
Scalable and Efficient Network Anomaly Detection on
Connection Data Streams

Aniss Chohra

A Thesis

in

The Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

Montréal, Québec, Canada

May 2019

c© Aniss Chohra, 2019

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Aniss Chohra

Entitled: Scalable and Efficient Network Anomaly Detection on Connection Data

Streams

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with respect to originality

and quality.

Signed by the Final Examining Committee:

Chair
Dr. Jun Yan

External Examiner
Dr. Olga Ormandjieva

Examiner
Dr. Chun Wang

Supervisor
Dr. Mourad Debbabi

Approved by
Abdessamad Ben Hamza, Chair
of Concordia Institute for Information Systems Engineering (CI-
ISE)

Wednesday, April 10th, 2019
Amir Asif, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Scalable and Efficient Network Anomaly Detection on Connection Data Streams

Aniss Chohra

Everyday, security experts and analysts must deal with and face the huge increase of cyber security

threats that are propagating very fast on the Internet and threatening the security of hundreds of millions of

users worldwide. The detection of such threats and attacks is of paramount importance to these experts in

order to prevent these threats and mitigate their effects in the future. Thus, the need for security solutions

that can prevent, detect, and mitigate such threats is imminent and must be addressed with scalable and

efficient solutions. To this end, we propose a scalable framework, called Daedalus, to analyze streams of

NIDS (network-based intrusion detection system) logs in near real-time and to extract useful threat secu-

rity intelligence. The proposed system pre-processes massive amounts of connections stream logs received

from different participating organizations and applies an elaborated anomaly detection technique in order

to distinguish between normal and abnormal or anomalous network behaviors. As such, Daedalus detects

network traffic anomalies by extracting a set of significant pre-defined features from the connection logs and

then applying a time series-based technique in order to detect abnormal behavior in near real-time. More-

over, we correlate IP blocks extracted from the logs with some external security signature-based feeds that

detect factual malicious activities (e.g., malware families and hashes, ransomware distribution, and com-

mand and control centers) in order to validate the proposed approach. Performed experiments demonstrate

that Daedalus accurately identifies the malicious activities with an average F1 score of 92.88%. We fur-

ther compare our proposed approach with existing K-Means and deep learning (LSTMs) approaches and

demonstrate the accuracy and efficiency of our system.

iii

Acknowledgments

My deep gratitude goes first to my supervisor, Dr. Mourad Debbabi, who guided me through my whole

graduate program and was of helpful and amazing support.

I would also like to extend my gratitude to all my laboratory colleagues who shared with me the wonderful

experience of this research project and were of great support and advices.

In addition to that, I would like to express my sincere and grateful gratitude for all my family members

for their continuous support and encouragement during all this time.

Last but not least, I would like to express my thanks to the Benmoussa family members who were very

helpful and supportive since I arrived to Canada and during my graduate program.

List of Abbreviations

ANN Artificial Neural Network

BM Boltzmann Machine

CNN Convolutional Neural Network

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

EWMA Exponential Weighted Moving Average

HIDS Host-based Intrusion Detection System

HTTP Hyper-Text Transfer Protocol

HTTPS Secure Hyper-Text Transfer Protocol

IDS Intrusion Detection System

IoC Indicator of Compromise

IP Internet Protocol

KNN K-Nearest Neighbor

LSTM Long-Short Term Memory

NIDS Network-based Intrusion Detection System

PCA Principal Component Analysis

PSO Particle Swarm Optimization

RNN Recurrent Neural Network

SANN Supervised Artificial Neural Network

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SVM Support Vector Machine

SSL Secure Socket Layer

TCP Transmission Control Protocol

UANN Unsupervised Artificial Neural Network

UDP User Datagram Protocol

vi

Contents

Abbreviations v

1 Introduction 1

1.1 Motivations . 1

1.2 Problem Statement . 2

1.3 Objectives and Contributions . 3

1.4 Thesis Organization . 4

2 Background and State of the Art 5

2.1 Background . 5

2.1.1 Intrusion Detection Systems . 5

2.1.1.1 Host-based versus Network-based Intrusion Detection Systems 7

2.1.2 Bro Network-based Intrusion Detection System . 8

2.1.2.1 Evolution and History . 9

2.1.2.2 Architecture and Implementation . 12

2.1.2.3 Packet Capture . 12

2.1.2.4 Policy-neutral Event Engine . 12

2.1.2.5 Policy Layer . 13

2.1.2.6 Log Files . 14

2.1.2.7 Network Protocols . 14

2.1.2.8 Files . 15

vii

2.1.2.9 NetControl . 15

2.1.2.10 Detection . 15

2.1.2.11 Network Observations . 16

2.1.2.12 Other Log Files . 16

2.2 Anomaly Detection Existing Approaches . 17

2.2.1 Machine Learning Anomaly Detection . 18

2.2.1.1 Supervised Machine Learning Anomaly Detection 19

2.2.1.2 Support Vector Machine Anomaly Detection 21

2.2.1.3 Random Forests Anomaly Detection . 23

2.2.1.4 Decision Trees Machine Anomaly Detection 25

2.2.1.5 K-Nearest Neighbor Anomaly Detection 26

2.2.1.6 Supervised Artificial Neural Networks Anomaly Detection 28

2.2.1.7 Unsupervised Machine Learning Anomaly Detection 30

2.2.1.8 Unsupervised Artificial Neural Networks 30

2.2.1.9 Clustering-based Anomaly Detection Techniques 45

2.2.2 Statistical Anomaly Detection . 47

2.2.3 Soft-Computing Anomaly Detection . 47

3 Anomaly Detection 49

3.1 Approach Overview . 49

3.2 Anomaly Detection by Time-series . 51

3.2.1 Feature Extraction . 51

3.2.2 Adaptive Thresholding . 53

3.2.3 Predictive Analysis . 54

3.2.4 Anomaly Detection . 57

4 Design, Implementation and Evaluation 60

4.1 Design and Implementation . 60

4.2 Evaluation . 64

viii

4.2.1 Experimental Setup . 64

4.2.2 Ground Truth Correlation . 64

4.2.3 Validation on Benchmark Dataset . 65

4.2.4 Comparison with other Anomaly Detection Approaches 66

4.2.4.1 Long-Short Term Memory Network . 66

4.2.5 Scalability Study . 66

4.3 Front-End Platform . 67

4.3.1 Dashboard Organisation . 67

5 Conclusion 71

ix

List of Figures

2.1 Architecture of HIDS. 8

2.2 Architecture of NIDS. 9

2.3 Bro Evolution and History Timeline [76, 3]. 11

2.4 Bro NIDS Architecture [76]. 14

2.5 Bro NIDS Generated Log Files Taxonomy [76, 1]. 17

2.6 Bro NIDS Generated Connection Log Files Features [76, 1]. 18

2.7 General Overview of Anomaly Detection Approaches. [10, 45] 19

2.8 Classification of Machine Learning Anomaly Detection Approaches. [10, 45] 19

2.9 Classification of Supervised Machine Learning Anomaly Detection Approaches. [10, 45] . . 21

2.10 Classification of Support Vector Machine Anomaly Detection Approaches. [10, 45] 21

2.11 Classification of Random Forests Anomaly Detection Approaches. [10, 45] 24

2.12 Classification of Decision Trees Anomaly Detection Approaches. [10, 45] 26

2.13 Classification of K-Nearest Neighbor Anomaly Detection Approaches. [10, 45] 28

2.14 Classification of Supervised Artificial Neural Networks Anomaly Detection Approaches.

[10, 45] . 28

2.15 Classification of Unsupervised Machine Learning Anomaly Detection Approaches. [10, 45] 30

2.16 Classification of Unsupervised Artificial Neural Networks Anomaly Detection Approaches

[10, 45] . 31

2.17 Self-Organizing Maps Network Based Anomaly Detection Publications. [10, 45] 31

2.18 Classification of Deep Learning Based network Anomaly Detection Approaches. [10, 45] . . 32

x

2.19 Classification of Generative Deep Learning Network Based Anomaly Detection Ap-

proaches. [10, 45] . 32

2.20 Classification of Boltzmann Machine (BM) Network Anomaly Detection Approaches. [10, 45] 32

2.21 LSTM-based Network Anomaly Detection Approaches. [10, 45] 37

2.22 Publications Using AutoEncoders for Their Anomaly Detection Approaches. [10, 45] 42

2.23 Publications Using Self-taught Learning for Their Anomaly Detection Approaches. [10, 45] 45

2.24 Publications Using Clustering for Their Anomaly Detection Approaches. [10, 45] 46

2.25 Classification of Statistical Anomaly Detection Approaches. [10, 45] 47

2.26 Classification of Soft-Computing Anomaly Detection Approaches. [10, 45] 48

3.1 Proposed Anomaly Detection Approach . 50

4.1 Daedalus Technical Overview . 63

4.2 Time Series Overview . 67

4.3 Originator and Responder IPs Unique Count . 68

4.4 Malware Correlation Time Series . 68

4.5 Ransomware Correlation Time Series . 68

4.6 Anomalies Time Series . 69

4.7 Originator and Responder IPs Geo-Maps . 69

4.8 Top 10 Originator and Responder Countries . 69

4.9 Top 10 Originator and Responder Malware Families . 70

4.10 Top 10 Originator and Responder Ransomware Families 70

xi

List of Tables

2.1 Comparative Table Between HIDS and NIDS . 8

2.2 Accuracy results achieved in [82] . 22

2.3 Accuracy results achieved in [75] . 23

2.4 Accuracy results achieved in [38] . 23

2.5 Detection rates achieved in [33] . 24

2.6 Experimental networks details used in [17] . 25

2.7 Experimental Results Achieved in [17] . 25

2.8 Experimental Results Achieved in [18] . 26

2.9 Experimental Results Achieved in [53] . 26

2.10 Confusion Matrix achieved by using KNN with PCA in [20] 27

2.11 Confusion Matrix achieved by using Decision Tree algorithm with PCA in [20] 27

2.12 Experimental Results Achieved in [49] . 28

2.13 Experimental Results Achieved in [22] . 29

2.14 Experimental Results Achieved in [65] . 30

2.15 Experimental Results Achieved in [67] . 30

2.16 Experimental Results Achieved in [52] . 33

2.17 Experimental Results Achieved in [12] . 33

2.18 Experimental Results Achieved in [50] . 34

2.19 Experimental Results Achieved in [47] . 34

2.20 Experimental Results Achieved in [68] . 35

2.21 Experimental Results Achieved in [81] . 36

xii

2.22 Experimental Results Achieved in [90] . 36

2.23 Experimental Results Achieved in [57] . 37

2.24 Experimental Results Achieved in [43] . 38

2.25 Experimental Results Achieved in [41] . 38

2.26 Experimental Results Achieved in [19] . 39

2.27 Experimental Results Achieved in [30] . 40

2.28 Experimental Results Achieved in [42] . 40

2.29 Experimental Results Achieved in [23] . 40

2.30 Experimental Results Achieved in [61] . 41

2.31 Experimental Results Achieved in [25] . 42

2.32 Experimental Results Achieved in [80] . 42

2.33 Experimental Results Achieved in [63] . 43

2.34 Experimental Results Achieved in [14] on normal traffic. 43

2.35 Experimental Results Achieved in [14] on malicious traffic. 44

2.36 Experimental Results Achieved in [29]. 44

2.37 Experimental Results Achieved in [60]. 44

2.38 Experimental Results Achieved in [39]. 45

2.39 Experimental Results Achieved in [79]. 46

3.1 Effect of various anomalies on different feature distributions [46] 52

3.2 Anomaly scores and flags . 59

4.1 Scalability Comparison . 67

xiii

List of Algorithms

1 Particle Swarm Optimization Algorithmic Description [27, 58, 84] 55

2 Proposed Predictive Algorithm . 58

3 Anomaly Detection Fuzzy Inference Algorithm . 59

xiv

Chapter 1

Introduction

In this chapter, we present the motivations of our work. Then, we formally define the problem that we

try to solve, state our objectives and research contributions. Finally, we give an overview of this thesis

organization.

1.1 Motivations

During the last decade, a huge increase in the number of cyber threats and security attacks has been observed

ranging from ransomware attacks to denial of service attacks and botnets, and from social engineering threats

to data breach threats, which poses a real threat to millions of users, making the prevention, mitigation, and

detection of such attacks a challenging and difficult task for security analysts and experts. As an example

to such threats, The Wannacry Ransomware [74] released by a hacking group named Shadow Brokers,

propagated worldwide during May 2017, and had devastating consequences in several countries affecting

hundreds of thousands of machines and many organizations, such as Cambrian College in Canada and Saudi

Telecom company. Another example is The Mirai Botnet [15] which also had a severe impact worldwide

in late 2016 mostly in the U.S by affecting vulnerable Internet of Things devices and turning them into a

zombie army.

In order to detect these threats in fast and quick time delays, security analysts have a wide range of

tools and frameworks such as: social networks where users react to worldwide attacks and vulnerabilities

in real-time, intrusion detection and prevention tools that monitor (log) network traffic activities in human

1

readable formats, and many others. Although intrusion detection systems offer network activity monitoring

in real-time, they suffer from some limitations such as the tremendous lag to learn novel attcks signatures

and add them to the dedicated databases. In addition to that, these databases tend to grow exponentially in

size thus leading to decrease their access time. Therefore, the need of security experts for techniques and

approaches to take advantage of these logged data, and generate useful cyber threat intelligence has arisen.

These techniques must not only be able to detect known attack patterns or signatures, but also detect zero-

day attacks, all of this in a scalable and less resources consumption fashion. As an example of proposed

techniques, anomaly detection is a field of interest that has attracted many researchers due to its ability to

solve some of the issues mentioned above.

1.2 Problem Statement

Nowadays, many attacks and threats are launched around the globe to such an extent that detecting and

monitoring all of them is not an easy and straightforward task. Moreover, the time interval between the oc-

curence of these threats and their detection by cyber experts and analysts can be very critical to the security

of cyber infrastructures. Security analysts need to be aware of what is happening on their organization’s

network in near real-time fashion. Thus, they need tools that enable them to monitor all the network traffic

and activity that is occuring in a quickly time delays. Intrusion detection systems (IDS) are the most used

tools to achieve the aforementioned goal by logging all targeted network traffic by security experts in a hu-

man readable and comprehensive manner. However, these IDS tools are not enough to detect all the attacks

within the network since they do not come with the fully detection functionalities especially for unknown

attacks signatures. Therefore, security analysts and experts needed to develop and come-up with new tech-

niques in order for them to leverage these logged activities and increase the detection rate of such attacks.

Anomaly detection is one of the most explored and studied fields in order to achieve the aforementioned ob-

jective. Many approaches and algorithms have been proposed for anomaly detection task falling into many

paradigms (machine learning, statistical, soft-computing, etc), and each one of them has its advantages over

other techniques and its limitations and flaws. But, the majority of these anomaly detection techniques suffer

from scalability issues due to the fact that they deal in most cases with small datasets (Benchmark datasets),

and it is very rare to find one of these techniques experimenting with huge network traffic. To address these

2

challenges, we designed and developed a framework called Daedalus capable of generating cyber threat

intelligence from a stream of connections by detecting anomalies in a scalable way, geolocate threat actors,

and correlate this intelligence with external and factual security sources. Daedalus uses a combination of

several algorithms and is splitted into four major steps: feature extraction where we select the appropriate

set of features needed and apply the required preprocessing on them to get the observed network behavior,

adaptive thresholding where we define a dynamic and adaptive threshold for each of these extracted features,

predictive analysis where we propose our own predictive algorithms, which tries to remove noisy patterns

from the observed network behavior, and anomaly detection step where we compute anomalies scores and

make a decision based on them in order to decide whether a feature is anomalous or not. Our tool aims to

fix this scalability issue by leveraging the advantages of some state of the art techniques and improve the

execution times, CPU, and RAM consumption.

1.3 Objectives and Contributions

The main objective of this research is to build a scalable tool and framework capable of analyzing massive

stream of connection logs from different sources, aggregate them in a smart and useful way, and detect

malicious and abnormal network activities. To this end, we aim to achieve the following complimentary

objectives:

a) Analyze massive connection streams to generate in an efficient and scalable way threat intelligence

that can be used in the detection, identification, mitigation, and attribution of cyber threats.

b) Correlate this generated intelligence with other security sources of indicators of compromise (IoCs) in

order to have more details about the detected malicious activity, such as malware family or malware

hashes.

c) Validate the proposed technique through extensive experimentation on real-life IDS streams.

By fully achieving these objectives, we would be able to help security analysts to analyze streams of connec-

tions logs in more details and take security decisions based on the generated threat intelligence; for instance,

blacklisting some malicious IP blocks.

Our contributions are summarized as follows:

3

a) Comparative study of the state of the art proposals in network anomaly detection on connection stream

data.

b) Design and elaboration of an innovative technique for network anomaly detection on connection

stream data that achieves high efficiency and scalability.

c) Design and implementation of a framework that analyzes massive real-life connection stream data.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: chapter 2 provides the necessary background and the

litterature review of the most prominent related work. Chapter 3 presents the time series based technique

used for anomaly detection. Chapter 4 gives details about the proposed system including the implementation

details (code samples), the technology stack describing all the technologies used, and the built web portals

containing the user-friendly dashboards. In addition to that, we also detail the steps to evaluate our approach.

Chapter 5 concludes this thesis with some remarks and notes and discusses possible future works.

4

Chapter 2

Background and State of the Art

In this chapter, we first introduce the needed background for our work including an overview of intrusion

detection systems (IDSs), and an overview of BRO NIDS tool. Then, we state the most relevant works that

have been proposed and published in the field of network anomaly detection.

2.1 Background

In this section, first we give a general description of intrusion detection systems (IDS) and compare between

two main types of IDS; namely: host-based intrusion detection systems (HIDS) and network-based intrusion

intrusion detection systems (NIDS). Next, we are going to have a detailed view of Bro NIDS in which we

describe its architecture and design. Then, we present a detailed state of the art of existing network anomaly

detection techniques.

2.1.1 Intrusion Detection Systems

In parallel with the continious growth of the Internet and Information Systems, novel attempts to attack these

networks and tools and exploit possible their vulnerabilities also have increased tremendously. Thus, making

the detection, mitigation, and prevention of such threats very important for every security expert. Intrusion

detection systems (IDS) are the most used tools in order to achieve the above goals. Intrusion detection

system (IDS) can be any software or device which monitors networks and devices activities in order to

detect suspicious activities. Thus, intrusion detection systems’ main goal is to prepare the background for

5

any security expert to deal with possible threats by:

a) Collecting and monitoring information from different systems and networks,

b) Make them suitable for further analysis in order to detect possible security policies breaches.

Also, IDS systems provide the following functionalities:

a) Monitoring and analysing different users’ activities.

b) Security assessment of different vulnerabilities found on the network.

c) Statistical overview of network/users activities patterns and matching them to known attack patterns.

d) Detection of anomalous activities by analysing the flowing traffic over the monitored network.

But in most cases these systems are not enough to completely protect from all types of attacks; especially

when all Internet services are publicly available with in most cases their open-source codes/implementations

making it easier for attackers to:

a) evade detection techniques by mimicing in some cases normal activities behaviors like in Mimicry

Attacks,

b) or in other cases implementing novel attacks which do not have known signatures detected by these

IDS systems (zero-day attacks).

Thus, the evaluation of these IDSs’ efficiency and performance systems is of paramount importance for

security experts before completely deploying them on the targeted network infrastructure. In this context,

three metrics/criterias are used to evaluate them:

a) Accuracy which represents the IDS system ability to detect and flag attacks without the presence of

false positives (flagging of benign activities as threats).

b) Scalability is the most important of these three metrics as it represents the IDS system’s speed and

rate at auditing and monitoring network/users activities; the more the scalability metric is better, the

closest the detection functionality is to real-time.

6

c) Resistance to Threats and Vulnerabilities which represents the ability of the IDS system itself to

resist to possible attacks and evasion techniques.

2.1.1.1 Host-based versus Network-based Intrusion Detection Systems

Intrusion detection systems (IDSs) can be categorized into two main categories depending on the site of

their deployement in addition to other diffrences.

a) Host-based Intrusion Detection Systems are the first category of IDS that have been proposed since

the first designs of IDSs. In HIDS environments, the systems to protect are mainly computer stations; where

on each computer station an HIDS system/client is deployed that monitors the computer’s system state for

any suspicious and critical changes and these clients communicate the logs that they collected with a central

HIDS server which is generally located on the internal side of the local network to monitor (behind the

firewall); like depicted in Figure 2.1.

The main advantage of HIDS is that they allow the local detection of possible attacks/threats or intrud-

ers before their propagation to the whole network infrastructure. In addition to that, and in regard to the

deployement of distributed attacks, the need of implementing a communication prototype that allows differ-

ent workstations to exchange their HIDS information in order to detect such distributed attacks. However,

HIDS systems have a major flaw which consists of their limitation in detecting attacks on the infrastructure

network itself; especially with the widespreading of wide ranged attacks like distributed denial of service

attacks (DDoS).

b) Network-based Intrusion Detection Systems on the other hand are deployed in order to detect attacks

on the whole targeted infrastructure’s network. Thus, they are generally deployed on the side of targeted

network’s firewall/router in order to log all incoming and outgoing network traffic; like shown in 2.2.

These are generally deployed on the network’s firewall level and analyse the incoming and outgoing

network traffic in order to detect known attacks behaviors/patterns. There are many differences between

these two categories of IDS systems; which are shown in 2.1:

7

Hosts

HIDS
Server

HIDS
Client

HIDS
Client

HIDS
Client

Network
Firewall/Router

Internet

Figure 2.1: Architecture of HIDS.

Table 2.1: Comparative Table Between HIDS and NIDS

Functionality HIDS NIDS Description
Cost and Price - HIDS are more affordable and easy to deploy.

Required Training - HIDS are straightforward to understand whilst NIDS require deep knowledge.
Deployement Site Locally Network’s Firewall HIDS are deployed on the computer side whilst NIDS are deployed on the network’s tap.

Bandwidth Requirements Low High NIDS requires more bandwidth since it captures the whole network’s traffic.
Cross-platform Compatibility - NIDS are more adaptable to other platforms.

Packet Rejection - Only NIDS have the capability to reject some packets.
Central Management Both of them require central management.

Accuracy and False Alarms Rates High False Alarms Rates NIDS capture all network’s traffic without prior filtering; increasing the number of false alarms.

2.1.2 Bro Network-based Intrusion Detection System

Bro is a powerful open source UNIX-based Network Intrusion Detection System (NIDS) that is most used

to detect network behavioral anomalies for cybersecurity purposes. Bro is designed in a way that can resist

external threats and attacks against itself and is an event-based Intrusion Detection System that works by

8

Hosts

Firewall/Router

Internet

NIDS

Figure 2.2: Architecture of NIDS.

separating its policy from its mechanisms. Bro comes as a package with several analyzers like protocol

analyzer for the majority of most known network TCP/UDP protocols. By analyzing network traffic, Bro

generates an abstraction of each activity analyzed as an event. In addition to that, Bro offers its own scripting

language that allows its own users to define event-based policies depending on their security requirements

[76].

2.1.2.1 Evolution and History

Bro NIDS was originally proposed and developed by Vern Paxson from ICSI’s Center for Internet Research

(ICIR), Berkley. The project was initiated in 1995 and is still being improved till now. Lawrence Berkley

National Laboratory (LBNL) started officially using the IDS in 1996, and version 0.2 applying the first

set of changes and required updates to the IDS was launched in 1997. Moreover, in 1998, Vern Paxson

published a paper in USENIX [66] in which he gave a detailed description of Bro’s architecture and de-

sign. On the same year, version 0.4 was released which added the functionality of handling and analyzing

HTTP protocol, scan detection, IP fragmentation, and Linux platform support. Just after that, and more

9

precisely in 1999, version 0.6 was released allowing the open source IDS to handle regular expressions and

analyze users’ login sessions. Futhermore, in 2000, Vern Paxson published another paper [88] in which an

algorithm that is efficiently able to detect stepping stones which is an evasion technique used by attackers

to keep their anonymity while achieving their goals. During the same year, version 0.7a90 was released

which added important changes to the tool. The next year (2001), another version was released (v0.7a90)

which added profiling and states management capabilities. In 2002, version 0.7a175/0.8aX was released in

which attacks signatures, Simple Mail Transfer Protocol (SMTP) analyzer, IP version 6, and user manual

were added to the framework. The coming year (2003), version0.8a37 was released which came with com-

munication utilities, database persistence capability, and logs rotation. During the same year, anonymity

capability, active mapping, and contextual signatures were also added. In 2004, versions 0.8aX and 0.9aX

were released enabling the IDS to handle and analyse more protocols like Secure Socket Layer (SSL) and

Server Message Block (SMB), and also BroLite which contains the base configuration of Bro. Moreover, in

2005, version 1.0 was released introducing BinPAC which is a high lever language that is used to describe

network protocols parsers and generates C++ code. In addiction to that, and within the same year, Internet

Relay Chat (IRC) and Remote Procedure Call (RPC) analyzers were added to the tool alongside with 64-bit

architecture compatibility. Another DIMVA paper [26] was published during the same year which proposed

an approach that leverages the advantages of both host-based and network-based IDSs; by preserving the

advantages of network-based ones and improving its weaknesses using specific host-based traffic analysis

context. During the next year (2006), versions 1.1 and 1.2 were released adding when statement to the

scripting language, resource tuning, Broccoli which is: BRO Client Communication Library and allowed

Bro’s users to code applications and tools that are able to communicate in the same language used by the

communication protocol of Bro IDS, and Dynamic Protocol Detection (DPD) which instead of deciding

which protocol analyzer to use (based on the connection’s destination port), attributes an analyzer tree for

each logged connection. In 2007, version 1.3 was released in which Ctor expressions, GeoIP, and connec-

tions compressor were integrated to the tool. Additionally, and within the same year, Bro Clustering was

also introduced. In 2008, version 1.4 added changes and updates regarding Dynamic Host Configuration

Protocol (DHCP), BitTorrent, HTTP Entities, introduced NetFlow to Bro, and Autotuning capability. The

following year (2009), version 1.5 introducing BroControl which consists of a tool that makes Bro IDS

10

straightforward. In 2010, the National Science Foundation (NSF) and more precisely the Office of Advanced

Cyberinfrastructure (OAC) awarded the improvement that had been done on Bro IDS. The next year (2011),

version 2.0 introduced new scripts to the scripting language of Bro, and just after that (in 2012), another

version was released (version 2.1) which introduced some updates and changes regarding IPv6 support and

the Input Framework that allowed Bro users to import external data into Bro tool. Last but not least, during

the year of 2013 File analysis was introduced within version 2.2 and connections Summary Statistics. Also,

during the same year, the National Science Foundation (NSF) and more precisely the Office of Advanced

Cyberinfrastructure (OAC) established a Bro Center of Expertise which is set to be a central point of com-

munication between diffrent Bro communities worldwide in order to leverage Bro technology and expertise

at the best. Figure 2.3 depicts this timeline evolution [76].

1995

2013

Vern Paxson Proposes the First Version of Bro NIDS.

LBNL starts using Bro NIDS officially.
1996

Version 0.2 released.

1997

USENIX Paper, version 0.4 released.

1998

Version 0.6 released.

1999

Stepping stone paper, version 0.7a48.

2000

Version 0.7a90 released.

2001

Version 0.7a175/0.8aX released.

2002

Version 0.8a37 released.

2003

Version 0.8aX/0.9aX released.

2004

Version 1.0 released.

2005

Version 1.1/1.2 released.

2006

Version 1.3 released.

2007

Version 1.4 released.

2008

Version 1.5 released (BroControl).

2009

Bro SDCI.

2010

Version 2.0 released.

2011

Version 2.1 released (IPv6 support improved).

2012

Version 2.2 released (File analysis and Summary Statistics).

Figure 2.3: Bro Evolution and History Timeline [76, 3].

11

2.1.2.2 Architecture and Implementation

As shown in Figure 2.4, Bro NIDS has been designed as a set of three layers: packet capture, policy-neutral

event engine, and policy layer [76, 3]. These three layers have been defined according to several objectives,

the most prominent of them are stated below:

a) Separate mechanisms from policies: this objective aims to add flexibility and simplicity to the tool

by completely separating the mechanisms required to monitor a particular security policy from its

specifications.

b) Scalable monitoring: due to the huge increase of network bandwidths nowadays, NIDSs need to be

able to monitor this huge amount of network traffic in the most efficient way without missing any

potential threat.

c) Attacks resistance: one of the ways for attackers to achieve their goals successfully is to first disable

the NIDS before targeting their victims and therefore securing this NIDS is of paramount importance.

2.1.2.3 Packet Capture

In this layer, a stream of packets are extracted from the network stream and passed to the event engine layer.

In order to do so, Bro uses libpcap library which offers support for most network technologies and protocols.

Libpcap works by using efficient and powerful expression filtering in order to reduce the amount of packets

to analyze. As an example of this, if one wants to not capture SMB related network traffic (port 445); libpcap

can be configured to ignore all related traffic to port number 445. Using this concept, Bro enables security

experts to dynamically filter network traffic during run-time according to their policy requirements.

2.1.2.4 Policy-neutral Event Engine

This layer represents the core of Bro NIDS and its job is to analyze all network packets received from the

packet capture layer. By getting these raw packets, it sorts them chronoligically, and decodes application

layer protocols. This layer generates at the end of this process events based on the policy layer requirements

12

and has to be very scalable and attack resistant. The event engine layer consists of several types of analyzers

where each of them is designed for a well-defined task (decoding a network protocol, signature-matching,

etc...). The event engine layer is devided into four major components:

• State Management: in Bro NIDS, each packet belongs to one single connection. Bro defines its own

connection state expiration mechanism, this is due to the fact that on large network volumes there

exists a lot of crud connections; network packets that show connections have been ended from both

ends (FIN packet) but do not conform to any pre-defined standard. One common explanation for this

type of packets are link-level errors and network protocols implementations persistant bugs.

• Transport Layer Analyzers: Bro TCP analyzer keeps track of the various state changes in each

connection, keeps track of acknowledgements sent, handles retransmissions and does much more.

This results in a real byte stream of payload data and fixes some drawbacks related to Snort IDS.

• Application Layer Analyzers: Bro also analyzes diffrent application layer protocols such as: HTTP,

SMTP, or DNS.

• Infrastructure: includes components like event and time management, Bro scripting language inter-

preter, and other data structures.

2.1.2.5 Policy Layer

This is where security experts/analysts define their environment specific network security policies. This is

achieved by writing handlers for each event raised by the event engine layer and which defines the con-

straints/alerts to generate for each relevant event. These event handlers are coded using Bro’s own scripting

language which has been designed according to network intrusion detection paradigm, proving a set of pre-

defined functionalities, like: dynamic memory management, dynamic typing, regular expressions. During

Bro startup, all the scripts enabled by default by the user are loaded and thus only the needed analyzers are

loaded leading to less resource consumption. Last but not least, Bro comes with some pre-defined policy

scripts that perform a wide range of tasks, but security experts can extend it with their own policy scripts

and enabling them at startup.

13

Packet Capture
Policy-neutral Event Engine
Policy Layer

LEGEND

Expression Filtering

Libpcap
Library

Protocol
Analyzer

Event
Generation

State
Management

Event
Handler

Policy
Scripts

Network
Traffic

Packet
Stream

Filtered
Packet
Stream

Packet
Filter

Events
Stream

Event
Control

Security

Policy
Script

Real-time
Alerts

Security
Expert

Figure 2.4: Bro NIDS Architecture [76].

2.1.2.6 Log Files

After analyzing this stream of network packets and applying the required analyzers and policy scripts, Bro

generates diffrent types of log files depending on the analyzer triggered and the network protocols detected,

as shown in Figure 2.5. Consequently, Bro NIDS log files are categorized into six categories [76, 1] that are

presented below:

2.1.2.7 Network Protocols

This category gathers all the Bro log files that are related to the most common network protocols. Each

time a protocol which analyzer is enabled at startup is detected during the analysis step, Bro generates

automatically a log file for that specific protcol and stores inside it all the information that it deems necessary

to be logged. The most important log files found in this category are: a) conn log: which contains all the

information about any Internet connection that Bro considered as essential including IP addresses and ports,

14

coonection state and history, number of bytes and packets sent between both ends (originator and responder

IPs). b) http log: which is generated automatically if Bro finds any connection that is requiring the usage

of HTTP protocol (even HTTPS is considered by Bro as an HTTP event), and contains in addition to conn

log file features, more information that Bro extracts from the packet like: user-agent, HTTP response codes,

HTTP request type, and so on. c) dns log: generated automatically if Bro finds any connection using DNS

protocol and besides the features of the connection, it additionally contains information about the DNS

query, DNS response, and so on.

2.1.2.8 Files

This category gathers all the Bro log files that are related to files transmitted over the network wire and

detected in the packets payloads. This information varies from files names to files sizes and from MIME

types to files overflow bytes. In addition to that, Bro offers the capability of generating MD5 and Sha1

hashes for these files; this can be useful as some malicious files can be checked using their respective hashes

against benchmark online malware databases.

2.1.2.9 NetControl

This category is related to a Bro plugin-based framework that enables network traffic control to Bro’s sen-

sors, and everything is allowed by default.

2.1.2.10 Detection

This category contains all the Bro logs files generated after a detection of an anomaly from an external

source matching (intel log and signature log), or if some error is detected on the network traffic like SSL

certificate errors for example (notice log).

15

2.1.2.11 Network Observations

This category contain Bro log files that vary from SSL certificates (known_certs log) to hosts that have

completed TCP handshakes (known_hosts log), and from knwon services (known_services log) to software

information being used on the network (software log).

2.1.2.12 Other Log Files

This category is related to detected failures in the Dynamic Protocol Detection (DPD) (dpd log), but also to

unexpected network traffic activity detected by Bro (weird log).

Finally, we explore in more details the features of interest within Bro connection log (conn log) [76, 1];

since our proposed work/approach uses this log file as input. Figure 2.6 shows these features of interest.

In Bro NIDS, the word Originator refers to the host that requested a connection initiation or initiated the

Internet connection, whereas, the word Responder refers to the network host that this originator wants to

communicate with. each of these two ends have four features of interest to our work alongside with other

features that will not be discussed here. a) originator IP: represents the IP address of the host that is

initiating the Internet connection, b) originator port: represents the TCP/UPD port of the network service

that the originator requested, responder IP: represents the IP address of the responding host, responder

port: represents the TCP/UDP port that this host used to reply to the originator’s request, originator bytes:

represents the total amount of bytes sent by the originator on the wire, responder bytes: represents the total

amount of bytes sent in the responder’s reply, originator packets: represents the number of packets sent by

the originator to the responder on the wire, and responder packets: represents the number of packets sent in

the responder’s reply.

16

Bro NIDS Log Files

Miscellaneous

weird_stats

dpd

unified2

weird

Network Observations

known_services

software

known_certs

known_hosts

Detection

intel

signatures

traceroute

notice_alarm

notice

NetControl
netcontrol

netcontrol_drop

Files

X509

pe

files

Network Protocols

ssl

syslog

smtp

ssh

dhcp

smb

dns

ftp

http

conn

Figure 2.5: Bro NIDS Generated Log Files Taxonomy [76, 1].

2.2 Anomaly Detection Existing Approaches

According to our litterature review on network anomaly field, and more precisely to these two surveys

[10, 45], network anomaly detection proposed techniques can be splitted into three categories: machine

learning techniques, statistical techniques, and soft-computing techniques (Figure . 2.7). Machine learning

17

Bro NIDS Connection Log File

Originator IP

Originator Port

Responder IP

Responder Port

Originator Bytes

Responder Bytes

Originator Packets

Responder Packets

Figure 2.6: Bro NIDS Generated Connection Log Files Features [76, 1].

techniques are splitted into two main categories: supervised or unsupervised techniques. Statistical tech-

niques which mainly depend on time-series analysis in order to detect abnormal activites (peaks) according

to a pre-computed threshold, and soft-computing techniques which are better when it comes to deal with an

environment with uncertainties and unprecisions.

2.2.1 Machine Learning Anomaly Detection

Machine learning based techniques use a set of common and most-known machine learning approaches

and methodologies in order to detect abnormal activity on networks’ traffics. As shown in Figure 2.8,

this category of network anomaly detection approaches is devided into two sub-categories: a) supervised

techniques which require generally a training phase in which a model is trained and built from a training

data, and a testing phase which allows to test the accuracy of the generated model against testing data. The

data used for these models is generally labelled and the goal of the built and validated model is to predict

future unlabelled data targeting a certain class of labels. b) Unsupervised techniques on the other hand do

not require to train a model and use generally unlabelled datasets, one of the most common machine learning

techniques used in this sub-category are clustering algorithms.

18

Anomaly Detection

Soft-
Computing

[36]

Statistical [21, 31]

Machine
Learning

Unsupervised

Clustering

Outlier
Detection

[16]

Expectation-
Maximization

(EM)
Clustering

[79]

K-Means [40]

Unsupervised
Artificial
Neural

Networks
(ANN)

Deep
Learning

Hybrid Deep
Neural

Network
(DNN)

[55, 71]

Discriminative Convolutional
Neural

Network
(CNN)

[23]

Self-taught
Learning

[39]

Generative

AutoEncoders [57, 63, 14, 61,
29, 60]

Recurrent
Neural

Network
(RNN)

Long-Short
Term

Memory
(LSTM)

[37, 57, 43, 41,
78, 77, 86, 19,
30, 42, 23, 61,

25, 47, 80]

Boltzmann
Machine

(BM)

Restricted
Boltzmann
Machine

Deep
Belief

Network
(DBN)

[52, 12, 11, 50,
47, 35, 85, 68,

81, 90, 48]
Self-Organizing

Maps
[70]

Supervised

Nearest
Neighbor
(KNN)

[53, 69, 20, 28,
49, 83]

Decision
Trees

[44, 18]

Random
Forests

[87, 33, 17]

Supervised
Artificial
Neural

Networks
(ANN)

Feed-Forward
ANN

[22, 65, 67]

Recurrent
ANN

[54]

Perceptron
Based

[89]

Perceptron
Backpropagation

Hybrid

[89]

Support Vector
Machine
(SVM)

Robust
SVM

[38]

One-Class
SVM

[75]

Standard
SVM

[51, 13, 82, 85]

Figure 2.7: General Overview of Anomaly Detection Approaches. [10, 45]

Machine Learning Anomaly Detection
Unsupervised

Supervised

Figure 2.8: Classification of Machine Learning Anomaly Detection Approaches. [10, 45]

2.2.1.1 Supervised Machine Learning Anomaly Detection

Supervised-based anomaly detection techniques are very commonly used since they often require a pre-

trained accurate model and these techniques in most of the time are accurate enough and give good classifi-

cation and prediction results. However, these techniques suffer from some limitations:

a) Require generally several iterations of training and testing phases in order to generate the best accurate

models,

b) Delay in the deliverance time of analytics results especially when it comes to critical data or projects

that need to be delivered within very fast time delays.

19

This family of machine learning can also be devided into several sub-categories according to our litter-

ature review[10, 45] as shown in Figure 2.9.

More precisely, this category is devided into four sub-categories:

a) support vector machine (SVM) based network anomaly detection techniques in which the algorithm

generally require data points and outputs the resulting hyperplane (a simple separating line in a two-

dimension space) that best defines the optimal decision boundary that separates the diffrent targeted

classification class label’s values. In other words, the data points are grouped on the sides of this

hyperplane and each group is considered as an independant class.

b) Random forest based network anomaly detection technique on the other hand belong to the family

of ensemble methods and are used to build predictive models for both classification and prediction

problems. The model built using random forest algorithms creates a forest representation of random

uncorrelated decision trees in order to take the best classification or prediction decision at the end.

c) Decision trees on the other side are quite similar to the previous one (random forests); to be more pre-

cise, decision trees are built on the entire dataset using all the features of interest to the targeted prob-

lem, whereas random forests randomly select observations and specific features to construct multiple

decision trees and computes an average metric on the results. More precisely, each tree contributes

with its own vote, and the class that receives the most votes by majority ruling is considered as the

result of the classification/prediction.

d) Supervised artificial neural networks (SANN) take input vectors in the network and use them to

produce output vectors, these output vectors are then fed to the algorithm which will compare them

with a set of targeted/desired vectors. If an error is detected when there is a considerable diffrence

between the resulting ouputs and the desired ones. This is repeated and each time the weights of

the network are adjusted based on these error values, until the resulting outputs and the desired ones

match.

20

Supervised Machine Learning Anomaly Detection

Supervised Artificial Neural Networks
(ANN)

K-Nearest Neighbor (KNN)

Decision Trees

Random Forests

Support Vector Machine (SVM)

Figure 2.9: Classification of Supervised Machine Learning Anomaly Detection Approaches. [10, 45]

2.2.1.2 Support Vector Machine Anomaly Detection

Suppor vector machine network anomaly detection techniques are devided according to the litterature

review [10, 45] into three main classes, as shown in Figure 2.10.

Support Vector Machine (SVM) Anomaly Detection

Robust
SVM

[38]

One-Class
SVM

[75]

Standard
SVM

[51, 13, 82, 85]

Figure 2.10: Classification of Support Vector Machine Anomaly Detection Approaches. [10, 45]

a) Standard SVM: four prominent works fall into this category. In [51], the authors used gradual feature

removal technique in order to reduce the number of features used to 19 critical ones chosen from

KDDCUP99 [64]. Then, using a combination of clustering techniques, ant colony algorithm, and

support vector machines (SVM), they built an efficient classifier to detect normal and abnormal net-

work traffic. At the end of their work, they evaluated their classifier and showed that it achieves an

accuracy of 98.62% using 10-fold cross validation and an average Matthews correlation coefficient

(MCC) of 86.11%. In [13], the authors proposed mutual information-based feature selection method

for intrusion detection systems. More precisely, two feature selection methods are proposed and their

performance is comapred to a mutual information-based feature seletion method. This comparison is

21

achieved using both linear (linear correlation coefficient) and non-linear (mutual information). Fur-

thermore, they proposed an intrusion detection algorithm using their own improved least squres sup-

port vector machines. At the end of their work, they conducted their experiments on KDDCUP1999

[64] dataset and after evaluation and validation, their proposed feature selection algorithm achieved

the highest accuracy results; with an average of 99.8% on normal traffic, 99% on denial of service

(DoS) traffic, 99.83% on probing attacks traffic, 99.91% on remote to login (R2L) traffic, and 93.16%

on user to remote (U2R) traffic compared with other techniques. In [82], a support vector machine

anomaly detection based technique was proposed by authors which analyses tremendous amounts of

NetFlow traffic. Their proposed approach uses a special kernel function which considers both contex-

tual and quantitative features select from NetFlow records. The following Table 2.2 best shows these

accuracy results on diffrent attacks:

Table 2.2: Accuracy results achieved in [82]

Attack Type Accuracy False Positives Rate True Negatives Rate
Nachi Scan 89.6% 0.4% 99.6%

Netbios Scan 93.8% 0% 100%
Popup Scan 91.5% 2.3% 97%

SSH Scan & TCP Flood 91.7% 1.1% 98.9%
DDoS UDP Flood 91.5% 2.2% 97.8%
DDoS TCP Flood 90.7% 3.3% 96.7%

Stealthy DDoS UDP Flood 93.8% 0% 100%
DDoS UDP Flood & Traffic Deletion 93.4% 0% 100%

In [85], a novel algorithm called support vector machine based on the restricted Boltzmann machine

(SVM-RBM) is proposed in order to detect network anomalies. Restricted Boltzmann machine (RBM)

are used during the feature extraction step and choose the best gradient descent algorithm using Spark

in order to train the support vector machine (SVM) classifier. Furthermore, in order to improve the

performance of SVM-RBM, diffrent numbers of hidden units are tested and it was shown that the

SVM classification highly depends on the learning capability of these features using RBM.

b) One-Class SVM: the most prominent work that has been proposed in this category of SVMs is the

work proposed in [75]. The authors proposed a hybrid machine learning approach in order to detect

network anomalies. More precisely, they used self-organized feature map (SOFM) in order to use

SVM without previous knowledge. Then, passive TCP/IP Fingerprinting (PTF) is used in order to

22

reject incomplete network traffic that is considered violating TCP/IP standards. After that, a feature

selection technique based on genetic algoritm is used in order to extract optimal information from raw

packets. They also took into account the temporal relationships between data during the preprocess-

ing step and fed them to their Enhanced SVM. Finally, they experimented their technique alongside

with other techniques on both MIT Lincoln Labs dataset alongside with real captured data from real

network traffic, and the validation was achieved using m-fold cross-validation. The following Table

2.3 shows the results of their evaluation:

Table 2.3: Accuracy results achieved in [75]

Approach Kernel Function Detection Rate False Positives Rate False Negatives Rate
Soft Margin SVM Inner Product 90.13% 10.55% 4.36%
Soft Margin SVM Polynomial 91.10% 5% 10.45%
Soft Margin SVM RBF 98.65% 2.55% 11.09%
Soft Margin SVM Sigmoid 95.03% 3.9% 12.73%
Soft Margin SVM Average 93.73% 5.5% 9.66%
Soft Margin SVM Standard Deviation 3.91% 3.51% 3.66%
One-Class SVM Inner Product 53.41% 48% 36%
One-Class SVM Polynomial 54.06% 45% 46%
One-Class SVM RBF 94.65% 20.45% 44%
One-Class SVM Average 67.37% 37.82% 42%
One-Class SVM Standard Deviation 23.62% 15.11% 5.29%
Enhanced SVM Sigmoid 87.74% 10.2% 27.27%

c) Robust SVM: in [38], a comparative study was realised between the performance of robust support

vector machines (RSVMs), conventional/standard SVMs, and nearest neighbor classifiers (KNNs) on

KDDCUP99 [64] dataset. The results of their evaluation show that RSVMs outperform the two other

techniques achieving higher accuracy results with lower false positives rates. Table 2.4 shows these

results:

Table 2.4: Accuracy results achieved in [38]

Approach Attack Detection Rate False Positives Rate
RSVMs 81.8% Less than 1%
SVMs 81.8% Less than 1%
KNN 63.6% Less than 1%

23

2.2.1.3 Random Forests Anomaly Detection

As shown in Figure 2.11, there are mainly three important noticeable works using random forests in order to

detect network anomalies. In [87], a random forest network anomaly detection technique was proposed in

order to detect misuse, and abnormal behaviors on IDS networks. For misuse detection, intrusion patterns

are represented by the random forest automatically over the training data. Then, intrusions are detected by

matching network activities against the trained/detected patterns. As for anomalies, outlier detection capa-

bility of random forests are used. This hybrid approach improves the detection performance by combining

the advantages of both misuse and anomaly detection. Their approach was evaluated on KDDCUP99 [64]

dataset and the results of the validation show that this technique outperforms other unsupervised techniques.

Random Forests Anomaly Detection [87, 33, 17]

Figure 2.11: Classification of Random Forests Anomaly Detection Approaches. [10, 45]

In [33] on the other side, the authors conducted a comparative study between supervised probabilistic

and predictive machine learning techniques for network anomaly detection techniques. More precisely, two

probabilistic techniques Naive Bayes and Gaussian were compared with two other predictive techniques

Decision trees and Random forests. For their evaluation and experiments, KDDCUP99 [64] dataset was

used and the ability of these four techniques to detect four types of attacks was compared. The results of

their comparative study are shown in Table 2.5 :

In [17], a large scalable botnet detection tool called Disclosure was proposed. They selected several

features that are considered important from NetFlow data in order to detect reliably botnets’ command and

control (C&C) centers on benign NetFlow traffic. The evaluation of their approach was conducted on two

large real network traffic datasets (billions of records per day) and proved that Disclosure can detect botnet

C&C channels during very fast time delays. Table 2.6 shows the details about both real large networks used

for the evaluation, and Table 2.7 shows the results of their approach.

24

Table 2.5: Detection rates achieved in [33]

Approach Population Size DoS Probe R2L U2R
Gaussian 8020 96.7% 87.3% 13.6% 48.6%
Gaussian 8416 96.7% 87.4% 13.6% 48.6%
Gaussian 8812 84.3% 86% 13.5% 48.6%

Naive Bayes 8020 79.1% 81.6% 12.5% 84.3%
Naive Bayes 8416 79.1% 81.4% 12.5% 81.4%
Naive Bayes 8812 79.1% 81.3% 12.4% 84.3%

Decision Tree 8020 97.2% 73.6% 9.3% 28.6%
Decision Tree 8416 96.8% 77.9% 7.4% 24.3%
Decision Tree 8812 96.6% 74.7% 9% 30%

Random Forest 8020 97.2% 74.5% 5.5% 25.7%
Random Forest 8416 97.1% 75.8% 4.8% 34.3%
Random Forest 8812 97.1% 77.7% 6% 25.7%

Table 2.6: Experimental networks details used in [17]

Network Sampling Flows Per Day Unique IP Addresses
Inter-University Network (N1) 1:1 1.2 billion 28 million

Tier 1 ISP (N2) 1:10:000 400 million 50 million

Table 2.7: Experimental Results Achieved in [17]

False Positives Rates (Point on the ROC curve) Servers Flagged as C&C From N1 Servers Flagged as C&C From N2
1% 12,383 4,937

0.5% 7,856 3,166
1% 6,295 1,958
1% 132 960

2.2.1.4 Decision Trees Machine Anomaly Detection

There are two major works that fall into this class of network anomaly detection techniques. In [44], an ap-

proach using decision trees in order the process of matching used by signature-based techniques is deployed

combined with a set of machine learning clustering techniques. Experimental evaluation of the approach

proves that it detects anomalies in a fast manner compared to Snort’s detection module.

In [18], Exposure, a large scalable system that detects malicious domains using passive DNS analysis

25

techniques was proposed. A total set of 15 features was used and extracted from DNS traffic. The ex-

perimental evaluation was conducted on a real-world dataset of 100 billion DNS requests, and a real-life

deployement over two weeks in an ISP, and proved the scalability of their approach alongside with its high

capability of detecting malicious domains used in a variety of malicious activities. Table 2.8 shows the

accuracy results of their approach:

Table 2.8: Experimental Results Achieved in [18]

Validation Method Area Under the Curve (AUC) Detection Rate False Positives Rate
Full Data 99.9% 99.5% 0.3%

10-folds Cross-Validation 98.7% 98.5% 0.9%
66% Percentage Split 98.7% 98.4% 1.1%

Decision Trees Anomaly Detection [44, 18]

Figure 2.12: Classification of Decision Trees Anomaly Detection Approaches. [10, 45]

2.2.1.5 K-Nearest Neighbor Anomaly Detection

Five prominent research works have been proposed that are based on K-Nearest Neighbor in order to detect

network anomalies. In [53], an approach based on KNN classifier is proposed in order to distinguish between

normal and abnormal (intrusive) programs. This approach works by representing programs behaviors into

system calls frequencies, where each system call is considered as a word and the set of all system calls during

one program’s execution are considered as one document. Then KNN is used to classify these documents

since this method has proven its advantages in the past when it comes to deal with text categorisation. The

evaluation of this approach was conducted on KDDCUP99 [64] dataset and proved that it can detect in

an effictive way intrusive attacks achieving lower false positives rates. Table 2.9 show the results of this

evaluation:

In [69], an approach for anomaly detection was proposed by the authors which used a distributed,

clustering-based algorithm. The approach was evaluated using a simulated environment using sensor (multi-

ple sensors) collected data and demonstrated considerable accuracy results compared to a centralised sensor

scheme.

26

Table 2.9: Experimental Results Achieved in [53]

Attack Type Instances Detected Detection Rate
Known Attacks 16 16 100%

Zero-Day Attacks 8 6 75%
Both Attacks 24 22 91.7%

In [20], a novel method was introduced which uses first principal component analysis (PCA) which

projects data elements onto a vector space in order to represent the diffrent variations in those data elemts.

Then, a comparative study is conducted between decision tree and KNN algorithms. The experiments were

conducted on KDDCUP99 [64] dataset and shows that KNN algorithm outperforms decision trees, as shown

in Table 2.10, and in Table 2.11:

Table 2.10: Confusion Matrix achieved by using KNN with PCA in [20]

Predicted As Population Size Benign Probing DoS U2R R2L
Normal 60593 99.5% 0.27% 0.23% 0% 0%
Probing 4166 13.87% 74.4% 11.37% 0% 0.36%

DoS 229853 2.68% 0.18% 97.14% 0% 0%
U2R 228 35.96% 14.47% 39.03% 7.91% 2.63%
R2L 16189 97.49% 1.71% 0% 0% 0.8%

Table 2.11: Confusion Matrix achieved by using Decision Tree algorithm with PCA in [20]

Predicted As Population Size Benign Probing DoS U2R R2L
Normal 60593 99% 0.85% 0.12% 0% 0.03%
Probing 4166 29.6% 66.8% 3.5% 0.10% 0%

DoS 229853 2.42% 0.33% 97.25% 0% 0%
U2R 228 92.98% 0% 0.44% 6.58% 0%
R2L 16189 99.94% 0% 0.06% 0% 0.01%

In [49], a novel supervised network anomaly detection technique based on transductive confidence ma-

chines for k-nearest neighbors (TCM-KNN) was proposed. This approach is able to effectively detect anoma-

lies with higher detection rates, lower false positives rates by using lesser data and selected features com-

pared to the classical approaches. The evaluation that was conducted on KDDCUP99 [64] dataset showed

that this approach outperformed other state of the art techniques, as shown in Table 2.12.

27

Table 2.12: Experimental Results Achieved in [49]

Approach True Positives Rates False Positives Rates
SVM 98.7% 2.7%

Neural Network 98.3% 2.2%
KNN 97.7% 4.8%

TCM-KNN 99.6% 0.1%

Last but not least, in [83], payload-based anomaly detection (PAYL) is proposed which analyses the

payload of network traffic in a fully automatic way. During the training step, the profile of the network

payload is built as a byte frequency representation using also standard deviation of the payload flows to each

single network host and its associated port number. Then KNN is used to classify and detect anomalies using

Mahalanobis distance in order to compute the similarity between new data and the pre-computed payload

profile. The performance of their approach was demonstrated using KDDCUP99 [64] dataset and also a real

network traffic collected on the Columbia Computer Science (CS) department network. The results of their

evaluation on both these datasets achieve high accuracy rates; with almost 100% accuracy and 0.1% false

positives rates when it comes to HTTP port (80) network traffic.

K-Nearest Neighbor Anomaly Detection [53, 69, 20, 49, 83]

Figure 2.13: Classification of K-Nearest Neighbor Anomaly Detection Approaches. [10, 45]

2.2.1.6 Supervised Artificial Neural Networks Anomaly Detection

Supervised artificial neural networks (SANN) on the other hand are categorized according to our litter-

ature review [10, 45] into three main categories, as shown in Figure 2.14:

a) Perceptron Backpropagation Hybrid: One major work has been noticed using this technique: [89],

in which the authors introduced hiearchical intrusion detection (HIDE) which is a tool that detects

network traffic anomalies and attacks using a combination of statistical preprocessing techniques

and neural network classification algorithms. Moreover, they tested five distinct neural network

28

Supervised Artificial Neural Networks (ANN) Anomaly Detection

Feed-Forward
ANN

[22, 65, 67]

Recurrent
ANN

[54]

Perceptron
Backpropagation

Hybrid

[89]

Figure 2.14: Classification of Supervised Artificial Neural Networks Anomaly Detection Approaches. [10,
45]

algorithms: Perceptron, Backpropagation (BP), Perceptron Backpropagation Hybrid (PBH), Fuzzy

ARTMAP, and Radial-based Function. The results of their comparative study using these five algo-

rithms showed that both BP and BPH outperform the other three algorithms, and that they both can

effectively detect UDP flooding attacks.

b) Recurrent ANNs: In [54], proposed an approach that uses recurrent ANNs in order to reduce and

fix the problem of high false positives rates in the signature-based intrusion detection techniques.

In order to do so and improve the performance of their system, they used a combination of both

discriminative training and generic keywords representations. Their evaluation and validation was

conducted on KDDCUP99 [64] dataset and achieved 80% of detection rate with approximately one

false alarm (false positive) per day.

c) Feed-Forward ANNs: in [22], a feed-forward ANN based misuse detection system was proposed

in order to overcome one major flaw/drawback of rule-based techniques which consists of missing

detection when it comes to deal with patterns completely diffrent from the expected ones. Their

evaluation was conducted by computing both root mean square error (RMSE) and correlation metrics

and are shown in Table 2.13.

Table 2.13: Experimental Results Achieved in [22]

Training Data RMSE Test Data RMSE Training Data Correlation Test Data Correlation
0.058298 0.069929 0.982333 0.975569

In [65], the authors examined two systems for network anomaly detection using respectively feed-

forward and perceptrons for the first one, and self-organizing maps for the second system. These two

29

systems were evaluated on KDDCUP99 [64] dataset and showed that the learning capability of neural

networks can help improve the detection of abnormal network activity (DoS, Port Scan, DDoS, and

doorknob attacks), as shown in Table 2.14.

Table 2.14: Experimental Results Achieved in [65]

Correct Normal Predictions False Negatives Rates Correct Attack Predictions False Positives Rates
Union of All Attacks 100% 0% 24% 76%

DoS 100% 0% 24% 76%

Last but not least, in [67], a neural network based network anomaly detection approach was proposed

using feed-forward alongside with backpropagation technique in order to train the model on 10% of

KDDCUP99 [64] dataset. The evaluation results showed that the proposed algorithm detects diffrent

attack types in an effective fashion with less false positives and false negatives rates, compared to

some state of the art techniques. These results are shown in Table 2.15.

Table 2.15: Experimental Results Achieved in [67]

Approach Accuracy False Positives Rates False Negatives Rates Number of Epochs
Proposed Approach 94.93% 0.002% 0.7% 1067

Standard ANNs 87.07% 6.66% 6.27% 412

2.2.1.7 Unsupervised Machine Learning Anomaly Detection

Unsupervised machine learning anomaly detection techniques on the other hand are splitted based on our

litterature review and some available surveys on the topic [10, 45] into two main categories: a) Unsupervised

Artificial Neural Networks (UANN): where ANNs are used to detect network anomalies in a completely

unsupervised fashion without requiring training and testing phases. b) Clustering: based network anomaly

detection techniques on the other hand are also unsupervised and work in a way of clustering network data

into diffrent clusters and then make a decision on which clusters’ points to consider as anomalous or not

based on diffrent criterias. Figure 2.15 shows these two categories:

2.2.1.8 Unsupervised Artificial Neural Networks

30

Unsupervised Machine Learning Anomaly Detection

Clustering

Unsupervised Artificial Neural Networks
(UANN)

Figure 2.15: Classification of Unsupervised Machine Learning Anomaly Detection Approaches. [10, 45]

For unsupervised artificial neural networks based network anomaly detection techniques, they can be

splitted into two main categories: a) self-organizing maps: are used to cluster and visualize network data

extensively, whereas b) deep learning: techniques work in a way to mimic the human brain where each

neuron is represented as a node and these nodes are connected with other through multiple layers; inputs

layer, hidden layers, and outputs layer. Figure 2.16 shows these two categories.

Unsupervised Artificial Neural Networks (UANN) Anomaly Detection

Deep
Learning

Self-
Organizing

Maps

Figure 2.16: Classification of Unsupervised Artificial Neural Networks Anomaly Detection Approaches
[10, 45]

• Self-Organizing Maps: As shown in Figure 2.17, this sub-category of unsupervised artificial neural

networks based network anomaly detection techniques has a noticeable major work [70], where the

authors introduced integrated network-based Ohio University network detection service (INBOUNDS)

as a network based intrusion detection system. This tool contains a module called anomalous network-

traffic detection with self-organizing maps (ANDSOM) where self-organized maps were deployed. In

more details, ANDSOM represents each network connection by extracting six features of interest into

a six-dimensional vector. Then, it creates a two-dimensional lattice of neurons for each network

service. After that, and during real-time running of the tool, each coming new network connection is

fed to ANDSOM which attributes its respective self-organized map (SOM), and a distance is computed

between this connection SOM and the closest neuron; if this distance is above a fixed threshold,

then it is considered as an anomalous network connection. The results of their experimentation and

evaluation show that the percentage of false positives for both DNS and HTTP traffic is of 1.18% and

1.16% respectively.

31

Self-Organizing Maps Network Based Anomaly Detection [70]

Figure 2.17: Self-Organizing Maps Network Based Anomaly Detection Publications. [10, 45]

• Deep Learning: As shown in Figure 2.18, deep learning network based anomaly detection techniques

are on the other hand categorized into diffrent sub-categories.

Deep
Learning Self-taught Learning

Generative

Figure 2.18: Classification of Deep Learning Based network Anomaly Detection Approaches. [10, 45]

a) Generative: This sub-category is in turn also splitted into three main families, as shown in

Figure 2.19.

Generative

AutoEncoders

Recurrent Neural Network (RNN)

Boltzmann Machine (BM)

Figure 2.19: Classification of Generative Deep Learning Network Based Anomaly Detection Approaches.
[10, 45]

– Boltzmann Machine (BM): The major works that fall into this category of network

anomaly detection techniques mostly are sub-categorized as restricted Boltzmann Machine

(RBM) and in turn to deep belief network (DBN) based techniques, as shown in Figure 2.20.

There are a lot of major works that have been proposed in the past using Boltzmann Ma-

chine (BM) approach; ten of them are considered as important and thus shall be discussed

next.

In [52], a hybrid network anomaly detection technique was introduced which combined

both autoencoders and restricted Boltzmann Machines (RBMs). First, the authors used

32

Boltzmann
Machine

(BM)

Restricted
Boltzmann
Machine

Deep
Belief

Network
(DBN)

[52, 12, 11,
50, 47, 85, 68,

81, 90, 48]

Figure 2.20: Classification of Boltzmann Machine (BM) Network Anomaly Detection Approaches. [10, 45]

autoencodes as a dimensionality reduction technique in order to simplify the data repre-

sentation and improve the performance of their algorithm and extract the most important

features. Then, RBMs are used in order to detect malicious code; where the output vector

of the last layer of the RBM is fed as input vector for a backpropagation neural network.

The experimentation and evaluation of their proposed approach showed that the detection

accuracy of this hybrid approach outperforms other systems where only a single DBN is

used. These results are depicted in the following Table 2.16:

Table 2.16: Experimental Results Achieved in [52]

Model Used True Positives Rate False Positives Rates Accuray CPU Time (Seconds)
DBN 95.34% 9.02% 91.4% 1.126

AutoEncoders & DBN (5 Training Iterations and 5 Fine-Tuning Iterations) 96.79% 15.79% 89.75% 2.625
AutoEncoders & DBN (10 Training Iterations and 5 Fine-Tuning Iterations) 93.35% 9.17% 88.95% 1.147
AutoEncoders & DBN (10 Training Iterations and 10 Fine-Tuning Iterations) 92.2% 1.58% 92.1% 1.243

In [12], a novel approach of network anomaly detection using restricted Boltzmann ma-

chines (RBMs) and deep belief networks (DBNs) was proposed. It started by reducing

the features dimensionality by using a one-layer RBM in a complete unsupervised fashion.

Then, the resulting weights of this process are fed to another RBM which in turn produces

a deep belief network (DBN). This second RBM uses a fine-tuning layer which consists of

a logistic regression (LR) classifier using multi-class soft-max. The tool was developed and

implemented using C++ using Microsoft Visual Studio 2013. As for the experimentation

and evaluation of the approach, KDDCUP99 [64] dataset was used for that purpose, and at

the end of this process, the authors showed that this proposed technique outperforms other

pre-existing deep learning techniques in terms of accuracy and detection speed; as shown

in Table 2.17:

In [11], the authors demonstrated the usefullness of restricted Boltzmann machines (RBMs)

in order to detect anomalous and normal NetFlow traffic. The evaluation of their work was

33

Table 2.17: Experimental Results Achieved in [12]

Method Accuracy True Positives Rates CPU Time (Seconds)
[12] 97.9% 97.5% 8

[32] (4 Hidden Layers) 93.47% 92.33% N/A
[52] (10 Training Iterations and 10 Fine-Tuning Iterations) 92.10% 92.20% 1.24

conducted on the benchmark dataset of UNBCIC [7].

In [50], the authors proposed a novel approach for detecting network anomalies on power

grid’s flow traffic. Their approach works by first by clustering the data into clusters based on

their time occurrences, then based on the resulting clusters, determine which RBM to use.

Then, by merging the most similar clusters, they choose an oveall RBM model and based on

the pre-computed similarities between the real-time data and the used model, anomalies are

detected. The results of their evaluation step show that their proposed techniques is more

accurate in detecting anomalies on power grid’s flow traffic compared to other techniques.

These results are shown in Table 2.18:

Table 2.18: Experimental Results Achieved in [50]

Method Number of Clusters Average Convergence Tone Per Round (Seconds) Average Accuracy
K-Means 4 32 73%
DBSCAN 10 37 82%

K-RBM [50] 17 45 91%

In [47], a hybrid method for network anomaly detection was proposed by the authors us-

ing a combination of recurrent neural networks (RNNs) and restricted Boltzmann machines

(RBMs). More precisely, distributed embedding technique was used to pre-process network

data and make it suitable for the neural networks models. Then, an RBM model was used in

order to extract feature vectors from network packets and an RNN model was used for the

extraction of network flow features vectors. Finally, a soft-max layer was used which is fed

with these flow vectors detecting anomalies in the result. Their evaluation was conducted

on both UNBCIC [7] and KDDCUP99 [64] datasets and the results showed that their tech-

nique (RNN-RBM) achieves higher detection rates, recall, with lower false positives rates

compared with other state of the art techniques. These results are depicted in the following

Table 2.19:

In [85], a novel algorithm for network anomaly detection was introduced by the authors

34

Table 2.19: Experimental Results Achieved in [47]

Algorithm Accuracy Recall (DoS) Recall (Probing) Recall (R2L) Recall (U2R) Average Recall Average FPR
KNN 49.2% N/A N/A N/A N/A 44.9% 46.46%

KNN-DS 37.4% N/A N/A N/A N/A 34.7% 35.29%
SVM 79.4% 81.1% 76.7% 21.4% 11.2% N/A 0.6%

PLSSVM 99.8% 79% 87.6% 88% 18.4% N/A 3.9%
ID3 N/A 99.9% 99.7% 99.5% 49.1% N/A 0.43%

EID3 N/A 99.9% 99.8% 99.7% 99.8% N/A 0.19%
Random Forest 91.4% 91.1% 55.1% 66.7% 100% N/A 2.23%

Bayesian Network 90.6% 94.6% 83.8% 5.2% 30.3% N/A 0.3%
Naive Bayes 78.3% 79.2% 94.8% 0.1% 12.2% N/A 4.05%

MLP N/A 96.9% 74.3% 0.3% 20.1% N/A 0.53%
RNN-Based 95.2% 99.6% 59.7% 0% 38.1% N/A 0.38%

RBF N/A N/A N/A N/A N/A 90.7% 5.6%
RNN-RBM [47] 99.3% 99.4% 91.5% 97.7% 93.3% N/A 0.02%

called support vector machine based on the restricted Boltzmann machine (SVM-RBM).

More precisely, RBMs were used in order to extract important features from the data and

then gradient descent algorithm was used alongside with Spark in order to train the support

vector machine (SVM) classifier. Moreover, they tuned their algorithm by using diffrent

numbers of hidden layers in order to improve the performance of SVM-RBM. As for the

evaluation of SBM-RBM, they depicted the precision results achieved using diffrent param-

eters compared with other existing algoritms: Decision Tree (DT), Naive Bayes (NB), and

Neural Network (NN).

In [68], the authors compared between three techniques in order to detect network anoma-

lies on the KDDCUP99 [64] dataset; support vector machines (SVMs), backpropagation

(BP), and deep belief networks (DBNs) using restricted Boltzmann machines (RBMs). The

results of this comparative study (both accuracy and time consumption) are depicted in the

following Table 2.20:

Table 2.20: Experimental Results Achieved in [68]

Model Time (Seconds) Accuracy
Support Vector Machine (SVM) 13.53 91.36%

Backpropagation (BP) 16.85 89.07%
Restricted Boltzmann Machine (RBM) 11.65 95.25%

In [81], a hybrid approach for network anomaly detection was introduced by the authors

called Dynamic Recursive Deep Belief Neural Networks (DRDBNN) which combined both

restricted Boltzmann machines (RBMs) and random forests. In more details, they use RBMs

35

first in order to extract the most important features to which they add a time-varying factor

and a forgetting coefficient to improve them. Then, they feed these features to a random

forest classifier which classifies them into normal or anomalous ones. The results of their

evaluation are shown in the following Table 2.21:

Table 2.21: Experimental Results Achieved in [81]

Approach Data Sampling Percentage Detection Rate False Positives Rate
DRDBNN [81] 10% 91.25% 4.85%
DRDBNN [81] 50% 92.27% 4.25%
DRDBNN [81] 80% 93.85% 4.06%

DBNs 10% 88.35% 5.84%
DBNs 50% 89.56% 5.39%
DBNs 80% 91.86% 4.76%
SVMs 10% 85.42% 5.77%
SVMs 50% 87.79% 5.86%
SVMs 80% 87.98% 5.08%
NNs 10% 83.56% 6.72%
NNs 50% 84.77% 6.09%
NNs 80% 86.93% 6.25%

In [90], in order to deal with the issue of redundant information, huge data size, and time-

consuming training phases, a novel network anomaly detection approach was proposed us-

ing both restricted Boltzmann machines (RBMs) and probabilistic neural networks (PNNs).

First, by using the nonlinear learning capability of DBNs, features and attributes of impor-

tance are extracted. Then, in order to improve the training performance, Particle Swarm

Optimization (PSO) algorithm is used to find the optimal number of nodes per hidden layer.

Finally, PNNs are used in order to classify the results as anomalous or not. The evalua-

tion of the work was conducted on KDDCUP99 [64] dataset and the results prove that this

hybrid approach outperforms conventional techniques (PNN, PCA-PNN, and unoptimized

DBN-PNN). These results are depicted in the following Table 2.22:

Table 2.22: Experimental Results Achieved in [90]

Approach Running Time (Seconds) Accuracy Detection Rate False Positives Rates
Unoptimized DBN-PNN 5.71 99.31% 91.75% 0.375%

Optimized DBN-PNN [90] 5.48 99.14% 93.25% 0.615%
PCA-PNN 6.16 98.28% 89% 1.33%

PNN 35.38 99.04% 89.25% 0.55%

Last but not least, and to conclude the most prominent works published in this sub-category,

36

in [48], a novel approach for intrusion detection on heavy-duty robots was introduced which

uses an algorithm called improved deep belief networks (IDBNs) and dynamic modeling.

First, it had a security checking process which is able to detect targeted attacks from a

specific cyber-domain. Then, a module for dynamic modeling and security detction is used

to detect critical attacks that can cause physical damages.

– Recurrent Neural Networks (RNNs): The major works and publications that fall into re-

current neural networks based network anomaly detection category, as shown in Figure

2.21. There are twelve that are of interest and thus studied in more details in the following.

Recurrent
Neural

Network
(RNN)

Long-Short
Term

Memory
(LSTMs)

[57, 43, 41, 78, 86, 19, 30, 42, 23, 61,
25, 80]

Figure 2.21: LSTM-based Network Anomaly Detection Approaches. [10, 45]

In [57], a novel approach for anomaly detection called bidirectional Long-Short Term Mem-

ory using Denoising Autoencoders (BLSTM-DAE) where they process auditory spectral fea-

tures. They use the reconstruction error obtained from autoencoders as an activation sig-

nal. This autoencoder is trained on a publicly available dataset which contains in-home

situations like: watching televison scenarios, and playing scenarios. Their evaluation was

conducted on more than 260 abnormal events and the results were compared with existing

state of the art techniques, showing that this approach outperforms them. Table 2.23 shows

these evaluation’ results:

Table 2.23: Experimental Results Achieved in [57]

Approach Precision Recall F1_Score
GMM 91.1% 87.8% 89.4%
HMM 94.1% 88.9% 91.4%

LSTM-CAE 91.7% 86.6% 89.1%
BLSTM-CAE 93.6% 89.2% 91.3%
LSTM-DAE 94.2% 90.6% 92.4%

BLSTM-DAE [57] 94.7% 92.0% 93.4%

In [43], a novel intrusion detection system (IDS) was proposed by the authors which applies

the principle and architecture’s design of Long-Short Term Memory networks (LSTMs) to a

37

recurrent neural network (RNN) called LSTM-RNN, training the model on the KDDCUP99

[64] dataset. After the evaluation of their system’s performance, the resulting accuracy

measures showed that this technique outperforms other existing state of the art techniques,

as shown in Table 2.24:

Table 2.24: Experimental Results Achieved in [43]

Approach Detection Rate False Positives Rates Accuracy
GRNN 59.12% 12.46% 87.54%
PNN 96.33% 3.34% 96.66%

RBNN 69.83% 6.95% 93.05%
KNN 45.74% 46.49% 90.74%
SVM 87.65% 6.12% 90.4%

Bayesian 77.6% 17.57% 88.46%
LSTM-RNN [43] 98.88% 10.04% 96.93%

In [41], the authors proposed a hybrid approach using both ensemble methods and Long-

Short Term Memory (LSTMs) networks which was able to detect anomalies on system calls.

It is able to merge multiple thresholding classifiers into a single one and has the advantage of

learning the semantics and interactions of each system call compared with other techniques.

The validity and performance of their approach was evaluated on various publicly available

benchmark datasets. The results of this evaluation are shown in the following Table 2.25:

Table 2.25: Experimental Results Achieved in [41]

Benchmark Dataset Area Under the Curve (AUC) False Positives Rate Detection Rate
KDDCUP99 [64] 99.4% 2.3% 100%

UNM 96.9% 5.5% 99.8%

In [78], a study was conducted by the authors in order to evaluate the performance of

Long-Short Term Memory recurrent neural networks (LSTM-RNN) in detecting network

anomalous traffic. The results of their evaluation which was conducted on KDDCUP99

[64] showed that this technique is able to learn and detect all the types of attacks present in

the benchmark dataset.

In [86], a deep learning approach for intrusion detection using recurrent neural networks

38

called RNN-IDS was introduced. Moreover, and in order to tune the performance of the

approach, different number of neurons and learning parameters were tested. After com-

parison with other state of the art techniques like J48, artificial neural networks, random

forests, support vector machines (SVMs) and many others, it was concluded that their tech-

nique outperforms them in terms of accuracy measures; with 99.53% accuracy using 80

hidden nodes (neurons) and 0.5 learning rate value on KDDTrain, 81.29% accuracy using

the same configuration on KDDTest, and 64.67% of accuracy using the same configuration

on KDDTest-21, achieving 11444 seconds of training time.

In [19], a novel approach was proposed in order to detect collective network anomalies

on time-series using Long-Short Term Memory Recurrent Neural Networks (LSTM-RNN).

Their approach works differently in a way that it is trained on normal time-series data before

predicting future time-series. Then, the prediction errors from the number of latest time-

series steps is considered as collective anomaly if it is above a threshold. The model was

trained on a time-series representation of the KDDCUP99 [64] benchmark dataset and the

evaluation of this technique proves that it can detect collective anomalies efficiently. The

evaluation results are shown in Table 2.26:

Table 2.26: Experimental Results Achieved in [19]

Threshold Value True Positives Rate Number of False Alarms
0.69 86% 0
0.66 94% 2
0.62 98% 16
0.52 100% 63

In [30], a novel network time-series anomaly detection technique was proposed by the au-

thors using stacked Long-Short Term Memory networks based on softmax activation func-

tion classifier which is able to predict new packages’ signatures. The evaluation of the

approach was conducted on a real dataset created from a gas pipeline SCADA system, and

the results showed that this technique outperforms other state of the art methods (Table

2.27).

39

Table 2.27: Experimental Results Achieved in [30]

Approach Precision Recall Accuracy F1_Score
Proposed Approach in [30] 94% 78% 92% 85%

BF 97% 59% 87% 73%
BN 97% 59% 87% 73%

SVDD 95% 21% 76% 34%
IF 51% 13% 70% 20%

GMM 79% 44% 45% 59%
PCA-SVD 65% 28% 17% 27%

In [42], and in order to build an IDS classifier using deep learning paradigm, a novel Long-

Short Term Memory Recurrent Neural Network (LSTM-RNN) model using Nadam Opti-

mizer was proposed. Several iterations of training were conducted where six other opti-

mizers where tested and the latter one (Nadam) was chosen as the best one. After extensive

evaluation and experimentation on KDDCUP99 [64] benchmark dataset, the following clas-

sification performance metrics shown in Table 2.28 were computed:

Table 2.28: Experimental Results Achieved in [42]

Optimizer Accuracy Recall False Positives Rate Precision Efficiency
RMSprop 94.96% 97.70% 15.36% 95.98% 7.07
Adagrad 96.78% 99.14% 12.27% 96.88% 8.57
Adadelta 94.40% 99.07% 23.12% 94.22% 5.40

Adam 95.91% 98.72% 12.87% 96.75% 8.20
Adamax 97.37% 98.62% 10.64% 97.59% 9.30
Nadam 97.54% 98.95% 9.98% 97.69% 9.98

In [23], an improved network anomaly detection technique was proposed using a combina-

tion of stacked convolutional neural networks (CNNs) and gated recurrent units (GRUs) was

proposed by the authors in which they detect anomalous system calls which is called CNN-

GRU. After several experiments, they concluded that by stacking multiple CNN layers be-

fore using GRU layer improves the accuracy and execution time compared with approaches

using only LSTMs. The results of their experimentation and evaluation are depicted in the

following Table 2.29:

40

Table 2.29: Experimental Results Achieved in [23]

Approach RNN Units Training Time (Seconds) Testing Time (Seconds) Area Under the Curve (AUC)
GRU 200 376 444 66%

LSTM 200 4444 541 74%
CNN+GRU 200 390 441 80%
CNN+GRU 500 402 493 79%
CNN+GRU 600 413 533 81%

In [61], a novel network anomaly detection technique was introduced using sequential au-

toencoder alongside Long-Short Term Memory (LSTM) networks. First, autoencoders are

used in order to reduce the data dimensionality and extract the necessary and important

features. Then, LSTMs are used to classify these sequential data representations obtained

from the autoencoder; using a fixed threshold which is based on a cross-validation pro-

cess, resulting in the incoming network traffic being classified as either anomalous or nor-

mal.Moreover, their techniques is efficient in detecting both known and unknown (zero-day)

anomalies and network attacks. Finally, through an extensive experimentation and evalu-

ation, the results showed that their proposed approach has good performance, dynamicity,

robustness, and scalability. Table 2.30 shows the performance metrics computed during this

evaluation:

Table 2.30: Experimental Results Achieved in [61]

Approach Threshold F1_Score Area Under the Curve (AUC)
LSTM 0.008 84.09% 95.19%
GRU 0.006 81.02% 94.78%

Bi-LSTM 0.008 84.61% 95.12%
NN1 - 1 Layer 0.008 83.52% 94.99%

LSTM AutoEncoder with Last Pooling 0.076 84.09% 95.07%
LSTM AutoEncoder with Max Pooling 0.076 85.38% 95.12%
LSTM AutoEncoder with Mean Pooling 0.079 80.72% 94.71%

[61] 0.076 85.38% 95.12%

In [25], in order to detect network anomalies and attacks in Internet of Things (IoT) fog-to-

things communications, a novel approach was introduced using Long-Short Term Memory

(LSTMs). This proposed technique is able to efficiently detect critical attacks and threats

which target IoT devices, and more precisely, the ones which exploit vulnerabilities found

on wireless communication devices. The experimentation of their work on two different

scenarios prove the performance and efficiency of their technique compared to other state

41

of the art techniques. Table 2.31 shows the results of this extensive evaluation:

Table 2.31: Experimental Results Achieved in [25]

Approach Benchmark Dataset Accuracy Recall Precision
LSTM [25] UNBCIC [7] 99.91% 99.96% 99.85%
LSTM [25] AWID 98.22% 98.9% 98.5%

LR UNBCIC [7] 90% 99% 89.11%
LR AWID 84.87% 90% 85%

In [80], a novel intrusion detection system for software defined networking (SDN) using

gated recurrent unit recurrent neural network (GRU-RNN) was introduced. The proposed

approach was tested and evaluated using the NSL-KDD benchmark dataset and the results

of this evaluation showed that this proposed technique achieves higher accuracy compared

to other state of the art techniques, using only a set of six features. Table 2.32 shows these

results:

Table 2.32: Experimental Results Achieved in [80]

Approach Accuracy
VanillaRNN 44.39%

SVM 65.67%
DNN 75.9%

GRU-RNN [80] 89%

– AutoEncoders: As shown in Figure 2.22, there are four main works and publications that

use mainly autoencoders in order to detect network anomalies.

AutoEncoders [63, 14, 29, 60]

Figure 2.22: Publications Using AutoEncoders for Their Anomaly Detection Approaches. [10, 45]

In [63], a novel network anomaly detection techniques was proposed by the authors which

combined both autoencoders and density estimation. First, an autoencoder reproduced the

input data in the output layer, resulting into a compressed representation of the data within

the smallest hidden layer. Then, they considered anomalies the ones resulting with lower

density within the hidden layer by studying two scenarios for the density function: Guassian

42

and full kernel density estimation. Their approach was evaluated on the benchmark NSL-

KDD dataset and shows that the proposed approach outperforms previous best results. Table

2.33 shows the results of this evaluation.

Table 2.33: Experimental Results Achieved in [63]

Attack Type Approach Area Under the Curve (AUC)
DoS OCAE 96%
DoS OCCEN [63] 95.6%
DoS OCKDE [63] 97.4%
R2L OCAE 90.9%
R2L OCCEN [63] 83.9%
R2L OCKDE [63] 89.1%
U2R OCAE 92.8%
U2R OCCEN [63] 88.8%
U2R OCKDE [63] 94.5%

Probing OCAE 97.1%
Probing OCCEN [63] 98.6%
Probing OCKDE [63] 98.7%

In [14], by using the reconstruction probability from variational autoencoder, a novel

anomaly detection technique was proposed called variational autoencoder (VAE). This

probabilistic value measures the variation of the variables’ distributions. In contrary to

reconstruction error which is generally used by autoencoders, reconstruction probability

is considered by the authors of this work as more suitable to be used as an anomaly score

metric. The results of their evaluation proved that their proposed technique outperforms

the classical approaches using either autoencoders or principal component analysis (PCA).

This evaluation was conducted on KDDCUP99 [64] benchmark dataset and the results are

depicted in the following tables; Table 2.34 shows the results obtained on traffic labelled as

benign, whereas Table 2.35 shows the results obtained on traffic labelled as malicious:

In [29], a novel anomaly detection technique using deep autoencoder (DAE) was introduced

called DAE-IDS. Their model training was conducted in a greedy layer-wise fashion in order

to avoid overfitting and local optima. The evaluation was conducted on KDDCUP99 [64]

benchmark dataset and the results showed that their proposed approach outperforms other

state of the art deep learning existing techniques in terms of accuracy, detection rate, and

43

Table 2.34: Experimental Results Achieved in [14] on normal traffic.

Attack Type AUC ROC F1_Score
DoS 79.5% 98.1%
R2L 77.7% 40.6%
U2R 78.2% 32.4%

Probing 94.4% 79.1%

Table 2.35: Experimental Results Achieved in [14] on malicious traffic.

Attack Type AUC ROC F1_Score
DoS 74.4% 97.9%
R2L 78.6% 38.9%
U2R 92.1% 34.7%

Probing 97% 72%

false positives rates, as shown in Table 2.36:

Table 2.36: Experimental Results Achieved in [29].

Method True Positives Rates Accuracy
DAE-IDS [29] 94.42% 94.71%

DBN 92.33% 93.49%
AutoEncoder+DBN 92.20% 92.10%

In [60], a hybrid anomaly detection technique was proposed which combined both stacked

autoencoders (SAE) and support vector machines (SVM) called DL-SVM. In more details,

the authors used stacked autoencoders (SAE) for the dimensionality reduction of all the fea-

tures and extract only those of interest. whilst support vector machines (SVM) are used as a

binary classifier in order to classify the data into either anomalous or benign network traffic.

The experimentation and evaluation was conducted on UNBCIC [7] benchmark dataset and

the results showed that their approach outperforms state of the art existing techniques were

only SVMs were used. The following Table 2.37 shows these results:

b) Self-taught Learning: in this category, there is one main work and publication that is of interest

as shown in Figure 2.23.

44

Table 2.37: Experimental Results Achieved in [60].

Method Accuracy Precision Recall False Positives Rate ROC F1_Score
PCA-SVM 85.6% 88% 84.9% 13.6% 85.6% 84.7%

DL-SVM [60] 90.2% 90.3% 9.8% 90.2% 90.3% 80.6%

Self-taught
Learning

[39]

Figure 2.23: Publications Using Self-taught Learning for Their Anomaly Detection Approaches. [10, 45]

In [39], a novel flexible and efficient network anomaly detection technique which uses self-

taught learning (STL) was introduced by the authors. The evaluation of this work was conducted

on the NSL-KDD benchmark dataset and was compared with other state of the art anomaly

(softmax regression (SMR)) detection techniques in terms of accuracy, precision, recall, and f-

measure. The following Table 2.38 shows the results of this evaluation:

Table 2.38: Experimental Results Achieved in [39].

Method Accuracy Precision Recall F1_Score
SMR (2-class) 78% 97.3% 96.2% 96.8%
SMR (5-class) 75% 86% 62% 73%

STL [39] (2-class) 98% 99% 97% 98%
STL [39] (5-class) 98% 84% 70% 75%

2.2.1.9 Clustering-based Anomaly Detection Techniques

Clustering based anomaly detection techniques on the other hand are categorized according to our litter-

ature review and to these two surveys into three sub-categories:

a) K-Means: where a parameter k which represents the number of clusters to be detected is defined

generally by the user and aims to group/cluster the data into these groups/clusters.

45

expectation-maximization clustering (EM): is kind of an improvement and extension to k-means cluster-

ing where an object is assigned to a cluster which it is similar to based on this cluster’s mean.

outlier detection: is a clustering technique that detects patterns of data points that do not conform to the

expected behaviors (outliers). As shown in Figure 2.24.

Clustering

Outlier Detection [16]

Expectation-Maximization (EM) Clustering [79]

K-Means [40]

Figure 2.24: Publications Using Clustering for Their Anomaly Detection Approaches. [10, 45]

a) K-Means Clustering: In [40], a novel hybrid anomaly detection approach was proposed in order to

detect network anomalies in content-centric networks (CCNs). This approach combined both particle

swarm optimization (pso) and k-means clustering during the training phase in order to choose the best

number of clusters k. During the second phase, it used fuzzy logic alongside two distance metrics in

order to detect anomalies. The experimental results proved that this combination during the training

phase achieves better accuracy results when the optimal number of clusers k is chosen, and it also

outperforms other state of the art methods.

b) Expectation-Maximization (EM) Clustering: In [79], a comparative study in terms of accuracy and

false positives rates has been conducted between k-means, k-meloids, EM clustering, and distance-

based outlier detection in order to decide which one is best fit for intrusion detection on network

data. The experimental results showed that both distance-based outlier detection and EM clustering

approaches outperform the other techniques as shown in Table 2.39:

Table 2.39: Experimental Results Achieved in [79].

Method Accuracy False Positives Rate
k-Means 57.81% 22.95%

Improved k-Means 65.4% 21.52%
k-Meloids 76.71% 21.83%

EM Clustering 78.06% 20.74%
Distance-based Outlier Detection 80.15% 21.14%

46

c) Outlier Detection: In [16], an outlier detection technique was proposed in order to detect anomalies

on network traffic datasets. The technique started by selecting the appropriate non-redundant features

by applying generalized entropy metric. Then, a tree-based clustering technique is applied to generate

a set of reference points. Finally, it computed outlier scores using outlier rank function to detect

possible outliers. The experiments were conducted on both KDDCUP99 [64] and NSL-KDD datasets

in order to evaluate their approach, and the results show that their proposed technique outperforms

other state of the art techniques.

2.2.2 Statistical Anomaly Detection

In this category of network anomaly detection techniques, there are two major works that we deem as

important for our study, as shown in Figure 2.25

Statistical [21, 31]

Figure 2.25: Classification of Statistical Anomaly Detection Approaches. [10, 45]

In [21], a statistical network anomaly detection technique using multivariate statistical process controll

(MSPC) technique based on principal component analysis (PCA) was thoroughly studied and evlauted in or-

der to assess its accuracy metrics.They also concluded at the end of their study that MSPC-PCA outperforms

the standard MSPC approach and other state of the art techniques.

In [31], an anomaly detection technique that combines both principal component analysis (PCA) statisti-

cal and ant colony optimization metaheuristic techniques was presented by the authors. These two combined

techniques generate network traffic profile or signature called Digital Signature of Network Segment using

Netflow analysis (DSNSF) and is considered by the authors as normal traffic signature. Then, this generated

signature was compared with real-world network traffic by introducing a modified version of the Dynamic

Time Warping metric in order to differentiate between normal and abnormal traffic. The experiments were

conducted on real network traffic in order to evaluate the approach and the results showed that this technique

improves the detection rate by maintaining a good and low false positives rate.

47

2.2.3 Soft-Computing Anomaly Detection

There are many works that have been achieved using soft-computing paradigm in order to build network

anomaly detection tools, but in this document and related to our work, we consider only one major work as

prominent as shown in Figure 2.26:

Soft-Computing [36]

Figure 2.26: Classification of Soft-Computing Anomaly Detection Approaches. [10, 45]

In [36], a network anomaly detection approach that combined both a Genetic Algorithm and Fuzzy Logic

is introduced. First, the technique defined a batch interval of five minutes; where four nominal features (sr-

c/dst IPs and Ports) are converted into numerical single values using Shannon Entropy metric, and numerical

features (src/dst number of bytes and packets) were summerized into single values using their sum during

this interval; the results of this step were considered by the authors as the normal traffic behavior/profile

signature. Then, Genetic Algorithm was used to generate the network’s predicted/expected behavior/profile

signature called Digital Signature of Network Segment using Netflow analysis (DSNSF) using the same set

fo features. After that, an adaptive threshold was defined on the normal traffic profile by using the exponen-

tial weighted moving average (EWMA) metric. After that, fuzzy logic was used with Guassian Membership

Function in order to compute anomaly scores on each of these features using the pre-computed profiles

(normal, predicted/expected, and thresholds). Finally, the same metric used for computing the thresholds

(EWMA) was used on these computed anomaly scores in order to decide whether one of these features was

anomalous or normal at a specific time. The results obtained by applying this technique on real network

traffic flows achieved an accuracy of 96.53% and a false positives rate of 0.56%, the results also proved that

this approach outperforms other state of the art techniques.

As a conclusion to this litterature review on the most prominent existing network anomaly detec-

tion techniques we can say that each technique has its own advantages and limitations. Machine learning

techniques have the advantage of better accuracy results and attack detection rates over the other tech-

niques. However these techniques suffer from scalability issues since they often require training iterations

(supervised) and are time consuming (unsupervised), delaying the delivrance of our analytics results to our

48

partners. Moreover, supervised techniques also often require to know the attack signature or pattern in or-

der to detect it which makes them weak and sometimes unable to detect zero-day threats. Statistical and

sof-computing techniques on the other hand are better to use when it comes to scalability, since they are

fast compared to machine learning techniques (statistical techniques) and they are much better to use in an

environment with plenty of noise and uncertainties (soft-computing techniques).

49

Chapter 3

Anomaly Detection

In this chapter we present our porposed network anomaly detection approach in more details. We first give

an overview of the approach, then we explain each step in full details and present the predictive algorithm

that we proposed.

3.1 Approach Overview

An overview of our approach is represented in Figure 3.1, which consists of four major steps: feature

extraction, adaptive thresholding, predictive analysis, and anomaly detection. In the feature extraction

step, the features that are considered as paramount to our anomaly detection system are extracted. More

specifically, we extract a set of eight features that can be found in any IDS logs in order to achieve system

interoperability. We further summarize the network behavior/profile for each of the chosen features within

a time batch of five minutes. The obtained eight time series representations are considered as the first input

and observed network behavior/profile to our anomaly detection system.

In the next phase, an adaptive threshold using the exponential weighted moving average (EWMA) [56]

statistical metric is calculated for each of the pre-computed network behavior profiling time-series. The

reason of using such technique is that daily users’ Internet connections are in some way auto-correlated over

time [56]; meaning that each user connection on the Internet is mostly affected by his/her past interactions

and not completely random, and the interactions’ influences (weights) on the current connection decreases

back in time. Therefore, we utilize a metric that best captures and defines these weights.

50

Figure 3.1: Proposed Anomaly Detection Approach

In the predictive analysis step, we consider a time-window of one hour and try to predict the expected

behavior of each of these network features within the same time frame without any noise or seasonal trends.

Consequently, we utilize the particle swarm optimization (PSO) optimization algorithm, which is designed

to mimic the social behavior of some animals (e.g., birds and fishes) [27]. We modify and adapt this algo-

rithm to our objectives by defining the fitness function as the augmented Dickey-Fuller (adfuller) test [62],

which examines the stationarity of a given time series as input.

Finally, in the last step, we take as input the three pre-computed time series for each feature and compute

the corresponding anomaly scores. More specifically, a fuzzy logic inference system which has two main

Fuzzification and Defuzzification phases is utilized. In Fuzzification phase, a membership function (Gaussian

membership function) is applied on the time series, in which the anomaly scores are computed. Afterwards,

in the Defuzzification phase, the adaptive thresholding is applied on these scores, and further according to

obtained scores and their representative threshold, the associated features are flagged as either anomalousor

non-anomalous.

51

3.2 Anomaly Detection by Time-series

In this section, we describe our time-series based anomaly detection approach, which is combined with

an optimization algorithm (particle swarm optimization). Moreover, we describe the dataset used for our

experimentation and demonstrate how to validate the performance of our approach.

3.2.1 Feature Extraction

Prior anomaly detection process, a set of features should be extracted. This task is primordial as it affects the

final results of the approach tremendously. Many works have been achieved in the field of network anomaly

detection in order to determine what are the features that give better insights of the network behavior [34,

46, 36]. In this work, we aim at not merely gather a set of attributes that best describe the network profile

and behavior, but also obtain an anomaly detection system, which works with any IDS logs, such as BRO,

Snort and Surricata IDSs. Achieving the latter property provides the interoperability to our proposed system.

Therefore, we target the possible features that are present in any IDS system. According to the aforesaid

criteria and alongside with some literature review [46] regarding this objective, we extract the set of eight

features of Originator IP Address, Responder IP Address, Originator TCP/UDP Port, Responder TCP/UDP

Port, number of bytes sent by the originator IP, number of bytes sent by the responder IP, number of packets

sent by the originator IP, and number of packets sent by the originator IP.

On the other hand, we receive the connection logs in the order of millions (sometimes hundreds of

millions connection logs) per day, and therefore there would be a scalability issue to process all of these

connection logs in a reasonable time. Therefore, to address the scalability issue we propose to use time-

batches splitting [36] of five minutes to reduce the amount of processing time.

Our approach is a time-series based technique, which accepts numerical values in order to build the

time-series representations. However, the type of the first four selected features (Originator and Responder

IP Addresses, and Originator and Responder TCP/UDP Ports)is nominal. In order to convert nominal

attributes to numerical representations, inspired by [46], we choose to use Shannon Entropy [36, 46, 72] as a

summarization tool to represent the distribution of the features. Additionally, the authors prove that feature

52

distributions enable the detection of a wide range of network anomalies, including unknown anomalies.

The authors further demonstrate that studying these distributions can lead to an automatic unsupervised

classification (clustering) represented in Table 3.1.

Table 3.1: Effect of various anomalies on different feature distributions [46]

Anomaly Type Description Affected Distributions on
Src
IP

Dest
IP

Src
Port

Dest
Port

Denial of Service
(DoS)

A single infected host is used to at-
tack a victim and disable some ser-
vices

Low Low - -

Distributed De-
nial of Service
(DDoS)

Multiple infected hosts and internet
connections are used to target a sin-
gle host

High - - -

Port Scanning A large amount of traffic is sent to
a small amount of destination IPs
using large amount of destination
ports

- Low - High

Network Scan-
ning

A large amount of traffic is sent to a
large amount of destination IPs us-
ing a small amount of destination
ports

- High - Low

Outage Events The traffic amount goes down due
to the fact that a service went down,
equipment failure, or maintenance
operations.

≈ 0 ≈ 0 ≈ 0 ≈ 0

Flash Crowd At-
tacks

A huge surge in the amount of traf-
fic going to one single destination
IP

Low Low

The intuition behind studying traffic features distributions is that the majority of network attacks affect

the distributions of aforementioned attributes. For instance, consider a DDOS attack in which multiple

source hosts (compromised machines) flood the targeted destination machine until the aimed goal is achieved

(take down a specific service). By looking at the distributions of both source and destination IPs it could be

inferred whether there is any spike/surge in the source IPs distribution and a drop-down in the destination

IPs distributions, which leads to the detection of anomalies/attacks.

Shannon Entropy is a good metric to represent the degree of dispersal or concentration of any distribution

53

and quantify these changes in a single numerical value. Given an attribute X = {x1, x2, . . . , xn}, where xi

is the frequency of the ith attribute sample with the targeted time-batch (five minutes), the Shannon Entropy,

H(X), is computed as follows [36, 72]:

H(X) =

n∑
i=1




xi
n∑

i=1
xi


 . log2




xi
n∑

i=1
xi


 (3.1)

Finally, we also need to quantify the other four numerical values (sent bytes and packets from both

originator and responder IPs) into a single value. For this purpose, inspired by [36] we simply consider

the cumulative sum of each one of their values during the specific time-batch. By performing all the pre-

processing steps, we end up with a full time-series representations (eight time-series, one for each feature)

for the observed network behavior over the time.

3.2.2 Adaptive Thresholding

The next step of our approach consists of finding a metric to compute the thresholds of our pre-computed

time-series representations. We deal with Internet connections, which are auto-correlated; meaning that

the behaviors of users using a specific network are not random and thus they are affected mostly by their

past interactions on the Internet. Therefore, we use the exponential weighted moving average (EWMA) as

such metric. EWMA is a statistical metric that allows analysts to monitor the average of the data by giving

more importance to the most recent data observations. This weighting system is computed in exponential

fashion using all prior data observations. Considering that we have a time-series based representation of

data observations in a specific time-window, EWMA is computed as follows [56]:

EWMAt =



X1, , if: t = 1

α.Xt + (1− α) .Xt−1 , if: t > 1

(3.2)

where X1 is the network observation at the time t = 1, Xt is the current network feature observation, Xt−1

is the most recent (previous) network feature observation, and α is the weighting exponential factor which

falls between 0 and 1 and is computed as α = e−(
ε
σ) [6], where ε represents the time elapsed since the

54

time-window started until the current observation, and σ represents the size of the time window (in our case

it is set to one hour).

In addition, EWMA is a good statistical metric for measuring historical volatility, which represents the

degree of dispersion for a given dataset over a defined period of time [8]. There are two main approaches to

measure the volatility of data over time, namely Implicit and Historical [8]. Historical approaches assume

that past data observations are essential for the prediction of future observations. Implicit approaches, on

the other hand, ignore the past observations completely, and try to predict future observations based on the

current observations. The fact that we are dealing with Internet connection logs implies that there are some

auto-correlations (inter-connections) between the current and the past (most recent) internet connections of

the users.

These summarization techniques have a major drawback in the way that all past observations during

the time-window will have the same influence or weighting system [8]. This weakness would significantly

influence and affect our results. Let’s take an example where we have Internet connection logs over one

month, and during let’s say the 24th day of this month a DDOS attack occurred affecting all the source IPs

in the logs that we receive. The next day (25th), this DDOS attack led the services to shut down or outage

of most services on the targeted hosts (source) or IPs. If one applies the approach where the same weights

are applied to all the observations of that month, this will terribly affect our system in the way that when

computing the measure for the 25th day, and considering that the time window is of one month, the same

importance will be given to the day when the attack occurred (previous day) but also to all previous days of

the month. However by applying EWMA and computing the historical volatility measure for the day after

the attack occurred (25th), the previous and most recent day (24th) will be given much more weight and

importance over the previous days of the month, leading to capturing more patterns of the attack from the

network flow attributes.

3.2.3 Predictive Analysis

The next step of our anomaly detection system consists of predicting the normal network profile or behavior.

One common and simple approach that is generally applied would be computing the differences between

55

observed (real) network traffic and computed (fixed) thresholds and in the case of positive results, infer that

the real traffic is anomalous (above thresholds), otherwise no anomaly is detected. However, since we are

dealing with daily Internet connection logs, which are not pre-filtered (or pre-cleaned); meaning that they

contain a huge number of false positives. For instance, each day thousands or even hundreds of thousands

of users and academics connect to Google website, if we consider only the two pre-computed steps (feature

extraction and adaptive thresholding), we would end up with a lot of misleading attacks classifications and

false positives (it could be classified as a DDOS attack). Therefore, we extend these two steps with another

predictive step, which tries to delete most of these false positives; in other words, given a real network raw

traffic, we ask our system how much clean the network traffic should look like?

In order to do so, we opt for using an optimization algorithm, namely particle swarm optimization

(PSO) [27, 58, 84] as shown in Algorithm 1, which achieves the desired goal of this step. PSO is a meta-

heuristic global optimization technique that belongs to the family of swarm intelligence algorithms [27].

It is based in analogy with the social behavior of certain animals and most precisely bird flocks and fish

schools. In PSO, the ensemble or set of possible solutions to the optimization task are called a swarm and

each element of this swarm is called a particle. These particles move and change their positions in the search

(parameter) space based on their own and neighbors’ best performances. Therefore, this evolution process

of the swarm is based on two main principles: cooperation and competition among these particles across

multiple generations (several iterations).

Algorithm 1 Particle Swarm Optimization Algorithmic Description [27, 58, 84]

• Initialization Process: For each of the N particles:
1: Initilize the position xi(0)∀i ∈ N
2: Set the particle’s best personal or local position as its initial position: pi(0) = xi(0)
3: Compute the fitness of the particle and if f (xj(0)) ≥ f (xi(0)) ∀i �= j initialize the swarm global best

as: g = xj(0)
• Repeat the following steps until the pre-defined criterias are met:

4: Update the particle velocity according to the equation (3.6).
5: Update the particle position according to the equation (3.5).
6: Compute the fitness of the particle f (xi(t+ 1))
7: if f (xi(t+ 1)) ≥ f (pi), update the particle’s personal or local best as: pi = xi(t+ 1)
8: if f (xi(t+ 1)) ≥ f (g), update the swarm’s global best as: g = xi(t+ 1)

• Once the stopping criterias are met and the iterations are stopped, the best solution to the
problem is represented by g.

56

Accordingly, in PSO, each particle is defined in the D-dimensional search space, where D repre-

sents the set of parameters to be optimized. The position of the ith particle is defined by the fol-

lowing vector xi = [xi1, xi2, xi3, . . . , xiD], and the population (swarm) of N candidate solutions is

X = {x1, x2, x3, . . . , xN}. In their journey of finding the optimal solution, each particle updates its own

position using xi(t + 1) = xi(t) + vi(t + 1), where t and t+1 represent two successive iterations of the

algorithm and vi represents a vector called the velocity, which governs the way the particle changes its po-

sition across the search space. The velocity parameter is defined according to three factors: (i) Inertia or

Momentum: represents the previous velocity of the same partcile (previous iteration of the algorithm) and

helps prevent from drastic position changes. (ii) Cognitive Component: represents the possibility of the

partcile to return to the previous position. (iii) Social Component: identifies the ability of the particle to

move forward the best solution of the whole swarm.

Based on these definitions, the velocity of the ith particle is defined as vi(t + 1) = vi(t) +

c1 (pi − xi(t))R1 + c2 (g − xi(t))R2, where pi represents the particle’s best solution (local or personal

best), while g represents the global best (the overall best solution found by the whole swarm). The two

real-values of c1 and c2 are called acceleration constants that define the way by which the particle moves to-

ward the global best solution. On the other hand, R1 and R2 represent respectively two diagonal matrices of

randomly generated numbers from a uniform distribution in the interval [0, 1]. For both cognitive and social

components to influence the particle’s velocity in a stochastic way, the acceleration constants are generally

set to 2 so that they meet the 0 ≤ c1.c2 ≤ 4 criteria [58].

In order to get the PSO work correctly, the fitness or objective function, which defines the stopping

criteria of the optimization task needs to be defined. In this work, we aim our predicted time-series to achieve

stationary. The reason behind this logic is the fact that time-series statistical summarization techniques (such

as the mean, variance, and standard deviation) do not give consistent results due to the presence of trends and

seasonal effects (presence of periodic fluctuations). While time-series are stationary, they are not bounded by

the time and summary statistics are more consistent. In addition, they can easily be modelled by statistical

modelling approaches (e.g., forecasting techniques). Thus, it is always recommended to check if a time-

series representation is stationary, and if not, make it stationary by the removal of any trends and seasonal

effects before moving to analysing the residual effects [5].

57

One of the most frequently used stationary tests techniques is the Augmented Dickey-Fuller Test (ad-

fuller) [62], which is a type of statistical test and autoregressive model for stationary that belongs to the unit

root tests family. In adfuller algorithm, a time-series is considered as non-stationary if one of its monomials

is equal to 1; this is equivalent to say that it can be defined in function of some specific trend (case of null

hypothesis satisfied). On the other hand, if this test is rejected (alternate hypothesis satisfied), none of its

monomials would be equal to 1, therefore it is considered as stationary [5].

In our work, once we build our representation of the network traffic behavior or profile (feature extraction

phase), we then call adfuller test on each of the features’ time-series. If at least one of the eight time-series

is found as non-stationary (null hypothesis satisfied), then we trigger our PSO implementation in order to

remove the presence of any trends and seasonal effects on that specific time-series. Otherwise (in the case of

alternate hypothesis satisfied and thus the null hypothesis is rejected), if all the time-series are stationary, we

do not trigger our PSO implementation and consider for our anomaly detection module only the observed

behavior and the computed adaptive thresholds. Algorithm 2 best describes this statement.

3.2.4 Anomaly Detection

The final step of our anomaly detection system consists of using all the pre-computed time-series for detect-

ing anomalies on each feature. For that purpose we employ Fuzzy-Logic [36, 59] or fuzzy inference system

for computing anomaly scores for each feature. In the fuzzification step, we compute anomaly scores rang-

ing between 0 and 1 on the pre-computed time-series (observed, thresholds, and predicted behaviors) using

the Gaussian Membership Function as defined in equation 3.7. If the prediction step was not triggered, we

compute these scores using the equation 3.8. After the fuzzification process is terminated, we move on to

the defuzzification process, where we define adaptive thresholds on these anomaly scores using the same

technique presented for adaptive thresholding step (EWMA), and then flag each feature as anomalous (flag

it as 1 if the anomaly score is above the threshold) or not (flag it as 0 if the anomaly score is below the

threshold). The Gaussian membership function is defined as follows [36, 59]:

scorek = 1− e

−(xk−yk)
2

2.ε2
k (3.7)

58

where k ranges form 0 to 8 and represents the corresponding feature, xk represents the observed or expected

behavior, yk represents the predicted feature behavior in the case our predictive step is triggered, and εk

represents the computed adaptive threshold for that feature. However, if the prediction step is not triggered,

the Gaussian membership function is defined as follows:

scorek = e−(xk−εk)
2

(3.8)

Algorithm 3 describes how anomalies are detected on each feature. At the end of this process, we end up

with each connection extended with eight anomaly scores and flags (one for each feature), as depicted in

Table 3.2, where each connection is considered as anomalous if at least one of these eight flags is set to 1.

Algorithm 2 Proposed Predictive Algorithm

1: InputVector ← ObservedSeries

2: for each FeatureTS ∈ InputVector do

3: InputData ← Feature − Time − Series

4: Stop ← False

5: ResultingTimeSeries ← InputData

6: iCounter ← 0

7: while Stop = False and iCounter ≤ 20 do

8: p_value ← ADFULLER(InputData)

9: if p_value > 0.5 then

10: InputData ← PSO(InputData)

11: else

12: ResultingTimeSeries ← InputData

13: Stop ← True

14: end if

15: end while

16: end for

17: end

59

Algorithm 3 Anomaly Detection Fuzzy Inference Algorithm

1: InputVector ← ObservedSeries

2: for each FeatureTS ∈ InputVector do

3: for each Obse,Threshl ,Pred ∈ FeatureTS do

4: S ← GUASSIANFUN(Obs, Threshl, Pred)

5: TH ← ANOMALY-THRESHL(S)

6: for each score, threshold ∈ S ,TH do

7: if score ≥ threshold then

8: anomalyflag ← 1

9: else

10: anomalyflag ← 0

11: end if

12: end for

13: end for

14: end for

15: end

Table 3.2: Anomaly scores and flags

Anomaly Features

Scores

(between 0 and 1)
id_orig_h_anomaly_score, id_resp_h_anomaly_score, id_orig_p_anomaly_score, id_resp_p_anomaly_score,
orig_bytes_anomaly_score, resp_bytes_anomaly_score, orig_pkts_anomaly_score, resp_pkts_anomaly_score

Flags

(either 0 or 1)
id_orig_h_anomaly_flag, id_resp_h_anomaly_flag, id_orig_p_anomaly_flag ,id_resp_p_anomaly_flag,
orig_bytes_anomaly_flag, resp_bytes_anomaly_flag, orig_pkts_anomaly_flag, resp_pkts_anomaly_flag

60

Chapter 4

Design, Implementation and Evaluation

In this chapter, we first describe the implementation of Daedalus, which is designed to extract cyber

threat intelligence out from BRO NIDS stream of logs. Then, we evaluate our proposed algorithm and give

insights of the proposed dashboards.

4.1 Design and Implementation

In this section, we present the implementation details of Daedalus. Figure 4.1 shows a technical overview

of the proposed tool. Daedalus is built upon the following open source tools:

a) Apache Spark: in order to improve the computation.

b) MongoDB: to store only the results of our analytics.

c) Elasticsearch: also for the storage and fast consultation, searching, and indexing of the data.

d) Grafana: which is built upon Elasticsearch in order to create the needed visualisations and dashboards.

e) Docker: each of the previously cited tools (MongoDB, Elasticsearch, and Grafana) are deployed using

dedicated docker containers.

f) Maxmind: used in order to geolocate public IP addresses.

61

Each of the open source tools mentioned above was chosen after a deep analysis of their importance

to our work:

a) Apache Spark is a highly scalable computation engine that allows its users to distribute huge compu-

tation accross multiple computation nodes within a Spark Cluster. In this work, we only deploy it on

a standalone server (processing server) but it can be deployed in the future as a cluster. We use Spark

mainly to parse a stream of BRO NIDS connection logs (both csv and json formats); Apache Spark

offers a streaming API, which enables us to achieve this task within very short delays.

b) MongoDB is used as a storage database in order to store our analytics’ results only. We do not

store raw logs as we receive them due to the fact that MongoDB is not scalable enough to save these

tremendous logs. We also chose MongoDB because it is a JSON-based storage database, which makes

it easy to query and comprehend. The raw connections are on the other hand stored as compressed

files on our storage server.

c) Elasticsearch is used for mainly two reasons. The first one is to enable fast search and aggregation

queries over the results of our analytics. The second reason is because it is necessary for creating

visualisations for our front-end platform.

d) Grafana depends on Elasticsearch (as mentioned above) and allows us to create fancy visualisations

(barcharts, piecharts, time-series visualisations, data tables, geo-maps, etc...) on top of our indexed

data in Elasticsearch. In addition to that, it allows us to achieve many security objectives; it has a set

of security functionalities that enable us to create security credentials and access restrictions for each

of our security partners.

e) Docker containers are used to deploy each of the tools mentioned above on an isolated environment

for two reasons. First, some of these services are already deployed on the dedicated processing server

(like Elasticsearch for other projects); this can lead to a failure during the installation of our tool due

to conflict with the dedicated ports, also if we deploy our data on the same existing Elastic node it

will disclose data to our security partners. The second reason is related to security measures. Docker

containers are completely isolated from the server’s OS and even if it is damaged in some way, it does

not affect the OS.

62

f) Maxmind Geolocation database is used to geolocate public (routable) IP addresses from the resulting

BRO connections (both originator and responder IP addresses). We have bought a one year license

from Maxmind that gives us monthly updates on both City and ISP databases. With both of these

databases, we get in exchange all the information needed about each IP address fed to the database;

mainly: Internet Service Provider (ISP), Organisation (Org), Autonomous System Number (ASN),

Country (country name and code), City, lattitude, and longitude.

All the BRO NIDS connection logs received from our partners are first stored on our dedicated stor-

age server, then, each week’s data is transferred securely (using ssh) to our processing/computation server

in order to analyze it. Once the analysis is done, the raw documents are deleted from the computation

server in order to minimize the disk usage on the latter one. Our proposed tool is developed using Python

programming language. First, we parse the connections received each week using Apache Spark streaming

API deployed on top of Python programming language. From this step we get the needed set of features

for our anomaly detection technique to work properly, all of the four steps of our technique are also imple-

mented using Python Pandas API alongside Apache Spark computation tool; this will allow us to execute

our proposed approach in a timely manner. In addition to its streaming API, Apache Spark also offers us

the capability of integrating both MongoDB and Elasticsearch on top of it; this will enable us in addition to

faster computation to store and access our analytics results fast and quickly on both these databases. Finally,

for the geolocation part, we use a Python-based API (geoip2). The overall framework combining those

components together is presented in Figure 4.1.

63

BRO NIDS Stream Logs

Apache Spark Python
Parser

Anomaly Detection

Extracted Features

BRO Raw
Connection Logs

Storage Search and
Indexing Visualisation Security

Public IPs Geolocation

Figure 4.1: Daedalus Technical Overview

64

4.2 Evaluation

This section gives more details about our experimental dataset and the evaluation metrics used to validate

our proposed technique.

4.2.1 Experimental Setup

All of our experiments are conducted on a dedicated processing server running CentOS Linux version 7

with Intel Xeon E5-2630 2.30GHz CPU and 126GB of RAM. Our framework is developed using Python

programming language and by leveraging Elasticsearch as an indexing and search database for data analyt-

ics. Apache Spark alongside with pandas Python library are used to improve the scalability and to exploit

the full capacity of our server (CPU and RAM resources). Grafana is used as a visualization tool on top

of Elasticsearch in order to create the required dashboards. Grafana security functionalities are employed

to provide additional functionalities of user management, user authentication, and indices access roles. All

the data are stored in a storage server of 500TB capacity.

Experimental Dataset. In order to perform the experiments, a number of organizations participated to col-

lect and share their IDS logs. Almost 90% of the participants installed BRO IDS, with some exceptions

that employed other types of IDS. Moreover, the locations of the sensors were different. Some organizations

choose to install their BRO sensors outside their firewalls, and therefore collect all the connections incoming

and outgoing to/from their network. This results into sharing more consistent sizes of logs per day (some-

times hundreds of millions of connections each day). Whilst others capture only the traffic outgoing from

their network, and thus less connection logs are received. In total, we receive millions of connection logs

from the participants on a daily basis, which are stored on the dedicated storage server as compressed files.

Evaluation Metrics. In order to evaluate the performance and validate our approach, Accuracy

(TP+TN
TP+FP+TN+FN), and F1 score (2∗TP

2∗TP+FP+FN) metrics are computed.

4.2.2 Ground Truth Correlation

In this section, we validate the results of our anomaly detection technique by correlating them with some

existing resources. We test our technique on a set of connection logs and identify the anomalies. Then, all

65

the detected anomalous connections are correlated with external security feeds, such as malware sandboxing

reports. The IP blocks are extracted from each connection (originator and responder IPs) and are correlated

with the extracted malicious IPs from existing security sources within the same time interval that the connec-

tion occurred. We consider only three days of lag. Therefore, we first perform malware correlation within

the same day that the connection occurred. If there is no match, we continue the correlation with the data

of previous day. This process is repeated until the last three days. The reason of considering the three days

of lag is due to the fact that most of the malware tend to change their IP addresses in order to evade detec-

tion. We further perform the correlation with an open-source ransomware database, Ransomware Tracker

[9], which will be updated in the case of the detection of a new worldwide ransomware. Therefore, we

download the Ransomware Tracker database, and on a weekly basis we check for any changes to keep our

database updated.

From the correlation results, we consider the number of connections that were detected both by our

system as anomalies and by the correlation as malicious as true positives (TP), the ones that we flagged as

anomalous but did not return correlation results as false positives (FP), the benign connection that were not

flagged as anomalies as true negatives (TN), and the malicious connection that were not flagged as anoma-

lous as false negatives (FN). As an example, we examine 2, 438, 294 connections detected as anomalous

(from approximately 400 million connections) from one of the randomly chosen participating organization

collected from August 20, 2018 to 4th of September 2018. We correlate our results with both malware and

ransomware databases and then measure the aforementioned security metrics. The obtained results show

that we achieve 83.68% of accuracy and 91.11% of f1_score.

4.2.3 Validation on Benchmark Dataset

We further examine our proposed technique with benchmark datasets. We choose UNBCIC 2017 IDS

Dataset [73, 7], which contains the BRO connection logs as well as two csv files that label the connections as

Benign, DDoS or PortScan. We run our proposed technique on 350, 137 randomly selected connection logs

in order to detect anomalies, among which 256, 540 were detected as true positives (flagged as anomalous

and labeled either as DDoS attacks or Port Scan attacks), 16, 775 connections were detected as false posi-

tives (flagged as anomalous but there were no correlation results with DDoS and Port Scanning datasets),

66

64, 575 were detected as true negatives (neither detected as anomalous nor DDoS nor Port Scanning), and

12, 247 were detected as false negatives (were not flagged as anomalous but there were correlation matches

with DDoS and Port Scanning). The obtained results show that we achieve 91.71% of accuracy and 94.64%

of f1_score.

4.2.4 Comparison with other Anomaly Detection Approaches

In this section, we compare our proposed technique with an exiting anomaly detection approach. To this end,

we choose the K-Means clustering method [4] written in Python to detect anomalies on time series data. In

this approach, the anomalies are detected based on the reconstruction error curve. We modify the provided

implementation in order to fit it with the format of our datasets by using only four features (originator bytes

and packets, and responder bytes and packets), and we also reduce the default number of clusters to 3. The

implementation is applied on the same dataset of UNBCIC 2017 IDS, and then the results are correlated

with the labelled dataset (DDoS and PortScan attacks).The obtained results show that we achieve 44.38% of

accuracy and 56.28% of f1_score.

4.2.4.1 Long-Short Term Memory Network

In this section, we compare our proposed technique with LSTM based anomaly detection technique. To

this end, we chose keras-anomaly-detection implementation proposed in [24] using Python programming

language. The Github repository of the author contains several implementations in which one of them com-

bines LSTMs and Autoencoders (recurrent.py) in order to detect time windows in time-series that contain

anomalous patterns. We have changed the implementation in order to fit with the labeled connections of

UNBCIC 2017 IDS and also reduced the number of batches to 4 due to scalability issues (the model training

phase takes too much time). Finally, we compute the same evaluation metrics on the resulting classifications

and we acheived 55.01% of accuracy and 67.99% of f1_score.

4.2.5 Scalability Study

We compare the execution time and resources consumption of our last two evaluations (subsections 4.2.3

and ?? using 350, 137 connections from UNBCIC 2017 IDS) with the K-Means algorithm and report the

67

results as illustrated in Table 4.1. The htop Linux command [2] is used to monitor the percentage of each

CPU core usage.

Table 4.1: Scalability Comparison

Our Approach K-Means

Execution Time 19(m) and 25(s) 1 hours and 16(m)

CPU Cores Used 24 Cores Dedicated;
less than 50% usage
for each core

24 Cores Dedicated; 3 cores
were used critically (more than
70% usage)

Memory(RAM)
Used

4GB 5.22GB

4.3 Front-End Platform

This section gives a detailed description of the front-end platform that we have created for our security

partners.

4.3.1 Dashboard Organisation

All the dashboards that we give access to our security partners are designed and organized the same way.

Since each connection has two IP addresses (originator and responder IPs), we have decided to split the

dashboards into mainly two columns: one for originator IPs information and another one with responder IPs

information, in addition to some statistical curves. First, we display a time-series curve, which shows the

unique count of these two IPs over the time of our analysis. This can give us an overview of the network

traffic state over time and shows us the average number of destination IPs (responder IPs) to which originator

IPs (source IPs) are connecting to as shown in Figure 4.2.

Figure 4.2: Time Series Overview

68

In addition to these time-series, we also show the same information aggregated in a single numerical

value for both ends (originator and responder IPs), as shown in Figure 4.3.

Figure 4.3: Originator and Responder IPs Unique Count

After that, we display time series showing the statistical overview of attacks detected; from malware

correlation phase 4.4, from ransomware correlation phase 4.5, and anomalies detected by our technique 4.6

Figure 4.4: Malware Correlation Time Series

Figure 4.5: Ransomware Correlation Time Series

69

Figure 4.6: Anomalies Time Series

Then, we display geo-maps for both geolocated public originator and responder IPs, as shown in

Figure 4.7

Figure 4.7: Originator and Responder IPs Geo-Maps

Then, we display two pie charts that show the top 10 countries in which these potentially malicious

IPs (both originator and responder) are located in, as shown in Figure 4.8

Figure 4.8: Top 10 Originator and Responder Countries

70

Moreover, we also show information about the correlation results with the external feeds (malware

and ransomware), as shown in Figure 4.9 (both originator and responder detected malware families) and

Figure 4.10 (both originator and responder ransomware family and site type) .

Figure 4.9: Top 10 Originator and Responder Malware Families

Figure 4.10: Top 10 Originator and Responder Ransomware Families

71

Chapter 5

Conclusion

Network anomaly detection is a hot research topic that is still evolving and attracting more researchers

due to its importance in detecting security threats and its importance in analysing logged network traffic us-

ing IDS tools. In this research work, we presented Daedalus, a highly scalable time-series and unsupervised

anomaly detection approach on massive connections data streams. Daedalus achieves our objectives by

generating the maximum amount of cyber threat intelligence in an efficient and scalable manner, correlating

this generated cyber threat intelligence with factual security sources of indicators of compromise (IoCs) in

order to extend this intelligence with more security features and details, and validate the anomaly detection

technique through extensive experimentation on real-life connections stream logs. We first presented the

state of the art of existing network anomaly detection techniques. We analyzed these already existing works

and found that the majority of them concentrate their work and validation on small real datasets or synthetic

(benchmark) datasets. Therefore, their scalabilty results are not convenient and relevant for our case where

we receive massive amounts of connections stream logs. Thus, we proposed a scalable time-series analysis

technique that detects anomalies on these received logs in reasonable time and without consuming much

resources (CPU and RAM). Consequently, the tool was developed using Python programming language

alongside with some well-known state of the art tools and frameworks like Apache Spark for fast computa-

tions, Elasticsearch, mongoDB for storage purposes, Grafana for visualisation functionalities and to enable

secure access to our front-end. Finally, we evaluated the accuracy and performance of our proposed tech-

nique during a three step process; ground truth correlation where we correlate the results of our algorithm

72

with factual and reliable security feeds (malware and ransomware), validation on benchmark dataset where

we apply our methodology on a synthetic well-known dataset (from UNBCIC), and comparison with other

anomaly detection techniques where we compare the accuracy and performance results of our technique

during the second step (on UNBCIC benchmark dataset) with other already existing implementations (K-

Means and LSTMs). Subsequently, we have found that not only our algorithm achieves the highest accuracy

results, but it also outperforms the other techniques in terms of execution times, CPU cores usage, and

RAM usage. After achieving the aforementioned objectives and solving the stated problem, our research

contributions consist of the following:

a) Comparative study of the existing state of the art network anomaly detection techniques.

b) Design and elaboration of a novel efficient and scalable network anomaly detection technique on

massive connections data steams.

c) Design and implementation of a framework that analyzes massive connections data streams.

Daedalus can be improved in the future from different aspects. First, there is the issue of high rates

of false positives on the real datasets (stream of BRO NIDS connection logs) which is normal due to the

fact that BRO NIDS is characterized by its high false positives rate, but can be reduced by tunning our

proposed algorithm (one possible solution is to change the parameters for the adaptive threshold). Second,

the geolocation process is done on each IP address separately which consumes a lot of resources (time and

CPU), one way to fix this is to summarize these IPs by ranges and process them.

73

Bibliography

[1] The bro network security monitor. https://www.bro.org/. [Online; accessed October-2017].

[2] htop(1) - linux man page. https://linux.die.net/man/1/htop.

[3] The bro network security monitor. https://www.zeek.org/bro-workshop-2011/slides/

broverview.pdf, 2011. [Online; accessed March-2018].

[4] Anomaly detection with k-means clustering. http://amid.fish/anomaly-detection-

with-k-means-clustering, 2015. [Online; accessed March-2015].

[5] How to check if time series data is stationary with python. https://

machinelearningmastery.com/time-series-data-stationary-python/, 2016.

[Online; accessed July-2016].

[6] An exponentially weighted moving average implementation that decays based on the elapsed time since

the last update, approximating a time windowed moving average. https://gist.github.com/

jhalterman/f7b18b30160ae7817bb93894056eb380, 2017.

[7] UNBCIC 2017 IDS Dataset. http://www.unb.ca/cic/datasets/ids-2017.html, 2017.

[Online; accessed May-2018].

[8] Exploring the exponentially weighted moving average. https://www.investopedia.com/

articles/07/ewma.asp, 2018. [Online; accessed August-2018].

[9] Ransomware tracker website. https://ransomwaretracker.abuse.ch/tracker/, 2018.

[Online; accessed July-2018].

74

https://www.bro.org/
https://linux.die.net/man/1/htop
https://www.zeek.org/bro-workshop-2011/slides/broverview.pdf
https://www.zeek.org/bro-workshop-2011/slides/broverview.pdf
http://amid.fish/anomaly-detection-with-k-means-clustering
http://amid.fish/anomaly-detection-with-k-means-clustering
https://machinelearningmastery.com/time-series-data-stationary-python/
https://machinelearningmastery.com/time-series-data-stationary-python/
https://gist.github.com/jhalterman/f7b18b30160ae7817bb93894056eb380
https://gist.github.com/jhalterman/f7b18b30160ae7817bb93894056eb380
http://www.unb.ca/cic/datasets/ids-2017.html
https://www.investopedia.com/articles/07/ewma.asp
https://www.investopedia.com/articles/07/ewma.asp
https://ransomwaretracker.abuse.ch/tracker/

[10] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network anomaly detection

techniques. Journal of Network and Computer Applications, 60:19 – 31, 2016.

[11] Tamer Aldwairi, Dilina Perera, and Mark A Novotny. An evaluation of the performance of re-

stricted boltzmann machines as a model for anomaly network intrusion detection. Computer Networks,

144:111–119, 2018.

[12] Khaled Alrawashdeh and Carla Purdy. Toward an online anomaly intrusion detection system based

on deep learning. In Machine Learning and Applications (ICMLA), 2016 15th IEEE International

Conference on, pages 195–200. IEEE, 2016.

[13] Fatemeh Amiri, MohammadMahdi Rezaei Yousefi, Caro Lucas, Azadeh Shakery, and Nasser Yazdani.

Mutual information-based feature selection for intrusion detection systems. Journal of Network and

Computer Applications, 34(4):1184–1199, 2011.

[14] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction

probability. Special Lecture on IE, 2:1–18, 2015.

[15] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir

Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane

Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou.

Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium, 2017.

[16] Monowar H Bhuyan, DK Bhattacharyya, and Jugal K Kalita. A multi-step outlier-based anomaly

detection approach to network-wide traffic. Information Sciences, 348:243–271, 2016.

[17] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher Kruegel. Disclosure:

detecting botnet command and control servers through large-scale netflow analysis. In Proceedings of

the 28th Annual Computer Security Applications Conference, pages 129–138. ACM, 2012.

[18] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. Exposure: Finding malicious

domains using passive dns analysis. In Ndss, 2011.

75

[19] Loïc Bontemps, James McDermott, Nhien-An Le-Khac, et al. Collective anomaly detection based on

long short-term memory recurrent neural networks. In International Conference on Future Data and

Security Engineering, pages 141–152. Springer, 2016.

[20] Yacine Bouzida, Frederic Cuppens, Nora Cuppens-Boulahia, and Sylvain Gombault. Efficient intru-

sion detection using principal component analysis. In 3éme Conférence sur la Sécurité et Architectures

Réseaux (SAR), La Londe, France, pages 381–395, 2004.

[21] José Camacho, Alejandro Pérez-Villegas, Pedro García-Teodoro, and Gabriel Maciá-Fernández. Pca-

based multivariate statistical network monitoring for anomaly detection. Computers & Security,

59:118–137, 2016.

[22] James Cannady. Artificial neural networks for misuse detection. In National information systems

security conference, volume 26. Baltimore, 1998.

[23] Ashima Chawla, Brian Lee, Sheila Fallon, and Paul Jacob. Host based intrusion detection system with

combined cnn/rnn model. In Proceedings of Second International Workshop on AI in Security, 2018.

[24] Xianshun Chen. keras-anomaly-detection. https://github.com/chen0040/keras-

anomaly-detection, 2018. [Online; accessed July-2018].

[25] Abebe Diro and Naveen Chilamkurti. Leveraging lstm networks for attack detection in fog-to-things

communications. IEEE Communications Magazine, 56(9):124–130, 2018.

[26] Holger Dreger, Christian Kreibich, Vern Paxson, and Robin Sommer. Enhancing the accuracy of

network-based intrusion detection with host-based context. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, pages 206–221. Springer, 2005.

[27] Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory. In Micro Machine

and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, pages 39–

43. IEEE, 1995.

76

https://github.com/chen0040/keras-anomaly-detection
https://github.com/chen0040/keras-anomaly-detection

[28] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. A geometric frame-

work for unsupervised anomaly detection. In Applications of data mining in computer security, pages

77–101. Springer, 2002.

[29] Fahimeh Farahnakian and Jukka Heikkonen. A deep auto-encoder based approach for intrusion detec-

tion system. In Advanced Communication Technology (ICACT), 2018 20th International Conference

on, pages 178–183. IEEE, 2018.

[30] Cheng Feng, Tingting Li, and Deeph Chana. Multi-level anomaly detection in industrial control sys-

tems via package signatures and lstm networks. In Dependable Systems and Networks (DSN), 2017

47th Annual IEEE/IFIP International Conference on, pages 261–272. IEEE, 2017.

[31] Gilberto Fernandes Jr, Luiz F Carvalho, Joel JPC Rodrigues, and Mario Lemes Proença Jr. Network

anomaly detection using ip flows with principal component analysis and ant colony optimization. Jour-

nal of Network and Computer Applications, 64:1–11, 2016.

[32] Ni Gao, Ling Gao, Quanli Gao, and Hai Wang. An intrusion detection model based on deep belief

networks. In Advanced Cloud and Big Data (CBD), 2014 Second International Conference on, pages

247–252. IEEE, 2014.

[33] Farnaz Gharibian and Ali A Ghorbani. Comparative study of supervised machine learning techniques

for intrusion detection. In Communication Networks and Services Research, 2007. CNSR’07. Fifth

Annual Conference on, pages 350–358. IEEE, 2007.

[34] David Goldberg and Yinan Shan. The importance of features for statistical anomaly detection. In

HotCloud, 2015.

[35] Arnaldo Gouveia and Miguel Correia. A systematic approach for the application of restricted boltz-

mann machines in network intrusion detection. In International Work-Conference on Artificial Neural

Networks, pages 432–446. Springer, 2017.

[36] Anderson Hiroshi Hamamoto, Luiz Fernando Carvalho, Lucas Dias Hiera Sampaio, Taufik Abrão, and

Mario Lemes Proença Jr. Network anomaly detection system using genetic algorithm and fuzzy logic.

Expert Systems with Applications, 92:390–402, 2018.

77

[37] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. Outlier detection using replicator

neural networks. In International Conference on Data Warehousing and Knowledge Discovery, pages

170–180. Springer, 2002.

[38] Wenjie Hu, Yihua Liao, and V Rao Vemuri. Robust support vector machines for anomaly detection in

computer security. In ICMLA, pages 168–174, 2003.

[39] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A deep learning approach for net-

work intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-

inspired Information and Communications Technologies (formerly BIONETICS), pages 21–26. ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2016.

[40] Amin Karami and Manel Guerrero-Zapata. A fuzzy anomaly detection system based on hybrid pso-

kmeans algorithm in content-centric networks. Neurocomputing, 149:1253–1269, 2015.

[41] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. Lstm-based system-call

language modeling and robust ensemble method for designing host-based intrusion detection systems.

arXiv preprint arXiv:1611.01726, 2016.

[42] Jihyun Kim, Howon Kim, et al. An effective intrusion detection classifier using long short-term mem-

ory with gradient descent optimization. In Platform Technology and Service (PlatCon), 2017 Interna-

tional Conference on, pages 1–6. IEEE, 2017.

[43] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim. Long short term memory recurrent

neural network classifier for intrusion detection. In Platform Technology and Service (PlatCon), 2016

International Conference on, pages 1–5. IEEE, 2016.

[44] Christopher Kruegel and Thomas Toth. Using decision trees to improve signature-based intrusion

detection. In International Workshop on Recent Advances in Intrusion Detection, pages 173–191.

Springer, 2003.

[45] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C Suh, Ikkyun Kim, and Kuinam J Kim. A survey

of deep learning-based network anomaly detection. Cluster Computing, pages 1–13, 2017.

78

[46] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic feature distri-

butions. In ACM SIGCOMM Computer Communication Review, volume 35, pages 217–228. ACM,

2005.

[47] Chaopeng Li, Jinlin Wang, and Xiaozhou Ye. Using a recurrent neural network and restricted boltz-

mann machines for malicious traffic detection. NeuroQuantology, 16(5), 2018.

[48] Lianpeng Li, Lun Xie, Weize Li, Zhenzong Liu, and Zhiliang Wang. Improved deep belief networks

(idbn) dynamic model-based detection and mitigation for targeted attacks on heavy-duty robots. Ap-

plied Sciences (2076-3417), 8(5), 2018.

[49] Yang Li and Li Guo. An active learning based tcm-knn algorithm for supervised network intrusion

detection. Computers & security, 26(7-8):459–467, 2007.

[50] Yichen Li, Yinghua Ma, Mingda Guo, and Shenghong Li. Anomaly detection for power grid flow pat-

terns based on the multi-restricted boltzmann machines. In 2018 IEEE Third International Conference

on Data Science in Cyberspace (DSC), pages 628–633. IEEE, 2018.

[51] Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and Kuobin Dai. An efficient intrusion

detection system based on support vector machines and gradually feature removal method. Expert

Systems with Applications, 39(1):424–430, 2012.

[52] Yuancheng Li, Rong Ma, and Runhai Jiao. A hybrid malicious code detection method based on deep

learning. methods, 9(5), 2015.

[53] Yihua Liao and V Rao Vemuri. Use of k-nearest neighbor classifier for intrusion detection1. Computers

& security, 21(5):439–448, 2002.

[54] Richard P Lippmann and Robert K Cunningham. Improving intrusion detection performance using

keyword selection and neural networks. Computer networks, 34(4):597–603, 2000.

[55] Tao Ma, Fen Wang, Jianjun Cheng, Yang Yu, and Xiaoyun Chen. A hybrid spectral clustering and deep

neural network ensemble algorithm for intrusion detection in sensor networks. Sensors, 16(10):1701,

2016.

79

[56] Pheeha Machaka, Antoine Bagula, and Fulufhelo Nelwamondo. Using exponentially weighted moving

average algorithm to defend against ddos attacks. In 2016 Pattern Recognition Association of South

Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), pages 1–6. IEEE,

2016.

[57] Erik Marchi, Fabio Vesperini, Florian Eyben, Stefano Squartini, and Björn Schuller. A novel approach

for automatic acoustic novelty detection using a denoising autoencoder with bidirectional lstm neural

networks. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference

on, pages 1996–2000. IEEE, 2015.

[58] Federico Marini and Beata Walczak. Particle swarm optimization (pso). a tutorial. Chemometrics and

Intelligent Laboratory Systems, 149:153–165, 2015.

[59] Jerry M Mendel. Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE, 83(3):345–

377, 1995.

[60] Soosan Naderi Mighan and Mohsen Kahani. Deep learning based latent feature extraction for intrusion

detection. In Electrical Engineering (ICEE), Iranian Conference on, pages 1511–1516. IEEE, 2018.

[61] Ali H Mirza and Selin Cosan. Computer network intrusion detection using sequential lstm neural

networks autoencoders. In 2018 26th Signal Processing and Communications Applications Conference

(SIU), pages 1–4. IEEE, 2018.

[62] Rizwan Mushtaq. Augmented dickey fuller test. 2011.

[63] Miguel Nicolau, James McDermott, et al. A hybrid autoencoder and density estimation model for

anomaly detection. In International Conference on Parallel Problem Solving from Nature, pages 717–

726. Springer, 2016.

[64] The Fifth International Conference on Knowledge Discovery and Data Mining. Kdd cup 1999 data.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999. [Online; ac-

cessed July-2017].

80

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[65] Chandrika Palagiri. Network-based intrusion detection using neural networks. epartment of Computer

Science Rensselaer Polytechnic Institute Troy, New York, pages 12180–3590, 2002.

[66] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer networks, 31(23-

24):2435–2463, 1999.

[67] G Poojitha, K Naveen Kumar, and P Jayarami Reddy. Intrusion detection using artificial neural net-

work. In Computing Communication and Networking Technologies (ICCCNT), 2010 International

Conference on, pages 1–7. IEEE, 2010.

[68] Feng Qu, Jitao Zhang, Zetian Shao, and Shuzhuang Qi. An intrusion detection model based on deep

belief network. In Proceedings of the 2017 VI International Conference on Network, Communication

and Computing, pages 97–101. ACM, 2017.

[69] Sutharshan Rajasegarar, Christopher Leckie, Marimuthu Palaniswami, and James C Bezdek. Dis-

tributed anomaly detection in wireless sensor networks. In Communication systems, 2006. ICCS 2006.

10th IEEE Singapore International Conference on, pages 1–5. IEEE, 2006.

[70] Manikantan Ramadas, Shawn Ostermann, and Brett Tjaden. Detecting anomalous network traffic with

self-organizing maps. In International Workshop on Recent Advances in Intrusion Detection, pages

36–54. Springer, 2003.

[71] Sanjiban Sekhar Roy, Abhinav Mallik, Rishab Gulati, Mohammad S Obaidat, and PV Krishna. A deep

learning based artificial neural network approach for intrusion detection. In International Conference

on Mathematics and Computing, pages 44–53. Springer, 2017.

[72] Mateu Sbert, Han-Wei Shen, Ivan Viola, Min Chen, Anton Bardera, and Miquel Feixas. Tutorial on

information theory in visualization. In SIGGRAPH Asia 2017 Courses, page 17. ACM, 2017.

[73] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating a new intrusion

detection dataset and intrusion traffic characterization. In ICISSP, pages 108–116, 2018.

81

[74] Rhythima Shinde, Pieter Van der Veeken, Stijn Van Schooten, Jan van den Berg, Bishnu Giri,

Avinashkumar Bhardwaj, G. R. K. S. Subrahmanyam, and Vinay Avasthi. Survey on ransomware:

A new era of cyber attack. 2017.

[75] Taeshik Shon and Jongsub Moon. A hybrid machine learning approach to network anomaly detection.

Information Sciences, 177(18):3799–3821, 2007.

[76] Robin Sommer. Bro: An open source network intrusion detection system. In DFN-Arbeitstagung über

Kommunikationsnetze, pages 273–288, 2003.

[77] Ralf C Staudemeyer. Applying long short-term memory recurrent neural networks to intrusion detec-

tion. South African Computer Journal, 56(1):136–154, 2015.

[78] Ralf C Staudemeyer and Christian W Omlin. Evaluating performance of long short-term memory

recurrent neural networks on intrusion detection data. In Proceedings of the South African Institute for

Computer Scientists and Information Technologists Conference, pages 218–224. ACM, 2013.

[79] Iwan Syarif, Adam Prugel-Bennett, and Gary Wills. Data mining approaches for network intrusion

detection: from dimensionality reduction to misuse and anomaly detection. Journal of Information

Technology Review, 3(2):70–83, 2012.

[80] T Tang, Syed Ali Raza Zaidi, Des McLernon, Lotfi Mhamdi, and Mounir Ghogho. Deep recurrent

neural network for intrusion detection in sdn-based networks. In 2018 IEEE International Conference

on Network Softwarization (NetSoft 2018), pages 202–206. IEEE, 2018.

[81] Jingjing Tian and Ping’An Li. An intrusion detection algorithm of dynamic recursive deep belief

networks. In Proceedings of the 2017 International Conference on Information Technology, pages

180–183. ACM, 2017.

[82] Cynthia Wagner, Jérôme François, Thomas Engel, et al. Machine learning approach for ip-flow record

anomaly detection. In International Conference on Research in Networking, pages 28–39. Springer,

2011.

82

[83] Ke Wang and Salvatore J Stolfo. Anomalous payload-based network intrusion detection. In Interna-

tional Workshop on Recent Advances in Intrusion Detection, pages 203–222. Springer, 2004.

[84] Xiaodong Wang, Haoran Zhang, Changjiang Zhang, Xiushan Cai, Jinshan Wang, and Meiying Ye.

Time series prediction using ls-svm with particle swarm optimization. In International Symposium on

Neural Networks, pages 747–752. Springer, 2006.

[85] Jun Yang, Jiangdong Deng, Shujuan Li, and Yongle Hao. Improved traffic detection with support

vector machine based on restricted boltzmann machine. Soft Computing, 21(11):3101–3112, 2017.

[86] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. A deep learning approach for intrusion

detection using recurrent neural networks. IEEE Access, 5:21954–21961, 2017.

[87] Jiong Zhang, Mohammad Zulkernine, and Anwar Haque. Random-forests-based network intrusion

detection systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 38(5):649–659, 2008.

[88] Yin Zhang and Vern Paxson. Detecting stepping stones. In USENIX Security Symposium, volume 171,

page 184, 2000.

[89] Zheng Zhang, Jun Li, CN Manikopoulos, Jay Jorgenson, and Jose Ucles. Hide: a hierarchical network

intrusion detection system using statistical preprocessing and neural network classification. In Proc.

IEEE Workshop on Information Assurance and Security, pages 85–90, 2001.

[90] Guangzhen Zhao, Cuixiao Zhang, and Lijuan Zheng. Intrusion detection using deep belief network and

probabilistic neural network. In Computational Science and Engineering (CSE) and Embedded and

Ubiquitous Computing (EUC), 2017 IEEE International Conference on, volume 1, pages 639–642.

IEEE, 2017.

83

	Abbreviations
	Introduction
	Motivations
	Problem Statement
	Objectives and Contributions
	Thesis Organization

	Background and State of the Art
	Background
	Intrusion Detection Systems
	Host-based versus Network-based Intrusion Detection Systems

	Bro Network-based Intrusion Detection System
	Evolution and History
	Architecture and Implementation
	Packet Capture
	Policy-neutral Event Engine
	Policy Layer
	Log Files
	Network Protocols
	Files
	NetControl
	Detection
	Network Observations
	Other Log Files

	Anomaly Detection Existing Approaches
	Machine Learning Anomaly Detection
	Supervised Machine Learning Anomaly Detection
	Support Vector Machine Anomaly Detection
	Random Forests Anomaly Detection
	Decision Trees Machine Anomaly Detection
	K-Nearest Neighbor Anomaly Detection
	Supervised Artificial Neural Networks Anomaly Detection
	Unsupervised Machine Learning Anomaly Detection
	Unsupervised Artificial Neural Networks
	Clustering-based Anomaly Detection Techniques

	Statistical Anomaly Detection
	Soft-Computing Anomaly Detection

	Anomaly Detection
	Approach Overview
	Anomaly Detection by Time-series
	Feature Extraction
	Adaptive Thresholding
	Predictive Analysis
	Anomaly Detection

	Design, Implementation and Evaluation
	Design and Implementation
	Evaluation
	Experimental Setup
	Ground Truth Correlation
	Validation on Benchmark Dataset
	Comparison with other Anomaly Detection Approaches
	Long-Short Term Memory Network

	Scalability Study

	Front-End Platform
	Dashboard Organisation

	Conclusion

