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HIGHLIGHTS 

 Key operational parameters of 14 office buildings were reviewed. 

 Over 60% of the air handling units were not turned off outside normal occupied hours. 

 Most of the reviewed buildings did not have an economizer cycle program. 

 A sensitivity analysis was conducted with the reviewed operational parameters. 

 A mixed-integer genetic algorithm was applied to identify the optimal operational parameters. 
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Abstract 
Operator decisions regarding daily and seasonal scheduling of systems’ availability and setpoints play an 
important role in building performance. This paper reviews the key operational parameters of 14 office 

buildings in Ottawa, Canada. The results revealed that over 60% of the air handling units (AHUs) were 

not turned off outside of normal occupied hours, and most of them did not have an economizer cycle. The 

indoor temperature setpoints were between 20 and 24°C. Based on these insights, a building performance 
simulation (BPS)-based sensitivity analysis was conducted to better understand the energy and comfort 

performance implications of common operator decisions. Eight operational parameters were studied: 

AHU start and stop times, seasonal switchover to heating and cooling times, heating and cooling season 
temperature setpoints, and ventilation rate and mode (i.e., constant or occupancy-based). The results 

revealed that the AHU start and stop times and the ventilation rate are the most critical operational 

parameters examined in terms of affecting the energy and comfort performance of the buildings 
investigated. Subsequently, a mixed-integer genetic algorithm was applied to identify the optimal 

operational parameters among the set of eight operational parameters investigated for four different 

heating dominated climate zones, nine different occupancy and three different envelope scenarios. The 

relationships between the variables of these scenarios and the optimal operational parameters were 
examined.  

Keywords: Operation; Sensitivity analysis; Optimization; Building performance simulation 

1. Introduction 

Operational decisions such as default temperature setpoints, hours-of-operation for the AHUs, ventilation 

rates, and seasonal switchover to heating and cooling times play an important role in a building’s energy 

and comfort performance [1]. Mainly as a consequence of these decisions, energy use in buildings 
designed to attain similar levels of energy performance can vary by a factor of two or more [1, 2]. 

Occupant comfort and satisfaction indicators such as thermal complaints, sick days, and absenteeism are 

greatly influenced by indoor environmental quality – and in turn by operational practices [3, 4]. 

Despite the importance of operational variables in building performance, operators and controls service 

providers often make such operational decisions without having access to information regarding building 

occupancy, occupant comfort preferences, building envelope, and heating, ventilation, and air-

conditioning (HVAC) equipment characteristics. Absence of analytical tools that can guide operational 
decisions often leads to conservative setpoint and scheduling choices [5]. Common examples of such 

conservative decisions are overventilation [6], HVAC operation extending well-beyond occupancy hours 

[7], and temperature setpoints that are too high in the winter and too low in the summer [8]. 

Although building management systems that can leverage the data in building automation systems 

(BASs) to tune a building’s operation to its occupancy, HVAC, and envelope characteristics increased in 

popularity, penetration of these technologies in existing commercial buildings is still low and engineering 
cost remains a tangible barrier [9]. The energy and comfort penalties of suboptimal operational decisions 

have yet to be recognized by the stakeholders.  

The objectives of this study are to (1) better understand the sensitivity of energy and comfort performance 

to system-level operational variables; (2) demonstrate a BPS-based metaheuristic optimization method to 
evaluate many operational decisions; (3) examine the variations in optimal operational decisions in 

different climate, envelope, and occupancy scenarios; and (4) consolidate the optimization results to a set 

of operational rules that can be easily understood by operators. 
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To this end, the building automation system data gathered from 14 government office buildings in 

Ottawa, Canada are reviewed to understand which key variables operators adjust, and the typical diversity 
of values. Subsequently, the following operational parameters are examined through a simulation-based 

investigation: seasonal switchover to heating and cooling times, ventilation rate and mode, zone 

temperature setpoints, and AHU fan start and stop times on weekdays. A nine-zone EnergyPlus model is 

developed representing an intermediate floor of an office building. In the study, 108 variants of this office 
model are created on the basis of: four different Canadian cities, with three different envelope and nine 

different occupancy characteristics. The sensitivity of the energy and comfort performance to the 

operational parameters is studied. A mixed-integer genetic algorithm is applied to identify the optimal set 
of operational parameters minimizing the HVAC energy use, the occupant-hours above 1000 ppm of CO2, 

and ASHRAE 55.1 [10]’s predicted percentage dissatisfied (PPD) thermal comfort metric. The scope of 

this study is limited to office buildings in cold climates – i.e., ASHRAE 90.1 [11] climate zones 4 to 7. 

First, the paper presents a review of the literature on BPS-based sensitivity analysis and optimization of 

building operations. Secondly, it presents the results from the survey of the system-level operational 

parameters of the 14 buildings. Thirdly, the methodology section presents an overview of the EnergyPlus 

model, simulation scenarios and optimization parameters. Subsequently, the sensitivity analysis and 
optimization results are presented, limitations of the methodology and the results are discussed, and future 

work recommendations are developed. 

2. Literature review 

In general, retro-commissioning involves improving building operation by making changes to system-

level operational parameters such as changing AHU schedules, applying temperature setbacks, tuning the 

ventilation rates, as well as fixing hardware malfunctions [12]. For example, Bynum et al. [13] reports 
that 68% of the deficiencies identified during retro-commissioning are related to controls and operation. 

Hence, the retro-commissioning literature could offer insights into the sensitivity of building performance 

to operational parameters [14]. For example, Mills et al. [12] analyzed the commissioning results from 
224 buildings in the United States. Later, the analysis was expanded with data from over 600 buildings 

[15]. In both cases, the median of the energy savings estimated from these case studies was about 15% 

[15]. However, as energy efficiency measures (many operational changes and other upgrades regarding 
sensing, equipment, envelope) are implemented concurrently (not one at a time), it is hard to isolate the 

impact of each operational change on the overall performance. Further, often the metering and data 

archiving infrastructure lack the resolution to support the measurement and verification of the sensitivity 

of performance to changes in individual operational parameters. Simply put, because it is challenging to 
vary operational variables systematically and collect sufficiently long-term data for the measurement and 

verification of the impact of operational changes in real buildings, researchers often resort to BPS for 

such analysis. 

A BPS-based sensitivity analysis in building operations is intended to reveal the most important 

operational decisions in terms of their impact on building performance [16]. For example, Macdonald and 

Strachan [17] and Hopfe and Hensen [18] carried out sensitivity analyses to study the impact of the 

uncertainty in operational variables such as the heat gains from people, lighting, and equipment as well as 
the uncertainties from the thermophysical properties of the envelope materials and climatic conditions. 

Aside from sensitivity analysis papers that aim to capture all aspects of building performance uncertainty 

(e.g., envelope, climate, occupancy), several researchers studied different sources of uncertainty 
individually. For example, Wang et al. [19] studied the influence of occupancy variables on building 

energy performance predictions. This study concluded that the occupancy variable does not account for a 

substantial uncertainty on mean energy use predictions, when the relationship between occupancy levels 
and ventilation, lighting, and plug loads is neglected. Many researchers have assessed the uncertainty 

propagated from occupants’ interactions with lighting, blinds, operable windows, and thermostats to 

building performance predictions and BPS-based design decisions [20-22]. 
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Several papers conducted simulation-based sensitivity analyses of building performance to system-level 

operator (or controls technician) decisions [1, 23-25]. Through a simulation-based investigation, Yan et 
al. [24] studied the impact of uncertainty in parameters involved in the outdoor airflow control, and 

identified that such uncertainty can lead to a 17% variation in cooling and a 43% variation in heating 

energy use. Eisenhower et al. [23] studied uncertainty propagation from over 1000 parameters – including 

envelope, HVAC, lighting, equipment, and occupancy-related parameters. Some of the most influential 
parameters identified were common operator assumptions such as: the heating and cooling availability 

sequences, the minimum outdoor airflow rate, the supply air temperature setpoint, and the zone 

temperature setpoint. Wang et al. [1] employed the BPS tool EnergyPlus with the medium-sized office 
building archetype model, and examined uncertainties introduced to the energy consumption due to 

common operator decisions such as the HVAC equipment operation schedules, room temperature 

setpoints, terminal units’ minimum airflow setpoint, economizer programming scheme, nighttime 
temperature setback setpoints, and supply air temperature control scheme. Three different operational 

scenarios were modelled in four different climatic conditions in the United States. The results of this 

simulation-based investigation indicate that these common operator decisions can affect the energy 

performance by as much as 80%. The focus of the reviewed papers on the sensitivity analysis of building 
operation was primarily on the energy performance – indoor air quality and thermal comfort indices were 

rarely included in these studies [18].  

Optimization of building operations, beyond studying the energy and comfort impact of top operational 
decisions, represents a mathematical framework to find the best operational parameters. Particularly 

within the model-based predictive controls (MPC) domain, optimization of building operations is a 

popular research topic [26]. An MPC algorithm employs an optimization method together with a model of 
the controlled system to dynamically determine the optimal control sequence over a receding time horizon 

– typically less than 24 h. After executing the control decision for a single timestep, the MPC calls for the 

optimization algorithm again and re-evaluates its next move iteratively. In the reviewed literature, 

different forms of MPC have been applied for the control of zone, system, and plant-level equipment – 
e.g., chillers and boilers, AHUs, variable air volume (VAV) terminal units, perimeter heaters, radiant 

floor heaters, and automated shades [27-29]. Commonly used optimization algorithms in MPC include 

quadratic programming, dynamic programming, integer programming, genetic algorithms, and particle 
swarm optimization [30, 31]. 

Despite case studies demonstrating the potential of MPC in building operation, there are several barriers 

to its widespread use in real life [32]. First, although self-adaptive models that rely on state and parameter 

estimation algorithms, such as Extended and Unscented Kalman Filters, can alleviate this problem [33, 
34], there is still a considerable engineering cost associated with model development and configuration 

[31]. Secondly, beyond obtaining a model that can be used by the optimization algorithm, an MPC needs 

forecasts for the disturbances over the prediction horizon – e.g., occupant-driven thermal loads, solar heat 
gains, infiltration and envelope losses. The need for accurate short-term disturbance forecasts in MPC led 

to a number of research activities – e.g., short-term weather forecasts [35], Bayesian filtering techniques 

to filter out the effect of disturbances [33], and pattern detection for occupant-driven thermal loads [36]. 
Thirdly, the BASs in many existing buildings offer only a limited computational power for the 

deployment of these algorithms inside controllers, and sometimes a network cannot reliably accommodate 

the data traffic from a server dedicated for an MPC. Lastly, as highlighted in a recent review article [31], 

a non-technical barrier to the widespread use of MPC in building operations is the industry’s reluctance to 
adopt innovation. Many building operators may not wish to hand over the read and write authority to a 

supervisory control system – especially if it is one which they do not fully understand.  

Given the aforementioned challenges, a gap in the reviewed literature on optimization in building 
operations is the need for practical intermediate solutions. For example, in lieu of employing a full-

fledged optimization algorithm for the real-time control of building systems, near-optimal control rules / 

policies can be derived by using a (physics-based or data-driven) building model and an optimization 
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algorithm. However, only a few researchers (e.g., [37, 38]) examined the viability of extracting such 

control rules / policies – which can be easily interpreted by the building operators and implemented in 
most BASs without any additional hardware and software costs. A few research questions that remain 

unanswered can be listed as follows: How do the derived optimal control rules vary from one climate to 

another or with envelope performance and occupancy characteristics? Can we generalize operational rules 

such as seasonal switchover to heating / cooling times, AHU on / off schedules, and default temperature 
setpoints for heating / cooling seasons depending on variables such as building envelope and occupancy 

characteristics, and the local climate? The relationship between the optimal operational strategies and a 

building’s design and use conditions has not been studied in a systematic way using optimization. 

3. Review of building operations 

To complement the findings of the literature survey, the building energy management system (BEMS) 

databases of 14 government buildings in Ottawa, Canada were queried regarding their high-level 
operational characteristics. The BASs in each of these buildings were programmed by different controls 

vendors. The buildings were used mostly by government employees, and they tended to have similar 

occupancy characteristics. The floor area of the studied buildings varied from 4,000 to 61,000 m
2
. They 

were constructed between 1847 and 1979. Over their lifetime, the buildings underwent several envelope 

and HVAC retrofits, and today they all have a typical VAV-AHU HVAC configuration. Each building is 

served by a single central heating and cooling plant – circulating steam and chilled water year-round. In 
total, there were three central plants that served these buildings. 

From the BEMS databases of these buildings, archived data records pertaining to zone temperature 

setpoints and AHU supply and return fan operating schedules were extracted. The outdoor air intake at 

the AHUs was not monitored in any of the buildings. The outdoor airflow was sustained simply by 
keeping the outdoor air intake damper open at a minimum position. The amount of outdoor air in the 

supply air, which varies depending on the return and supply fans’ actuation, and exhaust, outdoor, and 

mixed air dampers’ position, could not be extracted. Data records for the AHU outdoor air intake damper 
positions and the CO2 concentrations were extracted from BEMS databases. Lastly, the AHU supply air 

temperature setpoint values were extracted. The original data records were sampled at 5 to 15-min 

intervals. For ease of analysis, all data records were interpolated linearly to obtain data records at 15-min 
intervals with common timestamps. Table 1 presents an overview of the data records.  

In total, data records for 490 indoor temperature setpoints, 191 AHU fan schedules, 47 AHU outdoor air 

intake damper positions, 72 AHU return air CO2 concentration sensors, and 100 AHU supply air 

temperature setpoints were downloaded for the timespans covering both heating and cooling seasons in 
Ottawa (see Table 1). Note that it is likely that there are many relevant data records other than the ones 

listed in Table 1. However, they may not be found due to inconsistencies in data labeling. In addition, 

some data records were discarded as they contained gaps due to missing and erroneous data. Further, 
some buildings had more points than others. Consequently, the data extracted may disproportionately 

represent a subset of the 14 buildings, and readers should be cautious about generalizing these operational 

characteristics to other buildings. The sole intent in analyzing the BEMS data of these buildings was to 

form a reasonable basis for the range of operational parameters used in the sensitivity analysis and 
optimization.  

Table 1: An overview of the data records extracted from the BEMS of the fourteen government buildings.  

Type Number of BAS points Units Start date End date 

Room temperature setpoint 

131 

°C 

Nov 9, 2017 May 31, 2018 

181 Dec 16, 2017 May 31, 2018 

178 May 4, 2017 May 31, 2018 

AHU fan schedule 191 0 or 1 Feb 11, 2018 May 31, 2018 

Outdoor air intake damper position 37 0 to 100% Nov 16, 2017 Aug 31, 2018 
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10 Mar 16, 2018 Aug 31, 2018 

CO2 concentration 72 ppm Feb 10, 2018 May 31, 2018 

Supply air temperature setpoint 100 °C Nov 15, 2017 May 31, 2018 

Figure 1 presents the mean weekday zone temperature setpoint profiles computed from individual data 
records. The shaded areas indicate the 10

th
 and 90

th
 percentile range, and the black solid lines indicate the 

ensemble average for the mean weekday zone temperature setpoint profiles. The results indicate that the 

zone temperature setpoints did not change between the heating and the cooling seasons. The mean 
temperature setpoint was ~22°C during both seasons. This can be interpreted as demonstrating that a 

seasonal temperature setback was not applied in these buildings. The 10
th
 to 90

th
 percentile range was 

between ~20°C and ~24°C. Further, the weekday temperature setpoint profiles in any of the 490 zones did 

not change during the day; meaning that an overnight temperature setback strategy was not applied in 
both seasons. Note that in Figures 1 to 4, the data collected from November to March were treated as the 

heating season data, whereas the data collected from May to September were treated as the cooling season 

data. Similar to Figure 1, Figure 2 presents the mean weekday AHU supply air temperature setpoint 
profiles. The mean supply air temperature setpoint was about 18°C for both heating and cooling seasons – 

which is considered quite high for these forced air VAV AHU systems during the cooling season. 

However, it is observed that many of the AHU supply air temperature setpoints were not programmed to 
change from one season to another. The 10

th
 to 90

th
 percentile range for the supply air temperature 

setpoint profiles was observed between ~15°C and ~22°C. Furthermore, only small variations were 

observed in the daytime mean weekday supply air temperatures. Note that the perimeter zones in these 

buildings were typically equipped with other heating systems such as radiant panels, reheat coils, and 
induction units.  

Figure 3.a presents the ensemble average for the availability schedules of the AHU supply and return fans 

(a schedule value of one means that AHU fans are on and zero means that AHU fans are off). The results 
indicate that over 60% of the 191 AHU fans remained operational overnight during both the heating and 

cooling seasons. Simply put, the majority of the AHUs did not appear to have an on-off schedule. The 

ones that have a daily on-off schedule tend to start operating between 5 am and 8 am, and they tend to 
stop operating between 4 pm and 6 pm. Figure 3.b presents the ensemble averages for the AHU outdoor 

air intake damper positions. The results did not reveal any difference between the damper positions during 

the heating and the cooling seasons. This is likely because an air-side economizer was not programmed in 

these buildings. The average overnight damper position appears to be about 10% during both the heating 
and cooling seasons. This may have severely affected the heating energy use given that many of the AHU 

fans remain operational overnight during the heating season.  

Recall that the AHU outdoor airflow rate was not monitored in any of the studied buildings. 
Alternatively, to gain insight into potential over- or under-ventilation issues, the AHU return air CO2 

concentration data from 72 sensors were examined (see Figure 4). It should be noted that the authors did 

not install, upgrade, or recalibrate these CO2 sensors; we used the sensor data extracted from the BEMS 

as is. The results indicate that the CO2 concentrations do not exhibit a noticeable variation between the 
heating and the cooling seasons. This is in line with the observation that the outdoor damper operation 

does not change between seasons (see Figure 3.b). If there had been an air-side economizer, we would 

have observed a lower CO2 concentration during the cooling season than the heating season. In addition, 
the mean weekday CO2 concentration profiles that the CO2 concentrations were spread across a wide 

range of values with many spaces over-ventilated and some under-ventilated. The insights from this data 

analysis and the literature survey will serve as a basis for the range of the operational parameters of the 
simulation-based sensitivity analysis and optimization presented in the following sections. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T  
Figure 1: Mean weekday zone temperature setpoint profiles for (a) the heating and (b) the cooling seasons. The 

black solid lines indicate the mean and the shaded areas indicate the 10th and 90th percentiles of the mean weekday 
zone temperature setpoint profiles. 

  
Figure 2: Mean weekday AHU supply air temperature setpoint profiles for (a) the heating and (b) the cooling 

seasons. The black solid lines indicate the mean and the shaded areas indicate the 10th and 90th percentiles of the 

mean weekday AHU supply air temperature setpoint profiles. 

  
Figure 3: Mean weekday (a) AHU fan availability and (b) AHU outdoor air intake damper position profiles. A 

schedule value of one means that all AHU fans are on and zero means that all AHU fans are off. A damper position 

of 100% means that all dampers are open and 0% means that all dampers are closed. 
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Figure 4: Mean weekday AHU return air CO2 concentration profiles for (a) the heating and (b) the cooling seasons. 

The black solid lines indicate the mean and the shaded areas indicate the 10th and 90th percentiles of the mean 

weekday AHU return air CO2 concentration profiles. 

4. Methodology for simulation-based investigation 

The operational parameters used in the sensitivity analysis and the optimization problem are listed in 

Figure 5. These parameters are the start and stop times for the AHU, the temperature setpoints during the 

heating and the cooling seasons, the seasonal switchover to heating and cooling times, and the ventilation 
rates and mode. The first parameter determines the availability schedule for the AHU on weekdays. In all 

scenarios, it was assumed that the AHUs remain off during the weekends. The AHU heating coil and 

VAV reheat coils were set to be available from the seasonal switchover to heating time to the seasonal 
switchover to cooling time. During the heating season, the heating season temperature setpoints were 

applied. Analogously, the AHU cooling coil was set to be available from the seasonal switchover to 

cooling time to the seasonal switchover to heating time. During the cooling season, the cooling season 

temperature setpoints were applied. The final operational parameters were the ventilation rate (i.e., 
minimum outdoor airflow rate for indoor air quality) and the ventilation mode (i.e., constant and 

occupancy-based minimum outdoor airflow). The constant ventilation mode does not vary the ventilation 

rate prescribed by the ventilation rate parameter. With this ventilation mode, a constant minimum outdoor 
airflow is provided as long as the AHU operates. The occupancy-based ventilation mode multiplies the 

ventilation rate with the occupancy profile (see Figure 6). Note that the real life implementation of the 

occupancy-based ventilation mode requires a sensing technology dedicated for occupancy count 
estimation (e.g., WiFi-based, camera-based [39-42]). Determining an appropriate constant ventilation rate 

in real life requires information on peak occupancy levels. 

For the sensitivity analysis and optimization, the BPS tool EnergyPlus v8.9 was used to build an energy 

model of an intermediate floor of a multi-storey office building. For simplicity, the 27 m by 27 m floor is 
divided into nine equal thermal zones (eight perimeter zones and one core zone). We should acknowledge 

that the impact of this zoning decision on the optimization results was not studied. This is because our 

focus was on the optimization of operational decisions given a design form. It was assumed that the floor 
is between two identical floors, thus the heat exchange through the floor and the ceiling is neglected (i.e., 

adiabatic boundaries). The window-to-wall ratio (WWR) is 33% on all cardinal directions. The heating 

and cooling to each thermal zone was supplied through a VAV terminal unit with a reheat coil. The 

minimum airflow fraction of the VAVs was assumed to be 20%. A packaged AHU which contained 
heating and cooling coils was modelled to serve the nine zones. The gross rated coefficient of 

performance of the cooling equipment was assumed to be 3. Note that EnergyPlus defines rated 

conditions for coefficient of performance for cooling as air entering the cooling coil at 26.7°C drybulb 
and 19.4°C wetbulb temperatures, and air entering the outdoor condenser coil at 35°C. The input 

electricity used in coefficient of performance calculations includes the power demand for compressor and 

condenser fans but does not include the power consumption of the supply air fan. The natural gas-based 
heating equipment was assumed to operate at 80% efficiency. A differential dry-bulb airside economizer 

was assumed to increase the outdoor airflow rate to reduce the cooling load when the outdoor temperature 

is less than return air temperature but more than 10°C. We determined this 10°C value through trial and 

error to ensure that the cooling needs of core spaces at outdoor temperatures lower than the threshold 
value can mostly be met via the redistribution of air returned from both perimeter and core zones and via 

the minimum outdoor airflow for ventilation. Note that differential drybulb is a built-in economizer type 

in EnergyPlus. It is set to increase outdoor airflow rate when there is a cooling load and the outdoor 
temperature is below the zone exhaust air temperature. The default NECB [43] lighting and plug load 

density and schedule values were assumed. At full occupancy, the occupant density was assumed to be 

0.05 person/m
2
 [43]. An overview of the characteristics of the building model is shown in Figure 5. 

Subsequently, 108 variants of this base building model were generated to cover three envelope scenarios, 

four different cities, and nine occupancy scenarios. As shown in Figure 5, the envelope scenarios are 
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generated by varying the common envelope performance metrics systematically – e.g., incrementally 

decreasing the window U-factor, increasing the wall R-value, and increasing the airtightness. Four 
different Canadian cities were selected from four different NECB climate zones – i.e., Zone 4 Vancouver, 

Zone 5 Toronto, Zone 6 Ottawa, Zone 7 Edmonton. The standard NECB occupancy schedules were 

varied by multiplying its values by 1.0, 0.8, and 0.6 – representing three plausible occupancy levels. From 

this point on, we will refer to these three occupancy levels as high, medium, and low occupancy, 
respectively. The occupancy schedules were also varied by shifting it by one-hour earlier or one-hour 

later than its default NECB values. Hence, the nine occupancy scenarios shown in Figure 6 were 

generated: high early, high, high late, medium early, medium, medium late, low early, low, and low late.  

For each of the 108 scenarios, the solution space for the eight operational parameters listed in Figure 5 is 

searched. The set of eight operational parameters that minimize a cost function was selected by the 

genetic algorithm. Aside from the HVAC energy use intensity, the cost function incorporated two 
discomfort metrics: (a) a thermal discomfort metric derived from ASHRAE Standard 55 [10]’s predicted 

percentage dissatisfied (PPD) metric and (b) the percentage of occupied hours spent above 1000 ppm of 

CO2. For the calculation of PPD, a clothing insulation level of 0.5 clo was assumed from May to October, 

and 1.0 clo from November to April [10]. The metabolic heat generation rate and human surface area 
were assumed to be 120 W (for sedentary office work) and 1.8 m

2
, respectively [10]. The room air 

velocity was assumed to be 0.1 m/s. Equation 1 presents the calculation of the thermal discomfort metric: 

    
∑ (∑    (   )      (   )    

   ) 
   

∑ (∑       (   )    
   ) 

   

     (1) 

where PPD is the ratio of people predicted to be dissatisfied based on Fanger’s thermal comfort model, 
People is the number of people in a zone, i is the thermal zone index, and t (h) is the timestep index for 

the annual simulations. The indoor air quality (IAQ) metric IIAQ is computed as follows: 

     

∑ (∑     (   )      (   )
    

   
) 

   

∑ (∑       (   )    
   ) 

   

     
(2) 

where BCO2 is a binary indicator for high CO2 (ppm) concentration. It takes the value “1” when the CO2 

concentration exceeds 1000 ppm in zone i at timestep t; otherwise, it takes the value “0”. The CO2 
generation rate was assumed to be 16.5 L/h-person [44]. The cost function J is heuristically formulated as 

follows: 

          (   )
  (    )

 
 (3) 

where EUIHVAC (MJ/m
2
-yr) is the HVAC energy use intensity. Based on a preliminary inspection, it was 

identified that EUIHVAC is expected to take values between 100 and 500 MJ/m
2
-yr. The thermal and indoor 

air quality discomfort metrics can take values between 0 and 100. To penalize deviations from ideal 

comfort conditions (i.e., ITC = 0 and IIAQ = 0), a quadratic relationship is proposed between them and the 

cost function. These artificial penalties for discomfort (   
 
 and     

 ) are also known as the penalty 

functions in the optimization literature. They enable us to convert a constrained optimization problem 
(i.e., minimize energy use without violating occupant comfort) to an unconstrained form. As such, Eqn. 3 

combines multiple objectives by using a weighted distance metric from the ideal solution (i.e., EUIHVAC = 

0; ITC = 0; IIAQ = 0). However, in this paper, the relative weight of these two penalty functions was 
determined heuristically – based on preliminary trials with a few of the 108 scenarios to assess the 

sensitivity of optimal solutions to the cost function form. The relative importance of energy use, thermal 

comfort, and indoor air quality can be different for each building operator. Regardless, future research 

should investigate the sensitivity of optimal operational rules to different cost function configurations. 

It is worth noting that we idealized the operational parameters as discrete quantities instead of treating 

them as continuous. The eight operational parameters were assumed independent, and we permitted them 
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to attain one of each of the 9 AHU start and 9 AHU stop times, 12 seasonal switchover to cooling and 12 

seasonal switchover to heating times, 5 setpoints during heating season and 5 setpoints during cooling 
season, 11 ventilation rates, and 2 ventilation modes. For each of the 108 scenarios, the brute force search 

of the best set of operational parameters would have resulted in about 6.5 million EnergyPlus simulation 

runs (9 x 9 x 12 x 12 x 5 x 5 x 11 x 2). Given the computational burden of doing so, a mixed-integer 

optimization problem is solved by using a genetic algorithm. The process of creating the 108 scenarios 
and finding the optimal set of operational parameters was carried out through a custom Matlab script that 

read / write from the base EnergyPlus model. Matlab’s genetic algorithm function ga was used in 

searching the optimal set of operational parameters. The crossover fraction was set to 0.5 whereby the 
crossover is a process of mixing multiple candidate solutions to generate a new solution. The number of 

elite individuals to pass to the next generation were set to two. The population size in each generation was 

75; and the algorithm continued searching for the optimal solution for up to 8 generations unless there 
were 5 consecutive generations with no improvements in the objective function (i.e., 5 stall generations). 

Note that the input parameters of the genetic algorithm were determined through a preliminary sensitivity 

analysis to assess the stability of the solution at each run. Further information regarding the theory and 

application of genetic algorithms can be found elsewhere [45, 46].   



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 
Figure 5: A schematic presenting an overview of the base EnergyPlus model, the climate, envelope, and occupancy 

scenarios, and the operational parameters of the sensitivity analysis and optimization.  
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Figure 6: Nine occupancy scenarios: high early, high late, high, medium early, medium late, medium, low early, low 

late, and low. The “early” occupancy scenarios were generated by shifting the occupancy profiles by one-hour 

earlier in the day, and the “late” occupancy scenarios were generated by shifting occupancy profiles by one-hour 

later in the day.  

5. Sensitivity analysis results 

Figure 7 presents the results of a sensitivity analysis for one of the scenarios listed in Figure 5 (i.e., 
climate scenario 2, envelope scenario 3, and occupancy scenario 2 in Figure 5). The operational 

parameters were varied individually from the following case: AHU start time: Nov 3, setpoint during the 

heating season: 21°C, setpoint during the cooling season: 24°C, ventilation rate: 0.5 L/s-m
2
, and 

ventilation mode: constant. AHU operating schedule was the most influential parameter affecting the 

HVAC energy use. The results indicate that applying a daily on-off schedule on weekdays can drastically 

reduce the HVAC energy use. The HVAC energy use was estimated to decrease by ~4% for each hour the 

AHU start time is delayed or for each hour the AHU stop time is moved to an earlier time in the day. 
Considering that more than half of the surveyed 191 AHU fans in Section 3 did not have daily on-off 

schedules, applying simple daily AHU schedules can be one of the most cost-effective ways to achieve 

significant energy savings. Beyond its impact on the energy performance, over the studied range AHU 
start and stop times account for a ~30% variation in the thermal comfort metric ITC.  

A degree Celsius increase in the cooling season temperature setpoint was estimated to decrease the 

HVAC EUI by ~2%, and a degree Celsius decrease in the heating season temperature setpoint was 
estimated to decrease the HVAC EUI by ~6%. Finding setpoints that exploit the seasonal variations in the 

comfort temperatures, due to factors such as changing clothing insulation levels across seasons, can be 

another simple energy saving opportunity. Recall that the surveyed temperature setpoints in Section 3 did 

not exhibit any noticeable variations between the heating and the cooling seasons. They had a mean value 
of 22°C for both seasons. Varying the temperature setpoints over the studied range caused a 10 to 15% 

variation in the thermal comfort metric ITC. It is worth noting that the clothing insulation levels used in 

this paper (which were based on ASHRAE Standard 55 [10]) neglected the inter-occupant diversity – i.e., 
assuming that all occupants have a clothing insulation level of 1.0 clo during the winter and 0.5 clo during 

the summer. Further, typical winter and summer clothing insulation assemblies tend to vary in different 

climate zones [47] – this variation was also neglected. Clothing insulation models that capture inter-

occupant and inter-climate diversities may have affected the heating and cooling temperature setpoints 
determined through this optimization exercise.  

The studied range of the seasonal switchover to heating and cooling times account for a ~5% variation in 

the HVAC EUI and a ~10% variation in the thermal comfort metric ITC. Therefore, selecting appropriate 
seasonal switchover to heating and cooling times can make modest improvements in the overall energy 

and comfort performance. Note that Figure 7 presents cases with a constant ventilation rate of 0.5 L/s-m
2
 

only. Hence, the CO2 concentrations shown in the figure did not exceed the 1000 ppm threshold. The 
sensitivity analysis results for ventilation rate are shown in Figure 8. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The results shown in Figure 8 present the sensitivity analysis results for the ventilation rate and mode for 

high, medium, and low occupancy levels. With the constant ventilation mode, the studied ventilation rate 
range accounts for a ~40% variation in the HVAC energy use for all three occupancy levels. With the 

occupancy-based ventilation mode, the studied ventilation rate range accounts for a ~20% variation with 

the high occupant density scenario, a ~16% variation with the medium occupant density scenario, a ~12% 

variation with the low occupant density scenario. With both ventilation modes, the lowest ventilation rates 
that can maintain the IAQ metric IIAQ at 0% were 0.3, 0.2, and 0.1 L/s-m

2
 with high, medium, and low 

occupant densities, respectively. At these ventilation rates, the HVAC EUI with the occupancy-based 

ventilation mode was estimated to be 3 to 6% less than the HVAC EUI with the constant ventilation 
mode. These results indicate that information regarding the shape of the occupancy profile is of practical 

use in lowering the energy implications of over-ventilation; whereas, the information regarding the peak 

occupancy levels is needed to determine a reasonable ventilation rate. It is worth noting that with the 
VAV-AHU HVAC configuration the air returned from individual zones is mixed with the outdoor air, 

conditioned, and redistributed to the zones to primarily meet their space heating and cooling needs. As a 

result, supply air cannot be perfectly divided proportional to the intrazonal ventilation needs. Hence, some 

over-ventilation is often inevitable with this common HVAC configuration, which nullifies the need for 
perfect real-time occupancy information. HVAC configurations that separate the space heating / cooling 

functionalities from ventilation (e.g., dedicated outdoor air system) will better benefit from the 

occupancy-based ventilation mode.  
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Figure 7: The sensitivity of the HVAC EUI and the comfort metrics ITC and IIAQ to the operational parameters for 
climate scenario 2, envelope scenario 3, and occupancy scenario 2 listed in Figure 5. The sensitivity analysis was 

carried out by systematically varying the individual operational parameters from the following case: AHU start 

time: 5 am, AHU stop time: 6 pm, switchover to cooling: May 2, switchover to heating: Nov 3, setpoint during the 

heating season: 21°C, setpoint during the cooling season: 24°C, ventilation rate: 0.5 L/s-m2, and ventilation mode: 

constant. 
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Figure 8: The sensitivity of the HVAC EUI and the comfort metrics ITC and IIAQ to the ventilation rate and mode 

parameters for climate scenario 2, envelope scenario 3, and (a) occupancy scenario 2, (b) occupancy scenario 5, (c) 

occupancy scenario 8 listed in Figure 5. The sensitivity analysis was carried out by systematically varying the 

ventilation rate for the two ventilation modes while the AHU start and stop times were 5 am and 6 pm, the seasonal 

switchover to cooling and heating were May 2 and Nov 3, the setpoint during the heating and cooling seasons were 

21°C and 24°C, respectively. 

6. Optimization results 

For each of the 108 scenarios listed in Figure 5, the eight operational parameters that minimize the cost 

function (see Eqn. 3) were determined by using the genetic algorithm. The repeatability of the results was 
assessed by repeating the optimization process for a few of the scenarios, while the random seed was 

systematically varied. Figure 9 illustrates the evolution of the cost function for one of the 108 scenarios – 

which was the same scenario used in the sensitivity analysis presented in Figure 7. Recall that each 
generation consists of 75 EnergyPlus simulations with different operational parameters. The genetic 

algorithm by selectively sampling the operational parameters reduces the median cost J (see Eqn. 3) of 

each generation. Note that the whiskers enclose 1.5 times the interquartile range, and those that fall 

outside this region were highlighted as outliers. There were no outliers in the lower half of the population 
in each generation; whereas, there were several outliers in the upper half. Simply put, there are 

exceptionally bad operational parameters; whereas the optimal operational parameters do not result in a 
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substantially better operational performance than the near-optimal operational parameters. In the example 

presented in Figure 9, the cost J of the best operational scenario (i.e., the lower whisker) did not change 
significantly beyond the third generation. In this example, the median continued improving until the 7

th
 

generation. However, even after seven generations, the outliers were not completely eliminated due to 

crossover and mutation. Figure 9 also tabulates the optimal operational parameters determined for this 

scenario. 

 
Figure 9: An example illustrating the evolution of the cost function for one of the 108 scenarios. Each boxplot 

consists of 75 EnergyPlus simulations with different operational parameters. The scenario used in this illustrative 

example is the same as the one used in the sensitivity analysis presented in Figure 7 (i.e., climate scenario 2, 

envelope scenario 3, and occupancy scenario 2 listed in Figure 5). The figure also tabulates the optimal operational 

parameters determined for this scenario. 

After computing the set of eight operational parameters for each of the 108 scenarios, a fundamental 
challenge was to consolidate and visualize this information. To concisely present the relationship between 

the scenarios and the optimal operational parameters, the decision trees shown in Figure 10 were 

generated by using Matlab’s fitctree algorithm. As the objective of this exercise was merely to present the 
optimal operational parameters, no stopping criterion was applied to the algorithm, meaning that the trees 

were permitted to grow until all decision paths end up with nearly pure leaf nodes (e.g., branch out until 

all those scenarios remaining in the leaf node are from the same class). If the optimal value of an 

operational parameter does not change with respect to a variable (i.e., climate, envelope, occupancy 
characteristics), the variable will not appear in any of the decision splits. 

The optimal AHU start time was 8 am in Vancouver (climate zone 4), 6 am in Toronto (climate zone 5), 

and 5 am in Ottawa and Edmonton (climate zone 6 and 7). These results indicate that the length of the 
heating season setback-to-setpoint periods is the primary factor influencing the optimal AHU start time in 

cold climates. Although it is outside the scope of this paper, these results underline the importance of 

predictive control algorithms that adapt the AHU start time every morning based on the outdoor 
temperature in cold climates. 

The optimal AHU stop times were mainly influenced by the timing of occupancy. The optimal stop time 

was 4 pm with the early occupancy scenarios and 5 pm with the normal and late occupancy scenarios. 

Recall that over 60% of the surveyed AHUs operated year-around without a daily on-off schedule and 
shifting the AHU stop time by one-hour earlier yields ~4% reduction in HVAC energy use. This situation 

highlights the conservativeness in common operational practices and its energy implications. 

Note that the terms poor, medium, and good envelope in Figure 10 correspond to the envelope scenarios 
1, 2, and 3 in Figure 5, respectively. The optimal ventilation rate was estimated to be 0.2 L/s-m

2
 for 

buildings with infiltration rates higher than 0.5 L/s per m
2
 of above-grade exterior surface area (i.e., 

envelope scenarios 1 and 2). This infiltration rate is twice as much as the amount suggested by NECB 
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[43]. For buildings that comply with NECB [43]’s infiltration assumption (i.e., envelope scenario 3), the 

optimal ventilation rate was estimated to be 0.3 L/s-m
2 

if the occupant density is low and 0.4 L/s-m
2
 if

 
the 

occupant density is medium or high. The occupancy-based ventilation mode, instead of the constant 

ventilation mode, was selected in all 108 scenarios. 

The optimal switchover to cooling time with envelope scenario 1 was about two months after it was with 

envelope scenario 3. For envelope scenario 2, the optimal switchover to cooling time was in March 28 for 
Toronto, Ottawa, and Edmonton (climate zones 5 to 7) and March 16 for Vancouver (climate zone 4). 

Similarly, the envelope performance level was the most influential parameter for the switchover to 

heating parameter. The optimal switchover time to heating was estimated to be as early as September 1 
for a building with low density occupancy in Ottawa and Edmonton. It was as late as November 3 for 

envelope scenario 2 and 3 in Vancouver.  

Lastly, for all 108 scenarios, the optimal heating season temperature setpoint was 22°C and the optimal 
cooling season temperature setpoint was 23.5°C. Recall that the mean temperature setpoints in the 

surveyed buildings were ~22°C for both heating and cooling seasons. Further, through the sensitivity 

analysis, it was estimated that a degree Celsius increase in the cooling season temperature setpoints 

decreases the HVAC energy use by ~2%. Therefore, simply applying a default cooling season 
temperature setpoint of 23.5°C instead of 22°C has the potential to reduce HVAC energy use by ~3%. 

Beyond the specific optimization results shown in Figure 10, the methodology can be applied in deriving 

operational rules: (1) for a specific building by using its calibrated energy model and (2) for different 
building archetypes in different climate zones. Considering that calibrated energy models are becoming 

an integral part of a detailed energy audit, employing optimization techniques with these models can lead 

to better operational decisions. Further, the process of optimizing the operational parameters of archetype 
energy models in different climates and consolidating these optimization results to generic operational 

rules through data mining techniques (e.g., decision trees) can yield results useful for energy codes and 

standards. For example, the building energy codes and standards can provide guidance for default AHU 

start and stop times or seasonal switchover to heating and cooling times. 

 
Figure 10: The eight optimal operational parameters for the 108 scenarios listed in Figure 5. The relationship 

between the scenarios and the optimal operational parameters is presented as eight decision trees. 
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7. Unresolved issues 

The methodology and results presented in this paper have several gaps which are left for future work. 

First, the sensitivity analysis and optimization were conducted on a base model with a specific HVAC 

configuration, envelope geometry, thermal mass, and casual heat gains. Future research should investigate 

the effect of these variables on optimal operational decisions. Further, generic assumptions were made in 
modelling occupant comfort (e.g., clothing level, metabolic rate, air speed, CO2 generation amount, CO2 

threshold for discomfort). Sensitivity of optimal operational decisions to these assumptions needs to be 

studied. In addition, we used a typical meteorological year dataset [48] during the EnergyPlus 
simulations. The sensitivity of optimal operational decisions to different climate datasets should also be 

investigated.  

Secondly, the cost function used in the optimization problem incorporated three elements representing the 

HVAC energy use, thermal comfort, and indoor air quality. The relative weight of these three elements in 
this cost function was determined heuristically. The cost function did not incorporate elements to penalize 

peak electricity demand or time of use pricing. Further, different performance metrics could be used in the 

assessment of thermal comfort and indoor air quality. For example, we used a CO2 concentration 
threshold of 1000 ppm for the calculation of the indoor air quality metric used in the cost function. The 

assumptions regarding the definition of these metrics may have affected the results of this simulation-

based investigation. In addition, the parameters of the genetic algorithm (population size, generations, 
crossover) were selected based on a preliminary analysis assessing the stability of the optimal solution. 

Future research should investigate the sensitivity of optimal operational rules to different cost function 

and optimization algorithm configurations. 

Thirdly, the sensitivity analysis and optimization of operational parameters were presented through a case 
study with eight parameters. Evidently, there are many other operational parameters, including terminal 

box minimum flow set points, static pressure resets, economizer control, cold deck supply temperature 

resets, chiller and boiler plant optimization settings, optimization of pumping systems, etc. In addition, 
among the parameters investigated, instead of having a single weekday AHU start time, different AHU 

start times could be determined for different months. Increasing the number of operational parameters to 

optimize is expected to provide performance improvements (which are quantified by the reductions in a 
cost function). The relationship between the number of operational parameters to optimize and the 

incremental performance benefits should be studied in detail. 

The methodology presented in this paper was not demonstrated on a real building. As future work, the 

building operation optimization should be employed with a calibrated energy model of an existing 
building. The optimal operational parameters should then be implemented in the building, and the energy 

and comfort performance improvements should be analyzed.  

8. Conclusions 

A building simulation-based methodology was presented to examine the sensitivity of a building’s energy 

and comfort performance to common operator decisions and to identify the optimal set of operational 

parameters.  

First, the building energy management systems of 14 office buildings were queried to identify their key 

operational parameters. The results of this analysis revealed many operational deficiencies. For example, 

it was identified that over 60% of the AHUs did not have daily on-off schedules; and most of them did 
not have an economizer cycle. The mean indoor temperature setpoints were 22°C year-around, and there 

were no daily or seasonal temperature setback strategies in any of the buildings. The CO2 concentration of 

the return air indicated that most spaces were over-ventilated, while some were under-ventilated. 

Following from these insights from the survey of building energy management systems, a BPS-based 
sensitivity analysis was conducted to better understand the energy and comfort performance implications 
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of common operator decisions. Eight operational parameters were studied: AHU start and stop times, 

seasonal switchover to heating and cooling times, heating and cooling season temperature setpoints, and 
ventilation rate and mode (i.e., constant or occupancy-based). The results revealed that the AHU start and 

stop times and ventilation rate are the most critical of the eight operational parameters examined in terms 

of affecting energy and comfort performance for buildings investigated. A one-hour change in AHU start 

or stop times is estimated to affect the HVAC energy performance by about 4%. The studied ventilation 
rate range (i.e., 0 to 1 L/s per square meter of floor area) accounts for a ~40% variation in the HVAC 

energy use with the constant ventilation mode and a 12 to 20% variation with the occupancy-based 

ventilation mode. It is concluded that the information regarding the shape of the daily occupancy profile 
is of use in lowering the energy implications of over-ventilation; whereas, the information regarding the 

peak occupancy levels is needed to determine a reasonable ventilation rate. 

Subsequently, the genetic algorithm was employed for an integer programming problem to identify the 
optimal operational parameters for four different climate zones, nine different occupancy, and three 

different envelope scenarios. The relationships between these scenarios and the optimal operational 

parameters were consolidated by training a decision tree for each operational parameter. Akin to deriving 

rules, the decision trees can provide guidance for high-level operational parameters. For example, the 
optimal operational decision for AHU start time was 8 am in Vancouver (climate zone 4), 6 am in 

Toronto (climate zone 5), and 5 am in Ottawa and Edmonton (climate zone 6 and 7). The optimal stop 

time was 4 pm with an occupancy profile one hour earlier than the default NECB schedule, and 5 pm 
otherwise. 

Beyond the optimization results presented in this study, the methodology can be applied in deriving 

operational rules for a specific building by using its calibrated energy model and for different building 
archetypes in different climate zones to develop operational guidelines and standards. Future work is 

planned to demonstrate this simulation-based building operation optimization technique on an existing 

building. 
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