,1,...,T and

assume that Xt is the time-t discounted value to time 0 of a tradable risky asset for t ≥ 0.

Moreover, suppose that the financial market is frictionless and arbitrage-free and assume the

existence of some riskless asset whose discounted value to time 0 is 1 at all times.

Remark 1. All value processes introduced in Section 2 are expressed in discounted units to

time 0. The discounting factor corresponds to the value of the riskless asset, in other words,
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asset prices are expressed in terms of the money market account numeraire. This set-up is

standard in the quadratic hedging literature and allows for a simplified exposition.

We define the set of admissible trading strategies by

Θ :=
{
{θt}t=1,...,T | θt ∈ Ft−1 and θt∆Xt ∈ L2(P) for all t = 1, . . . , T

}
,

where ∆Xt := Xt − Xt−1 and θt represents the number of risky asset shares held over the

time period (t−1, t]. Moreover, let Θn denote a subset of Θ such that, for n = 0, 1, . . . , T−1,

Θn :=
{
{θt}t=n+1,...,T | θt ∈ Ft−1 and θt∆Xt ∈ L2(P) for all t = n+ 1, . . . , T

}
.

For a trading strategy θ ∈ Θt and c ∈ R we define, for t = 0, 1, . . . , T − 1:

Vt,t(c, θ) := c,

Vt,n(c, θ) := c+
n∑

k=t+1

θk∆Xk, n = t+ 1, . . . , T.

In particular, Vt,T (c, θ) corresponds to the time-T discounted value of a self-financing port-

folio with trading strategy θ initiated at time t with a discounted capital of c. The term
∑T

k=t+1 θk∆Xk describes the process of discounted trading gains between times t and T .

2.1 Global quadratic hedging

Let H be the discounted payoff of a contingent claim, that is, H is a FT -measurable random

variable in L2(P). The global quadratic hedging portfolio is the pair (V ∗0 , ξ
∗) ∈ R× Θ that

solves

min
(c,θ)∈R×Θ

E
[
{H − V0,T (c, θ)}2] . (1)
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Since the solution (V ∗0 , ξ
∗) satisfies (see Schweizer, 1995, remark (3) on p. 17)

E[V0,T (V ∗0 , ξ
∗)] = E[H], (2)

a hedger following this strategy is not expected to make a profit as his terminal hedging

gain, V0,T (V ∗0 , ξ
∗) − H, is zero on average. Schweizer (1995) showed that the solution to

optimization problem (1) exists if

∃ζ ∈ (0, 1) such that ∀t = 1, . . . , T : (E [∆Xt | Ft−1])2 ≤ ζE
[
(∆Xt)

2 | Ft−1

]
a.s.

This assumption is known as the non-degeneracy condition and we assume it to hold through-

out the paper.

Moreover, let

Vt := V0,t(V
∗

0 , ξ
∗), t = 0, 1, . . . , T.

In particular, for t = 1, . . . , T , we have Vt = V ∗0 +
∑t

k=1 ξ
∗
k∆Xk, where ξ∗t is the element

of ξ∗ that represents the optimal position in the risky asset established at time t − 1 for a

global quadratic hedging portfolio initiated at time 0 with a capital of V ∗0 . From Bellman’s

principle of optimality, ξ∗t must satisfy ξ∗t = ξt(Vt−1), where for z ∈ Ft−1,

ξt(z) := arg min
φ



min
θ∈Θt

E



{
H −

(
z + φ∆Xt +

T∑

k=t+1

θk∆Xk

)}2
∣∣∣∣∣∣
Ft−1





 . (3)

Theorem 2.4 of Schweizer (1995) shows that ξt(z) can be expressed as

ξt(z) = %t − βtz, t = 1, . . . , T, (4)

where % := {%t}t=1,...,T and β := {βt}t=1,...,T are predictable processes defined in Equa-
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tions (19)–(22) of Appendix A. In Section 2.5, we explain how to compute the coefficients

%t and βt by way of dynamic programming.

Remark 2. The meaning of ξt(z) in our paper differs slightly from the one of symbol ξ
(c)
t

used in Schweizer (1995, Theorem 2.4). In our paper, ξt(z) represents the optimal global

quadratic hedging position established at time t − 1 assuming a discounted capital of z at

time t − 1, whereas in Schweizer (1995, Theorem 2.4), the symbol ξ
(c)
t assumes a capital of

c at time 0.

2.2 Modified strategy

As already alluded to in the introduction, the global quadratic hedging strategy, although

convenient from a mathematical and computational standpoint, has the drawback of pe-

nalizing terminal hedging gains. In Definition 1 below, we propose a modification to this

strategy that will be shown to reduce some of the adverse effects associated with the under-

lying quadratic penalty function at no additional computational cost. The main idea behind

our modified strategy is to reset the global quadratic hedging strategy at each time t when

the value of the hedging portfolio rises above an optimal capital value V ∗t , defined as

V ∗t := arg min
c

{
min
θ∈Θt

E
[
{H − Vt,T (c, θ)}2 | Ft

]}
, t = 1, . . . , T − 1,

and set aside the surplus.

Remark 3. V ∗t corresponds to the optimal capital for a global quadratic hedging strategy

initiated at time t. Schweizer (1995) explains that it can be interpreted as the time-t price

of the contingent claim computed under a so-called variance-optimal martingale measure.

Unfortunately, this interpretation suffers from the fact that this measure is generally signed

in the discrete time setting, which implies that it does not typically produce a legitimate

pricing kernel. Nevertheless, as stated by Rémillard and Rubenthaler (2013), V ∗t is still the

“optimal investment at period t, so that the value of the portfolio at period T is as close
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as possible to H, in terms of mean square error.” Therefore, in some sense, V ∗t is our best

approximation at time t of the value of the contingent claim.

Definition 1 (Modified global quadratic hedging). The modified global quadratic hedging

portfolio starts with a capital of Z0 := V ∗0 and takes a position in the risky asset of ξt(Zt−1)

at time t− 1, for t = 1, . . . , T , where

Zt := min(V ∗t , Zt−1 + ξt(Zt−1)∆Xt), t = 1, . . . , T − 1, (5)

ZT := ZT−1 + ξT (ZT−1)∆XT . (6)

The variable Zt can be interpreted as the value at time t of a global quadratic hedging

portfolio in which the surplus over V ∗t is withdrawn. For example, suppose that the portfolio

value at time t− 1 is Zt−1, then the optimal position in the risky asset established at t− 1

under the criterion (3) is given by ξt(Zt−1). The portfolio value at time t is then obtained

as Zt−1 + ξt(Zt−1)∆Xt. If this value is below V ∗t , no withdrawal is made and the hedging

strategy follows its course. However, if this value is above V ∗t , then the hedger withdraws

the surplus and continues the hedging strategy with a capital of V ∗t . The sum of all cash

flows generated by our modified global quadratic hedging strategy corresponds to

ZT

︸ ︷︷ ︸
terminal value

+
T−1∑

t=1

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0)

︸ ︷︷ ︸
surpluses withdrawn

.

Remark 4. Lemma 2 in Appendix A shows that

ZT +
T−1∑

t=1

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0) = V ∗0 +
T∑

t=1

ξt(Zt−1)∆Xt.

Intuitively, this result was to be expected since our modified strategy can also be implemented

in a self-financing manner, without explicitly withdrawing surpluses from the portfolio. In

this case, the terminal value of the hedging portfolio would simply be V ∗0 +
∑T

t=1 ξt(Zt−1)∆Xt.
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2.3 Main results

Theorems 1 and 2, and Proposition 1 present mathematical results on our modified strategy.

Detailed proofs are provided in Appendix A.

Theorem 1. The expected value of the cash flows generated by our modified global quadratic

hedging strategy is greater than or equal to the expected value of the contingent claim:

E

[
ZT +

T−1∑

t=1

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0)

]
≥ E[H]. (7)

Consequently, Theorem 1 indicates that E[V ∗0 +
∑T

t=1 ξt(Zt−1)∆Xt] ≥ E[H], whereas for

the classical strategy we necessarily have that E[V ∗0 +
∑T

t=1 ξ
∗
t ∆Xt] = E[H] by Equation (2).

Therefore, our modification to the global quadratic hedging portfolio can only increase the

expected profitability of this strategy.

Remark 5. One could interpret the result of Theorem 1 as a weak form of superhedging;

the value of a superhedging portfolio is almost surely greater than or equal to the payoff of

a contingent claim while the value of our modified hedging portfolio is greater than or equal

to that payoff in expectation. Although superhedging excludes hedging losses, this strategy

is rarely used in practice due to its prohibitively high initial cost. In contrast, our modified

hedging portfolio has a cost equal to the one of the global quadratic hedging portfolio, and

leads to a hedging gain on average.

Theorem 2. Assume that:

E [∆XT | FT−1] 6= 0.

Then, the following statements are equivalent.

1. The inequality (7) in Theorem 1 is an equality.

2. The claim V ∗T−1 is attainable with the global quadratic hedging portfolio (V ∗0 , ξ
∗) in the

sense that V ∗T−1 = VT−1 a.s.
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3. Zt = Vt = V ∗t a.s. for t = 0, 1, . . . , T − 1 and ZT = VT a.s.

Note that Theorem 2 suggests that the inequality (7) is strict for all non-trivial cases of

interest. This is because the value V ∗T−1 of a contingent claim in an incomplete market will

generally only be attainable for trivial claims such as a forward contract. Moreover, it also

implies that an equality in Theorem 1 can only occur if our modified strategy falls back to

the classical strategy (which will only happen if V ∗T−1 is attainable). Therefore, our strategy

will almost always deviate from the global quadratic hedging strategy and be profitable on

average to the hedger.

Finally, Proposition 1 explicitly addresses two special cases where our modified strategy

is equivalent to the classical strategy. The first one is that of a claim that can be replicated in

a riskless manner (i.e., H is attainable) and for which a risk-minimizing strategy is therefore

not needed. The second one is the setting where X is a P-martingale, which does not

represent a realistic financial environment as it implies a zero equity risk premium.

Proposition 1. If either one of the following conditions are satisfied,

1. H is attainable, that is, H = H0 +
∑T

t=1 ξ
H
t ∆Xt a.s. for some predictable process

ξH := {ξHt }t=1,...,T and H0 ∈ R,

2. X is a P-martingale,

then our modified strategy is equivalent to the global quadratic hedging strategy in the sense

that ξt(Zt−1) = ξ∗t a.s. for t = 1, . . . , T and

ZT +
T−1∑

t=1

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0) = V ∗0 +
T∑

t=1

ξ∗t ∆Xt a.s.

In particular, under either one of these conditions, the inequality (7) in Theorem 1 is an

equality.
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2.4 Discussion

The practical difference between our modified strategy and global quadratic hedging is that

our strategy specifies the optimal position in the risky asset at time t as ξt+1(Zt), instead

of ξt+1(Vt). In other words, both methods use criterion (3) to determine the position in the

risky asset, but differ in the capital assumed at t. By resetting the capital to V ∗t at each

time t when the value of the hedging portfolio rises above it, our modified strategy allows the

hedger to lock in realized hedging gains and thus avoids penalizing these gains in the future.

The following three facts derived from Corollary 2.5 of Schweizer (1995) help to motivate

our strategy:

E
[
{H − Vt,T (V ∗t , ξ

∗(V ∗t ))}2 | Ft
]
≤ E

[
{H − Vt,T (c, ξ∗(c))}2 | Ft

]
, for all c ∈ R, (8)

E [Vt,T (V ∗t + δ, ξ∗(V ∗t + δ)) | Ft] ≤ E [Vt,T (V ∗t , ξ
∗(V ∗t )) | Ft] + δ, for all δ ≥ 0, (9)

E [Vt,T (V ∗t + δ, ξ∗(V ∗t + δ)) | Ft] ≥ E [Vt,T (V ∗t , ξ
∗(V ∗t )) | Ft] + δ, for all δ ≤ 0, (10)

where ξ∗(c) here refers to the global quadratic hedging strategy initiated with a capital of

c at time t. Equation (8) entails that the minimal future expected squared hedging error is

attained from a capital of V ∗t at time t. Moreover, Equation (9) implies that if the quadratic

hedging strategy is implemented at time t with a capital of V ∗t + δ, where δ ≥ 0, then the

expected terminal value of the hedging portfolio is lower than if we were to withdraw the

amount δ from the portfolio and resume the strategy based on a capital of V ∗t . Therefore,

on the basis of the future mean and variance of the hedging error, it makes perfect sense to

set aside the surplus over V ∗t (if any) and to reset the strategy to this new reference point.

On the other hand, Equation (10) indicates that if the current portfolio value, say V ∗t + δ,

is in deficit relative to V ∗t (i.e., δ ≤ 0), then injecting the amount −δ into the portfolio so

that the strategy can be set up with a capital of V ∗t would actually decrease the portfolio’s

expected terminal value. Therefore, the incentive to bring the portfolio value to V ∗t here is

not clear-cut as in the previous case where δ ≥ 0. This is the reason why we reset the global
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quadratic hedging strategy only when the value of the hedging portfolio rises above V ∗t .

The price to pay for this modification is that the overall expected squared hedging error

(i.e., from time 0) is no longer minimized. However, this allows for an advantageous tradeoff

as we now explain. Indeed, as shown in Section 2.3, this specific resetting of the strategy

leads to an overall positive expected hedging gain. Second, it must be noted that a higher

overall expected squared hedging error does not automatically translate into a heightened

downside hedging risk. To see this, we can split the expected squared hedging error in the

following way:

E
[
{H − V0,T (c, θ)}2]

︸ ︷︷ ︸
MSE

= E
[
{H − V0,T (c, θ)}2

1{V0,T (c,θ)≥H}
]

︸ ︷︷ ︸
MSE+

+E
[
{H − V0,T (c, θ)}2

1{V0,T (c,θ)<H}
]

︸ ︷︷ ︸
MSE−

,

where MSE+ and MSE− represent the mean squared errors associated with, respectively,

terminal hedging gains and losses. Since the goal of our modification is to allow for more

hedging gains, it would be incoherent to assess the performance of our strategy based on a risk

measure that evaluates hedging gains as a risk, such as the MSE. As expected, our strategy

does indeed increase the MSE when compared to global quadratic hedging. However, the

MSE− is a more appropriate measure of hedging risk in our context as it only penalizes the

adverse events that the hedger wants to avoid. The simulation studies in Section 3 suggest

that the positive average gain generated by our strategy usually comes at the cost of at most

a marginal increase in the MSE−. Intuitively, this is because our modified strategy mimics

the global quadratic hedging strategy in scenarios where the value of the hedging portfolio

is below that of the claim. Consequently, the increase in the MSE is almost entirely due to a

potential for larger hedging gains (i.e., to an increase in the MSE+), which is not problematic

from a hedging perspective. In fact, it would be incoherent with the idea of hedging to allow

for more hedging gains if this significantly increased the risk of hedging losses. Section 3

even shows that in some situations our strategy can decrease the MSE−.

It is natural to ask at this point what optimization problem is being solved by the
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strategy introduced in Definition 1. Clearly, neither the global quadratic hedging portfolio

nor our modified strategy are explicitly designed to minimize the MSE−. The minimization

of this penalty is a global hedging problem with an asymmetric criterion whose solution is

computationally much more costly to implement. However, Proposition 2 indicates that one

can see our strategy as minimizing a sequence of mean-variance hedging problems under a

capital constraint.

Proposition 2. For t = 0, 1, . . . , T − 1, the position in the risky asset at time t prescribed

by our modified global quadratic hedging strategy solves the following optimization problem:

min
φ



 min
θ∈Θt+1

z∈Ft

E



{
H −

(
z + φ∆Xt+1 +

T∑

k=t+2

θk∆Xk

)}2
∣∣∣∣∣∣
Ft





 ,

subject to z ≤ Zt a.s.,

(11)

where Zt := min(V ∗t , Zt−1 + ξt(Zt−1)∆Xt), defined in Equation (5), represents the value of

the modified global quadratic hedging portfolio that excludes surpluses previously withdrawn.

Appendix A.5 proves that the solution to (11) is indeed given by φ = ξt+1(Zt). Conse-

quently, at any given time t, our modified strategy minimizes the same objective function as

the global quadratic hedging portfolio (see Equation (3)), but it does so subject to z ≤ Zt,

instead of z = Vt, where Vt is the value of the self-financing global quadratic hedging port-

folio. The constraint z ≤ Zt in optimization problem (11) is motivated by the discussion

associated to Equations (8)–(10) and has for effect to relax the condition that the hedging

portfolio is self-financing at all times. On one hand, it prevents the use of a capital z larger

than V ∗t , and thus allows the hedger to set aside any surplus over V ∗t . On the other hand,

it precludes capital injections into the hedging portfolio, which as we previously explained

decrease the portfolio’s expected terminal value.

The reason why our strategy is no more complicated to implement than the classical

strategy is that for both approaches the solution at time t − 1 is of the form ξt(z) = %t −

βtz. Since the coefficients %t and βt are identical for both strategies and in calculating
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them one must also compute V ∗t (see Section 2.5), our strategy does not entail an increased

computational cost.

We end this discussion by highlighting a particular property of our modified strategy:

the hedging portfolio for protecting a long position in a derivative is generally not a mirror

image of the one for the short position. This property results from the asymmetric treatment

of hedging gains and losses that is unique to our strategy, and is therefore not shared by the

classical strategy nor by delta hedging. Indeed, for a given trajectory of the risky asset, the

terminal hedging errors for protecting short and long positions with either global quadratic

hedging or delta hedging are of opposite sign. This implies that if a delta hedge for a short

position generates a positive expected profit, then the corresponding delta hedge for the long

position will necessarily lead to a loss on average. Such a symmetry does not occur with

our modified strategy since Theorems 1 and 2 guarantee that the expected terminal hedging

gain is positive for any derivative position.

2.5 Implementation

To implement our modified strategy, one must first solve the global quadratic hedging prob-

lem to obtain V ∗t−1 and the coefficients %t and βt, for t = 1, . . . , T . All of these variables can

be computed efficiently using dynamic programming as in Augustyniak et al. (2017) (see

also Bertsimas et al., 2001; Černý, 2004; Rémillard and Rubenthaler, 2013). Algorithm 1

summarizes the resulting dynamic program.

Algorithm 1. Set νT+1 := 1, V ∗T := H, ∆t := ∆Xt. For t = T, . . . , 1, compute recursively:

at := E
[
∆2
tνt+1 | Ft−1

]
, (12)

bt := E [∆tνt+1 | Ft−1] , (13)

dt := E [V ∗t ∆tνt+1 | Ft−1] , (14)

νt := E [(1−∆tbt/at)νt+1 | Ft−1] , (15)
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V ∗t−1 :=
E [V ∗t (1−∆tbt/at)νt+1 | Ft−1]

νt
. (16)

The coefficients %t and βt, for t = 1, . . . , T , are then given by %t = dt/at and βt = bt/at.

Let {υt} be a stochastic process that influences the dynamics of {Xt}, such as a volatility

or a regime process. Rémillard and Rubenthaler (2013) explain that if the payoff at time T

is only a function of XT , say H = H(XT ), and if {(Xt, υt)} is a Markov process, then the

coefficients (12)–(16) in Algorithm 1 can be expressed only in terms of (Xt−1, υt−1), that is,

for t = 1, . . . , T , there exists functions ãt, b̃t, d̃t, ν̃t and Ṽ ∗t−1, such that

at = ãt(Xt−1, υt−1), bt = b̃t(Xt−1, υt−1), dt = d̃t(Xt−1, υt−1),

νt = ν̃t(Xt−1, υt−1), V ∗t−1 = Ṽ ∗t−1(Xt−1, υt−1).

(17)

The Markov property reduces the dimensionality of the dynamic program, because it is

then sufficient to compute the functions in (17) on a discretization of the state space of the

Markov chain {(Xt, υt)}. At every time step, this state space is represented with an adaptive

two-dimensional grid defined as

Gt := {X(t−1,it) | it = 1, . . . , It} × {υ(t−1,jt) | jt = 1, . . . , Jt}, t = 1, . . . , T,

where It and Jt are suitably chosen integers characterizing the number of nodes on the grid.

The functions in (17) are computed at every node in Gt by iterating backwards in time for

t = T, . . . , 1. Our implementation of the dynamic program follows that of Augustyniak et al.

(2017). Refer to Appendix A of Augustyniak et al. (2017) for more details.

Remark 6. We implement all hedging strategies assuming that Ft refers to an infor-

mation set containing only observed market information until time t, so that generally

Ft = σ(X0, X1, . . . , Xt). If the process {υt} is latent, then filtering techniques are used

to infer this process based on the available market information.
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3 Simulation study

We illustrate the performance of our modified global quadratic hedging strategy under sim-

ulated return paths from GARCH, regime-switching and jump-diffusion models estimated

on a time series of daily percentage log-returns on the S&P 500 price index for the period

1986-12-31 to 2010-04-01 (5863 returns). This data set was also considered by Augustyniak

et al. (2017).

In our applications, we express the time index t in trading days and suppose that one

year includes 260 trading days. We let Bt denote the undiscounted value of the riskless asset

at time t for t ≥ 0, and assume that Bt := exp(rt), where r corresponds to a constant daily

risk-free rate. We suppose an annualized risk-free rate of 2%, which implies r = 0.00769%.

Moreover, we let St := BtXt denote the undiscounted value of the risky asset at time t

for t ≥ 0. The daily percentage log-return from day t − 1 to t is then given by yt :=

100 (logSt − logSt−1).

3.1 Description of options hedged

Our analyses assume that a short or long position in a 3-year European call option is hedged

with different moneyness levels. More precisely, we consider an initial stock price of S0 = 100,

and the (undiscounted) payoff BTH = max(ST − K, 0), with strike price K = 90 (in-the-

money, ITM), 100 (at-the-money, ATM), or 110 (out-the-money, OTM) and maturity of

T = 780 days. We consider long-dated options because Augustyniak et al. (2017) showed that

the performance of global quadratic hedging stands out at long-term maturities. Although

standard exchange-traded options typically mature within one year of their issuance, call and

put options expiring two to three years from the date of listing actively trade on the CBOE

under the LEAPS acronym. Moreover, market-linked certificates of deposit offer embedded

call option payoffs with a typical term of three to five years. Therefore, devising effective

hedging strategies for long-dated derivatives is important.
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3.2 GARCH model

The GARCH process that we consider models the return as follows:

yt = µ+ σtεt,

σ2
t = ω + ασ2

t−1 (|εt−1| − γεt−1)2 + βσ2
t−1,

where {εt} is an independent and identically distributed (i.i.d.) Gaussian innovation process

with mean 0 and variance 1. To ensure positivity of the conditional variance the following

parametric constraints are required: ω > 0, α ≥ 0 and β ≥ 0. This GARCH specification

is equivalent to the GJR-GARCH(1, 1) model introduced by Glosten et al. (1993). Table 1

reports maximum likelihood parameter estimates. Refer to Augustyniak et al. (2017) for

more details on the implementation of Algorithm 1 in the context of this model. In relation

to Section 2.5, note that if we let υt = σt+1, where σt+1 is Ft-measurable, then {(Xt, υt)} is

a Markov process.

Table 1: Maximum likelihood estimates of the GARCH model

µ ω α γ β

0.0292 0.0179 0.0545 0.591 0.911

Notes: These parameter estimates were computed on a time series of daily percentage returns on the S&P
500 price index for the period 1986-12-31 to 2010-04-01 (5863 returns).

3.3 Regime-switching model

Our regime-switching model assumes that the return distribution is Gaussian conditional on

the regime of an unobserved two-state Markov chain, denoted by {χt}, with homogeneous

transition matrix (pij)
2
i,j=1, where pij = Pr(χt = j | χt−1 = i). The model is defined as
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follows:

yt =





µ1 + σ1εt, if χt = 1,

µ2 + σ2εt, if χt = 2,

where {εt} is once again an i.i.d. Gaussian innovation process with mean 0 and variance 1,

and (µ1, µ2) and (σ2
1, σ

2
2) are, respectively, regime-dependent conditional mean and variance

parameters. Table 2 gives maximum likelihood parameter estimates. Note that the states of

the underlying Markov chain can be interpreted as bull and bear market regimes. If we let

υt = Pr(χt = 1 | Ft), then it can be shown that {(Xt, υt)} is a Markov process.

Table 2: Maximum likelihood estimates of the regime-switching model

j µj σ2
j

1 0.070 0.551

2 −0.106 4.272

(
p11 p12

p21 p22

)
=

(
0.989 0.011

0.035 0.965

)

Notes: These parameter estimates were computed on a time series of daily percentage returns on the S&P
500 price index for the period 1986-12-31 to 2010-04-01 (5863 returns).

3.4 Jump-diffusion model

The jump-diffusion process that we consider is the classical one introduced by Merton (1976).

It models the log-price process as follows:

logSt − logS0 =
(
α− σ2/2− λ

(
eµJ+σ2

J/2 − 1
))

t+ σWt +
Nt∑

j=1

εj,

where W := {Wt} is a Brownian motion, N := {Nt} is a homogeneous Poisson process

independent of W with intensity λ > 0, and {εj} is a sequence of i.i.d. Gaussian random

variables with mean µJ and variance σ2
J (also independent of W and N). This specification

implies that the daily log-return process {yt} is an i.i.d. process and includes five parameters,
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(α, σ, λ, µJ , σJ), where α corresponds to the one-period drift of St, that is E[St | Ft−1] =

St−1e
α, and σ corresponds to the daily volatility of the process conditional on there being

no jumps. Table 3 reports maximum likelihood parameter estimates.

Table 3: Maximum likelihood estimates of the Merton jump-diffusion model

260α
√

260σ 260λ µJ σJ

0.0875 0.1036 92.42 −0.0015 0.0160

Notes: These parameter estimates were computed on a time series of daily percentage returns on the S&P
500 price index for the period 1986-12-31 to 2010-04-01 (5863 returns).

3.5 Delta hedging benchmarks

Delta hedging under a suitably chosen risk-neutral measure is implemented in our analysis

to serve as a benchmark. The GARCH delta hedge is based on the definition of the delta

given by Duan (1995) and follows a standard change of measure considered in the GARCH

option pricing literature (e.g., Badescu et al., 2014; Christoffersen et al., 2010; Ortega, 2012).

Refer to Sections 3.1 and 3.2 of Augustyniak et al. (2017) for more details on the underlying

change of measure and the implementation of this strategy.

The regime-switching delta hedge is computed under a change of measure that effectively

translates the conditional means in regimes 1 and 2 to r− σ2
1/2 and r− σ2

2/2, while leaving

the conditional variances and transition probabilities unchanged. Under this risk-neutral

measure, the price and delta of a call option can be obtained in closed-form. Refer to

Section 5.4.2 of François et al. (2014) for more details.

The jump-diffusion delta hedge is based on the standard change of measure that modifies

the drift from α to r.
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3.6 Results

We simulated N = 10,000 daily stock price paths with the GARCH, regime-switching and

jump-diffusion models presented in Sections 3.2, 3.3 and 3.4, respectively. The GARCH

simulations were initiated with a daily stationary volatility of σ1 = 1.061%.1 In simulating

the regime-switching model, we assumed that the starting regime probabilities correspond

to the stationary probabilities of the Markov chain. On each one of the simulated paths, and

for all hedging strategies considered, we computed the terminal hedging error defined as

ΛT := BT {H − V0,T (V ∗0 , θ)} . (18)

We assess hedging effectiveness by computing statistical measures on the N = 10,000 real-

izations of this hedging error; the realization of ΛT on path i is denoted by ΛT,i. We consider

the root-mean-squared error (RMSE) and the RMSE−, which are defined as

RMSE =

√√√√ 1

N

N∑

i=1

Λ2
T,i,

RMSE− =

√√√√ 1

N

N∑

i=1

Λ2
T,i1{ΛT,i>0},

and the 95% Value at Risk (VaR), which corresponds to the 501th largest value of {ΛT,i}10000
i=1 .

Note that a negative hedging error implies a gain for the hedger.

Tables 4, 5 and 6 present our results under, respectively, GARCH, regime-switching and

jump-diffusion simulated return paths. First, as expected, global quadratic hedging yields

a mean of approximately zero and the smallest RMSE for the terminal hedging error. In

contrast, as indicated by Theorems 1 and 2, our modified strategy generates a hedging gain

on average for all cases considered. In the GARCH and jump-diffusion settings, this gain

comes at the cost of at most a marginal increase in the downside risk of hedging, as measured

1 The stationary or unconditional variance corresponds to E[σ2
t ] = ω/(1− α(1 + γ2)− β), provided that

the denominator is positive.
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Table 4: Terminal hedging error under GARCH simulated return paths

Hedging a short call position Hedging a long call position

Mean RMSE RMSE− 95% VaR Mean RMSE RMSE− 95% VaR

3-year ATM call option

Global hedging −0.01 1.73 1.41 2.71 0.01 1.73 0.99 2.31

Modified global hedging −0.39 1.88 1.42 2.72 −0.43 2.01 1.01 2.40

Delta hedging −0.86 2.44 1.63 3.59 0.86 2.44 1.81 3.21

3-year OTM call option

Global hedging −0.01 1.52 1.25 2.16 0.01 1.52 0.86 1.93

Modified global hedging −0.33 1.64 1.27 2.17 −0.37 1.79 0.90 2.04

Delta hedging −0.70 2.08 1.50 3.21 0.70 2.08 1.44 2.54

3-year ITM call option

Global hedging −0.01 1.85 1.52 2.92 0.01 1.85 1.06 2.47

Modified global hedging −0.41 2.02 1.51 2.86 −0.47 2.14 1.06 2.54

Delta hedging −0.94 2.65 1.67 3.64 0.94 2.65 2.06 3.77

Notes: The statistical measures (mean, RMSE, RMSE− and 95% VaR) are based on 10,000 realizations
of the terminal hedging error ΛT := BT {H − V0,T (V ∗

0 , θ)} computed from 10,000 780-day (3-year) return
paths simulated from the GARCH model presented in Section 3.2. All hedging strategies are implemented
with this model. Note that a negative hedging error implies a gain for the hedger.

by the RMSE− or the 95% VaR. For example, when protecting a short position in a 3-year

ATM call option under GARCH simulated return paths, our modified strategy increases the

average hedging gain by 0.38 (from 0.01 to 0.39), while raising the 95% VaR by only 0.01

(from 2.71 to 2.72). As a proportion of the downside risk of hedging, this gain is quite

substantial since it is corresponds to 27% of the RMSE− and 14% of the VaR.

In the regime-switching setting, the results are strikingly in favor of our modified strategy.

In fact, we are able to increase the average hedging gain and simultaneously decrease the

downside hedging risk, both by a large margin. The reason for this is that the regime-

switching model has a positive mean return in regime 1 (bull market regime) and a negative

mean return in regime 2 (bear market regime), which allows our modified strategy to take
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Table 5: Terminal hedging error under regime-switching simulated return paths

Hedging a short call position Hedging a long call position

Mean RMSE RMSE− 95% VaR Mean RMSE RMSE− 95% VaR

3-year ATM call option

Global hedging 0.01 1.13 0.84 1.71 −0.01 1.13 0.75 1.48

Modified global hedging −1.46 2.10 0.64 0.73 −1.51 2.26 0.61 0.63

Delta hedging −0.61 1.99 1.16 2.75 0.61 1.99 1.61 3.33

3-year OTM call option

Global hedging 0.01 0.91 0.69 1.32 −0.01 0.91 0.59 1.13

Modified global hedging −1.16 1.69 0.55 0.53 −1.21 1.84 0.47 0.39

Delta hedging −0.55 1.64 0.96 2.29 0.55 1.64 1.33 2.68

3-year ITM call option

Global hedging 0.01 1.31 0.96 2.06 −0.01 1.31 0.90 1.79

Modified global hedging −1.67 2.42 0.72 0.89 −1.75 2.59 0.73 0.80

Delta hedging −0.60 2.25 1.33 3.16 0.60 2.25 1.81 3.86

Notes: The statistical measures (mean, RMSE, RMSE− and 95% VaR) are based on 10,000 realizations of
the terminal hedging error ΛT := BT {H − V0,T (V ∗

0 , θ)} computed from 10,000 780-day (3-year) return paths
simulated from the regime-switching model presented in Section 3.3. All hedging strategies are implemented
with this model. Note that a negative hedging error implies a gain for the hedger.

advantage of market timing. Although the true unobserved regime is not used when solving

the optimization problem in Equation (3), the hedging position in the underlying asset at

time t is a function of the inferred regime probability Pr(χt = 1 | Ft). In a setting like

ours where there is no model or parameter risks, this allows our strategy to take advantage

of a potential bet on the direction of the market by positioning itself advantageously based

on the likelihood of being in a bull or bear market regime. In contrast, the classical global

quadratic hedging strategy is limited in its ability to exploit market timing because whenever

the value of the hedging portfolio moves above the value of the claim, it will aim to reduce this

discrepancy to more accurately replicate the derivative’s payoff at maturity. In Section 4, we

assess the performance of the regime-switching model on empirical data, which is a form of
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Table 6: Terminal hedging error under Merton jump-diffusion simulated return paths

Hedging a short call position Hedging a long call position

Mean RMSE RMSE− 95% VaR Mean RMSE RMSE− 95% VaR

3-year ATM call option

Global hedging 0.03 0.61 0.44 0.97 −0.03 0.61 0.42 1.01

Modified global hedging −0.07 0.63 0.43 0.97 −0.14 0.69 0.43 1.02

Delta hedging −0.05 0.65 0.46 1.05 0.05 0.65 0.47 1.05

3-year OTM call option

Global hedging 0.03 0.49 0.35 0.71 −0.03 0.49 0.34 0.83

Modified global hedging −0.05 0.50 0.34 0.73 −0.12 0.56 0.35 0.87

Delta hedging −0.06 0.52 0.36 0.83 0.06 0.52 0.38 0.83

3-year ITM call option

Global hedging 0.03 0.71 0.52 1.14 −0.03 0.71 0.48 1.13

Modified global hedging −0.08 0.74 0.50 1.12 −0.15 0.79 0.48 1.14

Delta hedging −0.04 0.76 0.54 1.22 0.04 0.76 0.54 1.22

Notes: The statistical measures (mean, RMSE, RMSE− and 95% VaR) are based on 10,000 realizations
of the terminal hedging error ΛT := BT {H − V0,T (V ∗

0 , θ)} computed from 10,000 780-day (3-year) return
paths simulated from the Merton jump-diffusion model presented in Section 3.4. All hedging strategies are
implemented with this model. Note that a negative hedging error implies a gain for the hedger.

robustness check. We will see that although our modified strategy does not lead to reductions

in the downside risk of hedging that are as large as those displayed in Table 5, it nevertheless

still succeeds at increasing the average reward for the hedger and simultaneously diminishing

his risk.

Finally, we make some remarks about the delta hedging results. We observe that when

protecting a short call position under our GARCH simulations, delta hedging yields a larger

mean profit than the modified strategy (see Appendix B for an explanation of why delta

hedging the short call position leads to a profit on average). In particular, for the ATM

option, the terminal hedging gain is larger by 0.47 on average for the delta hedging strategy

(from 0.39 to 0.86). However, this is not a free lunch because delta hedging also raises the 95%
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VaR by 0.87 (from 2.72 to 3.59), which corresponds to a 32% increase in the downside hedging

risk. Moreover, as discussed in Section 2.4, the mean terminal hedging errors for short and

long positions are necessarily of opposite sign for a delta hedging strategy. Consequently, a

market agent that delta hedges the long position loses money on average, and is also exposed

to a larger downside risk relative to the global quadratic hedging strategy. Our modified

strategy, in contrast, increases the profitability of both short and long positions with at most

a small adverse impact on the downside hedging risk.

4 Empirical study

We now illustrate the performance of our modified strategy for hedging a short or long

position in a 3-year European ATM call option under empirically observed return paths of

the S&P 500 price index on the period 2008–2018. More precisely, we consider 3-year (780-

day) return paths starting on every trading day from 2008-01-02 to 2015-03-25 inclusively,

for a total of 1,820 paths (the last path comprises returns from 2015-03-25 to 2018-04-27

inclusively). It must be noted that since these paths are based on series of overlapping

returns, the hedging errors computed on these paths are not all independent. The stock

price trajectory associated with each return path is assumed to start at S0 = 100 and we

continue to assume a constant daily risk-free rate of r = 0.00769% (2% annualized).

For this experiment to be fully out-of-sample, we estimate the GARCH, regime-switching

and jump-diffusion models presented in Sections 3.2, 3.3 and 3.4 with returns on the S&P 500

price index covering the period from 1986-12-31 to 2007-12-31 (5296 returns). Tables 7, 8 and

9 report maximum likelihood parameter estimates. Note that the initial quadratic hedging

capital associated with each empirical trajectory is model-dependent. Moreover, for GARCH

and regime-switching models, the initial capital varies across paths because it is a function of

υt, where υt = σt+1 for the GARCH model and υt = Pr(χt = 1 | Ft) for the regime-switching

model.
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Table 7: Maximum likelihood estimates of the GARCH model

µ ω α γ β

0.0312 0.0189 0.0565 0.555 0.908

Notes: These parameter estimates were computed on a time series of daily percentage returns on the S&P
500 price index for the period 1986-12-31 to 2007-12-31 (5296 returns).

Table 8: Maximum likelihood estimates of the regime-switching model

j µj σ2
j

1 0.070 0.493

2 −0.066 2.985

(
p11 p12

p21 p22

)
=

(
0.989 0.011

0.030 0.970

)

Notes: These parameter estimates were computed on a time series of daily percentage returns on the S&P
500 price index for the period 1986-12-31 to 2007-12-31 (5296 returns).

Table 9: Maximum likelihood estimates of the Merton jump-diffusion model

260α
√

260σ 260λ µJ σJ

0.1020 0.0894 137.67 −0.0009 0.0118

Notes: These parameter estimates were computed on a time series of daily percentage returns on the S&P
500 price index for the period 1986-12-31 to 2007-12-31 (5296 returns).

Table 10 presents the results of our empirical study. This experiment is a form of robust-

ness check for our modified strategy, because in contrast to Section 3, it is now exposed to

model risk (in the sense that return paths are not generated by the model used for hedging).

We observe that in all cases considered it continues to be more profitable on average than

the global quadratic hedging strategy. The gain in average profit is in fact quite substantial

in most instances. For example, when protecting a long position in the call option with the

GARCH model, our modified strategy increments the average hedging gain by 1.29 (from

0.22 to 1.51), which corresponds to an increase larger than the underlying risk exposure,

as measured by the 95% VaR. Moreover, these gains are not associated with an elevated

downside hedging risk since in all cases, our strategy actually leads to the smallest RMSE−
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Table 10: Terminal hedging error for a 3-year ATM call option under S&P 500 return paths

Hedging a short call position Hedging a long call position

Mean RMSE RMSE− 95% VaR Mean RMSE RMSE− 95% VaR

GARCH hedging strategies based on parameters in Table 7

Global hedging 0.22 1.34 1.20 2.25 −0.22 1.34 0.61 1.14

Modified global hedging −0.09 1.47 1.12 2.03 −1.51 2.87 0.53 1.10

Delta hedging −0.33 3.13 2.59 7.51 0.33 3.13 1.75 3.09

Regime-switching hedging strategies based on parameters in Table 8

Global hedging −0.21 1.32 0.98 2.25 0.21 1.32 0.88 1.84

Modified global hedging −1.01 1.90 0.90 2.10 −0.98 2.63 0.81 1.75

Delta hedging −0.35 2.78 2.12 5.52 0.35 2.78 1.80 3.32

Merton jump-diffusion hedging strategies based on parameters in Table 9

Global hedging −0.50 1.20 0.66 0.98 0.50 1.20 1.01 1.93

Modified global hedging −1.95 2.32 0.41 −0.17 −0.22 2.22 0.98 1.93

Delta hedging −0.66 2.93 2.08 5.19 0.66 2.93 2.07 3.49

Notes: The statistical measures (mean, RMSE, RMSE− and 95% VaR) are based on 1,820 values of the
terminal hedging error ΛT := BT {H − V0,T (V ∗

0 , θ)} computed from empirically observed 780-day (3-year)
rolling return paths of the S&P 500 price index starting on every trading day from 2008-01-02 to 2015-03-25
inclusively (the last path comprises returns from 2015-03-25 to 2018-04-27 inclusively). Note that a negative
hedging error implies a gain for the hedger.

and 95% VaR.

Figure 1 illustrates the evolution in time of the terminal hedging error for all cases

considered. This figure allows us to gain some additional insight because the statistical

measures in Table 10 are computed based on hedging error outcomes on overlapping paths.

We first observe that short call positions hedged at the outset of the stock market crash of

2008–2009 generated large hedging losses. Delta hedging (green line) performed particularly

poorly during this period, while global quadratic hedging (black line) was more effective at

paring down losses. In scenarios leading to a terminal hedging loss (i.e., a positive hedging

error), our modified strategy (blue line) performed similarly to the standard strategy, as

expected following the discussion in Section 2.4. However, in other scenarios the terminal
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Figure 1: Evolution of the terminal hedging error for a 3-year ATM call option under S&P
500 return paths
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Notes: Each terminal hedging error ΛT := BT {H − V0,T (V ∗
0 , θ)} is computed on a 780-day (3-year) return

path of the S&P 500 price index. The horizontal axis specifies the path’s starting date. A hedging error
lying below the horizontal axis implies a gain for the hedger. The graphs on the top (bottom) row are
associated with a short (long) position. The graphs on the left (right) column are related to the GARCH
(regime-switching) hedging strategies. Black line: global hedging, Blue line: modified global hedging, Green
line: delta hedging.

hedging error of our modified strategy almost always lies below that of the standard strategy.

Hence, at least from an ex post perspective, our modified strategy produced an almost free

lunch in comparison to the global quadratic hedging strategy.
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5 Conclusion

This article proposes a modification to the global quadratic hedging strategy introduced

by Schweizer (1995) that is more profitable on average to the hedger without substantially

increasing his downside hedging risk, if at all. Importantly, this modification does not come

at an increased computational cost. In fact, our modified strategy retains the analytical

tractability of global quadratic hedging, but is able to reduce the adverse effects of using a

quadratic penalty function in the hedging optimization problem by treating hedging gains

and losses asymmetrically. The main idea is to reset the global quadratic hedging strategy

each time a hedging gain is generated and to allow the hedger to set aside this surplus. We

demonstrated mathematically that this simple mechanism can only increase the expected

profitability of global quadratic hedging. Interestingly, although the terminal hedging gains

for protecting short and long positions are necessarily of opposite sign for global quadratic

hedging and delta hedging, our strategy can lead to positive gains for short and long positions

simultaneously. Moreover, simulation and empirical studies illustrated that the positive

expected profit generated by our strategy is generally not associated with an elevated hedging

risk. In fact, on S&P 500 data covering the period 2008–2018, our modified strategy almost

never performed worse than global quadratic hedging, and for prolonged periods of time it

was able to generate a larger terminal hedging gain.

In future research, it would be interesting to investigate the performance of our strategy

for path-dependent payoff structures or compare it to globally risk-minimizing strategies

based on non-quadratic criteria.
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A Proofs

Before proving our main results, we introduce some notation and derive some preliminary

lemmas. All equalities and inequalities are generally assumed to hold almost surely. However,

in some instances where it is desirable to stress this property, we make an explicit statement

to this effect.

A.1 Notation and preliminaries

The variables %t and βt in Equation (4) are defined by Schweizer (1995) as

%t :=
E
[
H∆Xt

∏T
j=t+1(1− βj∆Xj) | Ft−1

]

E
[
(∆Xt)2

∏T
j=t+1(1− βj∆Xj)2 | Ft−1

] , t = 1, . . . , T − 1, (19)

%T :=
E [H∆XT | FT−1]

E [(∆XT )2 | FT−1]
, (20)

βt :=
E
[
∆Xt

∏T
j=t+1(1− βj∆Xj) | Ft−1

]

E
[
(∆Xt)2

∏T
j=t+1(1− βj∆Xj)2 | Ft−1

] , t = 1, . . . , T − 1, (21)

βT :=
E [∆XT | FT−1]

E [(∆XT )2 | FT−1]
. (22)

From Proposition 2.3 of Schweizer (1995), we have that, for t = 1, . . . T ,

0 ≤ E

[
T∏

j=t

(1− βj∆Xj)
2

∣∣∣∣∣ Ft−1

]
= E

[
T∏

j=t

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]
≤ 1, (23)

or equivalently, for k = 1, . . . , T ,

0 ≤ 1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]
≤ 1. (24)
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Lemma 1. For each t = 1, . . . , T , we have:

∀j = t, t+ 1, . . . , T : E [∆Xj | Fj−1] = 0 ⇐⇒ E

[
T∏

j=t

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]
= 1.

Proof. The “if” part is trivial since it implies βT = 0 and proceeding recursively for j =

T − 1, . . . , t, we directly obtain that βj = 0, which leads to the result.

We prove the “only if” part, by first noting that, for t = 1, . . . , T − 1:

E

[
T∏

j=t

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]

= E

[
(1− βt∆Xt)E

[
T∏

j=t+1

(1− βj∆Xj)

∣∣∣∣∣ Ft
] ∣∣∣∣∣ Ft−1

]

= E

[
T∏

j=t+1

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]
− βtE

[
∆Xt

T∏

j=t+1

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]

= E

[
T∏

j=t+1

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]

︸ ︷︷ ︸
∈[0,1]

−

(
E
[
∆Xt

∏T
j=t+1(1− βj∆Xj) | Ft−1

])2

E
[
(∆Xt)2

∏T
j=t+1(1− βj∆Xj)2 | Ft−1

]

︸ ︷︷ ︸
≥0

. (25)

The first term on the right-hand side of Equation (25) is contained in [0, 1] by Equation (23),

whereas the second term is non-negative. Therefore, if

E

[
T∏

j=t

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]
= 1,

then we must necessarily have, for u = t+ 1, t+ 2, . . . , T :

E

[
T∏

j=u

(1− βj∆Xj)

∣∣∣∣∣ Fu−1

]
= 1. (26)

In particular, for u = T , Equation (26) implies βTE [∆XT | FT−1] = 0, which in turn neces-

sarily leads to E [∆XT | FT−1] = 0 and βT = 0. This is simply because E [∆XT | FT−1] 6= 0
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would imply βT 6= 0. Proceeding recursively for u = T − 1, . . . , t, we find that

E

[
T∏

j=u

(1− βj∆Xj)

∣∣∣∣∣ Fu−1

]
= E [1− βu∆Xu | Fu−1] ,

and hence βuE [∆Xu | Fu−1] = 0, which once again entails E [∆Xu | Fu−1] = 0 and βu = 0.

The proof is therefore complete.

Corollary 1. If X is a P-martingale, then the process β is identically 0, and, for k =

1, . . . , T ,

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]

= 0.

Proof. If X is a P-martingale, then E [∆Xj | Fj−1] = 0 for all j = 1, . . . , T , which implies

that the process β is identically 0, and the result then follows.

Corollary 2.

E [∆XT | FT−1] 6= 0 ⇐⇒ ∀t = 1, . . . , T : 0 ≤ E

[
T∏

j=t

(1− βj∆Xj)

∣∣∣∣∣ Ft−1

]
< 1.

Proof. This is a direct consequence of Lemma 1 and Equation (23).

Finally, we define:

C0 := 0,

Ct :=
t∑

k=1

(Zk−1 − Vk−1) βk∆Xk, t = 1, . . . , T.

A.2 Proof of Theorem 1

Before demonstrating Theorem 1, we prove the following lemma.
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Lemma 2. The sum of all cash flows generated by our modified global quadratic hedging

strategy can be equivalently expressed as

ZT +
T−1∑

t=1

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0) = V ∗0 +
T∑

t=1

ξt(Zt−1)∆Xt.

Proof. This result follows directly from the definitions Z0 = V ∗0 and ZT = ZT−1+ξT (ZT−1)∆XT ,

and the fact that

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0) = Zt−1 + ξt(Zt−1)∆Xt − Zt, t = 1, . . . T − 1.

We now prove Theorem 1.

Proof. Using Equation (2) and Lemma 2, we obtain

E

[
H −

(
ZT +

T−1∑

t=1

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0)

)]

= E

[
V0,T (V ∗0 , ξ

∗)−
(
V ∗0 +

T∑

t=1

ξt(Zt−1)∆Xt

)]

= E

[
V ∗0 +

T∑

t=1

ξ∗t ∆Xt − V ∗0 −
T∑

t=1

ξt(Zt−1)∆Xt

]

= E

[
T∑

t=1

{ξ∗t − ξt(Zt−1)}∆Xt

]

= E

[
T∑

t=1

{ξt(Vt−1)− ξt(Zt−1)}∆Xt

]

= E

[
T∑

t=1

{%t − βtVt−1 − %t + βtZt−1}∆Xt

]

= E

[
T∑

t=1

{Zt−1 − Vt−1} βt∆Xt

]
(27)

= E [CT ] .
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We prove that the expectation E [CT ] is non-positive by way of a recursive argument. First,

we show by induction that the following inequality holds for k = 1, . . . , T :

E [CT | FT−k] ≤ CT−k + (ZT−k − VT−k)
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

. (28)

Observe that this inequality is trivially satisfied for k = 1, since

E [CT | FT−1] = E [CT−1 + (ZT−1 − VT−1) βT∆XT | FT−1]

= CT−1 + (ZT−1 − VT−1)E [βT∆XT | FT−1] . (29)

Moreover, since we have, for t = 1, . . . , T − 1,

Zt = min(V ∗t , Zt−1 + ξt(Zt−1)∆Xt) ≤ Zt−1 + ξt(Zt−1)∆Xt,

Vt = Vt−1 + ξt(Vt−1)∆Xt,

then, for k = 1, . . . , T − 1,

ZT−k − VT−k ≤ ZT−k−1 − VT−k−1 + {ξT−k(ZT−k−1)− ξT−k(VT−k−1)}∆XT−k

= ZT−k−1 − VT−k−1 + {%T−k − βT−kZT−k−1 − %T−k + βT−kVT−k−1}∆XT−k

= (ZT−k−1 − VT−k−1) (1− βT−k∆XT−k) . (30)

Combining inequalities (24) and (30), we can conclude that, for k = 1, . . . , T − 1,

(ZT−k − VT−k)
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

≤ (ZT−k−1 − VT−k−1) (1− βT−k∆XT−k)

(
1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

. (31)
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Assuming that the inequality in (28) holds for k, we can write, for k = 1, . . . , T − 1,

E [CT | FT−k−1] = E [E [CT | FT−k] | FT−k−1] (32)

≤ E

[
CT−k + (ZT−k − VT−k)

(
1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]
(33)

≤ E

[
CT−k + (ZT−k−1 − VT−k−1) (1− βT−k∆XT−k)

×
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]
(34)

= E

[
CT−k + (ZT−k−1 − VT−k−1)

×
(

1− βT−k∆XT−k − E

[
T∏

j=T−k
(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]
(35)

= E

[
CT−k−1 + (ZT−k−1 − VT−k−1) βT−k∆XT−k + (ZT−k−1 − VT−k−1)

×
(

1− βT−k∆XT−k − E

[
T∏

j=T−k
(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]
(36)

= CT−k−1 + (ZT−k−1 − VT−k−1)

(
1− E

[
T∏

j=T−k
(1− βj∆Xj)

∣∣∣∣∣ FT−k−1

])
, (37)

which completes the proof by induction of inequality (28). Finally, taking k = T in inequal-

ity (28), we obtain

E [CT ] ≤ C0 + (Z0 − V0)

(
1− E

[
T∏

j=1

(1− βj∆Xj)

])
= 0,

because by definition C0 = 0, Z0 = V ∗0 and V0 = V ∗0 , which completes the proof of Theorem 1.

A.3 Proof of Theorem 2

Before demonstrating Theorem 2, we prove the following lemmas.
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Lemma 3. The inequality (7) in Theorem 1 is an equality if and only if for all k = 1, . . . , T :

E [CT | FT−k] = CT−k + (ZT−k − VT−k)
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

a.s. (38)

Proof. The “if” part is trivial since if we take k = T , we obtain E [CT ] = 0, which directly

implies an equality in the result of Theorem 1.

To prove the “only if” part, we proceed by contraposition, that is, we demonstrate that

if Equation (38) does not hold, then E [CT ] < 0. First, note that by Equation (28), we have,

for k = 1, . . . , T ,

E [CT | FT−k] ≤ CT−k + (ZT−k − VT−k)
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

a.s.

Hence, if Equation (38) does not hold, then for some k we must have

E [CT | FT−k] < CT−k + (ZT−k − VT−k)
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

,

on some subset of Ω with probability greater than zero. By Equations (32)–(37), this in turn

implies that on some subset of Ω with probability greater than zero we have

E [CT | FT−k−1] = E [E [CT | FT−k] | FT−k−1]

< E

[
CT−k + (ZT−k − VT−k)

(
1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]

≤ CT−k−1 + (ZT−k−1 − VT−k−1)

(
1− E

[
T∏

j=T−k
(1− βj∆Xj)

∣∣∣∣∣ FT−k−1

])
,

which recursively leads to

E [CT | FT−h] < CT−h + (ZT−h − VT−h)
(

1− E

[
T∏

j=T−h+1

(1− βj∆Xj)

∣∣∣∣∣ FT−h
])

,
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for all h = k, k + 1, . . . , T . Taking h = T , we obtain E [CT ] < 0, which completes the proof

by contraposition.

Lemma 4. The inequality (7) in Theorem 1 is an equality if and only if for all k =

1, . . . , T − 1:

(ZT−k − VT−k)
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

= (ZT−k−1 − VT−k−1) (1− βT−k∆XT−k)

(
1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

a.s.

(39)

Proof. To prove the “if” part, we show that Equation (38) in Lemma 3 is satisfied for all

k = 1, . . . , T . From Equation (29), we know that it is satisfied for k = 1. Proceeding by

induction, we assume that Equation (38) holds for k. Based on Equations (32)–(37) we can

then write,

E [CT | FT−k−1] = E [E [CT | FT−k] | FT−k−1]

= E

[
CT−k + (ZT−k − VT−k)

(
1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]

= E

[
CT−k + (ZT−k−1 − VT−k−1) (1− βT−k∆XT−k)

×
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]

= CT−k−1 + (ZT−k−1 − VT−k−1)

(
1− E

[
T∏

j=T−k
(1− βj∆Xj)

∣∣∣∣∣ FT−k−1

])
,

which implies that Equation (38) is also satisfied for k + 1, and hence for all k = 1, . . . , T .

We also rely on the equivalence identified in Lemma 3 to demonstrate the “only if” part.

Assume that Equation (38) holds for all k = 1, . . . , T . Then, based on Equations (32)–(37),
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we can establish that necessarily, for k = 1, . . . , T − 1,

E

[
(ZT−k − VT−k)

(
1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]

= E

[
(ZT−k−1 − VT−k−1) (1− βT−k∆XT−k)

×
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]) ∣∣∣∣∣ FT−k−1

]
. (40)

Since Equation (31) implies that, for k = 1, . . . , T − 1,

(ZT−k − VT−k)
(

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

≤ (ZT−k−1 − VT−k−1) (1− βT−k∆XT−k)

(
1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
])

,

then Equation (40) can only be satisfied if both sides in this inequality are equal almost

surely. Hence, we can conclude that Equation (39) must hold for k = 1, . . . , T − 1.

Lemma 5. Assume that:

E [∆XT | FT−1] 6= 0.

Then, the inequality (7) in Theorem 1 is an equality if and only if Zt = Vt a.s. for t =

0, 1, . . . , T .

Proof. The “if” part is trivial since if Zt = Vt a.s., for t = 0, 1, . . . , T , then, from Equa-

tion (27), we obtain

E [CT ] = E

[
T∑

t=1

{Zt−1 − Vt−1} βt∆Xt

]
= 0,

which directly implies an equality in the result of Theorem 1. The condition E [∆XT | FT−1] 6=

0 is in fact not needed for the “if” part.

We rely on the equivalence identified in Lemma 4 to prove the “only if” part. Therefore,
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assume that Equation (39) in Lemma 4 holds for k = 1, . . . , T − 1. Since by Corollary 2 the

condition E [∆XT | FT−1] 6= 0 implies

1− E

[
T∏

j=T−k+1

(1− βj∆Xj)

∣∣∣∣∣ FT−k
]
> 0,

then Equation (39) can be equivalently written as

∀k = 1, . . . , T − 1 : ZT−k − VT−k = (ZT−k−1 − VT−k−1) (1− βT−k∆XT−k) a.s.

Because Z0 = V0 by definition, this equation recursively implies Zt = Vt a.s. for t = 1, . . . , T−

1. Moreover, since ZT = ZT−1 +ξT (ZT−1)∆XT and VT = VT−1 +ξT (VT−1)∆XT by definition,

we obtain ZT = VT a.s., which completes the proof.

Lemma 6. Assume that:

E [∆XT | FT−1] 6= 0.

Then, the inequality (7) in Theorem 1 is an equality if and only if V ∗T−1 is attainable with

the global quadratic hedging portfolio (V ∗0 , ξ
∗) in the sense that V ∗T−1 = VT−1 a.s.

Proof. To prove the “only if” part, we rely on Lemma 5, which implies that if the in-

equality (7) in Theorem 1 is an equality, then we must necessarily have Zt = Vt a.s. for

t = 0, 1, . . . , T . First, note that the statement Zt = Vt a.s. for t = 0, 1, . . . , T is equivalent to

V ∗t ≥ Vt a.s. for t = 0, 1, . . . , T − 1. This equivalence follows directly from the definition of

Zt in Equations (5) and (6). Now, consider the optimization problem,

min
(c,φ)

E
[
{H − VT−1,T (c, φ)}2

∣∣ FT−1

]
, (41)

which, by definition, has the solution
(
V ∗T−1, ξT (V ∗T−1)

)
. Since this solution is an optimal
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global quadratic hedging portfolio, it must satisfy, similarly to Equation (2),

E
[
V ∗T−1 + ξT (V ∗T−1)∆XT | FT−1

]
= E [H | FT−1] ,

and hence also

E
[
V ∗T−1 + ξT (V ∗T−1)∆XT

]
= E [H] .

Moreover, we also have from Equation (2) that

E [VT−1 + ξT (VT−1)∆XT ] = E [H] ,

from which we deduce the following equality

E
[
V ∗T−1 + ξT (V ∗T−1)∆XT

]
= E [VT−1 + ξT (VT−1)∆XT ] .

Therefore, we can write

E
[
V ∗T−1 + ξT (V ∗T−1)∆XT − VT−1 − ξT (VT−1)∆XT

]

= E
[(
V ∗T−1 − VT−1

)
(1− βT∆XT )

]

= E[
(
V ∗T−1 − VT−1

)
︸ ︷︷ ︸

≥0

E [(1− βT∆XT ) | FT−1]︸ ︷︷ ︸
>0

] = 0,

which from the assumptions V ∗T−1 ≥ VT−1 a.s. and E [∆XT | FT−1] 6= 0 allows us to conclude

that V ∗T−1 = VT−1 and ξT (V ∗T−1) = ξ∗T a.s. In other words, the claim V ∗T−1 is attainable with

the global quadratic hedging portfolio (V ∗0 , ξ
∗).

For the “if” part, we assume that V ∗T−1 = VT−1 a.s. (the condition E [∆XT | FT−1] 6= 0

is not needed in this part). Consequently, (VT−1, ξ
∗
T ) solves the optimization problem in

Equation (41), which implies that for all (c, θ) ∈ R×Θt and t = 0, 1, . . . , T − 1, we have

E
[
{H − Vt,T (c, θ)}2 | FT−1

]
≥ E

[
{H − VT−1,T (VT−1, ξ

∗
T )}2 | FT−1

]
,
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and hence also

E
[
{H − Vt,T (c, θ)}2 | Ft

]
≥ E

[
{H − VT−1,T (VT−1, ξ

∗
T )}2 | Ft

]
. (42)

Since the choices c = Vt and θ = {ξ∗k}k=t+1,...,T lead to

Vt,T (c, θ) = Vt +
T−1∑

k=t+1

ξ∗k∆Xk + ξ∗T∆XT = VT−1 + ξ∗T∆XT = VT−1,T (VT−1, ξ
∗
T ),

the lower bound can actually be attained in Equation (42), which implies that c = Vt and

θ = {ξ∗k}k=t+1,...,T must solve the following optimization problem:

min
(c,θ)

E
[
{H − Vt,T (c, θ)}2 | Ft

]
.

Since the value of c that solves this problem is equal to V ∗t by definition, we can hence

conclude that V ∗t = Vt a.s. for t = 0, 1, . . . , T − 1. This then implies Zt = Vt a.s. for

t = 0, 1, . . . , T , which, after invoking Lemma 5, completes the proof.

We now prove Theorem 2.

Proof. Theorem 2 is essentially a restatement of Lemmas 5 and 6. For completeness, we add

a remark concerning statement 3 in the theorem. From the proof of Lemma 6, we get that

V ∗T−1 = VT−1 a.s. implies V ∗t = Vt a.s. for t = 1, . . . , T − 1, which allows us to strengthen

Lemma 5 in the sense that Zt = Vt = V ∗t a.s. for t = 0, 1, . . . , T − 1.

A.4 Proof of Proposition 1

We prove Proposition 1.

Proof. If H is attainable, then there exists a predictable process ξH such that H = H0 +
∑T

t=1 ξ
H
t ∆Xt. The optimal global quadratic hedging portfolio for this contingent claim is

then obviously given by the pair (V ∗0 = H0, ξ
∗ = ξH), as shown in Section 4.2 of Schweizer
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(1995). Moreover, for t = 1, . . . , T − 1, we have that V ∗t = H0 +
∑t

k=1 ξ
H
t ∆Xt because the

expectation,

E
[
{H − Vt,T (c, θ)}2 | Ft

]
= E



(
H0 +

T∑

k=1

ξHk ∆Xk − c−
T∑

k=t+1

θk∆Xk

)2
∣∣∣∣∣∣
Ft




= E



(
H0 +

t∑

k=1

ξHk ∆Xk − c+
T∑

k=t+1

(
ξHk − θk

)
∆Xk

)2
∣∣∣∣∣∣
Ft


 ,

equals zero, and is hence minimized over all (c, θ) ∈ R×Θt if we take c = H0 +
∑t

k=1 ξ
H
t ∆Xt

and θ = {ξHk }k=t+1,...,T . Consequently, since Z0 = V ∗0 = H0 and ξ1(Z0) = ξ∗1 = ξH1 , then one

finds that Z1 = min(V ∗1 , Z0 + ξ1(Z0)∆X1) = H0 + ξH1 ∆X1 = V1, which in turns recursively

implies ξt(Zt−1) = ξ∗t = ξHt and Zt = H0 +
∑t

k=1 ξ
H
t ∆Xt = Vt, for t = 2, . . . , T . Hence, our

modified strategy is in this case identical to the global quadratic hedging strategy.

Furthermore, if X is a P-martingale, then the process β is identically 0, which implies by

Equation (4) that

ξt(z) = %t =
E [H∆Xt | Ft−1]

E [(∆Xt)2 | Ft−1]
, t = 1, . . . , T,

independently of z. Hence, the optimal global quadratic hedging position does not depend

on the current (or past) value of the hedging portfolio in the martingale setting (see also

Schweizer, 1995, Section 4.1). This leads to ξt(Zt−1) = ξt(Vt−1) = ξ∗t a.s., for t = 1, . . . , T ,

and hence by Lemma 2 we obtain

ZT +
T−1∑

t=1

max (Zt−1 + ξt(Zt−1)∆Xt − V ∗t , 0) = V ∗0 +
T∑

t=1

ξ∗t ∆Xt a.s.

A.5 Proof of Proposition 2

We prove Proposition 2.
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Proof. From Equation (3), we know that the solution to (11) is given by φ = ξt+1(z) for

some z ∈ Ft that satisfies the constraint z ≤ Zt. Thus, to conclude that φ = ξt+1(Zt), it

remains to show that the objective function in (11) is minimized at z = Zt.

For each fixed z, we have that,

min
φ



 min
θ∈Θt+1

E



{
H −

(
z + φ∆Xt+1 +

T∑

k=t+2

θk∆Xk

)}2
∣∣∣∣∣∣
Ft







= E
[
{H − Vt,T (z, ξ∗(z))}2

∣∣ Ft
]

≥ E
[
{H − Vt,T (V ∗t , ξ

∗(V ∗t ))}2
∣∣ Ft

]
,

where ξ∗(z) here refers to the global quadratic hedging strategy initiated with a capital of z

at time t.

Let

Z̃(t) :=
T∏

j=t+1

(1− βj∆Xj), t = 0, 1, . . . , T − 1,

and note that from Equation (23), we have that,

0 ≤ E
[(
Z̃(t)

)2
∣∣∣∣ Ft

]
= E

[
Z̃(t)

∣∣∣ Ft
]
≤ 1.

Corollary 2.5 of Schweizer (1995) allows us to deduce that

E
[
{H − Vt,T (z, ξ∗(z))}2

∣∣ Ft
]
− E

[
{H − Vt,T (V ∗t , ξ

∗(V ∗t ))}2
∣∣ Ft

]

= E
[
Z̃(t)

∣∣∣ Ft
]

(V ∗t − z)2 .

Consequently, the objective function in (11) is minimized at the value of z that satisfies the

constraint z ≤ Zt and is closest to V ∗t . Since by the definition of Zt in Equation (5), we have

that Zt ≤ V ∗t , the optimal value of z is thus z = Zt as required.
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B Why delta hedging the short call position in the

GARCH setting leads to a profit on average

The reason why delta hedging a short call (or put) position in our GARCH model leads to a

profit on average can be explained as follows. First, we stress that although our initial capital

assumption of V ∗0 obviously impacts the profit distribution of the delta hedging strategy, it

is not the main cause of the positive expected gain. In fact, Table 2 in Augustyniak et al.

(2017) shows that V ∗0 is almost identical to the risk-neutral expectation of the discounted call

option payoff in our estimated GARCH model, and this expectation would be the natural

choice for the initial capital in the delta hedging strategy.

The main reason for the positive expected profit is that, under our model assumptions,

the expected future volatility under the risk-neutral measure can be shown to be larger than

under the physical measure P. This discrepancy entails that our estimated models give rise

to an implicit negative variance risk premium, which is in line with empirical research (see

Carr and Wu, 2009). A negative sign on the variance risk premium indicates that option

buyers are willing to pay a premium (i.e., accept a negative average excess return) to protect

themselves against upward movements in stock market volatility. Therefore, whenever a

market agent sells an option, he receives extra compensation for taking volatility risk. Since

delta hedging this short position only hedges away movements in the stock and not volatility,

the agent is rewarded for taking volatility risk by earning a positive average excess return.
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