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Abstract

Analysis of High-Order Element Types for Implicit Large Eddy Simulation

Carlos A. Pereira

The use of high-order schemes continues to increase, with current methods becoming more robust

and reliable. The resolution of complex turbulent flows using Large Eddy Simulation (LES) and

Direct Numerical Simulation (DNS) can be computed more efficiently with high-order methods such

as the Flux Reconstruction (FR) approach. We make use of the implicit form of LES, referred to

as ILES, in which the numerical dissipation of the spatial scheme passively filters high-frequency

modes and no subgrid scale turbulent model is explicitly implemented. Therefore, given the

inherent three-dimensional behaviour of turbulent flows, it is important to understand the spectral

characteristics of spatial discretizations in three dimensions. The dispersive and dissipative properties

of hexahedra, prismatic and tetrahedral element types are compared using Fourier Analysis. This

comparison is performed on a per degree of freedom basis to assess their suitability for ILES in

terms of computational cost. We observe dispersion relations that display non-smooth behaviour for

tetrahedral and prismatic elements, with the presence of jumps in the solution modes. Semilogarithmic

plots of the numerical error are presented. We observe that the amount of numerical dissipation

and dispersion added by hexahedral elements is the least, followed by prisms and finally tetrahedra.

We validate our analysis comparing results obtained on computational domains with comparable

computational cost against DNS data. Hexahedral elements have the best agreement with the

reference data, followed by prismatic and finally tetrahedral elements, which is consistent with the

spectral analysis.
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Chapter 1

Introduction

Advancements in high-order methods continue to enable accurate and robust simulations of

turbulent flows. Complex phenomena can be more efficiently captured with high accuracy compared

to current industry-adopted low-order schemes, defined as second-order or lower, which often fail

to accurately model complex turbulent flows due to their relatively high numerical error. Hence,

high-order schemes are often more suitable for Direct Numerical Simulation (DNS) and Large Eddy

Simulation (LES). They can be applied to a wide range of fields of importance such as Computational

Fluid Dynamics (CFD), aeroacoustics and other wave propagation phenomena. Some schemes

currently used for scale-resolving simulations of complex turbulent flows are the Discontinuous

Galerkin (DG) [1, 2, 3], Spectral Volume (SV) [4] and Spectral Difference (SD) [5] methods. A

review of these schemes can be found in the works of Huynh [6] and Ekaterinaris [7].

Following NASA’s 2030 vision study [8], along with recent progress made in industrial LES using

the Flux Reconstruction approach, it is expected that a new family of CFD solvers well-suited to LES

on modern many-core hardware architectures will need to be developed. Hence, the solver HORUS

(High-ORder Unstructured Solver) is currently under development at the Concordia Computational

Aerodynamics Laboratory for this purpose. The development of software tools such as HORUS is

critical in the use of CFD for both academic and industrial research and engineering. Along with

the development of these unsteady scale-resolving LES tools comes the additional requirement for

precise and efficient verification and validation strategies. Due to the innate chaotic unsteadiness of

LES, this introduces additional complexities for verification and validation that are not inherent

to current industry-standard Reynolds Averaged Navier-Stokes (RANS) solvers. For example, the

repeatability of LES simulations is an as-yet unexplored topic in the high-order CFD community

due to chaotic divergence of the resulting instantaneous flow field.

As a unifying framework for high-order schemes, Huynh [9] introduced in 2007 the Flux Recon-
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struction spatial discretization (FR), which casts conservation laws in divergence form. FR is able

to recover the aforementioned high-order schemes with the implementation of particular correction

functions that connect the interfaces between elements. Initially developed in one dimension, the FR

approach was later extended to multi-dimensions for mixed element types by Wang and Gao [10],

three-dimensional problems by Haga and Wang [11], and tetrahedral elements by Williams and

Jameson [12]. Hence, enabling its implementation for the computation of turbulent flows.

In addition, the high-order accuracy of FR allows the scheme to be suitable for LES. In this

work, we make use of the implicit form of LES, referred to as ILES, in which no explicit sub-

grid scale turbulent model (SGS) is implemented. Instead, the numerical error of the spatial

discretization passively adds dissipation that models unresolved scales. Furthermore, ILES has

shown good agreement with DNS with a significant reduction in computational cost, as presented by

Vermeire [13, 14]. The numerical error of the spatial discretization is characterized by dispersion and

dissipation behaviour, and it depends on a series of factors, in particular, the polynomial space of the

solution and the choice of element type. Furthermore, complex geometries benefit from prismatic and

tetrahedral elements due to their flexible nature, making them an appropriate choice for unstructured

meshes. Hence, it is important to understand the characteristic behaviour of each element type in

order to assess the suitability of the FR approach for ILES using complex geometries. This topic has

been widely explored in one and two dimensions for different high-order schemes. However, in three

dimensions, it has not been fully characterized. In the following section, we present a compilation of

some of the work that has been done in regards to spectral analysis.

1.1 Previous Work on Spectral Analysis

Several studies have been performed on the spectral characteristics of high-order schemes. In one

dimension, Moura [15, 16, 17] described the characteristic shape of the dispersion and dissipation

curves, noting periodicity in the wavenumber space proportional to the number of points in the

solution for DG. The identification of the dominant eigenvalues has been associated with the most

energized modes. Vincent et al. [18] proposed an analysis in modal space, in which the dominant

component was computed using eigenvalues from all modes. Asthana [19] quantified the distribution

of energy amongst all eigenmodes and determined that multiple modes become energized at higher
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wavenumbers. Fully discrete analysis has also been performed by Vermeire [20]. In two dimensions,

Van den Abeele [21] displayed the dispersion curves on triangular and quadrilateral elements and

found periodic behaviour of the dispersion relations as a function of the wave orientation angles for

SV and SD schemes. Castonguay et al. [22] described a spectral analysis formulation for triangular

meshes. Hu et al. [23] analyzed the numerical properties of quadrilaterals and triangular meshes

with different periodic patterns for DG. Recently, Trojak et al. [24] studied the effects of mesh

deformation in the quality of meshes composed of quadrilateral elements [24]. In three dimensions,

Van den Abeele [25] performed a stability analysis of tetrahedral meshes for the SV method using

the matrix method to detect instabilities for modes with long wavelengths.

The aforementioned authors studied the numerical error on different schemes. However, we

observed in these studies that high-order methods are generally characterized for yielding more

accurate results as the order of the scheme is increased. We will now explore the general advantages

of implementing high-order schemes in numerical simulations in terms of accuracy and computational

performance.

1.2 Advantages of High-Order Methods

Low-order spatial discretizations, such as the Finite Volume method (FV), are widely used in

industry due to their robustness and simplicity. These methods were originally used due to their

utility for shocks. However, due to their intrinsically high numerical error, the representation of

complex structures becomes expensive. In addition, they mostly rely on the RANS equations, since

the use of more accurate approaches, such as DNS and LES, would require grids with extreme

resolution. Otherwise, due to the highly dissipative effects of low order schemes, the solution would

be highly contaminated when compared to high-order methods, which are more suitable for LES

and DNS. Furthermore, high-order schemes require fewer degrees of freedom (DOF) than low-order

methods to achieve the same level of accuracy. This is a result of the convergence rate proportional

to h2 for second-order FV schemes, compared to hn in high-order methods, where n is considered

to be at least n ≥ 3 [7]. This allows high-order methods to utilize coarser meshes than low-order

schemes for a given level of accuracy.

While FV methods work well on structured meshes, they normally rely on large stencils that
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Figure 1.1. Strong scaling study on Compute Canada Clusters Mammouth Parallel II (MP2) and
Niagara. Speedup is plotted against number of computer nodes.

limit their performance on unstructured meshes. These methods achieve about 3% of the theoretical

floating-point operations per second (FLOPS) on modern architecture due to their high degree of

indirect memory access [26]. In contrast, the performance in high-order methods can better leverage

today’s current computational capabilities. The matrix multiplication nature of these schemes,

along with compact stencils that can be obtained with the FR approach, allows for efficient parallel

computations using CPUs or GPUs. A quick strong scaling study on Compute Canada’s Mammouth

Parallel II (MP2) and Niagara clusters, shown in Figure 1.1, exemplifies the speedup gained by

increasing the computational resources. We used 1 to 16 nodes, each consisting of 24 and 40 processors

for MP2 and Niagara, respectively. The scaling study was performed on a sixth-order spatial FR

scheme and the Taylor-Green vortex case, which will be introduced in subsequent sections. The

improvement in time-cost metrics is approximately linear, until the communication between parallel

processes becomes too expensive given the decreased number of elements assigned to each CPU core.

We note that MP2’s old interconnect properties are poor compared to the newer cluster Niagara. In

this sense, we observe that the performance of FR is dependent on the communication capabilities of

the system, and newer hardware will be able to exploit these substantially. Furthermore, the number
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of vectorizable (or pointwise direct) operations increases exponentially with the polynomial degree,

allowing for more performant schemes when higher orders are used. Hence, schemes such as Flux

Reconstruction are able to achieve more than 50% of peak FLOPS [26]. These results have opened

doors to exploring turbulent flows with more accuracy by taking advantage of modern hardware.

In the following section, we will describe some of the most common turbulence models and their

suitability for high-order schemes.

1.3 Turbulence in Numerical Simulations

The chaotic behaviour of turbulent phenomena has led to several mathematical models in an

attempt to simulate real-world scenarios, where most flows are turbulent. The use of the RANS

equations, DNS and LES are the most common approaches currently used.

RANS methods consist of the time-averaged Navier-Stokes equations. These utilize the concept

of Reynolds decomposition to express the instantaneous velocity field as the sum of an averaged and

a fluctuation term

v(x, t) = v(x) + v(x, t)′. (1.1)

Using this mathematical tool, the momentum equations for incompressible flow can be written as [27]

ρ
D (vj)

Dt
=

∂

∂xi

[
μ

(
∂vi
∂xj

+
∂vj
∂xi

)
− pδij − ρv′iv

′
j

]
, (1.2)

where the term ρv′iv
′
j appears from the averaging of the convective term and is referred to as the

Reynolds stresses. These terms are typically computed using eddy-viscosity models, which are

formulated for specific applications. Due to inherent modelling inaccuracies, the RANS approach

often fails for a wide range of applications, including separated and transitional flows. Hence,

approaches that capture unsteady flow physics are often needed.

Turbulent flows contain a wide variety of time and length scales. The relationship between the

size of the largest eddy and the smallest turbulent scales is a function of the Reynolds number and
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is described by the Kolmogorov micro-scale

η̂ =

(
v�̂

μ̂

) 3
4

�̂ = Re−
3
4 �̂, (1.3)

where �̂ and η̂ are the size of the largest and smallest eddies, respectively and v is the velocity of the

smallest scales.

DNS is performed when the computation of every length and time scale within the flow is carried

out by integrating the Navier-Stokes equations in time and calculating the instantaneous velocity field

at every time step. Nevertheless, the application of DNS is limited by the complexity of geometries

and the rapid growth in computational cost. Davidson [28] estimated the number of points that

would be required to fully compute all eddies in a three-dimensional box by

NDOF =

(
L

Δx

)3

≈
(
L

�̂

)
Re

9
4 , (1.4)

with L the edge length of a cubic domain of equal sides, and Δx is the average mesh spacing which

must be smaller than the Kolmogorov scales for DNS. The number of solution points depends on

the Reynolds number. From Equation 1.4 we observe that incrementing Re cubically increases

the computational requirements. In addition, the time-step size Δt decreases with the size of the

mesh spacing. Therefore, in order to fully resolve flows with medium to large Reynolds number,

the amount of computational power required may be unattainable with today’s computational

capabilities. Hence, current industry requirements may not be able to justify the use of DNS.

In efforts to reduce the computational cost of DNS and still be able to accurately capture

pertinent physics, LES was developed. LES is a middle point between RANS modeling and DNS

in terms of computational cost. Here, only the largest energy-containing scales are fully computed

up until a cut-off wavenumber, which is usually defined by the grid size, as shown in Figure 1.2.

Conceptually, the velocity field is decomposed through a filtering operation into a resolved a residual

component. As a result, several models have been introduced to account for the under-resolution of

the computational model, known as sub-grid scale or SGS models. The Navier-Stokes equations

are then manipulated and an SGS stress tensor arises in the momentum equations, which can be

explicitly or implicitly modelled. SGS models normally add artificial viscosity, which mimics the
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dissipative nature of the smallest turbulent scales.

The resulting LES equations are similar to those obtained by RANS, except with the averaging

done in space instead of time, and they capture the interaction between the resolved turbulent

scales [29, 30]. In the current research, the implicit form of Large Eddy Simulation is used and no

additional SGS model is implemented. Instead, the numerical error of the scheme is allowed mimic

the necessary dissipation. This method is called Implicit Large Eddy Simulation (ILES) and has been

shown to achieve accurate and consistent results when compared to experiments and DNS [14, 31].

The chaotic behaviour of turbulent flows introduces additional complexities in the application of

these models. To ensure results with appropriate numerical accuracy, we must demonstrate their

validity and correct implementation by performing verification and validation studies.

1.4 Verification and Validation of CFD software

Verification is a process of great importance in the context of computer simulations. Numerous

guides and reports have been made in relation to this topic [32, 33, 34, 35]. Verification is the process

of determining whether a mathematical approach resulting from a numerical discretization is able to

accurately represent the corresponding mathematical model with sufficient accuracy [36].

With constant advancements in the field of computational fluid dynamics, implementations

of new algorithms or enhancements to current codes are carried out on a frequent basis. In
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addition, high-order methods particularly benefit from verification procedures to properly justify

their implementation and demonstrate their accuracy in terms of computational cost [37]. This

is performed by comparing numerical results with existing analytical solutions, such as those for

the linear advection, linear diffusion, Euler and Navier-Stokes equations. A simple and convenient

procedure is the Method of Manufactured Solutions (MMS), in which the expected solution is initially

prescribed and numerically analyzed. In this work, we perform grid convergence studies and compare

the numerical results with exact solutions obtained analytically. By looking at error convergence as

the grid is refined, we determine whether the order of the spatial or temporal schemes are consistent

with their theoretical orders, which verifies the scheme’s implementation.

In a similar manner, validation consists in evaluating whether a given mathematical model is

able to accurately represent a physical event. To contrast the difference between verification and

validation, Roache [38] refers to validation as an interaction between mathematics and physics,

whereas verification is purely mathematical and computational-related. In this work, we perform

the validation of a large eddy simulation solver using benchmark cases proposed in high-order

workshops [39]. This consists of comparing the numerical results with experimental data or highly

accurate numerical results, such as those obtained from direct numerical simulation. Some example

validation and verification studies can be found in [31, 40, 41].

1.5 Thesis Objectives and Contribution

The objective of this thesis is to conduct a complete analysis of high-order element types and

assess their accuracy and suitability in the context of Implicit Large Eddy Simulation. To do this,

we will start by performing verification of the in-house High-ORder Unstructured Solver (HORUS)

for two and three-dimensional element types. A suite of test verification cases will be proposed to

validate components of the solver based on the Navier-Stokes equations. Considering the constant

development of the in-house solver, an automatic verification framework will be proposed in the

context of a multi-developer environment using version control.

We will then perform spectral analysis of three-dimensional high-order spatial discretizations.

We will describe the numerical error introduced by the choice of element type. This will be done

by analyzing the numerical dispersion curves of semidiscretizations with hexahedral, prismatic and
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tetrahedral elements.

We will validate this spectral analysis using benchmark cases including turbulent channel flow

and the Taylor-Green vortex as well as turbulent flow over a cylinder.

Finally, recommendations will be made on the choice of element types for Implicit Large Eddy

Simulation.

1.6 Thesis Outline

In Chapter 1, we present the introductory section of this work, including previous work on

spectral analysis of spatial discretizations, followed by a general overview of important concepts that

form the basis of this thesis.

Chapter 2 contains theoretical concepts in fluid dynamics that are necessary to understand the

underlying phenomena in the computational simulations, such as conservation laws.

In Chapter 3, we present the description of the numerical schemes that were the subject of study

during this thesis.

Chapter 4 presents verification of the in-house High-ORder Unstructured Solver (HORUS) for

both spatial and temporal schemes, as well as accuracy analysis of two and three-dimensional element

types.

Chapter 5 is dedicated to spectral analysis of high-order schemes. As an introduction, this

analysis is presented in one dimension and later extended to the multidimensional framework.

Chapter 6 presents validation of the spectral analysis in the context of ILES through numerical

experiments, including turbulent channel flow, the Taylor-Green vortex and turbulent flow over a

cylinder.

Chapter 7 closes this work with some conclusions and recommendations for future work.

An Appendix is provided to include additional dispersion relation for higher-order schemes as

well as the computational implementation of algorithms/software developed for this thesis.
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Chapter 2

Fundamental Equations

The description of fluid behaviour is defined by a set of conservation laws that together compose

the Navier-Stokes equations. In this chapter, we present a brief description of these conservation

laws, as well as an introduction to notation and concepts that are relevant to this work, including

the linear advection and linear diffusion equations. A more detailed derivation can be found in [42].

2.1 Canonical Form

Consider a region of fluid Ω fixed in space, bounded by a closed surface ∂Ω. The variation of a

conserved variable u is associated to the net effects of external sources S(u, t) and how much such a

quantity exits or enters through ∂Ω [42], denoted by the flux vector F . The canonical conservation

equation can then be written as

∂

∂t

∫
Ω
udΩ+

∫
∂Ω

F (u) · ds =

∫
Ω
S(u, t)dΩ, (2.1)

where ds is the surface element vector from ∂Ω, pointing in the outward direction. This equation

can also be written in divergence form using Gauss theorem, which describes the transformation

between surface and volume integrals

∫
∂Ω

F (u) · ds =

∫
Ω
∇ · F (u)dΩ. (2.2)

Hence, we may rewrite and group similar terms

∫
Ω

(
∂u

∂t
+ ∇ · F (u)− S(u, t)

)
dΩ = 0. (2.3)
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Since the integrand must vanish, the divergence form of a conservation law is given in canonical

form by
∂u

∂t
+∇ · F (u) = S(u, t). (2.4)

2.2 Mass Conservation Equation

Conservation of mass states that mass cannot disappear nor be created. In this sense, the

conserved variable is considered to be density, u = ρ, and it is linearly proportional to the velocity v,

which corresponds to the flux without the presence of any source term. The integral form of the

conservation law becomes

∂

∂t

∫
Ω
ρdΩ+

∫
∂Ω

ρ(v · ds) = 0. (2.5)

By using Gauss theorem, we obtain the divergence form

∂ρ

∂t
+∇ · (ρv) = 0. (2.6)

2.3 Momentum Conservation Equation

Momentum is a vector quantity defined by the product of the mass m and velocity vector v.

This equation is a result of the application of Newton’s Second Law

f = ma =
d

dt
(mv), (2.7)

where m is mass, a is acceleration and f is force. Hence, the conserved variable has magnitude and

direction and is now a vector u = ρv. In addition, we must account for the forces that act in the

i-th direction due to internal and external forces. This yields

∂

∂t

∫
Ω
ρvdΩ+

∫
∂Ω

ρv(v · ds) =
∫
Ω
ρfedΩ+

∫
∂Ω

σ · ds, (2.8)
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where fe is a body force and σ is the stress tensor, which can be written as

σ = −pI + τ , (2.9)

with I the unit tensor and

τij =

[(
∂vj
∂xi

+
∂vi
∂xj

)
− λ̃ (∇ · v) δij

]
. (2.10)

Here, δij is the Kronecker delta, λ̃ (∇ · v) is a dilatation term, which is applied to the stresses in

normal directions. λ̃ = 2/3 for Newtonian fluids in equilibrium. After the application of Gauss

theorem and some simple rearranging of the right hand side terms, we may cast this equation in

divergence form
∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI − τ) = ρfe. (2.11)

2.4 Energy Conservation Equation

The application of the First Law of thermodynamics to a closed system yields the Energy

Conservation Law. The total energy E is given by

E = e+
1

2
‖v‖2 , (2.12)

where e is the internal energy, and the second term denotes the kinetic energy. Hence, the conserved

variable is u = ρE. Consider a convective flux FC = ρvE and a diffusive flux FD associated with

the diffusion of heat in a medium due to molecular conduction. The diffusive flux FD can be

written using Fourier’s Law of Heat Conduction, resulting in FD = −k∇T , where k is the thermal

conduction coefficient and T is the scalar variable temperature. Additionally, we must account for

the heat sources other than conduction qH [42] and the work resulting from the internal forces such

as the viscous shear stresses and pressure, denoted by the product of the stress tensor σ and the

velocity v. This yields

∂

∂t

∫
Ω
ρEdΩ+

∫
∂Ω

(ρEv − k∇T ) · ds =

∫
Ω
(ρfe · v + qH) dΩ+

∫
∂Ω

σ · vds, (2.13)
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where σ is the stress tensor previously defined in Equation 2.9. The divergence form of this equation

follows
∂(ρE)

∂t
+∇ · (ρvH − k∇T − τ · v) = Wf + qH , (2.14)

where Wf = ρfe · v is the work resulting from body forces and H is the stagnation enthalpy given by

H = e+
p

ρ
+ ‖v‖2 = h+

∥∥v2
∥∥ = E +

p

ρ
, (2.15)

in which p is pressure and ‖·‖ represents a vector magnitude. For an ideal gas

p = ρrT, (2.16)

where r is the specific gas constant and T is temperature. The internal energy e and enthalpy h are

related to the temperature by

e = cvT, h = cpT, (2.17)

where cv and cp are the specific heat coefficients at constant volume and pressure, respectively. These

are related by the ratio of specific heat coefficients γ = cp/cv, which is approximately 1.4 for air.

2.5 Euler and Navier-Stokes Equations

In this section, we present the previous conservation laws as part of the set of Euler and Navier

Stokes equations. This time, we define fluxes with convective contribution FC in charge of the

transport properties, and fluxes with diffusive contribution FD due to molecular agitation and

associated with viscous effects

∂u

∂t
+∇ · (FC − FD) = S. (2.18)

We may also rewrite the divergence form of such set of conservation laws in keeping with vector

notation, and commonly used in CFD solver implementations

∂u

∂t
+

∂

∂x
(FC,x − FD,x) +

∂

∂y
(FC,y − FD,y) +

∂

∂z
(FC,z − FD,z) = S, (2.19)
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in which the vector of state variables u is given by

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρvx

ρvy

ρvz

ρE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where vi is the i-th component of the velocity vector.

The Euler equations describe the behaviour of compressible fluids in which the effects of viscosity,

heat conduction and source terms are negligible. These equations include the previously described

conservation laws such as mass, momentum and energy conservation with inviscid and adiabatic

assumptions. For this set of equations, we consider only the fluxes with convective effects

FC,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρvi

ρvivx + δixp

ρvivy + δiyp

ρvivz + δizp

ρviH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where i represents a spatial coordinate i = [x, y, z], and δij is the Kronecker delta.

Should the effects of viscosity and heat conduction be considered, we must include the diffusive

terms as well as the presence of source terms. This yields the set of Navier-Stokes equations, which

describe the behaviour of real-world fluids. The source and diffusive flux terms can be defined by [42]

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ρfx

ρfy

ρfz

Wf + qH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, FD,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

τxi

τyi

τzi

τi · v + k∂iT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. In these equations, τ is a viscous shear stress, fi is a body force acting in the i-th
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direction and ∂iT is the derivative of the temperature variable with respect to i, where i = [x, y, z].

2.6 Linear Advection

The linear advection equation describes the passive transport of a scalar quantity u in Ω with

advection velocity α. This equation is a general form of the mass conservation law.

∂u

∂t
+∇ · (uα) = 0. (2.20)

In this work, we perform spectral analysis by looking at the properties of wave propagation behaviour

in semidiscrete systems. The linear advection equation serves as the basis of this study.

2.7 Linear Diffusion

The linear diffusion equation describes a flow’s characteristic tendency towards equilibrium. It

concerns the distribution of energy in a fluid with velocity v = 0 and constant density ρ. In general

divergence form, it can be expressed as

∂u

∂t
− ν̃∇ · (∇u) = 0, (2.21)

where u is a scalar variable such a temperature and ν̃ is the scalar diffusion coefficient.
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Chapter 3

Numerical Schemes

3.1 The Flux Reconstruction Method

3.1.1 Linear Advection

In order to solve the aforementioned systems of equations numerically, a suitable discretization is

required. In 2007, Huynh introduced the Flux Reconstruction approach, which is able to recover

high-order methods including the DG, SD, and SV schemes by changing a single parameter. With

FR, we can discretize equations in divergence form, such as

∂u

∂t
+

∂F

∂x
= 0. (3.1)

x

Ωe−1 Ωe Ωe+1xL xR

Figure 3.1. One-dimensional domain discretization.

As a first step, we start by diving a computational domain Ω into NE nonoverlapping elements

Ωe spatially defined by x ∈ [xL, xR], as shown in Figure 3.1. It follows that the formulation is

standardized by mapping the physical element Ωe into a reference space ξ ∈ [−1, 1], where reference

element Ω′
e lives, so the generation of basis functions is simplified. The spatial transformation is

done by an invertible point-to-point mapping function, such that

x(ξ) =
1

2
(xL + xR + ξhe) ⇐⇒ ξ(x) =

2

he

(
x− xL + xR

2

)
. (3.2)

The metric of this mapping can be then computed

∂ξ

∂x
=

2

he
⇐⇒ ∂x

∂ξ
=

he
2
. (3.3)

16



Within each element Ωe, the solution is approximated using K nodal values uδe,k at locations xe,k.
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x,

t∗
)
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uexact

Figure 3.2. Final advection solution u(x, t = 1) for different P -schemes using four elements and
u0 = sin (2πx).

These values may then be used to construct the solution polynomial uδ(ξ, t) (see Figure 3.2) in

polynomial space P = K − 1 using Lagrange interpolation

uδe (ξ, t) =

K∑
k=1

ue,kφk (ξ) , (3.4)

where φk is the kth nodal basis function, which is given by the Lagrange polynomials in the

one-dimensional case. They can be generated by

φk(ξ) =

K∏
m=1,i �=k

x− xm
xk − xm

. (3.5)

An interesting feature of these nodal basis functions is that they take the value of 1 at the

solution point in question and vanish at all other solution points. An example is shown in Figure 3.3

for different P -schemes using Gauss points. We note the potential of the mapping to reference space,

since only one set of nodal basis needs to be generated for the one-dimensional case, assuming all

elements interpolate the solution using the same polynomial degree.

The solution polynomial uδe (ξ, t) may also be obtained using a modal approach by means of
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Figure 3.3. Nodal basis functions for the one-dimensional case using Gauss points.
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orthonormal basis functions, such as the Legendre polynomials �̃ in the one-dimensional case by

uδe (ξ, t) =

K∑
k=1

ũe,k �̃k (ξ) , (3.6)

where ũe,k is the k-th modal expansion coefficient. These polynomials are shown in Figure 3.4.

In general, the construction of polynomials is not necessary. We only need the discrete pieces of

information which can be condensed in a vector uδ
e for the modal coefficients and ũδ

e for the nodal

coefficients. Hence, the transformation between nodal and modal form can be easily done by means

of a Vandermonde matrix V defined as

−1.0 −0.5 0.0 0.5 1.0
ξ

−2.00

−1.00

0.00

1.00

2.00

�̃ (
ξ)

�̃0(ξ)

�̃1(ξ)

�̃2(ξ)

�̃3(ξ)

�̃4(ξ)

�̃5(ξ)

Figure 3.4. Orthonormal Legendre polynomials.

Vij = �̃j(ξ)
∣∣∣
ξi
, (3.7)

so that the nodal values can be recovered from the modal coefficients and vice versa, i.e. uδ
e = V ũδ

e.

The same way the solution was constructed, a flux polynomial F δ
e inside Ω′

e can be computed using

the same nodal bases

F δ
e (ξ, t) =

K∑
k=1

fe,kφk (ξ) , (3.8)
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x

Ωe−1 Ωe Ωe+1

uδ(x)

F δ(x)

Figure 3.5. Schematic representation of solution and flux polynomials. Circles denote the solution
points and crosses the Riemann points.

where fe,k are discrete pieces of data at the same solution points xe,k and can be written compactly

in a vector as f δ
e . Note that F δ

e is in the same polynomial space of the solution and its derivative

would be a degree lower. Since F δ are discontinuous across cell interfaces, as shown in Figure 3.5, we

must reconstruct the flux to obtain a continuous flux polynomial FC that approximates F δ and has

degree P + 1. This has a twofold purpose: it enforces conservation in Ω, and ensures the derivative

of FC lies in the same polynomial space of the solution. The construction of FC is done by the

inclusion of a correction flux term η with functions g(ξ) that penalize the existing jumps at the right

and left boundaries xL, xR. Hence, for a given element Ω′
e, the continuous flux FC

e can be expressed

as

FC
e = f δ

e + ηe, (3.9)

where ne is the correction field given by

ηe =
[
f∗
e,L − F δ

e (−1)
]
gL(ξ) +

[
f∗
e,R − F δ

e (1)
]
gR(ξ). (3.10)

Then, the correction term ηe can be finally calculated using a Riemann solver to compute the

common fluxes f∗
L and f∗

R, such as upwind or central schemes1, and the correction functions g (ξ)

are evaluated at each node. These must satisfy

gL(−1) = 1, gL(1) = 0, (3.11)

gR(−1) = 0, gR(1) = 1, (3.12)
1The choice of Riemann solver highly influences the type of numerical error that dominates the numerical solution.

An upwind Riemann solver introduces numerical dissipation, whereas a central flux is characteristically dispersive and
introduces zero dissipation [19].
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and they must be in polynomial space P + 1. The choice of correction function allows the Flux

Reconstruction method to recover existing schemes. For example, the correction functions gDG

recover the DG method and are defined by the right Radau polynomials RR for the left correction

function gL and vice versa. These can be computed in terms of the Legendre polynomials �̃ (ξ) [9]

gL = gDG,P+1 = RR,P+1 =
(−1)(P+1)

2

(
�̃P+1 − �̃P

)
, (3.13)

gR = RL,P+1 = gL (−ξ) . (3.14)

Next, we need to calculate the derivative of both terms in Equation 3.9. To do so, we first

compute the square derivative matrix D of size K, which is standard to all elements

D =

⎡
⎢⎢⎢⎢⎣

∂φ0(ξ0)
∂ξ . . . ∂φk(ξ0)

∂ξ

...
. . .

...
∂φ0(ξk)

∂ξ . . . ∂φk(ξk)
∂ξ

⎤
⎥⎥⎥⎥⎦ .

Hence, we obtain the derivative of the discontinuous flux term

(
f δ
e

)
ξ
= Df δ

e , (3.15)

In order to obtain the divergence of the correction field ηe, we simply need to obtain the derivative

of the correction functions, i.e. (g)ξ, and evaluate them at each solution point. This can be written

compactly

gξ =

⎡
⎢⎢⎢⎢⎣
(g)ξ (ξ0)

...

(g)ξ (ξk)

⎤
⎥⎥⎥⎥⎦ .

Hence,

(ηe)ξ =
[
f∗
e,L − F δ

e (−1)
]
gξ,L +

[
f∗
e,R − F δ

e (1)
]
gξ,R, (3.16)

where (·)ξ indicates the derivative with respect to ξ. Finally, the global results can be obtained by

the use of the metrics in Equation 3.3
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(
FC
e

)
x
=

2

he

[(
f δ
e

)
ξ
+ (ηe)ξ

]
. (3.17)

3.1.2 Linear Diffusion

Consider the linear diffusion equation

∂u

∂t
+

∂F

∂x
= 0, F = F (u, (u)x) , (3.18)

where u = u(x, t) is the scalar solution variable with derivative (u)x, F is the flux F = ν̃ (u)xx with

ν̃ the scalar diffusion coefficient, x is the spatial coordinate and t is time.

Following Huynh [43], we divide the computational domain Ω into a set of nonoverlapping

elements Ωe with physical coordinate x ∈ [xL, xR]. These elements are mapped to a reference

space with coordinate ξ ∈ [−1, 1] with element length he for efficiency reasons, similar to the

discretization of first-order derivatives. The procedure for a second-order derivative requires that we

apply a similar approach to the previous section with an intermediate step. In this sense, we rewrite

the equation, such that
∂u

∂t
+

∂q

∂x
= 0, (3.19)

with q = ∂u
∂x .

Again, the K solution values interpolate a polynomial of degree P = K−1 by means of Lagrange

interpolation

uδe (ξ, t) =

K∑
k=1

ue,kφk (ξ) . (3.20)

As a first step, we discretize q. Contrary to the linear advection discretization, the solution across

element cells is expected to be continuous so that its derivative contains data from the neighbouring

elements. This is done by following the reconstruction procedure described in the previous section,

in which a correction field is applied to account for the cell jumps as well as increase the degree of

the solution to P + 1 so its derivative lies in expected polynomial space P . Hence, the continuous

solution polynomial uCe (ξ) can be computed from

uCe (ξ) = uδe(ξ) +
[
u∗L − uδ(−1)

]
gL(ξ) +

[
u∗R − uδ(1)

]
gR(ξ), (3.21)
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where u∗L, u∗R are the common solution values across cell interfaces. The first derivative of uCe (ξ),(
uCe

)
ξ
(ξ), is then given by

(
uCe

)
ξ
(ξ) =

(
uδe

)
ξ
(ξ) +

[
u∗L − uδ(−1)

]
(gL)ξ (ξ) +

[
u∗R − uδ(1)

]
(gR)ξ (ξ), (3.22)

where the correction functions are defined similarly to the advection discretization, i.e. using the

Radau polynomials recovers a DG scheme.

The common values must be defined by considering an appropriate Riemann solver. Some common

choices for the diffusion equation are Cockburn and Shu’s [44] one-sided Local Discontinuous Galerkin

(LDG) approach, in which at interface I

u∗I = uL or u∗I = uR, (3.23)

and Bassi and Rebay’s BR1 and BR2 schemes [45, 46]. However, the BR1 scheme is known for

achieving FR’s expected orders of accuracy of P + 1 only for odd P . Therefore, we only consider the

BR2 scheme, which follows a central approach such that for a given interface I

u∗I =
1

2
(uL + uR) . (3.24)

Hence, at each solution point, the corrected derivative [43] can be computed by mapping Equation 3.22

to physical space

qe,k = (u)x (xe,k) =
2

he

(
uCe

)
ξ
(ξk) . (3.25)

These values interpolate a polynomial qδe (ξ) of degree K − 1 and is generally discontinuous across

cells. Next, we compute the second derivative of the solution
(
qCe

)
ξ
(ξ) following a similar procedure

(
qCe

)
ξ
(ξ) =

(
qδe

)
ξ
(ξ) +

[
q∗L − qδ(−1)

]
(gL)ξ (ξ) +

[
q∗R − qδ(1)

]
(gR)ξ (ξ). (3.26)

In this case, we must define a common derivative q∗I at each interface I. If the one-sided LDG

approach was chosen to compute the common solution values u∗L, u
∗
R, we must select the opposite

interface from that chosen for u∗I to have an equation that is consistent with diffusion behaviour [43].

However, the resulting stencil includes four cells, and it is not convenient in terms of computational
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implementation, since FR schemes are generally compact. In this work, we make use of the BR2

scheme as shown in Equation 3.24. Therefore, the computation of the common derivative depends

only on information from a given interface at a time, which yields a compact stencil with a high

degree of locality.

Finally, applying the reconstruction procedure, we obtain the corrected second derivative by

(u)xx (xe,k) =
(
qCe

)
x
(xe,k) =

2

he

(
qCe

)
ξ
(ξk). (3.27)

3.1.3 Multidimensional Formulation

Following the formulation on one-dimensional grids, we present the extension to multi-dimensions.

Hence, consider the multidimensional linear advection equation.

∂u

∂t
+∇ · F = 0, (3.28)

where u = u (x, t) is the solution, F = F (u) is the flux and t is time.

The FR approach starts by dividing the computational domain into NE elements Ωe. For the

sake of simplicity, these elements are transformed into a reference space element Ω′
e with coordinates

ξ, where ξ = [ξ1, ξ2, ξ3]. The transformation of these elements into the reference space is done by an

invertible mapping function, such that

x = Γe (ξ) ⇐⇒ ξ = Γ−1
e (x) , (3.29)

where Γe is the mapping function.

(a) Quadrilateral (b) Triangle (c) Hexahedron (d) Prism (e) Tetrahedron

Figure 3.6. Schematic view of solution points for P2 schemes on three-dimensional element types.

We then define the number of degrees of freedom (NDOF ) that support an appropriate polynomial
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Table 3.1. Number of degrees of freedom per element type.

Element type NDOF

Hexahedron (P + 1)3

Prism (P + 1)2 (P + 2) /2
Tetrahedron (P + 1) (P + 2) (P + 3) /6

of degree P within the reference element Ω′
e (see Table 3.1). The solution is now approximated by a

set of piecewise polynomials using nodal basis functions constructed at the NDOF solution points,

and is allowed to be discontinuous across element interfaces. From a linear combination of nodal

basis functions φk (ξ) and nodal coefficients ue,k, we can recover the solution polynomial in the local

element uδe (ξ, t)

uδe (ξ, t) =

NDOF∑
k=1

ue,kφk (ξ) . (3.30)
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Figure 3.7. Nodal basis functions for quadrilateral elements on P1 schemes using tensor product of
Gauss points.
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A polynomial approximation of the flux may also be interpolated with the same set of nodal

basis functions and the nodal value of the flux fe,k. Hence,

F δ
e (ξ, t) =

NDOF∑
k=1

fe,kφk (ξ) , (3.31)

where F δ
e (ξ, t) is the discontinuous flux polynomial.

Now, we reconstruct the elementwise continuous flux by a function FC
e (ξ, t), which approximates

the discontinuous flux polynomial F δ
e . To account for the jumps across cells, we follow the Lifting

Collocation Penalty (LCP) formulation by Wang and Gao [10] for simplex elements. Since the

conservation law must also be satisfied at each solution point k, we may rewrite

duδe,k
dt

+∇ · F δ
e

(
uδe

)∣∣∣∣
k

+ ηe,k = 0, (3.32)

where ∇ ·Fe

(
uδe
) ∣∣∣

k
denotes the flux divergence evaluated at the solution point k and ηe,k is a scalar

correction field at point k in Ωe that ensures a globally continuous flux polynomial. The correction

field can be determined by

ηe,k =
1

|Ωe|
∑

f∈∂Ωe

∑
n

χk,f,n

[
F̃
]
f,n

Sf , (3.33)

where χk,f,n is a constant lifting coefficient independent of the solution and geometry that penalizes

the normal flux jump
[
F̃
]
f,n

at the cell interfaces at flux point n, Sf is the area of face f and |Ωe|
is the volume of element e. In this study, consider

[
F̃
]
f,n

calculated with an upwind Riemann solver

and the constant lifting coefficients χk,f,n that recover the DG scheme [10]. The solution at each

DOF may now be updated using a temporal discretization, such as a Runge-Kutta method, for the

temporal derivative in Equation 3.32.

3.2 Time-Marching Schemes

RK methods are a family of multi-stage implicit and explicit schemes. We can temporally

discretize an equation of the form
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∂u

∂t
+R = 0, (3.34)

where u = u(x, t) is the solution vector, R = R(u(x, t)) is the residual and t is time. At time level

n, we start by approximating the solution at s intermediate stages ui, i = 1, 2 . . . , s. These are the

result of a linear combination of residuals Ri weighted at all stages, and the value of the solution at

time level n using constant values aij , which are defined by the RK scheme’s stage

un
i = un +Δt

s∑
j=1

aijRj i = 1, 2, . . . , s. (3.35)

Then, we evaluate the solution at the next time level n+ 1 with a linear combination of constants bi

un+1
i = un +Δt

s∑
i=1

biRi i = 1, 2, . . . , s. (3.36)

c A

b

Table 3.2. Butcher tableau representation.

These methods can be written compactly using Butcher tableau notation, as shown in Table 3.2,

where A is the matrix that contains the coefficients aij , b is the vector that contains the coefficients

bi and c is a vector with entries for the relative location of the stages at each intermediate stage.

Explicit methods contain lower-diagonal matrices A since the solution at the next time level is

predicted from the solution at previous time levels. These methods are memory-efficient and tend to

be fast, however, they are constrained by the time step size and are not recommended for very stiff

problems.

Schemes with diagonal entries in matrix A are called diagonally-implicit, in which the solution at

the next time level also requires information from that time level, resulting in a system of equations.

These schemes are known for their stability benefits since large time-step sizes can be taken while

maintaining robustness. However, they may be slow due to the required solution of linear systems.

In addition, their memory consumption can become significantly elevated for grids with medium to

high numbers of degrees of freedom.

Some example Butcher tableaus for the temporal schemes considered in this work are shown
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hereafter, specifically the explicit fourth-order Runge-Kutta method with four stages [47] in Table 3.3,

and two Singly-Diagonal Implicit Runge-Kutta (SDIRK) [48] schemes with second and third-order

accuracy in Tables 3.4 and 3.5, respectively [49].

Table 3.3. Butcher tableau of RK44.

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Table 3.4. Butcher tableau of SDIRK22.

0 0.2928932188 0
1 0.7071067811 0.2928932188

0.7071067811 0.2928932188

Table 3.5. Butcher tableau of SDIRK33.

0 0.4358665215 0 0
0.7179332607 0.2820667392 0.4358665215 0
1 1.2084966490 −0.644363171 0.4358665215

1.2084966490 −0.644363171 0.4358665215
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Chapter 4

Verification

Verification is a crucial step in ensuring the correct implementation of numerical schemes. In this

chapter, we present convergence studies to verify the advection and diffusion components of the FR

approach as well as the Navier-Stokes equations through simple analytical solutions such as planar

Couette flow. In addition, we present verification of temporal schemes for the sake of completeness.

We perform the study by evaluating the orders or accuracy of different P -schemes using different

two and three-dimensional element types, noting that Flux Reconstruction schemes are typically

observed to achieve an order of accuracy of P + 1, where P is the degree of the solution polynomial.

4.1 Spatial

4.1.1 Linear Advection

We perform verification using the three-dimensional linear advection equation, which is the basis

of the spectral analysis presented in Chapter 5, in which the propagation properties of wave-like

solutions are analyzed. Since the exact solution can be determined, we can easily assess its correct

implementation by comparing the exact solution with the numerical results.

The linear advection equation describes the translation of a scalar field u(x, t) with constant

velocity vector α. A periodic hexahedral computational domain of equal edge length L in all

directions was set up to verify the equation for spatial discretizations of second to sixth order using

the fourth-order Runge-Kutta RK4,4 method to minimize temporal error. The flow was initialized

with an exponential function

u(x, 0) =

Ndim∏
i=1

e−
L
10

(xi−xic )
2

, (4.1)

where xic is simply L/2, xi is the variable coordinate in the ith direction. We present verification for
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Ndim = 2 and Ndim = 3. For the two-dimensional case, we consider a square domain composed of

quadrilateral elements and their subdivisions into triangles. In three dimensions, the computational

domain was discretized using regular meshes composed of Nc rectangular cuboids in each direction.

Subsequently, these three-dimensional referential elements were subdivided into Nsub elements

according to Figure 4.1. The simulations were run for one complete cycle t∗ = L
‖α‖ with advection

speed components equal to unity. Figure 4.3 shows the convergence of the L2 error versus the number

of elements, calculated using the discrete norm from Equation 4.2. See Tables 4.1 and 4.2 for details.

Note that the error was computed using an 11th-order Gaussian quadrature.

Hexahedron

h

Prisms

h

Tetrahedra

h

Figure 4.1. Subdivision of rectangular cuboids for three-dimensional cases.

‖u‖2,δ =
NE∑
e=1

‖u‖2Ωe
. (4.2)

As the mesh is refined, the solution converges to the right orders of accuracy, verifying the FR

approach for multidimensional advection. In addition, Figure 4.4 shows the L2 norm of the error

against the number of degrees of freedom per direction. By looking at these plots, we observe the

benefits of increasing the polynomial degree: high-order schemes require fewer solution points to

achieve the same level of error compared to lower-order polynomials. Furthermore, we compare the

accuracy of the element types for advection-dominated problems.

In two dimensions, quadrilateral elements show higher accuracy compared to triangles. In three

dimensions, hexahedral and prismatic elements are more accurate than tetrahedra on a per-degree of

freedom basis. This becomes more prominent for the highest orders, where the error is smaller for the

hexahedra by a factor of 100 compared to tetrahedral elements for the finest grid levels considered.

4.1.2 Linear Diffusion

The verification of linear diffusion is performed in this section using MMS. This procedure

will provide further support for the numerical experiments realized in Chapter 6. Consider the
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Table 4.1. L2 norm of the solution error for two-dimensional linear advection.

Quadrilaterals Triangles
P Nc L2 Error Order L2 Error Order

1

10 2.18× 10−1 - 1.89× 10−1 -
20 6.68× 10−2 1.70 6.53× 10−2 1.53
40 1.23× 10−2 2.44 1.32× 10−2 2.31
80 1.89× 10−3 2.70 2.01× 10−3 2.72

2

10 3.07× 10−2 - 3.92× 10−2 -
20 2.24× 10−3 3.78 3.62× 10−3 3.44
40 1.97× 10−4 3.50 4.05× 10−4 3.16
80 1.81× 10−5 3.45 6.10× 10−5 2.73

3

10 2.24× 10−3 - 4.97× 10−3 -
20 9.86× 10−5 4.51 2.07× 10−4 4.58
40 6.07× 10−6 4.02 1.29× 10−5 4.00
80 3.81× 10−7 4.00 3.81× 10−7 5.09

4

10 3.00× 10−4 - 5.51× 10−4 -
20 7.03× 10−6 5.42 1.41× 10−5 5.29
40 2.21× 10−7 4.99 4.94× 10−7 4.84
80 6.95× 10−9 4.99 1.72× 10−8 4.84

5

10 9.42× 10−6 - 6.65× 10−5 -
20 4.19× 10−7 4.49 1.04× 10−6 6.00
40 6.56× 10−9 6.00 1.65× 10−8 5.98
80 1.03× 10−10 5.99 6.54× 10−10 4.66
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Table 4.2. L2 norm of the solution error for three-dimensional linear advection.

Hexahedra Prisms Tetrahedra
P Nc L2 Error Order L2 Error Order L2 Error Order

1

5 4.44×10−1 − 3.34×10−1 − 4.11×10−1 −
10 2.36×10−1 0.91 1.83×10−1 0.87 2.28×10−1 0.85

20 7.30×10−2 1.69 6.64×10−2 1.46 7.43×10−2 1.62

40 1.31×10−2 2.48 1.39×10−2 2.26 1.42×10−2 2.38

2

5 1.79×10−1 − 1.53×10−1 − 1.72×10−1 −
10 3.07×10−2 2.54 4.36×10−2 1.81 3.41×10−2 2.34

20 2.06×10−3 3.90 4.50×10−3 3.28 2.45×10−3 3.80

40 1.55×10−4 3.73 5.57×10−4 3.01 1.95×10−4 3.65

3

5 6.79×10−2 − 7.49×10−2 − 7.32×10−2

10 2.28×10−3 4.90 7.07×10−3 3.41 3.85×10−3 4.25

20 7.60×10−5 4.90 3.61×10−4 4.29 1.45×10−4 4.73

40 4.52×10−6 4.07 2.42×10−5 3.90 8.37×10−6 4.12

4

5 1.14×10−2 − 3.01×10−2 − 1.43×10−2 −
10 2.25×10−4 5.65 9.50×10−4 4.98 8.28×10−4 4.10

20 5.21×10−6 5.44 2.62×10−5 5.18 2.03×10−5 5.35

40 1.62×10−7 5.00 9.74×10−7 4.75 5.14×10−7 5.30

5

5 2.16×10−3 − 1.10×10−2 − 4.75×10−3 −
10 3.78×10−5 5.83 1.23×10−4 6.48 9.78×10−5 5.60

20 3.52×10−7 6.75 2.04×10−6 5.91 3.17×10−6 4.95

40 4.77×10−9 6.21 3.47×10−8 5.87 3.91×10−8 6.34
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Figure 4.2. Final linear advection solution using P4 quadrilateral elements.

steady-state linear diffusion equation with a source term S(x)

− ν̃ · ∇2u (x) = S(x), (4.3)

where ν̃ is a scalar diffusion coefficient. A computational domain of equal edge length L = 2π is

considered. We prescribe a manufactured solution

u (x) =

Ndim∏
i=1

sin (xi) , (4.4)

with the corresponding source term

S(x) = ν̃Ndim

Ndim∏
i=1

sin (xi) . (4.5)

The simulation was initialized with u0(x) = 0 and the solver was allowed to diffuse the solution to

steady-state conditions using a BR2 scheme [45] for the common fluxes and implicit Euler for the

temporal discretization. Table 4.4 and Figure 4.5 display the convergence of the L2 norm for all

element types using Equation 4.2. The convergence in Tables 4.3 and 4.4 concurs with the expected
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Figure 4.3. Grid convergence study of linear advection.
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Figure 4.4. Accuracy of element types on a per degree of freedom basis for linear advection.
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orders of accuracy, verifying the FR approach for multidimensional diffusion.

We analyze the accuracy of the element types for diffusion-dominated problems. Figure 4.6

displays the L2 norm against the number of DOF for all considered element types. It is clear

that both quadrilaterals and hexahedral elements are more accurate in two and three dimensions,

respectively, compared to the other element types. This is more prominent for the finest grids and

highest-order solution spaces P .

Table 4.3. L2 norm of the solution error for two-dimensional linear diffusion.

Quadrilaterals Triangles
P Nc L2 Error Order L2 Error Order

1

5 6.01× 10−2 - 6.52× 10−2 -
10 1.80× 10−2 1.74 2.07× 10−2 1.65
20 4.77× 10−3 1.92 5.69× 10−3 1.87
40 1.21× 10−3 1.98 1.47× 10−3 1.95

2

5 6.15× 10−3 - 1.02× 10−2 -
10 6.89× 10−4 3.16 1.20× 10−3 3.08
20 8.34× 10−5 3.05 1.46× 10−4 3.04
40 1.03× 10−5 3.01 1.80× 10−5 3.01

3

5 5.38× 10−4 - 1.43× 10−3 -
10 3.66× 10−5 3.88 9.71× 10−5 3.88
20 2.29× 10−6 4.00 6.23× 10−6 3.96
40 1.43× 10−7 4.00 3.93× 10−7 3.99

4

5 2.97× 10−5 - 1.68× 10−4 -
10 8.10× 10−7 5.20 5.43× 10−6 4.95
20 2.43× 10−8 5.06 1.72× 10−7 4.98
40 7.56× 10−10 5.01 5.41× 10−9 4.99

5

5 1.41× 10−6 - 1.24× 10−5 -
10 2.35× 10−8 5.91 2.18× 10−7 5.82
20 3.52× 10−10 6.06 3.57× 10−9 5.93
40 5.37× 10−12 6.03 5.69× 10−11 5.97

4.1.3 Planar Couette

Planar Couette flow is a well-known two-dimensional case to perform verification of the viscous

fluxes given its simplification of the Navier-Stoke Equations. Couette flow consists of a viscous fluid

between two plates separated with a distance of δ [50]. At y = δ, there exists a moving wall with

temperature Te and constant velocity ve, which drives the flow in the positive x-direction. At y = 0,
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Table 4.4. L2 norm of the solution error for three-dimensional linear diffusion.

Hexahedra Prisms Tetrahedra
P Nc L2 Error Order L2 Error Order L2 Error Order

1

4 6.7×10−2 − 7.0×10−2 − 7.3×10−2 −
8 2.1×10−2 1.68 2.2×10−2 1.64 2.5×10−2 1.55

16 5.6×10−3 1.90 6.2×10−3 1.86 7.3×10−3 1.78

32 1.4×10−3 1.98 1.6×10−3 1.95 1.9×10−3 1.92

2

4 1.0×10−2 − 1.5×10−2 − 2.1×10−2 −
8 1.1×10−3 3.19 1.8×10−3 3.06 2.8×10−3 2.96

16 1.4×10−4 3.06 2.1×10−4 3.05 3.4×10−4 3.04

32 1.7×10−5 3.02 2.6×10−5 3.02 4.2×10−5 3.02

3

4 1.0×10−3 − 2.4×10−3 − 4.7×10−3 −
8 7.6×10−5 3.77 1.7×10−4 3.82 3.3×10−4 3.84

16 4.8×10−6 3.97 1.1×10−5 3.94 2.1×10−5 3.95

32 3.0×10−7 4.00 6.9×10−7 3.98 1.3×10−6 3.99

4

4 8.4×10−5 − 3.4×10−4 − 9.3×10−4 −
8 2.2×10−6 5.26 1.1×10−5 4.93 3.2×10−5 4.85

16 6.4×10−8 5.09 3.6×10−7 4.96 1.0×10−6 4.95

32 1.9×10−9 5.02 1.1×10−8 5.01 3.3×10−8 4.98

5

4 4.1×10−6 − 3.0×10−5 − 1.4×10−4 −
8 7.7×10−8 5.74 5.7×10−7 5.76 2.6×10−6 5.77

16 1.1×10−9 6.05 9.5×10−9 5.90 4.3×10−8 5.92

32 1.7×10−1 6.04 1.5×10−0 5.96 6.9×10−0 5.97
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Figure 4.5. Grid convergence study of linear diffusion.
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Figure 4.6. Accuracy of element types on a per degree of freedom basis for linear diffusion.
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a fixed wall (vw = 0) with temperature Tw is placed. Due to the no-slip condition, the flow variables

are equal to those of the walls at y = 0 and y = δ, respectively. Hence the flow experiences a

temperature gradient due to viscous dissipation. The temperature profile can be computed from [50]

T = Tw +

[
Te − Tw +

Pr

2cp
v2e

]
y

δ
− Pr

2cp
v2e

(y
δ

)2
, (4.6)

where Pr = μ
cp
k is the Prandtl number with μ the dynamic viscosity and k the thermal conductivity

coefficient, cp is the heat coefficient at constant pressure, y is the direction normal to the walls, and

δ is the distance between the walls.

A rectangular computational domain is divided into Nx = 4, 6, 8, 10 elements and Ny = Nx
2 . We

perform the study using both quadrilaterals and triangular elements. The triangular elements are a

simple subdivision of quadrilaterals into 2 triangles each, as shown in Figure 4.7. We implement

Dirichlet boundary conditions for the flow variables at the walls and a constant viscosity μ. Similar

to the diffusion case, the BR2 scheme is used for the viscous fluxes. The case is initialized with

stationary flow and is allowed to advance in time until the solution converges to steady state using

the fourth-order Runge-Kutta temporal scheme to minimize time discretization errors.

Figure 4.7. Quadrilateral and triangular grids for Couette flow.
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Figure 4.8 shows contours of the temperature for the converged results using fourth and fifth-order

spatial discretizations on triangular grids. Solution jumps are visible for P3 due to numerical error

and the results improve with an increase in the polynomial degree.

The observed order of accuracy is evaluated using the L2 norm from Equation 4.2 by comparing

the predicted temperature T with the expected value. Figure 4.9 shows the convergence for both

quadrilaterals and triangular elements. The orders of accuracy are consistent with the expected P +1

orders and can be further visualized in Table 4.5. Similar to the previous cases, the quadrilateral

grids show more accurate results than those with triangles. This can be observed in Figure 4.10,

where the error is plotted against the square root of the degrees of freedom.

(a) P3

(b) P4

Figure 4.8. Temperature profile of planar Couette flow using P3 and P4 schemes on triangular
meshes.
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Figure 4.9. Grid convergence study of the L2 norm of the temperature for Couette flow.
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Figure 4.10. Accuracy of element types on a per degree of freedom basis for planar Couette flow.
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Table 4.5. L2 norm of the error for the planar Couette case.

Quadrilaterals Triangles
P Nc L2 Error Order L2 Error Order

1

4 2.01× 10−2 - 1.72× 10−2 -
6 1.05× 10−2 1.60 8.94× 10−3 1.62

8 6.44× 10−3 1.70 5.24× 10−3 1.85

10 4.33× 10−3 1.78 3.42× 10−3 1.92

2

4 1.52× 10−3 - 1.25× 10−3 -

1

6 4.52× 10−4 2.99 3.72× 10−4 2.99

8 1.86× 10−4 3.09 1.52× 10−4 3.12

10 9.27× 10−5 3.11 7.59× 10−5 3.11

3

4 1.53× 10−4 - 1.21× 10−4 -
6 3.41× 10−5 3.69 2.59× 10−5 3.81

8 1.15× 10−5 3.77 8.41× 10−6 3.90

10 4.93× 10−6 3.82 3.50× 10−6 3.93

4

4 1.29× 10−5 - 1.06× 10−5 -
6 1.88× 10−6 4.75 1.51× 10−6 4.79

8 4.59× 10−7 4.90 3.69× 10−7 4.90

10 1.52× 10−7 4.96 1.22× 10−7 4.95

5

4 1.39× 10−6 - 1.10× 10−6 -
6 1.51× 10−7 5.49 1.13× 10−7 5.59

8 2.98× 10−8 5.63 1.99× 10−8 6.05

10 8.32× 10−9 5.72 5.98× 10−9 5.39
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4.1.4 Isentropic Euler Vortex

The isentropic vortex consists of the passive convection of a vortex in a free-stream velocity field

v∞ = vx,∞ı̂+ vy,∞ĵ. This test has been proposed by high-order workshops, such as [39], to test a

solver’s ability to preserve vorticity in an unsteady inviscid flow [39], which serves as verification of

the Euler equations.

We perform the study on a two-dimensional square computational domain of length L with equal

elements in x and y-directions NE = 10, 20, 40, 80. The flow field conditions are initially specified

as [41]

ρ =

[
1− β2M2

a (γ − 1)e2f

8π2

] 1
γ−1

, (4.7)

vx =
βyef

2πR
, (4.8)

vy = 1− βxef

2πR
, (4.9)

p =
ργ

γMa
2 , (4.10)

where ρ is the density, β is the vortex strength, Ma is the Mach number, vx and vy are the x and

y components of the velocity field, respectively, f =
(
1− x2 − y2

)
/2R2 and R is the radius of the

vortex. We consider a radius of R = 1.5 and a vortex strength β = 13.5 similar to the work of

Vermeire et al. [41].

The simulation is run for 20 convective times t∗, where t∗ = L/‖v∞‖, using temporal scheme

RK44. We perform the verification on quadrilaterals and triangular elements with second to sixth-

order spatial discretizations. The error of the density solution is evaluated using the L2 norm from

equation 4.2. The observed orders of accuracy are proof of the benefits of using high-order methods

and are consistent with the expected P +1 convergence order. Table 4.6 contains the detailed results

for the grid convergence study.

For the sake of completeness, Figure 4.12 presents these results now plotted against the number

of degrees of freedom per direction. Consistent with previous results, quadrilateral elements require

smaller grids to advance a given level of error, compared to triangles.
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Figure 4.11. Grid convergence study of the L2 norm of the density ρ for the isentropic vortex.
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Figure 4.12. Accuracy of element types on a per degree of freedom basis for the isentropic vortex.
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Table 4.6. L2 norm of the density error for the isentropic vortex case.

Quadrilaterals Triangles
P Nc L2 Error Order L2 Error Order

1

10 1.71× 10−1 − 1.70× 10−1 −
20 4.61× 10−2 1.89 5.85× 10−2 1.54

40 8.31× 10−3 2.47 1.06× 10−2 2.46

80 1.26× 10−3 2.72 1.65× 10−3 2.69

2

10 2.38× 10−2 − 2.37× 10−2 −
20 5.26× 10−3 2.18 5.99× 10−3 1.99

40 3.84× 10−4 3.78 4.12× 10−4 3.86

80 5.76× 10−5 2.74 5.11× 10−5 3.01

3

10 1.04× 10−2 − 1.40× 10−2 −
20 3.42× 10−4 4.93 6.12× 10−4 4.52

40 1.63× 10−5 4.40 2.37× 10−5 4.69

80 5.69× 10−7 4.84 1.01× 10−6 4.55

4

10 2.18× 10−3 − 2.76× 10−3 −
20 2.32× 10−5 6.56 9.99× 10−5 4.79

40 8.50× 10−7 4.77 2.34× 10−6 5.42

80 3.39× 10−8 4.65 7.37× 10−8 4.99

5

10 2.68× 10−4 − 1.80× 10−3 −
20 5.85× 10−6 5.52 1.41× 10−5 7.00

40 8.77× 10−8 6.06 2.87× 10−7 5.61

80 5.30× 10−0 7.37 4.49× 10−9 6.00
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4.2 Temporal

A complete verification study in computational fluid dynamics evaluates also the implementation

of the temporal schemes. In this section, we present a brief description of the fourth-order explicit

RK method and two SDIRK schemes with second and third-order accuracy.

We verify the order of the temporal scheme using a simple linear advection case by subdividing a

two-dimensional square computational domain into Nx = Ny quadrilateral elements with an initial

distribution of a scalar quantity u(x, t) from Equation 2.20

u(x, 0) =

Ndim∏
i=1

e−
L
10

(xi−xic )
2

, (4.11)

where xic is the center of the domain along the i-th direction. For the two-dimensional case, Ndim = 2.

We semidiscretize using a seventh-order scheme to minimize the spatial error and the solution was

allowed to advect for a single convective time t∗. Figure 4.13 shows the convergence plots for the

considered schemes, where the orders of accuracy are consistent with the order of the temporal

schemes. Refer to Table 4.7 for further details. With these results, the temporal schemes are

verified. We note that performing verification of explicit schemes require changing the grid spacing

in conjunction with the time-step size to deal with the stability constraints.

In addition, we observe the size of the time steps used in the verification of each of these schemes.

Implicit methods were able to converge using large time step sizes, while RK44 would have been

unstable for those values.
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Figure 4.13. Verification of explicit and implicit time-marching schemes.

Table 4.7. L2 norm of the solution error for the temporal verification.

Scheme Δt Error Order

RK44

0.05 4.66× 10−7 -
0.0375 1.49× 10−7 3.96

0.025 2.85× 10−8 4.07

0.0125 1.78× 10−9 4.00

SDIRK22

0.5 9.62× 10−2 -
0.25 2.91× 10−2 1.73

0.125 7.48× 10−3 1.96

0.0625 1.88× 10−3 1.99

SDIRK33

0.5 3.85× 10−2 1.72

0.25 6.93× 10−3 2.47

0.125 9.53× 10−4 2.86

0.0625 1.22× 10−4 2.97
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4.3 Comments

After performing a convergence study on the spatial and some temporal schemes in our in-house

ILES solver, HORUS, we have verified their implementations. The observed orders of accuracy were

generally consistent with the expected, P + 1 for the spatial FR schemes, and those of the temporal

schemes. In addition, parallel to verification, a simple spatial accuracy analysis was presented to

compare different two and three-dimensional element types. We found that tensor-product elements,

such as quadrilaterals and hexahedra are the most accurate.

In the following chapter, we will analyze the numerical error of one and multi-dimensional

semidiscretizations with tools from Fourier analysis. This study will provide more insights into why

some elements are more accurate than others by looking in detail at the numerical error characteristic

of each element type.
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Chapter 5

Semidiscrete Analysis

A Flux-Reconstruction discretization is able to resolve turbulent structures up to a cut-off

wavenumber, after which the numerical dissipation becomes significant. The amount of error intro-

duced depends not only on the order of accuracy of the scheme but also on its spatial discretization,

such as the common interface flux. Complex geometries benefit from more flexible element types

such as tetrahedra and prisms, both of which are commonly used in unstructured grid generation.

Hence, the importance of understanding the spectral properties of all element types, which is the

focus of this work.

The construction of spectral curves allows us to explore the behaviour of numerical discretizations

for a wide range of permissible wavenumbers. In the case of ILES at moderate to high Reynolds

number, the compressible Navier-Stokes equations are dominated by their advection terms. Hence,

previous studies have explored the spectral properties of linear advection for different element

types [15, 18, 21]. Following this spectral analysis, the dispersive and dissipative characteristics of

spatially discretized schemes in three-dimensions are evaluated for the Flux Reconstruction method

and their impact on under-resolved turbulent scales is inferred.

In this chapter, we present the formulation of the spectral analysis of semidiscrete systems. We

note that the focus of this work mainly regards three-dimensional spatial schemes. For the sake of

completeness and to provide a general introduction to the analysis, we present the one-dimensional

formulation and extend to multi-dimensions in the latter sections.

5.1 One-Dimensional Discretization

5.1.1 Formulation

Following Huynh’s formulation [51], we present the procedure to analyze one-dimensional semidis-

crete systems. In this sense, we evaluate the wave propagation behaviour in a semidiscrete system,
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which are governed by linear advection

∂u

∂t
+

∂F

∂x
= 0, F = αu, (5.1)

where u is the solution, F = αu is the advection flux, x is the spatial coordinate and t is time.

Initially, we prescribe a harmonic plane wave solution

u(x, t) = ei(κx−νt), (5.2)

where κ defines the wavenumber, ν is the frequency and i is the imaginary number
√−1. The exact

solution can be easily determined by inserting the prescribed solution u(x, t) into Equation 5.1,

which results in the dispersion relation of Equation 5.1

ν = κα. (5.3)

We divide the computational domain Ω into NE nonoverlapping elements Ωe with length he.

Consider equidistant elements with he = h = 1. Now, the solution must be projected to the Flux

Reconstruction vector space, so it can be expressed as

uδ(x, t) = ei(κxe−νt)U , (5.4)

where U is a vector that contains the amplitudes of the waves in vector space. Despite the prescription

of a single Fourier component, the spatial discretization will represent it with several numerical

polynomial modes. This causes the scheme to see a single wave as a combination of Fourier modes,

each with its own apparent frequency [16].

Recall from Chapter 3 the resulting equation for the flux derivative in Equation 3.17, which we

rewrite with all the terms expanded

(Fe)x =
2

he

(
Df δ

e +
[
f∗
e,L − F δ

e (−1)
]
gξ,L +

[
f∗
e,R − F δ

e (1)
]
gξ,R

)
. (5.5)

To account for the jumps at the interfaces, we must define a Riemann solver. In this work, we make
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use of the upwind scheme. Assuming information travels in the positive direction (α > 0)

f∗
e,L = fe−1,R, f∗

e,R = fe,R, (5.6)

where f∗ denotes the common flux at the interfaces. These can be readily computed by interpolation

when the solution points are not located at the interfaces. Hence,

f∗
e,L = φ(1)fe−1 = rTfe−1, (5.7)

f∗
e,R = φ(−1)fe = lTfe. (5.8)

For linear advection, we rewrite Equation 5.5

(Fe)x =
2

he
α
(
Duδ

e +
[
rTuδ

e−1 − lTuδ
e

]
gξ,L

)
. (5.9)

Note that f∗
e,R = F δ

e (1) so the right correction term in Equation 5.5 vanishes. Next, the solution at

the neighbouring elements can be found by a switch in the index [9]

uδ
e−1 = e−iκxeuδ

e. (5.10)

By grouping elements with similar coefficients and substituting in Equation 5.9, we obtain

i
νh

α
U = MU , (5.11)

where M is the semidiscrete matrix given by

M = 2
([
D − lTgL

]
+ rTgξ,Le

−iκxe
)
, (5.12)

and is commonly written in terms of the linear transformation Jacobian blocks C. Hence,

M = 2
(
C0 + C−1e

−iκxe
)
, (5.13)

where C0 = D−lTgL and C−1 = rTgL are the diagonal and off-diagonal block entries of the Jacobian

52



matrix. Equation 5.11 is a classical eigenvalue problem with P + 1 complex solutions λ that define

numerical frequencies ωδ by [15]

ωδ
j =

αλj

ih
. (5.14)

The complex characteristic of the numerical frequency establishes the presence of numerical

dissipation. By looking at the prescribed solution in Equation 5.4, we observe that the imaginary

component of a given numerical frequency ωδ
j would act as an amplification modifier of the initially

prescribed wave. The real part of ωδ
j , when different from ακ, would cause the jth mode to travel

at incorrect speed, introducing dispersive behaviour to the final solution. In addition, none of the

Fourier modes are allowed to grow in time. Hence, the imaginary part of the numerical frequency

must only contain nonpositive imaginary values so the numerical error stays bounded.

5.1.2 Eigenspectra

We can gain some general insights on the numerical stability of the spatial scheme by looking

at the collection of eigenvalues of the semidiscrete matrix. When coupling a spatial scheme with

explicit time-marching methods, the eigenvalues are scaled by the time-step size Δt to fit within

their stability regions. This means that semidiscrete systems with larger eigenspectra require smaller

time-step sizes [21]. As shown in Figure 5.1, the region of eigenvalues pertaining to higher-order

schemes is larger. This explains why higher-order methods require a smaller time-step size when

using explicit temporal schemes. The size of the eigenspectra measured by the minimum real value is

shown in Table 5.1. As we observe, the size of these regions grows faster than the polynomial degree.

Table 5.1. Minimum eigenvalues on the real axis for P0 to P6 one-dimensional semidiscretizations.

P min (� (λ))

0 -2.000
1 -5.999
2 -11.842
3 -19.155
4 -27.842
5 -37.821
6 -49.052
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Figure 5.1. Collection of eigenvalues for P0 to P6 one-dimensional FR schemes.

5.1.3 Dispersion Relations

The study of the numerical error of one-dimensional schemes has been carried out by several

authors [15, 20, 21, 23] to understand the stability and dominant type of numerical error of high-order

schemes. We present a general review of the findings by these authors to understand the spectral

properties of high-order methods.

Figures 5.2 and 5.3 display the numerical dispersion relations of one-dimensional spatial dis-

cretizations for P0 to P6 schemes. The resulting relations show the amount of numerical error

introduced by the scheme. Dispersion curves are shown on the left side and dissipation on the right

side. Clearly, the range of fully resolved wavenumber increases with the order of the scheme. This

means that, for a given grid spacing, we introduce less numerical dispersion and dissipation with

higher P . Moura [17] observed that when dissipation effects are greater than 1%, the accuracy of

the solution began to drop. After this point, the numerical scheme acts as a low-pass filter and

significantly damps the higher frequencies. This numerical dissipation acts in lieu of a subgrid-scale

turbulence model and provides stabilization for ILES simulations [14].

High-order schemes are characterized by a cut-off wavenumber defined by κc = (P +1)π, which is

the maximum wavenumber that can be spatially represented given the number of degrees of freedom.
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However, we note that κc is an overestimation of the capabilities of an FR scheme since the numerical

error has completely dominated the solution before this point. Furthermore, Figures 5.2 and 5.3

show a distinction between a dark curve and several others in light color. The dark curve represents

the dominant physical mode. The eigenvalues that compose this curve dominate the numerical error

in the solution at low to medium wavenumbers [15]. On the other hand, the light curves represent

secondary modes, which have been shown to have contributions to the final result. These modes are

a replica of the physical mode every 2π due to aliasing error. We present more on the influence of

secondary modes in a later section for higher spatial dimensions by looking at the eigenfunctions of

the semidiscretizations.

To fairly compare the properties of numerical schemes with the exact dispersion relation, Figure 5.4

shows the dominant modes of each P -scheme against the nondimensional wavenumber κ̄ = kh/(P+1).

We observe the higher-order schemes follow the exact dispersion relation for the higher ranges of

wavenumbers compared to low-order methods, which means that on equal grids, high-order methods

will be more accurate. In general, it is the dissipation effects that predominantly characterize

upwinded Flux Reconstruction schemes [9].
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Figure 5.2. Dispersion relations for the one-dimensional case using P1 to P3 schemes.
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5.2 Multidimensional Discretizations

5.2.1 Formulation

Consider the multidimensional linear advection equation

∂u

∂t
+∇ · (αu) = 0, (5.15)

where u = u (x, t) is the solution variable, αu is the linear advection flux and t is time. The

propagation vector α = α (θ1, θ2) can defined by

α = ‖α‖1α, (5.16)

where

1α (θ1, θ2) = [cos (θ1) cos (θ2) , sin (θ1) , cos (θ1) sin (θ2)]
T , (5.17)

and ‖·‖ denotes the magnitude of the vector as shown in Figure 5.5.

Following [15, 18, 21], we admit plane wave solutions of the form

u = ei(κ·x−νt), (5.18)

where κ = κ(β1, β2) = ‖κ‖1κ is the wave vector, x = [x1, x2, x3]
T , ν is exact the frequency, x is
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Figure 5.5. Three-dimensional vector decomposition reference.

the physical coordinate and i is the imaginary number
√−1. A periodic computational domain in x

is then split into Nc nonoverlaping rectangular cuboids Ωc, which can be further split into Nsub = 2

prismatic or Nsub = 6 tetrahedral volumes for a total of Ne = NsubNc elements (see Figure 4.1. The

cuboid blocks have edges of length h. For simplicity, we consider h to be unity.

The admitted solution must then be projected to the FR space to comply with the vector

characteristic form of the scheme. This yields

uδ
e = ei(κxc−νt)U , (5.19)

with κ the prescribed wave vector, xc the centroid position of the rectangular cuboid and U a vector

of unknowns independent of the solution points. Discretizing Equation 5.15 in space using the FR

scheme with an upwind Riemann solver and the DG correction field from Equation 3.33 yields an

expression of the form
dU

dt
= MU , (5.20)

where for a given element type M is the square semidiscrete matrix defined by the propagation

velocity α, mesh geometry, wavevector κ, Riemann solver and penalty term η (see Chapter 3). It is

the result of the dot product between vector C, which contains the linear transformation operator

matrices, each of size m = NsubNDOF , and the vector E with entries from the neighbouring elements,

as shown in Figure 5.6. Note that the first entry of vector E is one, referring to the solution in Ωc.

At least three rectangular cuboids are required in each direction to achieve computational periodicity,

since the FR approach has a stencil including only one neighbouring element on each face. In three
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Figure 5.6. Cuboidal periodic pattern of a 3D mesh. Neighbouring elements are shown in red (darkest)
for the ı̂-direction, orange (medium) for the ĵ-direction, and yellow (light) for the k̂-direction.

dimensions this yields

C =
[
C0,0,0, C−1,0,0, C+1,0,0, C0,−1,0, C0,+1,0, C0,0,−1, C0,0,+1

]T
, (5.21)

E =
[
1, e−iκı̂, e+iκı̂, e−iκĵ, e+iκĵ, e−iκk̂, e+iκk̂

]
, (5.22)

M =
‖α‖
h

E ·C, (5.23)

and from Equation 5.20 we obtain

i
νh

‖α‖U = MU . (5.24)

Equation 5.24 is a classical eigenvalue problem with complex eigenvalues λ that yield numerical

frequencies ωδ = αλ/ih, whose components are ωδ
j , j = 1, . . . ,m. Several analyses [15, 18, 21] have

shown that there exists a physical mode which most closely represents the Fourier mode eiκ·x at

low wavenumbers. The m − 1 so-called spurious modes contribute to the final solution, and can

dominate at relatively high wavenumbers. Further discussion of this follows in the next subsection.

Hence, by substituting the plane wave solution in Equation 5.15, we obtain the exact dispersion

relation ν = α · κ. For any prescribed value of κ, we expect

�
(
ωδ
j

)
= 0, �

(
ωδ
j

)
= ‖κ‖ . (5.25)

Any deviation from these relations is an indication of error introduced to the numerical solution. In

addition, the imaginary part of ωδ
j must be nonpositive to ensure boundedness and is associated
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with the loss of energy of the initial plane wave, whereas �(ωδ) �= ‖α · κ‖ is associated with phase

shift incongruence.

5.2.2 Analysis of Dominant and Secondary Modes

The computational cost of propagating wave-like solutions is proportional to the number of

degrees of freedom within each rectangular cuboid. Cuboids composed of prismatic and tetrahedral

elements with total degrees of freedom NsubNDOF (see Table 3.1) have an advantage due to their

subdivision over the hexahedral cuboid: the cuboidal ensemble of Nsub > 1 contains a higher number

of DOF in comparison with the hexahedra having Nsub = 1. Therefore, in order to establish a fair

comparison in terms of computational cost, consider the ratio of degrees of freedom within the

cuboid γc,e = NsubNDOFe/NDOFhex
in which the DOF are normalized with the geometrically simple

hexahedral elements. Hence, all plots in this section make use of the nondimensional wavenumber

κ̄ = κh
γc,e

. We acknowledge that the computational performance does not solely depend on the number

of DOF, but a more fair element comparison can be reached with γc,e.

The meaning of all the m modes ωδ in the solution has been previously discussed by Moura [15].

In one dimension, m−1 of the m modes have been viewed as non-physical components that contribute

to the final result. In higher dimensions, Van den Abeele [21] identified more than one physical

mode in triangular meshes. A fundamental or physical mode is most of the time one which contains

the maximum energy for a given wavenumber. While more than one mode may become the most

energized as the wavenumber increases, generally a single eigenvalue ωδ
j dominates the dispersion

and dissipation behaviour of the spatial discretization, while the other numerical frequencies contain

large imaginary components at the region of fully resolved Fourier modes. In this sense, we consider

the effects of the mode which is least dissipative for the largest range of wavenumbers, and we will

refer to it as the dominant mode.

Previous research has characterized the shape of the eigencurves for one and two dimensions,

where the physical modes are replicated as the wavenumber increases, as shown in Section 5.1.3.

Such modal replication has been associated with aliasing effects [16]. Nevertheless, a fully periodic

behaviour is not always observed in three dimensions, in particular when the wave and propagation

orientations do not coincide with the geometry of the grid or its diagonal directions. Furthermore,

upwinded schemes have generally displayed continuous eigencurves, and it is the upwinding factor
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Figure 5.7. Eigenmodes for a wave aligned with the x1 direction on three-dimensional P1 schemes.
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which has been associated with dissipation error. Generally, the introduction of the third spatial

coordinate results in schemes with comparable properties to lower dimensional scenarios for given

wave orientations. Nevertheless, the pattern of the curves may differ and new characteristics appear

under more general configurations. To visualize this, we present some discussion on the numerical

dispersion and dissipation properties for certain wavevector directions: aligned with the grid, oriented

in the direction of the main diagonal of the cuboid, and an arbitrarily chosen set of angles.

Figure 5.7 shows the spectral properties of all element types for a wavevector aligned with the x1

direction. For visualization purposes, only results for the second-order scheme are shown, given that

higher-order plots become significantly dense. We refer the reader to Appendix B for these plots

with P > 1. Note that the general behaviour was observed to be similar with higher P , with the

obvious increases in the well-resolved Fourier mode range. When recovering a quasi-one-dimensional

case (θ1 = θ2 = 0), hexahedral elements are able to recover the exact one-dimensional dispersion and

dissipation properties. The m = (P + 1)3 modes are equally concentrated into only (P + 1) curves.

So, in the case of P = 1, only two curves can be observed. This is a consequence of the resulting

block diagonal spatial matrix M with block entries recovering the one-dimensional semidiscrete

spatial operator. Thus, its eigenvalues are exactly those of the one-dimensional case.

Contrary to the hexahedra, the curves of the prisms and tetrahedra do not have overlapping

modes. The m modes can be found within the range κ̄ ∈
[
0, 2πγe

]
. In addition, the dispersion

curves do not evolve symmetrically over the zero dissipation axis as the wavenumber is increased.

This is observed in the figures for prisms and tetrahedra, where the negative dispersion reaches

different maxima and minima. Nevertheless, the curves are clearly a repetition of the dominant

mode, highlighted in Figure 5.7. All spectral information is contained within [0, (P + 1)π] for this

configuration. Hence, the cuboid of subdivision Nsub > 1 is not able to recover the one-dimensional

case.

Changing the wavevector orientation to a diagonal direction, such as the main diagonal of the

cuboid with θ2 = π
4 and θ1 = tan−1

(
cos

(
π
4

))
results in constantly-replicated modes in spectral space,

as observed in Figure 5.8. The shape of these curves is however quite interesting, in particular for the

tetrahedral and prismatic elements. Despite the implementation of a fully upwinded Riemann Solver,

jumps in the eigenmodes can be observed when considering prisms or tetrahedra. This behaviour is

typical of spatial discretizations with central fluxes and has been also observed for upwind cases
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Figure 5.8. Eigenmodes for a wave aligned with the main diagonal of the cuboid at θ1 ≈ 0.615, θ2 = π
4

on three-dimensional P1 schemes.
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with non-DG correction functions [18, 52]. This may be a consequence of the agglomeration of Nsub

elements within the cuboid and may introduce increased error to the solution [53]. The eigencurves

for three-dimensional elements and diagonal advection are generally periodic in κ with the period

given by

π(P + 1)min

(
1

cos (β1) cos (β2)
,

1

cos (β1) sin (β2)
,

1

sin (β1)

)
. (5.26)

All eigeninformation is generally contained within this range. Nevertheless, when the wave is

not aligned with the diagonal or orthogonal directions, the behaviour can be considered instead

quasi-periodic.

Figure 5.9 shows the dissipation and dispersion curves for an arbitrarily chosen direction θ1 =

θ2 =
π
9 . The curves at high-wavenumber regions cannot be considered exact replicas of the modes

with physical meaning at lower wavenumbers. Hence, as the wavenumber increases, the aliasing is

not periodic. In fact, a wider range of κ would display comparable but not equal dispersion relations.

We note that not all eigencurves cross the zero dispersion axis. In some cases, these curves reach a

minimum point and the dispersion relation stays in the positive axis. Hence, for the vast majority

of advection directions, the dispersion and dissipation properties of each scheme differ significantly

from the 1D approach.

5.2.3 Comparison of Three-Dimensional Spatial Discretizations

The dominant dissipation and dispersion curves for all considered element types from second to

fourth-order accurate spatial discretizations are shown in Figure 5.10. The wavenumber and the

numerical frequency ω̄δ
κ are normalized by γc,e. For simplicity, we consider only waves aligned with

the advection direction for all angles θ1 = β1, θ2 = β2. As a consensus, given the quasi-periodicity

and non-smooth behaviour of certain eigencurves, they are displayed until the numerical frequency

vanishes or the curve has reached its minimum point, and only the positive dispersion relations are

shown.

Increasing the polynomial degree results in steeper onset of numerical error, but a larger resolved

wavenumber range for all element types. As we sweep from angles θ1 = β1, θ2 = β2 ∈ [0, π],

hexahedral elements display curves with smooth shapes, similar to the quasi-one-dimensional
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Figure 5.9. Eigenmodes for a wave with orientation θ1 = π
9 , θ2 = π

9 using three-dimensional P1
schemes.
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Figure 5.10. Dissipation and dispersion curves for hexahedra, prisms and tetrahedra.
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Figure 5.11. Semilogarithmic plot of the dispersion error
∣∣κ̄−�(ω̄δ

κ)
∣∣ and dissipation error �(−ω̄δ

κ).
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configuration in Figure 5.7 with some growth or shrinkage as the effect of the angle variation appears.

For the other two element types, discontinuities and non-smooth modes appear, most notably for

the tetrahedra.

We can take a closer look at the region of low wavenumbers with the semilogarithmic plots in

Figure 5.11. The dispersion error
∣∣κ̄− ω̄δ

κ

∣∣ is shown in the left side and the dissipation error −� (
ωδ

)
in the right side. Note the inversion of the vertical axis of this plot. Hexahedral elements display the

minimum dispersion and dissipation error amongst all element types for the majority of wavenumbers.

Some eigencurves of the prismatic element overlap the results of the hexahedra. Tetrahedral elements

display the most dissipation on a per degree of freedom basis for most wavenumbers. The same

outcome is seen for the dispersion plots. For ILES, we consider the best performing element to have

the smallest range of numerical error, given the chaotic three-dimensional behaviour of the eddies in

turbulent flow. Hence, in terms of DOF cost, hexahedral elements display the least error in both

dissipation and dispersion curves, followed by the prisms and finally the tetrahedra. In addition,

from Figure 5.10, we see that the performance of the elements is direction-dependent.

The effect of the direction on the dispersion and dissipation characteristics of the scheme is shown

in Figure 5.12 for a given wavenumber κ̄ = π. Similar behaviour was found for other wavenumbers

and the dependence increases with κ, but are omitted for brevity. Hexahedral elements perform best

at diagonal angles, which agrees well with previous studies on quadrilateral elements (for θ2 = 0) [23].

They are most dissipative and dispersive when the wave is aligned with the grid. Prismatic elements,

on the other hand, benefit from waves normal to the diagonal of the triangular faces. They are most

dissipative parallel to these diagonals. Finally, similar to the prisms, tetrahedral elements introduce

the least amount of numerical error along the faces of the cuboid with wavevectors normal to the

diagonal interfaces, and the most when the wavevector points parallel to the main diagonal of the

cuboid
(
θ1 = θ2 =

π
4

)
. Despite the dependence of the results on the direction, the dissipation error

of the tetrahedral elements is higher than that of the prisms and hexahedra.

Hence, our spectral analysis suggests that the dispersive and dissipative properties of three-

dimensional discretizations using the FR approach are highly dependent on the element type and

advection direction. Furthermore, we generally observe that the hexahedra perform best, followed

by prisms and finally tetrahedra on a per degree of freedom basis.
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Figure 5.12. Dissipation rate and dispersion contours for κ̄ = π on P2 three-dimensional schemes.
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5.2.4 Eigenspectra

The eigenspectra or Fourier footprint [54] of the semidiscrete matrix can be determined by

computing its eigenvalues. This region contains important information. In order for a scheme to

be stable, all eigenvalues λj must lie on the negative real axis to ensure that none of the Fourier

modes will grow in time. In addition, the size of the eigenspectra increases at a faster rate than the

polynomial degree, as explained for the one-dimensional case in Section 5.1.2.

Figures 5.13 to 5.17 display the collection of eigenvalues λ for P1 to P3 schemes on quadrilaterals,

triangles, hexahedra, prisms and tetrahedra. In two dimensions, quadrilateral elements display

eigenspectra that are more compact than those of the triangles by a factor of approximately 1.4 for

the lower order schemes. In three dimensions, hexahedral elements yield more compact eigenspectra

compared to prisms and tetrahedra. This suggests the hexahedral cuboid with NDOF is able to

be stable with larger time-step sizes than the other two element types. Out of the three element

types, it appears that tetrahedral elements have the largest region of eigenvalues. We note that

the size of the time-step is defined by the number of degrees of freedom as well and that NDOF for

the tetrahedra and prisms is higher than that of the hexahedral cuboid, so these properties may be

different for equally dense computational grids.

5.2.5 Orders of Accuracy

Discontinuous Galerkin methods have known to be super accurate for hyperbolic problems [51].

This refers to orders of accuracy higher than P+1, where P is the polynomial degree that interpolates

the solution. This behaviour is not well-understood [9] and has shown to converge at rates of 2P + 1

for this type of problems. From the spectral analysis, the local order of accuracy can be found by

inspecting the numerical error introduced in the solution within the moderately resolved range of

Fourier modes. For a given wavenumber, the error can be determined by [20]

Ek =
∣∣∣κ− wδ∗(κ)

∣∣∣ , (5.27)
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Figure 5.13. Eigenspectra of quadrilateral semidiscretizations.
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Figure 5.14. Eigenspectra of triangular semidiscretizations.
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Figure 5.15. Eigenspectra of hexahedral semidiscretizations.
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Figure 5.16. Eigenspectra of prismatic semidiscretizations.
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Figure 5.17. Eigenspectra of tetrahedral semidiscretizations.
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where κ is the wavenumber and ωδ∗ is the dominant numerical frequency. The local and global

orders of accuracy can be respectively found by [20]

OOAl =
log (Eκ)− log

(
Eκ/2

)
log(2)

, (5.28)

OOA = OOAl − 1. (5.29)

In Figure 5.18, we observe the local order of accuracy for P1-P4 schemes for all element types, which

is consistent with the expected super convergence rates of 2P +1 We recall from the spectral analysis

that the cuboids composed of prisms and tetrahedral elements contain more degrees of freedom than

those in a hexahedron. Despite this advantage, prismatic and tetrahedral elements show regions

where the error is larger compared to the hexahedral cuboids. In addition, hexahedral elements

maintain the slope for a larger range of wavenumbers compared to the other two element types

for all polynomial degrees, suggesting that the super-accuracy property holds for a higher range of

wavenumbers.
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Figure 5.18. Local order of accuracy obtained from spectral analysis for three-dimensional semidis-
cretizations.

5.3 Characteristic Functions of the Spatial Discretization

The semidiscrete form of the linear advection equation for the dispersion and dissipation analysis

is given by

i
νh

‖α‖U = MU , (5.30)

where U is the vector that contains the amplitudes of the discretized wave solution, ν is the exact

numerical frequency, α is the advection velocity, h is the mesh spacing and M is the semidiscrete

matrix. The numerical solution can be represented as a linear combination of the eigenvalues and

eigenvectors of M . Since M has rank m = NDOFNsub, m linearly independent eigenvectors Uj with
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their corresponding eigenvalue λj reconstruct a basis polynomial space of degree P and a matrix Û .

These polynomials represent characteristic functions (or eigenfunctions) of the semidiscrete operator.

By constructing them, each solution mode may be analyzed. Hence, the identification of the physical

modes becomes possible by looking at their eigenshapes.

Following the procedure in [16] in one dimension, we present a general form for any dimensional

space on lines, quadrilaterals and hexahedra. The eigenvectors of M form a complete basis. Hence,

the eigensolution, i.e. the numerical solution constructed from the eigenvalues and eigenvectors of

M , may be computed from

uδe (ξ, t) =

NDOF∑
j=1

ue,jψj (ξ) , (5.31)

where ψi (ξ) is the corresponding eigenfunction and ue,j is the numerical solution value recovered

from the j-th numerical frequency ωδ
j =

αλj

ih with its corresponding wavenumber κ, calculated for an

element Ωe centered at xe

ue,j = u0je
i(κxe−ωδ

j t), (5.32)

and u0j represents the initial amplitude of the prescribed wave after its projection onto the discrete

space [16], which can be obtained

u0 = Û−1σ, σj =

∫
Ωe

ei
κhξ
2 �̃j (ξ) dξ. (5.33)

Finally, the eigenfunctions can be computed from

ψj (ξ) =

m∑
n=1

Ûn,j �̃n(ξ), (5.34)

and the solution may be obtained using Equation 5.31.

Since the one-dimensional results are easier to visualize, we introduce the eigenfunctions for

different P -schemes, similar to the results presented by [55], before we show the results for two-

dimensional cases. In Figure 5.19, we observe the numerical solution reconstructed from the procedure

above. From previous sections, we have established that for 1D cases, the cutoff wavenumber is

defined to be (P + 1)π, which is, in fact, an overestimation when coupled with ILES, since the

numerical error will have dominated the solution before this point. In this sense, we still chose
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a relatively high wavenumber for a P1 scheme to show its improvement with the increase of the

order of accuracy of the spatial discretization. Results are shown at t∗ = 0 and after the wave was

convected for one cycle, i.e. t∗ = 1. It is clear that the resulting data is smoother for higher-order

schemes, and that despite knowing that a P1 scheme has a cutoff wavenumber of 2π, even at π/2 the

results are not very good. The innate dissipative behaviour of a P1 scheme along with an upwind

Riemann solver can be catastrophic to represent wave-like solutions. Both numerical dispersion and

dissipation are observed for the P2 schemes, and the jumps continue to close as P increases. These

sinusoidal plots are the result of a combination of modes, shown in Figure 5.20.

Again, these plots in Figure 5.20 are shown for both initial projection t∗ = 0 and after an

advective cycle. The dominant modes (those with shapes closest to the expected numerical result)

can be seen to stand out. As time passes, we observe that for the low order schemes, the smoothness

of the solution is affected, and dispersion, as well as dissipation error, begin to appear. At the same

time, the modes with ranges close to zero completely disappear. Hence, the secondary modes are

in fact a contribution to the numerical solution, as shown for t = 0∗. The fact that the solution at

t∗ = 1 contains more error shows that these modes cannot be regarded as spurious.

Figure 5.21 shows the resulting numerical solutions for quadrilateral elements at t∗ = 0 and

after 10t∗, meaning that the solution cycled over the domain 10 times. The jumps in the solution

are visible for the P1 scheme, and the numerical dissipation appears to dominate at the later time.

Similar to the one-dimensional case, the solution contains more numerical error for the low order

schemes. In fact, from these results, we observe the solution to be quite smooth for P2-P4 schemes,

for both initial and final times, with more numerical accuracy for the higher order schemes.

Looking at multidimensional eigenmodes may be more difficult if the purpose is to identify the

dominant mode. However, we can readily note that some of these modes exist in ranges that are

very close to zero, marking them as candidates for secondary modes. In addition, we observe that

more than a single mode is dominant since Modes 0 and 8 contain values that are similar to the

prescribed wave-like solutions.

We now validate this spectral analysis through some numerical experiments, which we present in

the following chapter.
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Figure 5.19. Eigensolution for the one-dimensional case at t∗ = 0 (left) and t∗ = 1 (right).

81



0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P1

0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P1

0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P2

0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P2

0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P3

0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P3

0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P4

0 2 4 6 8
x

−1.0

−0.5

0.0

0.5

1.0

u(
x,

t)

P4

Figure 5.20. Eigensolution modes for the one-dimensional case at t∗ = 0 (left) and t∗ = 1 (right).
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Figure 5.21. Eigensolution on quadrilateral elements at t∗ = 0 (left) and t∗ = 1 (right) for a wave
oriented at θ = π/4.
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Figure 5.22. Eigensolution modes (0-4) for quadrilateral semidiscretizations at t∗ = 0 for a wave
oriented at θ = π/4 on a P2 scheme.
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Figure 5.22. Eigensolution modes (5-8) for quadrilateral semidiscretizations at t∗ = 0 for a wave
oriented at θ = π/4 on a P2 scheme.
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Chapter 6

Numerical Experiments

In this chapter, we validate the results obtained in Chapter 5 by analyzing the behaviour of

different three-dimensional element types on comparable computational grids. We study three

turbulent cases using ILES: the Taylor-Green vortex, turbulent channel flow and turbulent flow over

a cylinder.

6.1 Taylor-Green Vortex

6.1.1 Case Description

The Taylor-Green vortex is a standard benchmark case used to test a scheme’s ability to

resolve turbulent flow. This case has been frequently presented in a series of high-order methods

workshops [56]. The flow is initialized with the following conditions

vx = v0 sin
(x

L

)
cos

( y

L

)
cos

( z

L

)
, (6.1)

vy = −v0 cos
(x

L

)
sin

( y

L

)
cos

( z

L

)
, (6.2)

vz = 0, (6.3)

p = p0 +
ρ0v

2
0

16

[
cos

(
2x

L

)
+ cos

(
2y

L

)][
cos

(
2z

L

)
+ 2

]
. (6.4)

The domain is a periodic cube with dimensions −Lπ ≤ x ≤ Lπ, with Mach number Ma = 0.1

and the Prandtl number Pr = 0.71. The initial temperature field is specified with a uniform T = T0,

and the initial density field is taken as ρ = PRT0. Here, we run the compressible benchmark problem

using ILES at Reynold’s number Re = 1600 for a coarse mesh of 643 and a fine mesh of 1283 with

hexahedral, prismatic and tetrahedral element types. All simulations used a Rusanov Riemann solver
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for the common inviscid flux, the BR2 scheme for the common viscous fluxes and the same point

sets as the turbulent channel case.

The number of elements per direction was computed based on the DOF of the cuboid subdivision.

Hence, the number of cuboids per direction was chosen to be the next integer that would yield

the closest amount of required solution points in each direction. The ratio of DOF of the resulting

computational domain to those in the grid composed of hexahedra are shown in Table 6.1. The total

number of points was higher for all elements that used subdivided cuboids (See Chapter 5).
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Figure 6.1. Temporal evolution of the kinetic energy Ek integrated over the domain for P1-P3
schemes for the Taylor-Green vortex. Results are shown for both the coarse case (1) with 643 DOF
and the finer case (2) with 1283 DOF.
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Figure 6.2. Temporal evolution of the kinetic energy integrated over the domain for P1-P3 schemes
for the Taylor-Green vortex. Results are shown for both the coarse case (1) with 643 DOF and the
finer case (2) with 1283 DOF.

6.1.2 Results

The evolution of the kinetic energy Ek(t) can be observed in Figure 6.1. It is clear that the

amount of energy in time is lower than the DNS results [56], suggesting the presence of numerical

dissipation. The results converge to the DNS data as the order of accuracy increases. In particular,

the finer mesh agreed well with the spectral results with some slight underprediction. For P1− P3

schemes, the hexahedral elements displayed the maximum amount of energy throughout the evolution

of the internal vortical structures compared to the prisms and tetrahedra, which presented more

dissipation. This is observed more clearly in the coarse mesh results. This can also be observed in

the evolution of the dissipation of the kinetic energy, in Figure 6.2. The maximum dissipation time,
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Figure 6.3. Temporal evolution of the dissipation rate based on the enstrophy integrated over the
domain for P1-P3 schemes for the Taylor-Green vortex. Results are shown for both the coarse case
(1) with 643 DOF and the finer case (2) with 1283 DOF.

which occurs at around t∗max ≈ 9 for the DNS reference data, is poorly predicted by the lowest order

schemes. Note that for all cases, increasing the polynomial degree substantially improves the results,

and the maximum dissipation time from the numerical results approaches t∗max for all element types.

Another perspective for the dissipation of the kinetic energy can be seen in terms of the enstrophy.

For incompressible and weakly compressible flows, it is expected that the rate of decrease of energy

is proportional to the enstrophy, calculated as

ε =
1

ρ0Ω

∫
Ω
ρ
ζ · ζ
2

dΩ. (6.5)

where ζ is the vorticity, ρ is the density and Ω is the volume of the computational domain. Figure 6.3
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Coarse Fine
Nci DOFe/DOFhex Nci DOFe/DOFhex

Hexahedra
P1 32 - 64 -
P2 22 - 43 -
P3 16 - 32 -

Prisms
P1 28 1.005 56 1.005
P2 20 1.002 39 0.995
P3 15 1.030 30 1.030

Tetrahedra
P1 23 1.114 45 1.043
P2 17 1.025 33 1.004
P3 13 1.006 26 1.006

Table 6.1. Number of cuboid elements per direction and ratio of total DOF compared to hexahedral
computational domain for the Taylor-Green vortex.

displays the evolution of the enstrophy in the domain. It is known that the maximum enstrophy is

located at the smallest scales, so this serves as a measure of the performance of the implicit SGS

model, which is simply defined by the grid and polynomial degree. The results for P1 display the

unsuitability of this low-order spatial discretization for LES since most of the data is lost. Hence the

amount of numerical error is large. We recall from our spectral analysis that hexahedral elements

contain the smallest range of numerical error. The Taylor-Green vortex is characterized by its

three-dimensional flow behaviour. Despite having computational grids with slightly more solution

points for the prisms and tetrahedra in most simulations, as shown in Table 6.1, these two element

types failed to outperform the hexahedral elements, consistent with the spectral analysis.

Finally, both dispersion and dissipation errors are visible in the turbulent structures in Figure

6.4, where isosurfaces of Q � 1E − 2 are presented for the coarse and fine cases. The hexahedral

elements display the turbulent structures with, qualitatively, more detail. The numerical error

increases for the prisms and even more for the tetrahedral element. The latter displays quite large

inter-element jumps with dispersed and damped modes. This noisy behaviour had been previously

observed by Carton de Wiart [57]. In general, the details improve for all element types using the

finer mesh. At this level, the amount of dissipation introduced is smaller. However, the pattern of

accuracy and element types is observed again, with more detail in the turbulent structures.

Hence, the results suggest that hexahedral elements are more accurate than tetrahedral and

prismatic elements in three-dimensional turbulent flows using ILES.
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(a) Hexahedra

(b) Prisms

(c) Tetrahedra

Figure 6.4. Isosurfaces of Q-criterion for the Taylor-Green vortex. Left side shows results for the
coarser case (643 DOF) and right side for the fine case (1283 DOF).
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6.2 Turbulent Channel Flow

6.2.1 Case Description

Fully developed turbulent channel flow has been extensively studied to understand how turbulence

behaves in wall-bounded flows [58]. DNS have been previously performed, and data is available [58]

for validation of LES and ILES solvers. Turbulent channel flow consists of a flow driven by a pressure

gradient dp/dx between two plates separated by a distance 2δ, where δ is the channel half width.

The flow is governed by the centerline, bulk and friction Reynolds numbers

Rec =
ρvcδ

μ
, (6.6)

Reb =
ρvb2δ

μ
, (6.7)

Reτ =
ρvτδ

μ
, (6.8)

where ρ is the density of the fluid, μ is the dynamic viscosity, vc and vb are the centerline and the

bulk velocity respectively, and vτ =
√

τw/ρ is the nondimensional wall friction velocity with τw the

shear stress on the wall surface.

The flow was given initial conditions of Reb = 13600 and a Mach number Ma = 0.3 to reach a

friction velocity Reynolds number Reτ = 395. Sine and cosine functions and random perturbations

Ψ were initially given to accelerate the turbulence transition

vx
vb

= 2 + 0.147
[
cos

(y
δ

)
+ sin

(x
δ

)
+Ψ

]
, (6.9)

vy
vb

= 0.147
[
cos

(x
δ

)
+ sin

(y
δ

)
+Ψ

]
, (6.10)

vz
vb

= 0, (6.11)

where the bulk velocity vb is given by

vb =

∫ δ

0
v̄d

(y
δ

)
≈ 6.8. (6.12)
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For this study, a coarse mesh with three-eighths the degrees of freedom per direction on average

of that of Kim and Moser [58] was used in conjunction with P1, P2 and P3 schemes. A Rusanov

Riemann solver was used for the common inviscid flux and the BR2 scheme for the common viscous

fluxes. The total degrees of freedom for the ILES simulation is approximately one-twentieth of

that required for DNS. The domain has dimensions Lx × Ly × Lz = 2πδ × 2δ × πδ with periodic

boundary conditions in the streamwise and spanwise directions. The grid points in the y-direction

were obtained with a hyperbolic function [59]

yj =
1

2a
tanh

[(
−1 +

2j

N

)
tanh−1 a

]
+ 0.5, (6.13)

where N is the number of grid points in the y-direction and 0 < a < 1 is the stretching factor.

For this study we used a = 0.96. We implemented the Gauss points for the hexahedra, the tensor

product of Williams-Shunn [60] and Gauss points for prisms, and Shunn-Ham [61] points for the

tetrahedra. Triangular and quadrilateral faces used the Williams-Shunn points and Gauss points,

respectively. Table 6.2 shows the resulting number of degrees of freedom per direction for hexahedral

meshes and the resulting nondimensional grid spacing. Keeping the number of elements fixed in the

y−direction, the number of elements in the streamwise and spanwise direction were obtained keeping

a relation of 4Nx/3Nz to maintain the aspect ratio of the elements. Table 6.3 shows the resulting

number of elements for hexahedral, prismatic and tetrahedral elements for each polynomial degree.

Table 6.2. Number of degrees of freedom and nondimensional mesh spacing for hexahedral elements.

DOF (x× y × z) Δy+ Δx+ Δz+

P1 96× 72× 72 0.819 25.852 17.235
P2 96× 72× 72 0.691 25.852 17.235
P3 96× 72× 72 0.599 25.852 17.235

Using the fourth-order Runge Kutta time-stepping scheme, each simulation was run using 120

cores until the friction velocity Reynolds number converged to 395 from t∗ ≈ 816 to t∗ ≈ 950

depending on the polynomial degree and element type, where t∗ is normalized using the bulk velocity

vb and the channel half-width δ. Statistics were then collected over a period of t∗ = 136, allowing

about 20 passes of the flow through the channel. These statistics were also averaged in space to

showcase the flow features in the wall-normal direction, and are displayed in Figures 6.5 to 6.7.

Interestingly, the original plots obtained with the tetrahedral meshes presented scattering. To solve
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Table 6.3. Number of cuboids Nc used for ILES of turbulent channel flow in each direction.

Element type Nx ×Ny ×Nz

P1 48× 36× 36
Hex P2 32× 24× 24

P3 24× 18× 18
P1 40× 36× 30

Prism P2 28× 24× 21
P3 22× 18× 17
P1 28× 36× 21

Tet P2 22× 24× 17
P3 18× 18× 14

this issue, the averaging in the normal direction was done with a higher range of values. This issue

may be attributed to the irregular distribution of points in the spanwise-streamwise plane per y-DOF

location for this element type.

6.2.2 Results

We first consider the plots of the streamwise velocity v+x against y+ in Figure 6.5. We observe

good agreement with the results of Kim and Moser near the wall for all element types, but largely

overpredicted values by the lower polynomial degree plots. This is a consequence of the increased

dissipation of the P1 scheme as presented by Vermeire [14]. The hexahedral elements showed good

agreement for the fourth-order spatial discretization, where the numerical results seem to capture

the DNS data both close and far from the walls. Prisms and tetrahedra, on the other hand, still

overpredict the streamwise velocity after y+ ≈ 10.

The root-mean-square velocity fluctuations vx,rms, vy,rms, and vz,rms intensities can be observed

in Figure 6.6. Near the walls, all of the element types showed good agreement with the DNS results,

after which overprediction of the normal components is evident. We observe that the overprediction

issue is alleviated with increases of polynomial degree. We recall that hexahedral elements displayed

the highest amount of dissipation for propagation normal to its faces. Despite the turbulent channel’s

mainly one-directional velocity field, this element type best represented the normal r.m.s fluctuations.

We note that the increased DOF in the y-direction resulted in large reductions of the DOF in the

spanwise and streamwise directions for the other two element types.

The v′xv′y component of the Reynolds stresses is plotted in Figure 6.7. We observe significant
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underprediction in most of the domain for all element types for the lowest order schemes. Convergence

to the DNS results is clearly seen as the polynomial order is increased. In all cases, the tetrahedral

elements displayed the greatest amount of dissipation for the v′xv′y plots. Results for prisms and

hexahedra were very close to each other, with significantly higher accuracy than the tetrahedra.

Figure 6.8 shows the isosurfaces of Q-criterion for hexahedral, prismatic and tetrahedral elements

for P3. We see a slight difference in the results. The structures are more robust for the hexahedral

mesh than for the other two. We pay particular attention to the shape of these structures for the

tetrahedral mesh, which seems finer and more damped. This suggests a higher amount of numerical

error, both dispersive and dissipative, for the tetrahedra and prisms compared to the hexahedra.

In general, the best performance can be attributed to the hexahedral elements, which agrees well

with the findings from spectral analysis.
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Figure 6.5. Mean velocity profile v+x vs y+ for the turbulent channel cases.
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Figure 6.6. Root-mean square velocity fluctuations in wall coordinates for the turbulent channel
cases.
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Figure 6.7. Reynolds stresses v′xv′y for the turbulent channel cases.

97



Figure 6.8. Isosurfaces of Q-criterion colored by the streamwise velocity for the turbulent channel
using P3 for (a) hexahedra, (b), prisms, (c) tetrahedra.
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6.3 Turbulent Flow over a Cylinder

6.3.1 Case Description

Turbulent flow over a cylinder has been the focus of study of many aerodynamicists due to its

wide range of applications. The flow is dependent on the Reynolds number defined as

Re =
ρvx,∞d

μ
, (6.14)

where ρ is the density of the fluid, vx,∞ is the free-stream velocity, d is the diameter and μ is

the dynamic viscosity. We perform Large Eddy Simulation at Re = 1000, which according to

Williamson [62] corresponds to the lower limit of the shear-layer transition regime. Computational

domains with comparable numbers of points and generated using single element types were constructed

for hexahedral, prismatic and tetrahedral elements. The orientation of the elements was chosen so

that all the faces of the elements, in particular for the tetrahedra matched at the interfaces. This

can be seen in Figure 6.9. In addition, the stretching ratio was maintained for all element types to

ensure good resolution within the boundary layer. About 5 million degrees of freedom were used in

the domain.

6.3.2 Results

The cases were run over 150t∗, where t∗ = d/vx,∞, as shown in Figure 6.10. As a first observation,

we note a stronger circulation in the hexahedral and prismatic plots, where the values of the lift

coefficient reach greater magnitudes compared to the tetrahedral elements. This is a first indication

that the amount of numerical error may be higher for the tetrahedra.

Contours of the magnitude of the velocity can be seen in Figure 6.11. It is clear that the results

for the hexahedral and prismatic elements are quite similar. In contrast, tetrahedral elements display

inter-element jumps in the turbulent wake close to the low-pressure region behind the cylinder. We

note that the mesh in this region was fine as shown in Figure 6.9, and yet the jumps across elements

were visible for this element type.

We averaged the statistics during 25t∗ to visualize the difference in the results among elements.

In Figure 6.12 we observe the averaged streamwise velocity component at x/d = 1 and x/d = 2,
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Figure 6.9. Hexahedral, prismatic and tetrahedral grids for the cylinder case.
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Figure 6.10. Lift and drag coefficients cl and cd evolution for the cylinder case.

101



P1
P2

Hexahedra

P1
P2

Prisms

P1
P2

Tetrahedra

Figure 6.11. Contours of velocity magnitude for the cylinder case.

which are visually marked in Figure 6.11, and correspond to the x-coordinates of points P1 and P2,

respectively. From the results of x/d = 1 in Figure 6.12, it appears that the time-averaged separation

region behind the cylinder is larger for the tetrahedra. The values of the streamwise velocity close

to the center of the cylinder are zero as a consequence of this. Next, we move further downstream

by a factor of a diameter to the x-coordinate of point P2. Here, the averaged profiles show similar

shapes, but again the results of tetrahedral grid stand out, since this x-location could still be within

the recirculation bubble for these element types.

To visualize the averaged separation bubble, Figure 6.13 shows the averaged contours of the

velocity magnitude. We observe that the tetrahedral results indeed have a slightly larger separation

region compared to the other two element types, followed by the hexahedra and finally the prisms.

This behaviour has been observed at different Reynolds numbers [63] and could be associated with a
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Figure 6.12. Mean velocity profiles for all element types at locations x/d = [1.0, 1.5, 2.0] for the
cylinder case.

low-frequency physical mode, which has been previously documented by Lehmkuhl et al. [64].

The coefficient of drag averaged during 100t∗ is shown in Table 6.4 and is compared with the

DNS results from Zhao et al. [65]. In general, the results are quite close to the DNS results for all

element types, with the hexahedra having the most accurate value, and similar to the prismatic

results.

The noisy behaviour previously observed in the velocity magnitude contours can also be observed

in the isosurfaces of Q-criterion displayed in Figure 6.14. We can see that hexahedral elements have

the most robust turbulent structures compared to the other two element types. The results for

both the turbulent wake close and far from the cylinder have generally a smooth behaviour. In the

case of the prisms, the results were very good in the fine region, similar to the hexahedra’s vortical
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Figure 6.13. Time averaged contours of velocity magnitude the cylinder case.
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Table 6.4. Mean drag coefficient for hexahedral, prismatic and tetrahedral meshes for the cylinder
case.

cd

Zhao et al. (coarse) 1.092
Hexahedra 1.064

Prisms 1.062
Tetrahedra 0.991

structures. However, far from the cylinder, some inter-element jumps become prominent. Finally,

the tetrahedral grid results show noisy behaviour consisting of large solution jumps in the turbulent

wake, even in the region close to the cylinder, where the mesh is relatively fine.

To visualize the energy and dissipation at different locations downstream of the cylinder, Fig-

ure 6.15 shows plots of the power spectral density (PSD) of the streamwise velocity fluctuations for

all element types at y/d = 0 and x/d = 1.79, 2.19, 3.38 against the Strouhal number St = ωvx/d,

where ω is the frequency. We note that the energy at low frequencies is comparable amongst the

three element types. However, as we move to high-frequency regions the inherent dissipation of each

element type starts to take effect. In particular, we observe the added dissipation of the prisms

and most prominently from the tetrahedra, compared to the hexahedral semidiscretization. This is

consistent with the contours in this section. Generally, we observe good behaviour from all element

types in regions where the turbulent structures are large. As soon as we move into zones where the

turbulent structures are smaller, the amount of numerical error added by the tetrahedral elements is

the largest.

In closing, the results obtained with hexahedral and prismatic elements are generally good in

the fine regions. As we move in the downstream direction, the results start to show more numerical

error for the prisms and then the hexahedra. In the case of the tetrahedral elements, the numerical

error was significantly higher for the current mesh resolution.
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Figure 6.15. Power Density Spectra for the cylinder case at different x/d locations against the
Strouhal number.
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Chapter 7

Conclusions and Future Work

In this work, we have described several procedures that serve to analyze the behaviour of element

types in semidiscrete systems. In closing this work, we outline some of the findings and summarize

the results obtained throughout.

We have studied the characteristic error for spatial discretizations composed of hexahedral,

prismatic and tetrahedral elements. We made use of the implicit large eddy simulation turbulence

modelling approach. It is known that FR provides effective modelling of the unresolved dynamics,

and that no subgrid-scale turbulence models are required. Instead, FR relies on the numerical

dissipation of the spatial scheme to model the smallest scales in turbulent flows at high Reynolds

numbers.

First, we verified the inviscid and viscous flux implementations to support our spectral analysis

and numerical experiments. The results converged to the expected order of accuracy, which has

been generally observed to be P + 1 in logarithmic scale for FR schemes. Next, we described the

three-dimensional procedure of the spectral analysis. From this analysis, the numerical dispersion

and dissipation errors were evaluated based on the exact dispersion relation. A set of NDOFNsub

eigenvalues were analyzed for all wavenumbers, and it was explained that the dominant mode

contained the least dissipation at low wavenumbers. Despite more than one possible physical mode

at high wavenumbers, a single eigenvalue dominates the wave propagation properties. This mode

was observed to be quasi-periodic in three dimensions, compared to the periodicity observed in one

and two dimensions in previous research.

Changing the orientation of the wave vector away from the orthogonal directions substantially

changed the dispersion curves, the numerical dispersion and dissipation displayed non-smooth

behaviour and jumps for the prisms and more notably for the tetrahedra. Hence, changing the wave

orientation may have a significant impact on the scheme’s numerical error. Contour plots of the
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dispersion and dissipation error for a given wavenumber display this dependence of the error on the

direction. In particular, elements with triangular faces show the least error normal to the triangle’s

diagonal, whereas the hexahedral element performs best in diagonal directions. We followed the

analysis with a comparison of all element types normalizing the number of degrees of freedom of the

periodic generating patterns. This showed that hexahedral elements are the least dissipative and

dispersive amongst three element types for ILES, followed by the prisms and finally the tetrahedra.

Not only do the hexahedral elements contain the least dissipation but also the range of error as the

angle changes stay within a smaller range than it does for the other two element types.

Conclusions from this spectral analysis were then validated with turbulent cases including the

Taylor-Green vortex, turbulent channel flow at Reτ = 395 and turbulent flow over a cylinder to

test how well different element types resolve turbulence in the context of ILES. We implemented

computational domains with comparable numbers of degrees of freedom. Hence, contrasting element

types was done on a per degree of freedom basis. In most scenarios, the hexahedral elements displayed

the most accurate results. The amount of dissipation added to the scheme was sufficient to resolve

the turbulent structures yet provide robust simulations until at least P3. Prismatic and tetrahedral

elements, damped the turbulent structures faster, meaning that the observed amount of numerical

error was considerably higher. Isosurfaces of the Q-criterion visually supported the conclusions. In

all ILES simulations, the turbulent structures were observed to be more robust and detailed for

the hexahedral elements, while inter-element jumps were visible for the other two element types,

regardless of the refinement level used, in particular for the tetrahedral elements.

In the future, we expect to analyze the behaviour of these three-dimensional semidiscretizations

when coupled with explicit conventional time-marching schemes, as well as with the new optimized

P-ERK schemes by Vermeire [66]. In addition, we will look into entropy stability and its application

to hexahedra, prismatic and tetrahedral elements.
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Appendix A

Concentration of Dominant and

Secondary Eigencurves

In this section, we show the resulting eigencurves for hexahedra, prisms and tetrahedral elements

considering both the spurious and physical modes. Given the high density of these plots, only the

results for the second-order spatial discretization (P1 schemes) are shown (See Chapter 5). As

explained in this work, the dominant mode is considered to be that which has the least amount

of numerical dissipation in the range of resolved wavenumbers and is represented using continuous

lines for multiple wave orientations. We only considered waves aligned with the advection direction.

Figure A.1 shows the concentration of modes for hexahedral elements. The shapes of these modes are

smooth and a pattern can be observed. If we compare these results to those of the prismatic elements

in Figure A.2, it is clear that the prisms yield less smooth dispersion curves. The consequence of the

nonsmooth behaviour is still not well understood, but it is possibly a cause of increased numerical

error as pointed out by Fernandez et al. [53]. Even less smooth behaviour is shown if we observe

the results for the tetrahedral semidiscretizations in Figure A.3. This element type was concluded

in the present work to be the least accurate of the three element types. The curves that result

from tetrahedral spatial schemes do not follow specific behaviours such as the one observed in the

tetrahedral results. What becomes even more interesting is that at given wave orientations, the

numerical error increases vastly.
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Figure A.1. Concentration of modes for P1 spatial discretizations on hexahedra.
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Figure A.2. Concentration of modes for P1 spatial discretizations on prisms.
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Figure A.3. Concentration of modes for P1 spatial discretizations on tetrahedra.
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Appendix B

Higher-Order Dispersion Relations
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Figure B.1. Numerical dispersion relations for P4 schemes using FR.
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Figure B.2. Eigenmodes for a wave aligned with the x1 direction on P2 schemes.
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4

on P2 schemes.
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Figure B.4. Eigenmodes for a wave at θ1 =
π
9 , θ2 =

π
9 on P2 schemes.
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Figure B.5. Eigenmodes for a wave aligned with the x1 direction on P3 schemes.
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Figure B.6. Eigenmodes for a wave aligned with the main diagonal of the cuboid at θ1 ≈ 0.615, θ2 = π
4

on P3 schemes.
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Figure B.7. Eigenmodes for a wave at θ1 =
π
9 , θ2 =

π
9 on P3 schemes.
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Appendix C

Automating CFD Software Verification

Software in constant development requires periodic unit testing to ensure proper functioning

of their components. Often programmers set up integration tests to automatically verify the code.

Similarly, a CFD solver numerically computes the Navier-Stokes equations and each of its components

may be verified to ensure the proper implementation of new algorithms. Given the constant and

frequent advancements in the field of computational fluid dynamics, it is not uncommon to periodically

improve features related to performance or even accuracy. By doing this, the introduction of human

error is likely. In addition, in collaborative environments, even with version control, it is imperative

to maintain a set of benchmarks to ensure that all of the components work properly.

In order to achieve this, the development of a simple V&V tool was proposed. Basically, the

idea is to run a series of benchmark test cases and ensure that the output files have not had any

changes. To quantify this, we make use of the hash of the last written file and compare it with a

previously stored one. The V&V tool is written using the Python language, and uses a convenient

module called unittest. This module does precisely what it name suggests, it provides an API to

set up unit testing scripts on the parts of the code we desire.

Listing C.1 shows a snippet of the code. It displays an example unit test using the module

from Python with the same name. This module [67] provides a base class unittest.TestCase from

which we inherit. In addition, the methods setUp and tearDown are also provided. These two

methods are in charge of running any actions before and after the tests have been completed. Since

we are dealing with multi-branched, version-controlled software, the initial and final methods are

in charge of cloning and compiling the code, and removing the folders after the testing has been

performed. The hash of the output files are stored in YAML files [68], which are configure files that

are human-readable, easy to modify and provides an interface that integrates very well with Python.

These tests are run periodically using a job scheduler. We take advantage of the built-in scheduler

128



class SolverTestCase(unittest.TestCase):
"""Verifies all benchmark cases in CFD solver"""
def setUp(self):
# Initialize solver
self.solver = HORUS()

def test_equal_hash(self):
for branch in self.solver.branches:
# Compile C++ CFD code
self.solver.compile(branch)

for case in self.cases:
# Write CFD output files
self.solver.run(case)
ref_hash = get_ref_hash(branch, case)
output_hash = get_hash()

# Test hash
with self.subTests():
self.assertEqual(ref_hash, output_hash)

def tearDown(self):
shutil.rmtree(self.solver.dir)

Listing C.1. Unit testing class for verification

in Linux systems, CRON.
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Appendix D

Extracting Dispersion Curves

When evaluating the dispersion curves, the extraction of the dominant mode is important for

analyzing the numerical error in spatial discretizations. The eigenvalues of the semidiscrete matrix

do not follow a specific equation that allows to extract the dispersion modes, which can make the

procedure of separating the modes cumbersome. As a result, some authors have generally opted

for performing a graphical extraction [15, 21] of the physical eigenvalues. In addition, by means of

a modal analysis, a mathematical extraction of the dominant mode was proposed by Vincent et

al. [18] for one-dimensional semidiscretizations.

In one dimension, the curves are structured and the procedure can be done both graphically and

mathematically. As shown in the spectral analysis in Chapter 5, the numerical dispersion relations

for three dimensions may be particularly difficult to obtain mathematically at moderately to poorly

resolved wavenumbers. This is a consequence of the dominant eigencurve at low wavenumbers

becoming secondary at high wavenumbers. In addition, the non-smooth and dense results for

high-order polynomials can make the process of tracing the curves impossible for the human eye.

Hence, we propose a simple algorithm to trace the curves using derivatives and some additional

considerations.

Algorithm 1 shows the steps that were taken to trace the non-smooth and chaotic modes of three-

dimensional semidiscrete systems in this work. Nevertheless, it can be applied to any dimensions, as

long as the curves are continuous. The notation and functionality of the methods thereby described

are based on existing Numpy functions. The proposed algorithm works for dispersion curves that

start at κ = 0, where the dominant mode must have negligible dissipation. In general, the algorithm

starts by a simple sorting of the eigenvalues considering only their imaginary components. With

tolerance dtol, we define which of these eigenvalues are candidate dominant solutions. Then, we

obtain a second set of ωδ and append them as well as their derivatives
(
ωδ

)
κ

to the closest value
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from the previously sorted modes. From now on, the procedure is a simple tracing of curves by

choosing eigenvalues with closest derivatives, since determining by nearest k points may lead to

incorrect results as curves tend to cross frequently.

Identifying the dominant mode is performed using a second tolerance value ctol. Moura et

al [17] found that for wavenumbers in which the amount of dissipation reached 1%, the solution

was expected to lose accuracy. Hence, we propose this tolerance value to identify the modes that

dissipate first and may be eliminated from the candidate group. And by elimination, as modes

become too dissipative, the last mode to remain in the initial array of candidates is considered to

be the dominant curve. We remember from the spectral analysis that at certain wave orientations,

more than one mode may be concentrated into curves that are identical. Hence, it is necessary to

also have this check. We note that the tolerance values can be also somewhat arbitrarily chosen and

can lead to failure of the algorithm. In addition, the chosen wavenumbers must be close enough so

that modes can be correctly identified.
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Algorithm 1: Mode extraction and dominant mode identification for dispersion curves.
ωδ ← Get set of eigenvalues for κ0 = 0;

W ← Initialize 2D array with eigenvalues sorted by �
(
ωδ

)
;

ωδ ← Get second set of eigenvalues for κ1 = κ0 +Δκ;
i ← 0, candidates ← empty array;
for ω∗

j in W do

if �
(
ωδ

)
< ctol then

append_to_candidates(i) ;

ωδ
j ← nearest_point(ωδ, ω∗

j );(
ωδ

)
κ
← Get derivative of ωδ with nearest eigenvalue;

append_to_W(ωδ
j , i);

append_to_der(
(
ωδ

)
κ
, i);

i+ = 1;

while next ωδ exists do
i ← 0;
for ω∗

j in W [−1, :] do(
ωδ

)
κ
← Get derivatives of ω∗

j with new set of eigenvalues ωδ;
ind ← argmin(abs(

(
ωδ

)
κ
));

append_to_W(ωδ [ind ], i);
append_to_der(

(
ωδ

)
κ
[ind ], i);

ω∗
j ← delete_from(ω∗

j , ind);
i+ = 1;

if dominant is None then
secondary ← Get candidate mode with smallest imaginary slope;
for ω∗

j in W [−1, :] do
if � (

ω∗
j

)
> dtol then

append_to_secondary(ω∗
j );

if len(secondary) == len(candidates) then
dominant ← Get derivative of candidate eigenvalues;
if len(dominant)> 1 then

check_duplicate(dominant);
if no duplicates then

raise Exception// No curve was found;

else
dominant ← dominant [0];

else
candidates ← delete_from(candidates, secondary);

if dominant is not None then
W ← re-sort modes so dominant array chooses first;
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