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Abstract

Characterizing and Detecting Duplicate Logging Code Smells

Zhenhao Li

Developers rely on software logs for a wide variety of tasks, such as debugging, testing, program

comprehension, verification, and performance analysis. Despite the importance of logs, prior studies

show that there is no industrial standard on how to write logging statements. Recent research

on logs often only considers the appropriateness of a log as an individual item (e.g., one single

logging statement); while logs are typically analyzed in tandem. In this thesis, we focus on studying

duplicate logging statements, which are logging statements that have the same static text message.

Such duplications in the text message are potential indications of logging code smells, which may

affect developers’ understanding of the dynamic view of the system. We manually studied over

3K duplicate logging statements and their surrounding code in four large-scale open source systems:

Hadoop, CloudStack, ElasticSearch, and Cassandra. We uncovered five patterns of duplicate logging

code smells. For each instance of the code smell, we further manually identify the problematic

(i.e., require fixes) and justifiable (i.e., do not require fixes) cases. Then, we contact developers

in order to verify our manual study result. We integrated our manual study result and developers’

feedback into our automated static analysis tool, DLFinder, which automatically detects problematic

duplicate logging code smells. We evaluated DLFinder on the four manually studied systems and four

additional systems: Kafka, Flink, Camel and Wicket. In total, combining the results of DLFinder

and our manual analysis, we reported 91 problematic code smell instances to developers and all

of them have been fixed. This thesis provides an initial step on creating a logging guideline for

developers to improve the quality of logging code. DLFinder is also able to detect duplicate logging

code smells with high precision and recall.
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Chapter 1

Introduction

Software logs are widely used in software systems to record system execution behaviors. De-

velopers use the generated logs to assist in various tasks, such as debugging [73, 71, 20], test-

ing [15, 28, 13], program comprehension [23, 59], system verification [9, 6], and performance analy-

sis [14, 69]. A logging statement (i.e., code that generates a log) contains a static message, to-be-

recorded variables, and log verbosity level. As an example, a logging statement may be written as

logger.error(“Interrupted while waiting for fencing command: ” + cmd);. In this example, the static

text message is “Interrupted while waiting for fencing command:” , and the dynamic message is from

the variable cmd, which records the command that is being executed. The logging statement is at

the error level, which is the level for recording failed operations [2].

Even though developers have been analyzing logs for decades [31], there exists no industrial

standard on how to write logging statements [20, 49]. Prior studies often focus on recommending

where logging statements should be added into the code (i.e., where-to-log) [76, 75], and what

information should be added in logging statements (i.e., what-to-log) [59, 73, 51]. A few recent

studies [12, 24] aim to detect potential problems in logging statements. However, these studies often

only consider the appropriateness of one single logging statement as an individual item; while logs

are typically analyzed in tandem [73, 14]. In other words, we consider that the appropriateness of a

log is also influenced by other logs that are generated in system execution.

In particular, an intuitive case of such influence is duplicate logs, i.e., multiple logs that have

the same text message. Even though each log itself may be impeccable, duplicate logs may affect

developers’ understanding of the dynamic view of the system. For example, as shown in Figure 1,

there are two logging statements in two different catch blocks, which are associated with the same

try block. These two logging statements have the same static text message and do not include any

other error-diagnostic information. Thus, developers cannot easily distinguish what is the occurred

1



...

} catch (AlreadyClosedException closedException) {

s_logger.warn("Connection to AMQP service is

lost.");

} catch (ConnectException connectException) {

s_logger.warn("Connection to AMQP service is

lost.");

}

...

Figure 1: An example of duplicate logging code smell that we detected in CloudStack. The duplicate

logging statements in the two catch blocks contain insufficient information (e.g., no exception type

or stack trace) to distinguish what may be the occurred exception.

exception when analyzing the produced logs. Since developers rely on logs for debugging and program

comprehension [59], such duplicate logging statements might be confusing and negatively affect

developers’ activities in maintenance and quality assurance.

Hence, in this thesis, we focus on studying duplicate logging statements in the source code to

help developers mitigate the impact as discussed in the example above and further improve logging

practices. We conducted a manual study on four large-scale open source systems, namely Hadoop,

CloudStack, ElasticSearch, and Cassandra. We first used static analysis to identify all duplicate

logging statements, which are defined as two or more logging statements that have the same static

text message. We then manually study all the (over 3K) identified duplicate logging statements and

uncovered five patterns of duplicate logging code smells. We follow prior code smell studies [8, 19], and

consider duplicate logging code smell as a “surface indication that usually corresponds to a deeper

problem in the system”. However, not all of the duplicate logging code smell are problematic and

require fixes (i.e., problematic duplicate logging code smells). In particular, context (e.g., surrounding

code and usage scenario of logging) may play an important role in identifying fixing opportunities.

Hence, we further categorized duplicate logging code smells into problematic or justifiable cases. In

addition to our manual analysis, we sought confirmation from developers on the manual analysis

result: For the problematic duplicate logging code smells, we reported them to developers for fixing.

For the justifiable ones, we communicated with developers for discussion (e.g., emails or posts on

developers’ forums).

We implemented a static analysis tool, DLFinder, to automatically detect problematic duplicate

logging code smells. DLFinder leverages the findings from our manual study, including the uncovered

2
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Figure 2: The overall process of the thesis. The term “duplicate logging statements” is referred as

“duplicate logs” for simplification.
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patterns of duplicate logging code smells and the categorization on problematic and justifiable cases.

We evaluated DLFinder on eight systems: four are from the manual study and four are new systems

(Kafka, Flink, Camel and Wicket). We also applied DLFinder on the updated versions of the four

manually studied systems. The evaluation shows that the uncovered patterns of the duplicate logging

code smells also exist in the additional systems, and duplicate logging code smells may be introduced

over time. An automated approach such as DLFinder can help developers avoid duplicate logging

code smells as systems evolve. In total, we reported 91 instances of duplicate logging code smell to

developers and all the reported instances are fixed.

Figure 2 shows the overall process of the thesis.

In summary, this thesis makes the following contributions:

• We uncovered five patterns of duplicate logging code smells through an extensive manual study

on over 3K duplicate logging statements.

• We presented a categorization of duplicate logging code smells (i.e., problematic or justifiable),

based on both our manual assessment (i.e., studying the logging statement and its surrounding

code) and developers’ feedback.

• We proposed DLFinder, a static analysis tool that integrates our manual study result and de-

velopers’ feedback to detect problematic duplicate logging code smells. We evaluated DLFinder

for both the accuracy and generalization (i.e., on new systems and on the newer versions as

systems evolve).

• We reported 91 instances of problematic duplicate logging code smells to developers (DLFinder

is able to detect 81 of them), and all of the reported instances are fixed.

Our study provides an initial step on creating a logging guideline for developers to improve the

quality of logging code. DLFinder is also able to detect duplicate logging code smells with high

precision and recall.

Thesis organization. The rest of this thesis is organized as follows: Chapter 2 surveys related work

and describes the preliminary study on duplicate logging statements including how we prepare the

data for manual study and the studied systems. Chapter 3 discusses the process and the results of our

manual study, and also developers’ feedback on our results. Chapter 4 discusses the implementation

details of DLFinder. Chapter 5 evaluates DLFinder for both the accuracy and generalization and

the threats to validity of our study. Finally, Chapter 6 concludes the thesis.

4



Chapter 2

Related Works and Preliminary

Study on Duplicate Logging

Statements

In this chapter, we survey the related works of this thesis and discuss our preliminary study on

duplicate logging statements.

2.1 Related Works

We discuss three areas of related research: studies on logging practices, improving logging prac-

tices, and code smells.

2.1.1 Studies on logging practices

Previous studies show that software logs are extensively used and analyzed for various tasks, such

as error diagnosis [73, 71], deployment verification [57], load testing [15, 28], understanding code

quality [58], security monitoring[44], program comprehension [23, 59], and performance analysis[14,

69, 45]. Comparing to their studies which provide logging understanding or solve particular problems

by analyzing logs, we aim to improve the the logging practice. Thus our work can potentially benefit

those various tasks related to logging.

There are several studies on characterizing the logging practices in software systems [72, 11, 20].

Yuan et al. [72] conducted a quantitative characteristics study on log messages for large-scale open
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source C/C++ systems. Chen et al. [11] replicated the study by Yuan et al. [72] on Java open-

source projects. Both of their studies found that log message is crucial for system understanding

and maintenance. Fu et al. [20] studied where developers in Microsoft add logging statements in

the code and summarized several typical logging strategies. They found that developers often add

logs to check the returned value of a method. Prior studies focus on studying where do people

add logging code and how often do developers modify logging code. However, these studies do not

analyze the quality of the log lines. Different from prior studies, in this thesis, we focus on manually

understanding duplicate logging code smells. We also discuss potential approaches to detect and fix

these code smells based on different contexts (i.e., surrounding code).

2.1.2 Improving logging practices

Zhao et al. [75] proposed a tool that determines how to optimally place logging statements given

a performance overhead threshold. Zhu et al. [76] provided a tool for suggesting log placement using

machine learning techniques. Yuan et al. [73] proposed an approach that can automatically insert

additional variables into logging statements to enhance the error diagnostic information. Chen et

al. [12] concluded five categories of logging anti-patterns from code changes, and implemented a tool

to detect the anti-patterns. Hassani et al. [24] identified seven root-causes of the log-related issues

from log-related bug reports.

Compared to prior studies, we study logging code smells that may be caused by duplicate logs,

with a goal to help developers improve logging code. The logging problems that we uncovered in this

study are not discovered by prior work. We conducted an extensive manual study through obtaining

a deep understanding on not only the logging statements but also the surrounding code, whereas

prior studies usually only look at the problems that are related to the logging statement itself. The

context of the logging code (i.e., the semantic and structure of the surrounding code) affects the

potential impact of logging code smells. Hence, code context of logging statements should also be

considered to precisely uncover the potential problems in log. Compared to prior studies [12, 24]

that focus on logging statement itself, we also analyze the surrounding code when we are detecting

patterns of duplicate logging code smells, such as IC and IE.

2.1.3 Code smells

Code smells can be indications of bad design and implementation choices, which may affect

software systems’ maintainability [63, 5, 61, 41], understandability [10, 4], and performance [67]. To

mitigate the impact of code smells, studies have been proposed to detect code smells [47, 46, 48, 56,

25].
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Duplicate code (or code clones) is a kind of code smells which may be caused by developers

copying and pasting a piece of code from one place to another [53, 74]. Such code clones may

indicate quality problems. There are many studies that focus on studying the impact of code

clones [30, 33, 22], and detecting them [32, 39, 55].

In this thesis, we study duplicate logging code smells, which are not studied in prior duplicate

code studies. A number of studies also investigate the prevalence and characteristics of micro-clones

(i.e., code clones of 4 or fewer lines of code) [43, 26, 27]. Some instances of the problematic duplicate

logging code smells in our study might also be micro-clones (e.g., IC, IE, and LM), however, the

impact of micro-clones on logging practice is not considered in these works. Our study might provide

insights for future studies on the relationship between micro-clones and logging practice, and the

detection of duplicate logging code smells might also help with identifying micro-clones and further

alleviate the impact of micro-clones on maintenance.

2.2 Preliminary study on duplicate logging statements

We first introduce our studied systems and then discuss how we define and identify duplicate

logging statements. Finally, we conduct a preliminary quantitative study on the prevalence of

duplicate logging statements.

2.2.1 Definition and how to identify duplicate logging statements

We define duplicate logging statements as logging statements that have identical static

text messages. We focus on studying the log message because such semantic information is crucial

for log understanding and system maintenance [59, 72]. As an example, the two following log-

ging statements are considered duplicate: “Unable to create a new ApplicationId in SubCluster" +

subClusterId.getId(), and “Unable to create a new ApplicationId in SubCluster" + id.

To prepare for a manual study, we identify duplicate logging statements by analyzing the source

code using static analysis. In particular, the static text message of each logging statement is built

by concatenating all the strings (i.e., constants and values of string variables) and abstractions of

the non-string variables. We also extract information to support the manual analysis, such as the

types of variables that are logged, and the log level (i.e., fatal, error, warn, info, debug, or trace).

Log levels represent the verbosity level of the log and can be used to reduce logging overheads in

production (e.g., only logging info level or above) [37, 72]. If two or more logging statements have

the same static text message, they are identified as duplicate logging statements. We exclude logging

statements with only one word in the static text message since those logging statements usually do

not contain much static information, and are usually used to record the value of a dynamic variable

7



Table 1: An overview of the studied systems. The top four systems are used for manual study

in Chapter 3. The bottom four systems are used for evaluating our code smell detection tool in

Chapter 5.

System Version Release date LOC Num. of Num. of Num. of Med. words Med. words

logs dup. logs dup. log sets in dup. logs in non-dup. logs

Cassandra 3.11.1 Oct. 2017 358K 1.6K 113 (7%) 46 7 7

CloudStack 4.9.3 Aug. 2017 1.18M 11.7K 2.3K (20%) 865 8 8

ElasticSearch 6.0.0 Nov. 2017 2.12M 1.7K 94 (6%) 40 6 7

Hadoop 3.0.0 Nov. 2017 2.69M 5.3K 496 (9%) 217 6 6

Camel 2.21.1 Apr. 2018 1.68M 7.3K 2.3K (32%) 886 6 6

Flink 1.7.1 Dec. 2018 177K 2.5K 1.4K (56%) 203 6 7

Kafka 2.1.0 Nov. 2018 542K 1.5K 406 (27%) 104 5 7

Wicket 8.0.0 May. 2018 381K 0.4K 45 (11%) 21 6 8

during system execution.

2.2.2 Studied Systems

Table 1 shows the statistics of the studied systems. We identify duplicate logging statements

from the top four large-scale open source Java systems in the table for our manual analysis: Hadoop,

CloudStack, ElasticSearch, and Cassandra, which are commonly used in prior studies for log-related

research [36, 12, 24]. The studied systems also use popular Java logging libraries (e.g., Log4j [2] and

SLF4J [3]). Hadoop is a distributed computing framework, which is composed of four subsystems:

Hadoop Common, Hadoop Distributed File System, YARN, and MapReduce. CloudStack is a

cloud computing platform, ElasticSearch is a distributed search engine, and Cassandra is a NoSQL

database system. These systems belong to different domains and are well maintained. In our study,

we study all Java source code files in the main branch of each system and exclude test files, since

we are more interested in studying duplicate logging statements that may affect log understanding

in production.

2.2.3 Prevalence of duplicate logging statements

Before we conduct a more detailed manual analysis on duplicate logging statements, we first

study how prevalent these duplicate logging statements are in the studied systems. Table 1 shows

that there is a non-negligible number of duplicate logs. In particular, for between 6% to 20% of all the

logging statements (94 to 2.3K duplicate logs) in each studied system, there exists at least another

8



logging statement that is a duplicate. We group the duplicate logging statements into duplicate log

sets, each set containing logging statements with the same message (see Table 1). In general, there

are 40–865 log sets in the studied systems, with an average of 2.29 to 2.66 duplicate logs per set.

Intuitively, a short log is more likely to have a duplicate. For example, short logs like “Exception

Occurred: + e” may exist in different places in the code. To study whether the duplicate logs are

merely because they are such short logs, we compare the number of words in duplicate and non-

duplicate logs (see Table 1). We find that the median number of words in duplicate logs is similar

to that of non-duplicate logs (both range from 6 to 8 words). We further conduct a Mann-Whitney

U test to determine whether the difference is statistically significant, and compute the Cliff’s delta

effect size to quantify the difference [7, 18]. We choose the Mann-Whitney U test and Cliff’s delta

because they do not have any assumptions of the sample population. We find that the number of

words in non-duplicate logs is larger than that of duplicate logs (with a p-value < 0.01 for all studied

systems). However, such differences only have a negligible [18] effect in three studied systems (Cliff’s

delta is 0.08, 0.045, 0.146 for Hadoop, Cassandra, and CloudStack, respectively), and a small [18]

effect in one studied system (Cliff’s delta is 0.27 for ElasticSearch).

There is a non-negligible number of duplicate logging statements in the studied systems (6% to

20% of all the logs). Duplicate logging statements have a similar level of semantics (i.e., number

of words) compared to non-duplicate logging statements.
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Chapter 3

Patterns for Duplicate Logging Code

Smells

In this chapter, we conduct a manual study to uncover patterns of potential code smells that

may be associated with duplicate logging statements (i.e., duplicate logging code smells). Similar

to prior code smell studies, we consider duplicate logging code smells as a “surface indication that

usually corresponds to a deeper problem in the system” [8, 19]. Such duplicate logging code smells

may be indications of logging problems that require fixes.

Furthermore, we categorize each code smell instance as either problematic (i.e., require fixes)

or justifiable (i.e., do not require fixes), by understanding the surrounding code. Not every du-

plicate logging code smell is problematic. Intuitively, one needs to consider the code context to

decide whether a code smell instance is problematic and requires fixes. As shown in prior stud-

ies [76, 20, 36], logging decisions, such as log messages and log levels, are often associated with the

structure and semantics of the surrounding code. In addition to the manual analysis, we also ask

for developers’ feedback regarding both the problematic and justifiable cases. By providing a more

detailed understanding of code smells, we may better assist developers to improve logging practices

and inspire future research.

3.1 Manual study process

We conduct a manual study by analyzing all the duplicate logging statements identified from the

studied systems. In total, we studied 1,168 sets of duplicate logging statements in the four studied

systems (more than 3K logging statements in total; each set contains two or more logging statements

with the same static message).
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The process of our manual study involves five phases:

• Phase I: We manually studied 289 randomly sampled (based on 95% confidence level and 5%

confidence interval [7]) sets of duplicate logging statements and the surrounding code to derive

an initial list of duplicate logging code smell patterns. All disagreements were discussed until

a consensus was reached.

• Phase II: We independently categorized all of the 1,168 sets of duplicate logging statements to

the derived patterns in Phase I. We did not find any new patterns in this phase. The results

of this phase have a Cohen’s kappa of 0.806, which is a substantial-level of agreement [42].

• Phase III: We discussed the categorization results obtained in Phase II. All disagreements were

discussed until a consensus was reached.

• Phase IV: We further studied all logging code smell instances that belong to each pattern

in order to identify justifiable cases of the logging code smell that may not need fixes. The

instances that do not belong to the category of justifiable are considered potentially problematic

and may require fixes.

• Phase V: We verified both the problematic instances of logging code smells and the justifiable

ones with developers by creating issue reports and pull requests, sending emails, or posting

our findings on developers’ forums such as Stack Overflow. In particular, we reported every

instance that we believe to be problematic (i.e., require fixes). We also reported a number of

instances for each justifiable category.

3.2 Patterns of duplicate logging code smells

In total, we uncovered five patterns of duplicate logging code smells. Table 2 lists the uncovered

code smell patterns and the corresponding examples. Table 3 shows the number of problematic code

smell instances for each pattern. Below, we discuss each pattern according to the following template:

Description. A description of the pattern of duplicate logging code smell.

Example. An example of the pattern.

Code smell instances. Discussions on the manually-uncovered code smell instances. We also

discuss the justifiable cases if we found any.

Developers feedback. A summary of developers’ feedback on both the problematic and justifiable

cases.

11



Table 2: Patterns of duplicate logging code smells and corresponding examples.

Name Example

Inadequate infor-

mation in catch

blocks (IC)

Inconsistent error-

diagnostic informa-

tion (IE)

Log message mis-

match (LM)

Inconsistent log

level (IL)

Duplicate log in

polymorphism

(DP)
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Table 3: Number of problematic instances (Prob.) verified by our manual study and developers’

feedback, and total number of instances (Total) including non-problematic instances.

IC IE LM IL DP

Prob. Total Prob. Total Prob. Total Prob. Total Prob. Total

Cassandra 1 1 0 1 0 0 0 3 2 2

CloudStack 8 8 4 14 27 27 0 47 107 107

ElasticSearch 1 1 0 5 1 1 0 9 3 3

Hadoop 5 5 0 0 9 9 0 17 27 27

Total 15 15 4 20 37 37 0 76 1391 139

1 Developers acknowledged the problem but we did not report all the instances, because sys-

tematic refactoring of DP would require supports from logging libraries.

3.2.1 Pattern 1: Inadequate information in catch blocks (IC)

Description. Developers usually rely on logs for error diagnostics when exceptions occur [70].

However, we find that sometimes, duplicate logging statements in different catch blocks of the same

try block may cause debugging difficulties since the logs fail to tell which exception occurred.

Example. As shown in Table 2, in the ParamProcessWorker class in CloudStack, the try block

contains two catch blocks; however, the log messages in these two catch blocks are identical. Since

both the exception message and stack trace are not logged, once one of the two exceptions oc-

curs, developers may encounter difficulties in finding the root causes and determining the occurred

exception.

Code smell instances. After examining all the instances of IC, we find that all of them are

potentially problematic and require fixes. For all the instances of IC, none of the exception type,

exception message, and stack trace are logged.

Developers’ feedback. We reported all the problematic instances of IC (15 instances) by using

pull requests. All the pull requests were accepted by developers and the fixes were integrated to the

studied systems. Developers agree that IC will cause confusion and insufficient information in the

logs, which may increase the difficulties of error diagnostics.

3.2.2 Pattern 2: Inconsistent error-diagnostic information (IE)

Description. We find that sometimes duplicate logging statements for recording exceptions may

contain inconsistent error-diagnostic information (e.g., one logging statement records the stack trace

and the other does not), even though the surrounding code is similar.
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Example. As shown in Table 2, the two classes CreatePortForwardingRuleCmd and CreateFirewallRuleCmd

in CloudStack have similar functionalities. The two logging statements have the same static text

message and are in methods with identical names (i.e., create(), not shown due to space restriction).

The create() method in CreatePortForwardingRuleCmd is about creating rules for port forwarding, and

the method in CreateFirewallRuleCmd is about creating rules for firewalls. These two methods have

very similar code structure and business logic. However, the two logging statements record different

information: One records the stack trace information and the other one only records the exception

message (i.e., ex.getMessage()). Since the two logging statements have similar context, the error-

diagnostic information recorded by the logs may need to be consistent for the ease of debugging. We

reported this example, which is now fixed to have consistent error-diagnostic information.

Code smell instances. As shown in Table 3, we find 20 instances of IE, and four of them are

considered problematic based on our understanding. From the remaining instances of IE, we find

three justifiable cases that may not require fixes.

Justifiable case IE.1: Duplicate logging statements record general and specific exceptions. For

11/20 instances of IE, we find that the duplicate logging statements are in the catch blocks of

different types of exception. In particular, one duplicate logging statement is in the catch block of a

generic exception (i.e., the Exception class in Java) and the other one is in the catch block of a more

specific exception (e.g., application-specific exceptions such as CloudRuntimeException). In all of the

11 cases, we find that one log would record the stack trace for Exception, and the duplicate log would

only record the type of the occurred exception (e.g., by calling e.getMessage()) for a more specific

exception. The rationale may be that generic exceptions, once occurred, are often not expected by

developers [70], so it is important that developers record more error-diagnostic information.

Justifiable case IE.2: Duplicate logging statements are in the same catch block for debugging pur-

poses. For 3/20 instances of IE, we find that the duplicate logging statements are in the same catch

block and developers’ intention is to use a duplicate logging statement at debug level to record rich

error-diagnostic information such as stack trace (and the log level of the other logging statement

could be error). The extra logging statements at debug level help developers debug the occurred

exception and reduce logging overhead in production [37] (i.e., logging statements at debug level are

turned off).

Justifiable case IE.3: Having separate error-handling classes. For 2/20 instances, we find that

the error-diagnostic information is handled by creating an object of an error-handling class. As an

example from CloudStack:
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public final class LibvirtCreateCommandWrapper {

...

} catch (final CloudRuntimeException e) {

s_logger.debug("Failed to create volume: "

+ e.toString());

return new

CreateAnswerErrorHandler(command, e);

}

...

}

public class KVMStorageProcessor {

...

} catch (final CloudRuntimeException e) {

s_logger.debug("Failed to create volume: ",

e);

return new

CopyCmdAnswerErrorHandler(e.toString());

}

...

}

In this example, extra logging is added by using error-handling classes (i.e., CreateAnswerErrorHandler

and CopyCmdAnswerErrorHandler) to complement the logging statements. As a consequence, the ac-

tual logged information is consistent in these two methods: One method records e.toString() in the

logging statement and records the exception variable e through an error-handling class; the other

method records e in the logging statement and records e.toString() through an error-handling class.

Developers’ feedback. We reported all the instances of IE (four in total) that we consider

problematic to developers as pull requests, all of which are accepted by developers. Moreover, we

ask developers whether our conjecture was correct for each of the justifiable cases of IE. We received

positive feedback that confirms our manual analysis on the justifiable cases.

3.2.3 Pattern 3: Log message mismatch (LM)

Description. We find that sometimes after developers copy and paste a piece of code to another

method or class, they may forget to change the log message. Hence, this results in having duplicate

logging statements that record inaccurate system behaviors.
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Example. As an example, in Table 2, the method doScaleDown() is a code clone of doScaleUp()

with very similar code structure and minor syntactical differences. However, developers forgot to

change the log message in doScaleDown(), after the code was copied from doScaleUp() (i.e., both log

messages contain scaling up). Such instances of LM may cause confusion when developers analyze

the logs.

Code smell instances. We find that there are 37 instances of LM that are caused by copying-and-

pasting the logging statement to new locations without proper modifications. For all the 37 instances,

the log message contains words of incorrect class or method name that may cause confusion when

analyzing logs.

Developers’ feedback. Developers agree that the log messages in LM should be changed in order

to correctly record the execution behavior (i.e., update the copy-and-pasted log message to contain

the correct class/method name). We reported all the 37 instances of LM that we found through pull

requests, and all of the reported instances are now fixed.

3.2.4 Pattern 4: Inconsistent log level (IL)

Description. Log levels (e.g., fatal, error, info, debug, or trace) allow developers to specify the

verbosity of the log message and to reduce logging overhead when needed (e.g., debug is usually

disabled in production) [37]. A prior study [72] shows that log level is frequently modified by devel-

opers in order to find the most adequate level. We find that there are duplicate logging statements

that, even though the log messages are exactly the same, the log levels are different.

Example. In the IL example shown in Table 2, the two methods, which are from the same

class CompactionManager, have very similar functionality (i.e., both try to perform cleanup after

compaction), but we find that the log levels are different in these two methods.

Code smell instances. We find three justifiable cases in IL that may be developers’ intended

behavior. We do not find problematic instances of IL after communicating with developers – Devel-

opers think the problematic instances identified by our manual analysis may not be problems.

Justifiable case IL.1: Duplicate logging statements are in the catch blocks of different types of

exception. Similar to what we observed in IE, we find that for 8/76 instances, the log level for a

more generic exception is usually more severe (e.g., error level for the generic Java Exception and

info level for an application-specific exception). Generic exceptions may be more unexpected to

developers [70], so developers may use a log level of higher verbosity (e.g., error level) to record

exception messages.

Justifiable case IL.2: Duplicate logging statements are in different branches of the same method.

There are 35/76 instances belong to this case. Below is an example from ElasticSearch, where a set

of duplicate logging statements may occur in the same method but in different branches.
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if (lifecycle.stoppedOrClosed()) {

logger.trace("failed to send ping transport

message", e);

} else {

logger.warn("failed to send ping transport

message", e);

}

In this case, developers already know the desired log level and intend to use different log levels due

to the difference in execution (i.e., in the if-else block).

Justifiable case IL.3: Duplicate logging statements are followed by error-handling code. There

are 18/76 instances that are observed to have such characteristics: In a set of duplicate logging

statements, some statements have log levels of higher verbosity, and others have log levels of lower

verbosity. However, the duplicate logging statement with lower verbosity log level is followed by

additional error handling code (e.g., throw a new Exception(e);). Therefore, the error is handled

elsewhere (i.e., the exception is re-thrown), and may be recorded at a higher-verbosity log level.

Developers’ feedback. In all the instances of IL that we found, developers think that IL may not

be a problem. In particular, developers agreed with our analysis on the justifiable cases. However,

developers think the problematic instances of IL from our manual analysis may also not be problems.

We concluded the following two types of feedback from developers on the “suspect” instances of IL

(i.e., 15 problematic ones from our manual analysis out of the 76 instances of IL). The first type of

developers’ feedback argues the importance of semantics and usage scenario of logging in deciding

the log level. A prior study [72] suggests that logging statements that appear in syntactically similar

code, but with inconsistent log levels, are likely problematic. However, based on developers’ feedback

that we received, IL still may not be a concern, even if the duplicate logging statements reside in very

similar code. A developer indicated that “conditions and messages are important but the context is

even more important”. As an example, both of the two methods may display messages to users. One

method may be displaying the message to local users with a debug logging statement to record failure

messages. The other method may be displaying the message to remote users with an error logging

statement to record failure messages (problems related to remote procedure calls may be more severe

in distributed systems). Hence, even if the code is syntactically similar, the log level has a reason

to be different due to the different semantics and purposes of the code (i.e., referred to as different

contexts in developers’ responses). Our findings show that future studies should consider both

the syntactic structure and semantics of the code when suggesting log levels.

The second type of developers’ feedback acknowledges the inconsistency. However, developers

are reluctant to fix such inconsistencies since developers do not view them as concerns. For example,
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we reported the instance of IL that we discussed in Table 2 to the developer. The developer replied:

“I think it should probably be an ERROR level, and I missed it in the review (could make an

argument either way, I do not feel strongly that it should be ERROR level vs INFO level.” Our

opinions (i.e., from us and prior studies [72, 37]) differ from that of developers’ regarding whether

such inconsistencies are problematic. On one hand, whether an instance of IL is problematic or

not can be subjective. This shows the importance of including perspectives from multiple parties

(e.g., user studies, discussions with developers) in future studies of software logging practice. On the

other hand, the discrepancy also indicates the need of establishing a guidance for logging practice

and further even enforcing such standard.

3.2.5 Pattern 5: Duplicate logging statements in polymorphism (DP)

Description. Classes in object-oriented languages are expected to share similar functionality if

they inherit the same parent class or if they implement the same interface (i.e., polymorphism).

Since log messages record a higher level abstraction of the program [59], we find that even though

there are no clones among a parent method and its overridden methods, such methods may still

contain duplicate logging statements. Such duplicate logging statements may cause maintenance

overhead. For example, when developers update one log message, he/she may forget to update the

log message in all the other sibling classes. Inconsistent log messages may cause problems during

log analysis [24, 1].

Example. As shown in Table 2, the two classes (PowerShellFencer and ShellCommandFencer) in

Hadoop both extend the same parent class and implement the same interface. These two classes share

similar behaviors. The inherited methods in the two classes have identical log message. However, as

the system evolves, developers may not always remember to keep the log messages consistent in the

two inherited methods, which may cause problems during system debugging, understanding, and

analysis.

Code smell instances. We find that all the 139 instances of DP are potentially problematic that

may be fixed by refactoring. In most of the instances, the parent class is an abstract class, and the

duplicate logging statements exist in the overridden methods of the subclasses. We also find that in

most cases, the overridden methods in the subclasses are very similar with minor differences (e.g.,

to provide some specialized functionality), which may be the reason that developers use duplicate

logging statements.

Developers’ feedback. Developers generally agree that DP is associated with logging code smells

and specific refactoring techniques are needed. One developer comments that:

“You want to care about the logging part of your code base in the same way as you do for business-logic

code (one can argue it is part of it), so salute DRY (do-not-repeat-yourself).”
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Resolving DP often requires systematic refactoring. However, to the best of our knowledge,

current Java logging frameworks, such as SLF4J and Log4j 2, do not support refactoring logging

statements. The way to resolve DP is to ensure that the log message of the parent class can be

reused by the subclasses, e.g., storing the log message in a static constant variable. We received

similar suggestions from developers on how to refactor DP, such as “adding a method in the parent

class that generates the error text for that case: logger.error(notAccessible( field.getName()));” , or

“creat[ing] your own Exception classes and put message details in them”. However, we find that

without supports from logging frameworks, even though developers acknowledged the issue of DP,

they do not want to manually fix the code smells. Similar to some code smells studied in prior

research [29, 60], developers may be reluctant to fix DP due to additional maintenance overheads but

limited supports (i.e., need to manually fix hundreds of DP instances). In short, logging frameworks

should provide better support to developers in creating log “templates” that can be reused in different

places in the code.

We manually uncovered five patterns of duplicate logging code smells and six justifiable cases

(for the IE and IL pattern) where the code smell instances may not need fixes. In total, our

study helped developers fix 56 problematic duplicate logging code smells in the studied systems.
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Chapter 4

DLFinder: Automatically Detecting

Problematic Duplicate Logging Code

Smells

The manual study in Chapter 3 uncovers five patterns of duplicate logging code smells, and

provides guidance in identifying problematic logging code smells. To help developers automatically

detect such problematic code smells and improve logging practices, we propose an automated ap-

proach, specifically a static analysis tool, called DLFinder. DLFinder uses abstract syntax tree

(AST) analysis, data flow analysis, and text analysis. In this chapter, we discuss how DLFinder

detects each pattern of duplicate logging code smell.

4.1 Detecting inadequate information in catch blocks (IC)

DLFinder first locates the try-catch blocks that contain duplicate logging statements. Specifically,

DLFinder finds the catch blocks of the same try block that catch different types of exceptions, and

these catch blocks contain the same set of duplicate logging statements. Then, DLFinder uses data

flow analysis to analyze whether the handled exceptions in the catch blocks are logged (e.g., record

the exception message). DLFinder detects an instance of IC if none of the logging statements in the

catch blocks record either the stack trace or the exception message.
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4.2 Detecting inconsistent error-diagnostic information (IE)

DLFinder first identifies all the catch blocks that contain duplicate logging statements. Then,

for each catch block, DLFinder uses data flow analysis to determine how the exception is logged

by analyzing the usage of the exception variable in the logging statement. Namely, the logging

statement records 1) the entire stack trace, 2) only the exception message, or 3) nothing at all.

Then, DLFinder compares how the exception variable is used/recorded in each of the duplicate

logging statements. DLFinder detects an instance of IE if a set of duplicate logging statements that

appear in catch blocks has an inconsistent way of recording the exception variables (e.g., the log in

one catch block records the entire stack trace, and the log in another catch block records only the

exception message, while the two catch blocks handle the same type of exception). Note that for

each instance of IE, the multiple catch blocks with duplicate logging statements in the same set may

belong to different try blocks. In addition, DLFinder decides if an instance of IE belongs to one of

the three justifiable cases (IE.1–IE.3). If so, the instance is marked as potentially justifiable, and

thus, excluded by DLFinder.

4.3 Detecting log message mismatch (LM)

LM is about having an incorrect method or class name in the log message (e.g., due to copy-

and-paste). Hence, DLFinder analyzes the text in both the log message and the class-method name

(i.e., concatenation of class name and method name) to detect LM by applying commonly used text

analysis approaches [16]. DLFinder detects instances of LM using four steps: 1) For each logging

statement, DLFinder splits class-method name into a set of words (i.e., name set) and splits log

message into a set of words (i.e., log set) by leveraging naming conventions (e.g., camel cases) and

converting the words to lower cases. 2) DLFinder applies stemming on all the words using Porter

Stemmer [52]. 3) DLFinder removes stop words in the log message for each system. We find that

there is a significant number of words that are generic across the log messages in a system (e.g., on,

with, and process). Hence, we obtain the stop words by finding the top 50 most frequent words (each

of our four studied systems has an average of 3,178 unique words in the static text messages) across

all log messages in a system [68]. 4) For every logging statement, between the name set (i.e., from

the class-method name) and its associated log set, DLFinder counts the number of common words

shared by both sets. Afterward, DLFinder detects an instance of LM if the number of common

words is inconsistent among the duplicate logging statements in one set.

For the LM example shown in Table 2, the common words shared by the first pair (i.e., method

doScaleUp() and its log) are “scale, up”, while the common word shared by the second pair is

“scale”. Hence, DLFinder detects an LM instance due to this inconsistency. The rationale is that
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the number of common words between the class-method name and the associated logging statement

is subject to change if developers make copy-and-paste errors on logging statements (e.g., copy the

logging statement in doScaleUp() to method doScaleDown()), but forget to update the log message

to match with the new method name “doScaleDown”. However, the number of common words will

remain unchanged (i.e., no inconsistency) if the logging statement (after being pasted at a new

location) is updated respectively.

4.4 Detecting inconsistent log level (IL)

DLFinder detects an instance of IL if duplicate logging statements in one set (i.e., have the

same static text message) have inconsistent log level. Furthermore, DLFinder checks whether an

instance of IL belongs to one of the three justifiable cases (IL.1–IL.3). If so, the instance is marked

as justifiable and DLFinder excludes this instance in the detection result.

4.5 Detecting duplicate logs in polymorphism (DP)

DLFinder generates an object inheritance graph when statically analyzing the Java code. For

each overridden method, DLFinder checks if there exist any duplicate logging statements in the

corresponding method of the sibling and the parent class. If there exist such duplicate logging

statements, DLFinder detects an instance of DP. Note that, based on the feedback that we received

from developers (Chapter 3), we do not expect developers to fix instances of DP. DP instances can

be viewed more as technical debts [35] and our goal is to propose an approach to detect DP instances

to raise the awareness from the research community and developers regarding this issue.
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Chapter 5

An Evaluation of DLFinder and

Threats to Validity

In this chapter, we evaluate our tool by answering three research questions.

5.1 RQ1: What is the accuracy of DLFinder detecting du-

plicate logging code smells in the four manually studied

systems?

5.1.1 Motivation

DLFinder was implemented based on the duplicate logging code smells uncovered from the four

manually studied systems. Since we obtain the ground truth (i.e., problematic code smells) in these

four systems from our manual study, the goal of this RQ is to evaluate the detection accuracy of

DLFinder.

5.1.2 Approach

We applied DLFinder on the same versions of the systems that we used in our manual study

(Chapter 3). We calculated the precision and recall of DLFinder in detecting problematic duplicate

logging code smells. Precision is the percentage of problematic code smell instances among all the

detected instances, and recall is the percentage of problematic code smell instances that DLFinder

is able to detect.
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5.1.3 Results and discussion

The first five rows of Table 4 show the results of RQ1. Note that all the numbers in Table 4

show instances of problematic code smells which require fixes since DLFinder focuses on detecting

problematic ones and excludes the justifiable cases. For the patterns of IC, IE, and DP, DLFinder

detects all the problematic instances of duplicate logging code smells (100% in recall) with a precision

of 100%. For the IL pattern, since we do not find any problematic instances (as discussed in

Chapter 3), both of the columns of problematic instances in ground truth (Pro.) and detected

(T.Det.) in Table 4 are 0.

For the LM pattern, DLFinder achieves a recall of 83.8% (i.e., DLFinder detects 31/37 problem-

atic LM instances). We manually investigate the six instances of LM that DLFinder cannot detect.

We find that the problem is related to typos in the log message. For example, developers may write

“mlockall” instead of “mLockAll”. Hence, the text in the log message cannot be matched with the

method name when we split the word using camel cases. The precision of detecting problematic LM

instances is modest because, in many false positive cases, the log messages and class-method names

are at different levels of abstraction: The log message describes a local code block while the class-

method name describes the functionality of the entire method. For example, encodePublicKey() and

encodePrivateKey() both contain the duplicate logging statement “Unable to create KeyFactory” .

The duplicate logging statement describes a local code block that is related to the usage of the Key-

Factory class, which is different from the major functionalities of the two methods (i.e., as expressed

by their class-method names). Nevertheless, DLFinder detects the LM instances with a high recall,

and developers may quickly go through the results to identify the true positives (it took the author

of this thesis less than 10 minutes on average to go through the LM result of each system to identify

true positives).

To further evaluate our detection approach for LM, we compare our detection results with a

baseline. We use random prediction algorithm as our baseline, which is commonly used as the

baseline in prior studies [66, 65, 64]. The random prediction algorithm predicts the label of an item

(i.e., whether a set of duplicate logging statements belong to LM) based on the distribution of the

training data. For each system, we use our manually labeled results (which are discussed and verified

in the previous chapters) as the training data. Note that we only compare the detection results of

LM with the baseline. The reason is that pattern IC, IE, IL, and DP are relatively independent and

well-defined, unlike LM which depends on the semantics of the logging statement and its surrounding

code. We repeat the random prediction 30 times (as suggested by previous studies [21, 17]) for each

system to reduce the biases. Finally, we report the average precision and recall that are computed

based on the 30 times of iterations. Figure 3 and Figure 4 shows how the precision and recall of

our approach compared to that of the baseline. The average precision and recall for the baseline
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are 3.47% and 4.03%, respectively, for the four studied systems. Our detection approach achieves a

precision and recall of 12.4% and 83.8%, respectively. In short, our approach is significantly better

than the baseline and is able to have a very high recall in the four manually studied systems.

5.2 RQ2: What is the accuracy of DLFinder detecting dupli-

cate logging code smells in additional studied systems?

5.2.1 Motivation

The goal of this RQ is to study whether the uncovered patterns of duplicate logging code smells

are generalizable to other systems.

5.2.2 Approach

We applied DLFinder to four additional systems that are not included in the manual study in

chapter 3: Camel, Flink, Kafka, and Wicket, which are all large-scale open source Java systems.

Details of the systems are presented in Table 1. Similar to our manual study, we manually collect

the problematic duplicate logging code smells in the additional systems, i.e., the ground-truth used

for calculating the precision and recall of DLFinder. Note that the collected ground-truth of the

additional systems is only used in this evaluation, but not in designing the patterns in DLFinder.

(There are also no new patterns found in this process.)

5.2.3 Results and discussion

The second half of Table 4 shows the results of the additional systems. In total, we found 26

problematic code smell instances (DLFinder detects 22) in these systems and all of them are reported

and fixed. Compared to the four systems in RQ1, DLFinder has similar precision and recall values

in the additional systems. DLFinder detected three instances of IL in Camel; however, based on the

manual investigation and developers’ feedback, these IL instances are not problematic. Similar to

what we discuss in Chapter 3, the differences in the log level are related to having different semantics

in the code. Different from a prior study [72], we found that all IL instances are not problematic

in the eight evaluated systems. Future studies are needed to investigate the effect of IL. DLFinder

detects DP instances with 100% in recall and precision; however, developers are reluctant to fix them

due to limited support from logging frameworks. Nevertheless, the patterns of duplicate logging code

smells that we uncovered can still be found in other systems.

DLFinder achieves good precision and recall in the additional systems. Similar to our observation

in RQ1, we find that DLFinder cannot detect some LM instances due to typos in log message. We also
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compare our LM detection results with the baseline mentioned in RQ1 using the same approach. The

average precision and recall for DLFinder are 11.6% and 81.8%, respectively, which are considerably

better than the precision (1.75%) and recall (1.55%) of the baseline. In summary, apart from the

manually studied systems in RQ1, DLFinder also achieves noticeably better precision and recall

than the baseline and is able to have a reasonably high recall in the additional systems.

5.3 RQ3: Are new code smell instances introduced over time?

5.3.1 Motivation

The purpose of this RQ is to investigate whether new duplicate logging code smells instances are

introduced during the evolution of systems.

5.3.2 Approach

We applied DLFinder on the latest versions of the four studied systems, i.e., Hadoop, CloudStack,

ElasticSearch, and Cassandra, and compare the results with the ones on previous versions. The gaps

of days between the manually studied versions and the new versions vary from 77 days to 297 days.

5.3.3 Results and discussion

Table 5 shows that new instances of code smells are introduced during software evolution. These

detected code smell instances are all problematic and are all reported and fixed (except for DP). As

mentioned in Chapter 3 and 4, our goal of detecting DP is to show developers the logging technical

debt in their systems. In short, we found that duplicate logging code smells are introduced over

time, and an automated approach such as DLFinder can help developers avoid duplicate logging

code smells as the system evolves.

The duplicate logging code smells exist in both manually studied and additional systems. In

total, DLFinder is able to detect 81 out of 91 problematic code smell instances. We also find

that new instances of logging code smells are introduced as systems evolve.

5.4 Threats to Validity

In this chapter, we discuss the threats to validity of this thesis.
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compared with the baseline (random prediction).
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Table 5: The result of RQ3: applying DLFinder to the newer versions of the studied systems. Gap.

shows the duration of time in days between the original (Org.) and the newer release (New.)

Releases IC IE LM IL DP

Org., New. Gap.

Cassandra 3.11.1, 3.11.3 294 0 0 0 0 1

CloudStack 4.9.3, 4.11.1 297 5 0 2 0 0

ElasticSearch 6.0.0, 6.1.3 77 0 0 0 0 0

Hadoop 3.0.0, 3.0.3 208 0 0 2 0 21

Total - - 5 0 4 0 22

5.4.1 Construct Validity

A potentially more intuitive approach for detecting duplicate logging statements may rely on code

clone detection tools such as CCFinder [32] and CCLearner [38]. However, it is not clear if duplicate

logging statements are indeed associated with code clones. Moreover, the performance of clone

detection tools is dependent on the thresholds [54, 34, 50, 40]. Choosing the optimal thresholds

is a non-trivial task and the value may differ across systems [62]. Future works are needed for

investigating the relationship between duplicate logging statements and code clones.

5.4.2 Internal validity

We define duplicate logging statements as two or more logging statements that have the same

static text message. We were able to uncover five patterns of duplicate logging code smells and detect

many code smell instances. However, logging statements with non-identical but similar static texts

may also cause problems to developers. Future studies should consider different types of duplicate

logging statements (e.g., logs with similar text messages). We conducted manual studies to uncover

the patterns of code smells, study their potential impact and examine duplicate logging statements

that are not classified by the automated clone detection tool as clones. To avoid biases, we examine

the data independently. For most of the cases we reach an agreement. Any disagreement is discussed

until a consensus is reached. In order to reduce the subjective bias, we have contacted the developers

to confirm the uncovered patterns and their impact. We only do exact match for log message when

we are identifying duplicate logging statements, and we are able to get a large set of results. However
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logs with slight differences may still cause confusion to operators. Future works might apply fuzzy

match to possibly uncover more potential problems under logging practices.

5.4.3 External validity

We conducted our study on four large-scale open source systems in different domains. We found

that our uncovered patterns and the corresponding problematic and justifiable cases are common

among the studied systems. However, our finding may not be generalizable to other systems. Hence,

we studied whether the uncovered patterns exist in four other systems. We found that the patterns

of code smells also exist in these four systems and we did not find any new code smell patterns in

our manual verification. Our studied systems are all implemented in Java, so the results may not

be generalizable to systems in other programming languages. Future studies should validate the

generalizability of our findings in systems in other programming languages.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarize process and contributions discussed in this thesis. In addition, we

propose potential future works that might be complementary to this thesis for better understanding

duplicate logging statements and improving logging practices.

6.1 Summary of the thesis

Duplicate logging statements may affect developers’ understanding of the system execution. In

this thesis, we study over 3K duplicate logging statements in four large-scale open source systems

(Hadoop, CloudStack, ElasticSearch, and Cassandra). We uncover five patterns of duplicate logging

code smells. Further, we assess the impact of each code smell and find not all are problematic and

need fixes. In particular, we find six justifiable cases where the uncovered patterns of duplicate

logging code smells may not be problematic. We received confirmation from developers on both

the problematic and justifiable cases. Combining our manual analysis and developers’ feedback,

we developed a static analysis tool, DLFinder, which automatically detects problematic duplicate

logging code smells. We applied DLFinder on the four manually studied systems and four additional

systems. In total, we reported 91 problematic code smell instances in the eight studied systems to

developers and all of them are fixed. DLFinder successfully detects 81 out of the 91 instances.

This thesis highlights the importance of the context of the logging code, i.e., the nature of

logging code is highly associated with both the structure and the functionality of the surrounding

code. Future studies should consider the code context when providing guidance to logging practices,

more advanced logging libraries are needed to help developers improve logging practice and to avoid

logging code smells.
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6.2 Future work

This thesis makes a major contribution towards the goal of improving logging practices. However,

there are many open challenges and research opportunities that may complement this work and

further provide a logging guideline for developers to improve the quality of logging code. We now

highlight some aspects for future work.

6.2.1 Investigating the relationship between duplicate logging statements

and code clones

During the process of our manual analysis in this thesis, we noticed that some duplicate logging

statements or duplicate logging code smells may be related to code clones. Code clone or duplicate

code is considered a bad programming practice and an indication of deeper maintenance problems.

Prior studies focus on the detection of code clones by applying text-based approaches or abstract

syntax tree analysis on program source code. However, these studies did not study code clones from

the perspective of logging code. Logging statements might also be copied along with other code

since cloning is often performed hastily without much attention on the context. Some cloned logging

statements (e.g., the LM logging code smell discussed in this thesis) may fail to correctly record the

runtime behaviors; and thus, increase maintenance difficulties. Hence, a formal investigation of the

relationship between duplicate logging statements and code clones might be needed for improving

logging practices, and may inspire future code clone studies.

6.2.2 Examining the impact of similar logging statements on logging prac-

tice

In this thesis, we apply exact matching on log messages to identify duplicate logging statements.

However, even though each log itself may be impeccable, similar logs may also affect the analysis of

logs (e.g., log searching). Similar logs might be generated from logging statements that are highly

similar, but with minor differences in static messages or dynamic variables. Future work may apply

some specific techniques (e.g., clustering) to characterize similar logging statements and provide an

approach to better distinguish them then further help improve logging practices.

6.2.3 Better leveraging the semantic and structural information of log-

ging statements

As we discussed in this thesis, the semantic and structural information of the code is crucial for

making logging decisions. Bad logging decision that does not properly leverage those information
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may cause confusing logs that affect maintenance (e.g., the LM logging code smell). Hence, code

context of logging statements should also be considered for future work to precisely uncover potential

problems in logs and improve logging practices.
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