
Secure Configuration and Management of Linux
Systems using a Network Service Orchestrator

Vijay Satti

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science at

Concordia University

Montréal, Québec, Canada

May 2019

c© Vijay Satti, 2019

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Vijay Satti

Entitled: Secure Configuration and Management of Linux Systems using a

Network Service Orchestrator

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Walter Lucia

Examiner
Dr. Anjali Agarwal

Examiner
Dr. Amr Youssef

Supervisor
Dr. J. William Atwood

Approved by
Dr. Chadi Assi, Graduate Program Director
Department of Concordia Institute for Information Systems
Engineering

2019
Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Secure Configuration and Management of Linux Systems using a Network
Service Orchestrator

Vijay Satti

Manual management of the configuration of network devices and computing devices

(hosts) is an error-prone task. Centralized automation of these tasks can lower the costs

of management, but can also introduce unknown or unanticipated security risks. Miscon-

figuration (deliberate (by outsiders) or inadvertent (by insiders)) can expose a system to

significant risks.

Centralized network management has seen significant progress in recent years, result-

ing in model-driven approaches that are clearly superior to previous "craft" methods. Host

management has seen less development. The tools available have developed in separate

task-specific ways.

This thesis explores two aspects of the configuration management problem for hosts:

(1) implementing host management using the model-driven (network) management tools;

(2) establishing the relative security of traditional methods and the above proposal for

model-driven host management.

It is shown that the model-driven approach is feasible, and the security of the model-

driven approach is significantly higher than that of existing approaches.

iii

Acknowledgments

Many have supported me in the completion of this work. I am deeply in their debt as

their significant support helped me synthesize this thesis into a coherent form. I want to

use this page to express my most profound thanks to all of them.

First and foremost, I find no words to express my sincere thanks to my faculty guide

and supervisor Dr. J. William Atwood. Without his mentorship, continuous support and

assistance, this project wouldn’t have been successful. His guidance throughout this pro-

cess introduced me to the underlying concepts that establish the foundation of this work.

I feel proud to express his rich knowledge of literature in the context of research.

A huge thanks to my parents for their supreme confidence in me. This isn’t just my

work. Though they live far, their continuous moral support and belief in me make this

a joint project. It would have been impracticable to accomplish this work without their

motivation and financial support to facilitate my higher studies. I am likewise grateful to

my dear sister for always being there when I need humor into my life.

I also want to extend the gratitude to my family, friends, and roommates who made

this journey a delightful experience.

Finally, an utmost thanks to that supreme force which infused me with self-motivation

to complete this work.

iv

Contents

List of Figures vii

List of Tables viii

List of Abbreviations and Acronyms ix

1 Introduction 1

2 Background Study 4

2.1 Network Management . 5

2.2 Host Management . 16

2.3 Network Service Orchestration . 19

2.4 Security Context . 20

3 Problem Statement 24

3.1 CLI and API Limitations . 24

3.2 SNMP Limitations . 25

3.3 Host Management Limitations . 26

3.4 Security Limitations . 27

3.5 Demerits of Host Management using Traditional Methods 27

4 Proposed Solution 29

4.1 NETCONF and YANG based Host Management 29

4.2 Solution Capabilities . 32

v

4.3 Security Efficiencies . 34

4.4 Testing NETCONF and YANG based Host Management 37

4.5 Merits of Host Management using NETCONF and YANG 40

5 Threat Models 41

5.1 Threat Modeling . 41

5.2 Threat Analysis . 44

5.3 Security Insights . 57

6 Conclusion and Future Work 61

Appendix A Appendix 63

A.1 Lab Machines Specifications . 63

A.2 Installing KVM . 64

A.3 Installing NSO . 67

A.4 Installing Ansible . 82

A.5 Integrating Ansible and NSO . 88

A.6 Installing ConfD . 91

A.7 Integrating ConfD and NSO . 94

Bibliography 97

vi

List of Figures

Figure 2.1 CLI session on a Cisco router . 6

Figure 2.2 NETCONF datastores . 10

Figure 2.3 Example of a NETCONF "hello" operation 11

Figure 2.4 Representation of an example YANG module 14

Figure 2.5 pyang tree format translation of a YANG module 15

Figure 2.6 Network adapter information on a Linux-based system 17

Figure 2.7 Network adapter information on a Windows-based system 17

Figure 4.1 NETCONF and YANG based management of host systems 31

Figure 4.2 pyang tree format translation of ietf_system YANG module 40

Figure 5.1 High-level DFD of configuration management using Ansible 46

Figure 5.2 High-level DFD of NETCONF and YANG based host management

using NSO . 51

Figure 5.3 Attack surface . 59

vii

List of Tables

Table 5.1 Threat modeling DFD components . 43

Table 5.2 Threat matrix of components . 44

Table 5.3 Threat matrix of configuration management using Ansible 50

Table 5.4 Threat matrix of NETCONF and YANG based host management using

NSO . 56

Table 5.5 Threat matrix summary . 58

viii

List of Abbreviations and Acronyms

AAA Authentication, Authorization and Accounting

ACL Access Control List

API Application Programming Interface

CDB Configuration Database

CIA Confidentiality, Integrity and Availability

CLI Command Line Interface

CPU Central Processing Unit

DDoS Distributed Denial of Service

DFD Data Flow Diagram

DSL Domain Specific Language

GUI Graphical User Interface

JSON JavaScript Object Notation

IAB Internet Architecture Board

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IDS Intrusion Detection System

IPS Intrusion Prevention System

ISO International Organization for Standardization

IP Internet Protocol

IT Information Technology

KVM Kernel-based Virtual Machine

LAN Local Area Network

MIB Management Information Base

MitM Man in the Middle

ix

NACM NETCONF Access Control Model

NCS Network Control System

NED Network Element Driver

NFV Network Functions Virtualization

NETCONF Network Configuration Protocol

NIST National Institute of Standards and Technology

NSO Network Services Orchestrator

OS Operating System

OSI Open Systems Interconnection

RAM Random Access Memory

REST Representational State Transfer

RFC Request For Comments

ROM Read-Only Memory

RPC Remote Procedure Call

SDN Software Defined Network

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SSH Secure Shell

SSL Secure Sockets Layer

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, Elevation of Privilege

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VM Virtual Machine

VPN Virtual Private Network

XML eXtensible Markup Language

YAML Yet Another Markup Language

YANG Yet Another Next Generation

x

Chapter 1

Introduction

Computer networks are the backbone of an enterprise’s Information Technology (IT)

infrastructure. The size of these networks varies from a small number of devices residing

at a room in the head-office to hundreds and thousands of devices spread across the entire

globe. These networks are dynamic and have different operational needs and network

management requirements. Network management is simple when the number of devices

is small. However, it becomes increasingly complex as the device count goes up.

A survey conducted by Sherry, Hasan, Scott, Krishnamurthy, Ratnasamy, and Sekar

(2012) on 57 enterprise networks of small to very large sizes and ranging from approxi-

mately a few hundred to 100,000 devices found that these networks comprised of a broad

spectrum of a heterogeneous set of devices called as middleboxes. It was also found that

even small networks incur substantial management and hardware expenses with the man-

agement team personnel requirement going up to hundreds in larger enterprises. Further-

more, a large number of enterprise network administrators reported misconfiguration as

the primary cause of network failures (Sherry et al., 2012).

The survey shows the trends that due to the broad category of network devices and

the dynamic nature of networks, network complexity increases substantially. Thus, an

efficient and systematic configuration and management of the network continues to be a

challenging task for network administrators.

1

Configuration and management of today’s IT infrastructure can be predominantly clas-

sified into two categories; network management and host management. Although there

has been much study and effort invested in both fields individually, however so far only

little study has been done that focuses on the management of host devices using the net-

work configuration protocol NETCONF and its data modeling language YANG (Yet An-

other Next Generation).

This study contributes to the literature focusing on future work regarding network

management based on the requirements put forward by the network engineers in a work-

shop held by the Internet Architecture Board (IAB) in 2002. The requirements are stated in

the Internet Engineering Task Force’s (IETF) informational document RFC3535 and are still

very relevant today. A key requirement put forward was that transactions are an essential

mechanism and it could significantly simplify the process of configuration and manage-

ment across a large number of devices (Schoenwaelder, 2003).

Furthermore, while investigating the problems and challenges faced by network engi-

neers of large enterprises, it was found that a transactional-oriented network management

protocol such as NETCONF could potentially address and solve these problems. On the

contrary, other host configuration management tools lack transactions and employ scripts

with the configurations laid out in sequential order. Hence, this study is motivated by the

apparent lack of research and discussion on the real-world use of NETCONF and YANG

for the management of host systems and attempts to examine the feasibility and security

that would result from the use.

The security of a system is mainly affected by two components; internal factors and

external factors. For an enterprise, internal security is a major concern. The insiders or

the employees have access to sensitive data and can intentionally or unintentionally leak

the information. Inadvertently, a security loophole could also be exposed as a result of a

misconfiguration by an employee. On the contrary, an outsider intentionally tries to break

the outer defenses first before they can gain access to the internal network. It is, therefore,

imperative to do a comparative in-depth threat analysis to identify the potential threats

that could arise by using NETCONF and YANG for host management.

2

In brief, the thesis explores the NETCONF-YANG based configuration and manage-

ment of Linux-based host systems using a Network Service Orchestrator (NSO) by em-

ploying the Open Systems Interconnection’s (OSI) network management model. The In-

ternational Organization for Standardization (ISO) has standardized the network manage-

ment model called FCAPS, an acronym for Fault Management, Configuration Manage-

ment, Accounting Management, Performance Management, and Security Management

(ISO, 1989). The focus of this study is primarily on configuration management and se-

curity management aspects.

Structure and organization of the thesis:

• Chapter 2, Background Study, covers the history, the background, and the litera-

ture of the several concepts that establish the foundation for a reader to understand

the terminologies used in this thesis. The respective subsections cover only those

protocols, tools, and concepts that are relevant for this study.

• Chapter 3, Problem Statement, defines and describes the network configuration and

management problems addressed in this thesis.

• Chapter 4, Proposed Solution, describes the proposed solution that addresses the

problem identified in the problem statement chapter.

• Chapter 5, Threat Models, illustrates the threat models and covers the security anal-

ysis related to the two different configuration management approaches for host man-

agement discussed in this thesis.

• Chapter 6, Conclusion and Future Work, summarizes the thesis and introduces pos-

sible opportunities for future research.

• Appendix, comprises the lab arrangement and includes the device configurations

and the steps required to set up the tools.

3

Chapter 2

Background Study

Networks vary in size, ranging from small home networks to enterprise Intranet (LAN)

to wide area networks (WAN). Smaller networks are easily manageable and can often be

configured manually. However, as the network grows in size, it is self-evident that a net-

work management solution is required. Network management is a process that can be

modeled using the OSI/ISO FCAPS framework. The framework can be split into five

discrete areas, viz. Fault Management, Configuration Management, Accounting Manage-

ment, Performance Management, and Security Management (ISO, 1989). This chapter em-

phasizes on the configuration management and security management aspects of network

management.

Configuration management is the management of change in the state of a network-

element using a tool that enforces and ensures the change in the state. A network-element

can be any network device or host in a network management framework that performs a

specific functionality.

Security management is making sure who can make changes and view configuration

information of the network-elements. There are various dimensions to characterize the

security of a system, the most important being Confidentiality, Integrity, Availability (also

knows as CIA triad (Perrin, 2008)), Authentication, Authorization, and Non-repudiation.

4

2.1 Network Management

In the late 1980s, the Internet was developing fast. With the growing number of net-

work devices, such as routers, switches, and servers, it became increasingly challenging to

manage all these devices and make sure they were performing optimally. The number of

vendors was growing larger, and each was having its own set of management mechanisms.

A network administrator was expected to learn all the proprietary management systems.

This lead to severe management problems because of a lack of an accepted standard for

the management of the network devices. It was at this point that it became apparent to the

Internet community that a standard management protocol had to be developed.

In October 1987, an experimental management approach appeared called high-level

entity management system (HEMS) and high-level entity management protocol (HEMP),

stated in RFC1021 and RFC1022 respectively (Partridge & Trewitt, 1987b) (Partridge &

Trewitt, 1987a). After a few weeks, another protocol was proposed called simple gateway

monitoring protocol (SGMP), stated in RFC1028 (Davin, Case, Fedor, & Schoffstall, 1987).

Work was also done on a third proposal called common management information services

and protocol over TCP/IP (CMOT), which appeared in April 1989 and is stated in RFC1095

(Warrier & Besaw, 1989). As reported in RFC1052, the IAB expressed its gratitude for

the efforts of the three working groups and directed IETF to coordinate on the on-going

developments. It was later decided to drop the development of HEMS/HEMP on favor of

the CMOT and SGMP group. It was also concluded that the Internet community should

start to adopt simple network management protocol (SNMP, successor of SGMP) as the

common protocol for network management (Cerf, 1989).

Furthermore, the OSI/ISO splits network management into five distinct areas. The

configuration management part of the model for network-elements can be performed us-

ing several methods such as configuration files, command line interface (CLI), web-based

graphical user interface (Web UI), simple network management protocol (SNMP), and net-

work configuration protocol (NETCONF). Configuration files usually employ a domain

specific language (DSL), which consists of configuration data in various formats, such as

5

Ruby, JavaScript object notation (JSON), INI files, or custom syntaxes. The subsequent

sections explore the characteristics of CLI, SNMP, and NETCONF protocol.

2.1.1 CLI for Network Devices

Most network devices use a CLI as the default network management interface. It is

a text-based interface that is used for reading and writing the configurations to and from

the device. The interface is usually implemented using a command line shell that converts

input commands into device specific functions. User entered input commands are trans-

ferred to a configuration file and then reloaded to the device if required. Configurations

are written using the device’s internal logic or in-built application programming interface

(API).

A CLI can be accessed using a console, Telnet, or a secure shell (SSH) connection. A

console is a physical port available on a network device that is used to connect directly

to the device as essentially there is no display on a network device. Whereas, Telnet and

SSH are the protocols that are used connect remotely to a device. A CLI connection is

established using a terminal emulator application such as PuTTy and SecureCRT. Figure

2.1 shows a CLI session using a terminal emulator on a Cisco router.

CSR1000v#show i p i n t e r f a c e b r i e f

I n t e r f a c e IP−Address OK? Method S t a t u s Protoco l

Gigabi tEthernet1 1 9 2 . 1 6 8 . 1 2 2 . 4 1 YES DHCP up up

Gigabi tEthernet2 unassigned YES unset a d m i n i s t r a t i v e l y down down

Gigabi tEthernet3 unassigned YES unset a d m i n i s t r a t i v e l y down down

Figure 2.1: CLI session on a Cisco router

2.1.2 SNMP

Simple network management protocol (SNMP) was introduced in 1988 and was ac-

cepted as a full Internet standard in May 1990. The protocol allows a network administra-

tor to configure SNMP-based devices and enables the monitoring of the device state. For

example, it can be used to restart a router or to check the speed of an interface on a switch.

It not only supports routers and switches, but can also be used to manage and monitor any

6

device that support SNMP operations, e.g., Unix-based systems, Windows-based systems,

printers, firewalls, and more. All messages are transported via user datagram protocol

(UDP) over commonly used port 161 and 162. The protocol is simple, easy to implement,

and widely adopted. Despite that, it has many shortcomings because of which consistent

efforts have been made for the continuous development and support of the protocol.

SNMPv1 was the initial release of the protocol, defined and published by the IETF in

RFC1157 (Case, Fedor, Schoffstall, & Davin, 1990). The security of the protocol is based

on community strings, which is merely a plain-text string that allows any SNMP based

applications to gain access to the device’s management information by just entering the

string. The security of the messages sent through the protocol thus depends on the security

of the internal network of the enterprise. Due to the shortcomings such as weak security

and relatively poor performance when a large amount of management data needs to be

retrieved, two work groups were established, one to focus on security, and the other to

focus on the performance (this group was called SMP). These two groups later merged

and formed SNMPv2.

SNMPv2, also known as SNMPv2c, is defined in RFC 1901, 1905, 1906 (Case, Mc-

Cloghrie, Rose, & Waldbusser, 1995) (Case, McCloghrie, Rose, & Waldbusser, 1996) (Case,

McCloghrie, & Rose, 1996). This version has better management features but borrows the

security from SNMPv1 in which community strings are in plain-text and pre-shared with

the communicating parties. An eavesdropper can easily capture community strings be-

cause all the data is unencrypted. The failure of the working group to deliver the security

as per the agreement slowed down the overall acceptance of SNMPv2. SNMPv3 later re-

placed this protocol.

SNMPv3 is the latest version of the SNMP protocol, defined in RFC 2571 to 2575. The

main reason for the development of this version was to add cryptographic security and

enhanced support for remote configurations (Stallings, 1998). It added implementation

support for following three security levels:

• NoAuthNoPriv: Communication without authentication and without privacy.

7

• AuthNoPriv: Communication with authentication but without privacy. Authentica-

tion is based on either HMAC_MD5 or HMAC_SHA algorithm.

• AuthPriv: Communication with authentication and with privacy. Authentication

is based on either HMAC_MD5 or HMAC_SHA algorithm. Privacy is based on

CBC_DES algorithm.

SNMP works in a client-server mode. A client, also know as SNMP manager, has

a network management station (NMS) application installed and running and is used to

manage the SNMP managed devices. A server, also known as SNMP agent, is a managed

device having a management agent application installed and running. SNMPv3 re-named

the SNMP agents as client entities.

When an SNMP server encounters an issue, it sends a message to the client known as

SNMP trap. Trap messages are special code with a unique ID called object identifier data

(OID). The management capabilities of SNMP are represented in a file called management

information base (MIB). MIBs are used to expose an agent’s management data to the man-

ager. The translation of an OID is actually stored in MIBs. SNMP manager understands

the alerts and sends the configuration data by translating the MIBs exposed by the agent.

However, SNMP is mostly used for alerts and not for configuration management because

of a lack of standardized MIBs (Schoenwaelder, 2003).

2.1.3 NETCONF

In June 2002, the Internet Architecture Board (IAB) held a workshop on network man-

agement. The notes from the workshop are documented in RFC3535 (Schoenwaelder,

2003). This RFC states that:

The goal of the workshop was to continue the important dialog started between

network operators and protocol developers, and to guide the IETFs focus on

future work regarding network management.

Based on the requirements put forward by network operators, it was concluded that

8

simple network management protocol (SNMP) is not adequate for configuration manage-

ment and a newer protocol was required that would address the issues raised in the work-

shop. Complying to the stated requirements, the network configuration protocol (NET-

CONF) was published in 2006 in RFC4741 (Enns, 2006). The protocol has gained accep-

tance since its launch. The original RFC4741 was updated and replaced with RFC6241 in

2011 (Enns, Bjorklund, Schoenwaelder, & Bierman, 2011).

NETCONF, as it stands for, network configuration protocol, is an IETF standardized

network configuration and management protocol. It provides a method to add, modify,

and delete the configuration of network devices. It is a client-server based protocol. A

client is typically a NETCONF manager, and a server is a device that supports NETCONF

operations.

It is an Extensible Markup Language (XML) Remote Procedure Call (RPC) style pro-

tocol. XML is used to transport data while RPC is a request from one computer program

to another program. All the content transported through RPC requests and responses is

sent through XML, encoded in UTF-8. The communicating parties use rpc and rpc-reply

elements for requests and responses. Each rpc and rpc-reply element has a message ID

number and a namespace (e.g., urn:ietf:params:xml:ns:netconf:base:1.0).

A NETCONF connection provides confidentiality, integrity, and authentication. Mes-

sages sent through NETCONF are connection oriented. Connections are encrypted, and

messages are transported over the SSH protocol. The default transmission control protocol

(TCP) port assigned by the Internet Assigned Numbers Authority (IANA) for NETCONF

over SSH is 830. Some RFCs define NETCONF over transport layer security (TLS), simple

object access protocol (SOAP), and blocks extensible exchange protocol (BEEP), but they

are infrequently used.

It is a transactional protocol. When a configuration change requires updates across

multiple devices, changes happen all-or-nothing and all-at-once. That means, changes all

succeed or all fail. Transactions are essential to avoid unknown, inconsistent, in-determinant

configuration state of the devices. For example, a virtual private network (VPN) update

may require a change in many devices. A change successful only on a few devices may

9

Candidate Running Startup

copy-config

D
ev
ic
e

re
bo
ot

commit

edit-config,
copy-config

get-config

discard-changes,
validate,
lock,
unlock

delete-config

copy-config

N
ot

al
lo
w
ed

get

Figure 2.2: NETCONF datastores

lead to unexpected behavior in the network. A NETCONF operation applies configura-

tion locks on all target devices. Locks are released once all the configuration changes are

successfully implemented or discarded.

A typical NETCONF system includes one-or-more type of datastores. Data stored in

the database can be conceptually categorized into configuration data and state data. Con-

figuration data is the writeable device configuration, and state data is the device state

information. Figure 2.2 represents these datastores with the base operations that can be

performed on them. Candidate datastore holds the copy of data that has not yet been

uploaded to the device. All the configurations are first pushed into candidate datastore,

where they are validated and then activated by performing a commit onto running datas-

tore. Running datastore holds the current active configuration on a device. Startup data-

store represents the configuration used by the device at startup. Depending on the capa-

bilities, candidate and startup may or may not be supported by the NETCONF manager,

whereas, running is a mandatory datastore.

When a NETCONF manager connects to a NETCONF device, they exchange "hello"

messages as shown in Figure 2.3. The "hello" message indicates the capabilities supported

by each side. These capabilities include information such as the NETCONF version that

10

<?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>
< h e l l o xmlns=" urn : i e t f : params : xml : ns : netconf : base : 1 . 0 ">

< c a p a b i l i t i e s >
< c a p a b i l i t y >urn : i e t f : params : netconf : base :1 .0 </ c a p a b i l i t y >

</ c a p a b i l i t i e s >
</hel lo >
]] >]] >

Figure 2.3: Example of a NETCONF "hello" operation

the client and server supports and the YANG data models advertised by the device.

NETCONF exists in version 1.0 and version 1.1. These two versions use different fram-

ing mechanisms. In version 1.0, a special character sequence]]>]]> is added at the end

of each XML message to indicate a break between XML packets. Whereas, version 1.1 has

a run-length encoding. Also, there are a number of tags and attributes that can be used

within a specific operation. A list of all these tags and attributes can be found in RFC6241

(Enns et al., 2011).

NETCONF Base Operations:

• get: This operation is used to retrieve both configuration and state data of the device.

If the operation succeeds, NETCONF server sends an rpc-reply message. If it fails,

an rpc-error message is included in the rpc-reply.

• get-config: This operation is used to retrieve configuration data only. Additional

tags such as "filter" can also be used within get-config for sub-tree filtering to retrieve

information based on a specific data model of that device.

• edit-config: This operation is used to make changes to the configuration of a de-

vice. To perform this operation, the target datastore needs to be specified in the rpc

request.

• copy-config: This operation is used to copy or replace configuration data between

different datastores, and to specified URLS. It uses "source" and "target" tags to spec-

ify the source and target datastore.

• delete-config: This operation is used to remove configurations from a specified

11

datastore.

• lock: This operation is used to lock the datastores. It is used to ensure the consis-

tency of the device configuration so that another client would not be able to make

any changes while a client session is already active.

• unlock: This operation is used to release an active "lock". Requirement for perform-

ing this operation is that the requested "lock" should be currently active, and should

be issued by the same session as "unlock".

• close-session: This operation is used to gracefully close a session. All the acquired

"locks" and resources are released before the session is terminated by the server.

• kill-session: This operation is used to forcefully close a session using its session ID.

A couple of new operations are added and described in RFC6241, e.g., "commit" op-

eration to copy the device configuration from candidate datastore to running datastore,

"discard-changes" operation to roll-back candidate datastore configuration to the active

running configuration, "cancel-commit" operation to cancel an active confirm commit op-

eration, "validate" operation to validate the configurations stored in candidate datastore.

These operations can only be used when candidate datastore is enabled (Enns et al., 2011).

2.1.4 YANG

Yet Another Next Generation (YANG) is a data modeling language designed for use

with the network configuration protocol (NETCONF). In simple terms, it is the grammar

and vocabulary of each device that is managed using the NETCONF protocol. It was pro-

posed in 2010 in RFC6020 (Bjorklund, 2010) and updated in 2016 to RFC7950 (Bjorklund,

2016).

When NETCONF was launched in 2006, there was no standardized data modeling

language available to define the data carried over the protocol. Standardization of YANG

was established on the basis of the work done by an IETF group called NETMOD. The

IETF released version 1.0 of YANG in 2010, and subsequently released version 1.1 in 2016.

12

YANG is a data modeling language used to define the syntax and semantics of the data

sent over the NETCONF protocol. In other terms, it is used to model the configuration

and state data in NETCONF as the data in YANG maps one-to-one to XML. To understand

how it is used in a network management system, consider a scenario where a management

tool has to connect to different vendor equipments. Each vendor has its own proprietary

command-line interface (CLI) and application programming interface (APIs). Making a

change, like adding a device or adding a new service would require a change at multiples

levels as the new device might talk to other devices, or the corresponding new service

may incorporate multiple devices. A YANG data modeling was developed to make this

approach more efficient as it permits vendors to use a common language to define the data

models for their devices. So, next time a new device is added, it might have different data

models as compared to devices from other vendors, but YANG; the data models governing

language is the same.

YANG data is stored in files called modules. A module for a device can be published by

the IETF, the OpenConfig, or the device Vendors. An example YANG module (Figure 2.4)

(Bjorklund, 2016) and the breakdown of important module statements with their meaning

is listed below:

• module: Each module starts with a module statement and the module name. A

module name should be same as the name of the file.

• namespace: It is a unique identifier used to distinguish a module from other YANG

modules. A typical NETCONF based system can have multiple modules from vari-

ous devices and different data model publishers.

• prefix: This statement is used to assign a prefix, which is used to refer to a module

namespace.

• import: This statement is used to refer to data from other modules, and an include

statement refers to data from submodules into a main module.

13

module example {
namespace " . . . " ;
p r e f i x " . . . " ;

import . . . { . . . }
inc lude " . . . " ;

o rganiza t ion " . . . " ;
c o n t a c t " . . . " ;
d e s c r i p t i o n

" . . . " ;

r e v i s i o n . . . {
d e s c r i p t i o n " . . . " ;

}

typedef . . . {
. . .
}

c on ta in er . . . {
l e a f . . . {

. . .
}

l e a f− l i s t . . . {
. . .

}

co nt a i ne r . . . {
l e a f . . . {

. . .
}

l i s t . . . {
key . . .
l e a f . . . {

. . .
}
l e a f . . . {

. . .
}
l e a f . . . {

. . .
}

}
}

}
}

Figure 2.4: Representation of an example YANG module

• organization, contact, description: These statements describe the information spe-

cific to the party that owns the module.

• revision: This statement describes the history related to the changes of the module.

• typedef: A data type may be a base type or derived type. All the base types are

listed in the RFC6020. A derived data type is a user specified data type structure.

typedef statement is used to define a derived type named my-base-str-type. It has a

base type as string, and can take a string of length 1 to 255. A leaf named class uses

this derived data type.

• container: This statement is used for organizing a tree. It groups leaf, leaf-list, and

list. It does not hold any data and does not have a data type. Containers can be

14

Figure 2.5: pyang tree format translation of a YANG module

nested. In Figure 2.5, a login container is nested inside a system container.

• leaf: A leaf is like a variable that holds a single data value of a specified data type.

In Figure 2.5, leaf host-name has a data type assigned as string. Additional attributes

can be defined within a leaf, e.g., "mandatory true;" defines that the configuration

must be present, "config true;" states that it is the configuration data whereas, "config

false;" means that it is the state data.

• leaf-list: A leaf-list is like an array that can hold values of a specified data type.

Unlike leaf, it can hold multiple data values.

• list: A list is like a table of variables. It has a "key" statement, which defines the

entries that are key values.

A network programmer uses the YANG modules published by either the vendor, the

IETF, or the OpenConfig based models to describe the configuration hierarchy for a device

or service in the network. These YANG models are then encoded in XML and transferred

to the server using NETCONF or any other API (such as RESTCONF, or gRPC). Figure 2.5

shows a tree format translation for a YANG module. A YANG module can also be trans-

lated into an XML-based syntax called YIN using the yin filter in the "pyang" python-based

YANG validator tool. YIN format output simplifies the task of a developer to validate, ap-

ply data filters and perform other operations on the YANG modules.

15

2.2 Host Management

Host management, interchangeably known as configuration management, is the man-

agement of a change in the state of a system throughout its lifecycle. Depending on the

operating system (OS), a system can be classified as Linux-based or Windows-based. Con-

figuration management started as a process within the US military in the late 1960s to

manage the lifecycle of the various changes in the system. The process has evolved since

then and has been adopted for building a system or software quickly and efficiently.

Until recently, configuring IT infrastructure was a manual task. As IT infrastructure

has multiplied, technologies to manage these infrastructures have evolved as well. The

growing understanding of IT and infrastructure as a code has influenced the work on

configuration management processes. The best practices for configuration management

can be found under the "Information Technology Infrastructure Library (ITIL) Asset and

Configuration Management" Service Transition processes (BMC, n.d.).

Configuration management has many applications, e.g., infrastructure migration, mass

deployment, configuration change failure rollbacks, and more. Consider a university IT

infrastructure, which typically has hundreds and thousands of desktops running on Linux

and Windows-based systems. A system administrator needs to deploy a security patch on

these systems. If done manually, he or she has to log in into each machine and then install

the patch. This process is time-consuming and prone to human errors. A configuration

management tool can do the mass deployment by simply entering a command on a master

system that pushes the patch installation request to all the connected client machines. This

automated process not only saves time but is also less susceptible to human errors.

2.2.1 CLI for Host Systems

Despite advances in host management technologies, there are still many network-elements

in a network that offer CLI as the default configuration management interface. Modern

configuration management protocols provide connectivity through a secure remote con-

nection protocol such as SSH over TCP or through other transport mechanisms. On the

16

vijay@Hartmanis :~ $ i f c o n f i g eno1
eno1 Link encap : Ethernet HWaddr ∗∗:∗∗:∗∗:∗∗:∗∗:∗∗

i n e t addr : 1 3 2 . 2 0 5 . 9 . 6 2 Bcast : 1 3 2 . 2 0 5 . 9 . 6 3 Mask : 2 5 5 . 2 5 5 . 2 5 5 . 2 5 2
i n e t 6 addr : fe80 : : 2 e27 : d7 f f : fe46 : c8b9 /64 Scope : Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric : 1
RX packets :1715924 e r r o r s : 0 dropped : 0 overruns : 0 frame : 0
TX packets :1150153 e r r o r s : 0 dropped : 0 overruns : 0 c a r r i e r : 0
c o l l i s i o n s : 0 txqueuelen :1000
RX bytes :1454882551 (1 . 4 GB) TX bytes :126440310 (1 2 6 . 4 MB)
I n t e r r u p t : 2 0 Memory : fb000000−fb020000

Figure 2.6: Network adapter information on a Linux-based system

C:\ Users\Vi jay S a t t i >netsh i n t e r f a c e ip show addresses "Wi−f i "
Configurat ion f o r i n t e r f a c e "Wi−Fi "

DHCP enabled : Yes
IP Address : 1 7 2 . 3 0 . 1 1 4 . 8
Subnet P r e f i x : 1 7 2 . 3 0 . 0 . 0 / 1 7 (mask 2 5 5 . 2 5 5 . 1 2 8 . 0)
Defaul t Gateway : 1 7 2 . 3 0 . 0 . 1
Gateway Metric : 0
I n t e r f a c e M e t r i c : 35

Figure 2.7: Network adapter information on a Windows-based system

other hand, many vendors still offer CLI as the only way to connect to a network-element

using an unsecured unreliable connection.

Figure 2.6 and Figure 2.7 shows the output of command to retrieve the IP address

of a network interface controller (NIC) on a Linux-based and a Windows-based system

respectively. Even though the purpose is same, the syntax of the command and the output

format is different for different systems.

Configuring a heterogeneous network through different CLIs could be an inefficient

task, but CLI is still handy in scenarios when simple network management protocol (SNMP)

or network configuration protocol (NETCONF) connectivity is unavailable over the net-

work, or when the network speed is low. For example, a denial-of-service (DoS) attack

may hinder the remote connectivity to a device. In situations like this, direct access to

device CLI through the serial link could admittedly be helpful (Jones, 2004).

2.2.2 Configuration Management Tools

There are many open-source and commercial configuration management tools avail-

able in the market. Choosing the correct tool for an enterprise involves many factors (De-

laet, Joosen, & Van Brabant, 2010). Below is a brief overview of the most popular configu-

ration management tools:

17

Puppet is an open-source tool, initially released in 2005, and has a client-server archi-

tecture. Puppet server runs on one or more servers, and puppet clients runs as an agent

on each client machine that an administrator wants to manage. The tool can be used to

manage a variety of Linux, Unix, and Windows-based systems. The configurations are

defined in a file called Puppet manifests. Enterprise version of Puppet provides GUI, CLI,

and API support for client management. The tool is written in C++ and Clojure. All the

system related data are written in a custom declarative language or Ruby domain specific

language (DSL).

Chef is an open-source tool, initially released in January 2009, and has a client-server

architecture. Chef server runs on the master machine, and chef clients run as agents on

each client machine. The tool can be used to manage Linux, Unix. and Windows-based

systems. It uses SSH to connect and certificates to authenticate communication with the

clients. All the configurations are stored in a machine called workstation, usually a master

server, where it is tested and then sent to the clients. These configurations are defined in a

file called recipes (grouped as cookbooks). Once the cookbooks are uploaded to the server,

an administrator can access Web UI, CLI, or API to send the configurations to the clients.

The tool itself is written in Ruby and Erlang and uses Ruby DSL for writing the recipes.

Salt (also known as Saltstack) is an open-source tool, initially released in March 2011,

and has a client-server architecture. The server machine is called as master, and clients are

called minions. Master runs remote execution commands to send the configuration data

to minions. It is a CLI based tool written in Python language and can be used to manage

Linux/Unix and Windows-based systems. Saltstack is fast and reliable as it uses Zeromq

library for message transport. Client-related configurations are executed through Salt files,

which are defined in Yet Another Markup Language (YAML).

Ansible is an open-source configuration management and orchestration tool, initially

released in February 2012, and later acquired by Red Hat in 2015. Unlike Puppet, Chef and

Salt, it has an agent-less architecture, which means client machines need not have an agent

or a daemon installed to connect to the server. The tool can be used to manage Linux/Unix

18

and Windows-based systems. Ansible server uses a secure SSH or remote PowerShell con-

nection to push configurations to the client machines. All the configurations are defined

in files called Playbooks. Besides, it also comes with built-in modules to perform various

operations. Modules can be directly executed on client machines or can be used in play-

books. The tool is primarily accessed using CLI. The enterprise version comes with Web

UI solution called Ansible Tower. The tool is built on Python language and uses YAML

for writing the playbooks. Custom modules can be written in a scripting language such as

Python, Ruby, Perl, and Bash (Ansible, n.d.).

2.3 Network Service Orchestration

Network service orchestration (NSO) in computer networking is defined as the provi-

sioning of network services by automating the network-elements for end-to-end service

lifecycle management. An orchestrator tool keeps a high level track of the service work-

flows, from allocating resources, to scaling resource, to deploying resources, thus sim-

plifying the process of end-to-end network service creation. The network device that is

automated can typically be a router, switch, gateway, firewall, and more, and service typi-

cally includes configuring virtual private network (VPN), virtual LAN (VLANs), subnets,

routing, trunks, quality of service (QoS), etc. A network device can be physical or virtual

and can span across LAN, WAN or a remote data center.

While configuration management tools (such as Puppet, Chef, Saltstack, Ansible, dis-

cussed in Subsection 2.2.2) are ideally suited for host system configuration such as Linux,

Unix, and Windows-based systems, network service orchestration tools are primarily used

for network configuration and end-to-end service lifecycle management of network de-

vices. Some configuration management tools also support network configuration man-

agement, however comparatively it is not as efficient. Configuration management tools

require building a network from ground zero which includes building manifests, cook-

books, or playbooks whereas, NSO uses the concept of abstraction for representing the

device configurations.

19

Consider a scenario in which a network engineer wants to create a VLAN in a network.

Using the traditional approach would require to log into each device and to enter the com-

mands using its command line interface (CLI) or application programming interface (API)

to configure the VLAN. NSO, on the other hand, can automatically discover the current

configurations on the devices across the entire network and present the network engineer

the network topology and all dependencies for creating the VLAN. He or she can then

instruct NSO to apply the configurations on multiple devices without resorting to manual

login into each device or without modifying scripts that call the device APIs.

In a real sense, a network service orchestration tool is a vendor-neutral solution for

device configuration management. It uses device abstractions to map a vendor-specific

CLI or API through its YANG data models, thus providing a model-driven network-wide

interface for all network devices. It lets a network engineer create new and modify exist-

ing services using standardized models. The services are delivered faster and more effi-

ciently without any disruption, ensuring on-time deliveries and contractual service level

agreements (SLAs). The implementation of NSO varies from industry-to-industry on a

case-per-case basis. Many vendor solutions (e.g., Cisco NSO, evolution of the Tail-f Net-

work Control System (NCS), Juniper’s Contrail Service Orchestration and Anuta Networks

NCX) provide NSO integration with the existing networks.

2.4 Security Context

2.4.1 Justification

Security depends on both internal and external factors. To secure the network both

internally and externally, proper secure design methodologies include multiple layers of

defenses. Each layer implements various security policies and controls designed in a way

such that authorized users can access the network, while a user trying to perform any

malicious activity is blocked. For example, in the TCP/IP protocol suite, security can be

applied at the Internet or IP layer using IPSec, or security can be applied at the Transport

or TCP/UDP layer using SSL/TLS, or security can be applied at the Application layer

20

using SSH. Since NETCONF messages are transported through SSH, the protocol is briefly

discussed in the next subsection.

2.4.2 SSH Protocol

Secure shell (SSH) is a protocol designed for secure connection to a remote computer

and secure remote command execution. It was initially released in 1995 by a Finnish re-

searcher Tatu Ylönen. The protocol works on a client-server architecture and is imple-

mented at the application layer of the TCP/IP protocol stack. A client is typically an appli-

cation that wants to connect to the SSH server. Default TCP and UDP port assigned by the

IANA for SSH operations is 22. The protocol establishes a secure cryptographic tunnel be-

tween the communicating parties, authenticating each side to other using a public-private

keypair, allowing them to encrypt-decrypt the requests and replies back and forth. It does

so by breaking the data into a series of packets. The packet includes the packet length,

padding amount, payload and the padding. The packet also has a message authentica-

tion code (MAC) for integrity checks. The whole packet excluding the packet length is

encrypted and sent forward to the other end. The receiving party receives the packet,

decrypts it and extracts the data (Ylonen & Lonvick, 2006) (Ylonen & Lonvick, 2005).

2.4.3 Security Analysis Techniques

While the protocols above ensure the security of data in transit, there are several threat

modeling techniques developed for secure design analysis and testing of a system. A few

of them are:

• Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Eleva-

tion of Privilege (STRIDE) by Microsoft (Kohnfelder & Garg, 1999).

• Damage, Reliability, Exploitability, Affected Users, and Discoverability (DREAD) by

Microsoft (Shostack, 2008).

• Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) by Carnegie

Mellon Software Engineering Institute (Caralli, Stevens, Young, & Wilson, 2007).

21

• Common Attack Pattern Enumeration and Classification (CAPEC) by MITRE (Bar-

num, 2008)

• Threat Agent Risk Assessment (TARA) (Wynn et al., 2011) and Threat Agent Library

(TAL) by Intel (Casey, 2007).

• Guide to Data-Centric System Threat Modeling (Draft Special Publication 800-154)

by National Institute of Standards and Technology (NIST) (Murugiah & Scarfone,

2016).

Furthermore, there are industry-wide best practices and frameworks for cyber risk

management and assessment. A few of them are:

• NIST Framework for Improving Critical Infrastructure Cybersecurity (Barrett, 2018).

• Control Objectives for Information and Related Technologies (COBIT) (COBIT, 2018)

• Center for Internet Security (CIS) Controls and Benchmarks (Controls, n.d.) (CIS,

n.d.).

• MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) Frame-

work (Strom et al., 2017).

The white paper presented by Shevchenko, Chick, O’Riordan, Scanlon, and Woody

(2018) lists the summary of some of these methods from a variety of sources (Shevchenko,

Chick, O’Riordan, Scanlon, & Woody, 2018). Despite having various such techniques,

STRIDE is chosen as the preferred threat modeling methodology for this study.

The term STRIDE is an acronym for six different security threats namely, Spoofing,

Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of Priv-

ilege. It was developed in 1999 and adopted in 2002 by Microsoft as an internal drive to

produce secure software applications. Although STRIDE’s application is not limited to

just software, it was subsequently improved and used to model enterprise architectures,

networks, systems, or any particular asset with an intent to be protected against security

threats (Bodeau, McCollum, & Fox, 2018).

22

2.4.4 Security Analysis of Network and Host Management

The white paper by Shevchenko et al. (2018) (Shevchenko et al., 2018) shows that a

significant amount of work has been done in developing techniques that allow adminis-

trators to evaluate the security of a system. Additionally, the study conducted by Bellovin

and Bush (2009) (Bellovin & Bush, 2009) explores the security aspect of configuration man-

agement of five different scenarios and outlines the challenges related to each of these.

Their research concludes that configuration management is vital for organizational secu-

rity. However, it is stated that there are many security-related challenges and further re-

search work needs to be done. Despite having the availability of various techniques, the

use of the existing techniques to do the security analysis of the configuration management

tools used in this study is missing from the existing literature.

23

Chapter 3

Problem Statement

This chapter discusses the limitations related to the existing configuration and manage-

ment solutions that lead to the motivation presented in Chapter 1. The problem statement

itself has been classified into various segments and attempts to shed some light on many

issues with the current configuration and management schemes.

3.1 CLI and API Limitations

Today’s network infrastructure layer spans various domains consisting of network-

elements from multiple vendors with vendor-specific legacy CLIs and APIs. CLIs and APIs

are designed to access the native functionality of the device; however, there is no standard-

ization on writing and implementing the same. Each vendor has its own proprietary CLI

and set of APIs, which leads to the manual configurations using the custom build scripts

thus making it difficult to automate the network. No automation means spreadsheet-based

implementation, which subsequently leads to human errors and misconfiguration.

CLI also has the limitation of lack of transaction management. A configuration change

may involve changes to multiple devices or multiple changes on the same device. These

configuration changes cannot be implemented partially as this may leave the network to

an undefined state. Therefore, in case of any failure, there should be a mechanism to roll

back the changes and the network to its initial state. CLI fails to address this issue (Rizos,

24

2016).

CLIs are designed to work with humans, but not the APIs for programmatic access.

Besides, a change in a device from a specific vendor in a network leads to change in API

calls across the entire network. Thus, every time a vendor makes a change in network

CLI or API, a network administrator has to re-write the scripts, which makes the network

costly to maintain.

Using a CLI has its pros and cons. CLIs are made to be user-friendly and more acces-

sible to operate. However, in a multi-vendor network, different types of network devices

can have different proprietary CLIs, and each operates through a unique set of commands.

A simple task requires a different set of commands across different CLIs, giving the same

output, but in a different format. Network engineers and operators spend many hours in

learning the syntax of the commands, thus spending a large chunk of time and money in

the learning process.

A CLI is fundamentally a tool to promote a vendor’s technology. In certain means, it

is a barrier to the adoption of another vendor’s equipment. By getting network engineers

highly invested in their CLI with its certification programs, equipment providers and ven-

dors try to entice the market into their ecosystem.

3.2 SNMP Limitations

SNMP was developed for both configuration management and monitoring of the de-

vices. However, for several reasons, it is used more frequently for monitoring and alerts

and not for configuring the changes — the main reason being the security and the stateless

nature of the protocol. SNMPv1 is the most widely deployed version, but it is not secure.

SNMPv2 development promised security but failed to achieve it. SNMPv3 was developed

with better security; however, it was not adopted as much by the industry because of its

complexity.

Security is not the only issue with SNMP. Because of its complexity, it also lacks stan-

dardized MIB modules, which makes it difficult for equipment vendors to design and

25

implement the MIBs in a timely manner.

Another issue with SNMP is that it provides an unreliable transport mechanism as it

uses UDP for establishing the connection between the manager and the agents. UDP is a

session-less protocol, which means that messages can be easily lost during the transport.

SNMP uses a transactional model, but because of its session-less nature, SNMP man-

ager (or, NMS) may not know whether or not the devices have succeeded or failed. Since

messages are sent over UDP, the NMS and the agents need an added measure to deter-

mine the sequence of interactions. As another solution, the IETF has defined RFC3430 for

using SNMP over TCP. Although, the transactional model makes it further complicated to

implement the MIBs (Schoenwaelder, 2003) (Schoenwaelder, 2002).

Furthermore, SNMP is not efficient in large systems. It provides reasonable perfor-

mance when retrieving a small amount of data from a large set of devices. However, it

becomes slow when retrieving a large amount of data even from a small set of devices

(Schoenwaelder, 2003).

3.3 Host Management Limitations

Host management or configuration management tools are used for the automated man-

agement of large systems. Tools such as Puppet, Chef, Saltstack, and Ansible offer CLI and

GUI as the prime interface to push configurations to the managed devices. These configu-

rations are usually sent through a file called DSL. A DSL contains the device specifications

in a syntax very similar to the device implementation language. A multi-domain multi-

vendor network would require the configuration files for each type of device in their own

syntaxes. In such scenarios, management of configuration files in a heterogeneous network

becomes a burdensome task for a network administrator.

Additionally, the architecture of a host configuration management tool can be push

or pull based. In pull-based architecture, managed device agents fetch the configurations

from the manager. In push-based architecture, managers push the configuration to the

managed devices. In either case, authentication needs to take place between the manager

26

and the agent. In push-based architecture, authentication information is written in plain-

text in configuration files (as demonstrated in A.5). Sending login credentials to managed

devices in plain-text through configuration files exposes a security risk (Delaet et al., 2010).

Another such scenario is a configuration change that requires a push operation to change

the username and password or keys on managed devices.

Configuration management tools also lack transactional support. Transactions are sig-

nificant when a device configuration fails, and the state of all the devices need to be rolled

back to the initial configuration state thus avoiding any misconfiguration in the network.

Because configurations are sent through configuration files, there is no automated mecha-

nism to roll back the state of the devices into its initial state.

3.4 Security Limitations

SNMP has security drawbacks and using host management tools itself does not pro-

vide any concrete security. While reviewing the host management tools for configuration

management, it was found that the existing literature lacks the security analysis of config-

uration management tools. Therefore, a security analysis needs to be done and it needs to

be determined how introducing NETCONF and YANG for the configuration management

of the host systems affects the overall security posture of the network.

3.5 Demerits of Host Management using Traditional Methods

This section lists the demerits of the traditional host management methods. Subse-

quently, Chapter 4 will introduce the merits of host management using an advanced NET-

CONF and YANG based method.

• SNMP, CLI, and most of the configuration management tools lack transaction man-

agement. There is no in-built mechanism to roll back the network to its initial state

in case a configuration failure occurs.

27

• CLIs and APIs are vendor-specific proprietary solutions. There is no standardization

on writing and implementing the same.

• CLIs are designed to work with humans and are hard to automate.

• Initial versions of SNMP were not secure and were less advanced. Despite various

improvements, SNMP is used more frequently for monitoring and alerts, and not for

configuring the changes.

• SNMP is an IETF standardized protocol, but it lacks standardized MIB modules and

has an unreliable transport mechanism.

• Using configuration management tools, configurations are usually sent to devices

through DSL files, which are a collection of files and scripts. In a heterogeneous

network, configuration management using DSL files becomes a burdensome task for

a network administrator.

28

Chapter 4

Proposed Solution

This chapter outlines how introducing NETCONF and YANG for the configuration and

management of host systems could address the problems discussed in Chapter 3. The pro-

posed solution employs a model-driven approach for host management and offers a single

point of management through a programmatic interface, thus reducing the complexity of

the network, and providing network-wide transactions, reliability, and security.

4.1 NETCONF and YANG based Host Management

To address the challenges and limitations with the network configuration and manage-

ment solutions, IETF has defined two key standards:

(1) NETCONF protocol API

(2) YANG data modeling language

The proposed solution includes a combination of a network configuration management

solution called NSO (NSO, n.d.) and a data model driven management plane framework

called ConfD (ConfD, n.d.). Combining NSO and ConfD provides a NETCONF and YANG

based management framework for the host device configurations in the network. It also

extends support for management interfaces such as CLI, SNMP, and legacy interfaces that

are still widely used in configuring the network devices as well as host systems.

29

NSO at a Glance

NSO is a network configuration and management application that provides a central

configuration and management point for multi-vendor device automation and orchestra-

tion of the entire network. It has support for various northbound and southbound network

management protocols such as NETCONF, SNMP, CLI, and more (as shown in Figure 4.1).

For a NETCONF operation, NSO can be loaded with the YANG data models of a device.

These data models are made available by the IETF, the OpenfConfig, or the device ven-

dor itself. Once NSO has the data models, it can be instructed to manipulate the device

configuration using the NETCONF protocol.

ConfD at a Glance

ConfD is a data model driven management framework that is meant to be integrated

with network devices that want to implement NETCONF protocol. It executes as a Unix

daemon on the target network device and acts as a NETCONF agent for the NETCONF

protocol. ConfD’s LinuxCfg package interacts with the ConfD daemon and provides a set

of managed network interfaces for the Linux OS. The network properties and functional-

ities that can be managed using LinuxCfg package depend on the data models described

in the YANG modules specifications structured within the individual components of the

package. ConfD also has support for additional northbound and southbound management

protocols such as SNMP and CLI (as shown in Figure 4.1).

The Glue - NSO Network Element Driver (NED)

Network-wide transactions are initialized within NSO by a network engineer or a net-

work management application through one of the northbound management protocols or

interfaces. An initiated transaction spans all the way to a device connected to a south-

bound interface using a NED. To interact with a Linux managed object enabled with

ConfD, a NED is built using the Pioneer package in NSO. A NED can be built using the

YANG data models for a NETCONF device or using the MIBs for an SNMP device.

30

NETCONF SNMP CLI Web UI Other APIs

CDB

Network Element Driver (NED)

NETCONF SNMP CLI Other APIs

Network Applications
(SDN Controllers,
NFV Managers)

N
SO

1

NETCONF SNMP CLI Web UI Other APIs

ConfD Core Engine

C
on

fD
2

Network Engineers and Management Applications

Virtual Devices Physical Devices

NSO Core Engine

Northbound
Interfaces

Southbound
Interfaces

Management Agent API

CDB

Managed Objects (Host Devices)

Figure 4.1: NETCONF and YANG based management of host systems

NSO1 (NSO, n.d.), ConfD2 (ConfD, n.d.)

31

4.2 Solution Capabilities

NETCONF and YANG based management of host systems provides many improve-

ments as compared to other alternatives discussed in the problem statement chapter. The

following subsections summarizes the superiorities of the proposed solution:

Transactions and Roll-backs

Host management tools (or, configuration management tools) do not have any primi-

tives for transactions. NETCONF protocol has in-built primitives that support transaction-

oriented operations. Transactions are very important when a configuration change needs

to be implemented on multiple devices at once. Transaction-oriented property of NET-

CONF ensures that configuration change operation is successful on all devices, and if it

fails for any reason, then the protocol instructs the management application to reverse the

network to its initial state. Therefore, when a configuration change is pushed, all network

devices are either transformed into a new state, or they are rolled-back to its initial state.

This assures there are no half-done, broken or stray configurations in the network (Enns et

al., 2011).

Transactions are performed by acquiring configuration locks on all target devices in the

network. The lock is kept until configurations are applied on all devices and the valida-

tion is performed for the applied configurations. Validate operation checks for any syntax

or semantics errors in the configurations before it is loaded into the device. Locks are re-

leased on all target device once the configuration change is completely implemented or

completely discarded. All these operations are performed simultaneously in a transac-

tional order on all target devices in the network (Enns et al., 2011).

In addition, if the device does not support roll-backs, NSO can calculate the difference

between the current and the previous state of the device and can accordingly apply the

configuration changes. When a device is on-boarded to NSO, NSO knows the capabili-

ties supported by that device. Depending on the device capabilities, NSO can issue the

32

appropriate commands to the device using the configuration copy that is saved in its con-

figuration database CDB at all times. CDB is shown in Figure 4.1.

Reliability

NETCONF-based management provides a persistent connection between the client

and the server. All protocol messages are sent over TCP. TCP is a reliable protocol that

checks if everything sent by the sender was received by the receiving end without any

packet loss. That means acknowledgment of each and every configuration sent to the

client is being reported to the server. In case of any errors, all the connection failures are

also reported to the server. If a connection drops, the server can then automatically re-

lease all the locks acquired by the client. The locks are kept until it is explicitly released

by the client or until the connection times out. This ensures efficient and reliable resource

consumption (Enns et al., 2011).

Multi-vendor Interoperability and Extensibility

The YANG data modeling language provides a model-driven approach to network

programmability and management. Using the YANG models in NSO, it becomes easy

to inter-connect devices supported by different vendors in an enterprise. These devices

need not necessarily support NETCONF as the management protocol in-built into them.

It is because a network administrator can simultaneously manage a CLI, SNMP, and a

NETCONF-based device using a single programmatic interface.

Besides, YANG provides a modular approach to add or remove any network function

and controls using its data models. If at any time, a new network feature needs to be added

to a device type, the network administrator need not re-write the whole CLI or API for the

device. For example, if a network administrator needs to make particular changes in a

host system to add functionalities such as IP address, DNS, NTP, etc., then a programmer

can build the YANG module for these specific configurations without re-writing the data

models for the entire host system. Thus, YANG modules are extensible and make it easy

to add or remove functionalities needed for the device management in an ad-hoc fashion.

33

Performance and Scalability

Hedstrom et al. did a head-to-head quantitative comparison of NETCONF and SNMP.

Their research found that NETCONF is also better than SNMP in terms of performance

and scalability. SNMP is faster for a lower number of devices, whereas NETCONF pro-

vides better performance as the device count goes up. This clearly shows that NETCONF

transactional property provides better performance in large networks. They also found

that NETCONF has higher bandwidth utilization as compared to SNMP. However, the

higher bandwidth requirement is because of the protocol overheads due to the added se-

curity measures, connection-oriented nature, and capability exchange features (Hedstrom,

Watwe, & Sakthidharan, 2011).

4.3 Security Efficiencies

NETCONF-based management of host systems introduces a secure management scheme.

The protocol possesses various security improvements as compared to legacy configura-

tion management solutions such as SNMP and CLI. It enhances security in two ways. One,

it provides a secure transport mechanism to send and receive sensitive information. Sec-

ond, it provides an access control mechanism to restrict the use of sensitive information.

Regardless, security also depends on a third factor, which is the security of application that

stores or releases such sensitive information (Enns et al., 2011). The following subsections

discuss each of these security considerations.

4.3.1 Secure Transport

Secure transport mechanism of NETCONF provides confidentiality, integrity, authen-

tication, replay protection, and sequential data delivery for the sensitive information in

transit between the NETCONF server (a manager) and the client (a device). Sensitive in-

formation can be the configuration data, state data or the data related to protocol messages.

34

Configuration data often contains usernames, passwords, keys, and network topology re-

lated information. Any malicious activity in the network can open doors for a man-in-the-

middle (MitM) attack allowing an adversary to modify or inject data in the configuration

files. NETCONF provides secure transport of the configuration data and secures the trans-

mission against an adversarial attack.

NETCONF transport layer security can be implemented in many ways. NETCONF

over SSH is the most widely used and mandatory implementation of the protocol. The

protocol specifications for NETCONF over SSH are defined in IETF RFC6242 (Wasserman,

2011). A NETCONF connection over SSH is initiated by a client with the server over TCP

on IANA assigned port 830. SSH transport layer protocol (Ylonen & Lonvick, 2005) man-

dates the authentication of both the client and the server before any configuration, or state

data can be exchanged between both the parties, thus avoiding the exchange of messages

with an incorrect identity. Once the connection is established, SSH then provides strong

encryption of messages for data privacy and also supports integrity checks. This is harder

to achieve using SNMP.

Another implementation of NETCONF is the use of the TLS protocol to secure the

NETCONF message exchanges. Specifications for NETCONF over TLS are defined in

IETF RFC7589 (Badra, Luchuk, & Schoenwaelder, 2015). A NETCONF connection over

TLS is initiated by a client with the server over TCP on IANA assigned port 6513. The

client starts the TLS handshake process with the server, which is used to authenticate each

other’s identity using certificates (Dierks & Rescorla, 2008) (Rescorla, 2018). Once the TLS

handshake process is finished, the client can start sending and receiving encrypted XML

documents with the server in the rpc and rpc-reply messages respectively.

Additionally, NETCONF protocol design further allows and extends the implementa-

tion of NETCONF over SOAP, defined in RFC4743 (Goddard, 2006), and NETCONF over

BEEP, defined in RFC4744 (Lear & Crozier, 2006), thus opening the scope for further secu-

rity enhancements in environments that support these protocol implementations.

35

4.3.2 Access Control Model

Since configuration and state data can be confidential and sensitive, therefore it should

be accessible to the authorized users and systems only. Without a standard access control

model, every NETCONF protocol user has the permissions of a user equivalent to the root

user. NETCONF access control model (NACM) provides security by limiting the resources

and data that a user or an adversary can reach or attack. A user can be part of a group,

and a group is assigned access to the defined protocol operations. Once a user has authen-

ticated itself to the server, the NETCONF transport layer transfers the username and the

group associated with the client to the server. The server then enforces the access control

on the client based on the username and the group (Bierman & Bjorklund, 2012) (Bierman

& Bjorklund, 2018)

NACM limits NETCONF user’s access using control rules such as permit and deny,

and operations such as create, read, update, delete (CRUD), execute, and none (Bierman

& Bjorklund, 2012). On the contrary, SNMPv1 and SNMPv2 have the concept of defining

communities. These communities are defined in SNMP communities page which asso-

ciates communities with access rights. Whereas, CLIs employ an extra login sequence to

give access to the configuration mode. Some proprietary CLIs allow users to be added

to groups that have limited access privileges. However, NACM offers possibilities that

are not available in SNMP and CLI as they have no precise, well-defined, standardized

method to limit authenticated user’s rights and permissions.

4.3.3 Security of Management Application

There are many different management applications, and their implementation varies

from one enterprise to another. These management applications usually do not actively

impose any security measures. However, their application and implementation are de-

signed to improve the overall security posture of the entire network. For example, NSO

improves the security as it provides configuration rollbacks, which is useful to avoid any

stray configurations in the network that could arise while implementing changes such as

36

VPN or ACLs. Besides, it enforces consistent security policies across all devices in the net-

work. It also avoids human-related configuration errors and saves audit logs, which helps

keep track and in minimizing any security risk caused due to misconfiguration.

4.4 Testing NETCONF and YANG based Host Management

The testing method involves the description of the process involving the compilation

of standard YANG data models to access and modify the configuration and management

of some common properties within a host device that exposes a NETCONF interface.

The NETCONF interface on a host device is exposed by installing ConfD management

interface tool on the device. In ConfD, confdc compiler is the main development tool that

is used to build the ConfD’s LinuxCfg application package. ConfD’s LinuxCfg package

implements some widely used YANG specifications such as system management, interface

management, IP management, etc. Since, YANG is a modular data modeling language, a

network engineer with programming experience can add or remove modules on the basis

of the requirements of the customer.

During the first step of building the LinuxCfg package, confdc compiler in ConfD uses

the YANG data model and compiles it into to a .fxs file. A .fxs file is the compiled binary

version of the YANG data model. When ConfD starts, all compiled .fxs files form the

schema of the database. Since LinuxCfg uses C programming, confdc further takes the .fxs

schema file as an input and generates a header file with all the namespaces and constants

that contains mapping to interact with the ConfD core API. The next step in the build

process involves the generation of OS object file and linking the .o file to executables which

are linked to ConfD as well as system library. At this point, the build process is finished

and ConfD could be started to interact with the Linux host.

The compilation process can be tested using the confdc command to compile a YANG

data module ietf_system.yang.

vi jay@host :~/ confd−6.6/examples . confd/ l i n u x c f g / i e t f _ s y s t e m $ confdc −c i e t f−system . yang

Confdc compiler generates a .fxs file, which can be further compiled to generate a

37

header file ietf_system.h. The .h and C programming code in the .c file in LinuxCfg then

interact with the Linux kernel for configuring the properties supported by the YANG mod-

ules.

The command below shows the information about the generated .fxs file. It is impor-

tant to note that the generated .fxs file has dependencies on three standard namespaces.

vi jay@host :~/ confd−6.6/examples . confd/ l i n u x c f g / i e t f _ s y s t e m $ confdc −−get−i n f o i e t f−system . f x s

f x s f i l e

Confdc vers ion : " 6 . 6 _1 " (current Confdc vers ion = " 6 . 6 _1 ")

u r i : urn : i e t f : params : xml : ns : yang : i e t f−system

id : urn : i e t f : params : xml : ns : yang : i e t f−system

p r e f i x : " sys "

f l a g s : 118

type : cs

mountpoint : undefined

exported agents : a l l

dependencies : [’ urn : i e t f : params : xml : ns : yang : iana−crypt−hash ’ ,

’ urn : i e t f : params : xml : ns : yang : i e t f−ine t−types ’ ,

’ urn : i e t f : params : xml : ns : yang : i e t f−yang−types ’]

embedded YANG source : i e t f−system@2014−08−06

source : " i e t f−system . yang "

checksum : 4760 dac8fdc2f fcd66f115aa2c3fd67e

cdb checksum : 4597898 ec785e962e88c18cf9207022a

All these dependencies listed above should be supported by the NETCONF server on

the host machine. This could be tested and verified by connecting to the northbound NET-

CONF interface of the host machine using the southbound NETCONF interface of the

NSO. If the device returns the list of YANG modules, it means it is reachable through

NSO.

For example, below is the test for a host device added by the name "test" using pioneer

package in NSO. Pioneer fetches the list of YANG modules supported by the host device.

Before performing this test, the device is first added to an authgroup and then added into

NSO using the device credentials as described under Section A.3.8 of Appendix A.

admin@ncs (conf ig) # d e v i c e s d e v i c e t e s t p i o n e e r yang f e t c h− l i s t

Retr iev ing module l i s t from device

Device does not repor t support f o r netconf−monitoring , t r y i n g anyway

Found out the names f o r a t o t a l of 19 modules

h e l l o message : 19

netconf−monitoring subtree : 0

netconf−monitoring xpath : 0

Marked module i e t f−netconf f o r download

Marked module i e t f−ip f o r download

38

Marked module IF−MIB f o r download

Marked module i e t f−i n t e r f a c e s f o r download

Marked module i e t f−ine t−types f o r download

Marked module IANAifType−MIB f o r download

Marked module IP−MIB f o r download

Marked module t a i l f −acm f o r download

Marked module iana−crypt−hash f o r download

Marked module i e t f−netconf−acm f o r download

Marked module i e t f−system f o r download

Marked module UDP−MIB f o r download

Marked module INET−ADDRESS−MIB f o r download

Marked module iana−i f−type f o r download

Marked module TCP−MIB f o r download

Marked module i e t f−netconf−with−d e f a u l t s f o r download

Marked module i e t f−yang−types f o r download

Marked module SNMPv2−TC f o r download

Marked module t a i l f −aaa f o r download

message Marked 19 modules f o r download , skipped 0

yang−d i r e c t o r y /tmp/download/ t e s t

A successful test run of the above command indicates that the NETCONF connection

from NSO to the host device is feasible and that the host device supports the YANG mod-

ules returned by the device in the pioneer fetch list. The final step is to build the NED

package and then reload it to NSO as described under Section A.7 of the Appendix A.

Once NED is reloaded, a network engineer can log into NSO CLI and can perform the

configuration supported by the device.

Below is a test run of the ietf_system YANG component to change the hostname of the

device:

host (conf ig) # sys t em

P o s s i b l e completions :

c lock c o n t a c t dns−r e s o l v e r hostname l o c a t i o n ntp

host (conf ig) # sys t em hostname ServerEV8Concord ia

host (conf ig) # commit

Commit complete .

ServerEV8Concordia (conf ig) #

The structure and syntax of the CLI commands can be well understood by looking over

the Pyang tree format output of the ietf_system YANG module. From Figure 4.2, system is

the container and hostname is one of the leaves in that container. Hostname has a derived

type inet:domain-name defined in the urn:ietf:params:xml:ns:yang:inet-types namespace

under imported ietf-inet-types module.

39

Figure 4.2: pyang tree format translation of ietf_system YANG module

4.5 Merits of Host Management using NETCONF and YANG

It is obvious to have the thought that the same job of changing a hostname or any

other configuration can be achieved using the configuration management tools such as

Ansible or simply using the device CLI. However, an enterprise-level implementation of

NETCONF and YANG based host management using Cisco NSO has a number of benefits

as compared to other approaches, such as:

• Network-wide transactions with support for roll back in case of configuration failure

while provisioning services on a device in the network.

• Multi-vendor interoperability through a single network-wide CLI or Web UI for all

the devices in the network.

• Easier network discovery and topology scan of the devices in the network making it

simple for a network engineer to understand and provision network services.

• Extensibility by adding standardized YANG models as per the business require-

ments of the customer.

• Automation of network tasks using a rich set of northbound APIs such as Java and

Python.

• Integration with SDN controllers and NFV managers.

40

Chapter 5

Threat Models

This chapter examines and evaluates the security of the two different approaches for

host management. One is configuration and management using a configuration manage-

ment tool such as Ansible and the other being NETCONF and YANG based management

solution using NSO for the configuration and management of host systems.

5.1 Threat Modeling

A threat is a security loophole that could have a possible impact on the integrity of a

network, a system, or software application. Threat modeling is a risk assessment technique

useful to brainstorm and classify these potential security threats.

There are several threat modeling techniques available from a variety of sources. The

application of each and every technique varies from industry to industry (Shevchenko

et al., 2018). Some of these techniques are STRIDE (Kohnfelder & Garg, 1999), DREAD

(Shostack, 2008), OCTAVE Allegro (Caralli et al., 2007), CAPEC (Barnum, 2008), TARA/-

TAL (Wynn et al., 2011) (Casey, 2007), NIST SP 800-154 (Murugiah & Scarfone, 2016), and

Attack Trees (Schneier, 1999). For this study, STRIDE is chosen as the preferred method to

identify the security threats because the technique focuses on the security analysis of the

complete system from an end-user’s perspective.

The idea behind using STRIDE is that any application falls under a predictable set of

41

threats. For the identification of these potential threats, a data flow diagram (DFD) of the

application is drawn in Microsoft Threat Modeling Tool (Microsoft, n.d.). A DFD is drawn

using the components by selecting processes, external interactors, data stores, data flows,

trust line boundaries, and trust border boundaries. Once the visualized sketch is ready,

STRIDE modeling is applied at each data entry and exit point and the processes to identify

the threats that put application and assets at risk. Any data interaction that crosses trust

boundaries exposes further opportunities for adversaries. Finally, on the basis of the data

flow diagram, all the potential threats are listed as well as categorized by their severity.

Based on the findings, appropriate mitigations are reported.

Prior to doing STRIDE, a network operator would have to "guess" what security mech-

anisms are needed to find out the potential threats in a system.

Applying STRIDE gives a full list of the threats and the STRIDE done in this thesis

gives suggested mitigations for each of these. This would give confidence to the network

operators in building systems that are secure and less vulnerable to security breaches.

The list below describes the meaning of each of these threats with examples, the corre-

sponding security property that is violated and example mitigation that could be applied

to improve the security.

• Spoofing: It is pretending to be something or someone else by illegitimately acquir-

ing the identity. For example, spoofing someone’s IP or MAC address. This is a threat

against authentication and can be mitigated using passwords and digital signatures.

• Tampering: It is the modification of legitimate information for a malicious purpose.

For example, modifying username, password, or something saved on disk. This is a

threat against data integrity and can be mitigated using ACLs and digital signatures.

• Repudiation: It is claiming, denying or disowning to have performed an action.

For example, removing logs from the system and claiming not to have acted. This

is a threat against non-repudiation and can be mitigated using secure logging and

auditing, and digital signatures.

42

Component
Type

Component Symbol Description

Process Circle It represents processes, programs, or services
run by the computer, e.g., a kernel process.

Interactor Square or rectangle It represents the endpoints connected to the
system, e.g., users, clients, servers, etc.

Data Store Two parallel hori-
zontal lines

It represents databases, files, registry keys, etc.

Data Flow One way arrow It represents data in motion over networks, e.g.,
data over TCP, UDP, or RPC channels.

Trust Line
Boundary

Dotted line It represents a trust boundary between trusted
and untrusting components.

Trust Border
Boundary

Dotted square or
rectangle

It represents a trust boundary between trusted
and untrusting components.

Table 5.1: Threat modeling DFD components

• Information Disclosure: It is a breach of information to someone not authorized to

access it. For example, tapping data and data leak in transit. This is a threat against

confidentiality and can be mitigated using encryption and ACLs.

• Denial of Service: It is the disruption of service for legitimate users. For example,

not able to access a network device or host system because of exhausted resources.

This is a threat against availability and can be mitigated using packet filtering, load

balancers and ACLs.

• Elevation of Privilege: It is getting a higher privilege to access a network device or a

host system that a user is not authorized to log into. For example, getting root login

access to a network device without proper authorization. This is a threat against

authorization and can be mitigated using input validation and ACLs.

The very first step to analyze a system using STRIDE is to brainstorm and build the

DFD model of the system. A DFD contains the essential components of the system and its

interaction with the other internal and external components. Table 5.1 lists the components

available in the Microsoft Threat Modeling Tool to build a DFD and describes their mean-

ing. Each of these components is susceptible to a set of threats listed in Table 5.2. Table 5.2

does not include trust boundaries because all trust boundaries are subjective in nature.

43

Component
Type

Spoofing Tampering Repudiation Information
Disclosure

Denial of
Service

Elevation
of Privi-
lege

Process X X X X X X
Interactor X X
Data Store X X X
Data Flow X X X

Table 5.2: Threat matrix of components

5.2 Threat Analysis

The security model of two different approaches has been constructed under Subsection

5.2.1 and 5.2.2. As the first step, DFD is derived using the architecture of the application

under inspection. For the security evaluation, the STRIDE threat modeling is applied to the

respective component types listed in Table 5.1. Next, appropriate mitigation is suggested

for all the listed threats. Finally, a threat matrix is generated as per Table 5.2.

It is important to note that security of any application needs to be considered from day

one commencing with the requirements analysis phase. The following security analyses

are not intended to analyze the vulnerabilities of the applications through penetration test-

ing and code analysis techniques. Instead, it is intended to analyze the security of a system

from an architectural point of view.

5.2.1 Security Analysis of Configuration Management using Ansible

There is a wide variety of configuration management tools available in the market, and

their implementation varies from industry to industry (Delaet et al., 2010). For this study,

Ansible is chosen as the preferred tool as it is not only used for configuration manage-

ment and automation, but it also supports the orchestration of the network devices and

host systems. Besides, it also has modules that provide support for unified configuration

management with Cisco NSO using Ansible NSO modules.

44

DFD Overview

Ansible has a straightforward architecture. Figure 5.1 demonstrates the high-level DFD

of Ansible in a typical IT environment. Any host system that has Ansible installed is

known as the Control Node. All modules, plugins, tasks, playbooks are stored in the an-

sible control node. A control node is a host machine that sends configuration commands

to the Managed Nodes. A managed node is a host machine or a network device that can

be configured using Ansible. It is not required to have a specific application or a package

to be installed on managed nodes, except SSH for enabling the connection from control

nodes. Ansible ships with many connection plugins; however, SSH is the default protocol

used for system administration.

A network engineer connects to the Ansible control node using a bi-directional remote

connection application having support for Telnet or SSH to send the configuration com-

mands to the managed nodes. In a standard IT environment, a control node and managed

node are located at the data center within the trusted private network of the corporation.

Trusted network of an enterprise is referred by the term Corpnet in the Microsoft threat

modeling tool. The term Corpnet is used very often by the enterprises to define their trust

boundary. A network engineer can connect to the control node through Corpnet LAN

or from outside the trusted network using Telnet or SSH. Enterprises also enable public

network connections to their trusted private network using IPsec or SSL VPN.

Processes

From the DFD in Figure 5.1, there are two processes viz., control node and managed

node. Since only the control node process is under scrutiny, any security relationship with

the managed node will be explained separately. From Table 5.2, processes are susceptible

to all six STRIDE threats.

• Spoofing: An attacker may spoof the identity of the control node. For example,

spoofing of identities such as IP address and MAC address may lead to information

45

Figure 5.1: High-level DFD of configuration management using Ansible

disclosure such as username and password if sent in plain-text by a network engi-

neer. If an attacker impersonates the IP address of a control node, she can modify

the packet headers so that the packet appears to come from a trusted system. She

may subsequently send incorrect configurations or may completely shut down all

the managed nodes. To mitigate spoofing attacks, a mutual authentication mecha-

nism must be used to identify the destination process.

• Tampering: An attacker may tamper with the input data in transit. Failure to verify

the input data entering the firewall northbound interface can cause a large number

of exploitable issues. For example, this may lead to attacks such as information dis-

closure, denial of service or an elevation of privilege attack against Ansible control

node. Therefore, all input data must be verified for correctness using a standard

input validation technique. An attacker can also modify or tamper with the pro-

cess binaries. However, the Linux kernel is not under scrutiny in this threat model.

To mitigate tampering attacks, a message authentication mechanism, filtering using

ACLS, or digital signatures must be used.

• Repudiation: An attacker or even a legitimate user logged into the control node

may make configuration changes on the managed node and may later deny having

46

done so. To mitigate repudiation attacks, logging or auditing is used. Mitigation

for this attack on the control node exists within the Ansible application itself. By de-

fault, Ansible logging is off unless a path such as #log_path = /var/log/ansible.log is

specified in the "ansible.cfg" config file. Therefore, to mitigate this attack, a network

manager can define the #log_path variable in the Ansible config file.

• Information Disclosure: An attacker may sniff the data sent by the network engineer

to the control node. This data can lead to information disclosure attack revealing the

network configurations and can later be misused to attack other parts of the system.

Therefore, all input and output connections coming in and going out from the control

node through a trust boundary must be encrypted. To mitigate this attack, use of

secure connection protocol such as SSH or a privacy-enhanced protocol such as TLS

is recommended.

Information disclosure may also be caused due to a vulnerability in the Ansible na-

tive application. For example, a recent high-risk vulnerability in the Ansible "user"

module allowed an insider adversary to access sensitive information on the targeted

system (CVE-2018-16837, 2018). To mitigate such issues, it is advised to update the

application and apply the appropriate patches.

• Denial of Service: An attacker may flood the Ansible control node with illegitimate

requests causing the services to crash, halt or run slowly. This violates the availabil-

ity matrix as the control node might not be able to serve any further requests by the

network engineer. To mitigate this attack, techniques such as source address filter-

ing, hardening of the server, implementation of load balancers and high availabil-

ity using the management of primary and secondary control node is recommended

(Montgomery, Sriram, Carson, & Santay, 2016).

• Elevation Of Privilege: An attacker may get privileged access to the Ansible control

node and may change the entire topology of the system. For example, in an environ-

ment without proper authentication, an attacker with a privileged set of read-only

permissions may elevate the permission set to read-and-write. In order to get write

47

access, an attacker may create or modify the user profile having the privileged set of

access. To mitigate this attack, processes should be run with the least privilege pos-

sible. Countermeasure techniques such as ACLs, authentication, and data validation

are recommended.

Interactors

From the DFD in Figure 5.1, the network engineer is the interactor interacting with the

Ansible control node. From Table 5.2, interactors are prone to spoofing and repudiation

attack.

• Spoofing: Spoofing attack corresponds to the impersonation of a valid user. If an

attacker impersonates the identity of a valid network engineer, she may be able to

perform several attacks on the system and may instruct the control node to imple-

ment incorrect network configurations. An impersonated network engineer may also

lead to data being sent to the attacker’s target instead of network engineer. A spoof-

ing attack is mitigated by the use of a two-way authentication mechanism in which

both the parties, network engineer and the control node, authenticate each other at

the same time. An example of a two-way authentication technique is Kerberos.

• Repudiation: An attacker or even an insider network engineer may send a illegit-

imate request to the Ansible control node and may later deny doing so. This can

be avoided by using logging or auditing to record the source, time and summary

of the received data on the control node. All event logs in the network can also be

forwarded and saved in the Syslog server.

Data Flows

From the DFD in Figure 5.1, there are three data flows corresponding to the Ansible

control node viz., the inbound flow of traffic from network engineer to control node, the

outbound flow of output data from the control node to network engineer and the outbound

48

flow of configuration data from the control node to managed node. From Table 5.2, data

flows are vulnerable to tampering, information disclosure and denial of service attack.

• Tampering: Data in transit between the network engineer and the control node can

be tampered with by injecting malicious information. For example, an attacker can

tamper with the sensitive input configuration changes sent by the network engineer

to the control node. She can also sniff the operational data sent back by the control

node to the network engineer. The sniffed data can be later manipulated to perform

a high severity attack. As a countermeasure, the data flow between the network

engineer and control node must be protected using digital signatures or a message

authentication code technique. Data flow between the control node and the managed

node is protected using SSH by default.

• Information Disclosure: As mentioned under the previous bullet point, an attacker

can sniff the data flow at various interfaces to perform a planned attack on other

managed devices or servers. The data flow from an inbound and outbound interface

on the northbound side of the control node can be protected by encrypting the data

flow using a secure connection protocol such as SSH. The mitigation for protection

of data flow from the southbound interface of the control node to the northbound

interface of the managed node exists in Ansible architecture using SSH.

• Denial of Service: As a result of DoS attack, an attacker or an external unauthorized

interactor may interrupt data flow in either direction. If an attacker floods the data

flow from network engineer to control node, then the control node would crash, and

no further communication could be established by the network engineer with the

control node. If an attacker floods the data flow from the control node to network

engineer, then the network engineer system would crash; however, the likeliness of

this occurrence is negligible. If an attacker floods the data flow from the control node

to the managed node, then the managed node would crash and would not be able to

provide the intended services. As a countermeasure, packet filtering firewalls, IP re-

striction, network monitoring, and bandwidth control methods can be implemented.

49

Component Type Interaction S T R I D E
Control Node X X * X X X

Processes
Managed Node X X X X X X

Interactors Network Engineer X X
Network Engineer to Control Node X X X
Control Node to Network Engineer X X -Data Flows
Control Node to Managed Node * * X

1 X Indicates mitigation exists by the suggested method.
2 * Indicates mitigation mechanism exists in the application architecture.
3 - Indicates the likeliness of this event does not affect the main process.
4 Blank indicates that the threat does not affect the component.

Table 5.3: Threat matrix of configuration management using Ansible

Threat matrix generated by doing the security analysis of the components involved is

outlined in Table 5.3.

Note: In some enterprises, Ansible architecture may also consist of cloud-based man-

aged nodes hosted on the Internet as well as a repository of configuration items (CIs) how-

ever, their analysis is out-of-scope for this study.

5.2.2 Security Analysis of NETCONF and YANG based Host Management us-

ing NSO

For this study, Cisco NSO is chosen as the preferred orchestration tool as it is free to use

for non-production use. It is enabled by NETCONF and YANG and bridges technologies

such as SDN and NFV for automating services across traditional and modern networks.

DFD Overview

As demonstrated in Figure 5.2, Cisco NSO has comparatively a complex architecture.

The NSO application package is installed on a Linux or macOS based host platform. This

machine serves as the NETCONF client and manages host machines that act as the NET-

CONF server. All YANG related data such as device models and service models are stored

in an external datastore entity called CDB or YANG datastore. All connections are TCP/IP

based and default connection type used for network administration is SSH.

50

Figure 5.2: High-level DFD of NETCONF and YANG based host management using NSO

A network engineer connects to the NSO host machine to send the configuration com-

mands to the managed objects. In a standard IT environment, the NSO, the YANG datas-

tore, and the managed objects are all located at the data center within the Corpnet trusted

network. A network engineer can connect to NSO through Corpnet LAN or from outside

the trusted network using VPN. All cloud hosted devices are present at remote locations

and their connectivity to NSO is enabled using SSH.

As a complete configuration management solution, NSO sits on top of network ap-

plications such as software-defined networking (SDN) controllers and network functions

virtualization (NFVs) managers, as shown in Figure 4.1. However, SDN and NFV have

different applications and therefore they have not been included in this analysis.

Processes

DFD in Figure 5.2 consists of five processes viz., NSO (the main process under scrutiny),

the managed object, public cloud hosted devices, SDN controller and NFV manager. Any

security relationship of NSO with the connected components will be described individu-

ally. From Table 5.2, processes are susceptible to all six STRIDE threats.

51

• Spoofing: An attacker may impersonate the identity of the NSO process, which may

lead to unauthorized access to other connected processes. A process should be able

to verify the identity of NSO exactly as needed using a proper authentication mecha-

nism. Mitigation for this threat exists in the NSO application architecture itself. Each

device’s credential in NSO is set up using an "authgroup", which is a PGM group

(username, password, enable password). Once a device is added to authgroup, NSO

then pulls the SSH keys from the device to verify the identity to each other. Similarly,

NSO has in-built bi-directional authentication mechanism for the network engineer,

the source processes and the other supported northbound interfaces. A user can be

authenticated using local authentication, pluggable authentication module (PAM),

and external authentication. PAM can be configured to work with remote authentica-

tion dial-in user service (RADIUS) and lightweight directory access protocol (LDAP).

• Tampering: Data flowing across northbound input interface may be tampered with

by an attacker. Failure to verify that input is a root cause of a considerable number of

exploitable issues. This may lead to several attacks against NSO such as information

disclosure, denial of service or an elevation of privilege attack. Kernel binaries of

the native OS could also be modified or tampered by an attacker. However, the

Linux or macOS kernel is not under scrutiny in this threat model. To mitigate this

attack, consider all input paths and the way they handle data. Verify that all input

is verified for correctness using an approved list input validation approach. Use of

ACLs to specify the access rights can also be used as a countermeasure technique.

• Repudiation: NSO can claim that it did not receive configuration change instructions

from a source outside the trust boundary. Similarly, an attacker or even a legitimate

user may log into NSO and make configuration changes and may later deny having

done so. To mitigate this attack, logging or auditing is used to record the source,

time, and summary of the events. NSO has inbuilt mechanism for capturing logs.

Logging can be enabled via "ncs.conf" configuration file in NSO. Logs are stored

under "audit.log" and "ncs.log" file and are located at /var/log/ncs folder for system

52

installs or under local installation folder for local install.

• Information Disclosure: An attacker may sniff data flowing across the NSO north-

bound input interface sent by the network engineer. This data may include sensitive

network configurations thereby gaining access to underlying network routing and

topology. Furthermore, depending on what type of data an attacker can read, it may

be used to attack other parts of the system or can be a disclosure of information lead-

ing to compliance violations. To mitigate this attack, consider encrypting the data

flow using SSH or TLS. SSH provides a secure connection mechanism whereas TLS

ensures confidentiality by using symmetric data encryption and authentication using

TLS handshake.

• Denial of Service: DoS or distributed DoS is a tactic used to flood a system with

illegitimate requests from multiple compromised computers. NSO under DoS attack

may crash, halt or run slowly. This may cause a significant business impact as the

NSO process would not be able to serve any immediate configuration changes. To

mitigate this attack, techniques such as source address filtering, hardening of the

server, implementation of load balancers and high availability using the manage-

ment of the primary and secondary process is recommended. NSO has connection

time out feature to release the resources after a specified period of time. However, in

case of a DoS attack that does not make much sense as the attacker would keep on

consuming the resources as soon as they are released. Another feature that supports

high availability in NSO is the NSO clustering feature that can serve local and remote

devices both at the same time.

• Elevation Of Privilege: NSO may be subjected to an elevation of privilege using re-

mote code execution by an external malicious entity. A recent vulnerability in the

NSO application allowed an unauthenticated malicious user to gain unauthorized

access of affected NSO system. The vulnerability could be exploited because of an

incomplete input validation for authentication performed by NSO plug and play

component package. Once exploited, an attacker could gain unauthorized access to

53

the configurations of the managed objects connected to NSO (CVE-2018-0463, 2018).

Another similar vulnerability in the NSO CLI parser allowed the attacker to execute

arbitrary commands with root privileges on the targeted systems (CVE-2018-0274,

2018). To mitigate such attacks, techniques such as input validation, data execution

prevention, running applications with least privilege and patching with updated ver-

sions are recommended.

Interactors

From the DFD in Figure 5.2, network engineer is the interactor interacting with NSO.

From Table 5.2, interactors are prone to spoofing and repudiation attack.

• Spoofing: An attacker may impersonate a network engineer’s identity by spoofing

their IP address. The firewall or NSO’s northbound interface may have ACL rule

for incoming connections; however, if an attacker is able to bypass the access rule,

she can perform several attacks on the system. To mitigate this attack, the use of a

bi-directional authentication system is recommended. In NSO, user logs in through

CLI, SNMP, Web UI or via NETCONF protocol. In either case, the user needs to log

in using the login credentials or a public key in order to gain access. Once a user is

authenticated using AAA infrastructure, group membership is established for that

user and then all operations that can be performed by that user are authorized.

• Repudiation: An attacker or a trusted user may perform unauthorized requests and

may later deny doing so. To mitigate such attacks, the use of logging or auditing is

recommended. NSO comes with extensive logging functionality. All event logs in

the network can also be forwarded and saved in the Syslog server. Syslog logs using

NSO can be redirected to a local or a remote server.

Data Stores

NSO has a tree-structured database called as the configuration database (CDB). This

database stores a copy of all device-related configurations and is controlled by a YANG

54

schema. From Table 5.3, a datastore is vulnerable to tampering, information disclosure

and denial of service attacks.

• Tampering: An attacker can modify or delete the data stored in CDB. By default,

CDB is stored under the path "$NCS_DIR/var/ncs/cdb". Location of CDB can be

separated from the NSO server to a server that denies all traffic by default and is

open only to specific locations or users that are allowed to make changes to it. To

mitigate this attack, firewall rules for the database server, ACLs and hardening of

the database server are recommended.

• Information Disclosure: CDB contains sensitive information related to the network

such as routing and network topology. This data is stored in XML format. Unau-

thorized access by an attacker can lead to a leak of sensitive information about the

network and can later be used for other planned attacks. To mitigate this risk, data

encryption techniques are recommended.

• Denial of Service: CDB datastore can be made unavailable using a denial of service

attack by an external malicious entity. Although NSO in a system install is imple-

mented in a high availability cluster, it is recommended to store the CDB data backup

on a separate location. CDB keeps its data in two files; A.cdb and C.cdb. If a datas-

tore is not available, a copy of these files could be used, and the copy is then used as

the full backup of CDB. To mitigate DoS attacks, additional measures such as packet

filtering, load balancers, and ACLs are recommended.

Data Flows

From the DFD in Figure 5.2, there are multiple data flows corresponding to the main

NSO process viz., the inbound flow of traffic from network engineer to NSO, the outbound

flow of output data from NSO to network engineer and the outbound flow of configuration

data from NSO to managed object, the CDB database and the public cloud hosted devices.

From Table 5.2, data flows are vulnerable to tampering, information disclosure and denial

of service attacks.

55

Component Type Interaction S T R I D E
NSO * X * X X X
Managed Object X X X X X XProcesses
Public Cloud Hosted Devices X X X X X X

Interactors Network Engineer * *
Data Stores CDB Data Store X X X

Network Engineer to NSO * * X
NSO to Network Engineer * * -
NSO to Public Cloud Hosted Devices * * X
NSO to CDB Data Store * * X

Data Flows

NSO to Managed Object * * X
1 X Indicates mitigation exists by the suggested method.
2 * Indicates mitigation mechanism exists in the application architecture.
3 - Indicates the likeliness of this event does not affect the main process.
4 Blank indicates that the threat does not affect the component.

Table 5.4: Threat matrix of NETCONF and YANG based host management using NSO

• Tampering: Data flow across various interfaces may be tampered with by an attacker.

Data in transit between the network engineer and NSO can be tampered with by in-

jecting malicious information. However, NSO has an in-built SSH server. Therefore,

all NETCONF related data is sent over SSH. Data across southbound NETCONF in-

terface is protected using SSH as well.

• Information Disclosure: Data flow across various interfaces can be sniffed by an

attacker. As a countermeasure, the use of encryption is recommended. By default,

all XML related data in NETCONF are within an SSH session as an SSH subsystem.

• Denial of Service: Using a DoS attack, an attacker may interrupt data flow in either

direction, and the devices under attack would therefore not be able to provide the

intended services. The only exception being, if an attacker floods the data flow from

the NSO to the network engineer, then the network engineer system would crash;

however, from an attacker’s perspective, the likeliness of this event does not make

much sense. As a countermeasure, packet filtering firewalls, IP restriction, network

monitoring, clustering, and bandwidth control methods can be implemented.

Threat matrix Table 5.4 represents the summary of the security analysis.

56

5.3 Security Insights

Even though Subsections 5.2.1 and 5.2.2 cover the technical details of the security anal-

ysis, this section focuses on the insights derived from the analysis.

Threat modeling insight

This chapter comprised the threat modeling of two approaches for host management

using the STRIDE threat modeling technique. The analysis helped in finding out the po-

tential threats and based on component exposed to that threat, appropriate mitigations are

suggested using industry-wide recognized mitigation techniques.

The actual threats and the mitigation techniques may vary from enterprise to enter-

prise because the security and the threats rely on the design of the network. Besides, the

configuration management (CM) tools discussed in this thesis expose management API of

a network therefore care must be taken to ensure the security of the system. Any security

exploits in the application or an unauthorized access to the management API can break

down the whole network. Being a large technology company, Cisco and Red Hat have

already taken care of many security-related issues within the application architecture and

would continue to do so to provide on-going support to their customers. The security that

comes from additional security measures in the NETCONF-based management is preva-

lent because of secure transport and access control mechanism NACM mentioned under

Section 4.3.

Threat matrix threat count insight

As mentioned before, it is obvious that the total number of threats may vary a lot de-

pending on the components that are added to the DFD of the application. Keeping the

focus on the main process and the interactions related to it, the threat count is calculated

by taking the sum of the number of threats within each item in the legend of the threat

matrix table. In the threat matrix table legend, X represents the threats for which mitiga-

tion is suggested and * represents the threats for which mitigation exists in the application

57

Approach Mitigation Suggested
(X)

Mitigation Exists Within Ap-
plication (*)

N/A
(-)

CM using Ansible 13 3 1
CM using NSO 11 14 1

Table 5.5: Threat matrix summary

under scrutiny. Based on the threat count of X and * for the main process and its related

components, threat matrix summary Table 5.5 is generated.

CM using Ansible has 13 threats and CM using NSO has 11 threats for which mitiga-

tions are suggested using appropriate measures. However, the actual number of threats

may vary from enterprise to enterprise due to its dependency on the design of the net-

work. Therefore, this information does not provide any tangible insight about the security

of the approach under inspection.

There is one threat in each approach, marked as N/A, which does not affect the main

process under scrutiny because of the fewer odds of the event.

Furthermore, CM using Ansible has 3 threats and CM using NSO has 14 threats for

which mitigation exists within the application itself. This information is indeed more im-

portant. A higher number of mitigation measures within the application indicates better

security. These threat mitigations are enforced by the in-built security measures in the ap-

plication. Whereas, mitigations for some threats in the CM using NSO approach also exist

because of the additional security measures available in the NETCONF protocol.

Attack surface insight

In the context of this research, an attack surface is the count of different threats, or

various attack vectors (paths), in a system that can be exploited by an attacker. The larger

the attack surface, the higher is the security risk. Therefore, to construct a secure system,

the goal is to minimize the attack surface as much as possible.

Host CM using legacy CM protocol SNMP has comparatively a larger attacker surface

as compared to the NETCONF and YANG based host CM using NSO. CM using SNMP

constitute for a larger attack surface because of its demerits such as unreliable transport

58

service UDP and unencrypted transmission of configuration data in the initial versions

of the protocol. On the contrary, NETCONF and YANG based host CM using NSO and

ConfD constitute for a smaller attack surface because configuration related data is trans-

mitted over connection-oriented service TCP and communication paths are encrypted us-

ing SSH 5.3.

CM using SNMP: CM using NETCONF:

UDP TCP

SNMP Manager SNMP Agent NSO NETCONF Device

Unencrypted data Encrypted data

Figure 5.3: Attack surface

Simpler IT infrastructure security management insight

In most IT environments, network and security teams work in silos, which restricts the

horizontal communication between both the teams. NSO makes it possible for network

and security teams to work together to deliver the end-to-end network services. This could

be well understood by taking the example of implementing VPN services in an enterprise.

Once all the network and security devices are added to NSO, NSO provides a single ab-

straction layer for all the devices in the network using well-defined device YANG models.

A network engineer can use these YANG models to design and automatically change the

VPN service provisioning. Also, sensitive configurations such as VPN are automated us-

ing the transactional model discussed in Section 4.2. Any change to a VPN device is either

entirely implemented or entirely discarded. Therefore, there is a smaller chance of secu-

rity loopholes related to stray configurations in the network. Similarly, a YANG based

approach can also simplify the firewall rules and ACLs management of network and host

devices. This is harder to achieve using CLI based configuration management tools be-

cause of the lack of device abstraction.

59

Finally, while consulting the security analysis from this thesis, a system designer, a

solution architect or an application designer may have different opinions about the design

of the DFDs and the populated threat matrices. However, different opinions, discussions,

and suggestions would only help in further strengthening the security.

60

Chapter 6

Conclusion and Future Work

CLI, API, SNMP, and various other configuration management technologies have dom-

inated the configuration management of host systems for a very long time. This thesis

addresses the problems with these configuration management techniques and proposes a

NETCONF and YANG based host management solution that can overcome these issues.

The thesis also covers the security analysis of the two different approaches for host man-

agement. One is configuration and management using a configuration management tool

such as Ansible and the other being the presented NETCONF and YANG based manage-

ment solution using NSO and ConfD. The material in Section 4.4 shows the actual result

of using NSO/ConfD to set a single (non-networking) parameter on a Linux host. This

confirms that the approach is viable, and thus allowed us to proceed with the primary re-

sult of this thesis, which is the demonstration of the superior security of the NSO/ConfD

approach. The results of the security analysis, the listed solution capabilities, the security

efficiencies and with the advancements in automation and orchestration technologies, it

can be concluded that a NETCONF and YANG based host management solution is supe-

rior to the current legacy management solutions in many ways.

The proposed solution can be further extended and examined by doing a real-world

scalability and performance test and by adding support for additional YANG modules

and interfaces to encourage the use of NETCONF-YANG based host management in large

61

enterprises. Since the tools used in this thesis are proprietary, therefore not much informa-

tion is available in the existing literature about their usefulness and application. The good

news is NETCONF is free to use in the basic version of ConfD, and that is why a NET-

CONF connection from NSO to Linux boxes was made feasible using ConfD as the middle

component. The thesis could be used as a starting point by someone who wants to use

NETCONF and YANG for host management using NSO and can develop the package in

ConfD as per their desired management requirements. The information in this thesis can

also be continuation work for a student interested in developing the package by utilizing

open-source YANG interfaces. Finally, all threat analysis results also need to be verified

using a thorough penetration testing as well as static and dynamic code analysis of the

native applications in use.

That being said, the transition of technology from a current environment to a new en-

vironment in an enterprise is laborious and distasteful. However, the transition can even-

tually reap significant performance, cost, productivity, and security benefits.

62

Appendix A

Appendix

A.1 Lab Machines Specifications

NSO and Ansible are installed on a dedicated Linux machine named Hartmanis run-

ning Ubuntu 16.04.5 LTS version codename Xenial with 64-bit OS type on an Intel Core

i5-2400 CPU at 3.10GHz clock speed with 4GB of RAM and 242GB of HDD. The host ma-

chine model is HP Z210. It uses a dedicated PCI ethernet card for its connectivity to other

machines in the network.

Cisco CSR 1000V NETCONF router is installed on a dedicated Linux machine named

Gingko running Ubuntu 16.04.5 LTS version codename Xenial with 64-bit OS type on an

Intel Core i5-2400 CPU at 3.10GHz clock speed with 6GB of RAM and 238 GB of HDD.

The host machine model is HP Z210. It has three dedicated PCI ethernet cards for its

connectivity to other machines in the network.

Cisco CSR 1000V SNMP router is installed on a dedicated Linux machine named Tar-

jan running Ubuntu 16.04.5 LTS version codename Xenial with 64-bit OS type on an Intel

Core i5-2400 CPU at 3.10GHz clock speed with 6GB of RAM and 242GB of HDD. The host

machine model is HP Z210. It has three dedicated PCI ethernet cards for its connectivity

to other machines in the network.

Rest of the machines have relatively similar OS configurations as the machines above.

Backus, Iversion, Ritchie, Minsky, and Dijkstra has an Intel Core 2-6300 CPU at 1.86GHz

63

clock speed with 2GB of RAM and 155GB of HDD. The host machine model on these

machines is Dell 390. Cocke is a Dell T3400 machine with an Intel Core 2 Duo-E6750 CPU

at 2.66GHz clock speed with 2GB of RAM and 155GB of HDD. McCarthy is a Dell T3400

machine with an Intel Core 2 Duo-E7400 CPU at 2.80GHz clock speed with 2GB of RAM

and 244GB of HDD.

Cisco CSR 1000V routers are installed on Ubuntu machines using the .iso file on a

KVM hypervisor. Installation process requires manually creating the VM on the hypervi-

sor. ConfD is installed and setup on Iversion.

A.2 Installing KVM

To check if the processor supports hardware virtualization:

$ egrep -c ’(vmx|svm)’ /proc/cpuinfo

Output value 0 means that the CPU does not support hardware virtualization.

Output value 1 or more means the processor does support virtualization, but it still

needs to be ensured that the virtualization is enabled in the BIOS.

Alternatively, we can execute:

$ kvm-ok

This would return the following output:

INFO: /dev/kvm exists

KVM acceleration can be used

A.2.1 Dependencies

The command below will make sure that all the dependencies are installed that are

required for the functioning of KVM. Different packages will serve different purposes such

as administering QEMU and KVM instances, building virtual machines, and creating a

bridge from the network to the VMs.

64

$ sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder

↪→ bridge-utils

A.2.2 Adding user to libvirtd group

$ sudo adduser vijay libvirtd

Adding user ’vijay’ to group ’libvirtd’ ...

The user needs to login again for them to become a member of libvirtd group. The

member of this group can on run virtual machines.

A.2.3 Verifying installation

$ virsh list --all

Id Name State

$

The output would be empty since at this point no VM has been added.

A.2.4 Installing GUI

$ sudo apt-get install virt-manager

virt-manager is the GUI tool that will be used subsequently to add and manage the

virtual machines.

A.2.5 Autostarting VM on startup

$ virsh autostart CSR1000v-Netconf

65

Once the VM has been created (explained later), it can be configured so that it starts

automatically with the system reboot.

Next, the following steps are performed on the KVM server:

A.2.6 Creating the Cisco CSR 1000V VM

Installing Cisco CSR 1000V routers .iso files using virt-manager is a straightforward

process. Installation requirements and a step-by-step guide on the installation process

is given in the "Cisco CSR 1000V Series Cloud Services Router Software Configuration

Guide" that ships with the package file.

A.2.7 Booting the Cisco CSR 1000V VM

By default, the Cisco CSR 1000V router is accessed using the virtual VGA console.

Alternatively, the VMs can also be configured to use the Serial console port. Configuring a

serial console port would allow access to the router using a Telnet or SSH connection from

any other machine in the lab. Following command can be used to Telnet to the VM:

$ telnet host-ip portnumber

For the console access to work through the serial port, the router must be configured

using platform console serial command:

R1>en

R1#conf t

R1(config)#platform console serial

R1(config)#end

R1#wr

Building configuration...

[OK]

R1#reload

66

A.2.8 Assigning hostname to the VM

R1>en

R1#conf t

R1(config)#hostname CSR1000v-NETCONF

R1(config)#end

R1#wr

Building configuration...

[OK]

Similarly, the other router is setup and configured with the hostname CSR1000v-SNMP.

A.3 Installing NSO

Cisco’s NSO (NSO, n.d.) supports Linux and Mac OS X platforms. The installer file

is distributed by the OS name Linux and Darwin respectively. Installation steps are per-

formed on the Ubuntu platform; a Linux distribution based on Debian. The package can

be installed in the following two ways:

• Local installation – used in lab environment for evaluation, proof of concept and

development of the product.

• System installation – used for deployment of the product in production environment.

NSO installation file archive has the following naming pattern:

nso-VERSION.OS.ARCH.installer.bin

The variables in the file name define the version, OS and the CPU architecture.

A.3.1 Dependencies

Additional packages are required that will serve different purposes such as building

NSO examples, using NETCONF console, etc.

67

$ sudo apt-get install default-jdk

$ sudo apt-get install ant

$ sudo apt-get install python-paramiko

Verifying the installation of dependencies:

$ java -version

$ ant -version

Web UI can be accessed through Firefox browser installed on Ubuntu by visiting the

following URL: http://127.0.0.1:8080/login.html

A.3.2 NSO Local Install

Installation file used is nso-4.1.linux.x86_64.installer.bin. Add-ons are tested on a newer

version nso-4.7.linux.x86_64.installer.bin.

(a) NSO is installed in a single directory (i.e. $HOME in this case), under folder name

ncs-4.1, using attribute value –local-install:

$ sh nso-4.1.linux.x86_64.installer.bin $HOME/ncs-4.1 --local

↪→ -install

Installation notes generated from the above command are as following:

INFO Using temporary directory /tmp/ncs_installer.15038 to

↪→ stage NCS installation bundle

INFO Unpacked ncs-4.1 in /home/vijay/ncs-4.1

INFO Found and unpacked corresponding DOCUMENTATION_PACKAGE

INFO Found and unpacked corresponding EXAMPLE_PACKAGE

INFO Generating default SSH hostkey (this may take some time

↪→)

INFO SSH hostkey generated

68

http://127.0.0.1:8080/login.html

INFO Environment set-up generated in /home/vijay/ncs-4.1/

↪→ ncsrc

INFO NCS installation script finished

INFO Found and unpacked corresponding NETSIM_PACKAGE

INFO NCS installation complete

(b) Installation program creates a shell script file named ncsrc (under $HOME/ncs-4.1/).

This file need to be executed using source command to set the environment variables

into the current shell script:

$ source $HOME/ncs-4.1/ncsrc

To check the environment variable populated after running the above command:

$ echo $NCS_DIR

This would return /home/vijay/ncs-4.1; the installation directory of NSO.

(c) Verifying the NSO status:

$ ncs --status | grep status

$ ncs --version

(d) Creating a run-time directory where NSO would store its database and log files:

$ ncs-setup --dest $HOME/ncs-run

(e) Starting NSO daemon under the run-time directory:

$ cd $HOME/ncs-run

$ ncs

NSO daemon need not be run at this point as there are no real or simulated devices

that have been added or created so far. It will be followed in the subsequent installation

steps.

69

A.3.3 Setting up a simulated network of devices using Netsim

NSO comes pre-loaded with a network simulator called Netsim. Netsim provides the

capability within NSO to create dummy devices that run-in localhost using NEDs. It also

creates a management plane for the devices without exposing any control plane or data

plane. Netsim devices give a fair indication of how the configurations would behave on

the real devices.

In the lab, example packages that come with NSO installation bundle are used to

demonstrate how a set of simulated network of Cisco IOS, Juniper Junos and a Netconf

device (using its YANG file) can be created and added using Netsim. Subsequently, real

devices are added using a system build NED and the NEDs in $NCS_DIR/packages/neds/

directory.

Creating Netsim devices and running the simulator:

Very first step before running any example is to make sure to source the ncsrc file in

$NCS_DIR:

$ source $HOME/ncs-4.1/ncsrc

Then go to the following directory:

$NCS_DIR/examples.ncs/getting-started/using-ncs/1-simulated-cisco-ios/

(a) Generate a network simulator with 3 devices c0, c1, c2. They all speak Cisco CLI:

$ ncs-netsim create-network $NCS_DIR/packages/neds/cisco-ios

↪→ 3 c

DEVICE c0 CREATED

DEVICE c1 CREATED

DEVICE c2 CREATED

(b) Start the simulated devices:

$ ncs-netsim start

DEVICE c0 OK STARTED

70

DEVICE c1 OK STARTED

DEVICE c2 OK STARTED

(c) Run the CLI towards one of the simulated devices:

$ ncs-netsim cli-i c0

(Above command opens a Cisco IOS style CLI for device c0.)

c0> enable

c0# show running-config

(Above command shows that the device has some initial config.)

pwd will print the working directory for this simulated device:

c0# pwd

/home/vijay/ncs-4.1/examples.ncs/getting-started/using-ncs/1-

↪→ simulated-cisco-ios/netsim/c/c0

Structural device configurations are stored in the following file:

$NCS_DIR/examples.ncs/getting-started-using-ncs/1-simulated-cisco-ios/netsim/c/c0/cdb/ios.xml.

A.3.4 Setting up and starting NSO

Go to directory $NCS_DIR/examples.ncs/getting-started/using-ncs/1-simulated-cisco-ios

Create NSO environment ready to run towards the simulated devices using ncs-setup

command:

$ ncs-setup --netsim-dir ./netsim --dest .

Above command creates the run-time directories needed by NSO, links the NED pack-

age and populates the NSO database with meta-data of the simulated devices.

Start NSO:

$ ncs

71

Start the NSO CLI as user admin with a Cisco style CLI:

$ ncs_cli -C -u admin

admin@ncs#

NSO also supports a Juniper style CLI, that is started by using a -J modification to the

command as follows:

$ ncs_cli -J -u admin

admin@ncs>

To switch between Cisco IOS and Juniper style CLI:

admin@ncs> switch cli

A.3.5 Adding Netsim devices to NSO

Go to the directory where Netsim devices were created and execute the following com-

mands:

$ ncs-netsim list

$ ncs_cli -C -u admin

admin@ncs# config

admin@ncs(config)# devices device c0 address 127.0.0.1 port 10022

↪→ device-type cli

admin@ncs(config-device-c0)# authgroup default

admin@ncs(config-device-c0)# state admin-state unlocked

admin@ncs(config-device-c0)# commit

admin@ncs(config-device-c0)# ssh fetch-host-keys

admin@ncs(config-device-c0)# sync-from

admin@ncs(config-device-c0)# end

admin@ncs#

72

A.3.6 Setting up run-time directory and loading NED packages for adding real

devices to NSO

Create a new directory (let’s say under $HOME) and execute the following commands:

$ mkdir nso-data

$ ncs-setup --dest nso-data

$ cd nso-data

$ ncs

Under ∼/nso-data/packages, create a symlink for packages from ncs-4.1 directory:

$ ln -s ~/ncs-4.1/packages/neds/cisco-ios cisco-ios

Similarly, create symlinks for all the packages that will be used in the lab setup. Reload

the packages once symlink has been created:

~/nso-data/packages$ ncs_cli -C -u admin

admin@ncs# packages reload

A.3.7 Initial configuration of real NETCONF device

Virtual router CSR1000v-NETCONF is configured using the following initial configu-

ration:

Enabling SSH connectivity on the router:

~/nso-data/packages$ ncs_cli -C -u admin

CSR1000v-NETCONF#conf t

CSR1000v-NETCONF(config)#ip domain-name concordia.ca

CSR1000v-NETCONF(config)#crypto key generate rsa

2048

CSR1000v-NETCONF(config)#username admin priv 15 password 15

CSR1000v-NETCONF(config)#enable password admin

CSR1000v-NETCONF(config)line vty 0 4

73

CSR1000v-NETCONF(config)#transport input all

CSR1000v-NETCONF(config)#end

CSR1000v-NETCONF#wr

Building configuration...

[OK]

Enabling NETCONF on the router:

CSR1000v-NETCONF>en

Password:

CSR1000v-NETCONF#conf t

CSR1000v-NETCONF(config)#netconf-yang

CSR1000v-NETCONF(config)#exit

CSR1000v-NETCONF#wr

Building configuration...

[OK]

To check the status of the software processes required to support NETCONF-YANG:

CSR1000v-NETCONF#show platform software yang-management process

confd : Running

nesd : Running

syncfd : Running

ncsshd : Running

dmiauthd : Running

vtyserverutild : Running

opdatamgrd : Running

nginx : Running

ndbmand : Running

Check for NETCONF-SSH connectivity to the router:

vijay@Gingko:~$ ssh -s admin@192.168.122.182 -p 830 netconf

74

A successful connection to the device will return the list of capabilities supported by

the device.

Note – if connection fails, then go to device and remove the aaa new-model config or,

apply the following config required for NETCONF-SSH connectivity and edit-config op-

erations:

CSR1000v-NETCONF>en

Password:

CSR1000v-NETCONF#conf t

CSR1000v-NETCONF(config)# aaa authorization exec default local

CSR1000v-NETCONF(config)#exit

CSR1000v-NETCONF#wr

Building configuration...

[OK]

Sending hello message to the device to inform the device that you are a NETCONF

client:

NSO comes with netconf-console tool that can be used for testing NETCONF operations.

In the example below, an explicit device username, password, and the NETCONF port is

specified with the hello command to connect to the device and print its capabilities:

$ netconf-console --host=192.168.122.182 -u admin -p admin --port

↪→ 830 --hello

or, using an XML file RPC request:

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>

</capabilities>

75

</hello>

]]>]]>

NETCONF get-config operation:

<?xml version="1.0" encoding="UTF-8"?>

<rpc message-id="1"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get-config>

<source>

<running />

</source>

</get-config>

</rpc>

]]>]]>

To get a constructed view, the output can be passed through an XML formatter tool.

NETCONF edit-config operation:

<?xml version="1.0" encoding="UTF-8"?>

<rpc message-id="1"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

<edit-config>

<target>

<running />

</target>

<config>

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-

↪→ native">

<hostname>CSR1000v-NETCONF-New</hostname>

</native>

76

</config>

</edit-config>

</rpc>

]]>]]>

Similarly, other NETCONF operations can be performed.

A.3.8 Adding real NETCONF device using Pioneer

Pioneer is an add-on that can be used to perform NETCONF operations on a NET-

CONF supported device. It also allows to build a custom NETCONF NED for the device

using its YANG data models.

Install following additional dependencies:

$ sudo apt install python-pip

$ pip install paramiko

$ sudo apt-get install xsltproc

To check if all the dependencies are fulfilled:

$ which ncs && which python && python -c "import paramiko" \

&& which xsltproc && which xmllint && which bash && which pyang \

&& echo "All Fine"

Downloading, installing and building the NSO Pioneer package:

$ cd packages

$ git clone https://github.com/NSO-developer/pioneer

$ cd pioneer/src; make all; cd -

PYTHONPATH=../python:$PYTHONPATH python ../python/pioneer/action.

↪→ py

/home/vijay/ncs-run/packages

Reloading packages:

77

$ ncs_cli -C -u admin

admin connected from 132.205.2.217 using ssh on Hartmanis

admin@ncs# packages reload

>>> System upgrade is starting.

>>> Sessions in configure mode must exit to operational mode.

>>> No configuration changes can be performed until upgrade has

↪→ completed.

>>> System upgrade has completed successfully.

reload-result {

package pioneer

result true

}

Creating an authgroup:

admin@ncs# conf

admin@ncs(config)# devices authgroups group thesis-project

↪→ default-map remote-name admin remote-password admin remote-

↪→ secondary-password admin

admin@ncs(config-group-thesis-project)# commit

exit

Adding an IOS device using built-in Cisco IOS NED:

admin@ncs(config)# devices device CSR1000v address 132.205.9.49

↪→ authgroup thesis-project device-type cli ned-id cisco-ios

admin@ncs(config-device-CSR1000v)# state admin-state unlocked

admin@ncs(config-device-CSR1000v)# ssh fetch-host-keys

admin@ncs(config-device-CSR1000v)# commit

78

admin@ncs(config-device-CSR1000v)# top

admin@ncs(config)# exit

admin@ncs# devices sync-from

admin@ncs# show devices device CSR1000v

The device has now been added to NSO using the built-in Cisco IOS NED that ships

with the NSO installation package. This NED doesn’t support NETCONF operations. Pi-

oneer is used to build the NETCONF NED using the device YANG models.

Creating a device list entry for the NETCONF device, committing the changes and

connecting to the device:

admin@ncs(config)# devices device CSR1000v-NETCONF address

↪→ 132.205.9.49 port 830 authgroup thesis-project device-type

↪→ netconf trace raw

admin@ncs(config-device-CSR1000v-NETCONF)# state admin-state

↪→ unlocked

admin@ncs(config-device-CSR1000v-NETCONF)# ssh fetch-host-keys

admin@ncs(config-device-CSR1000v-NETCONF)# commit

admin@ncs(config-device-CSR1000v-NETCONF)# top

admin@ncs(config)# exit

admin@ncs(config)# connect

At this point, any attempt to sync-from will fail since no NETCONF NED has been build

for the device yet.

Testing pioneer NETCONF hello:

admin@ncs(config)# devices device CSR1000v-NETCONF pioneer

↪→ netconf hello

This will return a hello response.

Fetching YANG models list from the device:

79

admin@ncs(config)# devices device CSR1000v-NETCONF pioneer yang

↪→ fetch-list

admin@ncs(config)# devices device CSR1000v-NETCONF pioneer yang

↪→ download

This will return a list of YANG files supported by the device. If the fetch-list doesn’t

work, YANG models need to be retrieved manually from the device owner.

Building NETCONF NED:

admin@ncs(config)# devices device CSR1000v-NETCONF pioneer yang

↪→ build-netconf-ned

Installing NETCONF NED:

admin@ncs(config)# devices device CSR1000v-NETCONF pioneer yang

↪→ install-netconf-ned

Reloading packages to use the package in NSO:

admin@ncs# packages reload

Checking sync-from:

admin@ncs(config)# devices device CSR1000v-NETCONF sync-from

sync-result {

device CSR1000v-NETCONF

result true

}

While building a NETCONF NED, it is possible that some YANG files might already

be in NSO, or some may return an error. If so, NSO will return a circular dependency error.

It can be fixed by disabling the broken YANG types and then building the NED again.

Currently, there is no built-in method in NSO to build the NED for a device. Future

versions of NSO, 4.8 onwards, will supposedly have a built-in NETCONF NED builder

80

through which it will be possible to generate, build and load YANG-based NETCONF

NEDs automatically. It will significantly reduce the number of manual steps to onboard

the devices to NSO.

A.3.9 Adding real SNMP device to NSO

To manage an SNMP device, its data models should be imported into NSO. These

data models are defined in MIBs. NSO uses these data models to generate configuration

commands. These data models are converted to YANG data models and the YANG data

models are then compiled to build the NED.

Also, to onboard the device to KVM, it is obvious to apply the initial configuration sim-

ilar to NETCONF device, with some additional configurations specific to SNMP devices.

Configuring SNMP v3 on a Cisco CSR 1000V router:

CSR1000v-SNMP#conf t

CSR1000v-SNMP(config)#snmp-server group G1 v3 priv

CSR1000v-SNMP(config)#snmp-server user U1 G1 v3 auth sha snmpapwd

↪→ priv aes 128 snmpepwd

CSR1000v-SNMP(config)#end

CSR1000v-SNMP#show snmp user

User name: U1

Engine ID: 800000090300525400DD61A2

storage-type: nonvolatile active

Authentication Protocol: SHA

Privacy Protocol: AES128

Group-name: G1

CSR1000v-SNMP#wr

Building configuration...

[OK]

Using ncs-make-package command to create an SNMP NED package:

81

ncs-make-package command can be used to create a NED package for a device using its

MIB files. MIB for a device can be downloaded from Cisco’s online MIB Locator utility. A

list of MIBs translated to its equivalent YANG data models can also be downloaded from

the online YangModels Git repository.

Once MIBs are retrieved, following commands can then be used to create a package for

the device:

$ ncs-make-package --snmp-ned ~/Downloads/snmpmib/ snmpned

$ cd snmpned/src; make

The above command takes attribute value –snmp-ned for building an SNMP package

(or, attribute value –netconf-ned for building a NETCONF package) and creates a package

named snmpned assuming its MIB files are under the folder snmpmib.

The generated package tells NSO about the MIBs the device implements and can also

be used to simulate Netsim devices. Once the package has been built, it is loaded into NSO,

and the SNMP device is then added using the same procedure just like any other device.

We can also use the example NED package that ships with NSO with built-in SNMP NED

component. The package is available under the directory $NCS_DIR/examples.ncs/snmp-

ned/.

A.4 Installing Ansible

Ansible (Ansible, n.d.) is a standalone application installed on a server and does not

require an Ansible agent running on client machines. The only requirement is Python and

SSH installed and enabled on the client machines that need to be configured via Ansible.

A.4.1 Dependencies

Install the following package and add the ppa repository on the Ansible server ma-

chine:

$ sudo apt-get install software-properties-common

82

$ sudo apt-get update

$ sudo apt-add-repository ppa:ansible/ansible

A.4.2 Installing Ansible package

To install Ansible:

$ sudo apt-get install ansible

To check the version installed:

$ ansible --version

ansible 2.6.3

config file = /etc/ansible/ansible.cfg

configured module search path = [u’/home/vijay/.ansible/plugins

↪→ /modules’, u’/usr/share/ansible/plugins/modules’]

ansible python module location = /usr/lib/python2.7/dist-

↪→ packages/ansible

executable location = /usr/bin/ansible

python version = 2.7.12 (default, Dec 4 2017, 14:50:18) [GCC

↪→ 5.4.0 20160609]

A.4.3 Onboarding client machines

Although the client that needs to be configured using Ansible does not require to have

any specific package installed, there needs to be a couple of things that need to be checked.

e.g.:

• SSH keypairs: required to connect to the client machines without the need to login

manually everytime a configuration is pushed. Ansible server has the private key

installed on it, whereas the client machines have the server’s public key.

• sudo: to configure the root file systems (escalate privilege).

83

• Static addressing: Ansible server can have a DHCP assigned address as the config-

uration commands will initiate from this machine and nothing connects to it. Client

machines could have DNS hostname or DHCP assigned address as well, but static

addressing is the most reliable way to configure client machines using Ansible.

All the machines in the lab environment have a static IP address. The IP address of

these machines are added to hosts file on Ansible server to connect using hostnames:

$ sudo nano /etc/hosts

Add the following lines to ping client machines by name:

132.205.9.61 Backus

132.205.9.57 Iversion

132.205.9.53 Ritchie

132.205.9.34 Cocke

132.205.9.33 Minsky

132.205.9.45 Tarjan

132.205.9.49 Gingko

132.205.9.10 Dijkstra

132.205.9.9 McCarthy

A.4.4 Generating SSH keys

SSH keypair is generated using ssh-keygen command:

$ ssh-keygen

Under .ssh folder, two keypairs would be generated, i.e. ida_rsa (private key) and

id_rsa.pub (public key):

$ ls .ssh

id_rsa id_rsa.pub

84

Assuming both the server and the client machines have the same username (in this case

vijay), transfer the public key to the client machines. It is important to note that a private

key is never sent to any other computer or user.

$ ssh-copy-id -i .ssh/id_rsa.pub Backus

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: ".

↪→ ssh/id_rsa.pub"

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key

↪→ (s), to filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if

↪→ you are prompted now it is to install the new keys

vijay@backus’s password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh ’Backus’"

and check to make sure that only the key(s) you wanted were added

↪→ .

Similarly, keys are copied to the other machines that need to be managed and config-

ured using Ansible server.

While copying the public key, explicitly define the username if the client’s machine has

a different username than the Ansible server:

$ ssh-copy-id -i .ssh/id_rsa.pub dev@Backus

To bypass the sudo login everytime sudo is used (privileged access), go to the client

machine’s visudo to edit the /etc/sudoers file:

$ sudo visudo

Add the following line to the bottom of sudoers file and save:

vijay ALL=(ALL) NOPASSWD: ALL

85

A.4.5 Adding device groups

Next, add device groups so that the configurations can be fetched and sent to multiple

devices using group name instead of sending it to individual devices:

$ sudo nano /etc/ansible/hosts

Add the following lines to the bottom of this file and save:

[nso_machines]

Tarjan

Gingko

[lab]

Backus

Iversion

Ritchie

Cocke

Minsky

Tarjan

Gingko

Dijkstra

McCarthy

A.4.6 Checking connectivity from Ansible server to client machines

Client machines can now be pinged from Ansible server. If the ping response is SUC-

CESS, it means client machines are ready to be configured using Ansible server:

$ ansible -m ping all

Gingko | SUCCESS => {

"changed": false,

"ping": "pong"

}

86

Tarjan | SUCCESS => {

"changed": false,

"ping": "pong"

}

Ritchie | SUCCESS => {

"changed": false,

"ping": "pong"

}

Iversion | SUCCESS => {

"changed": false,

"ping": "pong"

}

Backus | SUCCESS => {

"changed": false,

"ping": "pong"

}

Minsky | SUCCESS => {

"changed": false,

"ping": "pong"

}

Cocke | SUCCESS => {

"changed": false,

"ping": "pong"

}

Dijkstra | SUCCESS => {

"changed": false,

"ping": "pong"

}

87

McCarthy | SUCCESS => {

"changed": false,

"ping": "pong"

}

A.5 Integrating Ansible and NSO

The built-in northbound REST API in NSO can be used to fetch the device related

data by using the curl command. The command can be modified to retrieve data in the

JSON format. The data retrieved can then be converted into YAML code. This YAML

code is used in creating Ansible playbooks to perform various actions on the devices using

Ansible NSO modules.

The curl command below fetches the information of the device named c0 from the NSO

configuration database (CDB). The output of this command can be copied and parsed into

YAML format using an online json2yaml utility.

$ curl -s -u admin:admin -H "Accept: application/vnd.yang.data+

↪→ json" http://localhost:8080/api/config/devices/device/c0/

↪→ config?deep

Playbook outlining Ansible NSO modules:

- hosts: 127.0.0.1

connection: local

gather_facts: yes

tasks:

- name: Sync from devices

nso_action:

url: http://localhost:8080/jsonrpc

88

username: admin

password: admin

path: /ncs:devices/sync-from

- name: Query device name and device type

nso_query:

url: http://localhost:8080/jsonrpc

username: admin

password: admin

xpath: /ncs:devices/device

fields:

- name

- device-type

- name: Apply device configuration

nso_config:

url: http://localhost:8080/jsonrpc

username: admin

password: admin

data:

tailf-ncs:devices:

device:

- name: c0

tailf-ncs:config:

tailf-ned-cisco-ios:interface:

FastEthernet:

- name: 1/0

ip:

89

address:

primary:

address: 10.0.0.10

mask: 255.255.255.0

Playbook test run showing the tasks in action and the device change state:

$ ansible-playbook -v nsoansible.yaml

Using /etc/ansible/ansible.cfg as config file

PLAY [Ansible NSO Modules]

TASK [Gathering Facts]

ok: [127.0.0.1]

TASK [Sync from devices]

changed: [127.0.0.1] => {"changed": true, "output": {"sync-result

": [{"device": "c0", "result": "true"}, {"device": "c1", "

result": "true"}, {"device": "c2", "result": "true"}]}}

TASK [Query device name and device type]

ok: [127.0.0.1] => {"changed": false, "output": [["c0", "ios-id:

cisco-iosssh"], ["c1", "ios-id:cisco-iosssh"], ["c2", "ios-id:

cisco-iosssh"]]}

90

TASK [Apply device configuration]

changed: [127.0.0.1] => {"changed": true, "changes": [{"from":

null, "path": "/ncs:devices/device{c0}/config/ios:interface/

FastEthernet{1/0}/ip/address/primary/address", "to": "

10.0.0.10", "type": "set"}, {"from": null, "path": "/ncs:

devices/device{c0}/config/ios:interface/FastEthernet{1/0}/ip/

address/primary/mask", "to": "255.255.255.0", "type": "set"}],

"diffs": []}

PLAY RECAP

127.0.0.1 : ok=4 changed=2 unreachable=0

failed=0

A.6 Installing ConfD

Just like NSO, ConfD (ConfD, n.d.) installation file is also a self-extract archive which is

OS/CPU specific. The distribution file used in lab environment is confd-basic-6.6.linux.x86_64.

To install and unpack the archive file, execute the following command and specify the in-

stallation directory as an argument in this command:

$ sh confd-basic-6.6.linux.x86_64.installer.bin ~/confd-6.6

Installation notes generated by executing the above command are as follows:

INFO Unpacked confd-basic-6.6 in /home/vijay/confd-6.6

INFO Found and unpacked corresponding DOCUMENTATION_PACKAGE

INFO Found and unpacked corresponding EXAMPLE_PACKAGE

INFO Generating default SSH hostkey (this may take some time)

INFO SSH hostkey generated

91

INFO Environment set-up generated in /home/vijay/confd-6.6/

↪→ confdrc

INFO ConfD installation script finished

Installation program creates a shell script file named confdrc (under $HOME/confd-6.6/).

The file needs to be executed using the source command to set the environment variables

into the current shell script:

$ source $HOME/confd-6.6/confdrc

To check the environment variable populated after running the above command:

$ echo $CONFD_DIR

This should return /home/vijay/confd-6.6; the installation directory of ConfD.

Next step is to install LinuxCfg. LinuxCfg is a tool that is included with ConfD and

can be used to manage a set of objects for a Linux OS using their YANG data models. It

has an inbuilt component that handles the interaction with ConfD and a set of individual

components that handle the management of the objects using their data model defined in

YANG.

A.6.1 Requirements for LinuxCfg

Building the package requires:

• GNU make C compiler

• ConfD version 6.3.1 or higher (YANG 1.1 is required by some components)

A.6.2 Building and Installing LinuxCfg

Go to $CONFD_DIR/examples.confd/linuxcfg directory. On the top level of this directory,

there is a makefile with instructions to build and install the components. This file can be

modified to add or remove any components that need to be installed.

To install using makefile:

92

$ make install

A.6.3 Running LinuxCfg

To start the ConfD and LinuxCfg daemon, following commands can be executed in the

given order:

$ confd --start-phase0

$ confd --start-phase1

$./linuxcfg

$ confd --start-phase2

Note: root privileges might be required to run LinuxCfg.

Or, simply start using the make file:

$ make start

To start ConfD CLI:

$ make cli

To enter config mode in the ConfD prompt:

admin connected from 132.205.2.209 using ssh on Iversion

Iversion# config

Entering configuration mode terminal

Iversion(config)#

To test components connectivity, execute system-restart command from ConfD terminal

to restart the system using LinuxCfg ietf_system YANG module component:

Iversion(config)# system

Possible completions:

system system-restart system-shutdown

93

Similarly, ietf_interface and ietf_routing component can be tested to perform various op-

erations such as modify network settings, configure IP routes, etc.

Iversion(config)# interfaces interface

Possible completions:

enp4s0 enp5s4 enp5s5 lo range virbr0 virbr0-nic

To stop the LinuxCfg daemon:

$ make stop

To stop the ConfD daemon:

$ confd --stop

A.7 Integrating ConfD and NSO

Once NSO and ConfD have been setup correctly, it is relatively a trivial task to inte-

grate both the tools. Both NSO and ConfD support NETCONF on the northbound and the

southbound. This capability can be leveraged to access ConfD’s northbound NETCONF

interface using NSO’s southbound NETCONF interface. In order to achieve this, a NED

needs to be build using NSO Pioneer package. This NED enables a NETCONF interface

between NSO and the NETCONF enabled ConfD managed object.

To access the northbound interface on ConfD device, make sure that NETCONF is en-

abled in the confd.conf file under the directory: $CONFD_DIR/etc/confd/

Also, check for following recommended settings:

<datastores>

<running>

<access>writable-through-candidate</access>

</running>

94

</datastores>

<capabilities>

<writable-running>

<enabled>false</enabled>

</writable-running>

</capabilities>

Creating an authgroup for the ConfD based Linux device:

admin@ncs# config

admin@ncs(config)# devices authgroups group confd default-map

↪→ remote-name vijay remote-password <password>

admin@ncs(config-group-confd)# commit

Adding the Linux device to NSO:

admin@ncs(config)# devices device LinuxDevice address

↪→ 132.205.9.54 authgroup confd port 2022 device-type netconf

admin@ncs(config-device-LinuxDevice)# state admin-state unlocked

admin@ncs(config-device-LinuxDevice)# ssh fetch-host-keys

admin@ncs(config-device-LinuxDevice)# commit

admin@ncs(config-device-LinuxDevice)# top

admin@ncs(config)#

Fetching YANG models list from the device:

admin@ncs(config)# devices device LinuxDevice pioneer yang fetch-

↪→ list

95

admin@ncs(config)# devices device LinuxDevice pioneer yang

↪→ download

Building the NED using retrieved YANG models:

admin@ncs(config)# devices device LinuxDevice pioneer yang build-

↪→ netconf-ned

Installing the NETCONF NED:

admin@ncs(config)# devices device LinuxDevice pioneer yang

↪→ install-netconf-ned

Reloading package to use the NED in NSO:

admin@ncs# packages reload

reload-result {

package pioneer

result true

}

reload-result {

package LinuxDevice

result true

}

96

References

Ansible, R. (n.d.). Ansible is simple it automation. https://www.ansible.com/.

Badra, M., Luchuk, A., & Schoenwaelder, J. (2015). Using the netconf protocol over tls with

mutual x. 509 authentication. https://tools.ietf.org/html/rfc7589.

Barnum, S. (2008). Common attack pattern enumeration and classification (capec) schema

description. , 3. https://capec.mitre.org/documents/documentation/

CAPEC_Schema_Description_v1.3.pdf.

Barrett, M. P. (2018). Framework for improving critical infrastructure cybersecurity, ver-

sion 1.1 (Tech. Rep.). https://www.nist.gov/publications/framework

-improving-critical-infrastructure-cybersecurity-version-11.

Bellovin, S. M., & Bush, R. (2009). Configuration management and security. IEEE Journal

on Selected Areas in Communications, 27(3), 268–274. https://www.cs.columbia

.edu/~smb/papers/config-jsac.pdf.

Bierman, A., & Bjorklund, M. (2012). Network configuration protocol (netconf) access control

model (Tech. Rep.). https://tools.ietf.org/html/rfc6536.

Bierman, A., & Bjorklund, M. (2018). Network configuration access control model (Tech. Rep.).

https://tools.ietf.org/html/rfc8341.

Bjorklund, M. (2010). Yang - a data modeling language for the network configuration protocol

(netconf) (Tech. Rep.). https://tools.ietf.org/html/rfc6020.

Bjorklund, M. (2016). The yang 1.1 data modeling language (Tech. Rep.). https://tools

.ietf.org/html/rfc7950.

BMC. (n.d.). Itil asset and configuration management. http://www.bmcsoftware.ca/

97

https://www.ansible.com/
https://tools.ietf.org/html/rfc7589
https://capec.mitre.org/documents/documentation/CAPEC_Schema_Description_v1.3.pdf
https://capec.mitre.org/documents/documentation/CAPEC_Schema_Description_v1.3.pdf
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11
https://www.cs.columbia.edu/~smb/papers/config-jsac.pdf
https://www.cs.columbia.edu/~smb/papers/config-jsac.pdf
https://tools.ietf.org/html/rfc6536
https://tools.ietf.org/html/rfc8341
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc7950
http://www.bmcsoftware.ca/guides/itil-asset-configuration-management.html
http://www.bmcsoftware.ca/guides/itil-asset-configuration-management.html

guides/itil-asset-configuration-management.html.

Bodeau, D., McCollum, C., & Fox, D. (2018). Cyber threat modeling: Survey, assessment,

and representative framework. HSSEDI, The Mitre Corporation. https://

www.mitre.org/publications/technical-papers/cyber-threat

-modeling-survey-assessment-and-representative-framework.

Caralli, R. A., Stevens, J. F., Young, L. R., & Wilson, W. R. (2007). Introducing octave allegro:

Improving the information security risk assessment process (Tech. Rep.). Carnegie-Mellon

Univ Pittsburgh PA Software Engineering Inst. https://resources.sei.cmu

.edu/library/asset-view.cfm?assetid=8419.

Case, J., Fedor, M., Schoffstall, M., & Davin, J. (1990). Rfc 1157: Simple network manage-

ment protocol (snmp). https://www.ietf.org/rfc/rfc1157.txt.

Case, J., McCloghrie, K., & Rose, M. (1996). S. waldbusser, transport mappings for version 2

of the simple network management protocol (snmpv2) (Tech. Rep.). RFC 1906, January.

https://tools.ietf.org/html/rfc1906.

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1995). Introduction to community-based

snmpv2 (Tech. Rep.). https://tools.ietf.org/html/rfc1901.

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1996). Rfc 1905: Protocol operations

for version 2 of the simple network management protocol (snmpv2). Network Working

Group. https://tools.ietf.org/html/rfc1905.

Casey, T. (2007). Threat agent library helps identify information security

risks. https://www.researchgate.net/publication/324091298_Threat

_Agent_Library_Helps_Identify_Information_Security_Risks.

Cerf, V. (1989). Rfc 1052: Iab recommendations for the development of internet network manage-

ment standards. https://tools.ietf.org/html/rfc1052. April.

CIS. (n.d.). Cis benchmarks. https://www.cisecurity.org/cis-benchmarks/.

COBIT. (2018). Cobit 2019. http://www.isaca.org/cobit/pages/default.aspx.

ConfD. (n.d.). Confd basic | tail-f systems. https://www.tail-f.com/confd-basic/.

Controls, C. (n.d.). Cis controls. https://www.cisecurity.org/controls/.

98

http://www.bmcsoftware.ca/guides/itil-asset-configuration-management.html
http://www.bmcsoftware.ca/guides/itil-asset-configuration-management.html
https://www.mitre.org/publications/technical-papers/cyber-threat-modeling-survey-assessment-and-representative-framework
https://www.mitre.org/publications/technical-papers/cyber-threat-modeling-survey-assessment-and-representative-framework
https://www.mitre.org/publications/technical-papers/cyber-threat-modeling-survey-assessment-and-representative-framework
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8419
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8419
https://www.ietf.org/rfc/rfc1157.txt
https://tools.ietf.org/html/rfc1906
https://tools.ietf.org/html/rfc1901
https://tools.ietf.org/html/rfc1905
https://www.researchgate.net/publication/324091298_Threat_Agent_Library_Helps_Identify_Information_Security_Risks
https://www.researchgate.net/publication/324091298_Threat_Agent_Library_Helps_Identify_Information_Security_Risks
https://tools.ietf.org/html/rfc1052
https://www.cisecurity.org/cis-benchmarks/
http://www.isaca.org/cobit/pages/default.aspx
https://www.tail-f.com/confd-basic/
https://www.cisecurity.org/controls/

CVE-2018-0274, C. (2018). Cisco network services orchestrator arbitrary command execu-

tion vulnerability. https://tools.cisco.com/security/center/content/

CiscoSecurityAdvisory/cisco-sa-20180606-nso.

CVE-2018-0463, C. (2018). Cisco network services orchestrator network plug and play infor-

mation disclosure vulnerability. https://tools.cisco.com/security/center/

content/CiscoSecurityAdvisory/cisco-sa-20180905-nso-infodis.

CVE-2018-16837, R. (2018). Cve-2018-16837 - red hat customer portal. https://access

.redhat.com/security/cve/cve-2018-16837.

Davin, J., Case, J., Fedor, M., & Schoffstall, M. (1987). Rfc 1028-simple gateway monitoring

protocol. IETF. https://tools.ietf.org/html/rfc1028.

Delaet, T., Joosen, W., & Van Brabant, B. (2010). A survey of system configuration tools.

In Lisa (Vol. 10, pp. 1–8). https://www.usenix.org/legacy/event/lisa10/

tech/full_papers/Delaet.pdf.

Dierks, T., & Rescorla, E. (2008). Rfc 5246-the transport layer security (tls) protocol version

1.2. Internet Engineering Task Force. https://tools.ietf.org/html/rfc5246.

Enns, R. (2006). Netconf configuration protocol-rfc 4741. https://tools.ietf.org/

html/rfc4741.

Enns, R., Bjorklund, M., Schoenwaelder, J., & Bierman, A. (2011). Rfc 6241, network con-

figuration protocol (netconf). IETF. https://tools.ietf.org/html/rfc6241.

Goddard, T. (2006). Using netconf over the simple object access protocol (soap) (Tech. Rep.).

https://tools.ietf.org/html/rfc4743.

Hedstrom, B., Watwe, A., & Sakthidharan, S. (2011). Protocol efficiencies

of netconf versus snmp for configuration management functions. University

of Colorado, Master Thesis. https://pdfs.semanticscholar.org/5664/

44aa2023ac8cf9910cc33ead8582ace4c9c4.pdf.

ISO, . (1989). Iso/iec 7498-4:1989 - information processing systems – open systems interconnection

– basic reference model. https://www.iso.org/standard/14258.html.

Jones, G. (2004). Operational security requirements for large internet service provider (isp) ip

network infrastructure (Tech. Rep.). https://tools.ietf.org/html/rfc3871.

99

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180606-nso
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180606-nso
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180905-nso-infodis
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180905-nso-infodis
https://access.redhat.com/security/cve/cve-2018-16837
https://access.redhat.com/security/cve/cve-2018-16837
https://tools.ietf.org/html/rfc1028
https://www.usenix.org/legacy/event/lisa10/tech/full_papers/Delaet.pdf
https://www.usenix.org/legacy/event/lisa10/tech/full_papers/Delaet.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4741
https://tools.ietf.org/html/rfc4741
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc4743
https://pdfs.semanticscholar.org/5664/44aa2023ac8cf9910cc33ead8582ace4c9c4.pdf
https://pdfs.semanticscholar.org/5664/44aa2023ac8cf9910cc33ead8582ace4c9c4.pdf
https://www.iso.org/standard/14258.html
https://tools.ietf.org/html/rfc3871

Kohnfelder, L., & Garg, P. (1999). Microsoft sdl threat modelling. https://www.microsoft

.com/en-us/securityengineering/sdl/threatmodeling.

Lear, E., & Crozier, K. (2006). Using the netconf protocol over the blocks extensible exchange

protocol (beep) (Tech. Rep.). https://tools.ietf.org/html/rfc4744.

Microsoft, T. M. (n.d.). Getting started - microsoft threat modeling tool - azure | mi-

crosoft docs. https://docs.microsoft.com/en-us/azure/security/azure

-security-threat-modeling-tool-getting-started.

Montgomery, D., Sriram, K., Carson, M., & Santay, D. J. (2016). Advanced ddos mitigation

techniques | nist. https://www.nist.gov/programs-projects/advanced

-ddos-mitigation-techniques.

Murugiah, S., & Scarfone, K. (2016). Sp 800-154, guide to data-centric system threat modeling.

https://csrc.nist.gov/publications/detail/sp/800-154/draft.

NSO. (n.d.). Cisco network services orchestrator (nso) - cisco. https://www.cisco.com/

c/en/us/solutions/service-provider/solutions-cloud-providers/

network-services-orchestrator-solutions.html.

Partridge, C., & Trewitt, G. (1987a). High-level entity management protocol (hemp) (Tech.

Rep.). https://tools.ietf.org/html/rfc1022.

Partridge, C., & Trewitt, G. (1987b). High-level entity management system (hems) (Tech. Rep.).

https://tools.ietf.org/html/rfc1021.

Perrin, C. (2008). The cia triad. https://whatis.techtarget.com/definition/

Confidentiality-integrity-and-availability-CIA.

Rescorla, E. (2018). The transport layer security (tls) protocol version 1.3 (Tech. Rep.).

https://tools.ietf.org/html/rfc8446.

Rizos, C. (2016). Why use netconf/yang when you can use snmp and cli? https://

snmpcenter.com/why-use-netconf/.

Schneier, B. (1999). Academic: Attack trees - schneier on security. https://www.schneier

.com/academic/archives/1999/12/attack_trees.html.

Schoenwaelder, J. (2002). Simple network management protocol over transmission control

protocol transport mapping. https://tools.ietf.org/html/rfc3430.

100

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://tools.ietf.org/html/rfc4744
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-getting-started
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-getting-started
https://www.nist.gov/programs-projects/advanced-ddos-mitigation-techniques
https://www.nist.gov/programs-projects/advanced-ddos-mitigation-techniques
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://www.cisco.com/c/en/us/solutions/service-provider/solutions-cloud-providers/network-services-orchestrator-solutions.html
https://www.cisco.com/c/en/us/solutions/service-provider/solutions-cloud-providers/network-services-orchestrator-solutions.html
https://www.cisco.com/c/en/us/solutions/service-provider/solutions-cloud-providers/network-services-orchestrator-solutions.html
https://tools.ietf.org/html/rfc1022
https://tools.ietf.org/html/rfc1021
https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://tools.ietf.org/html/rfc8446
https://snmpcenter.com/why-use-netconf/
https://snmpcenter.com/why-use-netconf/
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://tools.ietf.org/html/rfc3430

Schoenwaelder, J. (2003). Overview of the 2002 iab network management workshop (Tech. Rep.).

https://tools.ietf.org/html/rfc3535.

Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., & Sekar, V. (2012). Making

middleboxes someone else’s problem: network processing as a cloud service. ACM

SIGCOMM Computer Communication Review, 42(4), 13–24. https://people.eecs

.berkeley.edu/~sylvia/papers/fp150-sherry.pdf.

Shevchenko, N., Chick, T. A., O’Riordan, P., Scanlon, T. P., & Woody, C. (2018). Threat mod-

eling: A summary of available methods. https://resources.sei.cmu.edu/

asset_files/WhitePaper/2018_019_001_524597.pdf.

Shostack, A. (2008). Experiences threat modeling at microsoft. In Mod-

sec@ models. https://adam.shostack.org/modsec08/Shostack-ModSec08

-Experiences-Threat-Modeling-At-Microsoft.pdf.

Stallings, W. (1998). Snmp, snmpv2, snmpv3, and rmon 1 and 2. Addison-Wesley Longman

Publishing Co., Inc. https://dl.acm.org/citation.cfm?id=521036.

Strom, B. E., Battaglia, J. A., Kemmerer, M. S., Kupersanin, W., Miller, D. P., Wampler, C.,

. . . Wolf, R. D. (2017). Finding cyber threats with att&ckTM-based analytics (Tech. Rep.).

Warrier, L. B., & Besaw, L. (1989). Rfc 1095.". Common Management Information Services and

Protocol over TCP/IP (CMOT),". https://tools.ietf.org/html/rfc1095.

Wasserman, M. (2011). Using the netconf protocol over secure shell (ssh) (Tech. Rep.).

https://tools.ietf.org/html/rfc6242.

Wynn, J., Whitmore, J., Upton, G., Spriggs, L., McKinnon, D., McInnes, R., . . . Clausen, L.

(2011). Threat assessment & remediation analysis (tara): Methodology description version

1.0 (Tech. Rep.).

Ylonen, T., & Lonvick, C. (2005). The secure shell (ssh) transport layer protocol (Tech. Rep.).

https://tools.ietf.org/html/rfc4253.

Ylonen, T., & Lonvick, C. (2006). Rfc 4254 the secure shell (ssh) connection protocol.

https://tools.ietf.org/html/rfc4254.

All URLs are valid as of the publication date of this document.

101

https://tools.ietf.org/html/rfc3535
https://people.eecs.berkeley.edu/~sylvia/papers/fp150-sherry.pdf
https://people.eecs.berkeley.edu/~sylvia/papers/fp150-sherry.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2018_019_001_524597.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2018_019_001_524597.pdf
https://adam.shostack.org/modsec08/Shostack-ModSec08-Experiences-Threat-Modeling-At-Microsoft.pdf
https://adam.shostack.org/modsec08/Shostack-ModSec08-Experiences-Threat-Modeling-At-Microsoft.pdf
https://dl.acm.org/citation.cfm?id=521036
https://tools.ietf.org/html/rfc1095
https://tools.ietf.org/html/rfc6242
https://tools.ietf.org/html/rfc4253
https://tools.ietf.org/html/rfc4254

	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Introduction
	Background Study
	Network Management
	Host Management
	Network Service Orchestration
	Security Context

	Problem Statement
	CLI and API Limitations
	SNMP Limitations
	Host Management Limitations
	Security Limitations
	Demerits of Host Management using Traditional Methods

	Proposed Solution
	NETCONF and YANG based Host Management
	Solution Capabilities
	Security Efficiencies
	Testing NETCONF and YANG based Host Management
	Merits of Host Management using NETCONF and YANG

	Threat Models
	Threat Modeling
	Threat Analysis
	Security Insights

	Conclusion and Future Work
	Appendix Appendix
	Lab Machines Specifications
	Installing KVM
	Installing NSO
	Installing Ansible
	Integrating Ansible and NSO
	Installing ConfD
	Integrating ConfD and NSO

	Bibliography

