

Exact Algorithms based on Benders Decomposition for Multicommmodity Uncapacitated Fixed-charge Network Design

Accepted Manuscript

Exact Algorithms based on Benders Decomposition for
Multicommmodity Uncapacitated Fixed-charge Network Design

Carlos Armando Zetina, Ivan Contreras, Jean-François Cordeau

PII: S0305-0548(19)30183-2
DOI: https://doi.org/10.1016/j.cor.2019.07.007
Reference: CAOR 4749

To appear in: Computers and Operations Research

Received date: 3 October 2018
Revised date: 11 July 2019
Accepted date: 12 July 2019

Please cite this article as: Carlos Armando Zetina, Ivan Contreras, Jean-François Cordeau, Exact Al-
gorithms based on Benders Decomposition for Multicommmodity Uncapacitated Fixed-charge Network
Design, Computers and Operations Research (2019), doi: https://doi.org/10.1016/j.cor.2019.07.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cor.2019.07.007
https://doi.org/10.1016/j.cor.2019.07.007

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• We combine mixed integer programming tools such as Benders decomposition, branch-
and-cut, lift-and-project cuts, matheuristics, cut-and-solve, and the simultaneous
exploitation of two formulations to create computationally efficient exact algorithms
to solve a general network design problem.

• We present a tailor-made rule for corepoint selection to obtain Pareto optimal Ben-
ders cuts that leads to significant computational time savings.

• We propose additional enhancements that improve the solution time of the two
Benders decomposition-based exact algorithms presented.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Exact Algorithms based on Benders Decomposition for

Multicommmodity Uncapacitated Fixed-charge Network Design

Carlos Armando Zetinaa, Ivan Contrerasb, Jean-François Cordeauc

aCanada Excellence Research Chair in Data Science for Real-time Decision-making, Polytechnique
Montréal, Canada

bConcordia University and Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation (CIRRELT), Montréal, Canada

cHEC Montréal and Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation (CIRRELT), Montréal, Canada

Abstract

This paper presents two exact algorithms based on Benders decomposition for solving
the multicommodity uncapacitated fixed-charge network design problem. The first is
a branch-and-cut algorithm based on a Benders reformulation enhanced with an in-tree
matheuristic to obtain improved feasible solutions, valid inequalities in the projected mas-
ter problem space to close the linear programming gap, and a tailored core point selection
criterion from which significant time savings are obtained. The second exact algorithm
exploits the problem’s structure to combine a cut-and-solve strategy with Benders de-
composition. Extensive computational experiments show both exact algorithms provide
a speed-up of up to three orders of magnitude compared to a state-of-the-art general-
purpose MIP solver’s branch-and-cut and blackbox Benders decomposition algorithms.

Keywords: Benders decomposition, lift-and-project, local branching, matheuristics

1. Introduction

Network design problems (NDPs) lie at the heart of designing and operating efficient
systems in several sectors such as personnel scheduling (Bartholdi et al. 1980, Balakrishnan
and Wong 1990), service network design (Crainic 2000, Andersen et al. 2009, Crainic and
Rousseau 1986), logistics network design (Geoffrion and Graves 1974, Santoso et al. 2005,
Cordeau et al. 2006), and transportation (Magnanti and Wong 1984, Minoux 1989). They
are able to capture the system-wide interactions between strategic and operational deci-
sions, namely arc activation and routing, to ensure cost-effective paths among a selected
set of nodes. NDPs can be classified into single and multicommodity variants depending
on the characteristics of the demand. In single-commodity problems, the demand at each

Email addresses: carlos.zetina@polymtl.ca (Carlos Armando Zetina),
icontrer@encs.concordia.ca (Ivan Contreras), jean-francois.cordeau@hec.ca (Jean-François
Cordeau)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

node can be satisfied by any of the other nodes’ supply since they all route the same com-
modity. In multicommodity problems, demand is expressed as origin-destination (OD)
pairs where a destination node’s demand must be satisfied by a corresponding origin
node’s supply.

In this paper we focus on a fundamental NDP: the multicommodity uncapacitated fixed-
charge network design problem (MUFND). The problem is defined on a directed graph
and considers a set of commodities modeled by OD pairs, each with an origin node, a
destination node, and a demand quantity. The objective is to install a subset of arcs
to route all commodities from their origins to their destinations at minimal cost. The
MUFND is NP-hard (Johnson et al. 1978) and generalizes a large class of well-known
problems such as the traveling salesman problem, the uncapacitated lot-sizing problem,
and the Steiner network design problem (Ortega and Wolsey 2003).

The first proposed algorithm to solve MUFND is an add-drop heuristic by Billheimer
and Gray (1973). Other heuristics are those of Dionne and Florian (1979), Boffey and
Hinxman (1979), Los and Lardinois (1982), and Kratica et al. (2002). Lamar et al.
(1990) proposed a novel form of iteratively obtaining strengthened dual bounds from
a weaker formulation by adjusting artificial capacity constraints. Balakrishnan et al.
(1989) presented a dual ascent algorithm and a primal heuristic to obtain solutions for
large-scale instances with up to 600 arcs and 1,560 commodities. Their method obtains
solutions that are between 1% and 4% away from optimality in less than 150 seconds
of computing time. With respect to exact methods, Magnanti et al. (1986) developed
a tailored Benders decomposition for the variant with undirected design decisions of the
MUFND. They were able to solve instances with up to 130 arcs and 58 commodities to
proven optimality. Holmberg and Hellstrand (1998) used a Lagrangean branch-and-bound
algorithm to solve directed instances with up to 1,000 arcs and 600 commodities. Recently,
Fragkos et al. (2017) used Benders decomposition to solve a multi-period extension of the
MUFND. They experimented with the use of Pareto-optimal cuts and with the unified
cut approach of Fischetti et al. (2010), obtaining significant computational gains with
the latter on instances with up to 318 arcs, 100 commodities and 108 time periods. To
the best of our knowledge, these are the current state-of-the-art exact methods for the
undirected and directed variants of the MUFND. As the purpose of this paper is not
to compete against these state-of-the-art specialized algorithms but instead to revisit
Benders decomposition, we do not reimplement these algorithms for our computational
experiments.

Since its introduction, Benders decomposition has been successfully used to solve sev-
eral difficult problems such as airline scheduling (Cordeau et al. 2001, Papadakos 2009),
facility location (Geoffrion and Graves 1974, Fischetti et al. 2017, Ortiz-Astorquiza et al.
2017) and hub network design (Contreras et al. 2011, de Camargo et al. 2008). It has also
been an effective tool for solving several classes of network design problems with various
applications (Costa 2005). Some fields in which it has recently been applied are closed
loop supply chains (Jeihoonian et al. 2016), hazardous material transportation (Fontaine
and Minner 2018), and health services (Zarrinpoor et al. 2018). It has also been proven
effective in solving fundamental network design problems such as the optimum communi-

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

cation spanning tree problem (Zetina et al. 2019) and extensions such as the multi-layer
(Fortz and Poss 2009), hop-constrained (Botton et al. 2013), survivable (Gouveia et al.
2018) and multi-period (Fragkos et al. 2017) network design problems. In the last few
years, it has also been applied to NDPs with parameter uncertainty as in Lee et al. (2013),
Keyvanshokooh et al. (2016) and Rahmaniani et al. (2018). Other applications of Benders
decomposition to fixed-charge NDPs are local access network design (Randazzo and Luna
2001), transit network design (Maŕın and Jaramillo 2009), cable trench problems (Calik
et al. 2017), and other telecommunication problems (Gzara and Erkut 2011). A survey
on the application of Benders decomposition to fixed-charge network design problems
can be found in Costa (2005) while Rahmaniani et al. (2017) review its use in general
optimization problems.

Although the initially proposed algorithm suffered from slow convergence, through the
years researchers have devised enhancements to significantly increase its speed. Recent
implementations of Benders decomposition incorporate additional strategies such as the
generation of strong cuts, cut selection, stabilization, lower bound reinforcing, and solving
one enumeration tree (Botton et al. 2013, Naoum-Sawaya and Elhedhli 2013, Adulyasak
et al. 2015, van Ackooij et al. 2016, Fischetti et al. 2017, Rahmaniani et al. 2017, Bodur
and Luedtke 2017, Ortiz-Astorquiza et al. 2017). Choosing the best enhancements for
a given problem is not a trivial task since each improves the performance in a different
manner.

This paper revisits the use of Benders decomposition proposed by Magnanti et al.
(1986) to solve the undirected design variant of the MUFND. As in Fischetti et al. (2017),
our purpose is to redesign this once discarded approach for solving the MUFND to exploit
the state-of-the-art of algorithmic and computational resources. The resulting Benders
algorithms use branch-and-cut (Padberg and Rinaldi 1991), local branching (Fischetti
and Lodi 2003), and cut-and-solve (Climer and Zhang 2006) procedures implemented
within the cut callback framework available in today’s general-purpose mixed integer
programming solvers. We present, in detail, the nuances of adopting these tools and
propose novel refinements to reduce the computation time required to solve the MUFND
with directed arc design decisions.

We present two exact algorithms based on the Benders reformulation of a well-known
mixed integer programming model of the directed MUFND. Both algorithms solve the
linear relaxation of the Benders reformulation with a cutting-plane procedure to obtain
Pareto-optimal cuts and cutset inequalities at each node of the enumeration tree. To
accelerate the algorithms’ convergence, we introduce new valid inequalities referred to as
Benders lift-and-project cuts to improve the linear programming relaxation and an in-
tree matheuristic that finds better feasible solutions by using path information generated
while exploring the branch-and-bound tree. In addition, we propose a tailored core point
selection criterion that alone provides a significant speed-up for solving the MUFND. To
the best of our knowledge, this is the first study that explicitly shows the impact differ-
ent core point selection strategies have on the overall solution process, thus highlighting
its importance when using Pareto-optimal Benders cuts which have become a common
practice in the literature.

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The first algorithm, referred to as a branch-and-Benders-cut algorithm, solves the Ben-
ders reformulation in one enumeration tree. We address critical implementation details
that should be considered when separating cuts at fractional and integer points such as
cut frequency and core point selection for Pareto-optimal cuts. In addition, we present
computational evidence of the effect that parameter selection has on its performance.

The second method is based on the combination of a modified cut-and-solve scheme
(Climer and Zhang 2006) and our branch-and-Benders-cut algorithm. The method iter-
atively restricts the potential design arcs to solve problems with reduced feasible spaces
that produce a sequence of feasible solutions with non-increasing objective function value.
The algorithm also allows for the recycling of Benders cuts generated in previous iterations
thereby saving computational effort.

We report computational experience on several sets of benchmark instances to assess
the performance of our algorithms. The proposed exact methods are up to three orders
of magnitude faster than the state-of-the-art MIP solver CPLEX 12.7.1’s branch-and-
cut algorithm and solves instances of larger size than those previously presented. The
computational experiments also show that CPLEX’s blackbox Benders algorithm per-
forms significantly worse than its branch-and-cut, thus showing the importance of the
refinements to the Benders decomposition algorithm proposed in the current paper. This
computational contribution is accompanied by methodological insights such as the si-
multaneous use of a path and arc-based formulation for the MUFND, the introduction
of Benders lift-and-project cuts to reduce the linear programming gap, the use of a tai-
lored core point selection strategy, and the combination of two well-known mixed integer
programming tools.

The remainder of the paper is organized as follows. Section 2 provides a formal def-
inition of the MUFND and presents the arc-based formulation. Section 3 describes the
Benders reformulation of the arc-based formulation for the MUFND while Section 4 de-
tails the enhancements implemented in our branch-and-cut algorithm. In Section 5, we
present our second algorithmic framework, a Benders cut-and-solve algorithm. Summa-
rized results of our computational experiments are given in Section 6, while Section 7
presents concluding remarks and future lines of research.

2. Problem definition

The MUFND is defined on a directed graphG = (N,A) whereN is a set of nodes, A is a
set of arcs andK is a set of commodities each defined by the tuple (ok, dk,W

k) representing
the origin, destination, and demand quantity of a commodity k ∈ K, respectively. The
key feature of this problem is its use in evaluating the trade-off between infrastructure
investment and operational costs. The former is modeled by the fixed cost paid for using
an arc fij joining node i to node j. The latter is modeled by a linear transportation cost
ckij paid per unit of commodity k routed on arc (i, j). The goal is to route all commodities
from origins to destinations at minimal cost.

Two well-known mixed integer models for this problem are the arc-based formulations
with either aggregated or disaggregated linking constraints (Magnanti and Wong 1984,

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ahuja et al. 1993). Both use a set of binary variables yij to model whether arc (i, j) is in-
stalled or not and a set of continuous variables xkij to represent the fraction of commodity
k’s demand routed on arc (i, j). In this study, we use the formulation with disaggre-
gated linking constraints since its tighter linear programming (LP) relaxation is preferred
when applying Benders decomposition (Magnanti and Wong 1981). The MUFND is thus
formulated as follows:

(P) minimize
∑

(i,j)∈A
fijyij +

∑

k∈K

∑

(i,j)∈A
W kckijx

k
ij (1)

subject to
∑

j∈N
xkji −

∑

j∈N
xkij =

−1 if i = ok
1 if i = dk
0 otherwise

∀i ∈ N, k ∈ K (2)

xkij ≤ yij ∀(i, j) ∈ A, k ∈ K (3)

xkij ≥ 0 ∀(i, j) ∈ A, k ∈ K (4)

yij ∈ {0, 1} ∀(i, j) ∈ A. (5)

The objective function (1) is the total cost of the network including both the instal-
lation and routing costs for all arcs and commodities. Flow conservation constraints (2)
ensure that the demand for all commodities is routed from origin to destination. Con-
straint set (3) contains the linking constraints that assure that no flow is sent through an
arc that has not been installed, while (4) and (5) are the non-negativity and integrality
conditions on x and y, respectively.

Note that depending on the instance data, P is a valid formulation for the Steiner tree
problem (all commodities share the same origin and no transportation costs exist) or the
travelling salesman problem (all arcs have the same fixed cost, the underlying graph is
complete, commodities are sent between every pair of nodes, and transportation costs are
commodity independent) (Holmberg and Hellstrand 1998). This shows the wide range of
special cases generalized by the MUFND and as such the inherent difficulty in developing
an efficient exact algorithm for this general model.

3. Benders decomposition for the MUFND

Benders decomposition is a well-known solution method for mixed integer program-
ming problems (Benders 1962). In its generic version, large formulations are split into two
problems, a mixed integer master problem and a linear subproblem. The principle be-
hind Benders decomposition is the projection of a large problem into a smaller subspace,
namely the space of the integer constrained variables. As a consequence, the projected
model may contain an exponential number of constraints known as Benders cuts, indexed
by the extreme points and extreme rays of a special linear programming problem known
as the dual subproblem (DSP) or slave problem. Noting that not all Benders cuts are
necessary to obtain the optimal solution, Benders (1962) proposed to relax these and

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

iteratively solve the integer master problem to obtain a lower bound on the integral op-
timal solution value and then substitute the solution into the dual subproblem thereby
obtaining an upper bound and a Benders cut to be added to the master problem. This is
to be repeated until the upper and lower bounds are within a given optimality tolerance
ε. In this section, we present the derivation of the Benders reformulation of P and the
use of cutset inequalities to replace the classic Benders feasibility cuts.

3.1. Benders reformulation

The following steps describe the process of applying Benders decomposition to formu-
lation P of the MUFND. Note that by fixing y = ȳ, where ȳ ∈ Y and Y = B|A| denotes
the set of binary vectors associated with the yij variables, we obtain a linear program in x
that is easily solved. This new linear program will be denoted as the primal subproblem
(PSP) and has the following form:

(PSP) minimize
∑

k∈K

∑

(i,j)∈A
W kckijx

k
ij

subject to
∑

j∈N
xkji −

∑

j∈N
xkij =

−1 if i = ok
1 if i = dk
0 otherwise

∀i ∈ N, k ∈ K (6)

xkij ≤ ȳij ∀(i, j) ∈ A, k ∈ K (7)

xkij ≥ 0 ∀(i, j) ∈ A, k ∈ K.

Note that PSP can be split into |K| subproblems PSPk, one for each commodity. Let
λ and µ denote the dual variables of constraints (6) and (7), respectively. From strong
duality, each PSPk can be substituted by its linear programming dual, denoted as DSPk,
of the form:

(DSPk) maximize λkdk − λ
k
ok
−

∑

(i,j)∈A
µkij ȳij (8)

subject to λkj − λki − µkij ≤ W kckij ∀(i, j) ∈ A
µkij ≥ 0 ∀(i, j) ∈ A
λki ∈ R ∀i ∈ N.

From Farkas’ Lemma, we know that for a given k ∈ K, PSPk is feasible if and only if

ȳ ∈ Rk =

y ∈ Y | 0 ≥ λkdk − λ

k
ok
−

∑

(i,j)∈A
µkij ȳij, ∀(λk, µk) ∈ Θ

 ,

where Θ is the recession cone of DSPk. The inequalities that define Rk are known as
Benders feasibility cuts and, although by Farkas’ Lemma there exists an infinite number of
them, only those associated with the (finite) set of extreme rays are necessary. Therefore,
we use the representation of each polyhedron associated with each DSPk in terms of its

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

extreme points and extreme rays to determine whether PSP is infeasible or feasible and
bounded.

Let Ext(DSPk) and Opt(DSPk) denote the sets of extreme rays and extreme points of
DSPk, respectively. If, for a given y ∈ Y , there exists at least one k ∈ K and one extreme
ray (λ, µ) ∈ Ext(DSPk) for which

0 < λkdk − λ
k
ok
−

∑

(i,j)∈A
µkij ȳij,

then DSPk is unbounded and PSP is infeasible. However, if

0 ≥ λkdk − λ
k
ok
−

∑

(i,j)∈A
µkij ȳij,

for each k ∈ K and each extreme ray (λ, µ) ∈ Ext(DSPk), then all DSPk are bounded
and the PSP is feasible. The optimal value of each DSPk is then equal to

max
(λ,µ)∈Opt(DSPk)

λkdk − λ
k
ok
−

∑

(i,j)∈A
µkij ȳij.

Using continuous variables zk for the transportation cost of each commodity k ∈ K,
the Benders reformulation of P is

(MP0) minimize
∑

(i,j)∈A
fijyij +

∑

k∈K
zk (9)

subject to zk ≥ λkdk − λ
k
ok
−

∑

(i,j)∈A
µkijyij ∀k ∈ K, (λ, µ)k ∈ Opt(DSPk) (10)

0 ≥ λ̄kdk − λ̄
k
ok
−

∑

(i,j)∈A
µ̄kijyij ∀k ∈ K, (λ̄, µ̄)k ∈ Ext(DSPk) (11)

z ∈ R|K| (12)

y ∈ {0, 1}|A|. (13)

MP0, also known as the Benders master problem, exploits the decomposability of the
subproblems by disaggregating the feasibility and optimality cuts per commodity. This
type of multi-cut reformulation leads to a better approximation of the transportation costs
at each iteration, which has been empirically shown to reduce solution times (Magnanti
et al. 1986, Contreras et al. 2011).

Exploiting the structure of the MUFND, we replace the Benders feasibility cuts (11)
with cutset inequalities which are sufficient to guarantee the feasibility of PSP (Costa
et al. 2009). In our case, these inequalities must enforce that for a given set of arcs that
form a cut between two nodes o, d ∈ N , their sum over the design variable values, yij,
must be at least one, thus ensuring that the set of arcs in the cut allows at least one unit
of flow to be transported from o to d. Let δ(S) = {(i, j) ∈ A|i ∈ S, j ∈ N\S} and ∆K

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is the set of subsets S ⊂ N such that ok ∈ S and dk /∈ S for some k ∈ K. Using this
notation, we use the following cutset inequalities for MUFND:

∑

(i,j)∈δ(S)

yij ≥ 1 ∀S ∈ ∆K . (14)

The advantage of using cutset inequalities is that they can be efficiently separated
by solving a minimum cut problem over an auxiliary network. Algorithms such as the
Edmonds-Karp algorithm (Edmonds and Karp 1972) and breadth first search are efficient
in solving these problems and thus for separating cutset inequalities for fractional and inte-
ger solutions, respectively. With this in mind, we substitute the use of Benders feasibility
cuts (11) with cutset inequalities (14) yielding the following final Benders reformulation:

(MP) minimize
∑

(i,j)∈A
fijyij +

∑

k∈K
zk (15)

subject to (10), (12)(13), (14). (16)

4. A branch-and-Benders-cut algorithm for the MUFND

Our branch-and-Benders-cut algorithm employs the following algorithmic features: a
preprocessing routine to solve the linear relaxation, the generation of Pareto-optimal cuts,
a core point selection criterion, lower bound strengthening via lift-and-project cuts, an in-
tree matheuristic, and fine-tuning of cut parameters. In the following sections we explain
each of the aforementioned enhancements.

4.1. Preprocessing
Since MP is a Benders reformulation of the original formulation P, by relaxing the

integrality constraints and adding all Benders cuts to MP, we would obtain the LP relax-
ation solution of P. This is particularly important to note when implementing Benders
decomposition in a single enumeration tree. A recent common practice is to solve MP
as a linear program with a cutting plane algorithm and use the Benders cuts generated
as part of the problem definition declared to the MIP solver (Bodur and Luedtke 2017,
Bodur et al. 2017, Fischetti et al. 2017). General-purpose solvers use this information to
tighten variable bounds, infer good branching rules, and fix variables in their preprocessing
routine to reduce the underlying linear program’s size.

In our algorithm, we solve MP as a linear program before declaring it within the MIP
framework. However, instead of defining the problem with all Benders cuts generated
so far, we only include the Benders cuts that are binding at the optimal LP solution as
in Fischetti et al. (2017) and in Bodur and Luedtke (2017). This guarantees that we
immediately obtain the LP optimal value at the root node of the branch-and-cut tree but
pass on only the essential information to the general-purpose solver and avoid declaring
an excessively large problem. In addition, these cuts allow general-purpose solvers to
generate valid inequalities such as mixed-integer cuts, Gomory cuts, etc. to improve the
linear programming relaxation of the formulation. This step, while simple, significantly
helps the solution process.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2. Pareto-optimal cut separation

Since the seminal paper on cut selection for Benders decomposition by Magnanti and
Wong (1981), Pareto-optimal cuts have become a standard practice. The approach applies
to problems for which there is an infinite number of alternative optimal solutions to DSPk

and therefore Benders optimality cuts. This is particularly the case in network design
problems known for their primal degeneracy. For a minimization problem, the authors
define cut dominance as follows. Given two cuts defined by dual solutions u and u1 of
the form z ≥ f(u) + yg(u) and z ≥ f(u1) + yg(u1), respectively, the cut defined by u
dominates that defined by u1 if and only if f(u) + yg(u) ≥ f(u1) + yg(u1) with strict
inequality holding for some feasible y of MP . If a cut defined by u is not dominated by
any other optimality cut, then this cut is said to be a Pareto-optimal Benders cut.

In general, to obtain Pareto-optimal Benders cuts an additional linear program must
be solved at each iteration. This additional linear program is the same as the dual
subproblem with two exceptions. The first is that a point y0 in the relative interior of the
master problem space, known as a core point, replaces the master problem solution ȳ in
the objective function (8). The second is that an equality constraint is added to ensure
that the obtained solution belongs to the set of alternative optimal solutions of DSPk

for the current master problem solution ȳ. In most cases, these modifications break the
structure of the dual subproblem exploitable by an efficient combinatorial algorithm. This
leads to having to solve an additional linear program. Papadakos (2008) addresses this
issue and presents a modified procedure that does not require solving an additional linear
program. The modified dual subproblem uses a point that must satisfy characteristics
that are more relaxed than Magnanti and Wong’s conditions.

In our algorithm, we use the “tailored” subproblem for the MUFND as presented in
Magnanti et al. (1986) which has been shown to significantly accelerate the convergence of
the algorithm by requiring fewer Benders cuts (Magnanti et al. 1986, Zetina et al. 2019).
In the case of the MUFND, Magnanti et al. (1986) point out that the additional linear
program for each commodity k ∈ K in the classic Pareto-optimal approach is equivalent
to solving the following parametric minimum cost flow problem:

(MCFk) minimize
∑

(i,j)∈A
W kckijx

k
ij −DSPk(ȳ)x0 (17)

subject to
∑

j∈N
xkji −

∑

j∈N
xkij =

−(1 + x0) if i = ok

1 + x0 if i = dk
0 otherwise

∀i ∈ N (18)

xkij ≤ y0
ij + x0ȳij ∀(i, j) ∈ A (19)

xkij ≥ 0 ∀(i, j) ∈ A
x0 ∈ R.

The problem can be interpreted as that in which a rebate of DSPk(ȳ) is given for
each additional unit of the commodity routed on the network with demand and capacities

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

defined by (18) and (19), respectively (Magnanti et al. 1986). The authors show that any
fixed value x0 ≥

∑
(i,j)∈A y

0
ij is optimal for MCFk, leaving a minimum cost flow problem

to be solved for each commodity k ∈ K.
As a result of fixing x0, it is no longer necessary to solve DSPk(ȳ) since it is now

multiplied by a constant in MCFk. This observation allows us to save computational time
by solving MCFk directly as the separation problem rather than as a complementary
problem for Pareto-optimal Benders cuts.

Magnanti and Wong (1981) note that the selection of different core points y0 leads to
varied Pareto-optimal cuts. To the best of our knowledge, the question of selecting an
adequate y0 has not been addressed before in the literature. We provide some guidelines
and computationally test different strategies for this in Section 6.3.

4.3. Benders lift-and-project cuts

Lift-and-project cuts, a result of disjunctive programming theory (Balas 1979), were
initially proposed as a cutting plane algorithm by Balas et al. (1993) but were later
extended to the branch-and-cut framework (Balas et al. 1996). Further details and back-
ground on the evolution of lift-and-project cuts can be found in Balas and Perregaard
(2002) and the references therein. The underlying idea of lift-and-project cuts is to find
inequalities that are valid for the union of two polyhedra defined by the two possible
values a binary variable can take. We adopt these inequalities to strengthen the master
problem LP relaxation of the Benders reformulation.

Given P = {x ∈ Rn|Ãx ≥ b̃} with inequalities of the form 1 ≥ x ≥ 0 included in
Ãx ≥ b̃ and PD = conv{x ∈ P |xj ∈ {0, 1},∀j = 1...p} where p < n, lift-and-project cuts
of the form αx ≥ β can be obtained by solving the following linear program (Balas 1979)
for a selected ̂ ∈ {1...p} such that x̄̂ is fractional:

(CGLP̂) minimize αx̄− β
subject to α− uÃ+ u0ê ≥ 0

α− vÃ− v0ê ≥ 0

− β + ub = 0

− β + vb+ v0 = 0

u, v ≥ 0,

where ê is the vector of all 0s except for a 1 in the ̂-th component.
The feasible space of CGLP̂ is a convex cone. Therefore, a normalization constraint

must be added to ensure a finite optimal solution. We use a normalization constraint
proposed after the Balas et al. (1996) paper since, as pointed out in Bonami (2012), it has
become the most commonly used due to its favourable performance. The normalization
constraint used has the following form:

m′∑

i=1

ui + u0 +
m′∑

i=1

vi + v0 = 1.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where m′ is the total number of constraints in Ã. The resulting cut is then strengthened as
in (Balas and Perregaard 2002) by replacing the coefficients α′k = min{uak+u0dmke, vak−
v0bmkc}, where mk = vak−uak

u0+v0
.

While solving the Benders reformulation, we do not have the complete polyhedral
description of P since there would be exponentially many constraints. We thus define
Ã as the feasibility and optimality cuts that are binding at the LP relaxation and the
1 ≥ x ≥ 0 constraints thus obtaining weakened level-1 lift-and-project cuts of MP. A
similar strategy is used by Balas and Perregaard (2002) outside the context of Benders
decomposition.

Another important factor in the lift-and-project process is selecting the variable x̂. In
our procedure, the integer variables yij of an LP optimal solution (ȳ, z̄) of MP are ordered
based on the following weight: LWij = (1 − |ȳij − 0.5|)fij. The weight LW considers
both the variable’s fractionality and its contribution to the objective function and thus
provides a reasonable measure to rank candidates for disjunction where larger values of
LW are more favourable candidates.

4.4. An in-tree matheuristic
An important factor in solving difficult optimization problems, in particular when

using branch-and-bound methods, is obtaining high quality feasible solutions. Finding
these early in the enumeration process often leads to smaller search trees since they
provide better bounds for pruning and a guide for selecting variables to branch on. If
found in a preprocessing stage, they can be used to perform variable elimination tests
as in Contreras et al. (2009, 2011). Preliminary tests showed that the latter approach
eliminated few variables from the problem even if the optimal solution value was used
for these variable elimination tests. We therefore propose an in-tree matheuristic that
exploits the information generated during the enumeration process. Our algorithm uses
the paths obtained while solving the Benders subproblems as variables in a path-based
formulation of the MUFND.

Let Θµ
k denote a binary variable whose value is 1 if path µ is used for commodity k

and 0 otherwise, while yij denotes the network design variables as in P. Define parameter
vµk (i, j) = 1 if arc (i, j) belongs to path µ for commodity k, and 0 otherwise. Finally, let
Ωk denote the set of paths from o(k) to d(k) and Ω represent the union of these sets over
K. With this notation we have the following path-based formulation for the MUFND:

(PHeur) minimize
∑

(i,j)∈A
fijyij +

∑

k∈K

∑

µ∈Ωk

[W k
∑

(i,j)∈A
ckijv

µ
k (i, j)]Θµ

k (20)

subject to
∑

µ∈Ωk

Θµ
k = 1 ∀k ∈ K (21)

∑

µ∈Ωk

vµk (i, j)Θµ
k ≤ yij ∀(i, j) ∈ A, k ∈ K (22)

Θµ
k ∈ {0, 1} ∀k ∈ K,µ ∈ Ωk. (23)

yij ∈ {0, 1} ∀(i, j) ∈ A. (24)

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The objective function (20) represents the total cost of routing the commodities on
the network, including design and transportation costs. Constraints (21) ensure that each
commodity is routed by exactly one path while (22) force the design variables of the arcs
used in a path to take value 1 if the path is used to route a commodity. We note that
(22) can be disaggregated. However, preliminary tests showed it to have a negative effect
on the computation time.

Given the exponential number of paths for a given commodity, PHeur is usually solved
using column generation and branch-and-price when used to represent the MUFND. In
our algorithm, however, we will only use this formulation to solve for improved MUFND
solutions obtained from paths generated while solving the Benders subproblems. This
avoids having to solve several rounds of pricing problems at each branch-and-price node.
The only added computational effort comes from the fact that primal solutions to MCFk,
the Benders subproblem to obtain Pareto-optimal cuts, sends different amounts of flow
through several paths from origin to destination. To obtain single paths to be used
in PHeur, we solve a shortest path problem over two networks derived from the primal
solution of MCFk. The first network contains the arcs that send any flow greater than 0.1
in the solution while the second contains arcs that send more than 1 unit of flow. This
provides us with the potential to generate two different paths at a low computational cost
every time the Benders subproblem is solved.

Finally, note that the branching over design variables during the enumeration process
of our Benders algorithm forces the generation of a varied set of paths for the Benders sub-
problems and hence variables for PHeur. The integration of our in-tree matheuristic into
our branch-and-Benders-cut algorithm provides a means of exploiting two formulations of
the same problem simultaneously as in Hewitt et al. (2010) for capacitated multicommod-
ity network design with the difference that our algorithm solves the problem to optimality
whereas theirs finds feasible solutions with a quality certificate.

5. A cut-and-solve algorithm for the MUFND

Introduced by Climer and Zhang (2006) in the artificial intelligence community, cut-
and-solve has been used to solve well-known combinatorial optimization problems such as
the travelling salesman problem and the single-source capacitated facility location problem
(Yang et al. 2012, Gadegaard et al. 2018). The cut-and-solve framework is closely related
to local branching (Fischetti and Lodi 2003) in the sense that at each level of the enumer-
ation tree only two child nodes exist, one corresponding to a smaller “sparse” problem
and the other as its complement known as the “dense” problem. However, while in local
branching one begins with a feasible solution and defines the subproblems based on the
Hamming distance, cut-and-solve allows for more generic problem definitions and does not
require an initial feasible solution. Since our proposed framework is more closely aligned
with the latter, we adopt the cut-and-solve terminology and notation for the rest of the
paper. We next provide a brief description of the cut-and-solve procedure as presented
by Climer and Zhang (2006).

The “sparse” and “dense” problems are defined by constraints over a set of variables.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

These constraints, known as “piercing” cuts, are of the form
∑

i∈I xi ≤ σ and
∑

i∈I xi ≥
σ + 1 where I ⊂ N is a subset of the problem’s binary variables and σ ∈ Z.

Upon branching, the “sparse” problem is solved to optimality by means of branch-
and-bound or any exact method to obtain a primal bound (UBsparse) on the original
problem. This highlights the need to define sparse problems that are easily solved. Next,
the linear relaxation of the dense problem is solved to obtain a lower bound (LBdense) on
the remaining solution space of the original problem. If LBdense ≥ UBsparse then UBsparse

is optimal for the complete problem. Otherwise, another piercing cut is defined over the
dense problem and the procedure is repeated.

We propose the use of our branch-and-Benders-cut algorithm as the black box MIP
solver within the cut-and-solve algorithm and a tailored rule for selecting the variables
to consider in the “sparse” problems. Two important advantages of using our Benders
algorithm within the cut-and-solve framework are the reduced problem size and the re-
usability of the Benders cuts generated in previous sparse problems. On the other hand,
some advantages to using cut-and-solve over Benders is that piercing cuts significantly
reduce the solution space and the optimal values of previous sparse problems are useful
for pruning branches in the enumeration tree.

In our implementation, we begin by first solving the LP relaxation of MP as described
in Section 4.1. The cut-and-solve algorithm then begins by considering the union of
shortest paths of each commodity, denoted as ∪k∈KPk, obtained over the network with
an arc cost c̃kij that considers the transportation cost, fixed-charge, demand quantity, and
the LP relaxation solution. We define this arc cost as c̃kij = W kckij + (1 − ŷij)fij, where
ŷij represents the value of yij at the optimal LP solution. The reason that these modified
costs work well is because they use the LP solution as a predictor of which arcs are likely
to be part of the optimal solution and thus consider a lower additional fixed cost for arcs
with an LP solution value closer to one so as to promote its use when finding the shortest
paths of each commodity.

For ease of exposition we introduce the following notation. Let (ȳ, z̄)t represent the
solution of the t-th sparse problem, I(t) denote the set of indices of arc variables whose
value is 1 in (ȳ, z̄)t and χ((ȳ, z̄)t) be its objective function value. In particular, χ((ȳ, z̄)0)
refers to the objective function value of activating and routing according to the initial
solution previously described.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

At a given t ≥ 1, we define the following sparse problem:

(MPsparse(t)) minimize
∑

(i,j)∈A
fijyij +

∑

k∈K
zk (25)

subject to zk ≥ λkdk − λ
k
ok
−

∑

(i,j)∈A
µkijyij ∀(λ, µ)k ∈ Opt(DSPk), k ∈ K (26)

∑

(i,j)∈δ(S)

yij ≥ 1 ∀S ∈ ∆K (27)

z ∈ R|K| (28)

y ∈ {0, 1}|A| (29)
∑

(i,j)/∈I(t−1)

yij ≤ t (30)

∑

(i,j)/∈I(s)
yij ≥ s+ 2 ∀s = 0, ..., t− 1 (31)

∑

(i,j)∈A
fijyij +

∑

k∈K
zk ≤ χ((ȳ, z̄)t−1), (32)

where ∆k = {S ⊂ N |∃k ∈ K where ok ∈ S, dk /∈ S}. The constraints (25)-(29) are the
Benders master problem reformulation of the MUFND. Constraint (30) is the piercing
cut that allows at most t variables not in the previous solution to take the value of
1 while constraints (31) are the negations of (30) from previous iterations. The latter
ensure that previously searched areas of the feasible space are not considered in the new
sparse problem. Finally, constraint (32) imposes that the optimal solution of the current
sparse problem has objective value of at most the optimal value of the previous one. This
constraint ensures that the obtained solutions do not worsen after each iteration and saves
computation time since its value is used as a pruning criterion for the enumeration tree.

If MPsparse(t) is feasible, we define MPsparse(t + 1) without solving the LP relaxation
of the corresponding dense problem. In this respect, our algorithm bears resemblance to
local branching as proposed in Fischetti and Lodi (2003). This is done until two successive
optimal solutions to MPsparse(t) are the same or until MPsparse(t) is infeasible, due to (32).
If either occurs, the dense problem, MPdense, is defined. The dense problem is similar to
MPsparse(t) with the exception that (30) is replaced by

∑
(i,j)/∈I(t−1) yij ≥ t+1 and (ȳ, z̄)t−1

in (32) is replaced by the best solution found so far. We then solve MPdense(t) which will
either be feasible and hence provide the true optimal solution or will be infeasible meaning
that the best solution found so far is indeed optimal.

The presented framework provides a novel research direction, different from Rei et al.
(2009), for combining cut-and-solve and Benders decomposition. Below we present the
pseudocode of our cut-and-solve Benders algorithm.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 Cut-and-solve Benders algorithm for the MUFND

Require: 0: Initialization
(ȳ, z̄)0 = ∪k∈KPk, t = 1, best = (ȳ, z̄)0

Step 1: Define and solve MPsparse(t)
if (MPsparse(t) is feasible ∧ (ȳ, z̄)t−1 6= (ȳ, z̄)t then

best = (ȳ, z̄)t
t = t+ 1;
Goto Step 1

else
Goto Step 2

end if
Step 2: Define and solve MPdense

if MPdense is feasible then
Update best

end if
Return best.

6. Computational experiments

We perform extensive computational experiments to evaluate the efficiency of our
proposed methods and the effect of the enhancements implemented. Our analyses focus
on: the LP gap closed by adding Benders lift-and-project cuts to MP’s linear relaxation,
adequate core point selection, and the efficiency of our proposed solution methods versus
the state-of-the-art general-purpose MIP solver CPLEX 12.7.1.

We use the well-known “Canad” multicommodity capacitated network design instances
(Crainic et al. 2001) as our testbed. This dataset consists of 205 instances with arc capac-
ities. The testbed can be divided into three classes. The first are the 31 “C” capacitated
instances with many commodities compared to nodes. Each capacitated instance in this
class represents a unique combination of commodity flows, fixed costs, and per unit rout-
ing costs. Thus, all 31 instances remain in our testbed after ignoring information on
arc capacities. The second are the 12 “C+” capacitated instances with few commodi-
ties compared to the number of nodes. Out of these 12, only eight represented unique
combinations of commodity flows, fixed costs, and per unit routing costs. Finally, Class
III is divided into two subgroups: Class III-A and III-B are each comprised of 81 “R”
capacitated instances on small and medium sized graphs, respectively. These instances
consist of three levels of capacity tightness for each unique combination of commodity
flows, fixed costs, and per unit routing costs, thus leading to 27 uncapacitated instances
from each subgroup in our MUFND testbed.

We generate eight large-scale instances, denoted as Class IV, on which we test our
algorithms with a 24-hour time limit. These were generated using the Mulgen generator
(Crainic et al. 2001) available at http://pages.di.unipi.it/frangio/ with sizes of up to 1,500
arcs and 1,500 commodities. To the best of our knowledge these are the largest instances
of the MUNDP to be solved by an exact algorithm.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Another characteristic of our testbed is the existence of instances whose integer optimal
solution is not obtained by solving the linear programming (LP) relaxation, i.e., the
instance has an LP gap strictly greater than 0 where the LP gap is defined as LPgap =
100 × (Opt−LP)

Opt
where Opt is the objective function value of an integer optimal solution

and LP is the objective function value at an optimal solution of the LP relaxation. This
is important in our analysis as we need to test our algorithm’s ability to quickly explore
the enumeration tree and the efficiency of our proposed lift-and-project Benders cuts.
The “Canad” testbed contains several instances with this property. Table 1 presents the
number of instances in our testbed whose LP gap (%) falls within the ranges indicated
as column headings. For example, 6 instances of Class I have an LP gap between 4 and
7.2%.

Table 1: Distribution of “Canad” instances’ LP gaps (%)

Class 0 (0, 1] (1, 2] (2, 3] (3, 4] (4, 7.2] Total
Class I 10 7 2 4 2 6 31
Class II 7 1 8
Class III-A 26 1 27
Class III-B 9 2 2 5 9 27
Class IV 0 3 3 2 8
Total 52 13 6 8 7 15 101

All algorithms were coded in C using the callable library for CPLEX 12.7.1. The
separation and addition of cutset inequalities and Benders optimality cuts is implemented
via lazy cut callbacks and user cut callbacks. For a fair comparison, all use of CPLEX was
limited to one thread and the traditional MIP search strategy. Experiments were executed
on an Intel Xeon E5 2687W V3 processor at 3.10 GHz under Linux environment. The
codes and instances of the final versions of the presented algorithms are available at
https://sites.google.com/view/carloszetina/Research/Publications.

6.1. Implementation details of the branch-and-Benders-cut algorithm

As with any ad hoc exact algorithm, implementation details play a key role in its per-
formance. In this section, we outline the sequence of steps taken during the algorithm and
present preliminary experiments that justify the choice of parameters used. Our solution
procedure follows the framework of the recent branch-and-Benders cut implementations
of Fischetti et al. (2016, 2017), Bodur and Luedtke (2017) and Bodur et al. (2017).

The solution process begins by solving the LP relaxation of MP using the Edmonds-
Karp minimum cut algorithm as a cutset separation routine and MCFk as our separation
oracle to obtain Pareto-optimal Benders cuts with core points defined as will be described
in Section 6.3. Upon confirming that no more violated Benders cuts exist, we use those
that are binding at the LP optimal solution as the partial polyhedral description used
to obtain level-1 Benders lift-and-project cuts. The obtained cuts are added to the MP
relaxation and we resume separating Benders cuts until no more violated Benders cuts
are obtained.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

We then define the MIP problem in CPLEX with the binding Benders and lift-and-
project cuts as lazy and user constraints. This prevents defining an excessively large
initial problem. An important aspect to consider when implementing this method is the
separation and cut adding frequency. Adding too few cuts leads to an underestimation of
the lower bounds of nodes in the enumeration tree, while adding too many cuts leads to
large LPs that require a longer computation time to solve.

To aid our decision of selecting a reasonable cutting and separation frequency we tested
three different strategies: Infrequent, Moderate, and Aggressive. The infrequent strategy
attempts to separate Benders cuts at all nodes of depth at or below 3 and every 120th node
thereafter, while the moderate configuration does so for all nodes of depth at or below
5 and every 100th node thereafter, and finally, the aggressive configuration does so for
all nodes of depth at or below 10 and every 80th node thereafter. For all configurations,
at most one round of separating Benders cuts is done at each node and only cuts with
a violation greater than 10−5 are added to the problem. Table 2 shows the number of
nodes explored, Benders cuts added throughout the process, and finally the solution time
in seconds for running the branch-and-Benders-cut algorithm with each configuration on
ten instances in the 70th to 80th percentile of difficulty measured by solution time. In
other words, we first solved all instances using CPLEX’s branch-and-cut, ordered them
with respect to time taken to solve, and took the ten instances for which the solution
times were higher than 70 per cent of the testbed and lower than the 20 percent worst
performing.

Table 2: Impact of cutting frequency

Infrequent Moderate Aggressive

|N |, |A|, |K| Nodes Cuts Secs. Nodes Cuts Secs. Nodes Cuts Secs.

20,230,200 619 3,926 35.03 500 5,837 41.15 262 9,642 57.31
30,520,100 13,539 7,046 1,175.18 12,647 6,527 1,290.56 6,761 15,493 1,947.48
30,700,400 17,083 8,650 1,315.70 14,546 10,536 1,305.84 10,322 11,785 1,307.17
30,700,400 3,887 4,643 106.42 3,570 4,342 96.93 2,846 5,336 198.92
20,120,200 7,240 12,372 1,036.07 5,290 12,692 698.79 1,391 30,062 810.04
20,220,100 2,913 4,928 163.25 1,908 5,489 125.42 927 17,534 262.48
20,220,200 2,963 8,551 393.86 2,055 9,194 279.43 1,256 26,174 823.98
20,320,200 1,069 7,191 112.02 594 9,056 133.65 142 12,292 62.16
50,1400,800 2,204 4,592 132.61 1,938 4,720 132.53 1,407 4,679 217.73
50,1400,1200 2,632 9,273 246.59 2,162 8,944 220.44 1,590 8,607 455.74

Avg. 5,415 7,117 471.67 4,521 7,734 432.47 2,690 14,160 614.30

We note that there is a strong correlation between the number of cuts added and
the number of nodes explored. Adding more cuts leads to exploring fewer nodes in the
solution process. From these experiments, we note that the best trade-off lies in the
moderate cutting frequency since it requires on average the least solution time. We thus
select this strategy in our branch-and-Benders implementation.

Lastly, to prevent executing our in-tree matheuristic too frequently, we limit its use to

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

every 100th node. In addition, to ensure it has the potential to find an improved solution,
it is only executed if at least N new paths have been generated since its last execution.
Finally, to avoid spending excessive time in this heuristic process, a time limit of thirty
seconds was set for each execution.

6.2. Impact of lift-and-project cuts on LP gap

In theory, one is able to converge to the optimal IP solution by adding a finite number
of lift-and-project cuts. However, in practice, this is far from reasonable as the number of
cuts, while finite, may be exponential in the size of the problem. As a result, we must set
a limit to the number of lift-and-project cuts that will be added to the master problem.
To aid this decision, we run experiments over the ten instances previously studied.

With the cutting and separation frequency strategy fixed to moderate, we again define
three strategies for adding Benders lift-and-project cuts: Mild, Moderate, and Aggressive.
The mild configuration adds lift-and-project cuts by using the top 10%, according to LW ,
of the candidate disjunction variables x̄̂ to define CGLP̂, while the moderate strategy
uses the top 20%, and finally the aggressive strategy uses the top 50% of the candidate
disjunction variables.

An important indicator of the effectiveness of cutting planes is the percentage of the
LP gap closed by adding them to the linear relaxation. This percentage is calculated as
100× (LPMPLP−LPMP)

Opt−LPMP
, where LPMPLP is the optimal value of the linear relaxation of the

master problem with the additional lift-and-project cuts, LPMP is the optimal value of
the linear relaxation of the master problem, and Opt is the optimal value of the problem.

Table 3 shows for each strategy the number of lift-and-project cuts added (LiftP cuts),
the percentage of the LP gap closed at the root node (% gap closed), and the time in
seconds needed to solve each of the instances to proven optimality (Time (secs.)).

Table 3: Impact of Lift-and-Project cut strategy on solution time

Mild Moderate Aggressive

|N |, |A|, |K|
LiftP
cuts

% gap
closed

Time
(secs.)

LiftP
cuts

% gap
closed

Time
(secs.)

LiftP
cuts

% gap
closed

Time
(secs.)

20,230,200 7 2.82 47.07 15 3.15 53.93 39 4.51 67.69
30,520,100 13 3.99 2,796.10 27 4.95 1,259.13 68 5.19 1,592.10
30,700,400 11 2.49 1,380.54 23 3.10 1,197.52 59 5.00 1,539.78
30,700,400 10 4.75 113.69 20 5.98 165.28 50 6.89 104.19
20,120,200 7 0.53 627.74 15 0.68 634.80 38 0.84 596.36
20,220,100 8 1.77 100.10 16 1.94 123.59 40 2.28 136.28
20,220,200 8 0.72 309.23 16 0.77 126.75 40 1.11 248.26
20,320,200 10 1.34 72.01 20 1.56 199.00 51 1.54 346.40
50,1400,800 18 8.04 170.76 36 12.71 380.44 90 19.12 660.29
50,1400,1200 19 10.84 416.25 39 15.09 631.00 99 23.69 971.07

Avg. 11 3.73 603.35 23 4.99 477.14 57 7.02 626.24

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

While a more aggressive Benders lift-and-project cutting strategy closes a larger per-
centage of the LP gap, after a certain point it has an adverse effect on the overall solution
time of the branch-and-Benders-cut algorithm. As a result, we implement the moderate
cutting strategy in the remainder of our computational experiments as it provides the
best trade-off between the percentage of LP gap closed and overall solution time. Table
4 shows the percentage of LP gap closed over the entire testbed.

Table 4: LP gap (%) closed

Class No. of instances % gap closed
Class I 21 12.57
Class II 1 15.39
Class III-A 1 21.06
Class III-B 18 4.05
Class IV 8 17.13
Total 49 10.42

6.3. Impact of core point selection

Despite the use of Pareto-optimal Benders cuts being now common practice, little
computational experimentation with core point selection strategies has been done. We
next show how core point selection influences the solution time and that a tailored core
point selection strategy can lead to significant time savings. We test three strategies for
core point selection. The first is the most common practice in the literature while the
second is a novel strategy that can be applied to any Benders reformulation of a mixed
binary program. Finally, the third is a strategy tailor-made for the MUFND and is based
on the union of shortest paths of the commodities k ∈ K. Let y0 and ȳ denote the current
core point and master problem solution, respectively. The details of the three core point
selection strategies are as follows:

1 Initialize y0={1}|A| and dynamically update the core point as y0 = 0.5y0 + 0.5ȳ as
in Papadakos (2008) and similar to Fischetti et al. (2017).

2 Initialize a stabilizer point ŷ as ŷ = {1}|A| which will then be updated as better
incumbent solutions are found during the enumeration process. Dynamically update
the core point as y0 = 0.5ŷ + 0.5ȳ.

3 Fix the core point throughout the entire process based on the arcs that are present in
at least one of the commodities’ shortest paths when considering only transportation
costs, denoted as ∪k∈KPk. The fixed core point is defined as y0

ij = 0.7 if (i, j) ∈
∪k∈KPk and y0

ij = 0.2 if (i, j) /∈ ∪k∈KPk.

Note that in all three cases, the proposed core point is in the interior of the {0, 1}|A|
hypercube. However, to solve MCFk, y

0 must not only lie in the interior of the {0, 1}|A|
hypercube but must also define a network through which one unit of demand can be sent

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

from ok to dk, ∀k ∈ K. Failure to do so could lead to MCFk being infeasible despite
ȳ being a feasible solution for the MUFND. This was observed empirically to have a
particularly pernicious effect on the overall computation time.

To remedy this we solve a minimum cut for each k ∈ K to check for feasibility when
defining the fixed core point of strategy 3. If there exists a minimum cut δ(S)k = {(i, j) ∈
A|ok ∈ S and dk ∈ N\S} for a commodity k ∈ K with

∑
(i,j)∈δ(S)k

y0
ij < 1, we then

increase the value of each arc in δ(S)k by [1/|δ(S)k|]+0.01 and check again for a violated
cutset. This is repeated until no such cutset exists. We place a cap on the value of y0

ij

to be at most 0.9999 to ensure y0 remains an interior point. Given that the core point is
fixed throughout the solution process, this verification is only done once at the beginning.
Since the other strategies constantly update the core point, running this procedure every
time proved to be time consuming. To circumvent this we run this procedure only when
MCFk becomes infeasible.

Table 5 details for each strategy the number of explored nodes, number of Benders cuts
added and solution time on the ten instances used in our preliminary tests. In addition,
it presents the same information for a more straightforward Benders implementation that
does not use Pareto-optimal cuts (Benders no POCs).

Table 5: Impact of core point selection

Benders no POCs Strategy 1 Strategy 2 Strategy 3

|N |, |A|, |K| Nodes Cuts Secs. Nodes Cuts Secs. Nodes Cuts Secs. Nodes Cuts Secs.

20,230,200 849 14,015 223.27 423 6,728 51.31 723 6,543 69.20 585 4,814 32.35
30,520,100 16,570 12,793 5,078.79 12,217 7,434 1,306.51 16,540 10,427 3,384.50 15,398 6,928 1,093.01
30,700,400 36,597 32,030 32,781.59 17,204 10,178 1,938.39 17,153 16,548 4,746.47 11,890 10,573 833.49
30,700,400 5,310 12,393 1,283.89 3,525 5,172 156.53 4,069 7,025 316.38 3,682 4,953 105.81
20,120,200 8,149 18,985 2,159.13 3,182 12,507 440.36 5,038 15,072 1,003.64 3,755 10,297 326.92
20,220,100 4,248 10,417 672.93 1,665 6,419 108.25 2,998 7,934 287.84 1,925 6,098 109.10
20,220,200 3,657 15,482 1,135.57 1,134 10,338 177.87 3,810 11,104 702.86 1,962 9,418 270.62
20,320,200 847 10,455 239.21 757 6,627 88.11 306 12,935 84.57 618 9,690 127.87
50,1400,800 4,059 12,186 2,262.91 3,043 6,541 191.47 3,196 6,166 270.67 2,911 3,672 92.05
50,1400,1200 5,025 18,355 3,872.63 2,576 9,372 309.76 3,853 14,700 767.25 1,751 8,155 171.26

Avg. 8,531 15,711 4,970.99 4,573 8,132 476.86 5,769 10,845 1,163.34 4,448 7,460 316.25

As seen in Table 5, there is a significant computational gain of up to an order of
magnitude when using Pareto-optimal Benders cuts. This comes as a result of the need
to add fewer Benders cuts and exploring fewer nodes in the enumeration tree. Among
the corepoint updating strategies, the best performing is our tailored core point selection
strategy (strategy 3), which saves over a quarter of the average computation time of the
second best performing strategy, the well-known dynamic mid-point update (strategy 1).
The worst is the incumbent stabilizer update (strategy 2). These results show the added
value of using not only using Pareto-optimal Benders cuts, but also core point selection
strategies that exploit problem structure.

6.4. Computation time

We now compare the computation time of each of our proposed algorithms. We begin
by focusing on our branch-and-Benders-cut algorithm since we use the best performing as

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the black box solver in our cut-and-solve/local branching algorithm. To show the impact
of each enhancement, we present four versions of our branch-and-Benders-cut algorithm.
The first is without using our in-tree matheuristic nor our lift-and-project cuts (Ben).
The second is the same, with the addition of the in-tree heuristic (Ben+H). Ben+LP is
the branch-and-Benders-cut algorithm with lift-and-project cuts added at the root node
and the final version (Ben+H+LP) combines them all. A time limit of 24 hours is set for
all algorithms.

The results are presented in Table 6 except the instances of Classes II and III-A which
were all solved in less than a second by our four algorithms and CPLEX. The first three
columns describe the problem class, instance sizes (|N |, |A|, |K|), and number of instances
in each instance group respectively. For each version of the algorithm, two columns are
displayed,“Secs.” which denotes the average solution time in seconds and “Nodes” which
refers to the average number of nodes explored. Finally, we point out that the averages
of Class IV and the total testbed are taken only over the instances with comparable
solution times to avoid the averages being skewed by large numbers, i.e., instance groups
50,1500,1000 and 50,1500,1500 are omitted.

Table 6: Computational performance of branch-and-Benders-cut algorithm

Ben Ben+H Ben+LP Ben+H+LP

Class |N |, |A|, |K| Nb Secs. Nodes Secs. Nodes Secs. Nodes Secs. Nodes

I

20,230,40 3 0.20 0 0.21 0 0.22 0 0.22 0
20,230,200 4 23.83 807 16.10 274 26.02 345 28.15 358
20,300,40 4 0.24 0 0.24 0 0.27 1 0.28 1
20,300,200 4 22.36 677 13.74 201 26.41 328 28.33 330
30,520,100 4 302.26 4,321 385.64 3,207 346.18 3,361 392.00 3,380
30,520,400 4 9.57 117 9.29 35 16.24 37 16.60 37
30,700,100 4 9.36 379 7.99 179 14.06 312 12.84 319
30,700,400 4 259.88 3,709 235.86 4,045 373.24 4,429 377.12 4,452
Class Avg. 31 80.99 1,292 86.32 1,025 103.56 1,137 110.38 1,145

III-B

20,120,40 3 0.10 0 0.10 0 0.10 0 0.10 0
20,120,100 3 3.58 427 1.97 71 2.79 77 3.11 80
20,120,200 3 131.70 2,768 213.92 1,780 233.09 1,563 229.71 1,610
20,220,40 3 2.57 718 1.74 91 2.52 140 2.66 140
20,220,100 3 46.51 1,443 45.76 765 49.62 825 45.47 924
20,220,200 3 1,476.54 5,546 793.64 3,492 1,577.11 4,630 2,358.90 4,203
20,320,40 3 25.84 3,033 12.45 883 24.19 1,261 20.34 1,594
20,320,100 3 9.69 556 7.13 104 17.35 198 17.34 201
20,320,200 3 720.30 2,863 705.18 2,001 803.75 2,519 823.07 2,694
Class Avg. 27 268.54 1,928 197.99 1,021 301.17 1,246 388.97 1,272

IV

40,1200,400 1 11.95 3 9.58 6 53.98 5 51.28 5
40,1200,800 1 42.36 687 63.92 556 279.73 685 289.85 665
40,1200,1200 1 51.29 119 62.85 61 649.83 47 556.54 47
50,1400,400 1 25.56 998 31.29 643 203.49 968 298.94 982
50,1400,800 1 103.24 2,377 124.27 1,985 300.42 2,370 430.26 2,276
50,1400,1200 1 212.81 3,611 210.15 2,233 522.34 3,596 497.52 3,520
50,1500,1000 1 53,946.52 419,563 48,522.85 381,225 43,764.95 301,027 52,531.55 357,322
50,1500,1500 1 69,283.07 262,007 68,200.91 255,307 time 332,866 time 390,397
Class Avg. 6 74.54 1,299 83.68 914 334.97 1,279 354.07 1,249

Testbed Avg. 64 159.50 1561 133.18 1013 208.62 1196 250.76 1208

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

We note that with respect to computation time, implementing Benders without in-
cluding Benders lift-and-project cuts performs on average the fastest. Between the two
versions that exclude it, Ben+H is on average slightly faster than Ben over the testbed.
These time savings are more pronounced in instance groups that require that Ben explore
a larger number of nodes as in instance groups 20,220,200; 20,320,40; and 50,1500,1000.

While incorporating Benders lift-and-project cuts has a better solution time when
compared to Ben for the instance of size 50,1500,1000, it produces on average over a
thirty percent increase in solution time over the complete testbed. Despite closing on
average ten percent of the LP gap, implementations of branch-and-Benders-cut with lift-
and-project cuts explore more nodes than the other variants for over ninety percent of
the instances. In addition, these cuts have several non-zero coefficients close to zero. This
leads to more time required to solve the underlying linear programs and in some instances
numerical instability that prevents CPLEX from constructing an advanced basis for nodes
in the tree. From Table 6 we conclude that the addition of these cuts negatively influences
the branching within the enumeration tree and the overall solution process.

Incorporating both Benders lift-and-project cuts and our in-tree heuristic simultane-
ously is the version that requires the most computation time on average over the entire
test bed. In fact, its solution time is worse than the versions that incorporate them indi-
vidually. One of the main factors contributing to this is the computation time increase
that comes from incorporating Benders lift-and-project cuts which as we have seen, also
negatively influences the branching within the enumeration tree. The rest of the solution
time increase can be explained by the additional time the in-tree heuristic requires to
solve PHeur.

Finally, we note that both Ben and Ben+H are able to solve the two largest instances
within the 24-hour time limit. In particular, incorporating our in-tree matheuristic proved
beneficial for these instances. On the other hand, including Ben+LP rendered a time
saving of one-fifth of the computation time required by Ben to solve the second largest
instance. This again shows the unpredictable effect of lift-and-project cuts in our branch-
and-Benders-cut algorithm. Considering these results, we choose Ben as the black box
solver for our cut-and-solve algorithm since it is more consistently the fastest solver over
all instances in the testbed.

Performance profiles have become the standard for benchmarking solvers because of
their ability to consider both efficiency and robustness simultaneously by plotting a perfor-
mance function over a parameter representing relative time t. This performance function
is defined as the proportion of the testbed that can be solved by an algorithm a if given
up to t times the time taken by the fastest algorithm. The performance function of an
algorithm a at t = 1 shows the percentage of a given testbed for which it was the fastest
solver. On the other hand, performance function values where t is larger show an algo-
rithm a’s robustness in being able to solve instances of the testbed given enough time.
Further details of performance profiles can be found in Dolan and Moré (2002).

Figure 1 is the performance profile of our branch-and-Benders-cut algorithm (Ben), our
Benders cut-and-solve (CS/LB), and solving P with both CPLEX 12.7.1’s branch-and-cut
algorithm (CPX) using default settings and CPLEX’s black box Benders implementation

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(CPXBen) in which we provide annotations that force CPLEX to decompose the problem
in the same manner that we did.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%
 p

ro
bl

em
s s

ol
ve

d

Relative time parameter (t)

Ben

CS/LB

CPX

CPXBen

Figure 1: Performance profile of all exact algorithms

We note that both of our proposed methodologies are more robust than using either
CPLEX’s branch-and-cut or black box Benders implementation with the latter being the
worst performing by a significant margin. The branch-and-Benders-cut implementation
is the fastest algorithm for 56% of the instances in our testbed while CPLEX’s branch-
and-cut is the fastest for 25% and finally the Benders cut-and-solve for 19%. As more
time is given, we note that the Benders cut-and-solve algorithm rapidly surpasses the
performance of CPLEX’s branch-and-cut to become the second most robust algorithm to
solve the instances of the testbed with our branch-and-Benders-cut algorithm being the
most robust.

The branch-and-Benders-cut algorithm is clearly both the most efficient and robust of
all solutions algorithms requiring only 2.8 times more time than the corresponding fastest
solution algorithm of each instance to solve the entire testbed. On the other hand, given
the same time extension, our Benders cut-and-solve is able to solve 94% of the instances,
CPLEX’s branch-and-cut 46% and CPLEX’s black box Benders implementation 0%.

To make a more precise comparison, we next present the average solution times of
each algorithm, excluding CPLEX’s black box Benders implementation which timed out
for over 70% of the instances in the testbed. Table 7 contains the average times in seconds
required both to solve instances to proven optimality and to find a solution that is one
percent away from the optimum. As in the previous table, the averages of Class IV and
the total testbed omit instance groups 50, 1500, 1000 and 50, 1500, 1500 which were not
solved to optimality by all solvers.

Table 7 shows that on average Ben and CS/LB are an order of magnitude faster than
CPLEX at both solving to proven optimality and obtaining a solution that is one percent
away from the optimal value. This speed-up is even more significant when limiting our
analysis to the large-scale instances. For these, our branch-and-Benders-cut algorithm
is three orders of magnitude faster than CPLEX at solving these instances to proven

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

optimality. The instances in other classes also show a significant time saving in favour
of our Benders decomposition-based algorithms. Finally, we note that our branch-and-
Benders-cut algorithm is capable of solving the two largest instances that CPLEX is
unable to solve in 24 hours of computing time.

The savings obtained with the branch-and-Benders-cut algorithm can be largely at-
tributed to solving smaller underlying linear programs in the enumeration tree, exploring
the nodes in significantly less time, and leaving the root node of the enumeration tree
with the linear programming relaxation of the complete formulation. We believe the lat-
ter makes a significant difference since when comparing to CPLEX’s black box Benders
implementation we note it does not leave the root node with the LP bound, thus leading
to larger enumeration trees.

Table 7: Comparison of computation times in seconds

Proven optimality 1% from optimum value

Class |N |, |A|, |K| Nb Ben CS/LB CPX Ben CS/LB CPX

I

20,230,40 3 0.20 0.22 0.07 0.21 0.22 0.04
20,230,200 4 23.83 25.55 252.95 11.13 3.70 60.05
20,300,40 4 0.24 0.35 0.17 0.23 0.24 0.16
20,300,200 4 22.36 26.42 303.24 3.98 11.44 345.20
30,520,100 4 302.26 191.63 3,181.33 10.34 10.10 3.51
30,520,400 4 9.57 18.89 95.46 5.99 6.28 18.16
30,700,100 4 9.36 12.19 71.61 5.06 2.80 103.61
30,700,400 4 259.88 286.60 10,479.58 33.01 9.79 49.29
Class Avg. 31 80.99 72.49 1,856.05 9.02 5.74 74.84

III-B

20,120,40 3 0.10 0.10 0.05 0.09 0.10 0.04
20,120,100 3 3.58 4.91 13.42 0.80 1.13 13.10
20,120,200 3 131.70 110.87 361.23 7.65 4.13 403.99
20,220,40 3 2.57 3.57 6.91 1.50 1.71 7.30
20,220,100 3 46.51 44.96 153.86 3.25 3.31 204.40
20,220,200 3 1,476.54 596.38 1,615.31 16.47 50.16 2,527.68
20,320,40 3 25.84 21.38 27.79 3.21 1.17 19.18
20,320,100 3 9.69 23.95 69.25 3.33 3.06 36.14
20,320,200 3 720.30 429.10 2,592.58 170.61 280.73 3,590.40
Class Avg. 27 268.54 137.25 537.82 22.99 38.39 755.80

IV

40,1200,400 1 11.95 17.08 59.82 8.81 7.56 12.13
40,1200,800 1 42.36 173.01 4,483.75 28.94 31.79 4,282.02
40,1200,1200 1 51.29 128.68 1,664.10 49.92 43.16 2,206.95
50,1400,400 1 25.56 77.17 575.91 13.61 13.25 43.42
50,1400,800 1 103.24 238.81 39,051.12 38.95 39.79 209.18
50,1400,1200 1 212.81 465.44 57,071.73 72 95.61 552.87
50,1500,1000 1 53,946.52 69,312.55 time 110.56 109.54 634.89
50,1500,1500 1 69,283.07 time time 134.48 238.67 1,165.94
Class Avg. 6 74.54 183.37 17,151.07 35.37 38.53 1,217.76

Testbed Avg. 64 159.50 110.20 2,733.83 17.39 22.59 469.27

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

On the other hand, our Benders cut-and-solve algorithm’s performance is also on
average three orders of magnitude faster than CPLEX over the testbed and is the fastest,
on average, of the three algorithms when solving to proven optimality. It is two orders
of magnitude faster than CPLEX when solving to optimality the large-scale instances
while for Class III-B, it saves over seventy percent of the solution time when compared
to CPLEX. On average, CS/LB solves three sparse problems before proving optimality
of its obtained solution. Each of these sparse problems is solved up to three orders of
magnitude faster than solving the complete problem with CPLEX and sometimes in half
the time than if solved with our branch-and-Benders-cut algorithm.

With respect to finding solutions within one percent of the optimal value, we note that
both algorithms are on average an order of magnitude faster than CPLEX’s branch-and-
cut algorithm. Our branch-and-Benders-cut algorithm is on average, thirty percent faster
than our Benders cut-and-solve algorithm over the entire testbed despite our Benders cut-
and-solve being up to three times faster for some instance groups such as 30, 70, 400 of
Class I. Based on these results we conclude that either Benders-based algorithms lead to
significant time savings when either used as an exact algorithm or to obtain high quality
feasible solutions.The results in Table 7 suggest that these algorithms have the potential
to tackle even larger instances at the expense of allowing a small optimality gap.

Finally, we point out that while dimensionality does play a role in the computation
time required to solve these instances, there exist other factors that contribute to the dif-
ficulty of these problems. This can be seen in the difference in solution time between the
instance group 30, 520, 100 and 30, 520, 400 of Class I where the group with four times
more commodities is solved in significantly less computing time. The same is seen when
comparing differences in number of arcs. Instance group 30, 700, 100 (Class I) requires
significantly less computing time than the instance group 30, 520, 100 (Class I) which has
less arcs. Identifying the other factors that make some network design instances partic-
ularly difficult for mixed integer programs would allow researchers to devise algorithms
with an improved, more stable performance.

7. Conclusion

We have presented two exact solution algorithms for the multicommodity uncapaci-
tated fixed-charge network design problem that outperform both the branch-and-cut and
blackbox Benders decomposition algorithms of the state-of-the-art general-purpose MIP
solver CPLEX. The first exact algorithm is based on implementing Benders decomposition
within a branch-and-cut framework using Pareto-optimal cuts and an in-tree matheuristic.
These additional refinements also serve as general guidelines for implementing a branch-
and-Benders-cut algorithm for other mixed integer problems. In addition, we presented a
tailored core point selection criterion for our problem which leads to significant savings in
computation time, thus highlighting its importance when using Pareto-optimal Benders
cuts.

We present a strategy for improving the LP bound of our Benders reformulation by
means of Benders lift-and-project cuts applied to the master problem’s feasibility and

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

optimality cuts. These are obtained using a modified cut generating linear program that
takes less than 0.02 seconds to solve. This procedure extends beyond the MUFND and
can be applied to all problems that allow a mixed integer programming formulation and
corresponding Benders reformulation.

Finally, we present a strategy that combines ideas from cut-and-solve/local branching
and our proposed branch-and-Benders-cut algorithm. The advantages of this method are:
breaking down the problem into a few sparse MIPs, the non-increasing optimal values
obtained from the sparse problems, the reduced size of the sparse problem solution space,
and the re-usability of Benders cuts generated in previous iterations. The results of our
implementation show this fusion to be a promising method for solving large-scale MIPs.

Acknowledgments: The authors are grateful to the four anonymous referees for
their insightful comments that improved the content and presentation of the paper. This
research was partially funded by the Canadian Natural Sciences and Engineering Research
Council [Grants 418609-2012 and 04959-2014]. This support is gratefully acknowledged.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

Adulyasak Y, Cordeau JF, Jans R (2015) Benders decomposition for production routing under
demand uncertainty. Operations Research 63(4):851–867.

Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applications
(Prentice-Hall, New Jersey, U.S.A.).

Andersen J, Crainic TG, Christiansen M (2009) Service network design with management and
coordination of multiple fleets. European Journal of Operational Research 193(2):377–389.

Balakrishnan A, Magnanti TL, Wong RT (1989) A dual-ascent procedure for large-scale unca-
pacitated network design. Operations Research 37(5):716–740.

Balakrishnan N, Wong RT (1990) A network model for the rotating workforce scheduling prob-
lem. Networks 20(1):25–42.

Balas E (1979) Disjunctive programming. Annals of Discrete Mathematics 5:3–51.

Balas E, Ceria S, Cornuéjols G (1993) A lift-and-project cutting plane algorithm for mixed 0–1
programs. Mathematical Programming 58(1):295–324.

Balas E, Ceria S, Cornuéjols G (1996) Mixed 0–1 programming by lift-and-project in a branch-
and-cut framework. Management Science 42(9):1229–1246.

Balas E, Perregaard M (2002) Lift-and-project for mixed 0–1 programming: recent progress.
Discrete Applied Mathematics 123(1):129–154.

Bartholdi JJ, Orlin JB, Ratliff HD (1980) Cyclic scheduling via integer programs with circular
ones. Operations Research 28(5):1074–1085.

Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik 4:238–252.

Billheimer J, Gray P (1973) Network design with fixed and variable cost elements. Transportation
Science 7(1):49–74.

Bodur M, Dash S, Günlük O, Luedtke J (2017) Strengthened Benders cuts for stochastic integer
programs with continuous recourse. INFORMS Journal on Computing 29(1):77–91.

Bodur M, Luedtke JR (2017) Mixed-integer rounding enhanced Benders decomposition for mul-
ticlass service-system staffing and scheduling with arrival rate uncertainty. Management
Science 63(7):2073–2091.

Boffey T, Hinxman A (1979) Solving the optimal network problem. European Journal of Oper-
ational Research 3(5):386–393.

Bonami P (2012) On optimizing over lift-and-project closures. Mathematical Programming Com-
putation 4(2):151–179.

Botton Q, Fortz B, Gouveia L, Poss M (2013) Benders decomposition for the hop-constrained
survivable network design problem. INFORMS Journal on Computing 25(1):13–26.

Calik H, Leitner M, Luipersbeck M (2017) A benders decomposition based framework for solving
cable trench problems. Computers & Operations Research 81:128 – 140.

Climer S, Zhang W (2006) Cut-and-solve: An iterative search strategy for combinatorial opti-
mization problems. Artificial Intelligence 170(8):714–738.

Contreras I, Cordeau JF, Laporte G (2011) Benders decomposition for large-scale uncapacitated
hub location. Operations Research 59(6):1477–1490.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Contreras I, Dı́az JA, Fernández E (2009) Lagrangean relaxation for the capacitated hub location
problem with single assignment. OR Spectrum 31(3):483–505.

Cordeau JF, Pasin F, Solomon MM (2006) An integrated model for logistics network design.
Annals of Operations Research 144(1):59–82.

Cordeau JF, Stojković G, Soumis F, Desrosiers J (2001) Benders decomposition for simultaneous
aircraft routing and crew scheduling. Transportation Science 35(4):375–388.

Costa AM (2005) A survey on Benders decomposition applied to fixed-charge network design
problems. Computers & Operations Research 32(6):1429–1450.

Costa AM, Cordeau JF, Gendron B (2009) Benders, metric and cutset inequalities for mul-
ticommodity capacitated network design. Computational Optimization and Applications
42(3):371–392.

Crainic TG (2000) Service network design in freight transportation. European Journal of Oper-
ational Research 122(2):272–288.

Crainic TG, Frangioni A, Gendron B (2001) Bundle-based relaxation methods for multicommod-
ity capacitated fixed charge network design. Discrete Applied Mathematics 112(1–3):73–99.

Crainic TG, Rousseau JM (1986) Multicommodity, multimode freight transportation: A general
modeling and algorithmic framework for the service network design problem. Transportation
Research Part B: Methodological 20(3):225–242.

de Camargo RS, Miranda G, Luna HP (2008) Benders decomposition for the uncapacitated
multiple allocation hub location problem. Computers and Operations Research 35(4):1047–
1064.

Dionne R, Florian M (1979) Exact and approximate algorithms for optimal network design.
Networks 9(1):37–59.

Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math-
ematical Programming 91(2):201–213.

Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the Association for Computing Machinery 19(2):248–264.

Fischetti M, Ljubić I, Sinnl M (2017) Redesigning Benders decomposition for large-scale facility
location. Management Science 63(7):2146–2162.

Fischetti M, Ljubić I, Sinnl M (2016) Benders decomposition without separability: A compu-
tational study for capacitated facility location problems. European Journal of Operational
Research 253(3):557 – 569.

Fischetti M, Lodi A (2003) Local branching. Mathematical Programming 98(1-3):23–47.

Fischetti M, Salvagnin D, Zanette A (2010) A note on the selection of Benders cuts. Mathematical
Programming 124(1-2):175–182.

Fontaine P, Minner S (2018) Benders decomposition for the hazmat transport network design
problem. European Journal of Operational Research 267(3):996–1002.

Fortz B, Poss M (2009) An improved Benders decomposition applied to a multi-layer network
design problem. Operations Research Letters 37(5):359–364.

Fragkos I, Cordeau JF, Jans R (2017) The multi-period multi-commodity network design prob-
lem. Technical Report CIRRELT 2017-63, Université de Montréal.

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Gadegaard SL, Klose A, Nielsen LR (2018) An improved cut-and-solve algorithm for the single-
source capacitated facility location problem. EURO Journal on Computational Optimiza-
tion 6(1):1–27.

Geoffrion AM, Graves GW (1974) Multicommodity distribution system design by Benders de-
composition. Management Science 26(8):855–856.

Gouveia L, Joyce-Moniz M, Leitner M (2018) Branch-and-cut methods for the network design
problem with vulnerability constraints. Computers & Operations Research 91:190 – 208.

Gzara F, Erkut E (2011) Telecommunications network design with multiple technologies.
Telecommunication Systems 46(2):149–161.

Hewitt M, Nemhauser GL, Savelsbergh MWP (2010) Combining exact and heuristic approaches
for the capacitated fixed-charge network flow problem. INFORMS Journal on Computing
22(2):314–325.

Holmberg K, Hellstrand J (1998) Solving the uncapacitated network design problem by a La-
grangean heuristic and branch-and-bound. Operations Research 46(2):247–259.

Jeihoonian M, Zanjani MK, Gendreau M (2016) Accelerating Benders decomposition for closed-
loop supply chain network design: Case of used durable products with different quality
levels. European Journal of Operational Research 251(3):830–845.

Johnson DS, Lenstra JK, Kan AHGR (1978) The complexity of the network design problem.
Networks 8(4):279–285.

Keyvanshokooh E, Ryan SM, Kabir E (2016) Hybrid robust and stochastic optimization for
closed-loop supply chain network design using accelerated Benders decomposition. European
Journal of Operational Research 249(1):76–92.

Kratica J, Tošić D, Filipović V, Ljubić I (2002) A genetic algorithm for the uncapacitated
network design problem. Roy R, Köppen M, Ovaska S, Furuhashi T, Hoffmann F, eds.,
Soft Computing and Industry: Recent Applications, 329–336.

Lamar BW, Sheffi Y, Powell WB (1990) A capacity improvement lower bound for fixed charge
network design problems. Operations Research 38(4):704–710.

Lee C, Lee K, Park S (2013) Benders decomposition approach for the robust network design
problem with flow bifurcations. Networks 62(1):1–16.

Los M, Lardinois C (1982) Combinatorial programming, statistical optimization and the optimal
transportation network problem. Transportation Research Part B: Methodological 16(2):89–
124.

Magnanti T, Mireault P, Wong R (1986) Tailoring Benders decomposition for uncapacitated
network design. Gallo G, Sandi C, eds., Network Flow at Pisa, 112–154, Mathematical
Programming Studies, volume 26.

Magnanti TL, Wong RT (1981) Accelerating Benders decomposition: Algorithmic enhancement
and model selection criteria. Operations Research 29(3):464–484.

Magnanti TL, Wong RT (1984) Network design and transportation planning: Models and algo-
rithms. Transportation Science 18(1):1–55.

Maŕın ÁG, Jaramillo P (2009) Urban rapid transit network design: accelerated benders decom-
position. Annals of Operations Research 169(1):35–53.

Minoux M (1989) Networks synthesis and optimum network design problems: Models, solution
methods and applications. Networks 19(3):313–360.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Naoum-Sawaya J, Elhedhli S (2013) An interior-point Benders based branch-and-cut algorithm
for mixed integer programs. Annals of Operations Research 210(1):33–55.

Ortega F, Wolsey L (2003) A branch-and-cut algorithm for the single-commodity, uncapacitated,
fixed-charge network flow problem. Networks 41(3):143–158.

Ortiz-Astorquiza C, Contreras I, Laporte G (2017) An exact algorithm for multilevel uncapaci-
tated facility location. Transportation Science 1–23.

Padberg M, Rinaldi G (1991) A branch-and-cut algorithm for the resolution of large-scale sym-
metric traveling salesman problems. SIAM Review 33(1):60–100.

Papadakos N (2008) Practical enhancements to the Magnanti-Wong method. Operations Re-
search Letters 36(4):444–449.

Papadakos N (2009) Integrated airline scheduling. Computers & Operations Research 36(1):176–
195.

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2017) The Benders decomposition algorithm:
A literature review. European Journal of Operational Research 259(3):801–817.

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2018) Accelerating the Benders decomposition
method: Application to stochastic network design problems. SIAM Journal on Optimiza-
tion 28(1):875–903.

Randazzo C, Luna H (2001) A comparison of optimal methods for local access uncapacitated
network design. Annals of Operations Research 106(1-4):263–286.

Rei W, Cordeau JF, Gendreau M, Soriano P (2009) Accelerating Benders decomposition by
local branching. INFORMS Journal on Computing 21(2):333–345.

Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for
supply chain network design under uncertainty. European Journal of Operational Research
167(1):96–115.

van Ackooij W, Frangioni A, de Oliveira W (2016) Inexact stabilized Benders’ decomposition
approaches with application to chance-constrained problems with finite support. Compu-
tational Optimization and Applications 65(3):637–669.

Yang Z, Chu F, Chen H (2012) A cut-and-solve based algorithm for the single-source capacitated
facility location problem. European Journal of Operational Research 221(3):521–532.

Zarrinpoor N, Fallahnezhad MS, Pishvaee MS (2018) The design of a reliable and robust hi-
erarchical health service network using an accelerated Benders decomposition algorithm.
European Journal of Operational Research 265(3):1013–1032.

Zetina CA, Contreras I, Fernández E, Luna-Mota C (2019) Solving the optimum communication
spanning tree problem. European Journal of Operational Research 273(1):108–117.

31

