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ABSTRACT 

Features of the neighbourhood environment are associated with physical activity and nutrition 

habits in children and may be a key determinant for obesity risk. Studies commonly use a fixed, 

pre-specified buffer size for the spatial scale to construct environment measures and apply 

traditional methods of linear regression to calculate risk estimates. However, incorrect spatial 

scales can introduce biases. Whether the spatial scale changes depending on a person’s age and 

sex is largely unknown. Distributed lag models (DLM) were recently proposed as an alternative 

methodology to fixed, pre-specified buffers. The DLM coefficients follow a smooth association 

over distance, and a pre-specification of buffer size is not required. Therefore, the DLMs may 

provide a more accurate estimation of association strength, as well as the point in which the 

association disappears or is no longer clinically meaningful.  

Using a subsample of the QUALITY cohort (an ongoing longitudinal investigation of the natural 

history of obesity in Quebec youth, N=281, Mage=9.6 at baseline), we aimed to apply the DLM to 

determine whether the association between the residential neighbourhood built environment (BE) 

and obesity risk in children differed depending on age and sex. A second objective aimed to 

compare the DLM model with that of a linear regression model (which used pre-specified circular 

buffer sizes). 

Different distances of association between the Retail Food Environment and BMI z-score were 

obtained for 1st and 2nd follow-ups, which also varies by sex. No significant association between 

the Recreational Facilities Environment and MVPA were detected. 

Keywords 

Children, body mass index, physical activity, neighbourhoods, built environment, food 

environment, recreational facilities, Geographic Information System (GIS), QUALITY cohort, 

distributed lag models. 
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1. Introduction 

1.1 Childhood obesity: prevalence, determinants and consequences 

1.1.1 Prevalence and consequences of childhood obesity 

Obesity and excess weight in all age groups are among the key risk factors for chronic health 

conditions and remain at alarming high levels in Canada (Barton, 2012). Obesity is associated with 

a number of health conditions and co-morbidities, including asthma, type 2 diabetes, osteoarthritis, 

chronic back pain, particular types of cancers and major types of cardiovascular disease 

(hypertension, stroke, and coronary artery disease) (Segula, 2014). 

According to Statistics Canada  (StatCan, 2015), 62% of Canadian adults and 31% of children and 

youth (5-17 years) have excess weight or obesity. Teens 12-17 years of age are also at high risk, 

as 27.9% of them have overweight or obesity (StatCan, 2017). The prevalence of overweight and 

obesity has more than doubled among youth aged 12 to 17 over the past 25 years (Shields, 2006). 

Despite an encouraging initial decline (from 31% to 27%) between 2004 and 2013 (Rodd & 

Sharma, 2017), the prevalence of overweight and obesity appears have plateaued and remains high 

among teens. According to the report of the World Obesity Federation (WOF), more than 10 

million or 34 per cent of Canadian adults (over 18 years) will live with obesity by 2025. 

Children with obesity show elevated rates of factors predictive of chronic disease such as 

obstructive sleep apnea, mental health problems, and cardiovascular risk factors (Dietz, 1998). As 

childhood obesity contributes to the early development of cardiovascular disease (Barton, 2012; 

Raitakari et al., 2005), the one-quarter of Canadian children with overweight or obesity are 

screened for cardiometabolic risk factors such as triglycerides, and high-density lipoprotein 

cholesterol (Daniels & Greer, 2008; Dehghan et al., 2005; Rao et al., 2016). In particular, because 

obesity tracks from childhood/adolescence into adulthood, childhood obesity may significantly 

accelerate the progression of chronic diseases such as cardiovascular disease and type 2 diabetes 

mellitus (Thompson et al., 1999). 
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Projected costs vary, but the overall forecast remains alarming with an approximate range of 2.2% 

to 12.0% of total health expenditures in Canada attributable to obesity-related problems (Tran et 

al., 2013). The health problems caused by the excessive weight will cost the country about C$33.7 

billion each year in direct and indirect costs. According to the Canadian Obesity Network, the 

current estimation of the annual direct healthcare cost of obesity varies between $4.6 billion and 

$7.1 billion and is projected to rise to $8.8 billion by 2021 (Canadian Obesity Network Inc., 2017). 

For Quebec, in 2011 the overweight and obesity associated economic costs reached almost $3 

billion (“Obesity and Overweight,” 2016).  

1.1.2 Determinants of obesity 

There are numerous factors that could possibly explain the growth in obesity prevalence. The 

following four categories of potential obesity determinants are commonly considered by 

researchers: individual, social, behavioural/lifestyle, and environmental factors (Robiraille, 2009) 

although this list could be expanded to multiple other components such as biological, 

psychological, technological, economic and cultural (PHN Annual Reports, 2017).  

Physical activity (PA) plays an important role in maintaining health in Canadian populations, 

increases wellbeing, and quality of life. Numerous studies have demonstrated that PA has a strong 

negative correlation with excessive weight (Rossi et al., 2018; Saelens et al., 2018; Wolch et al., 

2011). PA is a well-established protective factor associated with numerous health benefits that can 

potentially prevent many health conditions, including cardiovascular disease, type 2 diabetes, 

overweight/obesity (Henderson et al., 2016; “World Health Organization. Global Report on 

Diabetes.,” 2016). Importantly, PA is essential for healthy growth and children’s mental and 

physical development. PA maintenance is associated with lower metabolic risk in adolescents 

(Silva et al., 2018) and can influence health indicators and decrease metabolic risk in later life 

through direct and indirect pathways (Werneck et al., 2018). PA during adolescence can develop 

the foundation for lifelong healthy habits and predicts PA in adulthood (Bélanger et al., 2015). 

Regular and diverse activity develops cardiovascular fitness, bone density, and helps to prevent 

chronic heart disease in adult life. The benefits also include better weight control and school 

performance (Kino-Québec, 2000). For children daily PA can be undertaken in many different 
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ways, including free play, games, sports, transportation (walking, cycling), and active forms of 

recreation. Access to facilities and programs and time spent outdoors were found to be positively 

and consistently related to children’s PA (Sallis et al., 2000).  

However, despite a lot of benefits, the majority of the world population of all age categories is 

insufficiently active. According to the World Health Organization, an estimated 23% of adults and 

81% of adolescents failed to achieve recommended PA levels (“World Health Organization. 

Physical activity fact sheet, 2018”). Levels of PA in Canada also remain low. Data from the 2007-

2015 Canadian Health Measures Survey indicate that only 7% of Canadian children and youth 

meet the requirements of a minimum of 60 minutes of Moderate and Vigorous Physical Activity 

(MVPA) on at least 6 out of 7 days according to the Canadian 24-Hour Movement Guidelines 

(Colley et al., 2017). Important sex differences have been noted: young boys of 6-11 years old are 

more active than girls (average 72 minutes of MVPA per day versus 46 minutes). For adolescents 

12-17 years of age, boys accumulated an average 55 minutes, while girls accumulated 40 minutes 

of daily MVPA. 

Public awareness campaigns, national strategies on diet, PA and health and many other preventive 

measures have been proposed by international organizations and national health services, for 

example WHO Global action plan on physical activity 2018–2030: more active people for a 

healthier world. In Quebec a number of programs committed to prevent obesity were implemented 

over the last few decades, with the main focus on further promotion of healthy diet and PA. About 

166 interventions rolled out between 2006 and 2014, such as the action plan “Investing for the 

Future” (2006-2012) (Le Bodo et al., 2017). Nevertheless overconsumption of nutrient-poor foods 

and a lack of PA remain the main behavioural risk factors for obesity (Mihrshahi et al., 2018). 

While individuals’ lifestyles vary, the consumption of unhealthy food is common on the population 

level (Nardocci et al., 2019).  

For children, both dietary behaviour and PA is highly conditioned by the environment. For 

example, children living in neighbourhoods with greater access to fast food outlets and 

convenience stores had a higher likelihood of eating- and snacking- out (Van Hulst et al., 2012). 

In addition, children interact with their neighbourhood environments differently based on their age 

(Engler-Stringer et al., 2014). Young children are more likely to follow their parents’ diet and food 
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choices (Engler-Stringer et al., 2014; Muhajarine N., 2012). Older children are more independent 

and have greater mobility (by foot or bicycle).   

Similarly, the observed increase in sedentary behaviour in adults and children is partly responsible 

for the current development of the obesity epidemic and is found to be associated with some 

neighbourhood BE attributes (Bejarano et al., 2019). PA was strongly mediated by family and peer 

support as well as accessibility to recreational and sport facilities in the neighbourhood (Eime et 

al., 2013). The number of recreational and sports facilities was also found to be associated with a 

reduction in excess weight among adolescents (Gordon-Larsen et al., 2006) and children's 

participation in PA was positively associated with publicly provided recreational infrastructure 

(Davison & Lawson, 2006).  

1.2 Built Environment (BE) and health outcomes 

Neighbourhood environment factors can be associated with nutrition habits and PA (French et al., 

2001; Saelens et al., 2012). As obesity is the result of an energy imbalance (Hill et al., 2012), the 

influence of the neighbourhood’s built environment (BE), such as food and sport / fitness / 

recreational related facilities on diet and PA may be important determinants of the obesity 

epidemic. As children are particularly vulnerable to obesity promoting environments, this issue is 

of greater importance for children as compared to adults (Oenema et al., 2006).   

The BE can be considered as a space, modified and/or created by people for daily living and acting, 

which includes a wide range of objects, from buildings, service points and road networks to natural 

parks and recreational areas. Different Geographic Information System (GIS) methodologies were 

proposed to create environmental metrics in order to identify neighbourhoods as supportive and 

unsupportive for PA and healthy eating (Frank et al., 2012). For instance, walkability and the 

presence of parks were suggested for the evaluation of the PA environment, while the presence 

and density of retail food establishments and convenience stores were suggested for the evaluation 

of the nutrition environment (Saelens et al., 2012). The findings of many health-related studies 

suggest statistically significant associations between different aspects of the BE and obesity risk 

(Arcaya et al., 2016; Casey, 2014; Ding & Gebel, 2012; Frank et al., 2012). Children living in less 
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environmentally supportive neighbourhoods had significantly less favorable BMI z-score changes 

and higher overweight or obesity rates compared with children in the most environmentally 

supportive neighbourhoods (Saelens et al., 2018).  

As a powerful tool in health studies, modern GIS software can visualise the data and provide 

aggregated information for different spatial scales - traditionally using administratively defined 

areas (such as census tracts or dissemination areas), as well as predefined geometric forms. 

Common geometric forms include circular (circle shaped geographic area with radius of pre-

specified size) or network (following roads and walking paths for a given pre-specified distance) 

buffers of different sizes. The spatial scale for evaluation of the accessibility and availability of 

BE features is oftentimes defined based on the study design and research question, as well as 

findings from previous studies. Due to the lack of consistency in defining the neighbourhood, 

researchers utilize different approaches and various spatial scales, resulting in significant 

variations in findings (Bancroft et al., 2015; Casey, 2014; Gamba et al., 2015).  

This inconsistency of measuring and quantifying the BE features across studies is the primary 

challenge in accurately estimating the impact of the BE on obesity, especially across different age 

categories of the population (Papas et al., 2007). A recent systematic review by Arcaya and 

colleagues (2016) of the neighbourhood effects on 256 health studies’ characteristics suggested 

that the methodology is not robust: studies differed in how neighbourhood was defined, and results 

were heavily affected by the choice of the spatial scale (Arcaya et al., 2016).  

The incorrect selection of the geographic scale can lead to biased or even misleading estimation, 

known as the Modifiable Area Unit Problem (Openshaw, 1984). Thus for environmental variables 

and neighbourhood level characteristics (such as density of population) different spatial scale 

selection algorithms were introduced in order to identify the best scale for each buffer-based or 

area-level covariate (Grant et al., 2015). However, the question of what is the best spatial scale for 

BE variables in order to best explain the association with the variables of interest in a particular 

study remains unclear. 

In addition, the association between the neighbourhood PA environments and adiposity may vary 

depending on age and spatial scale, often demonstrating inconsistent results (Kowaleski-Jones et 
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al., 2017; Timperio et al., 2010). Ding and colleagues (2011) in the review of 103 studies showed 

access/proximity to parks and recreation facilities among the strongest correlates for PA in 

children, however the results were “inconsistent” – less than half of the results detected 

associations in the expected direction between PA and recreational facilities. Another review by 

Timperio et al. evaluated 88 studies where the spatial range included street blocks, census blocks, 

school attendance boundaries and a quarter-mile (400 m) route. Only 9 out of 32 tests of 

associations between parks and recreation facilities and PA obtained were in the expected direction 

(Timperio et al., 2015). 

These results suggest that the appropriate buffer size may vary by the BE feature and constraints 

of the target population. In other words, people are able to walk for different distances (which 

depends on their age as well as on the purpose of activity – recreational walking, shopping, 

school/work commuting). While accurate neighbourhood measures should capture BE features 

and resources within the relevant area, theoretic or empirical guidance for correct neighbourhood 

definition is lacking. 

Indeed, several researchers have aimed to improve the way the neighbourhood is operationally 

defined by evaluating the impact of the buffer size on the strength of the relationship. Seliske et 

al. (2012) compared six different network buffers ranging from 500 m to 5000 m and selected 

1000 m to be the best buffer size based on Akaike Information Criterion (AIC) fit statistics (Seliske 

et al., 2012). Van Loon (2013) considered 200, 400, 800 and 1600 m buffers and found that MVPA 

in 8-11 year old Canadian children was best predicted based on the number of parks within a 1600 

m buffer (van Loon et al., 2014). In contrast, Mitchell (2015) reported that 800m and 500m buffers 

best explained MVPA in boys and girls respectively, suggesting the presence of sex differences in 

the association between PA and BE. Thus there is no consensus on the correct spatial scale in 

measuring the BE, and investigations are ongoing (Guo & Bhat, 2007; Spielman & Yoo, 2009; 

Strominger et al., 2016). 

In order to address this problem, the Distributed Lag Models (DLM) were recently proposed by 

Baek et al. (2016) as an alternative to circular buffers for estimation of the correct spatial scale in 

detecting associations between the BE features and health outcomes. Originally DLM was a model 

for time series data, in which the effect occurs over time and the regression equation contains 
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lagged (past period) values of the explanatory variable. Simulation studies performed by Baek 

(2016) suggest that application of this model for spatial data also provides valid results. The DLM 

coefficients follow a smooth association over distance, and the arbitrary pre-specification of buffer 

size is not required. Therefore, the DLMs may provide a more accurate estimation of association 

strength, as well as the point in which the association disappears or is no longer clinically 

meaningful. Baek et al. (2016) compared DLMs to circular buffers in the study focused on the 

school BE. He found that higher availability of convenience stores within 1 mile around the high 

schools was positively associated with students’ BMI z-scores. However, as a child’s home is 

arguably their primary environment, a better understanding of the utility in DLMs in detecting 

associations between the residential neighbourhood BE and health is needed. In addition, whether 

the comparisons are dependent on children’s age/sex is also unknown.  
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1.3 Motivation 

The neighbourhood environment can be associated with nutrition behaviour and PA, which are 

among the main risk factors for increasing obesity in children. However, the process of children’s 

development brings significant lifestyle changes (such as a growing level of independence and 

mobility), depending on the person’s age and sex. As a result, the effects of the BE features can 

vary at distinct spatial scales, as adolescents tend to behave differently based on where they are 

active (such as their home neighbourhood, school neighbourhood and in other places) compared 

to younger children (Borner et al., 2018).  

Distributed Lag Models (DLM) were proposed by Baek et al. (2016) as an alternative to circular 

buffers for estimation of the correct spatial scale (Baek et al., 2016). The method does not require 

a pre-specification of buffer size; only the maximum possible distance of a hypothetical association 

needs to be defined. Therefore, the DLMs may provide a more accurate estimation of the point in 

which the association disappears or is no longer clinically meaningful. A child’s home 

neighbourhood is undoubtedly one of their primary environments. For adolescents, nearly half of 

non-school moderate–vigorous PA occurred within 150 m of their home (Maddison et al., 2010). 

DLMs could be a good and more precise method to examine the correct spatial scale of the 

association between the home BE and health in youth. Within this approach, interactions could be 

tested in order to verify if the strength of association is dependent on children’s sex. 

As a motivational example, we performed statistical analysis on data collected from the QUALITY 

study, a longitudinal cohort of children in Quebec (Lambert et al., 2012). The analysis is focused 

on three timepoints in the cohort between 2005-2016: baseline (2005-2008, Mean(Age)=9.6) and 

two follow-ups at 2009-2011 (Mean(Age)=11.7) and 2015-2017 (Mean(Age)=16.8). We restricted 

analyses to those who did not change residence (N=281). The outcomes included age- and sex- 

adjusted BMI z-scores, and daily minutes of Moderate to Vigorous Physical Activity (MVPA). BE 

features included (1) the Retail Food Environment: defined as (1a) the number of fast-food 

restaurants, cafes and bakeries, and (1b) the number of convenience stores, and (2) Recreational 

Facilities Environment: defined as the number of parks, sport fields, swimming pools or fitness 

facilities open for public use.   
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Objectives 

I. To apply the DLM to examine the association between the BE and obesity risk in children 

as a function of distance, and to examine if and how the BE spatial scale changes at different 

ages and by sex;  

II. A secondary objective assessed comparison of DLM and linear regression model results to 

choose best model fit.  

Hypotheses 

Based on the literature available to date, we hypothesized that DLM provides better model fit than 

linear regression model to define: 

I. the spatial scale for the association between (a) the Retail Food Environment features and 

BMI z-score and (b) the Recreational Facilities Environment and level of MVPA; 

II. the sex-stratified spatial scale for the association between (a) the Retail Food Environment 

features and BMI z-score and (b) between Recreational Facilities Environment and level 

of MVPA. 

1.4 Outline 

The remainder of this thesis will be organised in the following order: (I) literature overview of 

main theoretical methods and approaches developed and practiced by researchers for the study of 

the associations between the BE and obesity-related health outcomes; (II) summary of previous 

studies on the retail food environment accessibility and its association with BMI z-score as well 

as fitness facilities accessibility and its associations with the level of MVPA in children; (III) 

methods including data collection and selection of the variables for data analysis; (IV) results and 

(V) discussion and conclusion as well as strength and limitations of findings.  

  



10 
 

2 Literature overview 

“The built environment provides the framework for how daily lives 

are conducted, influences health across life spans, and represents 

important pathways through which individuals come into contact 

with many health risks.” (Lopez, 2012)  

2.1 Neighbourhood environment: methods of assessment 

2.1.1 Methodological challenges: defining neighbourhoods 

The term ‘Environment’ is widely used and has different meanings depending on the discipline. 

R. Lopez in his book The Built Environment and Public Health (2012) suggests three broad 

domains: physical, social, and Built Environment (BE), where the last one consists of, ‘all the 

many features that have been constructed and modified by humanity’. Alternatively the BE has 

been defined as, ‘the human-made space in which people live, work, and recreate on a day-to-day 

basis’ (Roof & Oleru, 2008). For research purposes the BE should be observed and examined in 

the context of the area, commonly called ‘neighbourhood’, where the subjects live and perform 

activity on a daily basis.  

However, many definitions of ‘neighbourhood’ exist in the literature as the concept of the 

neighbourhood is not precise and also an issue of methodological challenge. In health research the 

term neighbourhood is commonly used to refer to, ‘a person's immediate residential environment’ 

(Diez Roux, 2001) or, ‘generally defined spatially as a specific geographic area and functionally 

as a set of social networks’ (Schck & Rosenbaum, 2000). The extensive discussions about the 

conception and operational definition of ‘neighbourhood’ can be found in the publication On the 

Nature of Neighbourhood (Galster, 2001). The definition of neighbourhood mainly depends on the 

research question, as neighbourhood characteristics and outcomes may vary.  

The discussions that some environments are healthier than others were raised back in ancient times 

(Lopez, 2012). For example, Marcus Vetruvius, the famous Roman architect, in his treatise on 

architecture De architectura, approximately 30 A.D., suggested the complex approach: not only 
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to examine food and water to learn whether a site is naturally healthy when choosing the places 

for cities to be founded, but also to provide the convenient placing of public facilities (markets, 

theatres, baths and roads). The important questions about the association between the BE and 

health were raised during the last two centuries, especially in growing European cities with sizable 

populations, like Paris and London (Snow, 1849), however this sphere of research is relatively 

new and was intensively investigated in modern epidemiology within the past few decades.  

2.1.2 Spatial scale in health-related studies 

In order to better define the neighbourhood attributes, the concept of geographical indicator was 

described by Robitaille et al (2009). Two main approaches to define the geographical indicators 

are: thematic and spatial. Thematic indicators demonstrate the association of values with the 

geographical objects, for example number of sport fields within a buffer. The spatial indicator is 

defined by spatial position of the object, for example, distance to the nearest sport field. 

Nowadays sophisticated GIS provide advanced tools to visualize and analyze the data. Significant 

development of technologies linked to the GIS (such as connecting data from many databases) 

creates new opportunities for assessment of the BE. The point-based maps (created using 

geographical coordinates), are convenient tools for spatial analysis where data can be aggregated 

to differing areal units. However, attempts at this level of precision raises the concern of the 

Modifiable Area Unit Problem (MAUP) (Openshaw, 1984), such that an incorrect selection of the 

geographic scale can lead to biased estimation. For environmental variables and neighbourhood 

level characteristics different spatial scale selection algorithms were introduced in order to identify 

the best spatial scale for each covariate (Grant et al., 2015). In the case of the BE features, 

researchers usually choose the spatial scale in an ad hoc manner, based on findings in previous 

studies and reasonable assumptions related to the research question, for example assuming that on 

average, a person can walk to the point of interest (food outlet, park) for an average of 10 minutes 

and can cover ½ mile during this time. 

The initial research question for a BE-related project could be defined as the following: which BE 

features at what spatial scale can have an affect on health? The most common pathway that the 

majority of researchers follow in their studies on BE attributes and health outcomes is (1) to 
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suggest the relevant spatial scale (buffer, administrative boundary) in the context of the study and 

to define neighbourhood based on the chosen scale; (2) to define the set of BE features, which 

could be associated with health outcomes of interest within this spatial scale.  

The main methods of constructing the neighbourhood limits are: (1) based on administrative 

boundaries (census tracts or dissemination areas) or (2) ego-centered study locations (such as 

residential addresses, postal codes, etc.). Administrative boundaries like census tracts and 

dissemination areas are the predominant method used. The popularity of this technique can be 

easily explained by its convenience: national and regional statistical bureaus regularly provide 

aggregated data for these administrative areas. However, this method is not without its limitations: 

the relative location of the subject of interest within an administrative boundary could infer bias. 

In other words, if the participant’s residential address is located close to the border between two 

administrative boundaries, the true SES (Socioeconomic Status) and BE characteristics of the 

neighbourhood potentially can be missed. In addition all BE characteristics are examined within 

the same spatial scale, while their influence on health outcomes could be “spatially-sensitive” 

(Coffee et al., 2013).  

Ego-centered areas include two main types of buffers: circular/straight-line, and network/street 

buffers. Both are centered at the point of location. The circular buffers are defined as a circle 

shaped geographic area with radius of pre-specified size. Circular buffers by definition ignore the 

design of the environment or land use, and as a result can capture environmental exposure 

inaccurately, as some BE features within the buffer may be inaccessible because of poor street 

connectivity. If the total measure of BE features within the buffer significantly differs compared 

to what is accessible, the overestimation bias could affect the results. In addition, circular buffers 

cannot account for the possible spatial clustering of BE features. For example, a 1000 m circular 

buffer would result in the similar geographical indicators and the same statistical results for a 

respondent with 5 fast food restaurants located next door to the study location, with that of another 

respondent with 5 fast food restaurants located close to the border of the buffer, at a distance almost 

1000 m away.  

Network buffers are created by following roads and walking paths for a given pre-specified 

distance, thereby addressing the circular buffers’ limitation of inaccessibility. Thus network 



13 
 

buffers may provide a more fair estimation of BE exposure. Oliver et al. (2007) compared network 

vs circular buffers and demonstrated that while circular buffers detected no associations, network-

based buffers detected significant association between the BE and outcome. Nevertheless, 

common to both of these methods is the problem of choosing the correct size of the buffer. This is 

one of the main challenges in BE studies as associations between different BE features and health 

behaviours or outcomes may vary significantly for different geographic scales (Institute of 

Medicine, 2005). 

For those studies where the GPS trip points are available, standard deviational (SD) ellipse buffers 

can be calculated for further analysis. This method is widely recognized as a good proxy of the 

spatial patterns, however because of the complexity of data collection from the GPS devices and 

other potential limitations (such as signal loss and imprecise recording due to interference of 

buildings, battery lifetime and position accuracy), this approach is not widely applied (Madsen et 

al., 2014). 

2.1.3 Measurement of BE characteristics 

The precise measurements and quality of data are crucial factors for performing statistical analysis 

that is minimized in error and bias. In order to better understand and analyse how BE features can 

be associated with population health and wellbeing, these characteristics should be measured 

precisely and impartially. The three main methodological approaches should be noted (Brownson 

et al., 2009). The first one is based on perception by the individual – the participants are asked to 

provide their estimation of BE characteristics, as well as some measurements (for example, 

individuals could be asked about the approximate distance to the nearest park in minutes) via 

questionnaires. Another method is a neighbourhood audit – an independent observer provides the 

assessment of the neighbourhood based on a pre-specified validated set of questions. The 

advantage of this method is its higher level of consistency and less variation caused by personal 

differences. However, such methods have been shown to be more reliable for items that are less 

subjective in nature (such as the presence or absence of street-level micro items), but demonstrates 

poor reliability for items that are more subjective in nature (such as the assessment of safety, 

general atmosphere, aesthetic appeal etc). The third approach is an assessment based on GIS data 

(such as the presence or absence of BE features), which can be collected and visualized using 
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special GIS software, such as ArcGIS or QGIS. The databases of different points of interest (for 

example grocery stores and gas stations) are available from commercial and state agencies. The 

addresses can be geocoded and used for further spatial analysis. For instance, the total number of 

BE features of different types, or the distance to the nearest BE feature can be calculated for each 

predefined spatial scale, administrative area or buffer. While most geospatial databases are not 

without errors, their use has become more accessible due to the recent development in 

technologies, which has increased the convenience, objectivity, and ease of use of this method. 

For the purposes of this thesis, GIS data will exclusively be used. 

2.1.4 BE characteristics in neighbourhood-related studies  

Currently three key methods based on GIS data are used to measure the accessibility and 

availability of BE features of different domains (for example Retail Food Environment, Fitness 

Facilities, etc.) in health-related studies (Robiraille, 2009).  

- Accessibility: Represented by the total distance (in miles or km) to the nearest point of interest. 

Usually the shortest path along the road network from a participant’s residential location is 

calculated (most popular variations include Euclidean “straight-line” distance and Manhattan 

“rectilinear” or “city block” distance); 

- Availability: Represented by the number of BE features in the neighbourhood area and is 

calculated in a circle or network-based buffer centered in the residential location. The common 

practice is to pre-specify the buffer size depending on study characteristics; 

- Combination of accessibility/availability: Represented by the density of BE features (number 

per square area unit). It is calculated by the kernel density estimation method, with different 

techniques for the optimal bandwidth selection (Carlos, Shi, Sargent, Tanski, & Berke, 2010). 

All three methods require careful consideration as an inadequately chosen spatial scale can lead to 

biased estimation and even misleading results (Spielman & Yoo, 2009).  
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2.1.5 Methods to select the appropriate boundary size 

Many studies compared the use of different spatial scales (such as various administrative 

boundaries, or circular compared with network-based buffers of multiple sizes), primarily by using 

different types of complex indices (for example land-use mix index, walkability index or regional 

accessibility). 

As a demonstration of the variability in approaches being used, Davison & Lawson reported in 

their review that out of 33 studies, only 6 used GIS-based methodologies attributes in order to 

examine if the BE influences children's PA, while the rest of the studies used the perceived 

environment measurements or neighbourhood audit (Davison & Lawson, 2006). A literature 

review by Leal and Chaix (2011) on the relationship between geographic environments and 

cardiometabolic risk factors revealed that about 20% of studies used buffers as a spatial scale, 

radial in 2 out of 3 cases (with radius varying from 100 to 4800 m and network buffers varying 

between 640 and 2000 m). Out of 131 studies, 73% used only pre-defined administrative area 

subdivisions (Leal & Chaix, 2011).  

A recent review performed within the ELIANE research project (Casey, 2014) reported that weight 

was positively associated with the presence of convenience stores in 3 out of 6 publications and 

negatively associated with accessibility to recreational facilities in 4 out of 9 publications. In 14 

out of 25 publications, the neighbourhood was estimated based on a buffer (ranging from 400 m 

to 5 km), while the rest of the publications used administrative boundaries. In a comprehensive 

simulation study, Spielman (2009) concluded that if the same study design is applied with different 

methods (such as buffer size, or administrative boundary), neighbourhood effect estimates can 

differ and model fit in most situations fails to select the appropriate spatial scale (Spielman & Yoo, 

2009). 

Results of a study in San Francisco Bay Area suggested that the network band definition was 

marginally superior to circular buffer and census units (Guo & Bhat, 2007). While all models were 

found to be consistent in the signs of the parameter estimates, the variables were significant at 

different spatial scales. According to the findings from the Children’s Environmental Health 

Initiative study, the impact of BE on health outcomes vary significantly depending on the spatial 

scale chosen for neighbourhood construction (Strominger et al., 2016), and in context of high 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028172/#R33
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density of BE features (e.g. in urban areas with high level of population) the correct and suitable 

spatial scale of measures is crucial for the analysis (Sun et al., 2018). 

For instance, Caughy (2013) examined the association between the BE and behaviour problems in 

US school age children comparing the neighbourhood boundaries of different scales. Although 

circular buffers ranging from 50 m to 1000 m were tested, only neighbourhood condition in the 

400 – 800 meter circles were statistically significant (Caughy et al., 2013). Spatial scales using 

network buffers demonstrated the same uncertainty. PA measures were calculated for network-

distances from 500 m up to 2 km for the IDEFICS study. Using a kernel approach, the stronger 

effects were found for larger scales. Also a strong variation in the association between the BE and 

PA of children based on the network-distance were reported (Buck et al., 2015). 

Thus, as the results depend on the study design and the choice of spatial scale, some studies found 

no scale-dependent differences (Lamichhane et al., 2012). In terms of spatial analysis, due to the 

arbitrarily defined boundaries of different scales while measuring BE attributes, this uncertainty 

appear as a result of MAUP (Openshaw, 1984). Thus when examining the areas with high density 

of BE features, the correct and suitable selection of the spatial scales are crucial (Sun et al., 2018).  

Seliske et al. (2012) used Akaike Information Criteria to select the best spatial scale among six 

different network buffers ranging from 500 m to 5000 m and concluded that a 1000 m buffer 

provided the best model fit (Seliske et al., 2012). Van Loon (2013) assessed model fit with 

marginal R2 values while comparing 200, 400, 800 and 1600 m buffers and the larger buffer was 

found to be the best scale for association between number of parks and MVPA in 8-11 year old 

Canadian children (van Loon et al., 2014). Spielman et al (2013) used the simulation study and 

found that neighbourhood effect estimates were strongly influenced by the definition of 

neighbourhoods and particularly by the size of area used to approximate a person’s neighbourhood, 

while a misspecified spatial scale led to systematic bias in estimates of neighbourhood effects 

(Spielman et al., 2013). 
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2.2 Statistical models in neighbourhood-related studies  

2.2.1 Common methods of statistical analysis 

Depending on the research question and the overall characteristics of the study, different statistical 

analysis methods have been applied in neighbourhood related projects. The main statistical 

approaches in the health research domain include variations of (1) a linear regression model; (2) 

generalized estimating equations; (3) multilevel generalized linear model or (4) analysis of 

covariance (Cerin, 2011; Diez Roux, 2001). While examining neighbourhood effects on health, 

the common practice is to simultaneously include individual- and neighbourhood-level 

independent variables in regression equations. This approach enables the epidemiologists to 

examine the area effects while adjusting for individual confounders (Diez Roux, 2001). 

2.2.2 Distributed lag models  

The idea of applying mathematical models from other domains opens a lot of additional interesting 

avenues to explore in BE related studies. As a novel method of statistical analysis, the DLM models 

were initially introduced by Shirley Almon in 1965 for predicting quarterly capital expenditures 

in manufacturing industries. DLM is a widely applied model in time series analysis; it helps to 

predict Yt - current values of a dependent variable using both the current values and the lagged 

values for the past periods of an explanatory variable Xt (Zanobetti et al., 2000) and has had wide 

application in econometrics. 

The general form of a linear infinite DLM model is: 

𝑌𝑌𝑡𝑡 = �𝛽𝛽𝑖𝑖

∞

𝑖𝑖=0

𝑋𝑋𝑡𝑡−𝑖𝑖  + 𝜀𝜀𝑡𝑡,        𝑡𝑡 = 1, . . . ,𝑇𝑇. 

In the situation when after k periods of time, changes in Xt do not affect E[Yt] (in other words all 

beta coefficients after a particular time point vanish), the model reduces to a finite distributed lag 

with upper limit of the summations sign and has a form: 
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 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑡𝑡−1 + 𝛽𝛽2𝑋𝑋𝑡𝑡−2 + ⋯   + 𝛽𝛽𝑛𝑛𝑋𝑋𝑡𝑡−𝑛𝑛 + 𝜀𝜀𝑡𝑡.  (1) 

However, the successive lags of the variable of interest are likely to be highly correlated and can 

result in severe multicollinearity. In order to solve this problem, Shirley Almon suggested to apply 

the Weierstrass's Approximation Theorem which allowed the restriction of the coefficients to be a 

low-degree polynomial. Originally Lagrangian interpolation polynomials were proposed. During 

the last few decades, many publications on numerical methods suggested that, with respect to 

interpolation, spline functions are superior to Lagrangian polynomial fit. The advantages of splines 

are higher accuracy combined with more computational efficiency and easily implemented 

algorithms. The cubic splines lead to a smooth interpolation and are commonly used now for DLM. 

Following this approach, the values of regression coefficients could be set as:  

 𝛽𝛽𝑖𝑖 = 𝑔𝑔(𝑖𝑖) = 𝑎𝑎0 + 𝑎𝑎1𝑖𝑖 + 𝑎𝑎2𝑖𝑖2 + ⋯+ 𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝, 𝑖𝑖 = 1, . . . ,𝑛𝑛; (2) 

approximated using polynomial of order P, which typically takes small values of 2, 3 or 4 (Smith 

& Giles, 1976). The Bayesian approach was proposed and implemented in econometrics later 

(Giles, 1977; Wells et al., 2016).  

Substituting (2) into (1) and rearranging in order to gather up terms: 

𝑌𝑌𝑡𝑡 = 𝑎𝑎0𝑍𝑍0𝑡𝑡 + 𝑎𝑎1𝑍𝑍1𝑡𝑡 + 𝑎𝑎2𝑍𝑍2𝑡𝑡  + ⋯   + 𝑎𝑎𝑝𝑝𝑍𝑍𝑝𝑝𝑡𝑡 + 𝜀𝜀𝑡𝑡, 

where 

𝑍𝑍𝑖𝑖𝑡𝑡 = 𝑋𝑋𝑡𝑡−𝑖𝑖 + 2𝑖𝑖𝑋𝑋𝑡𝑡−1 + 3𝑖𝑖𝑋𝑋𝑡𝑡−1 + ⋯+ 𝑛𝑛𝑖𝑖𝑋𝑋𝑡𝑡−𝑛𝑛,       𝑖𝑖 = 1, . . . ,𝑝𝑝.  

Finally using constructed Z variables, coefficients ai can be estimated by applying ordinary least 

squares (OLS) and thus the estimates could be used to reconstruct original β coefficients (Smith 

& Giles, 1976). 

The use of a spline function was proposed as an attractive option to increase flexibility in modeling 

the coefficients. Subsequently, the combination of spline-based DLM with the generalized additive 
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model was proposed, which allowed researchers to incorporate additional covariate information 

(Zanobetti et al., 2000a). 

2.2.3 DLM and environmental studies in epidemiology 

Since the 2000s this approach was applied in epidemiological studies to investigate associations 

between air pollution and health outcomes (Heaton & Peng, 2012; Schwartz, 2000; Zanobetti et 

al., 2000b), with further extension to incorporate other covariate information, e.g., generalized 

additive DLM  (Schwartz, 2000) and hypothesized interactions between lagged predictors (Heaton 

& Peng, 2014). Welty (2005) used two flexible versions of DLM for sensitivity analysis in the US 

National Morbidity, Mortality and Air Pollution Study (Welty & Zeger, 2005) and then 

demonstrated the application of Bayesian DLM in estimation of the effect of air pollution on daily 

mortality (Welty et al., 2009). As a further extension of the model, distributed lag non-linear 

models (DLNMs), a new methodology for examining lagged relationships in environmental 

epidemiology and medicine was recently introduced (Gasparrini, 2014; Gasparrini & Armstrong, 

2013; Gasparrini et al., 2010). 

2.2.4 DLM and BE studies 

The DLM was recently proposed by Baek et al. (2016) as a novel viable alternative to existing 

methods of evaluation of the association between BE features and health outcomes. For these BE 

related studies Baek (2016) suggested to define the lagged exposure as the amount of a BE features 

measured between two radii, rℓ-1 and rℓ from study locations, ℓ = 1, . . . , 𝐿𝐿, r0 = 0. And the model 

can be expressed as: 

 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + �𝛽𝛽(𝑟𝑟ℓ−1; 𝑟𝑟ℓ)𝑋𝑋𝑖𝑖(𝑟𝑟ℓ−1; 𝑟𝑟ℓ)
𝐿𝐿

ℓ=1

+ 𝜀𝜀𝑖𝑖, (3) 

where Yi represents a continuous outcome at location i, β0 is the intercept,  𝑋𝑋𝑖𝑖(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) is the 

number of BE features measured within area between relevant radii, 𝛽𝛽(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) is the association 
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of the BE features measured between relevant radii and the outcome, and εi ~ N(0, τ2). For the 

purpose of consistency, we’ll follow notations from Baek (2016) in this thesis. 

It was demonstrated that using a radial basis function to model the association coefficients 

𝛽𝛽(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) helps to avoid possible complications that may appear in cases in which many lags 

have zero values: 

 β(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) = α0 + α1𝑟𝑟ℓ + �α�k|𝑟𝑟ℓ − 𝑟𝑟𝑘𝑘|3.
𝐿𝐿

𝑘𝑘=1

 (4) 

Function β(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) is a piecewise polynomial of degree 3. As the estimation of the coefficients 

via linear regression model can result in too wriggly function, Zanobetti (2000) suggested to solve 

this problem through the penalized spline smoothing strategy: to restrict the size of αk by adding a 

penalty term λ∑ α�k2𝐾𝐾
𝑘𝑘=1  to the least squares criterion, where 𝛌𝛌 is the smoothing parameter. The 

detailed decomposition procedure can be found at Baek et al., 2016 publication. 

The estimates of the standard errors of the βi could be obtained as the following: 

 SE��βℓ�� = �ℓth diagonal entry of �U cov �θr� �lag U
T�, (5) 

where θ is vector of parameters estimates and 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑟𝑟� �𝑙𝑙𝑙𝑙𝑙𝑙 is the block of 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑟𝑟� � which 

corresponds to distributed lag terms. 

Using this methodology, Baek et al (2016) compared DLMs to linear regression with circular 

buffers of different sizes using a few types of simulated datasets with various spatial structures. 

Baek (2016) demonstrated superiority of the DLM method over the traditional fixed-size buffer 

approach. The findings demonstrated that the DLM provided good inference in all considered 

scenarios where a smooth function was used to model the association, and its estimates 

demonstrated correct inference over all radii. Results suggested DLM have better coverage rate, 

smaller bias and deviance information criteria (DIC, a hierarchical modeling generalization of the 

AIC). With enough power (i.e. 6000 schools were sampled), DIC selected the DLM, but when 
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power to detect the effect was low (i.e. 1000 schools were sampled), the DLM and linear models 

performed equivalently. 

Additionally, the DLM method was applied to publicly available data to investigate the 

convenience stores availability near schools in California as a determinant of obesity in high school 

students (Baek et al., 2016). The results showed that availability of convenience stores was 

associated with higher BMI z-score when they were within a distance of approximately 1 mile 

from schools. Comparison of averaged estimated association within fixed buffers of ¼, ½, ¾ and 

1 mile showed 4 times larger in the coefficient estimated by linear regression model than by the 

DLM model, where the latter provided smaller estimates and SE.  

However, as a child’s home is arguably their primary environment, a better understanding of the 

utility in DLMs in detecting associations between the residential neighbourhood BE and health is 

needed. Thus we aim to apply the DLM method to examine the association between the presence 

of different BE features in a child’s home neighbourhood with their health outcomes. Because of 

the study design (locations within 75 km from Quebec main urban areas) and unique urban 

environment of the Montreal island, the neighbourhoods potentially could significantly vary in 

their characteristics, with possible spatial autocorrelation for particular BE features. This will 

create a good case to demonstrate the ability of the DLM model to provide the adequate estimation 

of association in the potential presence of spatial clustering  

Because of the Montreal island size and presence of the naturally occurring boundaries of the 

island, the main challenges are to define the appropriate maximum distance and lag size for DLM.  
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3 Methods 

3.1 QUALITY cohort profile 

The data for this thesis stem from the QUALITY (QUebec Adipose and Lifestyle InvesTigation 

in Youth) cohort, an ongoing longitudinal investigation of the natural history of obesity and 

cardiovascular risk in Quebec youth (Lambert et al., 2012). Because of the growth in the 

prevalence of paediatric obesity observed during the last few decades, this cohort study was 

designed by an interdisciplinary team of researchers in order to investigate the possible 

determinants of childhood obesity and its metabolic and cardiovascular consequences.  

Potential participants located within 75 km of either of Montreal, Quebec City, or Sherbrooke 

(Quebec, Canada) were targeted with a school-based sampling strategy. Children aged 8 – 10 years 

at recruitment with at least one obese biological parent were eligible to participate in this study. 

Parent’s obesity was defined based on self-reported measurements of weight, height and waist 

circumference (BMI ≥ 30 kg/m2 and/or waist circumference > 102 cm in men and > 88 cm in 

women). The sample was limited to Caucasian children of Western European ancestry in order to 

avoid genetic admixture. Families were not eligible to participate if the family had pending plans 

to move out of the province. 

Ethical approval for the QUALITY study was obtained from the Research Ethics Committee of 

the Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine. All parents provided 

informed consent, and study participants provided assent before baseline assessments. 

3.2 Data collection: baseline and follow-up 

Baseline data, when youth were aged 8–10 years (Visit 1), were collected between July 2005 and 

December 2008 (n=630). The first follow-up assessment, when youth were aged 10–12 years (Visit 

2) occurred between July 2007 and March 2011 (n=564). Second follow up (Visit 3) occurred 

between October 2012 and May 2016 when youth were aged 15–17 years (n=377). Data collection 
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for baseline and follow-up assessments involved a full-day clinic visit which included 

questionnaires as well as biological and physiological measurements for both children and parents.  

For this study the analyses were restricted to participants living at the same address (non-movers) 

and for which complete baseline data, 1st and 2nd follow-ups anthropometric and PA measurements 

were available (complete cases, n=281) (Figure 1). A detailed description of the study design and 

methods is available in Lambert et al., (2012). 

Each young person’s address was geocoded using ArcMap 10.6.  

Figure 1: Map of the QUALITY study participants, non-movers (n=281) 
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3.3 Main outcomes and confounders 

3.3.1 Anthropometric 

At each study visit, anthropometric measurements were taken according to standardized protocols. 

Participants were dressed in light indoor clothing, without shoes, and height was measured with a 

stadiometer, and weight was measured with an electronic scale. Measurements were taken twice; 

when differences were 0.5 cm (height) or 0.2 kg (weight) or more, a third measurement was taken. 

The average of the two closest measurements was used for analysis.  

Fat mass, fat-free mass, percent body fat, fat distribution (upper body, lower body and trunk fat 

masses) and bone mineral density were determined with Dual-energy X-ray absorptiometry 

(DEXA) (Prodigy Bone Densitometer System, DFþ14664, GE Lunar Corporation, Madison, WI, 

USA). Fat mass index (total fat mass in kilograms divided by height in meters squared) and 

percentage of body fat were used as a measure of adiposity. 

3.3.2 BMI as a measure of adiposity 

Obesity and overweight are two conditions characterised by an excess of body mass. While 

overweight denotes high weight from total body mass and is not recognized as a clinical term for 

high adiposity, the term ‘obesity’ provides a more accurate indication of body fat excess, and has 

more clear associations with serious health risks and abnormalities (Barlow & Expert Committee, 

2007). Many paediatric researchers have aimed to identify the best easy-to-use anthropometric 

measures which could provide better analysis of the relationship between adiposity and 

cardiometabolic risk factors. However, their findings remain controversial in youth, as a number 

of measures, including Body Mass Index (BMI), waist-to-hip ratio, waist circumference and waist-

to-height ratio were suggested as accurate predictors of cardiometabolic risk factors (Horan et al., 

2015; Samouda et al., 2015). BMI, one of the popular anthropometric measures, is a measure of 

weight adjusted for height of the individual. BMI has become a practical and commonly accepted 

method for assessing body fat in epidemiological studies. Because BMI is a proxy measure of 

excess weight, its main limitation is its inaccuracy in assessing body fat in comparison to other 

methods such as computed tomography or DEXA (Freedman et al., 2017; Freedman et al., 2005). 



25 
 

However, BMI requires only simple measurements and calculations, is non-invasive, and 

inexpensive. Although imperfect, BMI has been validated as a measure of adiposity, and adiposity 

change in children (Boeke et al., 2013; Kakinami et al., 2014; Pietrobelli et al., 1998). 

Availability of different growth curves and standard cut-offs helps health professionals to monitor 

adiposity on the population level. Although many different growth curves exist, the WHO growth 

curves are recommended for use in Canadian population. Publicly available programs were used 

to compute age-specific and sex-specific BMI centile and BMI z-score according to WHO 

reference curves (www.who.int/childgrowth/software). The WHO defines overweight as BMI ≥ 

85th percentile, and obesity as BMI ≥ 97th percentile (Kuczmarski et al., 2002; Secker, 2010). For 

this study having either overweight or obesity was defined as BMI ≥ 85th percentile. 

3.3.3 Physical activity 

Children’s PA was measured using 7-day accelerometry measures (Actigraph LS 7164 activity 

monitor, Actigraph LLC, Pensacola, FL, USA) in the week following the clinic visit. 

Accelerometry data were used for analysis only if they met requirements according to the 

procedure described in the Canadian Health Measures Survey (a minimum of 4 days with 

accelerometer wear-time >10 hours per day) (Colley et al., 2010). 

For this study, minutes of Moderate-to-Vigorous PA (MVPA) was computed by adding the total 

minutes spent in moderate PA and in vigorous PA daily, then this amount was averaged over the 

total number of valid days of accelerometer wear-time (available for the baseline and 1st follow-

up only).  

Physical activity guidelines: According to the guidelines published by the World Health 

Organization, children were classified as meeting PA guidelines if they accumulated at least 60 

minutes of MVPA per day when averaged across a week. This is consistent with the recently 

released Canadian 24-Hour Movement Guidelines for Children and Youth (2016), which suggests 

to classify children as adherent if their average daily MVPA is at least 60 minutes per day (Colley 

et al., 2017).  
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3.3.4 Modifiers 

Sociodemographic variables used for this study were collected during the first visit. The child’s 

age was computed in years using date of birth, child’s sex was recorded by the interviewer. 

3.4 Covariates 

3.4.1 Household income 

Parents were provided with questionnaires where they reported their age, highest level of education 

and annual household income (in $10,000 increments up to $140,000 or more). Income is a well-

known determinant of childhood adiposity, level of PA, as well other physical and mental health 

outcomes (Shah et al., 1987). The protective effect of income against childhood obesity and related 

cardiovascular disease was recently reported in a study based on data from the National Survey of 

Children’s Health (NSCH) (Assari, 2018). For the current study, the ‘adjusting household income 

for household size’ was calculated in accordance with the literature (Government of Canada, 

2016), where the adjustment factor, also known as the equivalence scale, is the square root of the 

number of persons in the household: 

Adjusted income  =
𝑇𝑇𝑐𝑐𝑡𝑡𝑎𝑎𝑇𝑇 𝐻𝐻𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑐𝑐𝑇𝑇𝑜𝑜 𝐼𝐼𝑛𝑛𝑐𝑐𝑐𝑐𝐼𝐼𝐻𝐻
�𝑁𝑁𝐻𝐻𝐼𝐼𝑁𝑁𝐻𝐻𝑟𝑟 𝑐𝑐𝑜𝑜 𝑝𝑝𝐻𝐻𝑐𝑐𝑝𝑝𝑇𝑇𝐻𝐻

 

 

As income was reported in bins, the midpoint value of each category was used. Because the 

investigation of the difference in association between BE features and health outcomes based on 

the different levels of household income was not the primary goal of the current study, income was 

kept continuous to prevent loss of power. For better interpretation of the beta coefficients income 

was expressed in ten thousand. In other words, per 10K difference in household income, the 

estimate of beta coefficient represents the mean change in the response variable while holding 

other predictors in the model constant. 
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3.4.2 Parents’ education 

It is well-known that parental education plays an important role in children’s health development. 

Better-educated parents can more accurately estimate their child’s weight status, thus they are 

more likely to create healthier home environment and to take appropriate actions to prevent and/or 

correct their child’s obesity (Bailey-Davis et al., 2017; Cullinan & Cawley, 2017). For this analysis 

parents’ level of education at baseline was categorized as a binary variable as whether at least 1 

parent had at least a university degree. 

3.4.3 Seasonality 

As there are strong seasonality effects in Quebec, the analysis was adjusted for season in order to 

account for the differences of reduced PA in the winter (Bélanger et al., 2009). The winter season 

was defined as November – March, while April – October was considered as the non-winter season 

(dichotomous variable). 

3.5 Neighbourhood - level variables 

Area-level socioeconomic characteristics traditionally play an important role in the research on 

BE and health because of potential confounding effects (Diez Roux, 2004). Numerous studies 

which examined the association between adiposity and SES reported that low SES on either the 

individual or neighbourhood level was positively (and independently) associated with adiposity 

(Hsieh et al., 2015; McCormack et al., 2018). In other words, families living in neighbourhoods 

with low SES are more likely to be overweight or obese, regardless of their individual SES level. 

(Côté-Lussier et al., 2019; Hrudey et al., 2015; Moffat et al., 2005; Shrewsbury & Wardle, 2008).  

To address the neighbourhood-level socioeconomic measures for periods related to the 1st and 2nd 

follow-ups for the QUALITY cohort, the aggregated data for dissemination areas from Census 

2006 and Census 2011 were used. 
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3.5.1 Density of population 

Analysis of neighbourhoods naturally involve people and different things people use in everyday 

life. Thus, some BE features (such as retail outlets and food environments), have higher 

concentration in areas where more people live. As a result, the knowledge of local population 

distribution is crucial for the correct interpretation of the effects of the neighbourhood 

characteristics (Carlos et al., 2010). The data for all dissemination areas in Quebec were extracted 

using Canadian Census Analyser, Census 2006 and Census 2011. The weighted density of the 

population (centered at the participants’ address locations) was calculated in accordance with the 

literature. 

3.5.2 Connectivity 

Walkability indices are among the most important connectivity confounders in studies of the BE 

and health (Merchant et al., 2007; Villeneuve et al., 2018). Higher scores promote active 

wellbeing, and have been associated with lower risk of having a number of unfavourable health 

conditions such as overweight, hypertension and diabetes (Loo et al., 2017; McCormack et al., 

2018). Walking and high level of PA are protective factors against some chronic conditions such 

as obesity, asthma and diabetes (Simons et al, 2018). Residential density, street connectivity, and 

land-use are the most popular walkability variables considered by BE investigators. However, 

different methods to calculate walkability indices used in health research provide different results 

and may be misrepresentative of actual human behaviour (Shashank & Schuurman, 2019). In this 

study we focused on the street network as an important measure of proximity, accessibility and 

connectivity in the neighbourhood. 

A recently published study demonstrated that increasing street connectivity levels were inversely 

associated with BMI in US adults (Leonardi et al., 2017), and a Canadian adult population (Glazier 

et al., 2014). However the positive influence of street connectivity on obesity can vary between 

urbanized areas (Wang et al., 2013). While street connectivity could be beneficial for adult active 

transportation, it could have controversial effects on children and youth. High connectivity (often 

observed in socially disadvantaged neighbourhoods) is related to higher population density, which 

could result in lower neighbourhood safety and higher traffic related accidents and crime rates. 
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According to the study based on the 2006 Health Behaviour in School-aged Children (HBSC) 

survey, street connectivity (measured in 5000 m circular buffer around schools), was negatively 

associated with PA in Canadian youth (Mecredy et al., 2011). Mixed results confirm that analysis 

of youth behaviour is a complex issue that is not easily understood, and which requires accounting 

of many factors of individual and local levels as well as correctly defined spatial scale for analysis. 

Nevertheless, street connectivity was chosen for this study in order to adjust for network structure 

of the neighbourhood. Street connectivity was defined as intersection density and was calculated 

as the number of three-way or greater intersections per km2. CanMap RouteLogistics [computer 

file] Markham: DMTI Spatial Inc., 2012 was used as a source. 

3.5.3 Neighbourhood sociodemographic characteristics 

An important confounder in our models is neighbourhood SES. In this study the sociodemographic 

characteristics of participants’ neighbourhoods were assessed using the Pampalon Deprivation 

Index. Originally designed in 1990, the index is available at the dissemination area level and is a 

measure of neighbourhood deprivation (Pampalon et al., 2012). The index has two main 

components: the first combines indicators of education, employment and income (the material 

component), the second combines indicators related to marital status and family structure (the 

social component).  

The index values (factor scores for material and social deprivation) were calculated as an 

optimally-weighted linear combination of the indicators using its factor loading, indicating the 

level of deprivation in every dissemination area. As a result, it is possible to classify all small areas 

with population-weighted quintiles (i.e., groups of 20%) ranging from the least deprived (first 

quintile or Q1) to the most deprived (fifth quintile or Q5). The 2006 and 2011 Pampalon 

Deprivation Indexes from the Institute National de Santé Publique du Québec (INSPQ) website 

were utilized for this study (INSPQ, 2011). 

While 2006 Deprivation Index was calculated based on 2006 Canadian census data, the next 

edition of the Pampalon Deprivation Index available was based on the data collected through the 

National Household Survey (NHS), a voluntary measure which replaced the mandatory long-form 
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census. This major change caused the increase in the global non-response rate, introducing risks 

of bias. However, according to Gamache and colleagues, (2017) their extensive validation process 

demonstrated that the 2011 deprivation is valid (Gamache et al., 2017). For the current analysis 

Pampalon Deprivation index 2006 was used for baseline and 1st follow-up, and Deprivation index 

2011 was used for 2nd follow-up. A high degree of reliability was found between Deprivation Index 

2006 and 2011. The average Intraclass correlation coefficient (ICC) was 0.85 (95% CI: 0.81- 0.88) 

for the Material component and 0.88 (95% CI: 0.85- 0.91) for the Social component.  

The weighted Deprivation Index Material score was computed for 1000 m circular buffer using 

the population-weighted segments of dissemination areas overlapping 1000 m circular buffers 

centred on participants’ residential locations. For the purposes of consistency, weighted 

Deprivation Index (1000 m circular buffer) was used for both the Linear Regression model and 

DLM model as a (I) continuous variable and as a (II) categorical variable via quantiles, for 

investigating possible difference between the least and most deprived neighbourhoods. No 

differences in the main results were noted between (I) and (II). For better understanding of the SES 

differences, socioeconomic characteristics of quantiles are presented in the Appendix (Table 8). 

3.5.4 Retail Food Environment  

The data about food retail stores were obtained from DMTI Spatial Inc. [computer file]. Enhanced 

Point of Interest [EPOI]. Markham: DMTI Spatial Inc., 2008 and 2012 in order to collect the data 

representative for 1st and 2nd follow-ups. The EPOI database had shown a moderate capacity to 

detect the presence of a food store, with an estimated representativity of 77.7%, with measures of 

sensitivity and positive predictive value (PPV) of 65.5% and 77.3% respectively (Clary & Kestens, 

2013). In that study, a novel measure of representativity to compensate between false negatives 

(FNs) and false positives (FPs) within the same business category and area was introduced. To 

compile the Retail Food Environment data, the methodology developed by Clary & Kestens (2013) 

was followed. Two main categories of food establishments were considered: (1) the number of 

fast-food restaurants (including cafes, bakeries and pizza take-outs), and (2) the number of 

convenience stores. Fast food restaurants were defined as restaurants/food chains with limited or 

no wait staff where customers order food and pay for it at a counter prior to receiving food. The 
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data were compiled using selected Standard Industrial Classification (SIC) codes, which included 

various Quebec fast food chains restaurants or franchises as well as convenience store chains.  

For linear regression analysis Retail Food Environment exposure were expressed as a count of 

food stores within the circular buffers of fixed sizes 500 m, 750 m and 1000 m. These choices are 

conditioned by the buffer sizes defined by the QUALITY Neighbourhood Study, an adjunct to the 

QUALITY Cohort study (The QUALITY Residential Built Environment complementary study 

protocol, grant #PG-040291). 

For the DLM method the number of food stores was counted for 100 m ring-shaped areas up to 

3.5 km centered on the participants’ addresses using ArcGIS 10.6 software (ESRI, Redlands, CA) 

following the approach described in Figure 2. A lag of 100 m (roughly equal to the size of one 

block in Montreal island) was used.  

3.5.5 Recreational Facilities Environment  

Land use and EPOI information used in this study were from CanMap Content Suite (DMTI 

Spatial Inc.). In order to measure the neighbourhood’s BE characteristics related to PA, various 

measurements suggested in the literature included: population density and vehicular traffic, land-

use mix, access to recreational facilities, lighting, street pattern and sidewalk coverage, 

greenness/vegetation etc. as well as a composite variables/index representing a combination of 

different measures (Brownson et al., 2009; Buck, Kneib, et al., 2015; Buck, Tkaczick, et al., 2015). 

The counts of recreational facilities (including parks, recreational areas, playgrounds, sport fields 

and stadiums, arenas, picnic areas and swimming pools, fitness and recreational sport centres, sport 

teams and clubs) were selected for this study based on previous findings suggesting that PA in 

children was positively associated with publicly provided recreational infrastructure (Davison & 

Lawson, 2006) .  

For linear regression analysis and DLM the data was collected following the same procedure as 

for the Retail Food Environment.  
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The data were derived from buffer analysis using the ArcMap 10.6 Geographic Information 

System (ESRI Redlands, CA). These features were linked to child’s BMI and MVPA data based 

on GIS coordinates of the participants’ residential addresses.  

Figure 2. Built Environment data collection for DLM. Circular ring-shaped areas with lag=100 m 
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3.6 Statistical models 

3.6.1 Linear regression models 

The traditional approach of using linear regression models with predefined fixed-size buffers were 

performed in order to examine the difference in association between the BE features and 

continuous health outcomes for circular buffers of 500 m, 750 m and 1000 m. We used the OLS 

method for estimating the unknown parameters in a linear regression model. The principle of least 

squares (minimizing the square of prediction error) was used to obtain the parameters for the 

model. For bivariate and multivariable analyses, we opted for a linear regression model using the 

BMI z-score or MVPA counts as the dependent variables. As the first step, we tested the bivariate 

association between these health outcomes and BE variables separately. Then, for multivariable 

analysis the linear regression models were adjusted for individual- and neighbourhood- level 

variables. As the primary objective of this study was to examine if the spatial scale for 1st and 2nd 

follow-up differed between one another, the statistical analysis was conducted on the cross-

sectional data.  

 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖(0;𝑟𝑟𝑘𝑘) + 𝑍𝑍i𝑇𝑇δ𝑖𝑖 + ε𝑖𝑖 , 𝑖𝑖 = 1, . . . , 𝑛𝑛. (6) 

Where:  

Yi  represents BMI z-score or daily MVPA counts of participant at location,  

β0  the intercept,  

β1  the estimated coefficient of association between the BE features measured in the fixed size 

buffer and the outcome,  

𝑋𝑋𝑖𝑖(0;𝑟𝑟𝑘𝑘) represents the measure of BE features within the fixed size buffer centered at location with 

the radius equal to rk (in current study 500 m, 750 m and 1000 m),  

Zi represents vector of individual and neighbourhood characteristics of ith participant,   

δi  coefficients of association of covariates and εi ~ N(0, τ2).  
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Three fixed circular buffers (500 m, 750 m and 1000 m) were tested for each model. Using a 

circular buffer of 500 m as an example, the general model has the form: 

𝐵𝐵𝐵𝐵𝐼𝐼𝐵𝐵 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑎𝑎𝐻𝐻𝑡𝑡𝐹𝐹𝑐𝑐𝑐𝑐𝑜𝑜500𝑚𝑚 + 𝛿𝛿1𝐴𝐴𝑔𝑔𝐻𝐻 + 𝛿𝛿2𝑆𝑆𝐻𝐻𝑥𝑥𝑓𝑓𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑓𝑓  +  𝛿𝛿3𝐸𝐸𝐸𝐸𝑈𝑈𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡 +

𝛿𝛿4𝐼𝐼𝑛𝑛𝑐𝑐𝑐𝑐𝐼𝐼𝐻𝐻𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡 + 𝛿𝛿5𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝐻𝐻𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿6𝐸𝐸𝐻𝐻𝑛𝑛𝐻𝐻𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿7𝐸𝐸𝐻𝐻𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 +ε. 

To test if the association differs by sex, a model with the following interaction term has the form: 

𝐵𝐵𝐵𝐵𝐼𝐼𝐵𝐵 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑎𝑎𝐻𝐻𝑡𝑡𝐹𝐹𝑐𝑐𝑐𝑐𝑜𝑜500𝑚𝑚  + 𝛿𝛿1𝐴𝐴𝑔𝑔𝐻𝐻 + 𝛿𝛿2 𝑆𝑆𝐻𝐻𝑥𝑥𝑓𝑓𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑓𝑓 + 𝛿𝛿3𝐹𝐹𝑎𝑎𝐻𝐻𝑡𝑡𝐹𝐹𝑐𝑐𝑐𝑐𝑜𝑜500𝑚𝑚 × 𝑆𝑆𝐻𝐻𝑥𝑥𝑓𝑓𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑓𝑓

+ 𝛿𝛿4𝐸𝐸𝐸𝐸𝑈𝑈𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡 + 𝛿𝛿5𝐼𝐼𝑛𝑛𝑐𝑐𝑐𝑐𝐼𝐼𝐻𝐻𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡 + 𝛿𝛿6𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝐻𝐻𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿7𝐸𝐸𝐻𝐻𝑛𝑛𝐻𝐻𝑖𝑖𝑡𝑡𝐶𝐶

+ 𝛿𝛿8𝐸𝐸𝐻𝐻𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 + 𝜀𝜀. 

To examine association between PA and presence of Fitness Facilities in the 500 m fixed buffer: 

𝐵𝐵𝑀𝑀𝑀𝑀𝐴𝐴𝑑𝑑𝑙𝑙𝑖𝑖𝑙𝑙𝑑𝑑 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻500𝑚𝑚 +  𝛿𝛿1𝐴𝐴𝑔𝑔𝐻𝐻 + 𝛿𝛿2𝑆𝑆𝐻𝐻𝑥𝑥𝑓𝑓𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑓𝑓 + 𝛿𝛿3𝑂𝑂𝑐𝑐𝐻𝐻𝑟𝑟𝑂𝑂𝐻𝐻𝑖𝑖𝑔𝑔ℎ𝑡𝑡 + 𝛿𝛿4𝐸𝐸𝐸𝐸𝑈𝑈𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡

+ 𝛿𝛿5𝐼𝐼𝑛𝑛𝑐𝑐𝑐𝑐𝐼𝐼𝐻𝐻𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡 + 𝛿𝛿6𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝐻𝐻𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿7𝐸𝐸𝐻𝐻𝑛𝑛𝐻𝐻𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿8𝐸𝐸𝐻𝐻𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 

+ 𝛿𝛿9𝑆𝑆𝐻𝐻𝐼𝐼𝐼𝐼𝐻𝐻𝑟𝑟 +  𝜀𝜀. 

Following the previously described approach, to test if the association differs by sex, a model with 

the following interaction term has the form: 

𝐵𝐵𝑀𝑀𝑀𝑀𝐴𝐴𝑑𝑑𝑙𝑙𝑖𝑖𝑙𝑙𝑑𝑑 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻500𝑚𝑚 +  𝛿𝛿1𝐴𝐴𝑔𝑔𝐻𝐻 + 𝛿𝛿2𝑆𝑆𝐻𝐻𝑥𝑥𝑓𝑓𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑓𝑓  +  𝛿𝛿3𝑂𝑂𝑐𝑐𝐻𝐻𝑟𝑟𝑂𝑂𝐻𝐻𝑖𝑖𝑔𝑔ℎ𝑡𝑡 

+ 𝛿𝛿4𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻500𝑚𝑚 × 𝑆𝑆𝐻𝐻𝑥𝑥𝑓𝑓𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙𝑓𝑓  +  𝛿𝛿5𝐸𝐸𝐸𝐸𝑈𝑈𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡 + 𝛿𝛿6𝐼𝐼𝑛𝑛𝑐𝑐𝑐𝑐𝐼𝐼𝐻𝐻𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡

+ 𝛿𝛿7𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝐻𝐻𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿8𝐸𝐸𝐻𝐻𝑛𝑛𝐻𝐻𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿9𝐸𝐸𝐻𝐻𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 + 𝛿𝛿10𝑆𝑆𝐻𝐻𝐼𝐼𝐼𝐼𝐻𝐻𝑟𝑟 +  𝜀𝜀. 

AIC and R2 for all models were compared to identify the best circular buffer size among the 

linear regression models.  

For the current data analysis, the statistical models were adjusted for neighbourhood-level 

covariates, defined as weighted values of relevant variable or count of BE features within 1 km 

circular buffer centered at participants’ locations. For example, the weighted Pampalon 

Deprivation index, calculated proportionally to the population of parts of Dissemination areas 
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within 1000 m buffer, or the number of the intersections within 1000 m buffer centered at 

participants’ locations. 

3.6.2 Distributed lag models  

DLMs were used to describe the association between BE features and outcomes as a function of 

distance from the home locations. Following the approach described in a previous section (2.2.4) 

in our study, 𝑋𝑋𝑖𝑖(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) represented the measure of BE features (e.g., number of fast foods, 

convenience stores or fitness facilities) within “ring” shaped areas around the participants’ 

residential addresses. We modeled the associations between BMI z-score and individual-, 

neighbourhood-related independent variables and measure of BE features as a mixed-effect model: 

 𝑌𝑌𝑖𝑖 = β0 + �β(𝑟𝑟ℓ−1; 𝑟𝑟ℓ)𝑋𝑋𝑖𝑖(𝑟𝑟ℓ−1; 𝑟𝑟ℓ)
𝐿𝐿

ℓ=1

+ 𝑍𝑍𝑖𝑖𝑇𝑇δ𝑖𝑖 + ε𝑖𝑖 . (7) 

With the main elements remaining the same, the data and coefficients for different lags were 

incorporated in this model. 𝑋𝑋𝑖𝑖(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) represents the measure of BE features within the area 

between 2 radii, and 𝛽𝛽(𝑟𝑟ℓ−1; 𝑟𝑟ℓ) represents the estimated association between presence of one 

additional BE feature within this area and the outcome. 𝑍𝑍𝑖𝑖 represents the vector of individual and 

neighbourhood characteristics of ith participant, δi represents the coefficients of association of 

covariates and εi ~ N(0, τ2).   

The DLM has the following form: 

𝐵𝐵𝐵𝐵𝐼𝐼𝐵𝐵𝑖𝑖 = 𝛽𝛽0+�𝛽𝛽(𝑟𝑟ℓ−1; 𝑟𝑟ℓ)𝑋𝑋𝑖𝑖(𝑟𝑟ℓ−1; 𝑟𝑟ℓ)  +
𝐿𝐿

ℓ=1

𝛿𝛿1𝐴𝐴𝑔𝑔𝐻𝐻 + 𝛿𝛿2𝑆𝑆𝐻𝐻𝑥𝑥 + 𝛿𝛿3𝐸𝐸𝐸𝐸𝑈𝑈𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡 + 𝛿𝛿4𝐼𝐼𝑛𝑛𝑐𝑐𝑐𝑐𝐼𝐼𝐻𝐻𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡

+ 𝛿𝛿5𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝐻𝐻𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿6𝐸𝐸𝐻𝐻𝑛𝑛𝐻𝐻𝑖𝑖𝑡𝑡𝐶𝐶 + 𝛿𝛿7𝐸𝐸𝐻𝐻𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 + 𝜀𝜀𝑖𝑖, 

where L is a predefined maximum distance where we assume the association between the presence 

of BE features and health outcomes no longer exists. For the current study the distance of 3.5 km 

was chosen. In order to examine if there were any differences by sex, the interactions between the 

lagged covariates and participants’ sex were included in the model. 
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Following Zanobetti (2000) and Baek (2016), a penalized splines smoothing and QR-

decomposition based approach was applied in order to estimate smoothing coefficients. The 

estimates for the mixed model were calculated using R package dlmBE. 

To be able to compare estimations obtained with DLM and linear regression models, results must 

be expressed in similar scales, and for this purpose Baek (2016) suggests that the average buffer 

effect up to a required distance should be calculated. For example, if for a linear model of the form 

𝑌𝑌𝑖𝑖 = β0 + β𝑋𝑋𝑖𝑖(0; 𝑟𝑟𝑘𝑘) + ε𝑖𝑖, 

we consider buffer of fixed size rk, the average buffer effect for DLM model for the same area 

could be calculated using estimated coefficients for all lags from the point of location up to distance 

rk as weighted summation: 

 �̅�𝛽(0; 𝑟𝑟𝑘𝑘) =
∑ 𝛽𝛽(𝑟𝑟ℓ−1; 𝑟𝑟ℓ)𝑘𝑘
𝑙𝑙=1  𝜋𝜋(𝑟𝑟ℓ2 − 𝑟𝑟ℓ−12 )

𝜋𝜋𝑟𝑟𝑘𝑘2
. (8) 

3.7 Statistical analysis 

Statistical analysis for this study included descriptive statistics, statistical modelling (with OLS 

and DLMs), followed by the comparison of model fit and assumptions of these two methods were 

examined. All methods were previously described in detail in the Methods section. All models 

were adjusted for individuals’ and neighbourhoods’ characteristics: age, sex, whether at least one 

parent had a bachelor’s degree, adjusted household income, population density, Pampalon 

Deprivation index and number of intersections (defined as weighted values for 1000 m circular 

buffers) as previously described. BE features included the (1) Retail Food Environment: defined 

as the (1a) number of fast-food restaurants, cafes and bakeries, and (1b) the number of convenience 

stores, and (2) Recreational Facilities Environment: defined as the number of parks, recreational 

areas, playgrounds, sport fields and stadiums, arenas, picnic areas and swimming pools, fitness 

and recreational sport centres, sport teams and clubs open for public use within relevant spatial 

scale (circular buffers of fixed size or 100 m ring-shaped areas). Analyses were conducted with 
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SAS (SAS Institute Inc., Cary, NC, USA) version 9.1 and R software (R Core Team, 2019) version 

3.5.1.  

3.7.1 The Spatial Autocorrelation (Global Moran's I)  

When analyzing datasets that contain observations on geographical areas, assessment for the 

presence of spatial autocorrelation is necessary. The fundamental concepts of spatial dependence, 

suggested by Waldo Tobler is that, "everything is related to everything else, but near things are 

more related than distant things" (Tobler, 1970). When such relations are present in a dataset, 

additional analytical tools should be applied. Moran (1950) proposed a spatial autocorrelation tool 

for continuous data in order to measure how one object is similar to others surrounding it (Moran, 

1950), commonly referred as Global Moran’s I. However, in practice, there is no standard 

regarding which proximity measure should be used to quantify “nearness”, and the most 

commonly used options are the inverse distance methods.  

The observed Moran’s index can be calculated as: 

𝐼𝐼 =
∑ ∑ 𝑂𝑂𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

σ2 ∑ ∑ 𝑂𝑂𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

 =
∑ ∑ 𝑂𝑂𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)�𝑥𝑥𝑖𝑖 − �̅�𝑥�𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝜎𝜎2 ∑ ∑ 𝑂𝑂𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

 , 

where σ2 is the population variance, or  σ2 = ∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2/𝑛𝑛𝑛𝑛
𝑖𝑖=1 , 

xi is the value of the attribute at point i, with n – total number of points, 

sij – represents the similarity of attributes in point i’s and j’s, 

wij – represents the proximity of locations, with wii = 0 for all points. 

Or in a more efficient way: 

 𝐼𝐼 =
𝑛𝑛 ∑ ∑ 𝑂𝑂𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)�𝑥𝑥𝑖𝑖 − �̅�𝑥�𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

∑ ∑ 𝑂𝑂𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 ∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)𝑛𝑛

𝑖𝑖=1
2  . (9) 

The Expected value of Moran’s index can be calculated as:  𝐸𝐸(𝐼𝐼) = − 1
𝑛𝑛−1

, 
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and the standardized Z-score:  𝑍𝑍 = 𝐼𝐼−𝐸𝐸[𝐼𝐼]
�𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼)

 . 

As an inferential statistic, Moran's I has the interpretation within the context of its null hypothesis, 

which states that the observed pattern of values is random chance and no spatial autocorrelation is 

observed. If both the observed and expected indexed are not significantly different (p-value > 

0.05), we conclude the random pattern. Statistically significant positive z-scores suggest a 

clustered pattern where nearby points may show similar characteristics, while statistically 

significant negative z-scores suggest a dispersed pattern and nearby points may show different 

characteristics. As it was shown by Baek (2016), DLM provided better inference for all types of 

the spatial clustering settings in the simulation study. In the presence of a dispersed spatial pattern, 

DLM could also demonstrate the advantageous ability to capture correctly the true association 

between the BE features and outcome. As the count of BE features can differ significantly within 

every next lag, it’s important to continue evaluation up to theoretical maximum distance, as every 

next lag will add more information for analysis. 

In order to test the significance of spatial autocorrelation measures, one must make an assumption 

about the distribution of various point locations. We adopt a randomisation or nonfree sampling 

option as we assume that the observed distribution is one of many possible outcomes with the 

given set of values. Alternatively, if we consider infinite possible sets and each value is 

independent, we opt for normality of free sampling assumption. Since our analysis is limited to 

233 neighbourhoods (participants living in the Montreal Metropolitan Area), the randomness 

assumption seems to be more appropriate. 

When examining the distribution of buffers, it was noticed that the majority of buffers overlapped 

with at least one other buffer. In this context in order to examine for spatial auto-correlation in the 

dependent variable, Moran’s I was computed, using (1) the inverse Euclidean distance matrix, 

based on participants’ locations and weight status values and MVPA values simultaneously, with 

fixed distance of 1000 m from participants’ locations. To assess the spatial autocorrelation for 

neighbourhood-level measures for the current study, observed and expected Moran’s I values were 

calculated for participants living in the Montreal Metropolitan Area (n=233) using data of the 1st 

follow-up.  
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3.7.2 The Akaike Information Criterion  

Given a set of nested models, the Akaike Information Criterion (AIC), introduced by the 

statistician Hirotugu Akaike (Akaike, 1974), is a widely used estimator to select the best one. AIC 

assesses the relative quality of model through estimation of the lost information. Suppose k is the 

number of estimated parameters and 𝐿𝐿� is the maximum value of the likelihood function. The AIC 

value of the model is calculated as: 

 𝐴𝐴𝐼𝐼𝐶𝐶 = −2𝑇𝑇𝑐𝑐𝑔𝑔�𝐿𝐿�� + 2𝑘𝑘. (10) 

As AIC is a relative measure of model parsimony, the number itself is not meaningful and should 

be interpreted only when comparing different models of the same data. The smallest AIC suggests 

the best model fit.  
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4 Results 

4.1 Sample characteristics 

The current study was based on the sample of children living in the Quebec province who 

participated in the QUALITY cohort. The data from baseline and two follow-up visits were used 

for the analysis. The sample size was restricted to 281 participants – the families who did not 

change their address during study follow-up (see Table 1).  

Among the participants, 150 were males (53%) and 131 were females (47%). The mean age (SD) 

at baseline was 9.6 (0.9) and was 11.7 (0.9) and 16.8 (1.0) at 1st and 2nd follow-ups respectively. 

The majority of participants (64.5% to 67.3%) at all three time points were considered to be at a 

healthy weight. At baseline, only 26% of the sample had initiated puberty, but all had initiated 

puberty by the second follow-up.  

In almost 2/3 of the families, at least one parent had at least a university degree. Significant changes 

were observed in the distribution of the annual adjusted household income - while almost 40% of 

families were below the low-income cut-off at the baseline (defined as annual adjusted household 

income < $40,000), only 22% remained in this category by 2nd follow-up.  

The distribution of quantiles of Pampalon Deprivation index suggested that our sample does not 

contain extreme groups in terms of social deprivation. The descriptive statistics of all five quantiles 

are presented in the Appendix (Table 8). The mean non-adjusted household income varied from 

$65,000 for the most deprived quantile to $108,807 in the least deprived quantile, while level of 

unemployment ranged from 4% to 7%. Less deprived quantiles were also characterised with lower 

population density of 1,755 person per square km versus 2,376 in more deprived quantiles.   
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Table 1: Demographic and built environment characteristics for QUALITY study participants at 
baseline, 1st and 2nd follow-ups (n=281, females = 47%, 2005-2016). 

  Baseline 1st Follow-up 2nd Follow-up 
  2005-2008 2007-2011 2012-2016 
Characteristic, mean (SD)1             
Age, years 9.6 (0.9) 11.7 (0.9) 16.8 (1.0) 
BMI percentile 66.2 (26.8) 66.7 (27.1) 65.9 (27.3) 
BMI z-score 0.59 (1.0) 0.60 (1.0) 0.58 (1.0) 
Puberty initiated, (%) 26.0% 72.0% 100.0% 
              
1 or 2 parents with university degree 57.0%       
Annual adjusted household income, (%)             
     <$20,000 7.9% 6.8% 4.0% 
     $20,000-39,999 31.2% 22.2% 18.5% 
     $40,000-59,999 38.7% 40.5% 28.7% 
     ≥$60,000 22.2% 30.5% 48.7% 
              
Neighbourhood Environment 
Characteristics             

Density of population (per km2)  2146.6 2302.6 
Connectivity (# of junctions per km2)  50.4 50.4 

              
BE features of interest*    

Fast-foods, bakeries, cafes   6.8 (9.8) 6.4 (9.6) 
Convenience stores     3.9 (6.4) 4.0 (6.4) 
Parks, Sport fields, open  
swimming pools     2.4 (2.1) 2.4 (2.1) 

*Number in 1000m circular buffer 
1Presented as mean (SD) unless otherwise indicated             
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Some differences in neighbourhood characteristics were noticed. Density of population was on 

average 2,147 person per square km at 1st follow-up and increased by 7% up to 2,303 person per 

square km at 2nd follow-up. Measures of BE features of interest also demonstrated some changes 

over time. At 1st follow-up, the average number of fast foods, bakeries and cafes in a 1000 m 

circular buffer centered at residential location was 6.8, while 5 years later it slightly decreased to 

an average of 6.4 fast foods in the buffer. In contrast, the number of convenience store showed a 

slight increase over time, changing from 3.9 to 4.0 convenience stores per 1000 m circular buffer 

on average. As for Recreational Facilities Environment, 2.4 PA related neighbourhood attributes 

were identified on average in a 1000 m circular buffer. Detailed data are available in Table 9. The 

maps which indicated distribution of (1) Retail Food Environment facilities (Figure 8) and 

Recreational Facilities Environment related neighbourhood attributes (Figure 9) are included in 

the Appendix. 

The results of Moran’s I calculations (Table 2) suggest that for the majority of variables, the spatial 

autocorrelation is not observed within the current QUALITY dataset. In other words, in terms of 

weight status, level of MVPA, SES neighbourhood characteristics and connectivity, study 

locations are spatially equally distributed. However negative z-scores for population density and 

Retail Food Environment suggest that spatial distribution of nearby neighbourhoods is more 

spatially dispersed than would be expected. These results can be explained by the diverse Montreal 

urban planning, where the mix of neighbourhoods with urban, suburban and rural characteristics 

can be observed in a relatively small area. Note that for Retail Food Environment, the spatial 

autocorrelation is observed for fast foods, but not for convenience stores. The rationale behind this 

is the reasonable difference in their points of locations. Fast food restaurants are mainly located in 

commercial places (plazas), often grouped within food courts, while convenience stores, often 

based in pharmacies/gas stations, etc. tend to fill the gaps in the commercial retail market, thus 

their locations are usually found to be at some distance from each other.   
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Table 2. Observed Moran’s I for dependent variables and neighbourhood-level measures.  The 
QUALITY study participants living in the Montreal Metropolitan Area (n=233) 

Outcomes of interest and 
neighbourhood characteristics* 1

st
 follow-up 2

nd
 follow-up 

 
Observed 
Moran’s I p-value 

Observed 
Moran’s I p-value 

BMI z-score -0.0329 0.074 -0.0122 0.627 

MVPA per day -0.0059 0.944 -0.0303 0.304 

Deprivation Index  -0.0042 0.446 -0.0047 0.150 

Density of Population -0.0051 0.001 -0.0050 0.007 

Connectivity -0.0046 0.276 -0.0046 0.276 

Retail Food Environment: Fast foods -0.0049 0.021 -0.0048 0.042 

Convenience stores -0.0046 0.273 -0.0047 0.169 

Parks/Sport Fields -0.0047 0.166 -0.0047 0.166 

*Number of features within 1000m Circular Buffer 
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4.2 Linear regression model  

Retail Food Environment: presence of (a) fast foods, cafes and bakeries, (b) convenience 

stores in the neighbourhood. 

Compared to a bivariate model, regression models that were adjusted for covariates demonstrated 

higher significance of Retail Food Environment features and better performance in terms of 

amount of explained variance. Coefficient of associations and level of significance were higher for 

models with smaller buffer size, for both crude and adjusted models (results presented in Table 3). 

Although many confounders were not found to be significant, their inclusion provided better 

overall model fit, supporting the variables selected for these models. Variance inflation factors 

(VIF) did not exceed 2 (most were around 1), suggesting that multicollinearity was not an issue. 

At 1st follow-up the bivariate model suggested a significant association for the smallest (500 m) 

buffer only, and no significant associations for 750 m and 1000 m buffers. The adjusted model 

showed higher level of significance and increase in the estimate of association and model fit (R2 = 

0.071 versus 0.013 for bivariate model). In contrast, for the 2nd follow-up, the presence of Retail 

Food environment features demonstrated significant associations on the BMI z-score at all 

considered buffer sizes (Table 4). 

The interaction term between the presence of BE features and sex was not significant in all models. 

Nevertheless, we tested it with the DLM model, as the DLM provides a potential opportunity to 

get a better understanding of possible sex and BE interactions. 

The residuals plots for all linear models were examined and the results suggest that the assumptions 

were justified, see (Figure 10) in Appendices. 
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Table 3. Crude and covariate adjusted association between measure of the Retail Food Environment and BMI 
z-score at 1st follow-up, QUALITY study. 
 
 Fast foods, Betas   Convenience stores, Betas 
Buffer size 500 m 750 m 1000 m   500 m 750 m 1000 m 

(1) Crude model        
# of Food Env features  0.041* 0.011 0.001  0.024 0.006 0.003 
R-squared 0.013 0.003 0.000  0.002 0.000 0.000 

        
(2) Adjusted to covariates model 

# of Food Env features in the buffer 0.087** 0.029 0.016   0.101* 0.052 0.038 
R-squared 0.071 0.050 0.045  0.052 0.045 0.048 
        
Covariates        

Intercept 1.880 2.100 2.139  2.167 2.261 2.261 
Age (years) -0.082 -0.101 -0.104  -0.104 -0.114 -0.114 
Sex (female) -0.226 -0.226 -0.236  -0.263 -0.237 -0.237 
Household income (in 10,000) -0.004 -0.001 0.000  -0.002 0.001 0.002 
Parents Education  -0.087 -0.075 -0.081  -0.077 -0.070 -0.078 

Built Environment variables1  
Connectivity (# of Junctions) -0.022 -0.026 -0.028  -0.013 -0.016 -0.01615 
Density of population -0.097* -0.067 -0.068  -0.099 -0.089 -0.115 
Deprivation Q1 (least deprived) Ref  Ref Ref  Ref Ref Ref 
Deprivation Q2 0.259 0.220 0.206  0.216 0.218 0.221 
Deprivation Q3 0.400 0.303 0.306  0.310 0.296 0.275 
Deprivation Q4 0.429 0.425 0.436  0.396 0.409 0.392 
Deprivation Q5  0.272 0.303 0.297  0.241 0.263 0.249 

** <0.01;* <0.05;  
1 Calculated as number of BE features or weighted value within 1000 m circular buffer  
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Table 4. Crude and covariate adjusted association between measure of the Retail Food Environment and 
BMI z-score at 2nd follow-up, QUALITY study. 
 
 Fast foods, Betas   Convenience stores, Betas 
Buffer size 500 m 750 m 1000 m   500 m 750 m 1000 m 
        
(1) Crude model        
# of Food Env features 0.051* 0.015 0.006   0.058. 0.019 0.016 
R-squared 0.018 0.006 0.003  0.012 0.003 0.007 

        
(2) Adjusted to covariates model 
# of Food Env features  0.091** 0.040* 0.028*   0.158** 0.066* 0.068** 
R-squared 0.066 0.051 0.048  0.070 0.046 0.068 
        
Individual variables        

Intercept 1.961 1.999 2.068  2.233 2.117 2.439 
Age (years) -0.069 -0.071 -0.073  -0.081 -0.076 -0.093 
Sex (female) -0.173 -0.185 -0.174  -0.219 -0.185 -0.157 
Household income (in 10,000) -0.008 -0.003 -0.004  -0.013 -0.010 -0.012 
Parents Education  -0.092 -0.099 -0.111  -0.083 -0.069 -0.082 

Built Environment variables1  
Connectivity (# of Junctions) -0.029 -0.037 -0.042  -0.018 -0.026 -0.027 
Density of population  -0.072 -0.066 -0.083  -0.116* -0.082 -0.157* 
Deprivation Q1(least deprived) Ref Ref Ref  Ref Ref Ref 
Deprivation Q2 0.452* 0.439* 0.423*  0.449* 0.416 0.402 
Deprivation Q3 0.350 0.335 0.313  0.270 0.274 0.267 
Deprivation Q4 0.296 0.241 0.268  0.190 0.213 0.173 
Deprivation Q5  0.292 0.312 0.287  0.290 0.307 0.251 

** <0.01; * <0.05;  
1 Calculated as number of BE features or weighted value within 1000 m circular buffer  
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Recreational Facilities Environment: the number of parks, sport fields, swimming pools, or 

fitness facilities open for public use. 

Three fixed buffer sizes (500 m, 750 m and 1000 m) were tested. The analytical sample contained 

only 214 observations, as accelerometry data were used for statistical analysis only if the 

requirements of a minimum of 4 days with accelerometer wear-time >10 hours per day were met 

(R. Colley et al., 2010). Accelerometry data were only collected at baseline and 1st follow-up thus 

no analyses for 2nd follow-up were conducted. The results of bivariate and adjusted regression 

models demonstrated no significant association between the level of MVPA and presence of 

recreational facilities in the neighbourhood (Table 5). However, the adjusted model demonstrated 

better performance with 26% of explained variance for buffers of all sizes. Many confounders like 

age, sex, having overweight or obesity, and seasonality were found to be highly significant.  
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Table 5. Crude and covariate adjusted association between measure of the Recreational 
Facilities Environment and Moderate and Vigorous Physical Activity (MVPA) at 1st follow-up. 
 
 Beta Beta Beta 
Buffer size 500 m 750 m 1000 m 
    
Crude model    
# of Fitness Facilities in the buffer -0.161 1.252 0.700 
R-squared 0.000 0.006 0.004 

    
Adjusted to covariates model 
# of Fitness Facilities in circular buffer -1.5329 0.916 0.6557 
R-squared 0.262 0.261 0.261 
 
Individual variables 

Intercept 98.005 99.888 98.927 
Age (years) -4.678** -4.834** -4.761** 
Sex (female) -17.239*** -17.349*** -17.495*** 
Overweight -8.152** -8.187** -8.195** 
Household income (in 10,000) 0.206 0.343 0.321 
Parents Education  2.503 2.3063 2.420 

    
Built Environment variables1  

Connectivity (# of Junctions) 1.261 0.616 0.6062 
Density of population  -0.4406 -0.500 -0.5779 
Summer 5.303 5.091 5.230 
Deprivation Q2 (least deprive) Ref Ref Ref 
Deprivation Q2 5.4668 6.222 6.143 
Deprivation Q3 6.147 6.852 6.790 
Deprivation Q4 -1.5793 -1.2682 -1.2293 
Deprivation Q5  -1.168 -0.516 -0.605 

** <0.01;* <0.05;  
1 Calculated as number of BE features or weighted value within 1000 m circular buffer 
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4.3 Cross-sectional association between Retail Food Environment and BMI 
z-score using DLM models 

4.3.1 Retail Food Environment: (1) number of fast-foods, cafes and bakeries in the 
residential neighbourhood 

For DLM the 100 m lags were created up to 3500 m centered at the residential location, rationalized 

by the size of Montreal island (which is only 17000 m at its widest point) and findings from 

previous studies. The results of analysis demonstrated that distributed lag coefficients converged 

to zero after maximum 1500 m for all models considered. Models assumptions were verified, 

diagnostic plots presented in the Appendix (Figure 11). 

Figure 3 shows the estimated distributed lag coefficients for the association between the BMI z-

score and presence of fast foods, cafes and bakeries within a distance of 3500 m from the study 

locations of QUALITY study participants at 1st and 2nd follow-ups. Different change points for the 

two study periods were detected. At 1st follow-up (Mage=11.7) the association between presence 

of fast foods and BMI z-score remains within the distance up to 600 m, with higher estimated 

coefficients of association at the first lags. In contrast, at 2nd follow-up (Mage=16.8) for the same 

study population the distance where the association disappears or is no longer clinically 

meaningful increased to 900 meters.  

For the 1st follow-up no significant association was observed among males nor females despite the 

fact, that for the whole sample significant association was detected by both linear regression and 

DLM within the 500 m buffer (data not shown). The results can be explained by the lack of power 

for additional interaction, as our sample is limited to 281 participants. Figure 4 shows estimated 

distributed lag coefficients by sex, showing that at 2nd follow-up the significant association 

between the presence of fast food in the residential neighbourhood and BMI z-score at the distance 

up to 900 m exists only within the female subsample. However, taking into consideration the 

present issue with the lack of power these results should be considered as signals and a potential 

direction to further explore in future studies. 

  



50 
 

 

  

Figure 3. Estimated distributed-lag coefficients. Association between measure of fast foods 
and BMI z-score at 1st and 2nd follow-up, QUALITY study. 

1st follow-up, change point at 600 m 2nd follow-up, change point at 900 m 

  

Figure 4. Estimated distributed-lag coefficients. Association between measure of Fast Foods 
and BMI z-score at 2nd follow-up by Sex, QUALITY study. 

Females, change point at 900 m Males, no significant association 
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4.3.2 Retail Food Environment: (2) number of Convenience stores in the residential 
neighbourhood 

Figure 5 shows estimated distributed lag coefficients for the association between the BMI z-score 

and presence of convenience stores within distance of up to 3500 m from the residential locations 

of QUALITY study participants. While no association was detected for 1st follow-up, 1300 m was 

identified as the change point for 2nd follow up for the whole sample. Interaction with sex at 2nd 

follow up shows that change points differ based on sex and is 600 m and 1300 m for females and 

males, respectively (Figure 6).  

Figure 5. Estimated distributed-lag coefficients. Association between measure of Convenience 
stores and BMI z-score at 1st and 2nd follow-up, QUALITY study. 

1st follow-up, no change point  2nd follow-up, change point at 1300 m 

  
Figure 6. Estimated distributed-lag coefficients. Association between measure of convenience 
stores and BMIz at 2nd follow-up by sex, QUALITY study.  

Females, change point at 600 m Males,  change point at 1500 m 
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4.4 Cross-sectional association between Recreational Facilities Environment 
and the number of minutes of MVPA using DLM models 

Figure 7 shows estimated distributed lag coefficients for the association between the daily minutes 

of MVPA and the Recreational Facilities Environment within a distance of 3500 m from the 

residential locations. DLM doesn’t suggest any significant association at 1st follow-up, however 

the results may be affected by a lack of power. Interactions by sex did not detect any significant 

associations. 

  

Figure 7. Estimated distributed-lag coefficients. Association between measure of Recreational 
Facilities Environment and MVPA at 1st follow-up, QUALITY study. 

n=214 Males (n=116)  Females (n=98) 
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4.5 Comparison of the results using DLM and linear regression models 

As a secondary objective of our study, we compared the results obtained with linear regression 

and DLM. For this purpose, the estimated area-averaged coefficients of association for three 

predefined circular buffers were calculated using DLM lag coefficients according to formula (8). 

For the comparison of two methods, the estimations for 500 m, 750 m and 1000 m buffer sizes, as 

well as relevant SEs, p-values and AIC are presented in Table 6. According to the linear regression 

model, every additional fast food in the 500 m circular buffer was associated with 0.087 (95% CI: 

0.0321,0.1415) increase in participant’s BMI z-score, while DLM method suggested half the 

strength of association (Beta=0.040) with narrower confidence intervals (95% CI: 0.0047,0.0753) 

and this tendency was kept for all buffer sizes. 

Overall comparison of model performance based on AIC suggested that for this study OLS 

regression models fit the data better, when examining the presence of fast foods, especially in the 

buffers of smaller sizes.  

However, for convenience stores, inconsistent results were observed for OLS regression models 

when applied to different spatial scales (Table 7). More specifically, a significant association was 

observed between the presence of convenience stores and BMI z-score within the smallest buffer 

(500 m), marginal association for a slightly larger buffer (750 m) and a significant association 

within the largest buffer (1000 m). This inconsistency could be explained by bias possibly caused 

by the nature of convenience stores locations - by definition, they tend to fill the gaps in the retail 

market and distance between them could exceed 250 m. As a result, the buffers of 500 m and 750 

m could have the same number of convenience stores and the linear regression model failed to 

capture the effect of association correctly.  

In contrast, DLM can provide a more fair evaluation for every lag up to the maximum distance. 

Observed AIC of DLM was comparable with the AIC for linear regression models, suggesting 

equal fit. In addition, DLM provides us with the additional information about the maximum 

distance where the coefficient of association becomes very close to zero, suggesting that the effect 

of the presence of BE features on health could vanish beyond this distance.   
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Table 6. Covariate adjusted association between the presence of one additional fast food within fixed 
buffer and BMI z-score at 1st and 2nd follow-up, comparison of the linear regression models and DLM, 
QUALITY study. 
      1st follow-up       2nd follow-up   
    Age (mean)=11.6    Age (mean)=16.8  

Buffer size (m) Beta SE p-value AIC   Beta SE p-value AIC 
Linear 
Regression 
Model 

500 0.087 0.028 0.002 894.7   0.091 0.029 0.002 897.1 
750 0.029 0.016 0.065 901.1   0.040 0.017 0.020 901.5 

1000 0.016 0.012 0.172 902.7   0.028 0.013 0.034 902.4 

Distributed 
Lag Model 

500 0.040 0.018 
600*m 

    0.047 0.018 
 900*m 

  
750 0.024 0.014 907.9   0.030 0.015 907.54 

1000 0.019 0.010     0.029 0.011   
*Change point 

 

 

 

Table 7. Covariate adjusted association between the presence of one additional convenience store within 
fixed buffer and BMI z-score at 1st and 2nd follow-up, comparison of the linear regression models and 
DLM, QUALITY study. 
      1st follow-up       2nd follow-up   
    Age (mean)=11.6    Age (mean)=16.8  

Buffer size (m) Beta SE p-value AIC   Beta SE p-value AIC 
Linear 
Regression 
Model 

500 0.100 0.051 0.049 900.6   0.158 0.048 0.001 896.0 
750 0.052 0.036 0.151 902.5   0.066 0.033 0.050 903.1 

1000 0.039 0.023 0.091 901.7   0.068 0.021 0.001 896.5 

Distributed 
Lag Model 

500 0.018 0.015 
N/A 

    0.040 0.018 
1300*m 

  
750 0.013 0.014 905.9   0.035 0.012 899.35 

1000 0.016 0.013     0.031 0.010   
*Change point 
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5 Discussion and Conclusion 

5.1 Summary 

In this study we compared the use of OLS and DLM methods to investigate the environmental 

determinants of childhood obesity and PA. We followed the methodology introduced by Baek 

(2016). In that previous study, Baek (2016) compared DLMs to circular buffers based on school 

BE features. As the child’s home is their primary environment, this study investigated the 

residential neighbourhood of the QUALITY cohort participants.  

For this purpose, we firstly performed a traditional approach by testing commonly used fixed-size 

buffers with OLS models. Three fixed sized buffers of 500 m, 750 m and 1000 m were created for 

these OLS regression models. Note that fixed-size buffer assumes the presence of the constant 

effects up to the bound only (in other words the association is assumed to be constant, and to exist 

only within the predefined fixed-size buffer).  

In contrast, DLM enabled us to estimate average association up to any defined distance, for 

example 1000 m, without this assumption. The DLM method only required a specification of a 

maximum possible distance for the presence of association which provided the opportunity to 

examine the pattern of association up to this limit. Thus, the distance where the association is no 

longer significant can be identified, provided that the effect completely disappears within the 

maximum limit chosen for the model. Notably this assumption is more flexible than for the 

predefined circular buffers (Baek et al., 2016). 

For this analysis 100 m ring-shaped areas up to 3500 m centered on the residential locations were 

constructed. Within these settings, we assumed that no association between presence of BE 

features and health outcomes of interest existed beyond the 3500 m. We defined a lag of 100 m 

(approximately the size of 1 block in Montreal), to be considered as a reasonable lag distance in 

an urban environment.  

Applying the DLM approach, different distances of association between the Retail Food 

Environment and BMI z-score were detected for different ages, demonstrating the dynamics of 
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behaviour changes in youth. The estimated coefficients of the first few DLM lags had wider 

confidence intervals. This higher uncertainty may have been due to the majority of these first lags 

containing zeros for all BE features, reflecting a lack of information.  

Comparison of OLS and DLM models indicated that DLM-estimated associations and SE were 

smaller than with the OLS models. AIC tended to select a regression model with the smallest buffer 

size needed as the best fit. However, based on our results of convenience stores at 2nd follow-up, 

the limitations of selecting the smallest buffer is clear: the three linear regression models with 

different buffer sizes showed inconsistent results. In this case where there is a potential spatial 

clustering presence, the AIC suggested that DLMs were generally better model fit. Results were 

consistent with that of the simulation study by Baek et al. (2016) which demonstrated DLM had 

better performance over linear regression models, smaller bias, and better coverage rates of true 

effects. Indeed, in our real-data study, the DLM approach demonstrated better results when 

examining the association between the presence of convenience stores and BMI z-scores. 

Additionally, as the change points for 1st and 2nd follow-up were detected at different distances, it 

may be appropriate to incorporate this information to improve the analysis when choosing the 

spatial scale in future studies. Results of dietary recall data from the recent Canadian Community 

Health Survey shows that, relative to other age categories, Canadian male and female teenagers 

have the highest level of daily energy intake (248 kcal and 175 kcal, respectively) consumed from 

fast food which contributes around 9% and 8% of usual energy intake respectively, vs the Canadian 

average of 6.3% (Black & Billette, 2015). The patterns of nutrition behaviour in teens is an 

important research question for epidemiologists (Bryan et al., 2016; Duma-Kocan et al., 2017; 

Zalewska & Maciorkowska, 2017) and improvements in the identification of spatial scale for 

analysis could be immensely beneficial. 

In this current study circular buffers and ring-shaped lags were used due to their relative simplicity 

of data collection. Future research should investigate the use of the DLM model with lags in the 

form of network buffers, which could potentially improve the precision of the estimation of 

association and better capture the complexity of the neighbourhood BE.  
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The maximum distance of 3500 m and lag of 100 m were chosen for this study, rationalized by the 

reality of the urban environment of the study population and in favor of better interpretability of 

the results. However, future work should explore different amounts and size of lags.  

5.2 Strengths and Limitations of the study 

Strengths 

The main advantage of the DLM method is that it does not require a pre-specification of the buffer 

size. Only the maximum distance that an association is assumed to exist needs to be specified. By 

the DLM coefficients following a smooth association over distance, a more accurate and precise 

estimation of association strength can be calculated. Additionally, the distance at which the 

association disappears can also be identified, which can help to better design future studies. 

Limitations 

By design, the QUALITY cohort was restricted to Caucasian children with a parental history of 

obesity, thus it cannot be considered as a representative sample of the Quebec youth population. 

However the prevalence of children with overweight/obesity is comparable with the Canadian 

average (StatCan, 2015, 2017) and results may be representative of the association between weight 

status and PA and BE among youth at risk for overweight/obesity.  

To be able to apply the DLM method, validated databases of relevant BE features are required. In 

this study we used data from DMTI Spatial Inc. (2008 and 2012), a Canadian digital map products 

company. Its products and solutions are commonly used in the field of location analytics. However, 

the DMTI database had previously shown only a moderate capacity to detect the presence of food 

stores (sensitivity and PPV of 65.5% and 77.3% respectively), with an estimated representativity 

of 77.7% (Clary & Kestens, 2013). Thus misclassification of BE features is likely to have occurred.  

Measurement error may have biased our study results to the null. For instance, the accelerometry 

data were available only for a small subsample (n=214), and this study did not account for actual 

participants’ eating behaviours or use of recreational facilities. This could explain the non-

significant results between the presence of Recreational Facilities Environment features and 
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MVPA, which are aligned with recent reviews (Ding et al., 2011). Indeed parks and recreation 

facilities are inconsistently associated with PA in children, for instance, 8 out of 15 papers reported 

non-significant associations (Ding et al., 2011). In addition, the low R-squared, ranged from 5% 

to 7% was expected, as the BE variables of interest investigated in this study were human 

behaviour related. Nevertheless, as this study aimed to compare analytic methodologies in 

detecting these associations, this measurement error would be non-differential and would not likely 

affect general conclusions.  

5.3 Conclusions 

Different distances of association between Retail Food BE features and health outcomes for 1st 

and 2nd follow-ups were detected, suggesting the change in dietary behaviours for children based 

on age and sex. As DLMs do not require pre-specified fixed buffer sizes, their use can help build 

empirical evidence of the most appropriate spatial scale to be used in BE related studies for 

participants over time. These results highlight instances in which DLM may be preferable to OLS. 

The inconsistent OLS results for different spatial scales suggest that additional research in different 

populations, age and PA indicators groups is warranted. As an extension to the current analysis, 

future work should examine use of DLM on network-buffers centred at the residential address. 

The use of DLM and network-buffers is likely to provide a more precise estimation of the 

association between the presence of BE and health outcomes. 
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Table 8. Pampalon deprivation index (Material component): quantiles characteristics, 
QUALITY participants at 1st follow-up, based on Census 2006. 

  Index Range 
Population 

density/km2 
Mean Household 

Income 
Unemployment 

(%) 

Q1 (less deprive) [-0.064,-0.025] 1,755 108,807 4.0% 
Q2 (-0.025,-0.009] 2,475 91,042 4.8% 
Q3 (-0.009,0.002] 2,773 80,016 4.9% 
Q4 (0.002,0.017] 2,790 76,141 5.3% 
Q5 (more deprive) (0.017,0.070]  2,376 65,000 7.0% 
Calculated based on the Quebec provincial data from the Census 2006   

 

Table 9. Distribution of Built Environment features within 1000 m circular buffer centered at 
study locations. 

  Min 1Q Median Mean 3Q Max 

Fast-foods, Bakeries, Cafes 0 0 2 6.4 9 50 
Convenience stores 0 1 2 4 4 34 
Park/Sport fields, Pools,  
Recreational facilities 

0 1 3 3.2 6 16 

 DMTI Spatial Inc. [computer file]. Enhanced Point of Interest. Markham: DMTI Spatial Inc., 2008  
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Figure 8. Retail Food Environment: convenience stores and fast-food restaurants (DMTI 
Spatial Inc.). 
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Figure 9. Recreational Facilities Environment: parks/sport fields, swimming pools, sport and 
recreational facilities (DMTI Spatial Inc.). 
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Figure 10. Residuals plots for linear regression models (association between measure of Fast 
Foods within fixed-size circular buffers and BMI z-score at 1st follow-up), QUALITY study. 

  

  

  

(A) Model with 500 m circular buffer, (B) – 750 m circular buffer, (C) – 1000 m circular buffer. 

A 
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Figure 11. Residuals plots for DLM, association between measure of Retail Food 
Environment and BMI z-score at 1st and 2nd follow-up, QUALITY study. 

  

  

  

  

Association between Retail Food Environment features and BMI z-scores: (A) Fast foods at 1st follow-up, (B) 
Fast foods at 2nd follow-up, (C) Convenience stores at 1st follow-up, (D) Convenience stores at 2nd follow-up. 
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