
 

 
 

Numerical Investigation of Chemical Reactivity Effects on 

the Formation of Gaseous Oblique Detonation Waves 

 

 

Chian Yan 

 

 

A Thesis 

in 

The Department 

of  

Mechanical, Industrial and Aerospace Engineering 

 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science (Mechanical Engineering) at 

Concordia University 

Montreal, Quebec, Canada 

 

 

 

July 2019 

© Chian Yan, 2019 



 

ii 
 

CONCORDIA UNIVERSITY 
 

This is to certify that the thesis prepared  

By:  Chian Yan                                                                                 a 

Entitled: Numerical Investigation of Chemical Reactivity Effects on the 
Formation of Gaseous Oblique Detonation Waves                   a                   

and submitted in partial fulfillment of the requirements for the degree of 

         Master of Applied Science (Mechanical Engineering)       a  

complies with the regulations of the University and meets the accepted 
standards with respect to originality and quality. 

Signed by the final examining committee 

             Dr. Carole El Ayoubi                                          aChair 

Dr. Fuzhan Nasiri                                                aExaminer 

Dr. Charles Kiyanda                                           aExaminer 

Dr. Hoi Dick Ng                                                 aThesis Supervisor(s) 

 

Approved by                                                                                              a 
Chair of Department or Graduate Program Director   

 
 

                                                                                             a 
                     Dean of Engineering and Computer Science 

 Date         July 23, 2019                                                            a                                                                                

School of Graduate Studies 

 



 

iii 
 

Abstract 
Numerical Investigation of Chemical Reactivity Effects on 

the Formation of Gaseous Oblique Detonation Waves 

Chian Yan 

The concept of using oblique detonation waves for high efficiency propulsion systems 

have recently generated great interest in the development of air-breathing hypersonic 

aircraft due to their potential increased thermal efficiency through detonative 

combustion. However, for the proper design of an Oblique Detonation Wave Engine 

(ODWE), it is critical to predict the necessary conditions and understand the formation 

mechanism of oblique detonation waves. In this study, numerical simulations using a 

Graphics Processing Unit (GPU)-based solver are performed to investigate oblique 

detonations induced by a two-dimensional, semi-infinite wedge using the reactive Euler 

equations coupled with one-step Arrhenius or two-step induction-reaction kinetics. The 

novelty of this work lies in the analysis of chemical reaction sensitivity on the two types 

of oblique detonation formation, namely, the abrupt onset with a multi-wave point and 

a smooth transition with a curved shock. Scenarios with various inflow Mach number 

regimes M0 and wedge angles θ are considered. The conditions for these two formation 

types are described quantitatively by the obtained boundary curves in M0−Ea and M0−kR 

spaces. At a low M0, the critical conditions for the transition are independent of the 

wedge angle. At a high flow Mach number regime with M0 above approximately 9.0, 

the boundary curves for the three wedge angles deviate substantially from each other. 

The overdrive effect induced by the wedge becomes the dominant factor on the 

transition type. For large Ea the flow in the vicinity of the initiation region and 

subsequent ODW surface also exhibit more complex features.  
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Chapter 1 Introduction 

1.1 Fundamentals of detonations 

The detonation phenomenon is the violent mode of combustion. It is a combustion-

driven compression wave propagating at supersonic speed. Across a detonation, the 

pressure increases significantly; the temperature rise due to the adiabatic compression 

initiates the chemical reaction and the energy release and the expansion of the 

combustion products makes the detonation to be self-sustained. Detonations can occur 

in the form of solid, liquid and gases; the velocity propagating through the first two 

kinds of media are considerably much higher than the last one (Fickett & Davis 1979).  

The detonation wave was formally observed and measured by Berthelot & Vieille 

and distinguished this distinct combustion mode by Mallard and Le Châtelier in the 

1880s. The mathematical theory of detonation was first developed respectively by 

Chapman (1899) and by Jouguet (1905), which is now known as the Chapman-Jouguet 

(CJ) detonation. Their analysis is based on a control volume approach with 

thermodynamic equilibrium. To seek a unique solution of the conservation laws to 

determine both the detonation velocity and the states behind it, the Chapman-Jouguet 

condition requires that the particle velocity in shock-fixed frame reaches sonic velocity 

when the chemical reaction ends, i.e., fully burned products leaving the control volume 

enclosing the detonation wave. In a p-v diagram, this condition represents the tangency 

point between the Rayleigh line and the combustion product Hugoniot as shown in 

Figure 1.1. It is shown that the prediction by CJ detonation condition usually provides 

a result within 2% error compared with experimental results.  
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Figure 1.1 p-v diagram and the Chapman-Jouguet condition. 

 

 
Figure 1.2 ZND description of the detonation structure. 

 

The steady structure of a detonation wave was described in the 1940s 

independently by Zel'dovich (1940), von Neumann (1942), and Döring (1943), which 

(𝑝𝑝0,𝑣𝑣0) 
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has come to be known as the ZND model, see Figure 1.2. The classic ZND model 

describes the detonation as a structure consisted of an inert normal shock followed by 

a chemical reaction zone. The post-shock condition (or von Neumann state) triggers the 

chemical reaction and after a thermally neutral induction zone, the exothermic chemical 

reaction proceeds. The flow within the reaction zone is subsonic. At the end of the 

reaction zone, the flow reaches locally sonic in accordance to the Chapman-Jouguet 

condition. The importance of the ZND model is that it provides the basic propagation 

mechanism, i.e., the detonation is sustained by the chemical energy release caused by 

auto-ignition via adiabatic shock compression and the work done by the expansion 

behind the shock front.  

However, the ideal ZND model postulates that the detonation wave is of steady 

one-dimensional configuration and the structure predicted by this one-dimensional 

theory is seldom observed. The non-linear, intrinsic oscillatory behavior of one-

dimensional detonations with simple chemistry has also been shown numerically by 

Fickett & Wood (1966) using the method of characteristics. Since then, more thorough 

studies on one-dimensional pulsating detonations have been carried out by numerous 

researchers, e.g., Bourlioux et al. 1991, 1992; He & Lee 1995; Sharpe & Falle 2000; 

etc. Theoretical hydrodynamic stability analyses have shown that the steady ZND 

structure is inherently unstable to small perturbations (Erpenbeck 1962, 1964; Lee & 

Stewart 1990; Sharpe 1997; Short & Stewart 1998). Both direct numerical simulations 

(Taki & Fujiwara 1978; Oran et al. 1982, 1988; Lefebvre & Oran, 1995; Fujiwara & 

Reddy, 1989; Bourlioux & Majda, 1992; Tsuboi et al. 2002; Williams et al. 1997; 

Kailasanath et al. 1985; Sharpe 2001) and experimental visualization results (White 

1961; Strehlow et al. 1967; Oppenheim 1985; Austin et al. 2005) revealed that gaseous 

detonations were always unstable and three-dimensional. The unsteady detonation 

structure consists of an ensemble of interacting transverse shock waves sweeping back 

and forth across the leading front, see Figure 1.3. Similar to the classical supersonic 

flows (Courant & Friedrichs 1948), the mutual interactions of these shocks form the 

classical triple shock Mach interaction configuration. The trajectories of these triple 
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points can be recorded on a smooth surface coated with a carbon soot deposit and have 

a characteristic fish scale or cellular pattern as the detonation propagates by it as shown 

in Figure 1.4. These interactions give rise to what we refer to as cellular detonation 

instability − a manifestation of the instability of the front caused by the unsteady 

coupling between the chemical reactions and the gas dynamic flow field.  
 

      

Figure 1.3 Numerical results showing the schlieren plot and soot foil of cellular detonation. 

 
Figure 1.4 Schlieren photograph and smoked foil showing the cellular structure for 2H2 + O2 + 

2Ar detonation (Radulescu 2003; Strehlow 1969). 

 

In spite of the extensive efforts to study the behavior of detonations thus far, it 

remains un-resolved to fully understand the coupled chemical hydrodynamic 

interactions responsible for the self-sustained detonation formation and its dynamic 

cellular structure (Lee 2008). This stems mainly from the fact that the associated 

phenomena are highly complex and involve many aspects of combustion and gas 

dynamic processes. The initiation mechanism, the role of instability and the detailed 
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chemical kinetics processes within the reaction zone structure are the key ingredients 

and understand their influences are crucial so that the detonation structure can be 

correctly characterized. 

Fundamental aspects and outstanding issues of detonations can be found in the 

comprehensive monograph by Lee (2008). Other comprehensive discussions on recent 

detonation modeling can be found in recent reviews (Shepherd 2009; Oran 2015). 

 

1.2 Propulsion applications using detonative combustion 

Traditionally, the detonation phenomenon is of main concern to many safety 

engineering applications and industrial processes in the chemical and energy sectors 

due to its pressure and temperature rise, causing damage and causalities. The detonation 

research primarily focuses on the ability to predict the detonation explosives, the 

initiation of detonation, and the limits that are critical to proper risk rate of chemical 

facilities, prevention of unexpected accidence and the transportation safety for 

hazardous materials (Ng & Lee 2008). In recent years, however, the focus has shifted 

to the use of the energy release by this supersonic, self-sustained, combustion-driven 

wave. The detonative combustion is progressively turning into a viable option for the 

development of advanced air-breathing hypersonic propulsion systems which harness 

the conditions generated by this combustion mode to achieve a high thermal cycle 

efficiency (Kailasanath 2003; Wolanski 2013). Examples include the concept of Pulse 

Detonation Engines (PDEs) and continuous detonation engines such as rotating 

detonation and oblique detonation engine devices. The latter is the focus of this thesis. 

These engines produce either short bursts or continuous thrusts and can be used for 

commercial, military and space flight purposes. Compared to jet engines, they have 

higher efficiency and can operate at hypersonic speeds. These PDEs also have simpler 

concepts of design which involve almost few moving parts; therefore, they have higher 

reliability and lower maintenance costs (Roy et al. 2004). 
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1.3 Oblique detonation wave (ODW) 

Among different detonation-based propulsion concepts, oblique detonation wave 

(ODW) has been studied and given rise to the development of Oblique Detonation 

Wave Engines (ODWEs) (Wolanski 2013) and Ram Accelerators (Hertzberg et al. 1991; 

Higgins 2006). This class of propulsion systems not only keeps the advantages of the 

supersonic combustion ramjet (Scramjet), but also manages a high efficiency in thermal 

cycle through the detonation mode of combustion (Alexander et al. 2008; Chan et al. 

2010). The oblique detonation propulsion concept has thus great potentials for 

applications in hypersonic conditions.  

 

 

Figure 1.5 Oblique detonation initiation by a hypersonic projectile (Maeda et al. 2012). 
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In the 1960-70s, the oblique detonation wave has been researched in detail by 

launching a hypersonic blunt projectile into combustible mixtures (McVey & Toong 

1971; Lehr 1972). These studies focus primarily on the conditions required to initiate 

an oblique detonation wave in the combustible mixture. Depending on the test 

conditions such as the projectile speed and mixture initial conditions, different 

combustion regimes were observed around the blunt body, e.g., a prompt or delayed 

ODW, combustion instabilities, a wave splitting, or an inert shock wave Criteria based 

on the energetic and chemical kinetic limits are proposed to predict the conditions and 

interpret the observed flow field regimes in terms of competing reactions and flow-

quenching effects, e.g., Kaneshige & Shepherd (1996); Lee (1997); Ju et al. (1998a, b); 

Kasahara et al. (2001); Verreault & Higgins (2011); Maeda et al. (2012), see Figure 

1.5. 

However, for a more practical configuration for propulsion engine operation, an 

oblique detonation wave can be induced by a wedge in an incoming reactive flow 

(Adelman et al. 1988; Cambier et al. 1990; Viguier et al. 1996; Morris et al. 1998). A 

schematic of an ODW engine and the wedge-induced oblique detonation is shown in 

Figure 1.6. The supersonic inflow of the pre-mixed combustible gas induces the 

oblique detonation wave from the wedge. In general, an oblique shock wave (OSW) 

first forms when the flow interacts with the wedge, and that ignites the combustible 

reactants. In a short period of time, the oblique shock wave subsequently transits into 

an oblique detonation wave (ODW). Such standing oblique detonation wave 

configuration attached to the wedge tip presents a practical configuration for engine 

operation. For applications in propulsion systems, it is vital to determine whether the 

formation of the standing oblique detonation wave is robust and whether its structure 

can always be stabilized over a wedge at a desirable location. Due to the strong coupling 

sensitivity between fluid dynamics and chemical reactions, as well as the inherent 

unstable nature of the detonation wave, in fact it remains technically challenging to 

establish the steady oblique detonations in high-speed combustible mixtures for 

practical propulsion applications, and such success requires fundamental understanding 
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of the oblique detonation structure and its unsteady formation process. 
 

 

Figure 1.6 a) Sketch of an oblique detonation engine; and b) the ODW induced by a wedge. 

 

In the literature a wealth of research studies on oblique detonations can be found. 

There has been indeed a remarkable progress in understanding the fundamental aspects 

of oblique detonation waves induced by a semi-infinite, two-dimensional wedge. For 

instance, analytical solutions such as wave angles and steady structures as the basic 

foundation were sought in a number of pioneering works using detonation polar 

analysis by approximating the ODW as an oblique shock wave (OSW) coupled with an 

instantaneous post-shock heat release (Gross 1963; Pratt et al. 1991; Ashford & 

Emanuel 1994; Emanuel & Tuckness 2004). In later studies, using numerical simulation 

Li et al. (1994) revealed that the multi-dimensional oblique detonation structure 

consists of a non-reactive oblique shock, an induction region, a set of deflagration 

waves, and an oblique detonation surface, all united on a multi-wave point giving rise 

to a λ-like formation ODW structure as shown in Figure 1.7. Such classical structure 

was verified from experiments, and is often considered as the standard model of oblique 

detonations. As the propagation of all multi-dimensional, gaseous detonation waves is 

inherently unstable (Lee 2008; Ng & Zhang 2012), the formation of cellular structure 
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and fine scale instability on the established oblique detonation surface are also revealed 

numerically downstream of the kink-like oblique shock-to-detonation transition (Choi 

et al. 2007; Gui et al. 2011, 2012). Nevertheless, later studies had revealed that there 

exists other type of transition structures due to various complicated unsteady processes. 

Particularly, Vlasenko & Sabelnikov (1995) and Da Silva et al. (2000) showed that the 

shock-to-detonation transition may occur smoothly by a curved shock, rather than 

occurring in a multi-wave interaction point, also see Figure 1.7. 

 

 
Figure 1.7 A schematic of the computational details and ODW phenomena. 

 

With the advance in scientific computing using parallel Central Processing Units 

(CPUs) and Graphics Processing Units (GPUs) computing technology (Vanka 2013; 

Betelin et al. 2017), there has been significant advance in investigating in detail the 

unsteady oblique detonation formation and its structure. Using high-resolution 

numerical simulations, various peculiar formation structures of wedge-induced oblique 

detonation waves, i.e., the transition from the oblique shock wave (OSW) to the oblique 

detonation wave (ODW), have been revealed in recent investigations e.g., 

(Papalexandris 2000; Teng & Jiang 2012; Liu et al. 2016; Wang et al. 2015). Hysteresis 

phenomenon of the ODW structure related to initial condition and ODW responses 

subject to inflow non-uniformities and turbulences have also been investigated (e.g., 

Iwata et al. 2017; Zhang et al. 2018). 
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Among all the ODW studies, the two aforementioned fundamental formation 

structure, namely, the abrupt transition from OSW to ODW where a nonreactive oblique 

shock, a set of deflagration waves, and the oblique detonation surface, all united on a 

multi-wave point; and the smooth transition characterized by a smoothly curved shock 

have been carefully performed using numerical simulations (Vlasenko & Sabelnikov 

1995; Papalexandris 2000; Da Silva et al. 2000; Teng & Jiang 2012). These numerical 

simulations indicate that the type of transition processes depends on both chemical and 

aerodynamic parameters. Although it is qualitatively found that the smooth transition 

usually appears in the cases with a high Mach number and weak chemical sensitivity 

with a low activation energy of the reactive mixture, the quantitative conditions are yet 

to be fully determined. 

 

1.4 Objective of the thesis 

In this work, a parametric numerical study is presented to address the effect of 

chemical reaction sensitivity and length scales on the ODW initiation structure. 

Following previous studies, the ODW phenomena are simulated using an ideal-gas, 

reactive flow model given by the inviscid Euler equations with one-step irreversible 

Arrhenius or two-step induction-reaction kinetics (Ng et al. 2005; Yang et al. 2018; 

Tang-Yuk et al. 2018). Although numerical simulations using complex chemistry with 

detailed chemical reaction rates are nowadays possible with increasing computational 

resources, it remains challenging to fully interpret the tremendous amount of chemical 

kinetic and flow field information that is generated from the computation. Hence, for a 

fundamental contribution, this idealized model is shown to provide key results 

elucidating the underlying physics of the ODW dynamics. In addition, the two-step 

induction-reaction kinetics, consisting of a thermally neutral induction step followed 

by a main heat release reaction layer, provides a compromise on the detailed chemistry 

model. It retains the simplicity of global kinetics but is detailed enough to mimic salient 
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features of real combustion governed by chain-branching kinetics, allowing the 

introduction of two length scales, i.e., induction and reaction lengths, apart from the 

temperature sensitivities governed by the activation energy (Ng et al. 2005). In this 

parametric study, computations were carried out over a wide range of activation energy 

Ea (non-dimensionalized with respect to the initial pre-shock state) from 20 to 60 using 

the one-step Arrhenius kinetics, heat release rate constant kR from 1 to 10 for the two-

step kinetics, three wedge angles θ and different inflow Mach number M0. It is worth 

noting that the high Ea regime considered in this work has not been explored thoroughly 

in any previous studies due to the numerical resolution requirement. Boundaries 

separating the two aforementioned transition types are obtained and new features 

resulting from the effect of high activation energy on the flow structure in the vicinity 

of the ODW initiation region and the fully developed ODW unstable surface are 

discussed in detail. 

 

1.5 Thesis outline 

Current chapter of this thesis is an introduction for some basic concepts and 

background information of the related literature. Also in this chapter, a preamble of the 

methodology applied in this research and the objective are given. Chapter 2 gives the 

detailed description of the physical model and numerical method used in the 

computation. Chapter 3 presents the results of numerical simulations and analyses of 

the outcomes. The final Chapter 4 concludes this investigation and provides suggestions 

for future works. 

1.6 Contribution to knowledge 

This investigation contributes, using numerical simulations, to the understanding 

of the effect of chemical reaction kinetics on the formation process of oblique 

detonation waves induced by a semi-infinite, two-dimensional wedge.  The results 
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identify quantitatively the kinetic conditions distinguishing two OSW-ODW transition 

process, namely the abrupt and smooth transition as shown in Figure 1.7.  

This thesis includes published works in Aerospace – An open Access Journal of 

aeronautics and astronautics published by MDPI with the following reference: 

• Yan, C., Teng, H., Mi, X.C. and Ng, H.D. The effect of chemical reactivity on 

the formation of gaseous oblique detonation waves. Aerospace (MDPI), 2019, 

6(6), 62. [https://doi.org/10.3390/aerospace6060062] 
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Chapter 2 Formulations and Numerical Methods 

Throughout this thesis, numerical simulation is used as the research methodology. 

It is of great importance to formulate the relevant physical model and evaluate the 

numerical technique applied in current simulation of the compressible reactive flow. 

Hence, in this chapter, governing equations are introduced and numerical methods 

consisting of the HLLC approximate Riemann solver with MUSCL-Hancock 

reconstruction for approximating solutions of those equations are discussed. The 

numerical solver is implemented using NVIDIA CUDA framework and run on 

Graphical Processing Unit (GPU) hardware Tesla K40 to achieve high computing 

performance and acceleration. 

 

2.1 Governing equations 

For the numerical simulation performed in this thesis, an ideal model based on 

Euler equations is chosen to describe the gas flow in the system. In reality, the model 

should be viscousk, which brings viscosity, to capture shock thickness and other 

dissipative effects. However, due to all the conditions we investigate are at relatively 

high Reynolds number, thus we can indeed consider the viscous effects negligible. For 

the high Mach number flow, diffusion effects are also neglected due to the time scale 

of the phenomenon involved. In fact, the viscous and diffusive effects are shown to 

have insignificant influence on the overall ODW structure by Li et al. (1993). To mimic 

chemical reaction of the combustible mixture, both a one-step global reaction with an 

Arrhenius rate law and a two-step induction-reaction model are used.  

Neglecting the viscous and diffusive effects, the governing equations for the ODW 

flow dynamics are thus simplified into the reactive Euler equations as follows: 
  

𝜕𝜕𝐔𝐔
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐅𝐅(𝐔𝐔)
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐆𝐆(𝐔𝐔)
𝜕𝜕𝜕𝜕

= 𝐒𝐒(𝐔𝐔) 
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𝐔𝐔 =

⎝

⎜
⎛

𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌λ⎠

⎟
⎞

,   𝐅𝐅(𝐔𝐔) =

⎝

⎜
⎛

𝜌𝜌𝜌𝜌
𝜌𝜌𝑢𝑢2 + 𝑝𝑝
𝜌𝜌𝜌𝜌𝜌𝜌

(𝜌𝜌𝜌𝜌 + 𝑝𝑝)𝑢𝑢
𝜌𝜌𝜌𝜌λ ⎠

⎟
⎞

,   𝐆𝐆(𝐔𝐔) =

⎝

⎜
⎛

𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌

𝜌𝜌𝑣𝑣2 + 𝑝𝑝
(𝜌𝜌𝜌𝜌 + 𝑝𝑝)𝑣𝑣

𝜌𝜌𝜌𝜌λ ⎠

⎟
⎞

,   𝐒𝐒(𝐔𝐔) =

⎝

⎜
⎛

0
0
0
0
𝜌𝜌ω̇⎠

⎟
⎞

   

 

where the U is the conserved variable, F and G are the convective fluxes and S is 

reactive source term. For the polytropic equation of state e is the total energy per unit 

mass given by: 

 𝑒𝑒 = 𝑝𝑝
(𝛾𝛾−1)𝜌𝜌

+ (𝑢𝑢2+𝑣𝑣2)
2

+ λ𝑄𝑄    

With the ideal gas equation of state: 

𝑇𝑇 =
𝑝𝑝
𝜌𝜌

 

All the flow variables and chemical parameters have been made dimensionless by 

reference to the uniform unburned quiescent state ahead of the detonation front, i.e.: 
 

 𝜌𝜌 = 𝜌𝜌�
𝜌𝜌0

 , 𝑝𝑝 = 𝑝𝑝�
𝑝𝑝0

 , 𝑇𝑇 = 𝑇𝑇�

𝑇𝑇0
 , 𝑢𝑢 = 𝑢𝑢�

�𝑅𝑅𝑇𝑇0
 , 𝑥𝑥 = 𝑥𝑥�

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
 , 𝑄𝑄 = 𝑄𝑄�

𝑅𝑅𝑇𝑇0
 , 𝐸𝐸𝑎𝑎 = 𝐸𝐸𝑎𝑎�

𝑅𝑅𝑇𝑇0
          

 

The above governing equations are coupled with a chemical kinetic law for the 

reaction rate ω̇. In this study, two different reaction rate laws were considered, i.e., 

single-step kinetics and two-step induction-reaction kinetics. The single-step 

irreversible chemical reaction model with an Arrhenius rate law is given as: 

 

ω̇ = −𝑘𝑘λexp (
−𝐸𝐸𝑎𝑎
𝑇𝑇

) 

in which the reaction sensitivity is governed by Ea. The pre-exponential constant for a 

given mixture k is used to define the spatial and temporal scales, so by solving the 

steady Zel’dovich-von Neumann-Döring (ZND), one-dimensional, Chapman-Jouguet 

(CJ) detonation, the half reaction zone length l1/2 is unity (Bourlioux 1991; Ng & Zhang 

2012; Higgins 2012). The variable λ is the mass fraction of the reactant, used to indicate 

the reaction progress. In this study, λ equals 1 when the chemical reaction has not get 

started and all the reactants stay unburnt, and 0 when all reactant has been totally 

consumed, which means the chemical reaction is completed. For an Arrhenius rate law, 
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𝜔̇𝜔 is only influenced by temperature. The parameter Q is the amount of heat release 

non-dimensionalized by 𝑅𝑅𝑇𝑇0. 
A more realistic reaction model (Ng et al. 2005) includes an induction zone with 

an additional advection equation for ξ. The reaction zone is modeled in the same way 

and the induction zone is also of an Arrhenius type as follows: 

ω̇𝐼𝐼 = 𝐻𝐻(1 − ξ) ∙ 𝑘𝑘𝐼𝐼exp �𝐸𝐸𝐼𝐼 �
1
𝑇𝑇𝑠𝑠
−

1
𝑇𝑇�
� 

 

ω̇𝑅𝑅 = −(1 − 𝐻𝐻(1 − ξ)) ∙ λ𝑘𝑘𝑅𝑅exp �
−𝐸𝐸𝑅𝑅
𝑇𝑇 � 

where ξ is the progress variable in the induction process and H(1 − ξ) a step function, 

i.e.: 

𝐻𝐻(1 − ξ) � = 1   if ξ < 1
 = 0   if ξ ≥ 1 

 

In the two-step kinetic model, the reference length scale xref is chosen such that the one-

dimensional ZND induction length ∆I is unity, i.e., kI = − uvn where uvn is the particle 

velocity behind the shock front in the shock-fixed frame for the Chapman-Jouguet (CJ) 

detonation. Ts is the temperature at the shocked state of the ZND detonation. From the 

Rankine-Hugoniot relationships (Ng & Zhang 2012), the Mach number of Chapman-

Jouguet detonation (CJ detonation) can be found as: 

𝑀𝑀𝐶𝐶𝐶𝐶 =
𝐷𝐷
𝑐𝑐0

= ��1 +
𝛾𝛾2 − 1
𝛾𝛾

𝑄𝑄� + �(1 +
𝛾𝛾2 − 1
𝛾𝛾

𝑄𝑄)2 − 1 

With the Mach number of CJ detonation, we can find: 

𝑢𝑢𝑣𝑣𝑣𝑣 = �𝛾𝛾 ∙
2 + (𝛾𝛾 − 1)𝑀𝑀𝐶𝐶𝐶𝐶

2

(𝛾𝛾 + 1)𝑀𝑀𝐶𝐶𝐶𝐶
 

In addition the post-shock temperature of the ZND detonation can be obtained by: 

𝑇𝑇𝑠𝑠 =
[2𝛾𝛾𝑀𝑀𝐶𝐶𝐶𝐶

2 − (𝛾𝛾 − 1)][2 + (𝛾𝛾 − 1)𝑀𝑀𝐶𝐶𝐶𝐶
2 ]

(𝛾𝛾 + 1)2𝑀𝑀𝐶𝐶𝐶𝐶
2  

In detail, the induction index ξ is introduced as a reaction progress variable for the 

ignition period and H(1 − ξ) equals 1 if ξ < 1 or H(1 − ξ) equals 0 if ξ ≥ 1 indicating 

the end of the induction zone, x = 1. After this point, the second step for the heat release 

begins and similar to the one-step model, λ is the reaction process variable and kR is the 
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rate constant for the heat release. Again, the local chemical energy that has been 

released at any instant during the reaction is equal to λQ. The pre-exponential factor kR 

is used in this work to vary the reaction zone structure (Ng et al. 2005). 

There are two associated activation energies, namely EI and ER, which are rescaled 

for convenient by the temperature jump across the leading shock of the detonation, i.e.: 

𝐸𝐸𝐼𝐼 = 𝜀𝜀𝐼𝐼𝑇𝑇𝑠𝑠,  𝐸𝐸𝑅𝑅 = 𝜀𝜀𝑅𝑅𝑇𝑇𝑠𝑠 
where Ts is the post-shock temperature jumping across the leading front shock. For 

normal hydrocarbon mixed reactants, the activation energy of the induction stage εI 

should be relatively large because in the induction zone, high energy level is required 

to break the strong chemical bonds of the reactants and transfer them into radicals. 

Typical values forεI usually ranges from 4 (for H2/O2 mixture) to 12 (for heavy 

hydrocarbon mixtures). However, the second step involves only reactions between free 

radicals which have already been stimulated. For typical chain-branching reactions, 

therefore, the first step reaction in the induction stage generally has a larger activation 

energy compared to the second step. So for present study, we have: 

𝐸𝐸𝐼𝐼 ≫ 𝐸𝐸𝑅𝑅        𝜀𝜀𝐼𝐼 ≫ 𝜀𝜀𝑅𝑅 

 

2.2 Numerical methods 

To solve the equations of the conservation laws governing the dynamics of reactive 

flow, reliable numerical methods should be found. Some extra source terms for 

detonation progress, chemical reaction kinetics and the propagation of flows should be 

taken into account. 

2.2.1 Operator splitting 

For a system of equations in two dimensions with the reactive source term, i.e., 

𝜕𝜕𝐔𝐔
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐅𝐅(𝐔𝐔)
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐆𝐆(𝐔𝐔)
𝜕𝜕𝜕𝜕

= 𝐒𝐒(𝐔𝐔) 

F and G are the convection fluxes of x- and y-direction, respectively, and S is the 

reaction source term. If the entire operators are being solved at the same time in a single 
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time-step Δt, the process will be technically involved using un-splitted numerical 

techniques. Alternatively, in an operator splitting scheme the time-step Δt is assumed 

to be sufficiently small, thus allowing each operator to be applied independently of the 

others, i.e., for the numerical integration to treat separately the hydrodynamics process 

in each direction (convective terms associated with 𝐅𝐅(𝐔𝐔) and , 𝐆𝐆(𝐔𝐔)) and the chemical 

reaction process (reactive term 𝐒𝐒(𝐔𝐔)). Denoting ℒ𝑥𝑥, ℒ𝑦𝑦 and  ℒ𝑆𝑆 to be the operators for 

the convective terms in each direction and for the source term, respectively, the 

operating scheme thus follows: 

𝜕𝜕𝑼𝑼
𝜕𝜕𝜕𝜕

+ ℒ𝑥𝑥𝑼𝑼 = 0,        𝑼𝑼𝑛𝑛 → 𝑼𝑼𝑛𝑛+13 

𝜕𝜕𝑼𝑼
𝜕𝜕𝜕𝜕

+ ℒ𝑦𝑦𝑼𝑼 = 0,    𝑼𝑼𝑛𝑛+13 → 𝑼𝑼𝑛𝑛+23 

𝑑𝑑𝑼𝑼
𝑑𝑑𝑡𝑡

= 𝑺𝑺(𝑼𝑼),    𝑼𝑼𝑛𝑛+23 → 𝑼𝑼𝑛𝑛+1 

First, ℒ𝑥𝑥 is solved by using an one-dimensional Riemann solver, followed by ℒ𝑦𝑦 and 

then the spatially homogeneous problem integrated numerically using conventional 

techniques for 𝐒𝐒(𝐔𝐔). In operator form, it is given as: 

𝐔𝐔𝑖𝑖𝑛𝑛+1 = ℒ𝑆𝑆
∆𝑡𝑡/3ℒ𝑦𝑦

∆𝑡𝑡/3ℒ𝑥𝑥
∆𝑡𝑡/3𝐔𝐔𝑖𝑖𝑛𝑛 

2.2.2 Riemann problem and Godunov’s method 

The governing equations are constructed on a set of partial differential equations 

and we need to solve those PDEs by reliable numerical methods. To solve the Euler 

equations, a finite volume control system can first be introduced. For a one-dimensional 

(1-D) system of PDEs written in conservative form: 

𝐔𝐔𝑡𝑡 + 𝐅𝐅(𝐔𝐔)𝑥𝑥 = 0 

U is the conserved variables and 𝐅𝐅 is the convective fluxes. Integrate the upper equation 

over a single cell length and we can get: 

�𝐔𝐔𝑑𝑑𝑑𝑑 = −�𝐅𝐅(𝐔𝐔)𝑑𝑑𝑑𝑑 

The Riemann problem for the one-dimensional time-dependent Euler equations is with 
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the initial condition: 

𝐔𝐔(𝑡𝑡 = 0, 𝑥𝑥) = �𝐔𝐔𝐿𝐿    𝑥𝑥 ≤ 0
𝐔𝐔𝑅𝑅    𝑥𝑥 > 0 

As illustrated in Figure 2.1, with the initial conditions 𝐔𝐔in  and 𝐔𝐔i+1n  the Riemann 

problem can be solved at time 𝑡𝑡 = ∆𝑡𝑡  to obtain the conserved variables at the cell 

interface 𝐔𝐔i+12
n , and with which  𝐅𝐅i+12

 can then be computed. Note that, in 1-D condition, 

at the surface of each cell, we can just focus on the left and right point and integrate the 

equation over time to give: 

𝐔𝐔𝑖𝑖𝑛𝑛+1 = 𝐔𝐔𝑖𝑖𝑛𝑛 −
∆𝑡𝑡
∆𝑥𝑥 �

𝐅𝐅
𝑖𝑖+12

𝑛𝑛 − 𝐅𝐅
𝑖𝑖−12

𝑛𝑛 �. 

So with this equation combined with the fluxes at each cell boundary 𝐅𝐅i+12
 , the 

conserved variable for next time step can be computed. 

 
Figure 2.1 Intercell flux F computed at the boundaries of piecewise constant cells using the 

Riemann problem solutions. 

 

In 1959, Godunov presented his flux: 

𝐅𝐅
𝑖𝑖+12

= 𝐅𝐅(𝐔𝐔
𝑖𝑖+12

(0)) 

where 𝐔𝐔𝑖𝑖+12
(0)  is the exact similarity solution 𝐔𝐔𝑖𝑖+12

(𝑥𝑥/𝑡𝑡)  of the Riemann problem, 

evaluated at x/t = 0. The structure of the Riemann problem consists of left-going and 

right-going shock or rarefaction waves in various allowed combinations, separated by 

a contact surface.  
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Figure 2.2 Waves structure of the exact solution 𝐔𝐔𝑖𝑖+12

(𝑥𝑥/𝑡𝑡) of the Riemann Problem for the one-

dimensional Euler equations (upper) and control volume (lower)[𝑥𝑥𝐿𝐿, 𝑥𝑥𝑅𝑅] × [0,𝑇𝑇]. 

 

Consider Figure 2.2 showing the whole structure arising from the exact solution 

of the Riemann problem in the control volume [𝑥𝑥𝐿𝐿 , 𝑥𝑥𝑅𝑅] × [0,𝑇𝑇]. The integral relation 

can be expressed as:   

� 𝐔𝐔(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑑𝑑 =
𝑇𝑇𝑆𝑆𝑅𝑅

𝑇𝑇𝑆𝑆𝐿𝐿
𝑇𝑇(𝑆𝑆𝑅𝑅𝐔𝐔𝑅𝑅 − 𝑆𝑆𝐿𝐿𝐔𝐔𝐿𝐿 + 𝐅𝐅𝐿𝐿 − 𝐅𝐅𝑅𝑅) 

where 𝑆𝑆𝐿𝐿 and 𝑆𝑆𝑅𝑅 are the fastest signal velocities and T is a chosen time. On division 

through by the length 𝑇𝑇(𝑆𝑆𝑅𝑅 − 𝑆𝑆𝐿𝐿), which is the width of the wave system of the solution 

of the Riemann problem between the slowest and fastest signals at time T, we have: 

1
𝑇𝑇(𝑆𝑆𝑅𝑅 − 𝑆𝑆𝐿𝐿)

� 𝐔𝐔(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑑𝑑 =
𝑇𝑇𝑆𝑆𝑅𝑅

𝑇𝑇𝑆𝑆𝐿𝐿

𝑆𝑆𝑅𝑅𝐔𝐔𝑅𝑅 − 𝑆𝑆𝐿𝐿𝐔𝐔𝐿𝐿 + 𝐅𝐅𝐿𝐿 − 𝐅𝐅𝑅𝑅
𝑆𝑆𝑅𝑅 − 𝑆𝑆𝐿𝐿
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2.2.3 HLLC approximate Riemann solver 

For the purpose of directly computing numerical fluxes, approximate techniques 

have been developed for solving the Riemann problem approximately and the resulting 

algorithms have been known as Harten, Lax and van Leer (HLL) approximate Riemann 

solvers. Unlike the analytical approach to solve the exact Riemann problem giving a 

vast amount of information, which is time consuming, approximate Riemann solver 

gives an estimation for the intercell numerical flux directly, and the differences in result 

are generally negligible. The HLL Riemann solver assumes a single constant state 

between two nonlinear waves (shock or rarefaction) and requires estimates for the 

fastest signal velocities emerging from the initial discontinuity at the interface, resulting 

in a the two-wave model for the solution structure of the problem. The HLLC scheme 

used in this work is an extension of the HLL scheme wherein the missing contacts and 

shear waves are put back into the structure of the original approximate solver. The 

HLLC scheme provides a more accurate approach with a three-wave model, preserving 

the solution structure with shock, contact, and shear waves. To compute wave speeds 

of the left-going and right-going waves𝑆𝑆𝐿𝐿  and𝑆𝑆𝑅𝑅 , the pressure-velocity based wave 

estimations presented by Toro (2006) are used to estimate the shock and the rarefaction 

waves accurately.  

 
Figure 2.3 HLLC approximate Riemann solver. Solution in the Star Region consists of two 

constant states separated from each other by a middle wave of speed 𝑆𝑆∗. 
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From the integral relation derived previously: 

1
𝑇𝑇(𝑆𝑆𝑅𝑅 − 𝑆𝑆𝐿𝐿)

� 𝐔𝐔(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑑𝑑 =
𝑇𝑇𝑆𝑆𝑅𝑅

𝑇𝑇𝑆𝑆𝐿𝐿

𝑆𝑆𝑅𝑅𝐔𝐔𝑅𝑅 − 𝑆𝑆𝐿𝐿𝐔𝐔𝐿𝐿 + 𝐅𝐅𝐿𝐿 − 𝐅𝐅𝑅𝑅
𝑆𝑆𝑅𝑅 − 𝑆𝑆𝐿𝐿

 

the following integral averages are introduced: 

𝐔𝐔∗𝐿𝐿 =
1

𝑇𝑇(𝑆𝑆∗ − 𝑆𝑆𝐿𝐿)
� 𝐔𝐔(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑑𝑑
𝑇𝑇𝑆𝑆∗

𝑇𝑇𝑆𝑆𝐿𝐿
 

𝐔𝐔∗𝑅𝑅 =
1

𝑇𝑇(𝑆𝑆𝑅𝑅 − 𝑆𝑆∗)
� 𝐔𝐔(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑑𝑑
𝑇𝑇𝑆𝑆𝑅𝑅

𝑇𝑇𝑆𝑆∗
 

The HLLC approximate Riemann solver is given as follows: 

𝐔𝐔�(𝑥𝑥, 𝑡𝑡)

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐔𝐔𝐿𝐿     , 𝑖𝑖𝑖𝑖          

𝑥𝑥
𝑡𝑡
≤ 𝑆𝑆𝐿𝐿 ,

𝐔𝐔∗𝐿𝐿   , 𝑖𝑖𝑖𝑖  𝑆𝑆𝐿𝐿 ≤
𝑥𝑥
𝑡𝑡
≤ 𝑆𝑆∗,

𝐔𝐔∗𝑅𝑅   , 𝑖𝑖𝑖𝑖  𝑆𝑆∗ ≤
𝑥𝑥
𝑡𝑡
≤ 𝑆𝑆𝑅𝑅,

𝐔𝐔𝑅𝑅     , 𝑖𝑖𝑖𝑖           
𝑥𝑥
𝑡𝑡
≥ 𝑆𝑆𝑅𝑅 ,

 

Now, the corresponding HLLC numerical flux can be displayed with the intermediate 

fluxes 𝐅𝐅∗𝐿𝐿 and  𝐅𝐅∗𝑅𝑅: 

𝐅𝐅
𝑖𝑖+12

ℎ𝑙𝑙𝑙𝑙𝑙𝑙 �

𝐅𝐅𝐿𝐿     , 𝑖𝑖𝑖𝑖           0 ≤ 𝑆𝑆𝐿𝐿 ,
𝐅𝐅∗𝐿𝐿   , 𝑖𝑖𝑖𝑖  𝑆𝑆𝐿𝐿 ≤ 0 ≤ 𝑆𝑆∗,
𝐅𝐅∗𝑅𝑅   , 𝑖𝑖𝑖𝑖  𝑆𝑆∗ ≤ 0 ≤ 𝑆𝑆𝑅𝑅 ,
𝐅𝐅𝑅𝑅     , 𝑖𝑖𝑖𝑖            0 ≥ 𝑆𝑆𝑅𝑅 ,

 

By integrating over appropriate control volume we are able to obtain: 

𝐅𝐅∗𝐿𝐿 = 𝐅𝐅𝐿𝐿 + 𝑆𝑆𝐿𝐿(𝐔𝐔∗𝐿𝐿 − 𝐔𝐔𝐿𝐿), 

𝐅𝐅∗𝑅𝑅 = 𝐅𝐅∗𝐿𝐿 + 𝑆𝑆∗(𝐔𝐔∗𝑅𝑅 − 𝐔𝐔∗𝐿𝐿), 

𝐅𝐅∗𝑅𝑅 = 𝐅𝐅𝑅𝑅 + 𝑆𝑆𝑅𝑅(𝐔𝐔∗𝑅𝑅 − 𝐔𝐔𝑅𝑅). 

There are four unknown vectors, and we need to find the solution for the two 

intermediate fluxes 𝐅𝐅∗𝐿𝐿 and 𝐅𝐅∗𝑅𝑅. From above we can see that it is sufficient to find the 

solution for 𝐔𝐔∗𝐿𝐿 and 𝐔𝐔∗𝑅𝑅, but there are more unknowns than equations, so it is obvious 

that several conditions need to be restricted. To solve the algebraic problem, we impose 

for pressure and normal component of velocity: 

�
𝑝𝑝∗𝐿𝐿 = 𝑝𝑝∗𝑅𝑅 = 𝑝𝑝∗
𝑢𝑢∗𝐿𝐿 = 𝑢𝑢∗𝑅𝑅 = 𝑢𝑢∗ 
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For tangential velocity components: 

�
𝑣𝑣∗𝐿𝐿 = 𝑣𝑣𝐿𝐿 ,𝑣𝑣∗𝑅𝑅 = 𝑣𝑣𝑅𝑅
𝑢𝑢∗𝐿𝐿 = 𝑢𝑢𝐿𝐿 ,𝑢𝑢∗𝑅𝑅 = 𝑢𝑢𝑅𝑅 

For convenience, we set 𝑆𝑆∗ = 𝑢𝑢∗, and by this if an estimate for 𝑆𝑆∗ is solved out, the 

velocity component 𝑢𝑢∗ of the star region is also known. 

By those relations we have: 

𝑆𝑆𝐿𝐿𝐔𝐔∗𝐿𝐿 − 𝐅𝐅∗𝐿𝐿 = S𝐿𝐿𝐔𝐔𝐿𝐿 − 𝐅𝐅𝐿𝐿 

𝑆𝑆𝑅𝑅𝐔𝐔∗𝑅𝑅 − 𝐅𝐅∗𝑅𝑅 = S𝑅𝑅𝐔𝐔𝑅𝑅 − 𝐅𝐅𝑅𝑅 

where all the right-hand sides of the both equations are known as constant vectors. 

In the two star regions, assuming that 𝑆𝑆𝐿𝐿  and 𝑆𝑆𝑅𝑅  are known, we can obtain the 

following solutions for pressure: 

𝑝𝑝∗𝐿𝐿 = 𝑝𝑝𝐿𝐿 + 𝜌𝜌𝐿𝐿(𝑆𝑆𝐿𝐿 − 𝑢𝑢𝐿𝐿)(𝑆𝑆∗ − 𝑢𝑢𝐿𝐿) 

𝑝𝑝∗𝑅𝑅 = 𝑝𝑝𝑅𝑅 + 𝜌𝜌𝑅𝑅(𝑆𝑆𝑅𝑅 − 𝑢𝑢𝑅𝑅)(𝑆𝑆∗ − 𝑢𝑢𝑅𝑅) 

As we imposed above, 𝑝𝑝∗𝐿𝐿 = 𝑝𝑝∗𝑅𝑅, from this equation we can find the expression for the 

speed 𝑆𝑆∗ with only the assumed 𝑆𝑆𝐿𝐿 and 𝑆𝑆𝑅𝑅: 

𝑆𝑆∗ =
𝑝𝑝𝑅𝑅 − 𝑝𝑝𝐿𝐿 + 𝜌𝜌𝐿𝐿𝑢𝑢𝐿𝐿(𝑆𝑆𝐿𝐿 − 𝑢𝑢𝐿𝐿) − 𝜌𝜌𝑅𝑅𝑢𝑢𝑅𝑅(𝑆𝑆𝑅𝑅 − 𝑢𝑢𝑅𝑅)

𝜌𝜌𝐿𝐿(𝑆𝑆𝐿𝐿 − 𝑢𝑢𝐿𝐿) − 𝜌𝜌𝑅𝑅(𝑆𝑆𝑅𝑅 − 𝑢𝑢𝑅𝑅)
 

Now the problem become a simplified HLL solver. From relations above, the 

intermediate fluxes 𝐅𝐅∗𝐿𝐿 and 𝐅𝐅∗𝑅𝑅 can be expressed as  

𝐅𝐅∗𝐾𝐾 = 𝐅𝐅𝐾𝐾 + 𝑆𝑆𝐾𝐾(𝐔𝐔∗𝐾𝐾 − 𝐔𝐔𝐾𝐾) 

in which K = L and K = R, with the intermediate states as 

𝐔𝐔∗𝐾𝐾 = 𝜌𝜌 �
𝑆𝑆𝐾𝐾 − 𝑢𝑢𝐾𝐾
𝑆𝑆𝐾𝐾 − 𝑆𝑆∗

�

⎣
⎢
⎢
⎢
⎢
⎡

1
𝑆𝑆∗
𝑣𝑣𝐾𝐾
𝑤𝑤𝐾𝐾

𝐸𝐸𝐾𝐾
𝜌𝜌𝐾𝐾

+ (𝑆𝑆∗ − 𝑢𝑢𝐾𝐾[𝑆𝑆∗ +
𝑝𝑝𝐾𝐾

𝜌𝜌𝐾𝐾(𝑆𝑆𝐾𝐾 − 𝑢𝑢𝐾𝐾)
])
⎦
⎥
⎥
⎥
⎥
⎤

 

and the final choice of the HLLC flux is   

𝐅𝐅
𝑖𝑖+12

ℎ𝑙𝑙𝑙𝑙𝑙𝑙 �

𝐅𝐅𝐿𝐿     , 𝑖𝑖𝑖𝑖           0 ≤ 𝑆𝑆𝐿𝐿 ,
𝐅𝐅∗𝐿𝐿   , 𝑖𝑖𝑖𝑖  𝑆𝑆𝐿𝐿 ≤ 0 ≤ 𝑆𝑆∗,
𝐅𝐅∗𝑅𝑅   , 𝑖𝑖𝑖𝑖  𝑆𝑆∗ ≤ 0 ≤ 𝑆𝑆𝑅𝑅 ,
𝐅𝐅𝑅𝑅     , 𝑖𝑖𝑖𝑖            0 ≥ 𝑆𝑆𝑅𝑅 ,
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2.2.4 MUSCL–Hancock scheme 

    It is worth noting that using Godunov’s method with piecewise constant data is 

only first order accurate in space. Based on the Godunov’s theory, the direct application 

of a second order scheme unfortunately leads to spurious oscillations around 

discontinuities. There are two main approaches to improving the convergence rate; one 

is to use more information from the Riemann solution, as in the Weighted Average Flux 

method (Toro 1989), which allows for second-order accuracy. The other formulation, 

the MUSCL–Hancock scheme (van Leer 1984), the method van Leer attributes to            

S. Hancock, is an approach which achieves a second order extension of Godunov’s 

method. By the reconstruction of the values crossing each cell boundary, the evolution 

of data by time steps and solving the Riemann problem, MUSCL-Hancock 

reconstruction allows for better second order accuracy than using piecewise constant 

values. In the next section, the total variation diminishing (TVD) version of MUSCL-

Hancock is also introduced. 

 
Figure 2.4 Advancement of boundary values of cell 𝑼𝑼𝑖𝑖

𝑅𝑅and 𝑼𝑼𝑖𝑖+1
𝐿𝐿  to 𝑼𝑼�𝑖𝑖𝑅𝑅 and 𝑼𝑼�𝑖𝑖+1𝐿𝐿 , and the 

Riemann problem solved at the intercell boundary 𝑖𝑖 + 1
2 in MUSCL-Hancock scheme,. 

 

To reconstructing the data, defining the forward difference between nearby cells as: 

∆𝐔𝐔
𝑖𝑖−12

= 𝐔𝐔𝑖𝑖 − 𝐔𝐔𝑖𝑖−1 

∆𝐔𝐔
𝑖𝑖+12

= 𝐔𝐔𝑖𝑖+1 − 𝐔𝐔𝑖𝑖 
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 ∆𝑖𝑖 is a suitable slope vector of 𝐔𝐔𝑖𝑖(𝑥𝑥) in cell𝐼𝐼𝑖𝑖 = [𝑥𝑥𝑖𝑖−12
, 𝑥𝑥𝑖𝑖+12

], defined as: 

∆𝑖𝑖=
1
2

(1 −ω)∆𝐔𝐔
𝑖𝑖+12

+
1
2

(1 + ω)∆𝐔𝐔
𝑖𝑖−12

 

where 𝜔𝜔 ∈ [−1,1]. 

The conservative variables at the left and right boundaries of the cell are obtained by 

the slope vector: 

𝐔𝐔𝑖𝑖𝐿𝐿 = 𝐔𝐔𝑖𝑖 −
1
2
∆𝑖𝑖 

𝐔𝐔𝑖𝑖𝑅𝑅 = 𝐔𝐔𝑖𝑖 +
1
2
∆𝑖𝑖 

and are called the boundary extrapolated values.  

For each cell, the left and right extrapolated values from the equation above are 

evolved by a half time step 12∆𝑡𝑡: 

𝐔𝐔�𝑖𝑖𝐿𝐿 = 𝐔𝐔𝑖𝑖𝐿𝐿 +
1
2
∆𝑡𝑡
∆𝑥𝑥

[𝐅𝐅(𝐔𝐔𝑖𝑖𝐿𝐿) − 𝐅𝐅(𝐔𝐔𝑖𝑖𝑅𝑅)] 

𝐔𝐔�𝑖𝑖𝑅𝑅 = 𝐔𝐔𝑖𝑖𝑅𝑅 +
1
2
∆𝑡𝑡
∆𝑥𝑥

[𝐅𝐅(𝐔𝐔𝑖𝑖𝐿𝐿) − 𝐅𝐅(𝐔𝐔𝑖𝑖𝑅𝑅)] 

Noting that these advanced values  𝐅𝐅(𝐔𝐔𝑖𝑖𝑅𝑅) and 𝐅𝐅(𝐔𝐔𝑖𝑖+1𝐿𝐿 ) are the two fluxes of the left 

and right boundary states at each intercell position 𝑖𝑖 + 1
2, and they are then used as the 

input for a Riemann solver at each cell interface.  

The only thing left to do is to solve the conventional piecewise constant data 

Riemann problem: 

𝐔𝐔𝑡𝑡 + 𝐅𝐅(𝐔𝐔)𝑥𝑥 = 0 

𝐔𝐔(𝑥𝑥, 0) = �
𝐔𝐔�𝑖𝑖𝑅𝑅   , 𝑥𝑥 < 0
𝐔𝐔�𝑖𝑖+1𝐿𝐿 , 𝑥𝑥 > 0

 

2.2.5 TVD of MUSCL-Hancock scheme 

To further suppress the oscillations and discontinuities, total variation diminishing 

(TVD) schemes are frequently utilized. The TVD version of MUSCL-Hancock scheme 

has a steady second-order accuracy in both time and space, and more importantly, it is 

oscillation free.  
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For the MUSCL reconstruction, the slope vector plays an important role in the 

scheme. One of the approaches to obtain the TVD version of MUSCL-Hancock, is to 

find a slope limiter 𝜙𝜙(𝑟𝑟), given by: 

∆𝚤𝚤�=  𝜙𝜙(𝑟𝑟)∆𝑖𝑖 

where r is the ratio of slope at the surface of each cell, given by: 

𝑟𝑟 =
∆𝐔𝐔

𝑖𝑖−12
∆𝐔𝐔

𝑖𝑖+12

 

If 𝑟𝑟 < 0, all limiters equal to zero (van Albada et al. 1982). If 𝑟𝑟 > 0, With ∆𝑖𝑖 given, 

this approach leads to the TVD region 𝜙𝜙(𝑟𝑟) given as follows: 

0 ≤ 𝜙𝜙(𝑟𝑟) ≤ min [𝜙𝜙𝐿𝐿(𝑟𝑟),𝜙𝜙𝑅𝑅(𝑟𝑟)] 

where 

⎩
⎪
⎨

⎪
⎧𝜙𝜙𝐿𝐿(𝑟𝑟) =

2𝛽𝛽
𝑖𝑖−12
𝑟𝑟

1 − 𝜔𝜔 + (1 + 𝜔𝜔)𝑟𝑟

𝜙𝜙𝑅𝑅(𝑟𝑟) =
2𝛽𝛽

𝑖𝑖+12
𝑟𝑟

1 − 𝜔𝜔 + (1 + 𝜔𝜔)𝑟𝑟

 

and 

𝛽𝛽
𝑖𝑖−12

=
2

1 + 𝑐𝑐
,𝛽𝛽

𝑖𝑖+12
=

2
1 − 𝑐𝑐

 

where 𝛽𝛽𝑖𝑖−12
 and 𝛽𝛽𝑖𝑖+12

 are coefficients from  the scalar case and c is the Courant number 

for a single wave present. Usually  𝛽𝛽𝑖𝑖−12
 and 𝛽𝛽𝑖𝑖+12

 are simply set as 1, giving a smaller 

TVD region. This is valid for all Courant numbers |𝑐𝑐| ≤ 1. 

In the TVD MUSCL-Hancock scheme, there is a variety of slope limiters, i.e., the 

minmod, double minmod, superbee, van Albada, and van Leer limiters. Most of the 

limiters are defied by a 1-D constant coefficient equation, and all the slope limiters must 

fulfill the TVD condition: 

𝜙𝜙(𝑟𝑟) ≤ min �
4𝑟𝑟

1 + 𝑟𝑟
,

4
1 + 𝑟𝑟�

 , 𝑟𝑟 ≥ 0 

In this study, we choose the van Leer limiter as the slope limiter. It is defined by: 

𝜙𝜙(𝑟𝑟) = �2
min (1, 𝑟𝑟)

1 + 𝑟𝑟
,                    𝑟𝑟 > 0

0,                              otherwise
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Figure 2.5 The van Leer limiter used in the MUSCL-Hancock scheme (grey). 

2.3 Computational time steps 

To ensure positivity of the reconstructed pressure, the flux update formula is stable 

for time steps which satisfy the inequality: 
∆𝑡𝑡
∆𝑥𝑥

max𝑖𝑖(𝑆𝑆) < 1 

where max𝑖𝑖(𝑆𝑆)  denotes the maximum wavespeed on the grid, which means that a 

signal cannot propagate more than one cell in a single time step. Alternatively, this 

condition can be re-arranged to obtain the time step: 

∆𝑡𝑡 = C𝐶𝐶𝐶𝐶𝐶𝐶
∆𝑥𝑥
𝑆𝑆max𝑛𝑛  

where Δ𝑥𝑥  is the spatial discretization length and 𝑆𝑆max
(𝑛𝑛)  the largest wave speed present 

at time level n, which means no wave present in the solution of all Riemann problems 

in this level n travels more than a distance of Δ𝑥𝑥  in time ∆𝑡𝑡. For time-dependent, one-

dimensional Euler equations: 

𝑆𝑆max𝑛𝑛 = max {�𝑆𝑆
𝑖𝑖+12

𝐿𝐿 � , �𝑆𝑆
𝑖𝑖+12

𝑅𝑅 �} 

For 𝑖𝑖 = 0,1, … . . ,𝑀𝑀 , 𝑆𝑆𝑖𝑖+12
𝐿𝐿   and 𝑆𝑆𝑖𝑖+12

𝑅𝑅   are the wave speeds of the left and right waves 

presented in the solution of Riemann problem. For multi-dimensional problem, this 

method of estimating is not reliable and the alternative is: 
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𝑆𝑆max𝑛𝑛 = max {|𝑢𝑢𝑖𝑖𝑛𝑛| + 𝑎𝑎𝑖𝑖𝑛𝑛} 

Only data of the particle velocity 𝑢𝑢𝑖𝑖𝑛𝑛 and sound speed 𝑎𝑎𝑖𝑖𝑛𝑛 are used. To satisfy the time-

step stability condition, the CFL (Courant, Friedrichs, Lewy) coefficient should be 

chosen before beginning the simulations in the range 0 < Ccfl < 1 . The closer the 

coefficient is to 1, the more efficient the time matching scheme is. In this study we set 

the CFL coefficient as 0.9.  

∆𝑡𝑡 = C𝐶𝐶𝐶𝐶𝐶𝐶
∆𝑥𝑥
𝑆𝑆max𝑛𝑛  

 

𝑆𝑆max𝑛𝑛 = max {|𝑢𝑢𝑖𝑖𝑛𝑛| + 𝑎𝑎𝑖𝑖𝑛𝑛} 

 

2.4 CUDA 

In this study, the entire flow solver is implemented with CUDA programming 

language and computing platform, and running on a NVIDIA Tesla K40 General 

Purpose Graphics Processing Unit (GPGPU). Application of the GPU-CPU framework 

improves significantly the computational performance allowing high grid resolution 

simulations and parametric study to be performed efficiently. With CUDA, the 

solutions for all cells are computed separately by each single thread of the GPU, with 

those threads being logically bonded together into blocks and each block components 

around 64 threads so as to maintain capability for inter-thread communication. Up to 

512 threads could be executed in parallel on the GPU. By executing multiple blocks at 

the same time, the GPU is able to “swap” between blocks and blocks in order to hide 

memory delay. 
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Figure 2.6 Implementation of the Riemann solver using the thread and block configuration with a 

one-cell overlap between blocks (Morgan 2013).  

 

 To connect all the blocks for the Riemann flow solver, an overlapping cell at the 

end of each block is required in the solver, as shown in Figure 2.6 (Morgan 2013). Cells 

loaded with data 𝐔𝐔𝑖𝑖−1 , 𝐔𝐔𝑖𝑖 , and  𝐔𝐔𝑖𝑖+1  reconstruct  𝐔𝐔�𝑖𝑖𝐿𝐿  and 𝐔𝐔�𝑖𝑖𝑅𝑅 . Then, the 𝑖𝑖𝑡𝑡ℎ  cell 

computes the flux 𝐅𝐅𝑖𝑖−12 , using the values from reconstructed cell 𝑖𝑖 − 1  and 𝑖𝑖 . The 

overlap cannot be computed at the left side of the first block since there is no data 

available at the left front. 

Therefore, the number of blocks that is enough for covering the whole 

computational system with a designated overlap can be determined by: 

blocks = 1 + [
grid cells

block width + overlap
] 

 

2.5 Code validation 

2.5.1. One-dimensional Sod shock tube problem  

An often used standard test to verify the accuracy of a certain approximate 

Riemann solver in the Riemann problem is the Sod shock tube problem. We select one 

test problem for the one-dimensional, time dependent Euler equations for ideal gases 

with γ = 1.4. In the chosen condition, the left state 𝜌𝜌𝐿𝐿 = 1.0,𝑢𝑢𝐿𝐿 = 0.75,𝑝𝑝𝐿𝐿 = 1.0 and 

the right state 𝜌𝜌𝑅𝑅 = 0.125,𝑢𝑢𝑅𝑅 = 0.0,𝑝𝑝𝑅𝑅 = 0.1 . The two sides are separated by a 
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discontinuous point at the position 𝑥𝑥 = 𝑥𝑥0. The exact and simulated solutions can be 

found in the domain 0 ≤ 𝑥𝑥 ≤ 1 and there is 100 cells in the domain. Courant number 

coefficient is CCFL = 0.9; boundary conditions are set as transmissive. 

 
(a) Density 

 
(b) Velocity 

 
(c) Pressure 

Figure 2.7 Comparison of the exact and approximate solution of the Sod shock tube problem. 

x 

x 

x 
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In Figure 2.7, a shock wave at the right-hand side, a central discontinuity in the 

middle and a left sonic rarefaction wave can be found. The solution has considerable 

accuracy, showing the general trends in the process and the accurate values for each 

stage. The right shock wave, which is located at around 𝑥𝑥 =0.7, is compressive, causing 

very rapid and strong changes of physical parameters since 𝑝𝑝∗ ≥ 𝑝𝑝𝑅𝑅 . The central 

discontinuity is located at around 𝑥𝑥 =0.5. Pressure and velocity stay still at this section, 

whereas density across the contact surface has a significant change. Finally, the left 

rarefaction wave is located between 𝑥𝑥 =0.1 and 𝑥𝑥 =0.3. A roughly smooth transition of 

physical parameters can be observed due to 𝑝𝑝∗ ≤ 𝑝𝑝𝐿𝐿 . 

2.5.2. Two-dimensional structure of cellular detonation  

 

Figure 2.8 The initial and boundary conditions of the simulation 

 

A two-dimensional numerical simulation of unsteady reactive flow using corrected 

boundary conditions in a 200 x 100 domain with 20 pts/𝑙𝑙1/2 is illustrated in Figure 2.8. 

In the left side of the domain, a sinusoidal surface divides the domain into two parts: 

𝑥𝑥 = 5 sin �
2𝜋𝜋

100𝑦𝑦�
+ 𝑥𝑥1 

In the left-hand-side of the domain, a region of overpressure 2 Pcj causes a detonation 

wave propagating right forwards. The top and bottom boundaries are reflective 



 

31 
 

boundaries. At the right boundary, a constant inflow with the x-velocity Dcj is defined 

and the left boundary is relaxed by the inflow conditions (λ stays 0): 

𝐔𝐔−1 = (1 − 𝑟𝑟)𝐔𝐔0 + 𝑟𝑟𝐔𝐔𝑖𝑖𝑖𝑖 

𝐔𝐔−2 = (1 − 𝑟𝑟)𝐔𝐔1 + 𝑟𝑟𝐔𝐔𝑖𝑖𝑖𝑖 

where r = 0.05 (Gamezo et al. 1999), 𝐔𝐔−1 and 𝐔𝐔−2 are ghost cells. 

In this example, the initial condition is set as: 

 

Table 1. Initial conditions for the cellular detonation simulation 

Parameters Values 
Heat release, Q 50 

Ratio of specific heats, γ 1.2 
Initial Front position, x1 50 

Post-shock temperature, P1 42.063 
Post-shock density, 𝜌𝜌1 1.795 

CJ detonation pressure, PCJ 21.531 
CJ detonation Mach number, MCJ 6.2162 

 

Three cases of different groups of activation energy Ea and pre-exponential factor k are 

tested, relatively: 

𝐸𝐸a1 = 10,𝑘𝑘1 = 3.7 

𝐸𝐸a2 = 20,  𝑘𝑘2 = 16.7 

𝐸𝐸a3 = 25,  𝑘𝑘3 = 36.5 

Soot foil is a common way to record the cellular structure of detonation in experiment. 

Numerically, to record the maxium pressure ever exsited at each grid cell is a way to 

reproduce the soot foil. 

Figure 2.9 shows the numerical result of simulated soot for Ea = 20. The 

detonation is initiated with the early sinusoidal perturbation, and rapidly developes into 

a steady form of celluar detonation structure. The later pattern of the cellular structure 

is also shown. Despite the splitting and combinationof transverse waves, the pattern of 

the cells remains relatively regular. Thus, for this moderate activation energy case, the 

cellular detonation structure is moderately stable. With the exception of cases in which 

transverse waves split or combine, the size of cells is similar. 
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Figure 2.9 Numerical soot foil of Ea = 20. Upper is the result of early time showing the sinusoidal 

perturbation and the initiation of dettion; lower is the late cellular structure. 

 

The numerical soot foils obtained with lower Ea = 10 and higher Ea = 25 are  

respectively shown in Figure 2.10 and Figure 2.11. As we can see, for Ea = 10, the soot 

pattern is much more regular with more cells and the maxium pressure is also 

considerably lower. In contrast, soot foil at the high activation energy Ea = 25, is full of 

chaotic interactions with various waves interacting with each other and the maxium 

pressure is shown higher.  

 

 
Figure 2.10 Numerical soot foil of Ea = 10 at late times, of which the cellular structure is regular. 

 
Figure 2.11 Numerical soot foil of Ea = 25 at late times, showing the irregular cellular structure. 

Figure 2.12 also displays an images sequence of density schlieren plots showing 

the unstable detonation front of Ea = 20 at late times showing transverse waves 
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sweeping across the front and the generation of triple points and wave structure with 

incident, transverse waves and Mach stem. 

 

   
Figure 2.12 Density schlieren plots of the detonation structure development with Ea = 20. 

 

2.6 Summary 

In this chapter, the mathematical model and equations governing the two-

dimensional detonation wave are presented. The applicability of the MUSCL-Hancock 

scheme to solve numerically the governing equations for the simulation is presented, 

improving the second order accuracy that Godunov scheme cannot apply to. Then we 

select HLLC approximate Riemann solver to solve this problem, which computes the 

intercell numerical flux directly, improving the efficiency of numerical simulation and 

the differences in result are generally negligible as compared to the exact Riemann 

solver. The stable time-integration algorithm is ensured by choosing the proper time 

step using the CFL number criterion. CUDA computing platform is used in this work 

to take full advantage of the computational resources, making sure it is not wasted and 

meanwhile maintain the accuracy of the resolutions. The numerical method is verified 
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by the one-dimensional Sod shock tube problem and simulation of the cellular 

detonation structure.  
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Chapter 3 Results and Discussion 

In Chapter 2, the physical reactive flow model for detonation simulation and 

numerical methods are described. The numerical methodology is applied in this Chapter 

to look at the ODW phenomenon under different effects and particularly to carry out a 

parametric study to identify quantitatively the conditions of the two transition 

mechanism introduced in Chapter 1. To ensure the results are not affected by any 

numerical issue, a resolution and time-step study is also presented. 

 

Figure 3.1 A schematic of the computational domain used for oblique detonation simulations. 

 

3.1 Computational setup 

The formation of a two-dimensional oblique detonation structure is induced by a 

supersonic incoming flow onto a wedge. The initial oblique shock transits into an 

oblique detonation surface after an induction period. To simulate ODW phenomena, the 

computational setup shown in Figure 3.1 is used. The computational domain bounded 

by the dashed lines is rotated to the direction along the wedge surface. The Cartesian 

grid in this rectangular domain is thus aligned with the wedge surface and the inflow 

velocities to the computational domain are determined and projected based on the 

rotation angle. Inflow conditions are thus employed for the left and top boundaries; 

outflow conditions extrapolated from the interior are implemented on the right 

boundary and few grid cells before the wedge tip. Slip reflective boundary condition is 

used on the wedge surface. 

Following previous canonical studies, e.g., Teng et al. 2014; Verreault et al. 2013; 
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Zhang et al. 2018; Grismer & Powers 1996, etc., the normalized heat release Q is 

chosen to be 50 and the isentropic exponent γ =  1.2 for both chemical kinetic models 

considered in this work. For the single-step Arrhenius model, the activation energy 

ranges between 5 and 60 in this work and k varies from 1.8 to 14,640, respectively. For 

the two-step kinetics, there are two associated activation energies, namely 𝐸𝐸I and 𝐸𝐸R, 

which are rescaled by the temperature jump across the leading shock of the detonation 

to give εI = 5.0Ts and εR = 1.0Ts. The pre-exponential factor 𝑘𝑘R is used in this work to 

change the reaction zone structure and varies from 1 to 10. Mixture parameters and 

corresponding ZND Chapman-Jouguet (CJ) detonation properties are provided in Table 

2. 

Table 2. Mixture parameters and corresponding CJ detonation properties 

Parameters Values 
Heat release, Q 50 

Ratio of specific heats, γ 1.2 
Post-shock temperature, Ts 4.814 
Post-shock temperature, Ps 42.063 

Post-shock particle velocity, uvn 0.7792 
CJ detonation temperature, TCJ 11.998 

CJ detonation pressure, PCJ 21.531 
CJ detonation Mach number, MCJ 6.2162 

 

In this parametric study, three wedge angles θ and different inflow Mach 

number 𝑀𝑀0. It is worth noting that the high 𝐸𝐸𝑎𝑎 regime considered in this work has not 

been explored thoroughly in any previous studies due to the numerical resolution 

requirement. Boundaries separating the two aforementioned transition types are 

obtained and new features resulting from the effect of high activation energy on the 

flow structure in the vicinity of the ODW initiation region and the fully developed 

ODW unstable surface are discussed in detail. 

To capture the complete ODW formation structure and to adjust the computational 

cost, different computational domains are used, i.e., 80 × 30, 160 × 60 or 220 × 80 for 

the one-step kinetics and 120 × 40, 150 × 50 for the two-step kinetic model, depending 

on the initial flow and mixture conditions. Three wedge angles θ are considered in this 

study, i.e., 26°, 28° and 30°. 
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3.2 Grid resolution study 

An important numerical issue that we need to pay attention is that, in most of the 

former studies, a numerical resolution of 32 pts (or less) per characteristic reaction zone 

length of a CJ-ZND detonation(l1/2 and ∆I for single- and two-step kinetic model, 

respectively) is used in computations. However, when activation energy reaches a 

higher value or the heat release rate becomes steep, a much higher numerical resolution 

is required to achieve “converged” solutions (Verreault et al. 2013; Teng et al. 2014). 

Figure 3.2 shows the different temperature contours for the case of M0 = 12.5, θ = 26° 

and high Ea = 60 for the one-step Arrhenius model with increasing grid resolutions from 

32, 64 to 128 pts per half reaction zone length. It is clear that from Figure 3.2 for Ea = 

60, 32 grid points per half reaction zone length is insufficient. The fore part of the 

unstable ODW structure and the Kelvin Helmholtz (K-H) vortex-rolling along the shear 

layer cannot be revolved. Only when the resolution is increased to 64 pts per half 

reaction zone length, the global features converge as those compared well with the 

results obtained using 128 pts. Taking this issue into account, the default resolution 

considered in this work is 64 pts per half reaction zone length for Ea less than 30 and 

only for higher Ea values a grid resolution of 128 pts/l1/2 is used. Equivalently, a 

resolution study result is also provided in Figure 3.3 for the two-step induction-reaction 

kinetics for the case of M0 = 10.0, θ = 30° and kR= 2.8. For a more quantitative 

comparison, the pressure and temperature profiles along the line y = 5 are shown in 

Figure 3.4. Overall, the curves are overlapped together so the effects of different grids 

are indeed found negligible. These results confirm again that a resolution of 64 pts per 

ZND induction zone length is sufficient. 
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Figure 3.2 Temperature contours with 32 (upper), 64 (middle) and 128 (lower) pts/l1/2 for M0 = 

12.5, θ = 26° and Ea = 60 for the one-step Arrhenius kinetics with k = 14,640. 

  
Figure 3.3 Temperature contours with 32 (upper), 64 (middle) and 128 (lower) pts/∆I for M0 = 

10.0, θ = 30° and kR = 2.8 for the two-step induction-reaction kinetics. 
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Figure 3.4 Pressure (left) and temperature (right) profiles along the line y = 5 obtained using 

different grid resolutions with M0 = 10.0, θ = 30° and kR = 2.8 for the two-step 
induction-reaction kinetics. 

 

3.3 The effect of CFL number 

Besides effects of numerical resolution, studies have shown that it is also important 

to take into consideration the accumulation of errors from each time-integration step 

for reactive flow simulations (Smirnov & Altoukhov, et al. 2014; Smirnov et al. 2015). 

In other words, the effect of time-step size needs also to be verified on the reliability of 

the results. Therefore, simulations with different numbers of time steps by varying the 

Courant-Friedrichs-Lewy (CFL) number (i.e., reducing the CFL number to 0.50 and 

0.25) are performed for cases with both one-step Arrhenius kinetics and two-steps 

induction-reaction models, see Figure 3.5 and Figure 3.6. It can be observed from the 

comparison, together with Figure 3.2 and Figure 3.3, that the overall flow fields such 

as the wave structure around the initiation region and the location of the onset of ODW 

are not affected by the CFL number variation. Hence, the default CFL number of 0.90 

was applied for all the following simulations. 
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Figure 3.5 Temperature contours for the case M0 = 12.5, θ = 26° and Ea = 60 obtained using the 

one-step Arrhenius kinetics with k = 14,640 and CFL number equal to 0.5 (upper); and 0.25 (lower) 

 

 
Figure 3.6 Temperature contours for the case M0 = 10.0, θ = 30° and kR = 2.8 using the two-step 

induction-reaction kinetics and CFL number equal to 0.5 (upper); and 0.25 (lower). 

 

3.4 The effect of Ea in single-step Arrhenius model 

Figure 3.7 first shows the ODW formation structures obtained with θ = 26°, M0 = 

12.5 and 10, and Ea = 35 for the one-step Arrhenius kinetic model. Consistent with the 



 

41 
 

finding in the literature, the transition is characterized by a smoothly curved shock at 

M0 = 12.5, while at low Mach number the transition is given by the classical abrupt 

structure. For the case with M0 = 10, the multi-wave point connecting the deflagration 

wave, induction OSW, ODW and transverse compression waves can be clearly seen. A 

slip line extending downstream from the abrupt point can also be observed. 

Equivalently, Figure 3.8 elucidates the two types of transition with a fixed inflow M0 

= 10 and θ = 26° but with various activation energies Ea from 20 to 30. Clearly, these 

results demonstrate that not only the inflow condition controls the transition process, 

the chemical sensitivity is another dominant parameter on the initiation evolution. The 

smooth transition can be achieved only by a mixture with very low temperature 

sensitivity (or equivalently a small Ea). 

 

 

 
Figure 3.7 Temperature contours with Ea = 35, k = 185.0 and θ = 26° for M0 = 10 (upper) and M0 

= 12.5 (lower). 
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Figure 3.8 Temperature contours with M0 = 10 and θ = 26° for Ea = 20 (upper) 24 (middle) and 30 

(lower). The corresponding pre-exponential constant k values are 16.6, 31.0 and 81.1, respectively. 

 

3.5 The effect of kR in two-step induction-reaction kinetic 

model 

Using the one-step Arrhenius kinetic model, the activation energy Ea controls the 

temperature sensitivity of the reaction rate. To examine the effect of the reaction zone 

length scale, a parametric study is carried out using the two-step induction-reaction 

kinetic model. The pre-exponential factor, kR, is varied to probe how the ODW 

formation is affected by the heat release length. Results are presented in Figure 3.9 for 

three different kR values. It is also found that by increasing kR, and hence, shortening 

the heat release length, the resulting ODW formation transits from a smooth to an abrupt 

configuration. Hence, not only the temperature sensitivity of the reaction zone plays a 
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role in determining the transition type, the heat release length represents another 

important factor.  

Similar to Figure 3.7, Figure 3.10 illustrates a similar trend of the effect of inflow 

Mach number for a mixture governed by induction-reaction kinetics. The two transition 

types are also observed by changing the Mach number from 9 to 11 with a fixed kR = 

2.5 and θ = 30°. At low Mach number M0 = 9, the transition pattern is abrupt. For the 

case with M0 = 10, the multi-wave wave point composing the deflagration wave, 

induction OSW, ODW and transverse compression waves is clear and the transition 

pattern is of a intermediate state. At M0 = 11, the transition becomes a smooth curve.  

 

 

 
Figure 3.9 Temperature contours with M0 = 10 and θ = 30° for kR = 1.0 (upper); 2.98 middle); and 

5.0 (lower). 
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Figure 3.10 Temperature contours with kR = 2.5 and θ = 30° for M0 = 9.0 (upper); 10.0 (middle); 

and 11.0 (lower). 

 

3.6 Critical values for transition 

By carrying a full parametric study boundary curves in Ea,cr − M0 and kR,cr − M0 

spaces distinguishing the two types of OSW-ODW transition for different wedge angle 

θ are obtained. These curves are shown in Figure 3.11 and Figure 3.12 for the one-step 

Arrhenius and two-step induction-reaction kinetic models, respectively. 

In Figure 3.11, it is observed that for all wedge angles θ a nearly linear relationship 

in most part between lower M0 regime and the corresponding critical transition Ea, cr is 

achieved. Only at high M0 regime, the curve for the high wedge angle θ = 30° begins 

to deviate prominently. It can be observed from this plot that, at low M0 regime, all 

three curves collapse, i.e., the critical Ea,cr for the transition is independent of the wedge 

angle. In other words, the chemical kinetics is thus the controlling factor on the 

transition pattern of the ODW. As Mach number increases to very high values, the 
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boundary curves for the three wedge angles deviate from each other. This can be 

explained by the fact that at high M0 regime, the resulting overdrive effect by the 

presence of the wedge with greater angles θ becomes the dominant factor on the 

transition type. 

 
Figure 3.11 The conditions for smooth and abrupt transitions below and above the boundary 

respectively in the Ea,cr − M0 plane for three different wedge angles θ. 

 

 
Figure 3.12 The conditions for smooth and abrupt transitions below and above the boundary 

respectively in the kR,cr − M0 plane for three different wedge angles θ. 

 

Similar trend is also observed in Figure 3.11 showing the boundary in kR,cr− M0 

space. At low Mach number regime, all curves for different angles are close to each 

0

10

20

30

40

50

60

7 8 9 10 11 12 13

26o

28o

30o

Ac
tiv

at
io

n 
en

er
gy

 E
a,

 c
r

Mach number M
0



 

46 
 

other. The transition occurs at small kR, i.e., at relatively larger heat release length. As 

the inflow Mach number increases, kR,cr increases exponentially and again, the three 

curves start to deviate from each other. This deviation at high Mach number regime and 

increasing angles can be again explained as a result of the overdriving effect becoming 

the dominant mechanism underlying the transition type. 

In order to quantify the deviation of the results between different wedge angles 

with increasing Mach number, considering the lowest wedge angle θ = 26° as the 

baseline case the percentage difference of the critical values Ea,cr and kR,cr between it 

and results with increasing wedge angle, i.e., θ = 28° and 30° are plotted in Figure 3.13. 

It appears the deviation begins at about M0 = 9.0 in both cases with one-step Arrhenius 

kinetics and two-step induction-reaction kinetics. Below this critical Mach number, the 

boundaries are indeed the same for all wedge angles at the low Mach number regime. 

 
Figure 3.13 The percentage difference of Ea,cr (left); and kR,cr (right) between the base case of θ = 

26° and increasing wedge angles θ = 28° and 30°. 

3.7 Overdrive degree 

For a normal detonation in a tube, the velocity of the shock front D should be no 

less than the velocity of corresponding CJ detonation 𝐷𝐷𝑐𝑐𝑐𝑐 . The parameter overdrive 

degree, commonly defined as 𝑓𝑓 = (𝐷𝐷 𝐷𝐷𝑐𝑐𝑐𝑐⁄ )2, can also be determined as: 

𝑓𝑓 = (
𝑀𝑀0 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑀𝑀𝑐𝑐𝑐𝑐

)2 
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where β and MCJ are the oblique detonation angle and Mach number of the CJ 

detonation for a given Q and γ. To obtain the overdrive degree, the oblique detonation 

wave angle β should be calculated first with the given Mach number M0 and wedge 

angle 𝜃𝜃, from the detonation shock polar relation: 
tan𝛽𝛽

tan (𝛽𝛽 − 𝜃𝜃)
=

(𝛾𝛾 + 1)𝑀𝑀2sin2𝛽𝛽

𝛾𝛾𝑀𝑀2sin2𝛽𝛽 + 1 −�(𝑀𝑀2sin2𝛽𝛽 − 1)2 − 2(𝛾𝛾2 − 1)𝑀𝑀2sin2𝛽𝛽 ∙ (𝑄𝑄𝛾𝛾)
 

For Q = 50 and γ = 1.2, the initial Mach numbers, the wedge angles and the 

corresponding overdrive degrees are respectively tabulated in Table 3. In fact, it is 

known that the heat release length scale has an effect on the instability of detonation, 

i.e., the shorter the heat release length, the more sensitive the detonation wave to flow 

perturbation. First, by keeping the same level of temperature sensitivity, i.e., same 

activation energies for both the induction and reaction steps, overall the higher Mach 

number and wedge angle have a stabilizing effect by reducing the overall temperature 

sensitivity of the reaction. Hence, a much greater value of kR thus tends to reduce the 

heat release length and cause the transition from a smooth to an abrupt formation type. 

Second, for increasing overdrive, the temperature in the induction region is higher. This 

in turn increases the subsequent heat release rate in the reaction zone and shortens the 

heat release length. This provides a possible explanation why the critical kR decreases 

for increasing wedge angle at the high Mach number regime due to the increase of f.  

 

Table 3. Degree of overdrive f for different inflow Mach number M0 and wedge angle θ 

M0 θ f 

9 26 1.20 

9 28 1.27 

9 30 1.36 

12 26 1.50 

12 28 1.63 

12 30 1.77 
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3.8 Other ODW features 

In a number of previous studies on ODW, the high Mach number inflow regime 

and a one-step Arrhenius kinetic model with low to moderate Ea are considered. In fact, 

by further increasing Ea in a high M0 regime, the ODW flow field becomes more 

unstable, thus giving rise to more complex features. Figure 3.14 shows the results 

obtained for θ = 26° and M0 = 12.5 with a large activation energy Ea = 60, under which 

the transition is of an abrupt type. In the limit of large Ea, more instabilities begin to 

appear on the downstream fully-developed ODW surface. The increase of Ea makes the 

ODW cellular surface more irregular. For large Ea, the slip line also becomes unstable 

and the classical roll-up behavior of the K-H instability in the detonation product 

becomes more apparent. Similar to normal cellular detonation (Ng & Zhang 2012; 

Gamezo et al. 1999; Choi et al. 2008), for large Ea, the ODW cellular surface also 

becomes highly irregular with unburned pockets behind the leading ODW front (Choi 

et al. 2007; Teng et al. 2015; Gui & Fan 2012). 

 

 
Figure 3.14 Schlieren plot and temperature contours (sub-plot) with 128 pts/l1/2 for M0 = 12.5, Ea 

= 60, k = 14,640 and θ = 26°. 

 

Another key feature is revealed near the initiation region. It is shown that the 

transverse compression wave resulting from the initiation point and reflected between 
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the wall and the slip line becomes stronger as Ea increases. The reflected compression 

wave from the wall further adjusts the gas parameters of the combustion products and 

penetrates the slip line, and influences the initially smooth ODW surface. The result of 

this interaction is the formation of another multi-wave point similar to the first initiation 

point. A second slip line, although faint, can be seen downstream, which eventually 

becomes unstable far downstream within the combustion product due to the K-H 

instability. At Ea = 60, this second multi-wave point appears to be close to the first 

appearance of transverse waves after another segment of smooth ODW from the main 

initiation location. For future works, computations taking into account viscous and 

diffusion effects by solving the Navier-Stokes equations (Mahmoudi et al. 2014, 

Ziegler et al. 2011) need to be considered in order to explore more quantitatively the 

aforementioned features obtained for large Ea such as the strong K-H instability along 

triple-point shear layers and the unstable oblique detonation cellular structure. 
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Chapter 4 Conclusions 

4.1 Concluding remarks 

In summary, this paper investigates the effects of chemical reaction kinetics on 

ODW initiation using high resolution numerical simulations. Two simplified kinetic 

models, namely, the conventional one-step Arrhenius kinetics over a wide range of 

activation energy Ea and the two-step induction-reaction kinetics are considered. The 

use of a GPU-based solver allows the simulations to be performed using high numerical 

resolution and a parametric study to be carried out efficiently. The present results 

obtained using a different computing platform further confirm the validity of the data 

obtained in previous studies using the conventional CPU computing. For the first time, 

this study provides quantitative results of the critical conditions distinguishing the two 

known ODW formation types in the M0 − Ea and kR,cr − M0 planes using the one-step 

Arrhenius and two-step models, respectively. At low Mach number regimes, all critical 

boundary curves with different wedge angles are close to each other, indicating that the 

transition is dominated by chemical kinetics. As inflow Mach number increases, the 

results for different wedge angles start to deviate from each other. This deviation can 

be explained by the fact that, at the high Mach number regime, the overdrive factor in 

turn plays a prominent role for determining the transition type. For the one-step 

Arrhenius case, flow features are revealed in finer details in the limit of large activation 

energy, including the presence of a second multi-wave point and the apparent rolled-up 

vortex instabilities in the combustion product along each slip line extending 

downstream from the multi-wave points near the initiation region. 

4.2 Future work 

For future works, as mentioned above, computations taking into account viscous 

and diffusion effects by solving the Navier-Stokes equations can be taken into 

consideration in order to explore the former results more quantitatively. Additional 
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simulation conditions using more complex chemical kinetic models and combustible 

thermo-parameters can be performed to research in more detailed realistic effect of 

chemistry. Other wedge geometries can be considered to facilitate the onset of oblique 

detonation wave transited from the initial oblique shock waves induced by the 

interaction between the incoming flow and wedge boundary. The effect of wedge 

surface morphology can also be analyzed on the initiation and stability of the oblique 

detonation waves. To mimic practical conditions, fluctuations on the incoming flow 

from the left boundary of the domain can be imposed and look at the stability and 

response of the ODW subject to the changing inflows.  

For the numerical method itself, the current numerical framework can be further 

modified. Higher order schemes, higher resolutions and the viscous effects leading to 

the presence of boundary layer can be considered. Nevertheless, these aforementioned 

modifications demand higher requirement for scientific computing and computational 

optimization. Therefore more advanced programming and computer hardware are 

required to compliment these development. A better parallel CPU and GPU based 

computing strategy can also be further explored to accelerate the simulation running 

process.  
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