Heimdallr: A gatekeeper for IoT

Ayberk Aksoy

A Thesis
n
The Department
of
Computer Science
and
Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

June 2019

© Ayberk Aksoy, 2019

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ayberk Aksoy

Entitled: Heimdallr: A gatekeeper for IoT

and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science
complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final Examining Committee:

Chair
Aiman Hanna

Examiner
Joey Paquet

Examiner
Dhrubajyoti Goswami

Supervisor

Bipin C. Desai

Approved by

Chair of Department or Graduate Program Director

2019

Dean of Faculty

ABSTRACT

Heimdallr': A gatekeeper for IoT

Ayberk Aksoy
CSE, Concordia University, Montreal Canada

a_aksoy@encs.concordia.ca

In today’s wired and interconnected world, a sheer number of devices are now able to connect to
the Internet and expose the data generated by user inputs or the devices’ built-in sensors. These
growing numbers of Internet of Things (IoT) devices are called smart and they range from mobile
phones, smart televisions, IP cameras, household and industrial appliances, to Wi-Fi thermostats
and thermometers. The reason for the avalanche of IoT devices is their convenience and remote
accessibility over the traditional versions. However, as with other technological breakthroughs,
IoT has major issues regarding the security of access and control of the data generated and hence

privacy.

To address these issues, we propose in this thesis a system-based approach: the system consists
of two parts to monitor users’ IoT devices. The first aspect of this system is a firewall monitoring
and controlling the incoming and outgoing traffic to and from the IoT devices which are connected
to the Internet via a new generation of modem/router called Heimdallr. The second aspect is to
store locally in this modem/router the user’s 10T related data and allow a secure interaction by
only the “owner” user with these data and the IoT devices. A new concept is introduced in the
system to ensure that any update to the IoT software is verified and certified by a central not-for-
profit organization. Heimdallr would not allow any update to the [oT’s software to be made unless
the update has been certified by this certification agency. The certification agency has a role similar
to CSA [1] or UL [2] organizations which provide testing, inspection and certification services and

are involved in setting standards.

! Heimdallr, in the Norse mythology, is the gods’ watchman having acute hearing and eyesight.

il

ACKNOWLEDGEMENTS

I would like to first thank my parents, Ayla Aksoy and Aydin Aksoy for making everything in my
life possible. Without their support I wouldn’t be able to achieve any of this, thus, I have all the
right to consider myself the luckiest person for being their child. And I am proud to dedicate my

achievements and success to them.

Secondly, I cannot thank Dr. Bipin C. Desai enough for being not only my supervisor but also a
second father to me being an international student far away from my home and family. His passion
and knowledge on the topic has always been my guide throughout this research. He was the one
who opened my eyes to the problems with IoT systems and he was also the one who gave me the
first spark to our proposed solution in this project. Beside of the academics, he was always there
for me whenever I needed any kind of support or whenever I felt lonely. It is never going to be
enough how many times I say it but I was incredibly lucky to be your thesis student, thank you

Professor!

I would also like to thank my uncle Cihan Aksoy and my cousin Rauf Alp Denktas for supporting
me both morally and financially not only throughout this work but also whenever I need them.
Likewise, I would like to express my deepest appreciation to my grandmothers Seniha Evirgen
and Nuran Aksoy, and my grandfathers Hasan Evirgen and Hicri Aksoy for all of their support and
effort which makes me who I am today. Additionally, I owe a big thank you to rest of my cousins
Pinar Denktas, Can Denktas, Asli Evren Delilbas1, and Derya Ulker Kipgak as well as my aunts
Mesude Denktas, Fatma Mesrure Ulker, and Ayse Ayfer Akalin, and rest of my family.

For his huge support in my success, I would like to express my sincere gratitude to the Executive

Director of the International Energy Agency, Fatih Birol.

In addition, I would like to thank Dr. Aiman Hanna for his guidance in computer networks and
security, Dr. Joey Paquet and Dr. Dhrubajyoti Goswami for their valuable feedbacks which helped
me improve the final version of this thesis. I would also like to thank my program advisor Halina

Monkiewicz for all of her help and support throughout my education in Concordia University.

Finally, a special thanks to all my friends who are always with me on my both worst and best days.

I am so glad to have you!

v

Table of Contents

1 INTRODUCTION

1.1 INTRODUCTION TO TOT ..o e
1.2 STATE OF THE ART ..uvvviieiieiiiiitteeeeeeeeeeitreeeeeeeeeeiareeeeeeeeessiaseeeeeeeeesssstaseeseseesestrsseeeeeeans
1.3 (006).(@3 51011 (0) ISR

2 BACKGROUND

2.1 PROBLEM DEFINITION......uuutitiiiiiiiitiieeeeeeeeititeeeeeeeeeeitareeseeeeeenarsseseeeesesssssseseaeseesnsees
2.2 PROPOSED SOLUTIONSoviiiiuteiienietenteetenieeteeeteeentestestesueeteeeseneensenaesnesueeseessennensensens
221 DAt QS LADOT ...t
2.2.2 PFIVACY LAWS ..ottt ettt ettt ettt ettt
2.2.3 Distributed Ledger TeChnOIOZIES................cc.cccevieiieiiiiiiiiiiiieieeieeieeeieeie e

2.3 (016)(@1 51011 (0)\ ISR RSP URRRRRRPR

3 HEIMDALLR SYSTEM

3.1 HEIMDALLR ...ttt e ettt e e e e e e e aaae e e e e e e eesanbaeeeeeeeeennees
3.2 ASSUMPTIONS AND REQUIREMENTScceieiutiiiieeeeeeeeiieeeeeeeeeeeeiraeeeeeeeeesanaaeeeeeseeennnnns
3.2.1 Software Assurance Aency (SAA)ccovouioiioeioiiiieiieeee e
3.2.2 New Generation Modem/ROULETS...............ccccocurcireioiaeeiiiseiiee e
3.2.3 Acceptance and Support Of the CONCEPLc..ccvevveceecieeiieieiieeeeeieeeeeeeeeeens
3.3 ISSUES ADDRESSED........ccuiiiiiiiiiiiiiiiiiiiiii ittt
3.3.1 10T Device Maker Related ISSUESccooceeriiiniiiiiiiiiiiiiiiieeee e,
3.3.2 Hardware/Software Related ISSUESccccceioiiiieiiiiiiiiiiesee e,
34 CONCLUSION ...ttt ettt ettt ettt e s s e st e st e e et e te et eeaneeenesanesanes

4 ARCHITECTURE OF HEIMDALLR SYSTEM

4.1 SYSTEM DIAGRAMScooiviiiiiiiiiiiiiiiiiiii it
4.1.1 Deployment DIAQFAM.............ccccecueiieeeiieiieeie ettt ettt esaeeseneas
4.1.2 Use CaSE DIAGIANM ..ottt saee e
4.1.3 ACHVILY DIAGFAM........oceveeiie ettt st s aee s e eaeeeeneas
4.1.4 Sequence DiaQrami................c.cccccccoiuiiiiiiiiiiiiiiniiiiiiiit et
415 Class DIGQFAMScccccoueviiiiriiiiiieieieee sttt
416 ER DiGQFATNS ..ottt s

4.2 TOOLS AND TECHNOLOGIES USEDcccutiiieiiiienieniienieenieeeeene e eieesieeteeneeenesanesanes

4.3 CONCLUSION ..ottt

5 SIMULATION OF HEIMDALLR AND EXPERIMENTATION

\%

21

21
23
23
24
25
25
25
27
29

30

30
32
35
37
40
41
50
52
54

56

6

7

8

5.1 EXPERIMENTATIONccoiuttiiiiueteeeeeteeeeeeeeeeeeaaeeessateeesaseseessaaeeesassetesasseesssseeesasteeesansseessassteesaneaeessaaeessseeeeas
5.2 ANALYSIS AND ASSESSMENToiiiiuuiiiiiietieeeeeeeeeeeeeeeeesateeeeeaaseeseaeeesssaaeeesaaseesssaeessasseeesaaseessareeesssseeesanees
CONCLUSION AND FUTURE WORK
REFERENCES
APPENDICES
8.1 APPENDIX Aottt oottt e ettt e e e e e e et e e e e e eeeeetaaataeeeeeaeataaraeeeeeeaataraaaaeeeeaatarraaaeeeeeaararaens
8.2 J N 2531 5] 0G0 S TSRS
8.3 J 2N 23 53] 5] 0 SRR

Vi

67

70

77

List of Figures

FIGURE 1: TRADITIONAL CONCEPT OF IOT SYSTEMScoctiiiiiiiniiiiiiiintieeenieeteeteetestesieesieesaeenaeenneeeneensessnenieens 22
FIGURE 2: HEIMDALLR CONCEPT OF IOT SYSTEMScc.ooiiiiiiiiiiniiiiiiiietietceteit ettt st st ieens 23
FIGURE 3: CONCEPTUAL DIAGRAM OF THE HEIMDALLR SYSTEMcccoioiiiiiniiiniieienienienreneenieenneenneeesesueesinenieens 30
FIGURE 4: DEPLOYMENT DIAGRAM OF THE HEIMDALLR SYSTEMccuoiieiitiietinteieeinieeeseesesesessesesessesesessessenes 32
FIGURE 5: USE CASE DIAGRAM OF THE HEIMDALLR SYSTEMccoooteiitiietiitiiesietesesessesesessesessssessessssessessesessenes 35
FIGURE 6: ACTIVITY DIAGRAM OF THE HEIMDALLR SYSTEMccoootiiitiietiitiierinteseeesseseseesesessssessesessessessssessenes 38
FIGURE 7: SEQUENCE DIAGRAM OF THE HEIMDALLR SYSTEM.......ccc.coiutitiitiiitiantienieeieeiesieeseeesteeneeeeeeneeeneesseeseeens 40
FIGURE 8: HEIMDALLR CLASS DIAGRAMcc.coittiiiiiitiiiniieitenitente ettt et ettt et et eetesenesaeesatesaeeaeesneeeneeanestnenieens 42
FIGURE 9: IOT DEVICE CLASS DIAGRAMcooutiiiiiiiiiiiiiiieiterit ettt ettt ettt ettt ettt st saeenae et setesesesbaenieens 46
FIGURE 10: SAA CLASS DIAGRAMccooiiiiiiiiiiiiiiiiietteiteeite sttt ettt et sttt et e bt et satesbeesbtenbeenbeenaeentesasesbaeninens 47
FIGURE 11: IOT DEVICE MAKER CLASS DIAGRAMcccoiiiiiiiiiiiniiiitiiteteeiteeit ettt ettt esae ettt sieenieens 48
FIGURE 12: KEY GENERATOR CLASS DIAGRAMcoootiiiiiieiiiinietiitinteteesessesessessesessessesessessessssessessssessessssessessssesseses 49
FIGURE 13: HEIMDALLR ER DIAGRAMcooouiiiiiiiiitiiietiiteeieteetesteteesessetessessesessessesessassessssessessssessessssessessesessessesesenes 51
FIGURE 14: SAA ER DIAGRAM........cuttiiiiiiiieiiieeeeiteeeettee ettt eestteeessseaeasssaeeaasseeeaanseaesansseesanssaeesnssseessnsseesasseeesassees 51
FIGURE 15: INTUITIVE FLOW DIAGRAM OF THE HEIMDALLR SYSTEMccccoiieiitiietiitieereeresesessesesessesesessessenes 57
FIGURE 16: HEIMDALLR’S SELF-SIGNED TLS CERTIFICATEc.cootiitiitinieniteiienieeientesieenitesieenaeenneeesesesesieenieens 78
FIGURE 17: SAA’S SELF-SIGNED TLS CERTIFICATEcccococtiitimitinitiiintieitenieenitenteetesetesieesieesteenaeesnesesesueesseenseens 79
FIGURE 18: INTUITIVE FLOW DIAGRAM OF THE HEIMDALLR SYSTEM (PART 1).......ccccciiiiiiiiiiiiiiieecieeeeeeee e 80
FIGURE 19: INTUITIVE FLOW DIAGRAM OF THE HEIMDALLR SYSTEM (PART 2)......ccooiiiiiiiiiiiieiiiiee et eeereee e 81
FIGURE 20: INTUITIVE FLOW DIAGRAM OF THE HEIMDALLR SYSTEM (PART 3)......ccooiiiiiiiiiiieeiiee e 82
FIGURE 21: INTUITIVE FLOW DIAGRAM OF THE HEIMDALLR SYSTEM (PART 4).......ccociiiiiiiiieiiieeeeiiee e 83
FIGURE 22: INTUITIVE FLOW DIAGRAM OF THE HEIMDALLR SYSTEM (PART 5)......cocoiiiiiiiiiiieeiieeeeeiee e 84
FIGURE 23: INTUITIVE FLOW DIAGRAM OF THE HEIMDALLR SYSTEM (PART 6)..........cc0ooooviiiiiiiieeeeiiee e 85
FIGURE 24: VISUALVM MONITOR SCREENSHOT OF HEIMDALLR SOFTWARE........cccccoctttiiteiiienieenieeereesveesneenns 86

vii

1 Introduction

The objective of this project is to introduce the current technology used for Internet of Things (IoT),
a rapidly growing market, and the privacy and security issues associated with their use. Chapter 2
discusses these issues of IoT technology and some of the methods to address them and their
suitability for actual usage in a private environment. Chapter 3 and 4 propose a novel solution
called Heimdallr along with its high and low level architecture and design decisions. The
experimentation of this, using a proof of concept simulator is given in Chapter 5 with its proposed

hardware implementation, Chapter 6 is a conclusion and future work.

1.1 Introduction to IoT

Internet of Things, commonly called IoT is one of the most popular and ubiquitous invention
among the newest technologies of the early 21 century. The name “Internet of Things” likely
appeared after the title of a presentation made by Kevin Ashton at Procter & Gamble in 1999 and
it has being used since [3]. In the name Internet of Things, “Things ” implies the devices that have
the ability to connect to the Internet. And the concept of creating a network of those devices by
connecting them to each other and allowing them to use online services over the Internet is called
the [oT. In other words, “The IoT is a giant network of connected things and people — all of which

collect and share data about the way they are used and about the environment around them” [4].

The first [oT device was introduced in 1982 where a modified Coke vending machine which was
able to report whether the drinks in its inventory were cold or not, was presented at Carnegie
Mellon University [5]. Like many of today’s smart devices, an Internet of Things (IoT) device
claims to be smart. These smart devices replace the function of some traditional device with the
ability of not only replacing the function, perhaps using other technology and built-in sensors, but
adding a feature to have an internet connection. Using those sensors and internet connection, it
collects data and sends them to an Internet of Things platform, sometimes called as a cloud which
integrates data from different devices and applies analytics to produce a valuable information to
be used by an application built to address a specific need [4]. This need can be related to medical
fields, childcare or kitchen appliances and many more. The internet connection feature is also

needed to connect the device to some transmission device, usually a cell phone (another smart

device), or a controller connected to the Internet and it is essentially a “black-box” as far as the
consumer is concerned. The cell phone or the “black-box™ is used to complete the connection of
the device to a server which is usually operated and controlled by the manufacturer of the loT
device. This connection is used to transmit data from and to the IoT device and provide remote
access to its user, e.g. IP cameras. The smart in these devices replaces the mental or temporary
recording of the status of some data: the app and its infrastructure takes over this operation adding
some convenience to ‘justify’ the higher cost and effort of replacing the old and tried traditional
device. Today, with the current technology, it is not that unusual to see the replacement of a
traditional device with its IoT version which ultimately makes it more practical and convenient for

daily use.

1.2 State of the Art

Usage of IoT devices is proliferating as the required technology becomes widely available and
cheaper [6]. Currently (2019) there are 7 billion IoT devices being used worldwide excluding the
smartphones, tablets and laptops which are in fact IoT devices as well. According to an article
published by IoT Analytics, this number is expected to grow to 10 billion by 2020 and 22 billion
by 2025 [7]. Moreover, it was reported in October 2016 by the research firm Venture Scanner that
there were 1,428 10T startup companies across 48 countries with a total value of 25 billion US
dollars [8]. In 2018, IoT Analytics updated that number of global market value for IoT to 151
billion US dollars with an increase of 37% from 2017 and added that due to the market acceleration
for 10T, revisions done on the estimates show an expected total market value of 1,567 billion US
dollars by 2025 [7]. The very reason behind this increase is the decrease in cost of the technology,
practicality of its usage, and the quality of the job done using those IoT devices compared to their

traditional versions, therefore, the increase in demand.

We can see the incursion of IoT in many fields. An essential one of which is healthcare. For
instance, a real-time monitoring of the condition of patients via an IoT device connected to a
smartphone app can save lives in case of an emergency like heart failure, diabetes, asthma attacks,
etc. by collecting and sending the critical information to a physician without any delay (provided
someone is monitoring the alarm and reacts to it). Moreover, according to the study conducted by
the Center of Connected Health Policy, when it comes to heart failure patients, there was a 50%

reduction in 30-day readmission rate thanks to the remote patient monitoring [9]. Another example

2

of IoT usage leads to smarter agriculture. Farmers now use IoT devices to track microclimates
across cropland or to monitor humidity and temperature changes to act accordingly with their
goods in order to eliminate any waste. Also, “According to The Nature Conservancy, such
precision agriculture can enable farmers to cut water and fertilizer use by up to 40 percent, without
reducing yields” [10]. Aside from those examples many other applications of IoT can be seen
today in smart environments (e.g. smart homes, cities and cars), domestic (e.g. smart thermostats)

and industrial (e.g. agricultural sectors) applications, security, emergency, logistics and transport
fields [11].

When it comes to development of an IoT device there are four main areas involved as Forbes
Insights says; hardware and software, edge computing, network connectivity, and data

management [12].

e Hardware and software are the building blocks of an IoT device. Each device must
compose of a hardware usually containing built-in sensors, a processing unit, and a power
source. There are also some devices which fall in IoT category but don’t have any
processing unit or a power source of its own. An example for that could be a passive RFID?
tag which extracts all of the power it needs to be functional from the carrier wave sent by
the reader. The most common application of those tags are the systems that can detect the
presence or absence of the tag and progress accordingly [13]. In case of a more complex
[oT device, such as a smart thermostat, those devices requires a power unit to power up
their processing unit which produces some valuable information from the data gathered
through any build-in sensors. A smart thermostat would gather the room temperature
through its type of temperature sensor and with the help of a software, compares it with the
set (desired) value and then accordingly signal the cooler or the heater.

o Edge computing is the ability to do any kind of computation and decision done in the [oT
device right after the data gathered without sending it to a server or a cloud. This is achieved
by running a software on a processing unit indicated above. This idea mainly “helps

improve speed and reduce network bandwidth” [12].

2 Radio frequency identification system (RFID) is an automatic technology and aids machines or computers to identify
objects, record metadata or control individual target through radio waves [89].

e Network connectivity is required to send and receive data between the user, device, and
the server. For IoT devices the preferred type of medium for communication is wireless
rather than wired. This is mainly because, even though wired communication is more viable
and safer, its disadvantages on mobility and installation cost prompt loT device makers to
prefer an effective and low cost alternative, a wireless medium [11]. Today some of the
most used wireless technologies are LPWANSs?, Cellular (3G, 4G, 5G*), Bluetooth and
Bluetooth Low Energy (BLE), Wi-Fi (IEEE 802.11a/b/g/n) and Wi-Fi HaLow® (IEEE
802.11ah), RFID, and ZigBee® and other mesh protocols like Z-Wave and Thread’ [14].
Almost all of the IoT systems being used today have the ability to connect to the internet
using one those wireless technologies. Without a network connectivity an IoT device
cannot benefit from any cloud service or provide remote access to its users and thus cannot
fulfill its purpose properly. In further sections, this paper will talk about what kind of
problems arise from having such a feature.

e Data management is another essential part of the IoT development. Some data that is
collected through sensors of the IoT device may require more complex processing and
therefore the help of cloud computing. In such a case, the dramatic increase in number of
IoT devices and having generally a shorter time span for processing brings up big
challenges on how to handle, process, and store the data sent to the cloud [12] [15].
Moreover, when it comes to personal data, security and privacy becomes a matter that
cannot be overlooked by the IoT device maker. Unfortunately, in June 2017 it has already
been reported by Newsweek that 48% of all IoT companies have experienced at least one
security breach and the cost of a single breach was over 20 million US dollars for large
firms [16]. In this project, a solution will be proposed to that essential problem of data

privacy.

3 A low-power wide-area network (LPWAN) is a type of wireless telecommunication wide area network for long
range communications at a low bit rate among connected objects [85] [86].

45G is the fifth generation cellular mobile communication technology. Anticipated to be available in 2019.

5 IEEE 802.11ah is a new Wi-Fi draft for sub-1GHz communications, aiming to address the major challenges of the
Internet of Things (IoT) [90].

6 ZigBee is an IEEE 802.15.4-based specification developed to enable creation of personal area networks with low-
power IoT devices.

7 Thread is an IPv6-based, low-power mesh protocol used for [oT products.

1.3 Conclusion

IoT is expanding in every domain of our lives and most or maybe even all of them will inevitably
replace their older traditional versions in the near future. As though they are attractive, not
everything is perfect and flawless about IoT devices. And despite this fact, there are still no good

standardization when it comes to [oT device production.

These smart devices mostly require Internet connection to send and receive the essential data in
order to function properly. However, with the lack of standards and regulations in IoT domains,
users often end up losing the control over their sensitive and personal data, and thus, left with two
choice. One is to not use these practical and highly efficient smart devices, or to give up on their
privacy. Since none of those options are in favor of the user, in this thesis, we will first analyze

these privacy issues in detail and then propose a third option in users’ favor.

2 Background

Some of the core background information needed for a better understanding of the rest of the
project will be provided in this section. First, the problems brought by the IoT devices and the
device makers on data privacy will be explained in detail under the title of Problem Definition. The
following section will discuss what and how competent the currently proposed solutions are in

solving the mentioned issues.

2.1 Problem Definition

Many issues with [oT devices and networks are being noticed today: this reminds one of the days
of Wild West when entire indigenous communities were wiped out by the advancing hordes of
immigrant settlers with guns and artillery. Personal privacy is perhaps the most important victim

of this digital age Wild West massacre.

The first weakness in [oT devices is that the development of their software is usually rushed by the
organization introducing these devices with apparent lack of thought about security and privacy.
Even in applications where the human life may be in jeopardy, developers can rush and overlook
what must be or have been done. In case of an IoT device, nothing different should be expected.
A glaring example of a product rushed through is illustrated by the design flaws, not only in the
hardware but also the software of Boeing 737 Max which led to two fatal crashes. The reason for

the rush was to catch up with competition [17].

The second issue is the lack of safeguard of the user data which is made available, for profit, to
third parties. Hence the data subjects (original generators of the data) lose control of their data
which exposes them to uninvited marketing and manipulation. All small incremental data, when
aggregated by various players of this digital age gives what we call big data. Big data and the
governmental /aissez-faire attitude has led the exploitation of this data and has given rise to
mammoth new so called tech companies. One of the most obvious and profitable way of exploiting
user data collected and aggregated from users is to enable the marketing of targeted ads. For
instance, the annual advertising revenue of one of these tech giants for 2018 exceeded 110 billion
US dollars forming the major percent of this company’s total revenues in that year of over 130

billion US dollars [18] [19]. Decades of research in marketing has concluded that rather than global

publicity, targeted ads are what make the difference. In order to gain such data leverage the
company keeps track of all the users of their ‘free’ services —along with their actions, sites visited,
text communications and choices— and analyzes them against past usage and create profiles which
guide their software to choose the most pertinent tailored targeted ads. However, they don’t stop

there and this is exactly where the problem arises.

In order to increase the profit, these companies with big data sell user profiles to other companies
who in turn can do the same. For instance, Facebook allows personal data to be used by paying
third parties as Mark Zuckerberg revealed during his testimony before the Congress on April 10,
2018. During the testimony it was revealed that Aleksandr Kogan, a onetime lecturer at Cambridge
University, had developed a survey application on Facebook platform and using the access given
by Facebook, was able to assemble the personal data of all friends of any user who took the survey.
Access to the friends data without the consent of these friends, was a feature of Facebook and any
of the thousands of applications developed for the platform had access to the users’ and their

friends data [20] [21].

Similar stories have been heard about other big tech companies as well. For instance, Google
collects its users’ data and sells them to other companies without data owners’ awareness. As
Douglas MacMillan stated in one of his articles in the Wall Street Journal (WSJ), Google let
hundreds of outside developers use the data scanned from the inbox of their users who have signed
up for ‘free’ email-based services [22]. Furthermore, it is reported that Google allows these outside
developers to share what they collect with other third parties. In a letter from Susan Molinari,
former vice president for public policy at Google, “Developers may share data with third parties
so long as they are transparent with the users about how they are using the data,” she wrote,
according to a WSJ article on September 20, 2018 [23]. It is not clear what this transparency means

and/or allows; and whether the users are notified.

Among all other big companies with billions of users’ personal data, Amazon stands out the most
when it comes to selling targeted ads, even though it has only around ten percent of Google or
Facebook’s big data. Since advertisers value the most accurate information they can get on what
people actually buy and what they are likely to buy soon, this can be gleaned from the Amazon

marketing platform. Knowing this, according to another report from WSJ, even their employees

leak data for cash rewards [24]. It appears that these tech mammoths are not living up to their own

privacy policy which they can change without any oversight.

These reports were based on some incidents related to some services that users access using an
internet browser. Now one may start to wonder, how much data we are giving away by just buying
IoT devices and bringing them into our homes. Amazon Echo and Google Home and all the IoT
devices that can be connected to them are such examples. Every word that the users say may not
be sent to the cloud by those devices but they are always listening to be able to recognize their
wake word and this can lead to some serious privacy breaches. Furthermore, Amazon Echo and
Google Home are legitimate devices made by world giants who have so to speak strict privacy
policies. But what about the other IoT devices, some are start-ups, which are rushed to market for
profit and lacks safeguards regarding user privacy and data security? Do these companies which

have access to user profiles have any policies or ethical code and how are they regulated?

Another example of IoT replacing traditional devices is a smart body thermometer. The traditional
mercury in a glass tube clinical thermometer, was invented in 1724 by Daniel Gabriel Fahrenheit.
It has been used since [25]. It needs no battery and is ready for use even after years of non-use; the
only tricky part is to shake down the mercury to reset it. This classic clinical thermometer has been
replaced by a digital version which requires a battery needing regular replacement. Both these are
now being displaced by a smart body temperature thermometer; one by Kinsa Company is a case
in point. These internet-connected thermometers replacing the traditional mercury column in glass
versions and even the ordinary digital ones, are now in more than 500,000 households [26]. These
thermometers send the data to an application in a cellphone to track the temperature; however, the
data is also sent to the device manufacturing company. During the flu season of 2018 the Clorox
Company paid to license information from Kinsa, according to NYT [27]. Kinsa also sells this

data to other companies under the name of Kinsa Insights to be used for target advertising [27].

This is only one such example of IoT usage and how the users lose control over their personal data
and privacy. Perhaps, losing control over the private data which consists of the user’s first name,
family name and email address might not be an issue to some extent, however, if this data gives
away information about user’s daily routine, this can lead to some serious unwanted consequences.
Smart thermostats which allow users to see and alter the current temperature of their houses

remotely, carries such data. As an example, if a smart thermostat company provides this user data

to paying third parties or an overlooked hardware or software vulnerability of the thermostat gets
discovered by a malevolent individual, a misuse of that data could reveal the absence of the house
owner at low temperatures. Those kind of contemporary issues in the IoT sector show the

importance of privacy, security and the users having control over their own data.

2.2 Proposed Solutions

After a thorough research which we will be discussing in detail in this section, we concluded that
there isn’t any direct and complete solution to current data privacy issues caused by the IoT devices
and the IoT device makers yet. For instance, contemporary solutions which are trying to fix these
issues we talked in the previous section (2.1) which are affecting ordinary users and their private
lives, are mostly offering and suggesting users to utilize the existing features of the hardware and
software tools that they are already using but not to the fullest extent. Some of those solutions or
more precisely suggestions are advising users to change default admin username and passwords,
use more complex Wi-Fi passwords, not use routers supplied by Internet Service Providers (ISP),
apply MAC address filtering to avoid connection of unwanted devices to the network and use
Virtual Local Area Networks (VLANSs) inside a larger private network to isolate [oT devices which
may have vulnerabilities [28]. A similar but more advanced approach has also been offered; the
usage of Unified Threat Management (UTM) systems. Simply put, a UTM system is a type of
network hardware appliance, virtual appliance or cloud service that protects networks from
security threats by combining and integrating multiple security services such as firewall, gateway
anti-virus and other intrusion detection and prevention features into a single platform [29]. UTM
systems are more frequently seen in network protection of businesses rather than private home
networks. However, with the proliferating domestic usage of IoT devices, a sheer number of
companies, e.g. Zyxel, Sophos, etc. are now offering this high level intrusion prevention systems

to even non-tech savvy individuals.

There are also some companies who adopted the UTM concept into their new generation secure
routers which have a higher average market price. These have incorporated a higher-end
technology and advanced features —along with the security measures mentioned above— to secure
the network and the IoT devices inside it. Examples of this new generation routers are: Luma Smart
Wi-Fi Router [30], Bitdefender Box [31], and Verizon [32] with the Home Network Protection

software embedded. The exact same idea to protect private networks and the IoT devices inside it,

9

is applied to smaller devices which work by being plugged into one of the empty jacks of users’
home routers by an Ethernet cable. After being plugged in, these devices auto-activate themselves
and start monitoring the network. Some examples of those products are; Extreme Defender
Adapter [33], F-Secure Sense [34], Dojo [35], and CUJO [36]. The key features of all those smart
routers and devices are the same. They monitor the incoming and outgoing traffic and block or cut
the connection when an unusual or suspicious activity is detected. They also scrutinize the activities
in the local area network to prevent any connected device to exfiltrate user data without permission.
Thus, they come along with an administrative mobile application which could be used by the user
to tune the security measures for individual devices in the network and get related notifications.
Those products also adopt machine learning techniques and other advanced technologies like
behavioral analysis to detect attack patterns and block new threats [37]. However, in order to
achieve such a complex task a cloud service is required, to which the user data is uploaded and
processed. As the article [37] indicates for Dojo that, it comes with the functionality of profiling
all the network devices upon connection and sending the device activity metadata back to its cloud
server for further examination. Similarly, CUJO relies on its cloud server to learn and protect
against new malicious activities. It achieves this by pushing user data on its servers for again
further examination in a regular basis [37]. This very feature of those products violates our most
vital concern, the user data privacy. It forces users to trust and not question the fact that their
private data is sent, stored and analyzed by the companies of those smart routers. How can we
expect users to trust those “security” companies while they are trying to trust no one but themselves

with their personal data?

Finally, another similar but well studied approach that we have analyzed worth mentioning is the
usage of [oT gateways [38]. There are different applications of this idea which are usually appear
in forms of either a hardware or a software [39]. In either case, the idea is to have an intermediary
hardware which runs a software that fortifies the communication between the IoT device
generating the sensitive data and the server that this data is being shared with. This practice is very
useful when applied on the IoT systems where the IoT device generating the data, has limited
computing power to utilize advanced security protocols like TLS [40]. Here the gateway is the
intermediary software that receives the generated data first. Having enough computational power,
this gateway establishes a secure communication with the server and shares the data over it.

However, similar to the UTM adopted secure routers, loT gateways are only helping users in

10

establishing a secure communication between the hardware-wise weak IoT devices and the servers
of the IoT device makers. So again, this technology does not help users with the problem of
handing over their private data to the companies which we, users having hard time trusting in the

first place.

When all is considered, those suggestions and products, even though they are helping users to
secure their private networks against some type of attacks and intrusions caused by the
vulnerabilities in hardware and software of the IoT devices, they are not helping users to take full
control over their own personal private data. Private data is still being shared with some services
where the owner of the data doesn’t have any administrative rights. Thus, the issue of data privacy
caused by the usage of third-party services or the illicit use of personal data by the IoT device
makers remains unsolved. Though, there are some ideas promoting the importance of that. The rest

of this subsection will highlight some of those proposed ideas.

2.2.1 Data as Labor

Although it is not a solution which provides full control over the data to its owners, Data as Labor
(DaL) [41] is one of the most promising and unique ideas that gives some incentive such as a cash
reward to users to share their personal data willingly. As it is explained in detail in Section 2.1
(Problem Definition), the world giants like Google, Amazon, Facebook, Apple, and Microsoft have
a net profit of billions of US dollars, and increasing, thanks to targeted ads and other services
specifically tailored for users. They have become so accurate about what their users want by
collecting detailed personal and private information from users’ activities while engaging and
using their services. Since these titans’ success depends on the amount of time spent by the users
on their sites, they garner valuable data from these interactions. Such data is then used to improve

the accuracy and quality of the targeted ads and to some degree tune their services.

The distinction between leisure and labor is becoming less and less clear. In fact, we now work all
the time when tagging a friend in a picture, asking Alexa to skip the song, or even when writing a
review for a place we went recently. During these activities we are actually generating the data
that is required for tech companies to profit by teaching their algorithms and come up with user
tailored ads and services [42]. An article in The Economist describes data as “the oil of the digital
era” to emphasize its market value [43]. For this very reason, the supporters of Dal idea suggest

that anyone who uses online services and provide intimate data should be paid accordingly. They

11

also argue that, treating data as labor would not only make the society better and fairer, but also
could spur the development of technology and help economy. “At present, because data suppliers
are not properly rewarded for their digital contributions, they lack the incentive or freedom to
contribute the high-quality data that would most empower technology or develop their personal
capacities to maximize their earnings and contributions to the digital economy” says Eric et al

[41].

Although the idea of DaL is rational, to date it has not been practical. For example, in 2014, an
American artist, Jennifer Lyn Morone, started a company under her name Jennifer Lyn Morone™
Inc. The purpose behind that effort was to exploit her personal data for financial gain. She collected
her data under different categories and in 2016 in a London gallery, she offered her personal data
for sale. Having different prices for different types of her data, the total collection which includes
her health data and social security number was worth approximately £7,000 [44]. However, only
a few buyers were actually interested in her offer and she finds “the whole thing really absurd”

[44].

2.2.2 Privacy Laws

Governments are also involved in solving issues on data privacy by enacting new laws. Those
information privacy laws or data protection laws have been adopted by over 80 countries including
nearly every country in Europe. On May 11, 1973, the world’s first national data protection law
was enacted in Sweden under the name of Datalagen meaning The Data Act [45]. This act was
endorsed by many other countries and led them to legislate similar laws in the following years.
Parliament of Canada enacted Personal Information Protection and Electronic Documents Act
(PIPEDA) on April 13, 2000 [46], and on May 25, 2018, European Union (EU) legislated the
regulation called General Data Protection Regulation (GDPR) which is similarly meant for the
protection of private data under EU law [47]. The purpose of those legislations is to enforce rules
that protect users’ sensitive information against variety of privacy issues. Since there are different
legislations adopted by countries in different continents and by independent territories, this paper
will not discuss every single chapter of every one of those legislations. However, the essential idea
behind all of them is to guarantee that the personal data collected from users cannot be processed

or shared in any way without the owner’s consent. They also enforce the right for data owners to

12

request the deletion of their information stored by any company. To provide a deeper

understanding on the topic, a part of Article 6 from GDPR is given below as an example:

1. Processing shall be lawful only if and to the extent that at least one of the following applies:

a) the data subject has given consent to the processing of his or her personal data for one
or more specific purposes;

b) processing is necessary for the performance of a contract to which the data subject is
party or in order to take steps at the request of the data subject prior to entering into a
contract,

¢) processing is necessary for compliance with a legal obligation to which the controller
is subject;

d) processing is necessary in order to protect the vital interests of the data subject or of
another natural person;

e) processing is necessary for the performance of a task carried out in the public interest
or in the exercise of official authority vested in the controller;

f) processing is necessary for the purposes of the legitimate interests pursued by the
controller or by a third party, except where such interests are overridden by the
interests or fundamental rights and freedoms of the data subject which require

protection of personal data, in particular where the data subject is a child [47].

Given those statements, the enacted regulations seem to be protecting the users and solving
majority of the data privacy issues. However, when examined carefully, it can be clearly seen that
almost all of the world giants like Facebook, Amazon, Google, Microsoft, Apple, and etc. who
collect billions of people’s data and at some point cause privacy issues are located in United States
soil and incorporated under the United States laws and legislation. Although any company in the
world who have European customers have to comply with GDPR, enforcing a foreign regulation
and imposing penalties accordingly right away seems unlikely given the complicated nature of the
rules stated in GDPR [48]. Similarly, according to the investigation conducted by the Office of the
Privacy Commissioner of Canada (OPC) in March 2018, PIPEDA as well, was not enough to
protect users’ privacy as Facebook has failed to comply with it [49]. Moreover, as of 2019, United
States is one of the several countries who have not adopted any kind of comprehensive information

privacy law yet. Instead, there are certain acts and limited sectoral regulations enacted by the

13

United States Congress to protect users with fair information practices in some areas. Currently in
2019, some of those are; Health Insurance Portability and Accountability Act (HIPAA) [50], Fair
and Accurate Credit Transactions Act (FACTA) [51], and Code of Federal Regulations (CFR) [52]
which was published by the Office of the Federal Register of the United States. Essentially those
acts have similar principle and enforcements with other legislations adopted by those 80 countries.
However, as it is proven with a sheer number of real life examples in Section 2.1 (Problem
Definition) that none of those tech giants seems to be complying with any of these acts or
regulations to actually protect users’ sensitive data. As the Apple CEO Tim Cook said during an
event in California in 2018 that, even though some state laws are looking to accomplish giving
users the full control over their personal data, right now there is no federal standard protecting

users from such practices violating the data privacy [53].

2.2.3 Distributed Ledger Technologies

The last solution worth mentioning in Proposed Solutions section is the application of Distributed
Ledger Technology (DLT) [54] in IoT systems. A DLT is simply a digital, decentralized and
censorship-resistant system for storing transactions made by the participants of the network. These
stored records are called ledgers which are kept in multiple places (nodes owned by participants),
synchronized consistently, and can be accessed by any participant. By keeping multiple copies of
the ledger in a distributed manner and requiring consensus of all of the participants when an update
has to be done on the ledger, the system (the network) eliminates the possibility of malicious
changes that can be done by a single party, and therefore, manages to guarantee the accuracy and
correctness of the transactions that have ever been made. Moreover, unlike traditional databases,
since any change that is to be made on the ledger requires a consensus, DLT systems require neither

an administrator nor any kind of administrative function.

There are sheer number of DLT applications using different kind of algorithms adopting the
distributed ledger idea. In this paper, we will mainly focus on two of these algorithms; namely
Blockchain [55] and Tangle [56] which have solid applications on IoT systems. Briefly,
Blockchain is a chain of blocks which holds the transactions made by the participants so far. Each
block can hold one or multiple transactions (records) depending on the block size determined by

the application. Every time a new transaction is made, the system generates a new block to include

14

this new transaction and any other awaiting transactions, and link it as the last block of the chain.

This chain represents the ledger and multiple copies of it are kept by the participants.

Tangle on the other hand, uses a different approach to keep a distributed ledger. Instead of a chain
of record blocks, Tangle utilizes nodes positioned in a directed acyclic graph (DAG). Every node
holds records of transactions similar to blocks in Blockchain. However, while the chain connects
every transaction made since the beginning, edges of the DAG connects some of the nodes
(transactions) to some other. Thus, Tangle and Blockchain have totally different transaction
validation processes. Moreover, in order for a participant to make a transaction in Tangle, this new
transaction has to validate random two latest transactions. Therefore, while Blockchain requires

miners two validate new transactions, Tangle offers a miner-free system.

There are three key benefits of the DLT usage in IoT domain. It builds trust between parties and
devices, reduces costs by removing any intermediary related overhead, and accelerates transactions
to become almost instantaneous according to Aran, a Blockchain expert [57]. Let us elaborate.
First of all, most of the 10T systems, if not all, utilize a cloud or client-server model to function
and synchronize the devices that participate in the system. In such a centralized model with
hundreds of interconnected devices, one of the biggest concern is the exponential increase in costs
to handle the synchronization and communication of those devices. Second concern is that, since
it is centralized meaning that there is only a single central authority which controls the network
and protect the user data, any vulnerability in the server would jeopardize all of the relying devices.
Likewise, each participant in the IoT architecture could act as a point of failure, meaning that, if
an loT device connected to a server is breached, every other device connected to that same server
could easily be affected, and thus, disrupt the entire network [58]. Finally, as it is discussed in
previous chapters that there is no guarantee that the collected data is put to appropriate and
promised use as a cause of having a central authority in a centralized cloud or client-server model.
DLT solves all those issues by decentralizing the system. As Aran says, “Since a decentralized
database would remove any one point of weakness attackers would have to target individual nodes
on the network instead. Any attack on an individual node on the network would also be futile as
all the other nodes would resist any attempt to alter the data” [57]. To actually forge or alter the
data by winning the consensus in Blockchain, a malevolent participant has to possess more than

half of the whole community composing the network. However, this so-called “51% attack” is

15

practically impossible to realize regarding the resources it requires. Additionally, since there is no
intermediary involved in transactions the time required for one device to send data to another is
significantly reduced. It is also a much trusted and consistent system compared to traditional
centralized models since the validity of all the transactions made are verified by the participants

and permanently and transparently saved on the ledger for anyone to check on a later date.

To achieve machine to machine (M2M) communication in a DLT environment, loT devices rely
on smart contracts. Ethereum [59] is one the most popular projects which adopts smart contracts.
These contracts are basically decentralized applications (DApp) or procedures coded in a
programming language —commonly in Solidity— and published as yet another transaction to run on
a Blockchain network. Once a smart contract is published and validated, any participant in the
network can invoke any public function of that application or service. Thanks to consistency and
transparency properties of Blockchain, usage of smart contracts provide a lot more secure
environment and model for IoT networks. Additionally, Blockchain cryptographically signs
transactions and regularly verifies those signatures to ensure that every transaction is generated
legitimately by the actual originator. Doing so, it is able to eliminate the possibility of man-in-the-

middle, replay, and other attacks [58].

However, there are also some serious issues that come along with the advantages of Blockchain
technology. One of them is the increase in transaction fees. In Blockchain technologies there are
miners who earn tokens (coins) as an incentive for doing the Proof-of-Work (PoW). Part of this
token comes from the fees paid by the senders and the rest comes from the “coinbase”. Thus, the
transaction fees increase with the diminishing number of coins held in the “coinbase” and when
more computational power is required during rush hours. Paying fees for each and every
transaction needed for IoT devices to communicate may be problematic, not to mention the
increasing costs. There are two more big issues which make usage of Blockchain technology in
IoT domain difficult. The time to process including validation and consensus of a transaction is
rather slow for some IoT systems to function properly. In an experimental work of applying
Blockchain technology on an IoT system using Ethereum, Seyoung et al. realized that, although

the transaction time is around 12 seconds, it still was not fast enough for some domains [60].

The second problem is that the ledger size is getting bigger with every block added to the chain.

Thus, majority of [oT devices may not be able to run a full node. For this reason some Blockchain

16

platforms introduced light nodes which can do transactions like full nodes but rely on third parties
—someone else’s full node— for every other action needed. Since every transaction made by a light
node has to be processed through a third party, this third party can access all the information about
the transaction that is being processed, as well as any personal data exposed to them as a service
provider [61]. Which is exactly what we try to avoid! The only solution to that is to run a full node
which allocates more than 1 TB for Ethereum today. Based on their experiment Seyoung et al.
says, “since light client is not supported on Ethereum at this point, either we need to use a proxy
or have a large storage to save entire blockchain. Using proxy may be easy. But we compromise
security because there is a third party involved. Second solution, while it does not compromise
security, may require large storage, which would be too expensive or infeasible for small IoT

devices” [60], to support our argument.

Tangle is introduced as another type of DLT to address these problems stated for Blockchain
technology. IOTA is one of the Permissionless Distributed Ledger Systems using Tangle
technology. This trending platform argues in their webpage that the Blockchain networks become
more and more centralized around some powerful actors with the increase in competitiveness of
getting financial rewards for validating transactions. However, they say, the need for decentralized
and permissionless systems remains and is increasing each year [62]. Compared to Blockchain
technology, Tangle is built as a Directed Acyclic Graph (DAG) and every node (participant) in
IOTA contributes to the consensus of the network by approving random two past transactions (a
tiny PoW) to be able to do a new transaction. Therefore, IOTA nodes are more lightweight since
they only need a portion of the total of the past transactions to validate the latest two and since no
miners are needed, there are no transaction fees as well. Also, since every new transaction has to
do a tiny PoW in order to be added to the network, the higher the load is the faster the IOTA
network gets, and therefore, technically can scale infinitely and handle unlimited amount of
transactions per second. However, as much as it sounds perfect to be the backbone of the IoT

systems, IOTA or Tangle technology has its own problems too.

According to an article published by Medium says that the Tangle by itself cannot provide an
effective solution against so-called “34% attack” (double spends) at low loads [63]. IOTA also
utilizes a mechanism called Coordinator controlled by the IOTA Foundation to prevent double

spends, however, this gives them a certain amount of control over the network and thus centralizes

17

the whole system [63] [64]. Another claim of IOTA is to be quantum immune by utilizing a trinary
hash function called Curl. However according to the same previous article, usage of such a
complex function increases the size of a transaction to almost ten times and when it comes to
scalability, it seems counterproductive [63]. Finally, smart contracts is the essential part of DLT
to be adopted by the IoT systems. However, DAG ledgers like Tangle are not smart contract
friendly because of their innate structure [65]. Although, other platforms like Vite [66] or Qubic
for IOTA [67] are trying to achieve a similar feature, all those technologies are still under
development and there is no guarantee that there will not be any hidden vulnerabilities as a result

of their complex nature.

When all is considered, despite of all the issues with the technologies akin to Tangle or Blockchain,
the DLT is a revolutionary idea and a candidate to be the backbone of the IoT domain. However,
no matter how it is implemented, DLT’s core logic and running principle is always the same. For
example, there will always be a need for consensus to add a new transaction to the network or
there will not be any kind of central authority or data in the ledger can never be altered or deleted.
Even though these features are what makes the Distributed Ledgers trustable and secure than any
other system when it comes to personal data, they may also be the ones which may cause for any
DLT platform to be unusable in real life applications. For instance, when an information is stored
in the ledger it becomes permanent, which means that if an action is taken by mistake through a
smart contract, there will not be any authority where one can report this unwanted action to be
reverted. Another unignorable problem with DLT is the introduction of GDPR which we presented
in Privacy Laws subsection. GDPR’s Article 16, Article 17, and Article 18 are clearly conflicting
with those properties of DLT. To begin with, Article 4, the Definitions section defines personal

data as follows:

1) ‘personal data’ means any information relating to an identified or identifiable natural
person (‘data subject’); an identifiable natural person is one who can be identified, directly
or indirectly, in particular by reference to an identifier such as a name, an identification
number, location data, an online identifier or to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that natural person;

[47]

18

Here the statement is a little bit broad and does not indicate or cover any specific kind of
information which can be used to identify a person directly or indirectly. So, while name, age or
gender of a person can directly identify this individual, phone number, credit card number, IP
address or even a DLT platform’s account number (wallet address) can indirectly do that. That
means, any DLT application with EU citizen users lies within the scope of GDPR and has to
comply with it. Given this fact, let us continue with Article 16, Right to rectification. This article
gives data owners the right to change an inaccurate personal data or complete any incomplete
personal data by means of providing a supplementary statement [47]. However, while one can add
a new data to a distributed ledger, not being able to change or update any stored data is a big
problem. The same applies to Article 17, Right to erasure (‘right to be forgotten’). It simply says
that under the right circumstances, data owners have the right to ask for deletion of their personal
data [47]. Since a stored data also cannot be deleted from a distributed ledger, a DLT user cannot
exercises his/her right to be forgotten. Therefore, in order for a DLT platform to comply with
GDPR, it must not store any personal data of a EU citizen. Finally, Article 18, Right to restriction
of processing says that under the right circumstances including the unlawful process or inaccuracy
of the data, owner of that personal data can restrict the usage and processing of it [47]. However,
most of the DLT platforms are transparent meaning that any participant can get a copy of the ledger
and do anything with the data stored in it without the owner’s permission or even knowledge.
Solutions like encryption of the data, utilizing proxy servers to store the actual data or using DLTs
akin to Permissioned Blockchain® either centralize the network or do not comply with some GDPR
articles. Currently, the only work around on those issues while complying with GDPR is the usage
of Zero Knowledge Proof (ZKP). ZKP lets users to prove that they possess the information in
question to another source without revealing any part of that information to the source [68].
Unfortunately, not even ZKP is flawless. Although it has only one drawback, it is a serious one:
Only the owner of the information (e.g. password) has a copy of it. Meaning that if the owner loses

or forgets the information it is unrecoverable, irretrievable, and thus, gone forever [68].

8 Permissioned Blockchains maintain an access control layer to allow certain actions to be performed only by certain
identifiable participants [87].

19

2.3 Conclusion

Overall, these solutions that are proposed so far have some potential and are promising to some
extent. However, at the time of this project they either still have some undeniable issues that need
to be resolved in order to be practical, and thus, realizable, or they simply are not addressing the
root cause of the data piracy problem which is sharing the private user data with [oT device makers
in the first place, and therefore, losing the control over it. Moreover, although we do think that
DLT is a fascinating technology, we also consider it as an overkill for small scale IoT systems
beside of its problems in IoT domain. Regarding their power consumption along with their
computational and communicational requirements for almost every action (transaction) taken,
DLTs become an unnecessarily heavy tool for managing a limited set of personal IoT devices
which should not be exposed to people other than their owners in spite of their internet connection.
Therefore, if we are to keep our scope on small scale home usage for a number of personal loT
devices, a highly secure communication between the users and their IoT devices by means of
encryption seems both an efficient and a sufficient solution. Hence, considering this, we are
proposing a lighter, robust, and system-based solution called Heimdallr in the light of some of the
ideas discussed above, which would not let the data leave the user’s private network unlike the

DLT systems.

20

3 Heimdallr System

Along with the contemporary problems that exist in IoT networks, there would be other serious
issues with their proliferation and usage in people’s private lives e.g., IP cameras, baby monitors,
smart menstrual period trackers etc. For example, even though the baby technology sector is
relatively new and unstudied, the market research firm Hexa is estimating the growth in baby-
monitoring sub-market alone to be from 929 million US dollars in 2016 to 1.63 billion US dollars
by 2025 [69]. Therefore, from what has happened in other areas where user data is up for grabs,
with this dramatic increase, it is likely that the data produced by the IoT devices adopted in these
sensitive fields could also be hijacked and may lead to worse consequences. According to a survey
conducted by Nicholas Shields in 2018, 87% of the respondents already feel uncomfortable using
services like Amazon Key which utilizes loT devices like smart locks and 88% feel the same with
the usage of their personal data to deduce other sensitive information about them [70]. However,
there is no doubt that the technology makes our lives easier even though they compromise our
privacy. At this point people either have to accept the fact that they don’t have any control over
their personal data collected when using loT products or they have to stop using them completely.
Instead, a third option must immediately be introduced which provides a solution to data piracy

without giving up on the technology that ease our lives.

To address the problem of IoT data piracy, we propose a system we have named Heimdallr to
create a fortress around users’ private networks to protect the personal data generated and used by

IoT devices, and allows the users to take control over it.

3.1 Heimdallr

Heimdallr is a software system that would run on a low cost processor in the users’ next generation
personal wireless smart modem/router: itself an IoT. The reason why we sought a solution in the
modem/router is, this is required to connect most of the IoT devices to the Internet and hence it is
the head of the snake; the bridge connecting the [oT devices to the digital jungle, the Internet. This
is supported by a study concerning IoT security and privacy conducted by Nick et al.; it reports,
“Preliminary results indicate that home gateway routers or other network middle-boxes could
automatically detect local IoT device sources of DDoS attacks with high accuracy using low-cost

machine learning algorithms” [71]. This also means that any flaw hidden in any of the IoT devices

21

in the network that can threaten both the user privacy and the other connected IoT devices can be
avoided by preventing any malicious data to infiltrate or any personal sensitive data to exfiltrate at

the modem/router.

The main idea behind the Heimdallr system is to allow users to take full control over their data by,
first, monitoring and manipulating the network traffic on the modem/router and secondly, running
all the necessary services locally (in the modem/router) for users to have access to full functionality
of their connected IoT devices without the need of establishing a connection to any server of any
of the IoT makers. This feature resembles the smart contracts of Blockchain. The only difference
is that a smart contract is stored on the Blockchain network where any participant can access and
use. On the other hand, Heimdallr has its own memory space to install and run any service that is
required for connected loT devices to function properly, and is normally provided as a cloud
service on IoT device makers’ servers. Additionally, Heimdallr users have their own private
storage to store their personal 10T related and/or generated data. Hence, it can be seen as a private
server providing cloud services for the owner’s connected IoT devices. The diagrams provided

below (Figure 1 and Figure 2) clarifies this concept with a basic comparison:

Private Network

The Internet

loT Device Maker's Server (Cloud Service)

M

loT Device
a

loT Device

Modem/Router Client Device (e.g. a Mobile App)

loT Device

Figure 1: Traditional Concept of IoT Systems

This figure shows the traditional way of creating an IoT system. The loT devices in the private
network are connected to the modem/router which is the gateway to the Internet. The
communication between these loT devices and their user is provided by the IoT device maker’s
server and the cloud service runs on it.

22

Private Network

The Internet

M

loT Device
.

IoT Device Heimdallr(Modem Client Device (e.g. a Mobile App)
[Router)

loT Device

Figure 2: Heimdallr Concept of IoT Systems

This figure shows the Heimdallr version of creating the same loT system given in Figure 1. Here we
see that the loT device maker has no longer got a role in establishing the communication between
the IoT devices and their user. Instead, Heimdallr software that is running on the private network’s
modem/router provides a direct connection between them.

This solution would require IoT device makers to develop Heimdallr compatible user interfaces
and services along with their 1oT products. loT device makers are currently obliged to provide
software for one of the current tech monopolies, however, they would have to adapt to the users’

demand for secure IoT devices.

Since Heimdallr is the gatekeeper, all interactions with any IoT device are under its guard,
including those coming from mobile phones! This obliges us to state the underlying requirements

for the system.

3.2 Assumptions and Requirements

Since what Heimdallr is trying to achieve is somewhat complex, it has three main requirements to
be fully functional. Those requirements are; introduction of a Software Assurance Agency, utilizing

new generation modem/routers, and the acceptance and support of the concept.

3.2.1 Software Assurance Agency (SAA)

This is the central quality assurance agency and would be an arm’s length non-profit software
certification organization which we denote as “Software Assurance Agency” or “SAA”. It is
introduced to be responsible for testing, inspecting, storing and certifying software ranging from

device interfaces and updates including those provided for [oT devices by their device makers. The

23

objective of this organization is to ensure that all software have adequate privacy measures and
would not threaten users’ private data. It is worth pointing out that currently in the software
domain, all this is done by the organization which manufactures and markets the IoT; these
corporations currently have no public oversight. The only beacon is the open source community
where dedicated developers donate their time, talent and energy to produce open source software
which is often free and the source code is accessible to anyone to investigate and verify their

algorithms and functions.

SAA also monitors all software updates and prohibits any that alters the operation of any connected
IoT device by introducing unwanted features without users’ consent. The consent requires a
rational that is easy to understand. Thus, SAA will guarantee that all software certified by it, does
exactly what it is supposed to and does not pose any threat to users’ privacy. Put simply, SAA
introduces some measure of standardization for IoT devices as have been done by organizations
such as CSA [1] and UL [2]. We envisage that SAA would remain independent and not become a
front for IoT industry as has been the case with some of the recent organizations which are directly
or indirectly, essentially public relations surrogate for the industry [72] [73]. And unlike any other
software stores currently being used by consumers to download applications and their updates,
SAA would not be an extension of the tech giants who run their own software stores for profit

while assumed to be maintaining some quality.

3.2.2 New Generation Modem/Routers

The second requirement is to have static IP assigned to our ‘smart’ modem/routers equipped with
higher-end hardware compared to the current routers and it would include a computing system”’.
This is required, since, Heimdallr is intended to be run on users’ modem/router which is the
gateway for [oT devices to the Internet; it must have the minimum processing capability to run the
Heimdallr software and the required services of the IoT devices as discussed earlier in this chapter.
With a high-end hardware the necessary computational power can be provided to handle complex
tasks and most importantly multiple tasks given the fact that not only one but dozens of IoT devices
will be using Heimdallr services, therefore its resources. And since the communication between

the users and their IoT devices will be established and monitored by Heimdallr, users should be

® We envisage Heimdallr to be equipped with an economic computing device such as Raspberry Pi and its own storage.
What we are aiming for is the pendulum to swing back and bring the user data back home from the cloud!

24

able to connect —remotely— to their Heimdallr. Hence, it has to be assigned a static IP address to
achieve this. Without a static IP address users won’t be able to know the current IP address
assigned to their Heimdallr. Even though there are some work arounds to achieve this while having
a dynamic IP address, that would be an unnecessarily complex and an inefficient task to get the
same result, moreover, it may even compromise user privacy. More on the hardware requirements

will be discussed later in Section 5.2 (Analysis and Assessment).

3.2.3 Acceptance and Support of the Concept

The final issue that this system has to deal with is the need to be accepted by the global industry.
Under the current circumstances, most of the companies, especially the technology giants, would
not want the supervision of Heimdallr and SAA, given the profit that they are reaping from users’
private data. Regarding that, imposing either administrative or social sanctions or both can be
considered as a possible solution as long as there exist users who are concerned about the privacy
of their data. In any case, such concerns would create legal, societal and competitive pressure for

IoT device makers to support and use a certification authority such as SAA.

3.3 Issues Addressed

In this section, the problems that the Heimdallr system addresses are explained in detail. We
divided those problems threatening the data privacy into two subsections; loT Device Maker

Related Issues and Hardware/Software Related Issues.

3.3.1 IoT Device Maker Related Issues

As discussed in Section 2.1 (Problem Definition), recent experiences with manipulating user data
for political gain amply illustrates that unregulated tech companies and the third parties they are
associated with, are not necessarily the organizations that should be trusted with privacy and
security of users’ data [74] [75]. As Apple CEO Tim Cook said in 2018, during the same California
event mentioned earlier, “One of the biggest challenges in protecting privacy is that many of the
violations are invisible. For example, you might have bought a product from an online retailer—
something most of us have done. But what the retailer doesn’t tell you is that it then turned around
and sold or transferred information about your purchase to a “data broker”—a company that exists
purely to collect your information, package it and sell it to yet another buyer” [53]. Although not

every company is selling user data for profit, nonetheless many of them still have other problems.

25

Third-party services are one of the most common examples of this issue. Many small and big [oT
companies use third-party services in their products to provide additional features to users without
their consent. The same study mentioned earlier on IoT devices shows along with many other
examples that within the first minute after turning on the Samsung Smart TV, it talks to Google
Play, Double Click, Netflix, FandangoNOW, Spotify, CBS, MSNBC, NFL, Deezer, and
Facebook—even though the user did not sign in or create accounts with any of them nor may want
to [71]. It also indicates that the Geeni Smart Bulb communicates with gw.tuyaus.com which is
operated by a company called TuYa. This company also provides an MQTT service, which
eventually allows the manufacturer to communicate with their [oT device in users’ home without
the users’ knowledge or permission [71]. Therefore, not only users have lost the control over their
data, there is also no guarantee that these third-party services will not do anything harmful with it.
For all these reasons, Heimdallr system requires all IoT device makers to develop Heimdallr
compatible user interface (UI) and services that will run locally. This would produce two desirable
results. First, none of the IoT devices will be required to use any known or unknown services on
the Internet, which means that user data will flow only between the user and the IoT device via
Heimdallr and go nowhere else. Second, all of the data that the IoT devices consume can be
monitored, changed, collected and deleted by the user with the intermediary Heimdallr. As a
conclusion, there will be no reason to have unwanted data leaks since users will have the full

control over their data.

Another problem with keeping hundreds of thousands of user profiles in company databases is that
it basically creates a bigger risk of data theft. People do not just use one service or a single loT
device, but they use products of dozens of different companies. Even with a single product, a user’s
data gets stored in the device maker’s database, as well as databases of all the third-party services
that this product works with. Therefore, in a real life case where a single user owns several
products, duplication and storage of their private data in a number of locations increases gradually.
This raises the threat to data privacy, since, the same user’s data is stored in an unknown number
of different databases with different security measures and vulnerabilities. While, one company
might be able protect users’ data in a difficult situation, another one could fail to do so under the
exact same circumstances. Similarly, an article posted on Electronic Privacy Information Center’s
website says, “In another sense, control can be lost as more and more companies collect data about

users. This data often paints a detailed picture of individual users through the collection of activities

26

online” [76]. This indicates that keeping the personal data in one place is definitely a step that must
be taken on the way to secure it. With Heimdallr user data will only be stored locally in Heimdallr’s
database. Thus, one can be sure that the data is secure as long as the Heimdallr is. Additionally,
since every user will have an independent Heimdallr system, there will be less data stored in any
database. As Apple CEO Tim Cook says, it is not a good idea to keep all in one place, since, it
would be very bad for security and privacy [77]. Hence, when the effort needed to penetrate billions
of Heimdallrs is compared to its reward, it becomes less attractive for intruders who are seeking

to violate others privacy.

3.3.2 Hardware/Software Related Issues

IoT related problems do not always stem from companies’ (IoT device makers’) privacy policies.
They sometimes arise from rushed or imperfect software development which lacks essential
security measures. Non-technical or even the technical users may not be able to notice a defect in
software which leads to serious violation of data privacy. Given that software is embedded and
running in [oT devices, it becomes nearly impossible for most users to analyze them. Additionally,
most of the IoT devices do not even mention the specific third parties they communicate with in
their privacy policies. This makes it nearly impossible for the consumers who are seeking to make
a healthy purchasing decision based on security and privacy considerations [71]. Introduction of
SAA plays an essential role here; trustfulness of the software used in IoT devices is guaranteed for
maximum safety of personal data and privacy by a not-for-profit open organization. Hence, it can
also be seen as an ultimate guide protecting the potential IoT users by informing them about the

infrastructure of the products which they are planning to buy.

Every IoT device consists of both software and hardware, and therefore, both aspects have to be
considered for probable vulnerabilities. An article from Malmd University that supports this idea
says, the appliance manufacturers are not always as rigorous as established software developers
when it comes to security and quality criteria during the development phase. On the contrary, they
develop the embedded systems in IoT devices using existing chips and designs, therefore, the
security and quality criteria in their development process is usually unknown [78]. For that matter,
while SAA is offering a solution to software defects, Heimdallr will be protecting the integrity of
user data against any kind of hardware exploits to prevent unwanted breaches. Heimdallr achieves

this by monitoring and controlling the incoming and outgoing data traffic to and from the IoT

27

devices in the network. It will allow only the requests from IP addresses which are either
whitelisted or not blacklisted with valid cookies, while blocking all the other data flow to and from
any device. These cookies are simply randomly generated integer values assigned to users per
client device (usually a web browser) that they use to access their Heimdallr remotely. Every time
they attempt to login, the request packet includes that cookie stored in this client device to be
verified by Heimdallr for extra security. If there isn’t any cookie saved on the device that means
the user is using this client device for the first time to access his/her Heimdallr. Then, a cookie
must be generated and sent to the client device to be stored for later use. How we create these
cookies in such a —what we call “first time login”— situation will be discussed later. Heimdallr also
provides its users a secure access to [oT devices connected to it by building a firewall which checks
user credentials. Thus, even if there are any hardware issues that pose a risk to user privacy, without

the permission of the actual user, the integrity of private data will be ensured.

Enforcing generalized security measures can be pretty difficult when it comes to IoT devices. One
of the techniques used is to create a generalized protection mechanism and if it works on the test
system, it is assumed to work on all similar systems. It is assumed that this principle would work
for IoT devices as well; however, since [oT devices borrow heavily from existing technologies and
have to be used in differing environments the adaption is not straight forward. Thought about
security and privacy are not paramount in the design and implementation of the core components,
of both hardware and software of IoT devices [78]. Thus, instead of per device protection,

Heimdallr offers a generalized solution by creating a safe zone for all IoT devices in its network.

A final software related issue worth mentioning is the complex nature of the security procedures
involved in the server connections established between the user, IoT device and the server that
provides the necessary services. Instead of depending on unknown procedures, and protocol for
security and privacy of each type of IoT devices, it is preferable to come up with an open standard
and its implementation to avoid denial of service or privacy breaches [79]. Thus, Heimdallr
provides the necessary protocols and services to its established users securely. That means, instead
of thousands of clients trying to access the same service on a server for a given IoT device, only a
limited number of authenticated users would have regular access to the [oT devices. Direction of
the authenticated users’ request into their dedicated Heimdallr system by-passes the loT device

manufacturers’ server. The only load on their server would be the requests to the SAA for

28

registering updates to firmware and creating certificate for these updates. Heimdallr would then

make periodic requests for updates to the SAA.

This solution that Heimdallr provides solves another serious contemporary issue with IoT devices,
namely Distributed Denial of Service (DDoS) attacks. In August 2016, a botnet called Mirai was
first identified by the whitehat security group MalwareMustDie. Right after, in September 2016,
according to Kolias et al [80]. Website of Brian Krebs, a computer security consultant, was hit
with 620 Gbps of traffic. The principle behind Mirai botnet is to first scan random public IP
addresses through the telnet protocol (TCP port 23 or 2323) and try to log in to any IoT device
discovered using just 62 possible default username-password pairs. Once the access is gained,
Mirai gets control of that device to be used for further DDoS attacks. However, Heimdallr natively
prevents this thanks to its firewall. In order for a request to reach an IoT device in the Heimdallr
network, the requester has to first successfully enter the user-defined credentials, and secondly, the
origin of the request must have a valid cookie. If a malware like Mirai botnet try to intrude on an
IoT device connected to Heimdallr, it would cut the connection immediately with that origin and
blacklist it. Furthermore, even if an IoT device gets infected by such a malware, a DDoS attack
cannot be launched with that device, since, Heimdallr would not allow any data to pass through
unless the admin allows that specific IoT device to communicate with the unknown target IP

address by whitelisting it.

3.4 Conclusion

To sum up, so far we have seen how users easily lose control over their sensitive and private data
in the jungle of variety of problems that comes with [oT devices, sometimes without even noticing.
Although, it has three unignorable requirements, should they are met —which we believe none of
them are impossible to achieve—, with the help of SAA, Heimdallr can assure an unmet, definite
and robust solution unlike other proposed solutions we have discussed in Chapter 2. In the next
chapter, we will be presenting system decisions and the architecture of the Heimdallr system in

detail in order to give an insight into the solution that we are proposing.

29

4 Architecture of Heimdallr System

In this chapter, we will provide high and low level designs of the Heimdallr system which was
used for our proof of concept. In order to make the full system comprehensible with ease, we will
first start by explaining our design decisions using UML diagrams. After drawing the big picture,
the tools and the technologies used to develop Heimdallr prototype during the process will be
explained. And in the following chapter, an intuitive flow of Heimdallr system is going to be
presented as a visual to fully clarify the idea. Furthermore, we will analyze the system to see what
the specifications (hardware specifications, bandwidth requirements etc.) of our smart router has
to be to leverage such complex tasks and assess if it is actually feasible to produce the real product

and use it on our private networks.

4.1 System Diagrams

In order to see how the final product may look and function, we have implemented the essential
components of a real life scenario of an IoT device usage supported by the Heimdallr system. In

its simplest form, the initial look at the system is given below in Figure 3:

Client Device

Heimdallr (Modem/Router)

loT Device

loT Device Maker

Private Network: f
The Internet: @

Figure 3: Conceptual Diagram of the Heimdallr System
This figure shows the relationship between the major actors of the complete Heimdallr system

30

To articulate this architecture, first some high-level and then low-level UML diagrams will be
presented. Figure 4 gives the deployment diagram of the Heimdallr system, Figure 5 gives the use
case diagram, Figure 6 gives the activity diagram, Figure 7 gives the sequence diagram, figures
Figure 8 to Figure 12 depict class diagrams and finally Figure 13 and Figure 14 show ER diagrams
of our proof-of-concept system. Note that these diagrams represent not an actual implementation
of the proposed solution but a proof-of-concept version of the components which have a role in
the design. This includes the implementation of generic Client Device, loT Device, Heimdallr, IoT

Device Maker, and SAA.

In this chapter the words /oT User and Client Device are used in close relation. To be specific, loT
User is a user of some [oT devices protected under Heimdallr’s guard, while, Client Device is a
client-side program which allows this user to communicate with his/her IoT devices through
Heimdallr. This client-side program may be and usually is a web browser along with the key
generator program that we have created. It is also important to mention that the /oT Device code
acts as a library for any kind of IoT device we would want to implement and include in our proof-
of-concept simulation. It has all the basic functionality to communicate with Heimdallr with an
abstract task handler class adaptable according to the actual purpose of the device. For example,
for our test cases we simulated a smart thermostat and a smart television using the loT Device
code; these would be tested as Heimdallr protected 1oT devices. Note that only /oT Device code is
shown in this paper, since all of the simulated IoT devices use the same code (library). loT Device
Maker is introduced to model a real IoT device maker which publishes updates and software for
their IoT products. Finally, S44 models our not-for-profit organization, SAA. Every software that
IoT Device Maker publishes is sent to SAA4 for inspection and certification, and once the process is
successful, Heimdallr can fetch and install it to be used by the corresponding IoT device connected
to it. Although, in our proof-of-concept version Heimdallr already comes with all of the software
that can be published by loT Device Maker, we simulated this update functionality of Heimdallr
by checking and updating the version numbers of both the interface installed in Heimdallr and the
software installed in the IoT device every time SAA4 is queried and a new update is received in

return.

31

4.1.1 Deployment Diagram

E

laymedsiqg aiemyog/ajepdn
c<UaUodWoD s>

ova
@ c<luauodwogs>
<<|B2=> | | - T
aseqejeq -7 Jajjesuo)

@ <<Jusuodwoos> e

sseqeleq vvs

@ <<juauodwoos=

134208 dO1

@ <<jUauodwoos>

1aye aslAaq 10|

184205 dJL
@ <<Jusuodwoos=
wvs
<<||[Ed>>
e R s92IN0sTy
@ =<]UBLUodWoo>> g

\ @ c<juauodwoos>

ddeqap
w c<lUauod o>

10)jesauag) Aay
' w <<jusuodwoos>

, _

19||03u0)
@ =<lUaUod oD

fioysoday/ova
@ =<]UBuUodWods>

Jajoluod
@ <<]Usuodwoo>>

184208 dD1

@ <<]UBuodwoos>

aoaq 10|

208 qaM
w <<lUaUodoD s>

184208 401

w c<lUauod Wods>

E

dllepwiaH
<<lUauodwods>

10jesauan Aay
@ <<UBUodWos>>

BIEM)OS SpIS-JU3||D

@ <<juauodwoos>

291A8(Q JUBI|D

18|noywapop

dallr System

1m

f the He
This figure shows the relationship between hardware and software components of the complete

Heimdallr system

iagram o

Deployment D

Figure 4

32

In the deployment diagram given in Figure 4, the overall system design and the relationship
between all of the involved hardware and software components are indicated. The system is
composed of mainly five hardware components plus a database for SA44. Those are Client Device,
1oT Device, IoT Device Maker, user’s home smart Router, and finally S44. A client device is what
enables users’ to connect to their Heimdallr installed router. It hosts the key generator software
that generates access codes for the first time logins on new devices and another client-side software
such as a web browser or an application with a Ul to interact with their Heimdallr. An IoT device
is an internet connected device like a smart thermostat which is to be controlled by the client device
in our tests via Heimdallr. It consists of a single program which allows the device to connect to
Heimdallr through its TCP Socket and processes every task —in its Controller— sent by the Client
Device to Heimdallr and then redirected to it. Thus, no IoT device can connect directly to the

Internet.

IoT device makers, instead of accessing their IoT devices directly would simply change their
procedures; the change requires them to register their products with the SAA and upload all
initialization and update codes to the SAA along with all necessary documentation changes
implemented and the reasons for the changes. The documentation must be public, open and
accessible from the device maker or SAA. SAA is the main source for all software and their

certification; all software for all SAA registered IoT devices is accessible from it.

Once any software from loT Device Maker initiates a certification process with the S44 and if the
certification process is successful, the software is ready for distribution; if not the loT Device
Matker 1s notified and the software is in a hold status until a satisfactory update is made for, and a
new request for certification. A certified software is passed on to the DAO (Data Access Object —
an object that is responsible for database queries, meaning that it carries data between the database
and the application itself) of the SA4 and required details are stored in the SAA4’s database. SA4 is
also connected to Heimdallr through its TCP Socket and responsible for delivering the requested

software (product) or update to Heimdallr when needed.

The final component shown in Figure 4 is the Heimdallr router. Here the router is the high-end
hardware running the Heimdallr software and a database connected to that. There are seven main
components that we can classify in Heimdallr. TCP Socket, WebSocket, DAO/Repository,

Controller, Key Generator, Webapp, and Resources. TCP Socket allows it to connect to the other

33

elements, particularly to loT Devices and SAA. WebSocket (WS) along with Webapp component
provide a real-time UI —stored in Resources— to the Client Device. As before, DAQO is responsible
for database related operations such as checking the user credentials or adding a new IP address to
the white-list. Controller is the heart of the Heimdallr where every request made to it is processed.
It redirects users to correct pages, manages all the security related tasks, and passes all required
information to and from the Client Device and the IoT Device. The Key Generator is the
counterpart of the Client Device Key Generator, more about this will be discussed further in Class

Diagrams Subsection 4.1.5.

Now that we took a first high-level look at the overall system design, before going into lower-level
design decisions and their explanation, we would like to continue with a couple of other high-level
UML diagrams to thoroughly deliver the idea of how the system runs. Use case, activity and

sequence diagrams (respectively) will help us achieve that.

34

4.1.2 Use Case Diagram

UOljEq|IaA SSEI0E
a0|ABP JUB||D MEN

<<BPN2U|=>

paJsjus S|e|juapa.d p|eA
sjulod uoisuaixa

ulbo

B0IASD JUSIID UMOUNUN UE LD} SS800y
sjujod uojsuapa

<<pusXg>>

Jilepwiay

JlEpWIaH 0} pauuoy

saoinep 10|
peEjaULoD 8ag

<<Bpn|ou[>>

- <<BPNDU|=>

<<BpNPUI>>

sBupas Jasn

<<B0N[DU|==

<

aoepaju|
20IASP | O] 55809y

ajoJ abueyn
<<BPN2U|>>

<<BpNaUj>>

S@ssalpe d|
1 MIBIgASIIBIY,

sadlhep
wayo u) pabbo| wouy
S8[4000 SjEp|[EAU]

sniejs aonep’

--_ loleesg

JasM 10|

!

SNe}s adlnep
10 abueyp

dallr System

1m

f the He

iagram o

Use Case D

This figure shows the interaction of an IoT user with the Heimdallr system

Figure 5

35

In the use case diagram given in Figure 5, the interaction of a user with Heimdallr and the possible
actions that can be taken by the user using a client device are shown. A user can control an IoT
device by means of inspecting and altering its current status. This is done through the IoT device’s
interface. Once the user accesses that specific device’s interface installed on Heimdallr, the
provided UI guides the user for any possible action that can be taken which ultimately creates and
sends a task to be handled by the receiving IoT device. We call any message sent from Heimdallr
to any connected IoT device a task. For instance, a task can be a message sent by Heimdallr to a
smart thermostat which carries a user-set room temperature data or a status message sent by the
smart thermostat which tells Heimdallr the current temperature of the room. As a reminder,
different IoT devices have different and specially designed interfaces that can be accessed through
Heimdallr. Those interfaces are certified and provided by SAA, and downloaded and installed to

become a part of the Heimdallr software.

Users can see all of the owned connected IoT devices on the main page displayed on the client
device. “Owned IoT devices” means that not every user of a given Heimdallr is able to see and
access every connected device. There are currently two types of user roles in Heimdallr; USER and
ADMIN. Depending on the user’s role, access to someone else’s device can be prohibited, or
moreover, not shown at all. Users however, can request and have their currently assigned role
changed by an ADMIN user. They can also change their username and password, add or remove
IP addresses and whitelist or blacklist them to restrict any unwanted data exchange between
Heimdallr and any other online source, see and sign out from client devices previously used to
access Heimdallr (e.g. a web browser) by invalidating cookies, connect new or remove registered
[oT devices, login and finally logout. Also note that in the diagram above (Figure 5), it is shown
that every action requires the user to first connect to the Heimdallr and then login before taking
any other actions. Login action can lead to another action called bad credentials. This can happen
when the user enters a wrong username-password pair or tries to login for the first time on a client
device. In this case, the user is prompted to either re-enter the correct username-password pair or
enter an access code generated with the key generator installed on the client device. Once the
access is granted user is redirected to the main page where the list of connected IoT devices are
shown. From this page any owned loT device’s interface can be accessed for further interaction as

explained so far.

36

4.1.3 Activity Diagram

In this subsection we will take the use case diagram given above one step further and explain the
sequence of some actions taken by the user and reactions of the rest of the system components.
Note that in Figure 6, only a scenario where the loT User is the leading actor is drawn. Hence,
some of the preliminary actions taken by Heimdallr, IoT Device, and SAA to realize the loT User’s
actions are not shown given the fact that they are not directly related to the loT User. As a result
of that, an actor for an IoT device maker is not included at all, since it has no relating role.
However, the same scenario given in Figure 6 will be followed in the next subsection (Sequence

Diagram) and cover those preliminary actions as well.

37

d[Epuiiay
0} abeyoed a1epdn

~| main e1epdn

srels abueyd \

L/

smes

-){se] sjpuey

/
/ M@N e 8ajAeq [0] pueg

AN
[iser e aniB] Vj [soeq of]

sBupas ebueyp |~

ajepdn sy

ajepdn |BIsu

[a1qe1eME B1EpdN B0Map) NA [a)1qe|IEAR B)EDdN BoBUEUI]

A\

[es)8] yA [e1ep-03-dn a.ie suoisian]

a|ge|iene Aue pue f
OJu] UOISIay IsEe

sajepdn

o) puag pue ey \™

SNielS s 89S pue
a0BYIBIU| S91ASQ 1O] UM JOBISIU|

noBoq
[soepEUl B0IMBQ | O] S5800E]

A

[sBumas abeuew] X [noBo|]

N san|Aaq | 0] pejoauuoy) eag

10§ 349842

JjjEpwiaH
0} SMEIS BNy pusg

<

saonag

"

10] papauuog (Buid) a8y

/ﬁoﬂm._wcwo fay Buisn apon Bm._wcmO.J

“\)

abied uboT 0} Paipay

apon) SS800Y 10} WSy -
papalag eunos uMouyLn

A A

[esia]

[sienuspsuo ped]

[pajue.6 ssaooe]

apoog \

J/[EPW|BH 0} 198ULOY

{ uboq

PUE SERUSPBID %08UD ﬁ

5oiheq Lol

JjepweH

J8sn 101

dallr System

1m

f the He
This figure shows sequence of actions taken by the components of Heimdallr system in a particular

scenario, basic user interaction with Heimdallr

iagram o

Activity D

Figure 6

38

In this figure, the scenario begins by loT User taking a signal sending action called Login. Its
corresponding received signal action is called Check Credentials and Cookie. Here Heimdallr
checks if the entered credentials by the /oT User are correct or not. As it is explained in our use
case diagram, there are three possible following actions. If every parameter received from the loT
User is valid and correct then access to Heimdallr is granted. Otherwise, either the user gets
redirected to login page as a result of providing wrong username-password pair or Heimdallr
detects a first time login (having no valid cookies) from a client-device and asks for an access code
to proceed. In case of the latter one, loT User takes the action called Generate Code using Key
Generator. Meaning that, the user must use our key generator program installed on the client
device and provide Heimdallr the generated code along with the correct username-password pair
for a successful Login. Once the access is granted the user gets connected to Heimdallr and
prompted the main page where all connected IoT devices are shown depending on the user’s
current role. Concurrently —in order to show user those IoT devices— Heimdallr takes an action
called Check Connected IoT Devices. By doing so, it pings every connected device to trigger them
to send their current status and version information. After receiving this data, aside from prompting
user the main page where user sees his/her owned IoT devices, Heimdallr checks for any available
update by querying SAA. There are again three possible outcomes of that action. First, everything
can be up-to-date, and thus, we proceed without any action. Secondly, there can be a Heimdallr
interface update for an IoT device or finally, there can be an update for an [oT device itself. In any
case, those three possible actions merge by an or-join (a merge node) and wait to be joined by an

and-join (a synchronization bar) as a result of the next /oT User action.

From the See Connected IoT Devices state loT User can take three different actions. He/she can
Logout and complete the scenario or Change Settings ot Heimdallr such as the ones shown in
Figure 5 or lastly, choose an IoT device to control. If he/she chooses the latter option, it gets joined
with the awaiting action of Heimdallr —explained in the previous paragraph— by the and-join on
the JoT User side and as a result the user can access the 10T device’s page where the Ul pertaining
to that device is provided. This is the page where the user can create and send tasks to the IoT

device through Heimdallr and see the changing status of it.

39

In the next subsection, the given sequence diagram will explain this exact same scenario in more

detail by explaining some of the parallel actions taken by the system components but not shown

in Figure 6.

4.1.4 Sequence Diagram

e e

(hnpaidey] aio1SpuYAINBDNBYD 1L g

|
|
|
|
|
|
A

' .
| |
_ i
wA\\\\\\\\\\\\\\\\%umhﬂwm\ \\\\\\\\\\\\\\\
(Jsmeigmanpuss %' L'g'S
()smergabueyo €12’
(nsenbayleniepZ'L 2GS
(nsanbayssaodd 11" LZ°S
c“jﬁumme?wommcm:u HA
L
\\\\\\\\\\\\\\ (mmommmmmu@mbm\mwm\\\\\\\\\\\\W
[3s19]
I|||I|||I|||I||lcmmmumxmlwﬂml”NM|III|Illlllllwww
=21002 || dI 98 slequapaid] e
()dIsoNoSPUYS|BRUSPRISHIBYD 1L'G
[a—

\\\\\\\\\\\\\\\\\\\ V

(Jasemyogpues :|'z'g

"
|

j' (Jpnpoiday | eseajal ;7
(JorepdnioeiemyogLojdojaap 1}

BB 89ed 10|

i

()aiemyogeoinee|qe|BAYHORYD (2 E

(JmysiBal g

[

JiepwieH E

JasM 10|

$

wesBeiq asuanbas |epwisy ps

Sequence Diagram of the Heimdallr System

Figure 7

This figure shows the interactions of the Heimdallr system components (elements) sequentially for

a given time period

40

In the sequence diagram given in Figure 7 the interactions of the components (elements) of the
system are shown in a timeline. From left to right the components are aligned and the period of
time starts at the top and ends at the bottom. Thus, the very first action is taken by the IoT Device
Maker by developing and releasing the product for an [oT device. That product can be any kind of
software related to the IoT device produced by that maker (company). However, in our proof-of-
concept demo it will either be a system update for an IoT device or an Ul update of that device
installed on Heimdallr. Note that, this is an asynchronous action that can be taken anytime by the

IoT Device Maker, and this is why it was not shown in Figure 6; Activity Diagram.

Once the product is published, S44 receives and checks it and if it decides that the product has no
security flaws threatening the data privacy, certifies and stores it to be sent when requested by
Heimdallr. Meanwhile, an loT Device requests registration to Heimdallr and Heimdallr checks if
any service or update is available to download for or related to that device in SA4 database. Right
after the successful registration of the JoT Device, an lIoT User requests login to Heimdallr. If user
credentials are correct, the cookie sent in the HTTPS packet is valid and the IP address of the
requester is not blacklisted Heimdallr grants the access. After that, user can take any action given
in Figure 5. As it is mentioned previously, an action which changes the status of an IoT device is
always delivered to that device as a task by Heimdallr. In Figure 7, we see that the JoT User takes
an action called changeDeviceStatus(), this can be any such task explained in earlier diagrams.
Note that, the previous action —called register()— taken by the IoT Device does not have to be
followed by the loT User’s login request, on the contrary, it is totally unrelated with user actions.
What happens is that, once the user is logged in, only the currently registered devices will be shown

on the main page which is nonetheless being continuously updated by Heimdallr.

The next subsections will present the lower-level system diagrams in an effort to provide a deeper
understanding. We will first get an insight on the class diagrams of the system components which
will be followed by the ER (entity-relationship) diagrams of the database entities used by S44 and
Heimdallr.

4.1.5 Class Diagrams
In this subsection, class diagrams of all the classes implemented and used for our proof-of-concept
system will be discussed in detail. Note that, in these diagrams some of the class variables,

functions and constructors are not shown, as well as any graphical user interface (GUI) elements.

41

Except for the constructors, even though they have actually been implemented, unused functions

such as some getter and setter functions, are also simply excluded from the diagrams for the sake

of simplicity.

4.1.5.1 Heimdallr

Bung : ()BuLagol+
Buwys :
Buiys : (Juoisiepjabe)

wnue : (Jedi 11964

Bung : erep-|

Buiss : sanwnsey-|
Buws : uoyduosap-|
Buuis : n-|

Bulys : uoisIaA-|
uEIsy| : Blegases|al-|
wnua : adA-|

Buws : swengonpoud-|

Buyg : swenAuedwoo-|
[EEEEDomnonIERR W

PIOA : (JpIomsSedine}aguasul-
1apoauIpIomMssed : (Japoaugpiomsseds,
pioa : (JaunBjjuooy|

B2NOSEEQ 80INOSEEP~|

ByucyAinass

3

PIOA : (JUOiSIa ABIEMUL|J1S+
Buigs : (Juosiap@iemu4)ab+
Jul : (Jepooysey+

ueejooq : ()senbes+

pioa : (Jappydpas+

Bups : (Lppydnabs

PioA - (JoN[EeSES+|

fus - (Jonieusgiabs

PIOA: ()aWENaOIABIBS+
Bug - (Jewenaanagiabs

Buulg : UoIsIaABORKBIU-

IHI0GTSS | 1EHO0S-|

Buus : swenuewop-

1N S M. n,__w+ BULIS © UDISIBABIBMLLI-
o e Buuig - Jppvd-
PIOA (JeleML{NPOlJIee: pioa: (supdpuzdwois misibass Fipe il
Pnpoid : Qeiemulipngoicies) | | pjon : (uevorgebessaanBlucos(| Buiss - aweNmmep
pion : (JoweNnpoidies+ 5 IS
Buws : (1136 . 55780
pion : (JaweNAuBwoDas+
pIOA : ()si pUDS.
BulS : (JawenAuedwon)abs | 0 h_,.“m:__u_ﬂ
1enpo.d - asepaupanpoud-| * [i Lt
JNPOId : BIEMUL1oNPOIC- aredwsa | BuiBessaydwis : 193p0g0aMm-
Buas : swenjonpoud-| J||oRuoDHsEL
Bujns - swenAuBdwOD-| L
o T el
b PIOA : (IUSIUODIDS+:]
S (wawogebs+| 1 15 : (ismyseats
i POA : ()8PODIES+ (f—— 1807 IST4SEY-|
PIoA - (IYYSHNSU0D-| o0 2 1
PioA - (no 1 i o abessapsEL ¢
SIIDdOLYYS - ()()aousisupeb u2juco- L T
U1 : 8poo-|
UES|00q PAYISLILIDD-| -
sewl :Jawp-| yseLy B .

1 : (Japoossanyelepdns|
Wi - (URUpyABsUl+
Jos : (JeweuesnAgpuy+|

@y dwa 1ogpr : efeidwaLogp/~

ueajp0g - (JepogsuEiuc+
1l - (esule

ajeidwa oGy - ejedwalogel~

odayesn b ©daapoDaPieo) i e
b b Buuig :18qeydie-|
Wi ez
e
PIOA ! N85+ b L}
Bupys : (Jewewesmab+

pion © (Junis]

Jepeseys : (yIeyDpuy-
Bums : (yeqeydnius-
Buls : (JRayixaNalelauab-|
Buuis : (Jayeuauabi+

ploA: (Jeponssamyias.
Buuis : (Jepogssacayiebi+

Buus : (Jajonieb+ M

PioA: (JpejqeuTias+ SR i
uesjooq © - L :
o e pEsbus RS T o O
Bus - (Jplomsseqebi+ TBlonuogsbeg

ploa: (Jejoias+

]

L

pio : (Japesmes+|
auesn : (Japesneb+

1817 : ()suoisiap8epdnpuUYsaalABehs
UEB00Q | (JPIOMSSEH|I2PLURHAOYIK]
PIoA : (Jpiomssed| epuwieHeyessuat-|

| : (Jeoinaghgsnigsiets

Buulg : 8possagoe-

Buls : ejou-|

uee|ooq : pajgeus-
Buwmg : promssed-|

auesn : auasn-|

1950

I
w1 - (Juoisiepeoeemaepdns
Jui: (JuosiepaiemwnqeEpdn
uea|ooq : ()aainegslasn|

i (Jasuiy,

181 : (JoweusasnAgeonaapul+
ajejdwa | aqpr : ejedwe) ogpl-|

@sn

PpioA : (Jesmagigsnieigeses-|
soaq : (JpeasyLigeonaiah-
pioA : (JpeaiyLeiB|ep~

181 : ()sewenAgsaajaemabs,

plon : (Jaanaghgpesy |anes-
Plon : (Jusisi-
Janiasgol : (jeoueisugebs

3

Bus : plomssedyne;ep-|
0 © depysnielgeiaep-|

depyse;

Ju1 : wiNHod-

0

weajgindinopelao : weangindinoslgo-
WBIDIDLYYS * JONVLISNI-

obessappise] : (Jabessapse11abs|

[6ums : ()sBayrebi+

somaq : ()sbiywolaoinegeiesauabs)

pioa: (puass| -
PIOA : (Jugsi|

winua : (JadApyebs

wesgIndNOPs(qQ | wWeansINAnopsiqo-|

TBums : sbie-—
wnue : adkr

U124 ILVYS

sBessapaainaq B

0

18:20571SS - 1@20s:

TOPUEHWRID oL

L]

depjuseHIuBLNIUOY © depad|AeQeles-|
depyseHuaumuo) : depypealy] eainep-|
U winpod-|

wesnsinduppsia - weangnduposlgo-|
weansindnopelao : weangindingialto-|
BH0STSS - 194008-|

BHICSIBARSTSS | IPj00GeARS]
JBMBSHDL | JONYLSNI|

JamMssdIL

iagram

dallr Class D
This figure shows the relation between the classes of Heimdallr software; one of the main

Heim
components of the Heimdallr system

Figure 8

42

In the class diagram for Heimdallr given in Figure 8, we clarify the different types of classes. Some
of these classes go under the package called models, meaning that those classes are implemented
to be used as entities of common objects among the components of the Heimdallr system. These

are namely; User, Device, ATask, Product, TaskMessage, DeviceMessage, and SAAMessage.

User objects are used to hold data of Heimdallr users. Any user who is registered as either ADMIN

or USER has a corresponding User object created and stored in Heimdallr database.

Device objects represent the actual physical IoT devices which have successfully established a
connection to Heimdallr. Once an IoT device is connected, a corresponding Device object gets
created with the device information received during the first stage of the connection; registration
phase. It includes the device name, serial number, its assigned IP address, and installed firmware
and interface versions. Note that for simplicity we used unique device name and serial number
combinations as unique device IDs. Doing so we did not have to introduce MAC addresses when
representing an [oT device. Moreover, usage of MAC addresses might also be problematic, more

about that will be discussed in Chapter 5; Simulation of Heimdallr and Experimentation.

ATask object basically represents a task created and sent by Heimdallr to an IoT device. To
generalize a task we introduced an integer code and a generic type content variable in A Task class.
This code can represent anything and it is meant to be determined and configured by the
loTDeviceMaker, meanwhile, the content variable holds the data corresponding to that code. For
instance, a task object with code=1 : content=25 and code=2 : content=true could be sent to an
IoT thermostat where code / means the temperature and code 2 means the power status of the
device. Therefore, what the above task is trying to say is “turn on the thermostat and set the
temperature to 25 degrees Celsius”. Since the content is of type generic, any [oT device can be

controlled using the same class (47ask) having different interpretations upon receipt.

To send tasks from Heimdallr to loTDevices we introduced the class TaskMessage. A
TaskMessage object consists of an array of ATask objects and is used to send tasks created by
Heimdallr to loTDevices. Similarly, any message sent from an loTDevice to Heimdallr is a

TaskMessage object wrapped in a DeviceMessage object.

We introduced DeviceMessage class to be able to tell Heimdallr that the message it is receiving as

a TaskMessage is either a REGISTRATION message or a STATUS message. Whenever an

43

IoTDevice tries to establish communication with Heimdallr, it first sends a REGISTRATION
message along with Heimdallr’s password to be registered, then it starts sending its current status

in time intervals determined by the loTDevice itself.

Product and SAAMessage are similar classes used in the communication between Heimdallr and
SAA. A Product object represents a product generated by the IoT device maker which will be
explained later. It consists of the essential information required to describe it along with the binary
data of the product itself. This information contains the company name which makes the product,
product name, type, release date, version, URL which can be used to access the product’s source,
description of the product, binary data and the MDS5 checksum of that data. For the purpose of our
proof-of-concept version of the system, a product can be a FIRMWARE UPDATE or an
INTERFACE UPDATE, this is what we call the product type. Every time Heimdallr asks for an
update, SAA4 responds back with an S44AMessage. An SAAMessage contains both the latest
FIRMWARE UPDATE and the latest INTERFACE UPDATE. Note that, in real applications
sending the whole product every time it is queried is undoubtedly an inefficient practice. However,
since we arbitrarily decided to have our products carry a mock-up data as small as 32 bits for test
purposes, we didn’t differentiate a respond with only the latest version information and a full

packet respond carrying the complete product data.

Another package we called is repository. Classes called CookieCodeRepo, UserDeviceRepo and
UserRepo fall under that package. Earlier we also called those classes DAO. DAO simply means
Data Access Object. These classes are the links which connect entities mentioned above to their
corresponding database objects. Therefore, in our case whenever a Java object has to be inserted
into a database table, we call its corresponding DAO, give the object to it so that it can establish
the connection to database and execute the SQL query to insert that given object. The same applies
to every kind of interaction made with the database. Thus, UserRepo is used to store, fetch and
check a User object to and from the user table in Heimdallr’s database. CookieCodeRepo is used
to store and check if the cookie received from a client device is valid or not. Similarly,
UserDeviceRepo is to execute any query related to users and the devices owned by them. One such
query is carried out by findDeviceByUsername() function of that class. Given the name (unique)

of the user, it returns a list of Device objects to be used by another Heimdallr task.

44

Now, we would like to separate the Heimdallr software into two ends and explain them
independently. First one is the internal network. Here internal network means the communication
between Heimdallr and connected IoT devices. And the other end we call external network
meaning that the communication between Heimdallr and SAA, and any type of client device used

to connect to Heimdallr.

For internal network, we used both SSLSocket and SSLServerSocket objects which come with
java.net package to establish secure, full-duplex TCP connections between Heimdallr and
loTDevices. TCPServer and TCPClientHandler are the responsible classes for that. This
TCPServer singleton object always listens for /loTDevices. Once a packet is received from an
loTDevice, it initiates a TCPClientHandler object specifically for that device and runs it on a new
thread. From this point on, every interaction done with this /oTDevice is conducted and regulated

by means of its corresponding TCPClientHandler object.

External network can also be divided into two parts. First part is the communication done with the
SAA. This is similar to what we have done for the internal network communications. Instead of
TCPServer class we have another singleton class called S44TCPClient. Again using SSLSocket it
establishes a secure TCP connection to SAA. Note that unlike our internal network connections,
this one is a half-duplex TCP connection, since Heimdallr is the only one which initializes queries
and makes requests using SA4AMessage objects. The second part however is different;
communication between Heimdallr and client devices. Heimdallr provides a secure web service
(using HTTPS protocol) that can be accessed from any internet connected device as it is described
earlier. That is exactly why it needs to have a static IP address to function properly. Once a request
made to Heimdallr’s IP address it responds with its login page. After a successful login, clients are
redirected to their homepages and so on (see previous diagrams). All those requests are handled
by the PageController class. If a user clicks on an IoT device shown on the homepage,
PageController redirects the user to the page (interface downloaded and installed from SAA) of
that device. At this point the HTTPS communication between the client device and Heimdallr gets
upgraded to WebSocket Secure (WSS) communication. After that every request from and to the
client is handled by the TaskController class. To be more specific, any up-to-date status sent by an

loTDevice to Heimdallr is pushed to this device’s page through WebSocket. Similarly any task

45

created and sent by the client using that page is handled again by the TaskController and passed
to the loTDevice by means of TCPClientHandler.

In Figure 8, we can see a utility class called KeyGenerator. This class is responsible for generating
new access codes asynchronously for users. These codes are then used to check the validity of the
access code which will be entered by the user on the next attempt to login using a new client

device. More about that will be talked in Subsubsection 4.1.5.5.

Finally, Application is the main class where the TCPServer and SAATCPClient are first initialized
and all the configuration classes are bootstrapped, namely WebSocketConfig and SecurityConfig.

4.1.5.2 IoT Device

TCPClient 1 ~ | ConnectionHandler | 1 TaskHandler M Device M o
-INSTANCE : TCPClient +run() : void ® 4 |*+process() : void L -type : enum
-socket : SSLSocket -args : String[]

-objectOutputStream : ObjectOutputStream 1
-objectlinputStream : ObjectinputStream
-args : String[]

+getType() : enum
+getArgs() : String[]
+getTaskMessage() : TaskMessage

-timer : Timer M ATask
: 1 de - int

+connect() : void Rl ol 1
-listen() : void il eSS ~content
+sand() : vold abtat! s Controlley +getCode() : int 1]
+getinstance() : TCPClient ~taskList : List 1 +setCode() : void
» i P 4. M TaskMessage

setArgs() : void +getTaskList() : List - +getContent() - 1 . -
~setStatusController() : void +setTaskList() : void +setContent() : void [——————|-taskList : List
~sefTaskHandler() : void +getStatus() : List +toString() : String +gefTaskList() : List

Figure 9: IoT Device Class Diagram
This figure shows the relation between the classes of an IoT device software; one of the main
components of the Heimdallr system

The only other component involved in demonstrating the internal network working principle of the
Heimdallr system is the loT Device. In Figure 9, the class diagram of an IoT device is given. It is,
however, essential to mention that this above program is meant to be used as the core library for
creating variety of IoT devices such as an [oT thermostat or an IoT TV. To do so, one has to
override the function called process() of TaskHandler class and implement the functions of
StatusController interface. Hence, different IoT devices are given the same working principle
which makes them compatible with Heimdallr while having unique and specialized ways of
handling the tasks sent to them. TCPClient is the singleton class where the full-duplex secure
socket communication over TCP is established with Heimdallr. ConnectionHandler is a helper
class for the TCPClient and it is responsible for fixing connection issues and reestablishing it. For

instance, if Heimdallr switches off ConnectionHandler notices that and starts pinging Heimdallr

46

in preset time intervals. Once it receives a response from Heimdallr it establishes a new
connection. Finally, DeviceMessage, TaskMessage, and ATask are exactly the same classes as the

ones we explained in Heimdallr class diagram (Figure 8).

4.1.5.3 SAA
SAATCPServer 1 HeimdallrHandler da SAAMessage
-INSTANCE : SAATCP Server lgp——|-objectinputStream : ObjectinputStream -companyMame : String
-serverSocketH : SSLServerSocket 0.." |-objectOutputStream : ObjectOutputStream -productName : String
-serverSocketV : SSLServerSocket +run() : void -productFirmware : Product
-objectinputStream : ObjectinputStream -listen() : void -productinterface : Product
:objedOutpr_tStream : ObjectOutputStream 0 i +getCompanyName() : S_mng
portNumH : int +setComanyName() : void
-portNumV/ - int _ 1 +getProductName() : String
-conn : Connection —|+setProductName() : void
-listen() : void aas - 0. +agetProductFirmware() : Product
+getinstance() : SAATCPServer -conn : Connection 3 Product +setProductFirmware() : void
+getConn() : Connection +insert() : void o +agetProductinterface() : Product
. -companyName : String .
1) +getProduct() : Product -productName : String +setProductinterface() : void
1 -type : enum 1
1 -releaseDate : Instant
DBlInitializer 0.r 1 -version : String
+initialize() : void VendorHandler -url : String “7
-objectinputStream : ObjectinputStream ! R T BT) -
dao - DAO 0.+ —checksumMDS : String
- -data : String
+run() : void
-listen() : void +getTypel() Glzi]
+getVersion() : String
-createMD5() : String
+toString() : String

Figure 10: SAA Class Diagram
This figure shows the relation between the classes of SAA software; one of the main components of
the Heimdallr system

On the external network side of the Heimdallr system, one of the three components is SAA. SA4
represents the role of our not-for-profit organization SAA. It is composed of six classes. In the
class diagram of SAA4 given in Figure 10, Product and SAAMessage are again exactly the same
classes as we explained in Heimdallr class diagram (Figure 8). The main class of SAA4 is called
SAATCPServer. It is responsible for establishing half-duplex secure TCP connections using
Jjava.net SSLServerSocket. It listens exactly two ports; one for Heimdallr connections and another
one for loTDeviceMaker connections. Any request received on port reserved for Heimdallr is
transferred to and handled by the HeimdallrHandler class. Likewise, any request received on port
reserved for loTDeviceMaker is transferred and handled by the VendorHandler class. When a
Product wrapped in an SA4AMessage object is received from an loTDeviceMaker, VendorHandler

instantiates a DAO object and calls its insert() function to store the Product received into the

47

appropriate table in the S44 database. Similarly, whenever Heimdallr makes a request asking the
latest FIRMWARE UPDATE and the INTERFACE UPDATE, this time HeimdallrHandler
instantiates a DAO object and calls its getProduct() function to fetch the latest updates from the
database. Finally, although it is of no importance, DBInitializer is responsible for creating the

necessary tables in the SAA4 database when it is first run.

4.1.5.4 IoT Device Maker
The second main component of the external network of the Heimdallr system is the IoT device
maker. In our proof-of-concept application it is represented by the program called

loTDeviceMaker. Below its class diagram is given in Figure 11.

loTDeviceMakerTCPClient ProductGenerator d Product

-objectOutputStream : ObjectOutputStream
-socket : SSLSocket

~timer : Timer

-companyMName : String
-productNames : String(]

+generate() : Product

-companyMName : String
-productName : String

-type : enum

-product : Product
-pg : ProductGenerator
-args : String(]

-releaseDate : Instant
-version : String

-url : String
-description : String
-checksumMDS5 : String
-data : String
+getType() : enum
+getVersion() : String
-createMD5() : String
+t0String() : String

-release() : void 1
-connect() : void
-establishConnection() : void

Figure 11: IoT Device Maker Class Diagram
This figure shows the relation between the classes of an IoT device maker software; one of the
main components of the Heimdallr system

As always Product is the object representing either a FIRMWARE UPDATE or an
INTERFACE UPDATE made by the loTDeviceMaker. Here the role of establishing secure TCP
connections 1s assigned to the class called loTDeviceMakerTCPClient. This class is also
responsible for the only task that an IoT device maker has in our proof-of-concept system,;
production and publication of an update. It instantiates an object of the ProductGenerator class
using the arguments (args//) given at run time. These arguments tell the ProductGenertor what
kind of products it can produce under which company’s name. Then it randomly generates every
attribute ranging from version number to data required to create a Product. Once it is done

loTDeviceMakerTCPClient sends the product to SA4 to be stored.

48

4.1.5.5 Client Device

The final component of the external network of the Heimdallr system is the client device. A client
device consists of the key generator and a software which allows users to connect to the Internet
e.g. a web browser. Since Heimdallr provides a web application service for its users, they will be
interacting with Heimdallr by simply connecting to it over the Internet by means of no matter what.
That is why in this subsubsection we will only be discussing the class diagram of the key generator

(given in Figure 12) needed for generating access codes for the first time logins.

KeyGenerator

-size :int
-alphabet : String
-seed : String

+generate() : String
-generateNextkey() : String
-shiftAlphabet() : String
-findCharAt() : Character
+run() : void

Figure 12: Key Generator Class Diagram
This figure shows the only class needed for generating access codes by the software installed on
client devices. It is one of the main components of the Heimdallr system

The KeyGenerator is the class which asynchronously generates user specific, one-time-use access
codes to be used when logging in for the first time to Heimdallr’s web interface from a new client
device. Having a size, alphabet and seed, it generates unique access codes every time the function
generate() is called. It ensures the validity of these asynchronously generated access codes by
working in tandem with the Heimdallr’s KeyGenerator mentioned in Subsubsection 4.1.5.1 and in
deployment diagram Subsection 4.1.1. Both of these KeyGenerators are exactly the same, and
therefore, use exactly the same algorithm to produce and validate these codes. Let us explain how.
On the client device the KeyGenerator gets initialized with a given seed. This is usually a
predetermined password chosen by the user. When the public function generate() is called by the
user, it calls the private function generateNextKey() and feeds it with the seed. This function first
calculates the octal values of the characters composing the seed. It then gets the maximum of them
and shifts the alphabet by this maximum value. Now that we have a new alphabet, it is time to

generate a new access code! To do so, our algorithm iterates through the given seed one more time

49

and replace each character with a new one from our new alphabet. Since both the server-side
KeyGenerator and its counterpart client-side KeyGenerator have to generate exactly the same new
code without communicating, there had to be a precise way of picking these new characters from
our new alphabet rather than picking them randomly. Hence what our algorithm does is, it adds
the index value of the current character of the seed to its octal value and uses the resulting integer
value as an index to get a new character from our new alphabet. We then end up building a new
String of the same length after iterating through the characters of the current seed. Finally we
reverse this String and return the resulting value as the new access code and the next seed to

generate the next code.

The counterpart of that algorithm in server-side does exactly the same thing once it receives and
checks the validity of the current seed and updates the corresponding user entry in database by
changing that user’s access code with the newly generated one to be checked the next time. This

is how we generate one time use access codes in an asynchronous and stateless manner.

4.1.6 ER Diagrams

In this final subsection of high-level system diagrams, we will be examining Heimdallr system’s
entity-relationship (ER) diagrams. This type of diagram shows the relationship between database
entities and the way they are stored. Hence it helps us fully comprehend the system. In our proof-
of-concept version of Heimdallr system there are only two components which use a database;
Heimdallr and SAA. Recall from the class diagrams of Heimdallr and SAA that the DAOs or
repositories were the classes that carry the data to and from their databases. Below in Figure 13

and Figure 14, ER diagrams of those databases in their third normal form (3NF) are given.

50

4.1.6.1 Heimdallr

r User_IP 0 ' User _‘} (— Device W
? Userusername wvarchar{30) || username varchar(30)) || device_name varchar(30)
L;_; IP_address varchar(128) password varchar(20) || device_serial varchar(50)
~ role varchar(20) || device_IP_address varchar(128)
I'r Cookie_Code) enabled bit firmware_version varchar(50)
Liﬁ cookie_value varchar(30) PO——H access_code varchar(20) interface_version varchar(50)
..\ Userusername varchar(30) p
User_Device W
"T‘ Userusername varchar(30)
"" Devicedevice_name varchar(30)
"T‘ Devicedevice_serial varchar(50)
"‘ Devicedevice IP_address varchar(128)

Figure 13: Heimdallr ER Diagram
This figure shows the relationships of entity sets stored in Heimdallr database

User objects are stored in Heimdallr database as User entities. A User entity must have a unique
username attribute as its primary key. A Device entity, on the other hand, has a primary key which
consists of three attributes; device name, device serial, and device IP address. These three
attributes together are what make a device distinguishable from others. The relation called
User Device is a join table of User and Device entities. This allows us to easily match a device
with its owner. Similarly, in order to comply with 3NF, User IP and Cookie Code tables are
separated from the User table and put in a many-to-one relationship with it. They simply hold the

data on IP addresses and cookies assigned to specific users.

4.1.6.2 SAA

f’r Company r Product)
| 1D integer(10) LJ type varchar(50) U
company_name varchar(50) IJ lmmmmmmm e o9 release_date date(8) 1]
product _name varchar(50) IJ version varchar(30) U

URL varchar(255) [}Y]

description varchar(255) Dﬂ
checksum_MD5 varchar{max) 1]
data binary{max) U
l:ﬁ-l CompanylD integer(10))

Figure 14: SAA ER Diagram
This figure shows the relationship of entity sets stored in SAA database

51

The other database in the Heimdallr system is used by S44. A Company entity has a unique
company name and product name combination represented by a uniquely assigned ID. This ID is
then used to create a one-to-many relationship with the Product entity. A Product represents a
product created by an IoT device maker and sent to SAA to be stored. When Heimdallr asks for
the latest version of a specific loTDevice by sending SAA the company name and the product name,
SAA queries its database with these values to find any matching products. It first sorts the matching
results in descending order by their release_date and group them by their #ype. Finally it returns
two products, one as the latest FIRMWARE UPDATE, and the other one as the latest
INTERFACE UPDATE, and sends them to Heimdallr wrapped in an SA4AMessage.

4.2 Tools and Technologies Used

During the development of our proof-of-concept version of Heimdallr we used Java version 8 as
the main programming language, and JavaFX to implement the GUI of the test components which
will be presented in Chapter 5. Our first attempt was to demonstrate the system using Akka actors '
It was a single project composed of five actors; HeimdallrActor, SAAActor, loTDeviceActor,
loTDeviceMakerActor, and ClientActor. However, despite that it was able to deliver the idea of
how the system works, it was also way too simple and shallow to be able to show details on security
issues or the interaction of a real user with the system. Hence, we gave up on actors and created
four different maven projects, one for each component of the system. Implementation of loTDevice
and loTDeviceMaker were straightforward. As we discussed in Subsection 4.1.5, they consist of a
couple of simple classes which allow them to establish the necessary connection with other
components of the system. Each of these connections between the system components —including
the ones established by Heimdallr and SAA— are either half or full-duplex secure TCP connections
achieved using SSLSocket and SSLServerSocket both are found under java.net package. Since these
classes provide secure connection via sockets and server sockets using protocol called Transport
Layer Protocol (TLS) or formerly called Secure Sockets Layer (SSL), we needed our own
certificate to be shared during the TLS handshake. Therefore, we created two self-signed
certificates one for SA4 and another one for Heimdallr using Java Keytool (see Appendix A).

10 A free and open-source toolkit which provides programming using the actor model. The actor model provides an
abstraction that allows the programmer to model the classes as stateful entities communicating with each other
asynchronously by explicit message passing [88].

52

Although the type of those certificates is of no importance in our proof-of-concept version, we
used SHA256withRSA signature algorithm to sign them. Additionally, we only used TLS version
1.2, since version 1.3 seemed to have some bugs which would unnecessarily obstruct the goal of
the project. And to be compatible with our -certificates we only used cipher suit

“TLS ECDHE RSA WITH AES 128 CBC SHA256”.

The biggest and the most complex component of the entire system is the Heimdallr itself. Since it
was such a complex program to implement, considering our limited time we decided to use Spring
Framework and let it eliminate the boilerplate configurations needed to startup our web
application. As we mentioned earlier in this paper that there are two parts of Heimdallr software
that we can name; internal and external network. We know that the internal network
communication is achieved by secure Java sockets. External network however, is where the Spring
Framework comes into play. We used Spring MVC to build Heimdallr’s web application which
allows users to access their Heimdallr, and therefore, their IoT devices. MVC architecture
composes of three main components Model, View, and Controller. As we have discussed in class
diagram of Heimdallr, its models are simple POJOs (Plain Old Java Object); User, Device, ATask,
Product, TaskMessage, DeviceMessage, and SAAMessage. Its controller that handle user requests
is the PageController. And finally its views (pages) are JavaServer Pages (JSP) which are

dynamically generated web pages on the server-side.

We mentioned that the communication between the client device and the IoT device’s Ul provided
by Heimdallr is achieved using WebSockets (WS). To do that, we benefited from Spring
Framework’s STOMP support. Simple Text Oriented Messaging Protocol (STOMP) is a simple
HTTP-like messaging protocol which is widely used in WebSocket applications. In our case, when
a client device accesses an loT device’s interface (page), it immediately tries to subscribe itself to
the Heimdallr’'s WebSocket channel using SockJS which is essentially a JavaScript library that
allows us to create a communication channel by providing a WebSocket-like object. Meanwhile,
our WebSocketConfig class shown in Figure 8 acts as the STOMP broker to the client. Then, any
message (task) sent to that channel is routed to Heimdallr’s TaskController to be handled
accordingly. Hence, since it is a full-duplex bi-directional channel, client device does not require

a refresh to see changes on the device page. Moreover, in order to make Heimdallr-client device

53

communication absolutely secure we forced client devices to use only HTTPS protocol instead of

HTTP and WSS instead of WS by one more time utilizing Heimdallr’s self-signed certificate.

The other two essential Spring Framework extensions that we have used were Spring Security and
Spring Boot. We have used Spring Security to configure Heimdallr’s login page and login
functionality, and to give or deny access to some URIs (Uniform Resource Identifier) depending
on the roles and credentials of the users. And Spring Boot allowed us to run Heimdallr’s web

application on an embedded Tomcat server that comes with it.

Finally, before we end this section, we would like to mention our database choices. Although any
other type of database can be linked to our DAO classes at any time, now, for the sake of simplicity
and to make our demo lightweight we used H2 —an in-memory database— for both Heimdallr and
SAA. The only difference though, SA44’s DAO uses PreparedStatement class found under the
Jjava.sql package to query its database, while Heimdallr’s DAOs use JdbcTemplate class found
under the org.springframework.jdbc package. However, during our tests we have realized that
under heavy load PreparedStatement has a faster response time than JdbcTemplate. Hence, this is
something that needs to be thoroughly examined and tested during the development of the real

product.

4.3 Conclusion

Implementation of the Heimdallr system, while intuitively simple, requires complex acceptance
issues which are beyond the realm of this thesis which introduces a concept with its proof-of-
concept simulation. Aside from its exigent requirements for this idea to work, the intended features
for Heimdallr needs a team of dedicated developers, fund, and most importantly time. However,
to validate our concept, we have implemented a dry-run-test version of the proposed system to be

tested and evaluated to see its competency.

To sum this chapter up, we would like to underline that the tools we have used and the design
decisions we have made are as we have discussed in this section, strictly given that we are creating
a proof-of-concept simulation of the Heimdallr system. There is no doubt that some of those design
decisions such as usage of in-memory databases need to be changed along with possibly some

technologies used for this project. In the next chapter we will be examining the simulation we have

54

created by providing an intuitive flow diagram which will help visualize the overall Heimdallr

system and we will discuss the experiments we have made on it.

55

S Simulation of Heimdallr and Experimentation

In the following intuitive flow diagram (Figure 15) we provided the total of the system components
and their relationships. In the diagram, straight lines indicates that the two components linked by
that line, are somehow connected either by having a TCP connection, by being the same process,
or by running in the same machine. Meanwhile, dotted lines indicate the flow of process by GUI
elements. For bigger version of the parts of Figure 15 please refer to Appendix B. Note that, in

these figures “S” and “L” are the arbitrary [oT device maker company names.

56

AL Hews;

auinjop

Jauupy)

s NO! doweg

'Y

0
.
.
.
.
.
[
[}
.
[l
.
.
.
.
.

.
ARy g
.

s Ay [4

- i wpe
o v g
O WA o s b & & = O aoq
: PaIqeuy 0y RN
ew -
AL¥ews/ § X siasq) pasapsibay | 551 [
)
- AL Vo) s el ompasy | g
WA AR
ol i
S — paT . 1
" ey, " f
Y d "
on s
S .
x - '
L aumyosadwia]
w s
soyanang
eV iy wpiss s
619 =
HULRBLRELSH N e § =
jeIsowsay] Jews/ , 4
vs Epourfymn
] : b.l
L]
.
»
» -
g
) R - — - e
2 -
5 = A Boy sy oﬁ
O SRS 1 K K
¥ 0
+ 0
&
g — fy
& e o
+ p
g N J
o 7
I [.
-. ast iy *
0 st 0
0 ot .
L et s B
ut B
D) — e -
; g o4
T s s % 3
D o
e 408 ey, N ..o -...
b = ” %
.-....-.-.-. uspe WO a.. ..:
.... .' .0 .
o-- S| o 5 o.‘
e, o e
stor 4 ;
IS ey suopIaU0)
- J
— LRFOTO0/ - ORFTTOD: SSapY | -
uiB0 Jas)) Jjfepwag hu:mmd_ ueInssy alemijos
X - Wi

dallr System

1m

f the He

Intuitive Flow Diagram o

Figure 15

This figure provides an overall view for the Heimdallr system simulation

57

As we can see in Figure 15, we have a total of 8 major system components for the simulation of
the Heimdallr system linked to each other with bold straight lines. These are, the Heimdallr
software, the SAA software, a web browser, a Key Generator, a number of IoT device producers,
and their IoT devices (here we have limited to two producers with one IoT device from each), all
running on a single system. We set one of the IoT device makers to simulate the company “S” and
the other one to simulate the company “L”. Likewise, one of the IoT devices is set to be a S’s

Smart TV, while the other one is set to be an L’s Smart Thermostat.

Both S and L companies are connected to SAA and any update produced by them is sent to SAA
which can be seen in their Log section. We can also see what kind of products they make
underneath their title. Similarly, from SAA window we can access all of the connected [oT device
makers’ products sent so far and stored in SAA database. We can also access any Heimdallr
connected to this SAA and their log under the Connections section. Note that, in our simulation

we only have one Heimdallr active at a time with an ID; xxxxx.

In the diagram, we see that Heimdallr has an admin interface which leads the admin to a home
page after a successful login. There, the admin can see the Connected Devices, SAA Status, and
Registered Users. A connected IoT device’s page gives details about the device such as the device
name, serial number, currently assigned IP address, current firmware and interface version, and
the owners’ username. In the middle section of its page, Device Specific Properties are given.
These are basically the device specific task codes designated by the device maker and their current
content values. Finally, a device page provides Device Logs at the bottom section. There, the log

of any task sent and any DeviceMessage received by the Heimdallr is shown.

The connected SAA’s page can be accessed via the button provided next to SA4 Status on the main
page of Heimdallr admin interface. This page shows two log sections. The above one gives any
message sent to the SAA and the bottom one gives any response received in return. And finally,
an admin can see the table of currently registered users of this Heimdallr along with their

information.

As we said, in this simulation we have two connected IoT devices. One is L’s Smart Thermostat
and the other one is S’s Smart TV. In order to connect these devices, one needs the Heimdallr
password created for device registration. Once the correct password is entered, these devices get

connected to our Heimdallr as it is shown in Figure 15. We also created an interface for the

58

application simulating an IoT device. This interface pops up once the device is connected to
Heimdallr. There we can see the device and its maker’s name, serial number, current firmware
version, owner’s username, Heimdallr connection status, and finally on the bottom section their
device specific properties which is exactly what we see in Device Specific Properties section in

Heimdallr interface’s device page.

Last component of our simulation is the web interface of Heimdallr which is used by the users to
interact with their [oT devices connected to it. In Figure 15, we see the login page of this interface
with a title of “Heimdallr User Login”. After entering the right credentials, if there is no stored
valid cookies in this client device, the user can be prompted to a second page where an access code
is requested. Using the Key Generator, the user can generate a new code and proceed to the user’s
home page. Here, the user can see his/her owned and currently connected IoT devices and access
their interfaces to interact with them. Every, device interface is specifically created by the loT
device maker and certified by the SAA. The latest certified version is regularly checked by
Heimdallr and installed when a new one is available. We see that any task sent by the user through

the web interface of Heimdallr is delivered to the actual IoT device.

In the rest of this chapter we will be explaining what kind of experiments we have made using this

Heimdallr simulation and what is our overall assessment of the system.

5.1 Experimentation

Prior to begin developing the Heimdallr system, in order to make ourselves believe in our cause
before anyone else, we wanted to make sure that the security issues of loT devices are indeed as
serious and ubiquitous as we have read from countless articles. Hence, we have discovered a
website called Shodan [81] where IP addresses of all of the internet connected IoT devices are
listed. Here we browsed for IP cameras and picked the URLs of five of them. We also searched
for default username-password pairs for those cameras by their manufacturer and the product
names. Then, we started trying those pairs out which we have found on the Internet for free and
publicly! The results were actually shocking, we managed to access interfaces of three IP cameras
out of five with ease. The worst part is, we could even change the angle of the cameras, get live
stream and even change settings and none of it was even illegal. Now that we had incited, we

started the development process right away.

59

With a working proof-of-concept simulator of Heimdallr system, we first checked the integrity of
the system to make sure that there were no flaws within the basic functionality including its
database related actions. Every use case is tested with a single user and single IoT device, single
user and multiple IoT devices, multiple users and single IoT device, and multiple users and
multiple IoT devices using different client devices with different cookie and IP addresses. We also

tested SAA with single and multiple loTDeviceMakers with single and multiple types of products.

Since one part of the Heimdallr is a web application, the system must be robust enough to be able
to negate every kind of known malicious web attack for absolute security. However, since
penetration testing is completely another branch of expertise, due to our time limitations, at this
point we have only focused on and avoided some of the most common attacks on web services,
namely Cross-site Request Forgery (CSRF), SQL Injection, and Cross-site Scripting (XSS).
Although CSREF protection is already provided by the CsrfConfigurer function of the Spring
Security by default, we had to test XSS and SQL Injection attacks on our web application to make

sure that it has no security holes on such a big scale.

After a thorough examination of the Heimdallr source code, we could only find one function where
an SQL Injection might actually be harmful; Heimdallr admin interface authentication. In this
function we feed the injected data source —which is the Heimdallr database— to Spring configured
AuthenticationManagerBuilder (auth) along with the username and password pair entered on the
login page which then executes the following code:
auth.jdbcAuthentication().dataSource(dataSource)
.usersByUsernameQuery("SELECT USERNAME, PASSWORD, ENABLED FROM
USER WHERE USERNAME=?")
.authoritiesByUsernameQuery("SELECT USERNAME, ROLE FROM USER
WHERE USERNAME=?");
Since, this authentication process handled by the Spring Security we were not able to change the
source code. Therefore, in order to make sure that it is resistant to SQL Injection, we ran the attack
using our own malicious SQL queries as username and password inputs. Some of them are as

follows:

e DROP TABLE USER;
Py [z OR [z J): »

60

e admin OR 1=1

And similar variations and combinations of these, which eventually return true statements when
executed. Fortunately, we were not able to obtain any malicious results from our attacks. Thus, this
experiment has proved that the Heimdallr software is resistant to SQL Injection attacks, and left

us with the third attack which we need to avoid; XSS.

While we were examining the source code of Heimdallr to find any vulnerability to SQL Injection
attacks, we also kept an eye for the flaws which may be vulnerable to XSS attacks. Eventually, we
have noticed that the task messages (TaskMessage) created by the user on the client device and
sent to the corresponding IoT devices via Heimdallr, are never checked. Therefore, any malicious
script code can be stored as the content of a task (47ask) and sent to the IoT device as a task
message. We also realized that if the IoT device accepts that task and stores it as its status, it
eventually sends it back to Heimdallr to be displayed as the current status of this device on the web
interface. This was the biggest vulnerability of our system, since, to some extent it relies on cookies
when it comes to web application security, and stealing cookies is one of the most common use
cases of XSS attacks. If a perpetrator hijacks a Heimdallr user’s session by stealing his/her cookie
through an injected script, any IoT device owned by this user becomes exposed to further
malevolent actions. To patch that security hole, we added a small code which utilizes a library
called Jsoup and strips any potentially harmful character or HTML tag from the task message
created by the user before sending it to the corresponding IoT device:
task.getTaskList().replaceAll(aTask -> {
if(aTask.getContent() instanceof String)

aTask.setContent(Jsoup.clean((String)aTask.getContent(), Whitelist.none())),
return aTask;

A
By doing so we assured that any input received from the user who uses Heimdallr web interface,
is cleansed from any potentially harmful content, and therefore, safe to be sent and stored. In the
next part of the development work, our goal is to test all other known attacks and address any

vulnerabilities found in Heimdallr software.

Aside of these security patches, we also made sure that Hypertext Transfer Protocol Secure
(HTTPS) 1s the only protocol used by the client devices when communicating with Heimdallr to

increase security. However, during our tests we realized that the web antivirus programs and the

61

browsers themselves are blocking the access to Heimdallr because of the fact that its TLS
certificate is self-signed. Thus, for the real product we have to get a trusted CA (Certificate
Authority) approved one. Furthermore, it is important to realize that since quantum computers
started to become an actual tool today, as most of the DLT algorithms does, Heimdallr should also
adopt quantum immune encryption algorithms rather than just relying on algorithms like RSA

(Rivest—Shamir—Adleman).

We also tested the consistency of our asynchronous Key Generator algorithm to make sure that
the two-factor authentication works flawlessly when a request is made from a new client device
that doesn’t carry a valid cookie. Although, the current algorithm works as intended, we noticed a
small bug that can lower the security level that we are trying to achieve and maintain. The alphabet
that we are using to create the next access code for a user is always the same every time. Moreover,
since every user uses the same key generator algorithm, everyone’s generator uses exactly the
same alphabet to generate their codes. We know that if the first code assigned by a user is known,
the next one for this user can be and is generated by feeding it to the key generator. Which means
that, any time in the future if a perpetrator reveals the last used access code of a user, this person
can effectively generate the next code using his/her own key generator without the actual owner’s
permission and knowledge. In order to prevent that, one of our primary goals is to introduce one
more integer seed picked by the user and save it along with the user’s first code in both Heimdallr
and user’s own key generator. This seed will then be used to scramble the alphabet every time a
new access code needs to be generated. Furthermore, this scrambled alphabet will also be stored
behalf of that user to be re-scrambled during the next key generation process. Therefore, even
though a perpetrator was able to obtain the last code used by the user, in order to generate the next
correct key, he/she has to use the exact same key generator application previously used and owned

by the user.

Furthermore, during our tests, we also noticed some other misthought features that we have
implemented were either broken or posing a security risk. For instance, at first we were using MAC
addresses when registering an IoT device to Heimdallr. However, since MAC addresses are never
sent encrypted, an attacker could eavesdrop on the packets that is sent from a wirelessly connected
IoT device and through MAC spoofing, an unknown IoT device can impersonate that registered

device and gain access to Heimdallr. Since, one has to physically access a device to get its serial

62

number, we decided to use it along with the device’s name and Heimdallr password when
registering to prevent MAC spoofing and related attacks. Another example, was the feature that
allows users to blacklist or whitelist IP addresses to indicate whether to allow or deny requests
originating from them. However, we obviously missed the fact that only Heimdallr’s IP address is
static and almost all of the client devices have dynamic IP addresses. Thus, blacklisting a client
device’s IP could only help users to reject any request from that device until its IP address is
reassigned. Therefore, we removed that feature and then introduced cookies. Though, it is still
possible to blacklist IP addresses to restrict Heimdallr to not receive but send data to those
destinations. Doing so it could actually help preventing unwanted data exfiltration or DDoS attacks

launched with the Heimdallr to some extent.

One more important observation to mention is the somewhat high traffic on S44. When we were
analyzing the network traffic of Heimdallr we have noticed that the Heimdallr is actually
exhausting SA4 by continuously requesting for new update information in predetermined time
intervals. When a real life scenario is considered where thousands of Heimdallrs requesting their
regional SAA servers, it does not sound good. Hence, our proposition to that issue is to assign
unique IDs to each and every Heimdallr and let them register themselves to their regional (the
closest) SAA server. So, instead of letting Heimdallrs to do the requests, we can have SAA servers
to notify their registered Heimdallrs when there is actually a new update to be installed. This would
definitely lighten the traffic on SAA servers, moreover, these unique Heimdallr IDs can be used to

implement even greater features in the future.

Overall, aside of these small tweaks, the current version of the Heimdallr system works as intended
with all the basic functionality after all of the tests on which we ran on local network. However,
even though the idea of this system showed its competency to deal with the current IoT related
issues in our tests, we concluded that for more accurate results, an alpha prototype should be
implemented and tested in a typical real usage replication with a mix of simulated smart IoT

devices to actually see how it performs in practice.

5.2 Analysis and Assessment

In this final section of this chapter, we would like to discuss how hard or easy is to realize the

Heimdallr system and what the technical requirements are to put it into practice. In terms of IoT

63

devices, IoT device makers and client devices nothing is different. Only exception is that loT
device makers will have to follow a standard when developing software for their IoT devices. This
standard as we discussed earlier is what allows Heimdallr to locally run both the server-side
services and the client-side applications of IoT devices which provide its users a Ul to interact
with. We also said that these applications or Uls are currently composed of a couple of JavaScript
and JSP files per [oT device in our proof-of-concept version. However, this can surely change to
a point where Heimdallr has its own format and Application Programming Interface (API) for IoT

device makers to use when developing Heimdallr compatible software.

Another must have is the usage of IPv6 protocol. In Chapter 3, Section 3.2, we have discussed that
the Heimdallr needs a static IP to be able to inherit a client-server model. When the inevitable
depletion of IPv4 address pool is considered, starting up a new, IP address hungry system like
Heimdallr hinging upon it is just not wise. Therefore, an utter solution would be to assign IPv6

addresses to Heimdallrs which is fortunately possible.

When it comes to Heimdallr itself there is also nothing discouraging. We tested our system in a

machine with the following specifications:

e Processor : Intel® Core™ i7-4700HQ CPU @ 2.40GHz

e Installed Memory (RAM) : 16,0 GB

e System Type : 64-bit Operating System, x64-based processor
e OS : Windows 10 Home

During our tests (see Appendix C) the highest CPU usage was 20% which occurred when
Heimdallr first initializing the embedded Tomcat server. On the other hand, average CPU usage
was around 0.2% with seldom spikes of 10%. When it comes to memory usage, the allocated JVM
heap size was around 0.50 GB out of 4.26 GB and the heap used was always less than 0.25 GB
throughout an 18 minutes test run. This 0.25 GB (250 MB) includes our H2 in-memory database
(~2 MB), embedded Tomcat server (~15 MB), Heimdallr source code (~40MB), and a couple of
JSP pages which have a size of less than 10 KB in total. Here a couple of things can change. For
instance we may want to use a heavier web server like WebLogic which currently has a size of
800 MB or we may want to switch to a persistent database like MySQL which is around 300 MB

right now. Therefore without any user or IoT device data, Heimdallr software can be estimated to

64

have a size of around 300 MB minimum and 1.35 GB maximum. We also estimated how much
space the database could occupy in practice. If we consider a home network with 10 users each
having distinct 20 IoT device and 10 client devices with valid cookies and IP addresses, it makes
a total of 10 tuple of user data, plus 200 tuple of device data, plus 100 tuple of user-cookie and
another 100 tuple of user-IP data in our database. We generously calculated every tuple by ignoring
the size of binary, int and enum type attributes and assuming every attribute as VARCHAR(255)
(see Figure 13 for actual value and types). If we use UTF-8 encoding, every character can have a
size of up to 8 bytes each which makes 765 bytes per attribute. At this point we can even be more
generous and consider every attribute 1 KB. Therefore, for IP and cookie tables we have 2 attributes
each, and for user and device tables we have 5 attributes each which makes 1450 KB in total in
our case. Moreover, if we have 200 distinct [oT devices that means we have 200 distinct JSP pages
with their corresponding JS files. We already know that the combination of these files is about 10
KB in our proof-of-concept scenario which makes an extra 2000 KB of data to be stored in our
database. Hence, we can confidently say that under the given circumstances the estimated
maximum size needed for the database would be 3450 KB or about 3.5 MB in total. When we
consider the storage needed for Heimdallr software itself, 3.5 MB of database entry becomes

insignificant for the result.

The final requirement needed to be considered is the bandwidth. Since one part of Heimdallr is a
web application, it needs to have enough bandwidth to be able to maintain a fast and functional
communication with its users. Since we analyzed the network traffic of our proof-of-concept
version —running on localhost— using a loopback address, our approximation was highly rough and
hypothetical, albeit, it should give enough information to move on. If we are to continue with our
previous example where we had a home network of 10 users, the highest traffic can be expected
when or if all of these 10 users request to access their IoT devices’ Uls at the exact same time.
Then Heimdallr has to send all those JSP and JS pairs to the requesters which will cause a spike in
traffic. We said that a pair can have a size of 10 KB. Moreover, our analysis showed that the highest
value of cumulative bytes recorded for a user was indeed around 9 KBps. However, let us push it
to the limits and assume that our pair is 64 KB which is the maximum size a JSP file can be. Thus,
if we assume that the Heimdallr in this house has an upstream bandwidth of 80 Mbps, it means
that it can send 80000000 bits per second. Since 64 KB is equal to 512000 bits, this Heimdallr can

send 156 Uls per second or in other words it can respond to 156 users at the same time under its

65

heaviest traffic which is more than enough when considered that it has only 10 users. The same
applies for the downstream bandwidth needed to communicate and fetch software updates from
SAA. Hence, for a regular home network a network bandwidth of 80 Mbps seems to be more than

enough for Heimdallr to function properly.

Considering all of the above approximations we envisage that an optimized Heimdallr software
can easily run on a small single-board computer like Raspberry Pi 3 Model B+ [82] with the

following specifications:

e Broadcom BCM2837B0, Cortex-A53 (ARMvS) 64-bit SoC @ 1.4GHz

e [GBLPDDR2 SDRAM

o 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
e Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

o FExtended 40-pin GPIO header

e 4 USB 2.0 ports

o 5V/2.54 DC power input

o Power-over-Ethernet (PoE) support (requires separate PoE HAT)

It is however important to note that these approximations were only calculated for our proof-of-
concept version of Heimdallr software. Hence, there is no doubt that the requirements of the real
product will vary and most probably will be higher. Nonetheless, we do not foresee any unsolvable

drawbacks or obstacles which can come along with the development of the real product.

66

6 Conclusion and Future Work

IoT devices are proliferating and becoming every day tools for the ordinary person. The ubiquity
of these devices allows us to see them even in the private moments of our lives. The access of the
data that we provide to IoT device makers —by using these devices— exposes our habits, routines
and schedule in addition to the base data given up in good faith. Thus, all the security issues related
to data exposed to the IoT device suppliers, the third parties they use, and the vulnerabilities hidden
in the IoT devices’ hardware and software is becoming a more serious threat to privacy. As a result
of our study of those issues we realized that as long as an IoT device is able to access the Internet
freely, privacy of the user data is compromised. For this reason we created the Heimdallr system.
Heimdallr can be described as a guardian that enhances the function of the users’ home routers
and builds a fortress on private networks. It monitors and controls the incoming and outgoing data
traffic to and from the IoT devices connected to it and only allows requests from trusted sources
with authorized users having secure credentials. By doing so, regardless of whether there is a
hardware or software flaw or an issue with a service used on server-side, it guarantees that the user
data sent to and from the IoT devices never exfiltrate to any unwanted places. Additionally, it is
able to connect to SAA for access to all certified software and its updates for an IoT device. The
system thus guarantees that the users’ sensitive and private data flows only between the [oT device

and the user itself.

Our current goal is to implement an actual alpha version of the Heimdallr system and test it in a
real life scenario. This can be done by modifying an already existing open-source router firmware
such as DD-WRT which is a Linux-based open-source firmware developed as a replacement for
the inconsistent stock firmware of some specific router models [83]. Moreover, as we discussed in
this paper that the Heimdallr is a large scoped solution sitting in the hearth of the data traffic. Using
this as an advantage, the system can be further improved by adopting an open-source IDS
(Intrusion Detection System) which enables it to recognize patterns of more complex malicious
attacks and blocks them. A candidate for such a task can be the open-source, network-based IDS

called Snort [84].

Similarly, since all of the user data passes through Heimdallr, it can collect and store all that data

for a later reference while having all of it under the control and possession of the owner of the

67

system [44]. An example for such a reference could be data laboring as we discussed in Proposed
Solutions section of Chapter 2. If and when this kind of an idea is put into practice, Heimdallr users
will be able to consider selling their stored personal information to whom paying for it. There are
also some other ideas and small tweaks waiting to be realized to make the system more reliable
and secure. An example can be the development and usage of a stand-alone application running
on client devices and linked to each user’s own Heimdallr with a one-time password and/or access
code. That way no other connection can even be set to anyone else’s Heimdallr. Additionally, the
IP address of the requester can automatically be blacklisted by the system after a couple of wrong
username-password tries. Even though, these are just small tweaks on the system, they can make
a big difference against some specific type of malicious attacks. A major addition to our proposal,
however, can be the provision of public not-for-profit services for IoT devices to use. If we want
user data to be utterly safe and kept private without giving up on some essential third-party services
which are required for some IoT devices but cannot be provided locally, similar services must be
established by the trusted authorities. An example of such a service could be weather forecast. If
an loT device requires this kind of a service to be fully functional, it has to be made available but

not by a third-party.

It is also important to realize that a system like Heimdallr may be very difficult with the current
technology to put into practice because of its need of static IP, high performance hardware, and
the system’s must have; SAA. For this reason, we suggest that it can first be implemented in small-
scale, for instance, for VIPs (Very Important Person) or military personnel and then made public

for regular users over time.

As our final thought, a system like Heimdallr can be the foundation of greater developments and
breakthroughs in distributed technologies while assuring the data privacy. An example idea can be
a Facebook like system created by mesh of Heimdallrs exchanging some personal information
under its owner’s consent. This is just a simple example of what can be achieved in the future with

the help of such a system.

We see our system as the start of the swing of the pendulum to the era where the data subject did
not need outside for-profit data storage and service (cloud) and would lead to other development

to re-create privacy preserving version of what is being offered by today's big tech companies.

68

With judicial user interface, operation of Heimdallr would be made as easy and convenient as some

of the better mobile phones; suitable for the tech non-savvy!

69

7 References

(1]
(2]

(3]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

C. Group, CSA Group, [Online]. Available: https://www.csagroup.org/. [Accessed 6 March 2019].

U. LLC, "About UL," UL LLC, [Online]. Available: https://www.ul.com/aboutul/. [Accessed 6
March 2019].

K. Ashton, "That 'Internet of Things' Thing," RFID Journal, 22 June 2009. [Online]. Available:
https://www.rfidjournal.com/articles/view?4986. [Accessed 18 March 2019].

J. Clark, "What is the Internet of Things?," IBM, 17 November 2016. [Online]. Available:
https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/. [Accessed 18 March 2019].

T. C. M. University, "The "Only" Coke Machine on the Internet," The Carnegie Mellon University,
[Online]. Available: https://www.cs.cmu.edu/~coke/history long.txt. [Accessed 18 March 2019].

E. Dukes, "The Cost of IoT Sensors Is Dropping Fast," iOfficeCorp, 11 September 2018. [Online].
Available: https://www.iofficecorp.com/blog/cost-of-iot-sensors. [Accessed 19 March 2019].

K. L. Lueth, "State of the [oT 2018: Number of IoT devices now at 7B — Market accelerating," loT
Analytics, 8 August 2018. [Online]. Available: https://iot-analytics.com/state-of-the-iot-update-q1-
q2-2018-number-of-iot-devices-now-7b/. [Accessed 19 March 2019].

Clickatell, "The current state of the Internet of Things," Clickatell, 02 November 2017. [Online].
Available: https://www.clickatell.com/articles/technology/state-internet-of-things/. [Accessed 19
March 2019].

N. Patel, "Internet of things in healthcare: applications, benefits, and challenges," Peerbits, 26 July
2018. [Online]. Available: https://www.peerbits.com/blog/internet-of-things-healthcare-
applications-benefits-and-challenges.html. [Accessed 19 March 2019].

M. Kranz, "6 ways the Internet of Things is improving our lives,"” World Economic Forum, 11
January 2018. [Online]. Available: https://www.weforum.org/agenda/2018/01/6-ways-the-internet-
of-things-is-improving-our-lives/. [Accessed 19 March 2019].

P. Suresh, J. V. Daniel, V. Parthasarathy and R. H. Aswathy, "A state of the art review on the Internet
of Things (IoT) history, technology and fields of deployment," in 2014 International Conference on
Science Engineering and Management Research (ICSEMR), Chennai, India, 2015.

F. Insights, "4 Reasons Why Architecting For Change Is Critical For IoT," Forbes, 2017 December
2018. [Online]. Available: https://www.forbes.com/sites/insights-hitachi/2017/12/18/4-reasons-
that-architecting-for-change-is-critical-for-iot/#3655ee1a3a0d. [Accessed 20 March 2019].

F. Pereira, R. Correia and N. B. Carvalho, "Passive Sensors for Long Duration Internet of Things
Networks," Sensors, 3 October 2017. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676605/. [Accessed 20 March 2019].

BTI, "6 Leading Types of loT Wireless Tech and Their Best Use Cases," Behr Technologies Inc.,
16 January 2019. [Online]. Available: https://behrtechnologies.com/blog/6-leading-types-of-iot-
wireless-tech-and-their-best-use-cases/. [Accessed 21 March 2019].

70

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

M. Knight, "Data Management and the Internet of Things," Dataversity, 12 December 2018.
[Online]. Available: https://www.dataversity.net/data-management-internet-things/. [Accessed 21
March 2019].

A. Dellinger, "INTERNET OF THINGS SAFETY: NEARLY HALF OF U.S. FIRMS USING IOT
HIT BY SECURITY BREACHES," Newsweek, 6 May 2017. [Online]. Available:
https://www.newsweek.com/iot-security-internet-things-safety-breaches-businesses-how-protect-
621230. [Accessed 21 March 2019].

D. Gates, "Flawed analysis, failed oversight: How Boeing, FAA certified the suspect 737 MAX
flight control system," The Seattle Times, 17 March 2019. [Online]. Available:
https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-missed-safety-
issues-in-the-737-max-system-implicated-in-the-lion-air-crash/. [Accessed 2 June 2019].

Satista, "Advertising revenue of Google from 2001 to 2018 (in billion U.S. dollars)," Satista,
February 2019. [Online]. Available: https://www.statista.com/statistics/266249/advertising-
revenue-of-google/. [Accessed 5 March 2019].

Satista, "Annual revenue of Google from 2002 to 2018 (in billion U.S. dollars)," Satista, February
2019. [Online]. Available: https://www.statista.com/statistics/266206/googles-annual-global-
revenue/. [Accessed 5 March 2019].

L. Stahl, "Aleksandr Kogan: The link between Cambridge Analytica and Facebook," CBS News, 22
April 2018. [Online]. Available: https://www.cbsnews.com/news/aleksandr-kogan-the-link-
between-cambridge-analytica-and-facebook/. [Accessed 7 March 2019].

J. C. Wong, "Mark Zuckerberg faces tough questions in two-day congressional testimony — as it
happened," The Guardian, 11 April 2018. [Online]. Available:
https://www.theguardian.com/technology/live/2018/apr/11/mark-zuckerberg-testimony-live-
updates-house-congress-cambridge-analytica?page=with:block-
5ace2921e4b08f6ctSbe55ed#block-5ace2921e4b08f6ctSbe55e4. [Accessed 4 March 2019].

D. MacMillan, "Tech’s ‘Dirty Secret’: The App Developers Sifting Through Your Gmail," The Wall
Street Journal, 2 July 2018. [Online]. Available: https://www.wsj.com/articles/techs-dirty-secret-
the-app-developers-sifting-through-your-gmail-1530544442. [Accessed 5 March 2019].

J. D. McKinnon and D. MacMillan, "Google Says It Continues to Allow Apps to Scan Data From
Gmail Accounts,” The Wall Street Journal, 20 September 2018. [Online]. Available:
https://www.wsj.com/articles/google-says-it-continues-to-allow-apps-to-scan-data-from-gmail-
accounts-1537459989. [Accessed 5 March 2019].

J. Emont, L. Stevens and R. MacMillan, "Amazon Investigates Employees Leaking Data for
Bribes,"” The Wall Street Journal, 16 September 2018. [Online]. Available:
https://www.wsj.com/articles/amazon-investigates-employees-leaking-data-for-bribes-
1537106401. [Accessed 5 March 2019].

M. Bellis, "The History of the Thermometer," ThoughtCo, 27 November 2018. [Online]. Available:
https://www.thoughtco.com/the-history-of-the-thermometer-1992525. [Accessed 6 March 2019].

71

[26]

[34]

[35]

[36]

[37]

[38]

[39]

D. G. M. Jr., "*Smart Thermometers’ Track Flu Season in Real Time," The New York Times, 16
January 2018. [Online]. Available: https://www.nytimes.com/2018/01/16/health/smart-
thermometers-flu.html?module=inline. [Accessed 5 March 2019].

S. Maheshwari, "This Thermometer Tells Your Temperature, Then Tells Firms Where to
Advertise,"” The New York Times, 23 October 2018. [Online]. Available:
https://www.nytimes.com/2018/10/23/business/media/fever-advertisements-medicine-clorox.html.
[Accessed 5 March 2019].

L. Constantin, "How to secure your router and home network," PCWorld, 08 July 2016. [Online].
Available: https://www.pcworld.com/article/3093362/how-to-secure-your-router-and-home-
network.html. [Accessed 22 March 2019].

M. Rouse, "Unified threat management devices: Understanding UTM and its vendors," TechTarget,
March 2018. [Online]. Available: https://searchsecurity.techtarget.com/definition/unified-threat-
management-UTM. [Accessed 22 March 2019].

Luma, "LumaGuardian," Luma, [Online]. Available: https://lumahome.com/. [Accessed 24 March
2019].

"Bitdefender BOX," Bitdefender, [Online]. Available: https:/www.bitdefender.com/box/.
[Accessed 24 March 2019].

"Verizon Home Network Protection," Verizon, [Online]. Available:
https://www.verizon.com/support/residential/internet/essentials/home-network-protection.
[Accessed 24 March 2019].

E. Networks, "Extreme Defender for IoT," Extreme Networks, 2019. [Online]. Available:
https://www.extremenetworks.com/product/extreme-defender-for-iot/. [Accessed 24 March 2019].

F-Secure, "SENSE security router," F-Secure, 2019. [Online]. Available: https://www.f-
secure.com/en/web/home global/sense. [Accessed 24 March 2019].

"Securing the Internet of Things," Bullguard, [Online]. Available: https://dojo.bullguard.com/.
[Accessed 24 March 2019].

C. Al, "Connected Experience Built with Trust," CUJO LLC, [Online]. Available:
https://www.getcujo.com/. [Accessed 24 March 2019].

B. Dickson, "4 devices that can help secure your home’s IoT," Insider, 4 January 2016. [Online].
Available: https://thenextweb.com/insider/2016/01/04/4-devices-that-can-help-secure-your-homes-
iot/. [Accessed 24 March 2019].

P. Bull, R. Austin, E. Popov, M. Sharma and R. Watson, "Flow Based Security for IoT Devices
Using an SDN Gateway," in 2016 IEEE 4th International Conference on Future Internet of Things
and Cloud (FiCloud), Vienna, Austria, 2016.

J. Folkens, "Building a gateway to the Internet of Things," Texas Instruments, December 2014.
[Online]. Available: http://www.ti.com/lit/wp/spmy013/spmy013.pdf. [Accessed 30 June 2019].

72

[40]

[44]

[47]

(48]

[49]

[50]

[51]

[52]

J. King and A. 1. Awad, "A Distributed Security Mechanism for Resource-Constrained IoT
Devices," Informatica, 30 October 2015. [Online]. Available:
http://www.informatica.si/index.php/informatica/article/view/1046/841. [Accessed 30 June 2019].

E. A. Posner and E. G. Weyl, "Data as Labor - Radical Markets," Radical Markets, 3 September
2017. [Online]. Available: http://radicalmarkets.com/chapters/data-as-labor/. [Accessed 25 March
2019].

I. A. ITbarra, L. Goff, D. J. Hernandez, J. Lanier and E. G. Weyl, "Should we treat data as labor?
Let’s open up the discussion,” Brookings, 21 February 2018. [Online]. Available:
https://www.brookings.edu/blog/techtank/2018/02/21/should-we-treat-data-as-labor-lets-open-up-

the-discussion/. [Accessed 25 March 2019].

"The world’s most valuable resource is no longer oil, but data," The Economist Group Limited, 6
May 2017. [Online]. Available: https://www.economist.com/leaders/2017/05/06/the-worlds-most-
valuable-resource-is-no-longer-oil-but-data. [Accessed 25 March 2019].

"Data workers of the world, unite," The Economist Group Limited, 7 July 2018. [Online]. Available:
https://www.economist.com/the-world-if/2018/07/07/data-workers-of-the-world-unite. [Accessed
11 March 2019].

S. Oman, "Implementing Data Protection in Law," Stockholm Institute for Scandianvian Law 1957-
2010.

"PIPEDA fair information principles," Office of the Privacy Commissioner of Canada, [Online].
Available: https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-
information-protection-and-electronic-documents-act-pipeda/p_principle/. [Accessed 27 March
2019].

"General Data Protection Regulation GDPR," Intersoft Consulting, [Online]. Available:
https://gdpr-info.eu/. [Accessed 26 March 2019].

J. J. Roberts, "The GDPR Is in Effect: Should U.S. Companies Be Afraid?," Fortune, 25 May 2018.
[Online]. Available: http://fortune.com/2018/05/24/the-gdpr-is-in-effect-should-u-s-companies-be-
afraid/. [Accessed 30 March 2019].

PIPEDA, "Joint investigation of Facebook, Inc. by the Privacy Commissioner of Canada and the
Information and Privacy Commissioner for British Columbia," Office of the Privacy Commisionner
of Canada, 25 April 2019. [Online]. Available: https://www.priv.gc.ca/en/opc-actions-and-
decisions/investigations/investigations-into-businesses/2019/pipeda-2019-002/. [Accessed 8 June
2019].

"Summary of the HIPAA Privacy Rule," U.S. Department of Health & Human Services, [Online].
Available: https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html.
[Accessed 27 March 2019].

"Fair and Accurate Credit Transactions Act of 2003," Federal Trade Commission, [Online].
Available: https://www.ftc.gov/enforcement/statutes/fair-accurate-credit-transactions-act-2003.
[Accessed 27 March 2019].

"PART 682—DISPOSAL OF CONSUMER REPORT INFORMATION AND RECORDS,"
Electronic Code of Federal Regulations, [Online]. Available: https://www.ecfr.gov/cgi-bin/text-

73

[53]

[54]

[55]

[59]

[60]

[61]

[62]

[63]

[64]

1dx?c=ecfr&SID=636¢cbcb63dd25d85afab80ce0f5817ed&rgn=divS&view=text&node=16%3A1.0.
1.6.80&idno=16. [Accessed 27 March 2019].

T. Cook, "You Deserve Privacy Online. Here's How You Could Actually Get It," Time, 12
September 2018. [Online]. Available: http://time.com/collection/davos-2019/5502591/tim-cook-
data-privacy/. [Accessed 27 March 2019].

M. Rouse, "distributed ledger technology (DLT)," TechTarget, August 2017. [Online]. Available:
https://searchcio.techtarget.com/definition/distributed-ledger. [Accessed 19 May 2019].

L. Fortney, "Blockchain, Explained," Investopedia, 10 February 2019. [Online]. Available:
https://www.investopedia.com/terms/b/blockchain.asp. [Accessed 19 May 2019].

B. Asolo, "IOTA Explained," Mycryptopedia, 1 November 2018. [Online]. Available:
https://www.mycryptopedia.com/iota-explained/. [Accessed 19 May 2019].

A. Davies, "loT & Blockchain Technology: Uses Cases Overview," DevIeam.Space, 15 March
2019. [Online]. Available: https://www.devteam.space/blog/iot-blockchain-technology-uses-cases-
overview/. [Accessed 30 March 2019].

N. Kshetri, "Can Blockchain Strengthen the Internet of Things?," IEEE, 17 August 2017. [Online].
Available: https://ieeexplore.ieee.org/document/8012302. [Accessed 30 March 2019].

"ethereum Blockchain App Platform," Ethereum, [Online]. Available: https://www.ethereum.org/.
[Accessed 30 March 2019].

S. Huh, S. Cho and S. Kim, "Managing loT devices using blockchain platform," in 2017 19th
International Conference on Advanced Communication Technology (ICACT), Bongpyeong, South
Korea, 2017.

Bitstamp, "Should I run my own node?,” Medium, 15 June 2018. [Online]. Available:
https://medium.com/bitstamp-blog/should-i-run-my-own-node-13¢c3f6a21627. [Accessed 31 March
2019].

I. Foundation, "What is IOTA?," IOTA Foundation, [Online]. Available: https://www.iota.org/get-
started/what-is-iota. [Accessed 31 March 2019].

N. Gehrke, "IOTA: The Misunderstood Coin?," Medium, 26 December 2017. [Online]. Available:
https://medium.com/@norbert.gehrke/iota-the-misunderstood-coin-c6¢94678ec99. [Accessed 31
March 2019].

D. Hundeyin, "IOTA Outlines Plans for Killing Off its Centralized ‘Coordinator’," CCN, 23
November 2018. [Online]. Available: https://www.ccn.com/iota-outlines-plans-for-killing-off-its-
centralized-coordinator. [Accessed 31 March 2019].

K. Sir, "Charles Liu: Smart Contracts in DAG," Medium, 29 October 2018. [Online]. Available:
https://medium.com/vitelabs/smart-contracts-in-dag-5059250b916b. [Accessed 31 March 2019].

"VITE," VITE Labs, [Online]. Available: http://www.vite.org/. [Accessed 31 March 2019].
"Qubic," Medium, 03 June 2018. [Online]. Available: https://qubic.iota.org/. [Accessed 31 March
2019].

74

[68]

[75]

[76]

[77]

[78]

"5 advantages (and 1 disadvantage) of zero knowledge authentication," Ingram Micro, 12 November
2018. [Online]. Awvailable: https://imaginenext.ingrammicro.com/trends/november-2018/5-
advantages-and-1-disadvantage-of-zero-knowledge-authentication. [Accessed 1 April 2019].

N. Mancall-Bitel, "The 'smart' baby technology raising today's children," BBC, 29 November 2018.
[Online]. Available: http://www.bbc.com/capital/story/20181128-the-smart-baby-technology-
raising-todays-children. [Accessed 5 March 2019].

N. Shields, "New survey shows consumers are wary of smart home devices invading their privacy,"
Business Insider, 26 April 2018. [Online]. Available: https://www.businessinsider.com/survey-
says-consumers-have-privacy-concerns-with-smart-home-devices-2018-4. [Accessed 3 April
2019].

N. Feamster, N. Apthorpe, D. Y. Huang, G. Acar, F. Li and A. Narayanan, "Announcing IoT
Inspector: Studying Smart Home IoT Device Behavior," Freedom To Tinker, 23 April 2018.
[Online]. Available: https://freedom-to-tinker.com/2018/04/23/announcing-iot-inspector-a-tool-to-
study-smart-home-iot-device-behavior/. [Accessed 5 March 2019].

Internet Association, [Online]. Available: https://internetassociation.org/. [Accessed 7 March 2019].

Industrial Internet Consortium, [Online]. Available: https://www.iiconsortium.org/. [Accessed 7
March 2019].

J. Doward and A. Gibbs, "Did Cambridge Analytica influence the Brexit vote and the US election?,"
The Guardian, 4 March 2017. [Online]. Available:
https://www.theguardian.com/politics/2017/mar/04/nigel-oakes-cambridge-analytica-what-role-
brexit-trump. [Accessed 5 March 2019].

N. Confessore, "Cambridge Analytica and Facebook: The Scandal and the Fallout So Far," The New
York Times, 4 April 2018. [Online]. Available:
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html.
[Accessed 5 March 2019].

E. P. L. Center, "Internet of Things (IoT)," Electronic Privacy Information Center, [Online].
Available: https://epic.org/privacy/internet/iot/. [Accessed 5 March 2019].

N. Gibbs and L. Grossman, "Here's the Full Transcript of TIME’s Interview With Apple CEO Tim
Cook," Time, 17 March 2016. [Online]. Available: http://time.com/4261796/tim-cook-transcript/.
[Accessed 5 March 2019].

M. U. IOTAP, "IoT, Security and Privacy," Medium, 14 June 2016. [Online]. Available:
https://medium.com/@iotap/internet-of-things-security-and-privacy-78bc0a41881b. [Accessed 6
March 2019].

M. U. IOTAP, "On Privacy and Security in Smart Homes," Medium, 14 June 2016. [Online].
Available: https://medium.com/@jiotap/on-privacy-and-security-in-smart-homes-54362aa9917.
[Accessed 6 March 2019].

C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in the IoT: Mirai and Other Botnets,"
IEEE, 7 July 2017. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7971869.
[Accessed 10 March 2019].

75

[81]

[82]

[83]

[90]

"The search engine for the Internet of Things," Shodan, [Online]. Available:
https://www.shodan.io/. [Accessed 02 May 2019].

"Raspberry Pi 3 Model B+, Raspberry Pi Foundation, [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/. [Accessed 02 May 2019].

"What Is DD-WRT Firmware?," Flash Routers, [Online]. Available:
https://www.flashrouters.com/learn/router-basics/what-is-dd-wrt. [Accessed 13 April 2019].

"Snort," Cisco, 2019. [Online]. Available: https://www.snort.org/. [Accessed 13 April 2019].
N. B. Beser, "Operating cable modems in a low power mode". U.S. Patent 7,389,528, 17 June 2008.

A. Schwartzman and C. Leano, "Methods and apparatus for enabling and disabling cable modem
receiver circuitry”. U.S. Patent 7,587,746, 8 September 2009.

J. Frankenfield, "Permissioned Blockchains," Investopedia, 10 April 2018. [Online]. Available:
https://www.investopedia.com/terms/p/permissioned-blockchains.asp. [Accessed 1 April 2019].

"Introduction to Akka," Akka, [Online]. Available:
https://doc.akka.io/docs/akka/2.5.3/scala/guide/introduction.html. [Accessed 29 April 2019].

X. Jia, Q. Feng, T. Fan and Q. Lei, "RFID technology and its applications in Internet of Things
(IoT)," in 2012 2nd International Conference on Consumer Electronics, Communications and
Networks (CECNet), Yichang, China, 2012.

L. Tian, J. Famaey and S. Latré, "Evaluation of the IEEE 802.11ah Restricted Access Window
mechanism for dense IoT networks," in 2016 IEEE 17th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal, 2016.

76

8 Appendices

e Appendix A is proving the figures that are showing the details of self-signed TLS
certificates of Heimdallr and SAA.

e Appendix B is providing total of 6 figures which are the zoomed in parts of the intuitive
flow of the Heimdallr system diagram given in Figure 15.

e Appendix C is providing the screenshot of the VisualVM, the software monitoring tool

that we used to analyze Heimdallr software, during our experimentation.

77

8.1 Appendix A

Figure 16: Heimdallr’s Self-Signed TLS Certificate
This figure shows Heimdallr’s self-signed TLS certificate to be used in secure socket communication
over TCP

78

Figure 17: SAA’s Self-Signed TLS Certificate
This figure shows SAA’s self-signed TLS certificate to be used in secure socket communication over
TCP

8.2 Appendix B

n nis . X
Product Types: Smart Thermostat / Product Typex: Smart TV / Smart Watch / Smart Bulb / Smart Oven /
[Release Date [2019-05-20720:27:43.8422] 3 |Release Date [2013-05-20120:27:17.1382) 3
[Description [This is the description about the final release of the update for Smart [Description [This is the description about the final release of the update for Smart
|uRL ’ a 19-05-201. V1822 JURL PR/ faww s com/smartwatchy2019-05- 200202 7:17.139zv.254
|Data 1001710100001 10011000101101110711] 1Das 1111001001 1100101101 1110100101110
[Chedksum MDS [de1c58e6693c00ed0222M8M1 7T 1ea0dd| [Checksum MDS [£3217282 165804BAB8fe6e876542dc3|
Publishing a new update. Publishing a new update.
[Company || [Company
[Product [Smart Thermostal] [Product [Smart TV
Type [FIRMWARE_UPDATE| [Type [FIRMWARE_UPDATE|
Nersion V2409123 [Version [vA13.284.150{
[Release Date [2019-05-20120:2813.8422) [Release Date [2019-05-20120:27:47.140Z)
|Description [This is the description about the final release of the update for Smart |Description [This is the description about the final release of the update fos Smart
uRy 5 ! t 19-05-20020:2 2409 [E L _ com/smarttv/2019-05-20020:27:47 140z 413,284
stz J01101011101100003100100011001110) |Data 11171000101610000001 11111001 10000|
[Checksum MDS [5c92868b3c034398510172508¢723e0) [Checksum MDS [9f02clchdate280ca1680ca640e Sa81a]
|

LREVY = X

Software Assurance Agency

IP Address : /0.0.0.0:4040 -- /0.0.0.0:4041

Connections

eimdalir-xo000

i 3
81 Heimaalir-sooooc -
Heimdallr - o000 s
Remote Address: /0.0.0.0 e
Log b
TORC Lot
|Data massen
[Checksum MDS. [H65C7c00308a1Tbb 3ad4 85205605004 e
*Kompany |5 | LPEST
IProduct [Smart TV -
fiype INTERSACE UPDATE| S
Nersion A12419473 it
[Release Date [2015-05-20T20:2:17.1332) s
[Descriphion [This i the Gescriobon Bbout the final release of the upaste for Smard @ araMs esemewn e e
IURL Ittps/wwws. COMYMBRtv/2019-05-202021:1 713341248 s e
[Dsta J00110110101001110101100010011010f 2 .
[Checksum MD5 [b4d6ad5dd390968607d 307dB5a5acka5| . : : :
: ey ” s
| :
< .
L 4
WL = o x
Product Name Type Release Date Version Data Checksum MOS URL Description
Smart Thermostat INTERFACEUPDATE 2019-05-20T2023138192 V26277352 0010010101001, 2eeldfiOSedd_ Mips/iwwwl comye.. Thisis the desc
Thermostat FRMWARE UPDATE 2019-05-2072022438392 VESATAST 1110701011010 abABETDDSM.. Mtps//wew) cOMYs.. Thisis the desc
Smart Thaemostat FRMWARE UPDATE 2019-05-20T2022138382 V2298250 1110101000101, #69cbaT6034¢ cOMs.. This s the gese

Smart Tharmostat INTERFACEUPDATE 2019-05-20T2021:438362 vA12348.167 1000191110711 ecd2111945066. AOMYS.. This i the desc
Smart Thermostat FIRMWARE UPDATE 201905-20T2021:138372 vA60250.134 1000100001101, 4509970C26270... MRIps/www) COMVS.. THG i the desc.
Smart Thermostat INTERFACE UPDATE 201905-20T2020:438372 vS4308285 0001121000111 ThodeS1c360e7_. hittpsyjfwamel comys. This is the desc
Smart Thesmostat INTERFACE UPDATE 2019-05-20T2020:138362 vAS1A6425 1011000001000 055O2cH24638L. hitpsuiwwnwd <omis.. This s the desc

INTERFACE UPDATE 2019-05-20T2019438362 VAZ0478.14 1111111001100 3a509e930345. BUtps//www) COMM. This is the desc..
Smart Thesmostat INTERFACEUPDATE 2019-05-20T20S138362 vIS0488.119 0110100100110, 380WbadMc. hitpsywwwd comys.. This i the desc
Smart Thermostat INTERFACEUPDATE 201905-20T2018438352 v9T.119.77 1011000101000, 471658069178 hitpsy/iwen) comis.. This is the desc.

Smart Thermostat INTERFACEUPDATE 201905-20T2018:138352 v.180402.168 1100107001011, efcPBe2aadd19.. hitpsyiwwnel comis.. Thisis the desc.
Smart Thesmostat INTERFACEJUPDATE 2019-05-20T20:17428222 v.126342221 1000101010111, 2a2Bfbatald?... hitpsi/iwwnel comis.. This s the desc
Smart Thesmostat FIRMWARE UPDATE 2019-05-20T2017-138207 vAZS295250 0010191110100, 52acb1228bdd.. hittpsu/wwwed comis.. This is the desc.
Smart Thermostat FIRMWARE UPDATE 2019-05-20T2016:438122 v21285334 0100107011100 ced63TbleTo23. Mitps/wwnd coms.. This s the desc
Smars Thesmostat INTERF, PDATE 2019-05-20T20:16:138322 v359.64121 101191700111, aB1B08524122e.. hittpsy/wwwed comys.. Thisis the desc
Smart Thermostat FIRMWARE UPDATE 2019.05-20TE1SA435307 vATIA124 0111000700011 c288571822d00.. hittpsyfwwwd comys.. This s the desc
Smart Thermostat INTERF, POATE 201905-20T20:15138227 V14268368 0111100111111, BSE030cS6a3dS... Mitps//wwwd comis.. This s the desc
Smart Thesmostat FIRMWARE UPDATE 2019-05-20T20-14438307 v105322.136 1011080110011 91ab2S2112051_ hitpsyfwwnc) comys.. This is the desc
Smart Thermostat FIRMWARE UPDATE 2019-05-20TE14138432 vAZISE23 0101100100101 alcdellefacit. httpsyfwwwl comys.. This s the desc.

Figure 18: Intuitive Flow Diagram of the Heimdallr System (part 1)
This figure gives a closer look at the relationship between the SAA and the two simulated IoT
device makers used in Heimdallr system simulation

80

Figure 19: Intuitive Flow Diagram of the Heimdallr System (part 2)

This figure gives a closer look at the relationship between the SAA and the Heimdallr along with

its admin interface used in Heimdallr system simulation

w1 SAA - X
Software Assurance Agency I
1P Address : /0.0.0.0:4040 -- /0.0.0.0:4041 8 Heimdallr - X
Connections
Heimdallr System
Username:
|
Password
Legm
-""
""‘
..a"-‘
"-..'
W1 Heimdallr — x
Welcome admin (8] gout
Heimdallr ID £ 000K Expent Mode
P Address :0.00.0/0.00.0:3030
Heimdallr WiFi Password : nFivwMcS42MO8
SAA Status ‘Connected : "
Registered Users 200 .,
Connected Devices = =,
H b
H ",
H
; “a
: B Software Assurance Agency - x
: SAA Server Address :localhost/127.0.0.1:4040
H Server Status : Connected
: SAA Log
H o S S i
E Consulting SAA for devices: [utility. model. SAAMessage@10aa2109, utility model SA2
5 Consulting SAA for devices: [utility.model.SAAMessage@5147eb%e, utility.model. SAL
: ¢ >
E --New FIRMWARE_UPDATE for S /Smart TV is v.35.266.193
: --New INTERFACE_UPDATE for S /Smart TV is v.412.419.473
H < >
4
B | Registered Users - [m) X
Username Role Enabled Access_Code Password
bob ROLE_USER true $2a$108Zpb1fiwma.. $2a5108eZeFIPnziokNUI6!
admin ROLE_ADMIN true $2a5108nQ798PxvNgsTOE...

81

B! Heimdallr

.
Welcome admin
Heimdallr ID 2 000K
IP Address :0.0.0.0/0.0.0.0:3030

WiFi Pas:] S42MO8

Expert Mode

Logout

SAA Status -Connected :

Registered Users 2

Connected Devices

+ L /Smart Thermostat o

. Smart TV

&1 L fSmart Thermostat

Device Name :L /Smart Thermostat
Serial No 1238577384579567834
1P Address 112700161940
Firmware Version :v.465.434 206
Interface Version :v.331.281.138
Owner(s) *bob /

Device Specific Properties
Task Code: 0 -~ Content: false

Task Code: 1 -- Content: 0

Device Log
- -Hewmdall recerved:
Emum type: STATUS
Device name: L /Smart Thermostat

Hesmdall received
Enum type: STATUS
Device name: L /Smart Thermostat

--Heimdall received:
Enum type: STATUS
Device name: L _/Smart Thermostat

Task message: (Task code: 0 content: false, Task code: 1

Task message: [Task code: 0 content: false, Task code: 1

Task message: [Task code: 0 content: false, Task code: 1

-New task received from 23857738457

7834

+ [Task code: Ocontent: true, Task code: 1 content: 25]

content: 0]

content: 0]

content: 0]

T Y CLTTITET LR R TEPCT CETITEERE

Bis fSmart TV

Device Name 5 fSmart TV
Serial No :238577384579034857
IP Address t127.00.1:61945
Firmware Version :v.35266.193
Interface Version :v412419473
Owner(s) tbob /

Device Specific Properties

Task Code: 0 -- Content: false
Task Code: 1 -+ Content: 0
Task Code: 2 -- Content: 0

Device Log

Enum type: STATUS

Device name: $ rsmart TV

Task message: [Task code: 0 content: false, Task codes 1
~-Heimdall received:

Enum type: STATUS

Device name: S FSmart TV

Task message: [Task code: 0 content: false, Task code: 1
-Heimdall received:

Enum type: STATUS

Device name: S rsmart TV

Task message: [Task code: 0 content: false, Task codes 1

content 0, Task

content: 0, Task

content: 0, Task

~New task received from 238577384579034357:
+ [Task code: Ocontent: true, Task code: 1

--New task received from 238577384579034857:
+ [Task code: Ocontent: false, Task code: 1

content: 10, Task code: 2con

content: 10, Task code 2con

Figure 20: Intuitive Flow Diagram of the Heimdallr System (part 3)

This figure gives a closer look at the Heimdallr admin interface and its connected device pages

used in Heimdallr system simulation

82

B | Heimdallr - X

Heimdallr System

Usemame:

Password:

Login

Heimdallr User Login

Username

Password

Login

Figure 21: Intuitive Flow Diagram of the Heimdallr System (part 4)
This figure gives a closer look at the relationship between the Heimdallr admin interface and its
user web interface used in Heimdallr system simulation

&3

1 - -3 B | Key Generator
Heimdallr User Login !
Seed :| bobcodg
Username
9oTBUW!
e— New Code s- W
"' Generate
Logn K
. .
..'. .l
tea, .
LR .
"
T s
", "
O "
lupi'.;ac.nvc '
. w
Welcome, BOB Expan i, , '-,
L [] -
T, Access'’Code Required
. B S .
Connected Devices: '...‘ -‘
. L ermostal v37l360.494 face niZLIZIZ o
.5 5 3 400,82.34] Y Y St
R Ry
)
S .'- ‘--"'
. * .t
e . ‘.-“
% "
. -,
) .
. "
-. ‘.
b
I' ...
. -,
% .
% %
D- ..
" .,
s ",
. .
0 s
- Y
s 5
% s
s .,
3 4
'-
-'l
L /Smart Thermostat
Serial No: 2385773645795&7834
1P Address: /127.0.0.1:61940%,
"
Current Temperature: 25 '-.
.
Current Status: trué "_
L /Smart Thermostat .
"
S
- 2 .
i Concind Set Temperature: 25
Swilch ®ON COFF
Power :ONerrriernnnennnn..,

Temperature : 25 """

=h Set
M [LE
apsunansntert
s

mis _fSmart TV %
S /Smart TV
Serial No 2 L T0aAST
bot
allr Status : Connected
Power :ON L LTI
Channel . ']U P
Volume :60 4...----"“'

Figure 22: Intuitive Flow Diagram of the Heimdallr System (part 5)

This figure gives a closer look at the relationship between the Heimdallr user web interface and
the two IoT devices used in Heimdallr system simulation. It also shows the steps taken by the users
to interact with their IoT devices using Heimdallr web interface

84

B Heimdallr - ®

Heimdallr System

Username:

[Password: =
Login
B L /Smart Thermostat = x
Heimdalir Password
Connect
..'.'
ey
[]
L /Smart Thermostat
Serial No : 238577384579567834
Firmware Version :v.319.133.31
Owner : bob
Heimdallr Status : Connected
Power :ON
Temperature : 25
LR [Smart TV
Heimdallr Password:
Connect
""
o**
A"..‘
LR /Smart TV -

S

Serial No

Owner

Heimdallr Status

/Smart TV

1 238577384579034857

Firmware Version :v.221.117.245

:bob
: Connected

Power

Channel

Volume

:ON
: 10
:60

Figure 23: Intuitive Flow Diagram of the Heimdallr System (part 6)

This figure gives a closer look at the relationship between the Heimdallr and the two connected

10T devices used in Heimdallr system simulation

85

8.3 Appendix C

Monitor

CcrU Memory Classes Threads
Uptime: 17 min 51 sec Perform GC Heap Dump
cPU % | [[Heap| Metaspace x
CPU usage: % 0,7 GC activity: % 0,0 Size: 514.326.526 8 Used: 108.256.760 B
% 100 Max: 4.265.607.168 B
500 1B
%90
%80
400 MB
300 MB
% 50
% 40 200 MB
% 30
% 20 100 MB
5 10
! 1 B
19:36 19:38 19:40 19:42 19:44 1%:46 19:48 19:50 19:52 19:36 19:38 19:40 19:42 1944 19:46 19:48 19:50 19:52
[CPU usage B GC activity [Heap size M Used heap
Classes x| | Threads x
Total loaded: 12.869 Shared loaded: 0 Live: 45 Daemon: 31
Total unloaded: 5 Shared unloaded: 0 Live peak: 61 Total started: 83
&0
12.000
50 |
10.000
s.0004| Py
6.000 » —
4.000 B
2.000- 10
19:38 19:38 19:40 19:42 19:44 19146 19:48 19:50 19:52 19:36 19:38 19:40 19142 19:44 19:46 19:48 19:50 19:52

[Total loaded classes W Shared loaded classes

M Live threads B Daemon threads

Figure 24: VisualVM Monitor Screenshot of Heimdallr Software
This figure shows CPU, Memory, Class, and Thread data of Heimdallr software gathered using an

application analysis tool called VisualVM

86

