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ABSTRACT 

The effects of circadian food entrainment on the dopamine system and behavioral 
measures of affect. 
 

Hanna N. Opiol, Ph.D. 

Concordia University, 2019 

 

When feeding is time restricted, the brain and body shift their circadian rhythms to 

adjust to the feeding time, a process called food entrainment. Dopamine (DA) has been 

suggested to play a key role in the mechanism through which food entrainment 

develops. Since amphetamine (AMPH) sensitization is known to enhance DA, we tested 

whether it would enhance behavioral output of food entrainment, called food anticipatory 

activity (FAA). We did not find evidence for enhancement of FAA, however, restricted 

feeding (RF) did result in enhanced output when measuring behavioral cross-

sensitization to an acute injection of AMPH. Further investigation found that sufficient 

exposure to RF was necessary, for the enhancement in DA function. Cross-sensitization 

remained present post-RF and was not related to body weight at the time of testing, 

however caloric restriction was necessary. Molecular measures of DA function were 

examined in the dorsal striatum (DS) during RF and/ or in the re-feeding phase at which 

time cross-sensitization to AMPH was present. Consistent with the results of behavioral 

cross-sensitization, immunohistochemistry staining of dopamine transporter (DAT) in 

the DS revealed higher density of DAT present in rats exposed to at least two weeks of 

RF. No differences were found in tyrosine hydroxylase (TH) or FOS protein staining of 

the DS between rats exposed to RF and controls. Since one of the primary mechanisms 
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through which AMPH acts is DAT, it is possible that the cross-sensitization in food-

entrained rats may be due to an upregulation of DAT in DA fibers of the DS. Finally, 

since DA is known to affect mood, we examined how RF would affect behavioral 

measures of depression and anxiety in the rat. The results indicate that RF does not 

negatively affect mood and/or learning of an adaptive response to a stressor, as 

measured by the elevated plus maze and open-field. RF may also positively affective 

regulation of depression, since it results in increased swimming behavior in the forced 

swim test. Taken together, the findings support the role of DA in the DS as part of the 

food entrainment pathway and lends further support to the idea that food entrainment is 

a dietary regimen that does not negatively affect mental health, with possible 

implications for the treatment of depression.  
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GENERAL INTRODUCTION 

 

Circadian Rhythms, a hierarchical system of clocks 

Our bodies are designed to function under a 24-h cycle. Each day the biological 

rhythms that drive our hormonal, behavioral and cognitive processes reset themselves 

to adapt to changes in the length and timing of daylight. Every cell in our body that 

contains a nucleus contains the genes necessary to keep track of time. In essence, 

cells in our body are able to act as clocks to regulate the timing of their own biological 

functions. Liver cells oscillate together and regulate the circadian response of insulin to 

sugar (Van Cauter et al., 1991; Damiola et al., 2000), while cells of the adrenal gland 

oscillate together to regulate the circadian production of the stress hormone cortisol 

(Damiola et al., 2000; Leliavski et al., 2015), and different brain cells oscillate according 

to their own schedule of protein expression (Hastings & Maywood, 2000). As a result, 

our physiology and cognition varies with time of day.  

 

At the level of each cell, there is a small subset of genes, called clock genes, whose 

transcription / translation is driven by a negative feedback loop of ~ 24 hours. The 

negative feedback loop is what gives each cell the ability to act as an independent 

oscillator. However, each individual cell does not have the ability to act as a pacemaker 

by setting its own rhythm; it must receive physiological input from the brain or body that 

can determine differences in time of day. In mammals, a single brain region, the 

suprachiasmatic nucleus (SCN) acts as the pacemaker for clock gene oscillation. The 

SCN is a small bilateral cluster of ~20,000 cells located within the hypothalamus, which 
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receives electrical signals via the melanopsin photoreceptors in the retinohypothalamic 

tract extending from the eyes (Reppert & Weaver, 2002). It is the intensity of light from 

the sun that the SCN detects and synchronizes to, while simultaneously relaying the 

information to downstream clock genes in the brain and body (Warren et al., 2006; Liu 

et al., 2007). The SCN organizes the timing of circadian rhythms that further drive the 

subdivision of sleep/wake and feeding/fasting cycles.   

 

The SCN is deemed the "master clock" as it is the only known tissue that is self-

sustainable, in that it can continue to oscillate on its own when removed from all other 

inputs (Abe et al., 2002). The superiority of the SCN's function as the master clock is 

further observed when it is removed. SCN lesions result in most physiological, hormonal 

and behavioral rhythms becoming arrhythmic (Moore & Eichler, 1972; Stephan & 

Zucker, 1972; Yamamoto et al., 1987). Furthermore when an SCN is transplanted from 

a donor, rhythmicity is reinstated in both lesioned and genetically arrhythmic animals, 

with a new circadian periodicity specific to the donor SCN (Ralph et al., 1990; Sujino et 

al., 2003). Finally, when the SCN is lesioned, clock genes in peripheral tissues of the 

brain and body become arrhythmic or desynchronized (Sakamoto et al., 1998). Thus, 

the body's time-keeping system is a hierarchical multi-oscillator network composed of a 

multitude of downstream slave oscillators and a single master clock that sets the pace 

based on its own reference of local time. The SCN ensures that circadian rhythms stay 

synchronized both amongst each other and to the external world. 
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Maintaining clock function 

Circadian rhythms can become misaligned or disrupted. Misalignment refers to the 

endogenous circadian rhythms that have been shifted out of phase from the local 

environment. A common example of circadian misalignment is "jet lag". When we travel 

across time zones clock gene expression becomes out of phase with the new location 

and must shift to adjust to the new light cycle. Jet lag can be unpleasant, however 

circadian misalignment is temporary and the negative effects can be minimized. 

Treatment for jet lag consists of controlled intake of synthetic melatonin and exposure to 

bright light before or after travel to the new time zone (Eastman & Burgess, 2009). 

Some studies report mixed or negative findings for the latter method. A likely reason for 

this is that studies do not always control for the effects of other stressors, which may or 

may not affect the circadian system, such as travel-associated fatigue related to length 

of travel, temperature changes, noise or low oxygenation on flight, as well as meal-

timing and composition (Bin et al., 2018). Nevertheless, even without treatment, 

circadian misalignment is short lived since the body is adapted to resynchronize 

rhythms to changes in the environment. Circadian misalignment can however become a 

health concern when it is chronic, rendering the body inefficient at dealing with other 

stressors in the environment. 

 

Circadian disruption refers to a chronic miscommunication between the environment 

and internal clocks that results in long-term negative health effects. Chronic 

miscommunication results in the impairment of critical functions that require tight inter-

communication between endogenous oscillators. Circadian disruptors can be 
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endogenous or exogenous in origin, which disrupt the temporal organization of 

biological function and hierarchy (Erren & Reiter, 2009). Due to the hierarchical 

organization of time-keeping systems in our body, disruption at a single level of clock 

function can produce negative effects at multiple levels of gene function and health. 

Consistent with this hypothesis, circadian disruption has been linked to: impairments in 

metabolic function, hormonal rhythms, immune function, increased risk of cancer, 

negative effects on the gut-microbiome and mental health (Evans & Davidson, 2013; 

Haus & Smolensky, 2013; Bedrosian et al., 2016; Bedrosian & Nelson, 2017; 

Smolensky et al., 2016; Touitou et al., 2017; Reynolds et al., 2017). Many psychological 

disorders, in particular those that affect emotion regulation, also show circadian 

disruption between various hormonal rhythms (Evans & Davidson, 2013; Bedrosian & 

Nelson, 2017).  

 

It is important to understand and implicate behavioral patterns that maintain circadian 

synchrony rather than oppose it. A common example of circadian disruption is in shift 

work. Shift-workers are often exposed to various schedules within a short period of time, 

whereby exposure to light and food intake is inconsistent. Both light and food intake 

have strong effects on the circadian system. Since the sleep/wake cycle is partly driven 

by circadian rhythms, behavioral patterns in light exposure and food intake can work 

against each other to result in disrupted sleep. Impairments in sleep feedback to 

produce additional negative health outcomes. In particular, cardiometabolic disorders 

are a frequent consequence of circadian disruption in shift workers (Reutrakul & 

Knutson, 2015). 
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Metabolic disorders resulting from circadian disruption have been linked to an 

inefficiency of glucose metabolism. Glucose metabolism is under the control of circadian 

rhythms in the liver, pancreas, muscle, adipose tissue and gut (Qian & Scheer, 2016). 

When glucose metabolism does not function efficiently it can result in obesity, type II 

diabetes and downstream effects on hormonal rhythms that further affect feeding habits 

and sleep (Jha, Challet & Kalsbeek, 2015). In light of our understanding of circadian 

function, a novel field of treatment has emerged called "chronotherapeutics" (Ballesta et 

al., 2017). The approach takes into consideration the time of biological functions, or 

implements changes in hormonal rhythms as to maximize the outcomes of medicine. 

For example, recent work has demonstrated that metabolic disturbances to the liver 

resulting from circadian disruption can be prevented by aligning feeding patterns with 

the circadian rhythm of two critical hormones, melatonin and cortisol (Baez-Ruiz et al., 

2017). Nevertheless, chronotherapeutics is at its infancy and requires more research to 

help understand how internal clocks communicate amongst one another, what external 

factors pose a risk in their disruption, and what methods can be implemented to 

maintain and correct circadian disruption. 

 

Feeding patterns  

Clock genes in the body 

Although clock genes outside the SCN cannot independently synchronize to the day-

night, light-dark (LD) cycle, they are not solely dependent on signals from the SCN. 

Food intake can be a potent zeitgeber (time-giver) for clock genes. For some clock 
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genes, such as those in peripheral tissues and organs, the time of food intake is a more 

potent time cue than light. When feeding time occurs out of phase with the SCN, clock 

genes in the periphery will uncouple from the SCN to shift their rhythms inline with 

feeding. Clock genes in the liver appear to shift the fastest, followed by kidney, heart 

and pancreas (Damiola et al., 2000). It is suggested that digestive organs, such as the 

liver, are directly affected by feeding, whereas clock genes in other tissues, such as the 

lung, are shifted by secondary mechanisms, such as changes in hormonal signals that 

affect behavior and thereby breathing (Stokkan et al., 2001).  

 

The idea that peripheral clocks are more sensitive to feeding than light is consistent with 

the idea that anticipation of feeding time is critical for optimal health, by reducing 

negative effects of food and maximizing the benefits. More specifically, food is a 

necessity, but it is also a stressor, as it disrupts many homeostatic systems (Woods et 

al., 1991). Food is most energy efficient when the physiology involved in its breakdown 

is prepared. For example, mice with liver-specific clock gene disruption develop 

hypoglycemia, as the lack of circadian rhythmicity in the liver leads to exaggerated 

glucose clearance (Lamia, Storch & Weitz, 2008). Conversely, digestion, of both 

nutrient content and indigestable substances, is more efficient when feeding time is 

anticipated (Cagampang & Bruce, 2012). Thereby, aligning peripheral clocks with 

feeding time helps to prepare the body with appropriate metabolic and hormonal 

responses in order to efficiently maintain energy homeostasis (Wood et al., 1998). 
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Clock genes in the brain 

In the brain, clock genes are also sensitive to feeding, however each brain region varies 

in sensitivity to different feeding patterns and in which clock genes are affected (Feillet 

et al., 2008; Verwey & Amir 2009). Under ad libitum feeding conditions, the clock protein 

PERIOD (PER) 2 in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) 

and central nucleus of the amygdala (CEA), areas important for emotion and 

motivational processes, have been found to oscillate in phase with PER2 in the SCN 

(Amir & Stewart, 2009). Furthermore, these two regions are directly under the control of 

SCN driven glucocorticoid rhythms (Segall et al., 2006; Segall et al., 2009), but also 

affected by other hormonal rhythms such as the estrous cycle (Perrin et al., 2006) and 

thyroid hormones (Amir & Robinson, 2006), but not melatonin (Amir, Harbour & 

Robinson, 2006). In contrast, melatonin, a hormone important for sleep, affects the 

clock protein PER1 in the pituitary gland and striatum (Messager et al., 2001; Uz et al., 

2003). Therefore, under free-feeding conditions each region of the brain utilizes it's own 

measure of clock gene rhythmicity to carry out brain-region specific functions. However, 

under conditions of scheduled feeding, clock genes in the brain respond differently 

depending on: caloric restriction, feeding time in respect to the light cycle, or elimination 

of the light cycle altogether.  

 

The SCN remains largely unaffected by scheduled feeding, unless there is hypocaloric 

restriction or the light cycle is eliminated for prolonged periods (Feillet et al., 2008). It 

appears that PER1 and PER2 in the brain respond differently, with PER2 being more 

sensitive to phase shifts in more brain regions overall (Verwey & Amir, 2009). Daytime 
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feedings appear to produce larger shifts in the PER2 and in more brain regions than 

nighttime feedings (Verwey et al., 2008). Furthermore, scheduled feeding can promote 

beneficial resynchronization of clock genes in the brain when signals from the SCN 

have been disrupted (Lamont et al., 2005; Novakova et al., 2011), as well as 

resynchronizing clock genes rhythms in the SCN itself (Waddington Lamont et al., 

2007). Therefore the neuronal network of clocks in the brain is complex and responds 

differently to different feeding circumstances. The importance of regular feeding 

schedules on clock genes in the brain emerges when we evaluate variable feedings, 

whereby time of feeding is chronically altered. 

 

Variable feedings 

Consuming food on a variable schedule, as in the case of many shift workers, can take 

a toll on the body. Effects of variable feeding can be seen both short term in sluggish 

digestion or insulin response, and long term as with the development of insulin 

resistance and obesity (Escobar et al., 2011; Zarrinpar et al., 2016). The effects of 

variable feeding on mental health have received less focus, however there is evidence 

to suggest that variable feedings negatively affect clock gene function in the brain and 

thereby the cognitive functions of those regions (Escobar et al., 2007; 2011). The extent 

of disruption is also dependent on the brain region and time of feeding (Verwey et al., 

2012). In particular, variable feedings impair PER2 rhythms in the dorsal striatum (DS), 

a region important for emotional processing and behavioral output (Verwey et al., 2012). 

The daily rhythm of the hormone corticosterone is also blunted, indicating that biological 

functions relying on this hormone may be disrupted (Escobar et al., 2007; Verwey et al., 
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2012). In contrast to scheduled feedings, variable feedings result in daily resetting of 

circadian phase in brain tissues to the time of previous feeding, and neuronal activation 

in the SCN is not inhibited (Escobar et al., 2007). Thereby, if feeding time is constantly 

changing the body is not able to adapt in preparation to those feedings; and signals 

from the SCN remain intact whether it is beneficial or disruptive to health.  

 

Restricted feeding activates an SCN-independent clock mechanism 

Restricted feeding (RF), a feeding schedule whereby food intake is time restricted to a 

few hours within a 24-h cycle, acts as an external time cue to which clock genes in the 

brain and body can synchronize (Stephan, 2002; Mistlberger, 2009). The potential for 

feeding to act as a time-keeping mechanism is related to three important aspects: meal 

size, nutrient content (Mistlberger & Rusak, 1987), and time spacing between meals 

(Mendoza et al., 2008; Luby et al., 2012). Although caloric restriction itself is not 

necessary to shift circadian rhythms, as entrainment can occur with a nutritious 

palatable snack and no caloric deficit (Mistlberger & Mistlberger 1987; Mendoza et al., 

2005; Verwey et al., 2007; Hsu et al, 2010a), it does appear to affect the amplitude of 

circadian rhythms and their magnitude to shift rhythms. Palatable meals without 

restrictions to feeding do not have the same capacity to shift clock genes in the brain as 

RF (Verwey et al., 2007; Waddington Lamont et al., 2007). Behavioral rhythms are also 

weakly affected by palatable snacks compared to RF (Hsu et al., 2010a). Thereby some 

element of compartmentalized feeding/fasting has a strong potency for shifting circadian 

rhythms. It is currently uncertain through what mechanism clock genes are able to 

synchronize to feeding time, however studies have pointed out a few important clues.  
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The food-sensitive clock is not an hourglass mechanism that requires daily "winding up" 

(Mistlberger, 1994). In other words, food is not required every day in order for rhythms 

to remain cycling with feeding time. If food is withheld for a few days, behavioral 

rhythms will remain in sync with time of previous feeding. RF results in the gradual 

development of food anticipatory activity (FAA). FAA is defined as the increase in 

activity in the hours prior to previous feeding. In rats, over the course of several days to 

one week FAA will increase, while previously predominant activity at night is reduced. 

Similarly, in the case of a meal shift, FAA requires time to readjust. The gradual 

changes are also seen internally, albeit with differences between tissues in how quickly 

circadian rhythms adjust to a new feeding time; FAA develops in parallel to the internal 

reorganization of clock gene expression around feeding time (Damiola et al., 2000; 

Verwey & Amir, 2009). Thereby, the emergence of FAA and internal clock 

reorganization to a new feeding window is not sudden, and remains intact despite a 

daily positive reinforcement, both of which would be expected of an hour-glass 

mechanism. 

 

A second clue is that RF affects clock function independent from the SCN. When the 

SCN is removed clock genes begin cycling out of tune with neighboring cells, resulting 

in internal disorganization in biological function of gene expression, hormonal 

communication, and the behavioural arrhythmicity of the sleep/wake rhythms (Moore & 

Eichler, 1972; Stephan & Zucker, 1972; Stephan & Nunez, 1977; Yamamoto et al., 

1987). Yet, in the absence of the SCN, the food clock mechanism remains intact. The 
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application of RF results in the restoration of internal circadian rhythmicity to peripheral 

organs, the brain and behavioral output, despite the lack of a functioning SCN (Stephan 

1979; Verwey & Amir, 2009).  

 

Searching for the food entrainable oscillator 

The mechanism by which RF shifts clock genes to feeding time is referred to as food 

entrainment, whereby entrainment refers to the phase of an internal rhythm 

synchronizing to the phase of an external rhythm (Mistlberger, 1994). Food entrainment 

is currently believed to be the result of multiple interconnected structures in the brain 

and body that communicate through many metabolic and hormonal signals. However, 

for many years, researchers hypothesized that just as the SCN controlled light 

entrainment, a single brain region would be found to control food entrainment.  The 

hypothesized region was termed the food entrainable oscillator (FEO). To try to identify 

this region, lesion studies targeted candidate regions linked to gustatory and visceral 

inputs that modulate feeding, including the parabrachial nucleus (Davidson et al., 2000), 

ventromedial hypothalamus (Kreiger, 1980; Inouye, 1982; Saito and Shimazu, 1982; 

Mistlberger and Rechtschaffen 1984), the dorsal medial hypothalamus (Landry et al. 

2006, 2007), as well as a number of other non-feeding related regions (Davidson, 

2009). To date, no single brain region has been shown to fully abolish circadian food 

entrainment.  

 

The idea that the FEO is (or requires) a hormonal signal entrained to food intake has 

also been previously suggested. Potential candidates included hormones involved in 
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metabolic breakdown of food such as insulin and glucagon (Davidson & Stephan, 1999; 

Davidson et al., 2003; Dailey et al., 2012), leptin (Elimam & Marcus, 2000), and ghrelin 

(Drazen et al., 2006) acting at various hypothalamic sites after food ingestion. The 

conclusion of prior studies was that feeding hormones are unnecessary for the FEO. 

Both hormonal knockout and receptor blockade studies demonstrate food entrainment, 

in at least one physiological measure, remains intact (see review Patton & Mistlberger, 

2013). Global knockout models of clock genes also do not abolish FAA rhythms (Pitts et 

al., 2003; Iijima, et al., 2005; Pendergast et al., 2009; Storch and Weitz, 2009). As a 

result, it is currently believed that there are multiple pathways through which food 

entrainment can be attained and simply impairing one pathway will not bring down a 

network-wide FEO (Carniero and Araujo, 2009). The hypothesized model of the FEO as 

a network of interconnected brain structures would involve many brain regions 

processing feeding and/or time related information to which each region may be 

differentially sensitive to (Feillet et al., 2008; Verwey et al., 2007; Verwey and Amir, 

2009, 2011; Pezuk et al., 2010).  Current interest is focused on reward-processing 

regions of the brain and the role they play in influencing circadian rhythms through the 

dopamine (DA) neurotransmitter system.  

 

Similar to how FAA develops with entrainment to RF, recent studies have shown that 

circadian rhythms in behavioral output can also be entrained to daily time-restricted 

rewarding events. For example, a daily scheduled palatable treat (Mistlberger and 

Rusak 1987; Angeles-Castellanos et al., 2008) or mating window (Landry et al., 2012) 

and daily injections of DA-activating drugs (Kosobud, 1998; Gallardo, Darvas, Oviatt, 



	 13	

Chang, Michalik et al., 2014) all result in the development of anticipatory activity prior to 

the time of the scheduled event. These findings suggest that the time-keeping of salient 

events may be controlled by clock genes in reward-related brain regions. It has been 

suggested that the entrainment of behavioral rhythms to external salient events could 

result through the effect of daily surges of DA rhythms acting on clock genes in motor 

output regions of the brain. Evidence for the latter hypothesis comes from studies 

demonstrating that DA receptor activation regulates both clock genes in the DS (Imbesi 

et al., 2009; Sahar et al., 2010; Hood et al., 2010; Frederick et al., 2014) as well as 

circadian locomotor output (Hood et al. 2010; Smit et al., 2013; Blum et al., 2015). 

Therefore, the question arises whether food entrainment controls clock genes and FAA 

through DA signaling in the DS. 

 

The working hypothesis: rhythmic DA as an entrainment factor for the FEO  

Entrainment of the clock protein PERIOD 2 (PER2) by DA in the DS is one of the most 

conclusive studies to show DA-controlled clock gene expression (Hood et al., 2010). 

Hood et al. demonstrated that the clock protein PER2 in the DS requires the fluctuation 

in circadian rhythmicity of DA to this region in order to maintain its own circadian gene 

expression. If the circadian rhythm of DA in this region is blunted, PER2 is no longer 

rhythmic. Moreover, the evidence that fluctuations of DA are required for driving a clock 

gene, and not vice versa, is sufficient grounds to assume that factors from the external 

environment that affect extracellular DA levels (such as food or reward-related stimuli) 

may be acting as input signals, which could then entrain parts of the brain responsible 

for food entrainment.  
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Since DA in the striatum is involved in both motivation and motor output, it has been 

difficult to test its role in food entrainment by suppressing DA function or genetically 

knocking it down. Motivational impairments that are the result of low DA levels result in 

insufficient food intake during a single period of time to properly implement RF, while 

maintaining a healthy body weight. DA suppression also results in impaired motor 

movement, such that food entrainment cannot be measured by FAA when animals are 

unable (or unwilling) to move around. However, even then if the animal would not show 

FAA, a neurochemical "memory" of circadian phase may still develop and remain intact 

(Mistlberger, 1994), ready to resurface when locomotor function is restored (Mistlberger 

and Mumby, 1992; Gallardo et al., 2014; Caine et al., 2017).  

 

Recent advances in technology have made use of vector viruses to selectively restore 

the gene expression of DA to a specific brain region in mice that lack the gene to make 

DA (DA knock out mice). This technology has allowed for a closer inspection of DA's 

role in different brain regions, such as the role of reward processing in incentive 

salience, goal-directed learning and motivation pertaining to feeding. DA deficient mice 

that lack feeding behavior and the capacity for food-related learning regain these 

functions if DA is selectively restored into the DS, but not if DA is restored to the 

nucleus accumbens or ventral tegmental area (Szczypak et al., 2001; Hnasko et al., 

2006). DA in the DS is a reasonable candidate for a brain location that could be 

entrained by DA release, such as to a bout of feeding when food is restricted. The 

question remains how this process would take place. It is possible that food could 
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regulate rhythms of DA, perhaps in the DS, which may be necessary for food 

entrainment. If so, then RF may provide a simple tool for regulating disrupted circadian 

rhythms through its effects on DA, such as in the case of mood disorders whereby 

circadian rhythms and DA function are both affected. 

 

Circadian rhythms and mood disorders 

Bipolar disorder, major depressive disorder and seasonal affective disorder are mood 

disorders that consistently show impairments in the sleep/wake cycle. Impairments to 

the sleep/wake cycle in depressed and bipolar patients are paralleled by disruptions in 

circadian rhythms of hormone and neurotransmitter function (Atkins et al 1974; Kripke et 

al., 1978; Souetre et al., 1989). The chronological development between sleep and 

mood disorders remains unknown (Salgado-Delgado et al., 2011). In other words, is it 

the development of a mood disorder that affects the sleep/wake cycle, which leads to 

further impairments of ones circadian rhythms? Or do environmental factors that impair 

sleep lead to disrupted rhythms that promote the development of a mood disorder? 

Currently, there is much focus on the later hypothesis. It is believed that clock genes, 

both SCN and peripheral, are altered by chronic environmental disruptions, which 

further lead to disruption of the sleep/wake cycle and downstream clock-controlled gene 

expression (Bunney and Bunney, 2000; Reppert & Weaver, 2001). The disruption in 

circadian function such as with night shift work, chronic jet-lag and lifestyle that 

promotes exposure to light at night all appear to promote mood disorders in individuals 

who are genetically predisposed to their development (McClung, 2013; Verwey, Al-

Safadi & Amir, 2015). 
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The idea that clock genes are disrupted in mood disorders is supported by evidence 

that shows therapy treatments targeting sleep and the function of the SCN lead to 

beneficial outcomes. Total sleep deprivation and bright light therapy are both known to 

reset circadian rhythms, including the rhythm of the SCN (Czeisler et al., 1987; 1989; 

Wirz-Justice, 2006; McClung, 2011; Bunney & Bunney, 2013). Mood stabilizers and 

antidepressants on the market are believed to derive at least part of their therapeutic 

effects through correction of clock function in patients (Atkins et al., 1974; Kafka, 1983; 

Souetre et al., 1989). It is evident that correcting circadian disruption can benefit 

treatment outcomes of mood disorders. It is less clear to researchers how circadian 

function is related in the developmental trajectory of mood disorders. What roles do 

genetics and environmental disruptors of the SCN play in the development of mood 

disorders? The animal literature appears to suggest that both genetics and environment 

can disrupt circadian rhythms that result in alterations to affective behavior, and human 

studies are revealing similar findings.  

 

In North America, prevalence rates of depression are higher during the winter months 

for populations at higher latitudes (Rosen et al., 1990; Patten et al., 2017), suggesting 

that less sunlight during the winter may reduce the ability of the SCN to maintain 

internal synchrony. However, the same has not been shown to be true of Northern 

European countries (Mersch et al., 1999). Therefore, socio-cultural factors may 

contribute to protection against season-induced depression at higher latitudes, or 

alternatively contribute to their development. In support of the latter hypothesis is the 
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finding that descendants of Icelandic emigrants living in Northern Canada have lower 

prevalence rates of seasonal affective disorder (Magnusson & Axelsson, 1993). It is 

possible that cultural practices, such as those related to dietary feeding patterns, may 

serve a protective function against SCN rhythm disruption under low light conditions. 

However, more research is needed to evaluate the effects of socio-cultural factors on 

clock function and its role in the development of mood disorders.  

 

Genetic abnormalities that affect clock genes in humans have been shown to increase 

the risk of developing a mood disorder. Familial advanced phase sleep syndrome, 

whereby sleep onset and wake occur much earlier than in the general population shows 

comorbidity with depression (Xu et al., 2005). In contrast, delayed sleep phase 

syndrome, whereby patients fall asleep and awake at later hours, commonly show a 

psychological profile of nervousness, neurosis and anxiety (Shirayama et al., 2003). In 

college students, depressive-like symptoms have been shown to be more common 

among "evening chronotypes" or people that are predisposed to a preference for 

working in the evening (Chelminski et al., 1999). Therefore, even a tendency towards 

promoting circadian misalignment with the day/night cycle can lead to negative affects. 

Together, genetic predispositions or having a strong chronotype and socio-cultural 

factors may exacerbate the development of mood disorders.  

 

Night work and rotating shiftwork have been associated with circadian disruption and 

mental health outcomes (Haus & Smolensky, 2006;). In a 2-year study of night shift 

nurses, a decrease in symptoms of depression and anxiety where observed when 
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nightshifts were changed to daytime (Thun et al., 2014). Although nurses tend to work 

longer hours, shift work in general has shown to play a role in the development of mood 

disorders over time (Scott, 2000). Some argue that it is the presence of light at night 

that impairs the signal from the SCN in promoting strong consolidation of the biological 

sleep/wake cycle (Ikeno & Yan, 2016). However, others believe that implementing 

proper sleep and feeding "hygiene" by reversing the rest/activity cycle can combat 

negative health outcomes of shift work by maintaining circadian rhythmicity through the 

food clock rather than the SCN (Moran-Ramos et al., 2016; Zarrinpar, Chaix & Panda, 

2016; Reynolds et al., 2017). Ultimately, it is the communication between these two 

clocks on circadian output that would bring the best understanding for treatment and 

prevention of psychiatric illness that is either the result of, or exacerbated by, circadian 

disruption (Herzog et al., 2017). 

 
 
The role of DA in mood disorders: past and future perspectives 
 
The etiology of mood disorders remains unknown. The interplay of neurotransmitter 

systems in the brain is believed to be an integral role in mental disorders. DA, serotonin, 

and norepinephrine are known to regulate mood. The hypothesis that these 

neurotransmitters are out of balance in mood disorders has been widely accepted in the 

past (Schildkraut, 1965). As a result, the use of antidepressants targeting 

catecholamine function has become the gold standard in the pharmacological treatment 

of mood disorders. However, there has been much debate regarding this hypothesis 

with the development of brain neuroimaging techniques, whose findings are highly 

variable and inconsistent regarding the role of catecholamine function in the 
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pathophysiology of mood disorders (Nikolaus et al., 2009; Phillips et al., 2015). 

Furthermore, a large confound in these studies is the use of medication. It is known that 

patients show large variability in how they respond to the type of antidepressant taken, 

with many patients not responding to treatment (McIntyre et al., 2014).  This has led to 

the speculation that inconsistency between study results regarding catecholamine 

function in a mood disorder are not reflective of the mood disorder itself, but rather the 

individual differences in how a patient’s brain responds to medication. To resolve this 

issue, studies have aimed to identify which genetic and/or environmental factors may 

predict response rates to antidepressants (Kim et al., 2000; 2006; Biernacka et al., 

2013; Hashimoto, 2015; Phillips et al., 2015), though little advancement has been 

made.  

 

One possibility for the lack of advancement in our understanding of catecholamine 

function in depression may be related to the oversimplification of neurotransmitter 

function. Bioavailability in neurotransmitter function is an oversimplification of how the 

brain works. Neurotransmission is a dynamic and complex system that varies with time 

of day (Wirz-Justice, 1987; Sleipness et al., 2007). Furthermore, circadian rhythms of 

neurotransmitter function occur at many levels of brain function. DA, glutamate and 

GABA oscillate in neurotransmitter synthesis, receptor levels, synaptic release, and 

enzymes related to their breakdown. For example, extracellular DA cycles with a 

different circadian phase in the striatum compared to the nucleus accumbens 

(Castaneda et al., 2004). DA receptor binding in whole brain tissue has been shown to 

differ with time of day and season, despite being maintained in a constant LD cycle 
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(Wirz-Justice, 1987). Other proteins critical to DA function, such as tyrosine hydroxylase 

(TH) and dopamine transporter (DAT) also differ with time of day, brain region, and rely 

on signals from the SCN (Sleipness et al., 2007). As a result, the ability of 

environmental factors in shifting DA rhythms differs with brain region and time of day. 

 

Whereas the circadian rhythm of DA function in many brain regions can be affected by 

signals from the SCN (Sleipness et al., 2007), only in the striatum is the extracellular 

rhythm of DA directly altered by environmental changes to light (Castandeda et al., 

2004). Likewise, RF has been shown to alter the temporal rhythm of extracellular DA in 

the striatum, such that it reorganizes itself around the feeding window during a regular 

LD cycle (Liu et al., 2012). Therefore, both timing of light and food have the ability to 

change DA rhythms in the striatum, and RF can override signals from the SCN. What 

this means in terms of our mental health needs further investigation. However, 

understanding the importance of circadian rhythms in the brain has led some 

researchers to question whether it is the desynchrony between rhythms, and in 

particular DA, that disrupts the communication of neurotransmitter systems important to 

the pathophysiology of mood disorders (McClung, 2013; Verwey et al., 2016). 

 

Increasingly more studies are demonstrating the role of DA in regulating circadian 

rhythms through environmental factors (Korshunov et al., 2017). Furthermore these 

influences are bidirectional whereby circadian rhythms can feed back to alter DA circuits 

(Verwey, Dhir & Amir, 2016). The development of a Clock gene mutant mouse, where 

the function of the clock gene Clock is impaired specifically in the ventral tegmental area 
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(VTA) has shown phenotypic behavior resembling depression and mania (Mukherjee et 

al., 2010). The VTA is a region rich in DA neurons, which has led to the speculation that 

circadian clock gene function in DA neurons is important in the development of mood 

disorders.  Given that DA rhythmicity can control clock function we hypothesize that DA 

is also involved in the circadian food entrainment pathway. If so, food entrainment could 

regulate mood under normal conditions or prevent alterations in affective behavior due 

to circadian disruption. 

 
Current thesis 

The study objectives of the current thesis can be organized into three areas of interest. 

Firstly, the idea that DA sensitization is involved in food entrainment was evaluated 

through its effects on behavior. Both FAA and cross-sensitization to amphetamine 

(AMPH) were evaluated as measures of DA enhancement during food entrainment. 

Secondly, measures of DA function in the DS were measured in rats exposed to RF, 

namely cFOS protein (FOS), TH and DAT. Lastly, the idea that RF may promote mental 

health was investigated using animal models of anxiety and depression.  
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Abstract 

Food entrainment is the internal mechanism whereby the phase and period of circadian 

clock genes comes under the control of daily scheduled food availability. Food 

entrainment allows the body to efficiently realign the internal timing of behavioral and 

physiological functions such that they anticipate food intake. Food entrainment can 

occur with or without caloric restriction, as seen with daily schedules of restricted 

feeding (RF) or restricted treat (RT) that restrict food or treat intake to a single feeding 

time. However, the extent of clock gene control is more pronounced with caloric 

restriction, highlighting the role of energy balance in regulating clock genes. Recent 

studies have implicated dopamine (DA) to be involved in food entrainment and caloric 

restriction is known to affect dopaminergic pathways to enhance locomotor activity. 

Since food entrainment results in the development of a distinct behavioral component, 

called food anticipatory activity (FAA), we examined the role of locomotor sensitization 

(LS) in food entrainment by 1) observing whether amphetamine (AMPH) sensitization 

results in enhanced locomotor output of FAA and 2) measuring LS of circadian and non-

circadian feeding paradigms to an acute injection of AMPH (AMPH cross-sensitization). 

Unexpectedly, AMPH sensitization did not show enhancement of FAA. On the contrary, 

LS did develop with sufficient exposure to RF. LS was present after 2 weeks of RF, but 

not after 1, 3 or 7 days into RF. When food was returned and rats regain their original 

body weight at 10–15 days post-RF, LS remained present. LS did not develop to RT, 

nor to feedings of a non-circadian schedule, e.g. variable restricted feeding (VRF) or 

variable RT (VRT). Further, when RF was timed to the dark period, LS was observed 

only when tested at night; RF timed to the light period resulted in LS that was present 
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during day and night. Taken together our results show that LS develops with food 

entrainment to RF, an effect that is dependent on the chronicity and circadian phase of 

RF but independent of body weight. Given that LS involves reorganization of DA-

regulated motor circuitry, our work provides indirect support for the role of DA in the 

food entrainment pathway of RF. The findings also suggest differences in neuronal 

pathways involved in LS from AMPH sensitization and LS from RF. 
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Introduction 

Circadian locomotor activity, predominantly under the control of the light/dark cycle, can 

be reorganized to adapt to daily time-restricted events of biological importance. 

Timekeeping mechanisms in the brain and/or body can anticipate a circadian event by 

shifting endogenous clock gene rhythms and behavioral locomotor output. Daily time-

restricted access to a palatable treat (Mistlberger & Rusak, 1987; Angeles-Castellanos 

et al., 2008) or mating window (Hsu et al., 2010b; Landry, Opiol, Marchant, Pavlovski, 

Mear, et al., 2012) has been shown to result in anticipatory behavioral activity prior to 

the scheduled event. Similarly, daily-timed injections of rewarding or DA-activating 

drugs show anticipatory activity preceding injection (Kosobud et al., 1998; Gallardo et 

al., 2014). The most notable example of circadian reorganization to a time-restricted 

event is the implementation of circadian RF.  

 

RF requires two components: 1) that complete caloric intake be restricted to a specific 

feeding window, usually a few hours in length and 2) that the timing of feeding does not 

vary extensively between each circadian cycle. The effects of RF can be seen as soon 

as the following day, including shifted clock gene expression, neuroendocrine signaling 

and the reorganization of circadian behavior (Patton & Mistlberger, 2013). The biological 

changes that arise from circadian scheduled feeding are referred to as food 

entrainment. The mechanism of food entrainment is unknown, however one of the 

defining behavioral features is the development of FAA prior to feeding time. Feeding-

related behavior, including FAA, has been related to DA function in motor regions of the 

brain (Gallardo et al., 2014; Palmiter, 2008). Taken together, it is speculated that daily 
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time-restricted events affecting DA function may alter components of the circadian 

clock, resulting in a mechanism by which organisms are able to anticipate the time of 

their occurrence. 

 

One possibility is that clock genes within particular brain regions, such as those driving 

locomotor output, may be involved in the timekeeping of salient events by sensing 

changes to the circadian rhythmicity of DA. For example, stimuli that act on DA in a 

circadian fashion, when the organism deems the stimuli sufficiently salient (e.g. food 

under food-restricted conditions), may act as an input signal for clock genes regulating 

diurnal activity. DA has been shown to shift and regulate circadian locomotor output and 

influence clock genes in brain regions important for motor output (Gallardo et al., 2014; 

Imbesi et al., 2009; Sahar, et al., 2010; Hood et al., 2010; Smit et al., 2013; Blum et al., 

2014; Frederick et al., 2015; Iijima et al., 2005). Of particular interest is the clock gene 

Per2, whose protein expression is under the control of DA in the dorsal striatum (Hood 

et al., 2010). The role of Per2 in food entrainment remains undetermined (Chaix & 

Panda, 2016), however mice with a mutation for Per2 show significant impairment of 

FAA (Feillet et al., 2006), suggesting it is important for locomotor output of food 

entrainment. Interestingly, time has previously been shown to act as a conditioned 

stimulus for the locomotor expression of AMPH sensitization (Arvanitogiannis et al., 

2000), and clock genes appear to play a critical role in the expression of behavioral 

sensitization (Abarca et al., 2002; Liu et al., 2005; Liu et al., 2007; McClung et al., 

2005). Therefore, time-keeping mechanisms through which food entrainment 
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reorganizes behavioral rhythms could involve neuroplastic changes to motor circuits 

that are also important for LS to reward-related stimuli (McClung & Nestler, 1998). 

 

The term LS refers to the enhancement in behavior due to the (repeated) application of 

a stimulus (Stewart & Badiani, 1993). LS occurs as a result of long-term neurochemical 

changes in the brain, which produce hypersensitivity to neurotransmitter systems, 

including the DA system (Vanderschuren & Pierce, 2010; Robinson & Berridge, 1993). 

One of the defining factors of LS is that the effects last beyond the cessation of 

whatever stimuli initiated the locomotor changes, and is often enhanced during the time 

of withdrawal or period of "incubation" (Liu, Wang, Jiang, Wan, Zhou et al., 2007). 

Therefore, LS can be thought of as the composite of two critical stages: its development 

and its expression (Kalivas, Sorg, & Hooks, 1993; Pierce & Kalivas, 1997). 

Development involves neuroplastic changes that occur during the application of a 

repeated stimulus and during the incubation period after stimuli cessation. The 

expression of LS involves the persistence of the neuronal changes that occurred during 

development. Furthermore, when different stimuli act on the same neuronal networks 

involved in LS, often times cross-sensitization can be observed, such that LS resulting 

from one stimulus produces a hyper-response to the second stimulus (Avena & Hoebel, 

2003). A recent study found that the presence of a locked running wheel resulted in the 

enhancement of FAA in mice with previous running wheel exposure, while mice naive to 

a running wheel showed no change in FAA (Flôres et al., 2016). The authors 

hypothesized that FAA, like running wheel activity, involves reward-signaling 

mechanisms that can further be enhanced by rewarding stimuli. 
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In the first part of our study we tested whether behavioral properties of food entrainment 

(FAA) could be augmented by enhancing DA activity through repeated AMPH exposure 

(AMPH sensitization). Unexpectedly, we found that there were no additive effects of 

AMPH sensitization on FAA, both when testing between and within group designs. We 

wondered whether our control groups, which were also subjected to RF, could have 

developed LS as a result of caloric restriction (Carr KD et al, 2003; Carr, 2007; Cabib et 

al., 2000). The threshold-lowering effects of rewarding electrical brain stimulation by 

drugs of abuse that act on DA, such as AMPH, can be potentiated with caloric 

restriction, leading to the speculation that caloric restriction produces additive effects 

through the DA system (De Vaca & Carr, 1998; De Vaca, Krahne, & Carr, 2004. 

However, AMPH sensitization (repeated exposure) does not result in the augmentation 

of electrical brain self-stimulation (De Vaca, Krahne, & Carr, 2004), suggesting that 

sensitization of drug reward in the rewarding electrical brain stimulation paradigm and 

LS might be mediated by different neural mechanisms. Given the previous findings, we 

hypothesized that either AMPH sensitization does not act through the same neuronal 

networks as food entrainment, and therefore we should not expect to see additive 

effects in FAA. Or else, a second possibility might be that control groups that were 

subjected to RF, also developed LS, which would then result in a ceiling effect of FAA 

between groups. We further investigated the latter option. 

 

The second part of our study evaluated whether RF could result in LS. We tested 

various circadian and non-circadian feeding schedules on its effects of cross-



	 29	

sensitization to AMPH. We found that the most important aspect of feeding-induced LS 

was the combination of a circadian feeding schedule and caloric restriction. Body weight 

appeared to be irrelevant for RF-induced LS. Previous work has shown that the effects 

of caloric restriction on the sensitization of drug reward are related to weight loss. The 

augmentation of drug reward by caloric restriction was reversed after one week of 

returning rats to free access feeding (Carr, 2002) and during longer periods of food 

restriction, the reversal of food-induced behavioral sensitization paralleled the return of 

body weight to baseline (De Vaca, Krahne, & Carr, 2004; Carr & Wonlinsky, 1993; 

Abrahamsen, Berman, & Carr, 1995). In our study rats were returned to free access 

feeding prior to testing, whereby they regained pre-RF body weight. Our findings 

suggest that it is the duration of RF and/or a period of incubation that is necessary for 

the behavioral expression of LS. These observations are consistent with the idea that 

endogenous mechanisms regulating food entrainment include LS. 

Methods and Materials 

Subjects 

One hundred fifty-eight male Wistar rats (Charles River, St. Constant) weighing 

between 125–200 grams at the beginning of experiment were individually housed in 

running wheel cages placed inside individual sound attenuating chambers. A 12:12 

light/dark cycle was maintained for 2 weeks before beginning each experiment. Light 

intensity inside the cage measured ~300 lux. Rats had free access to tap water and 

rodent lab chow, except when subjected to scheduled feeding. Injections of AMPH or 

saline were administered to rats via intraperitoneal route. All experimental procedures 
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were conducted under the guidelines of the Canadian Council of Animal Care and 

approved by the animal care ethics committee at Concordia University, Quebec. 

Feeding schedules 

Food (lab chow) was removed 22–24 hours prior to starting timed-restricted feedings 

with caloric restriction. As depicted in Fig 1, RF rats were fed during a daily 2-3h feeding 

window corresponding to Zeitgeber time (ZT) 5–8, where ZT 0 is lights on. Placing RF in 

the middle of the light period was done by convention to allow for a low background of 

activity from which FAA can be easily identified. Night RF (NRF) rats were fed during a 

daily 2-3h feeding window from ZT 17–20. To evaluate the effects of caloric restriction 

without food entrainment, variable feeding schedules were applied. Variable RF (VRF) 

and night VRF (NVRF) rats were fed at variable times each day between ZT 0–12 and 

ZT 12–24, respectively. Note that the hours for VRF were restricted to daytime as 

opposed to 24h-VRF due to a previous report of PER2 disruption in the dorsal striatum 

as a result of daytime-VRF but not 24h-VRF (Verwey & Amir, 2012). To evaluate the 

effects of food entrainment without caloric restriction, we allowed rats daily access to a 

restricted treat (RT) and variable RT (VRT). RT and VRT consisted of daily scheduled 

unlimited access to Oreo cookies (Cadbury, Mondelez-International) between ZT 5–7, 

and for 2 hours at variable times between ZT 0–12, respectively. RT and VRT had free 

access to lab chow at all times. 

 

 

 



	 31	

 

 

 

 

 

 

 

Fig 1. Schematic of daily feeding schedules. Circadian feedings occurred daily 
during a 2-3h feeding window during the lights on phase (RF/RT) or lights off phase 
(NRF). Non-circadian feedings occurred daily during a variable 2h-feeding window, 
restricted to the lights on phase (VRF and VRT) or lights off phase (NVRF). 
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Exp 1–3 protocols: AMPH sensitization effects on FAA 

In experiment 1, rats were divided into 2 groups (n = 6) and given 5 x 1.5 mg/kg AMPH 

or saline every 48 hours during the lights on period ZT 4–6, followed by 7 days of 

incubation (no injection). Rats were then subjected to 12 days RF to evaluate FAA 

between groups. In experiment 2, rats were subjected to RF for 2 weeks before AMPH 

sensitization (RF-before) followed by a 1-week break. Next rats were divided into 2 

groups (n = 6) and given injections of AMPH, 3 mg/kg daily for 6 days (AMPH group) 

(Avena & Hoebel, 2003), or no injection (control group). Controls were not handled to 

minimize stress-induced sensitization that can occur from repeated saline injections 

(Paulson & Robinson, 1996). AMPH injections occurred between ZT 14–16, 2-4h into 

the dark period to mimic the natural rhythm of DA in the dorsal striatum (Hood et al, 

2010). A period of incubation (10 days) followed AMPH sensitization and rats were 

subjected to RF a second time (RF-after) for 2 weeks. Rats were again returned to free 

access feeding for 1 week and subjected to an AMPH challenge test to see whether 

differences in LS between AMPH pretreated rats and controls was present. Since non-

handled controls used in this protocol had not previously been subjected to injections, a 

habituation day was done on the day prior to the AMPH challenge. On habituation day 

both groups received an injection of saline and open-field activity was measured. On 

AMPH challenge day both groups received a low dose of AMPH (.5 mg/kg) and open-

field activity was measured again. Challenge injections occurred between ZT 2–8. 

In experiment 3, rats were divided into 2 groups (n = 6) and given 5 x 1.5 mg/kg AMPH 

or saline every 72 hours, during ZT 14–16, followed by 14 days incubation (Vezina, 

1996). Rats were then subjected to 5 weeks of RT. To observe whether there were any 
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masking effects of light on FAA, week 5 of RT was conducted in constant darkness. 

Following the cessation of RT, rats underwent a 1-week break and were subjected to an 

AMPH challenge. For the challenge test, both groups received a low dose of AMPH 

between ZT 2–8 and open-field activity was measured. See Fig 2 for a timeline of 

AMPH sensitization protocols in relation to feeding schedule used in experiments 1–3, 

to investigate the effects of AMPH sensitization on FAA. 
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Fig 2. Exps 1–3: protocols for evaluating effects of AMPH sensitization on FAA. 
Experiments 1 and 3, use a between groups design to evaluate FAA in AMPH 
pretreated rats and controls, and experiment 2 uses a within group design to evaluate 
FAA before and after AMPH sensitization. Caloric restriction (-) or surplus (+) indicates 
the use of RF or RT, respectively, in each experiment. Timelines for AMPH sensitization 
and scheduled feeding are described below. Exp 1: rats were subjected to AMPH 
sensitization followed by an incubation period and RF. Exp 2: rats were placed on RF 
before AMPH sensitization (RF-before), followed by a break, and then divided into 2 
groups: non-handled control or AMPH for AMPH sensitization, followed again by a 
break (incubation) and RF (RF-after). Rats were next returned to free access feeding 
and then challenged with a low dose of AMPH to see whether differences in LS were 
present between AMPH-pretreated rats and controls subjected to RF. The day prior to 
the AMPH challenge (day 58), a habituation run using a saline injection was conducted. 
Exp 3: rats were divided into 2 groups and subjected to AMPH sensitization followed by 
an incubation period prior to being placed on RT for 5 weeks. *During week 5 (days 59–
65) the lights remained off (DD). As in experiment 2, following a break rats were 
challenged with AMPH to see whether differences in LS were present between AMPH 
pretreated rats and controls subjected to circadian feeding with no caloric restriction 
(RT). Both AMPH challenge tests (Exp 2 and 3) occurred during the lights on phase 
between ZT 2–8, consistent with time of previous FAA expression. Each AMPH 
sensitization protocol was selected based on the criteria that a prior study verified it to 
result in an increase of extracellular DA in the striatum and/or enhanced locomotor 
activity. 
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Exp 4–9 protocols: Feeding cross-sensitization to AMPH 

In experiments 4–8, rats were divided into groups determined by feeding schedule (RF, 

VRF, RT, VRT, NRF or NVRF). Control (CTRL) groups had no changes to diet. Feeding 

schedules were followed by 10–15 days of free access (ad libitum, AL) feeding, which 

served as time for rats to regain body weight and as an incubation period. After the  

incubation period all rats were administered a low dose of AMPH (.5 mg/kg) to test for 

cross-sensitization of locomotor activity in an open-field box. Groups were assigned as 

follows. Exp 4: rats were divided into 2 groups, CTRL or RF (n = 6), that were further 

subdivided to include a saline injection subgroup for the cross-sensitization test. Exp 5: 

rats were divided into 3 groups: CTRL, RF or VRF (n = 4). Exp 6: rats were divided into 

3 groups: CTRL, RT, and VRT (n = 4). Exp 7–8: rats were divided into 5 groups: CTRL, 

RF, VRF, NRF and NVRF (n = 5). Injections for the cross-sensitization test occurred 

during the light phase (ZT 2–8), with the exception of experiment 8, where injections 

occurred during the dark phase (ZT 14–17). In experiment 9, rats were divided into 7 

groups (RF1, RF3, RF7, RF14, AL5, AL10 and CTRL), RF1, RF3, RF7 and RF14 were 

subjected to RF for 1, 3, 7 and 14 days, respectively, and tested for cross-sensitization 

on the last day of RF. AL5 and AL10 were subjected to 14 days RF and tested for 

cross-sensitization at 5 or 10 days post-RF. CTRL remained on free access feeding and 

were evenly divided across days of AMPH cross-sensitization tests. Injections for the 

cross-sensitization test occurred during the light phase (ZT 2–8). See Fig 3 for a 

detailed timeline of cross-sensitization protocols in experiments 4–9. 
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Fig 3. Exps 4–9: protocol timelines for testing feeding schedule cross-
sensitization to AMPH. In experiments 4–8, different feeding schedules were tested for 
cross-sensitization to AMPH 10–15 days after returning to free access feeding (ad 
libitum, AL). In experiment 9, cross-sensitization of RF was tested on days 1, 3, 7 or 14 
of RF (RF1, RF3, RF7, RF14) and at 5 or 10 into ad libitum feeding following 2 weeks of 
RF (AL5, AL10). The use of caloric (cal) restriction or surplus by experimental design 
are indicated with—or +, respectively. CTRL rats had no changes to diet and were 
tested on the same day as feeding groups. Experiment 4 also included a saline injection 
subgroup as a second control group on AMPH test day. All injections occurred between 
ZT 2–8, the time of day corresponding to FAA in RF rats, with the exception of 
experiment 8 where injections occurred between ZT 14–17, corresponding to FAA for 
NRF rats. Feeding group abbreviations: RF = restricted feeding, VRF = variable RF, RT 
= restricted treat, VRT = variable RT, NRF = night RF, NVRF = night VRF, CTRL = 
control. 
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Data collection and analysis 

Running wheel activity was collected from the home cage of each rat using VitalView 

software (Mini Mitter, Bend, OR) and recorded in 10 min bins. The data was used to 

graph activity as group averages during different stages of each experiment. FAA ratios 

were calculated using the sum running activity 3h prior to feeding (ZT 2–5) divided by 

the sum nocturnal running activity (ZT 12–24). 

 

Open-field data was collected using Tru Scan 2.0 activity monitoring system (Coulbourn 

Instruments, Whitehall, PA). Three or four rats were tested simultaneously within the 

same room using separate boxes (39 x 42 x 50 cm) with plexiglass transparent walls 

placed inside sound attenuation boxes constructed from insulation board. Total distance 

covered (cm) was collected in 5 min bins during a period of 1.5 h (30 min habituation, 

followed by 60 min post-injection). Distance-travelled ratios were later calculated as a 

measure of LS by summing distance travelled post-injection divided by total distance 

travelled. 

 

Raw body weight scores were recorded for each group across stages of the experiment. 

To check whether rats had regained their pre-scheduled feeding (pre-RF/RT) body 

weight by test day, the percent pre-RF/RT weight was calculated (using weight on test 

day and pre-RF/RT weight). 
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Statistical analysis 

Two-way repeated measures ANOVA was used to evaluate FAA ratios, with day or 

week of RF as the within subject time factor and AMPH sensitization versus control as 

the between subject group factor. Unpaired t-tests, one-way ANOVA or two-way 

ANOVA (in the case that injection was a factor itself) were used to evaluate open-field 

behavior by comparing the group means of distance-travelled ratios or total distance 

travelled post-injection. Post-hoc analyses, indicated below, were applied when the test 

yielded significance. Rats with ineffective injections were excluded from analysis. 

Results 

Exp 1–3: AMPH-pretreated rats do not show enhancement of FAA to RF or RT 

Experiments 1–3 examined whether behavioral response of FAA is enhanced as a 

result of AMPH sensitization, since AMPH sensitization enhances DA activity in the 

dorsal striatum (Paulson & Robinson, 1995) and the dorsal striatum has been implicated 

in food entrainment (Gallardo et al., 2014). We hypothesized that if food entrainment 

acts through the same DA signaling pathway as AMPH sensitization, then there may be 

additive effects in the form of increased FAA in AMPH-pretreated rats subjected to a 

circadian feeding schedule. 

 

In experiment 1, AMPH-pretreated rats and saline controls were placed on RF to see 

whether there would be any differences in FAA as measured by FAA ratios. Fig 

4A shows FAA development for rats pretreated with saline or AMPH. Both groups 



	 39	

increased FAA from day 1 to 12 as expected, F(11, 110) = 11.99, p < 0.01, but there were 

no differences between groups F(1, 10) = 0.48, p = 0.51 and there was no interaction 

between time and group, F(11, 110) = 0.84, p = 0.60 (Fig 4B). FAA ratios averaged across 

total RF time also did not differ significantly, t10 = 1.47, p = 0.17 (Fig 4C). 
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Fig 4. Exp 1: measuring FAA to RF in rats previously exposed to AMPH or saline 
injections, between group design. Home-cage activity expressed in wheel revolutions 
/10 min +/- SEM for AMPH and saline pretreated rats, during RF days 1–5 and 6–12, 
closed box indicates feeding window (A). FAA ratios +/- SEM shown as group averages 
for each day of RF (B) and for the total 12 days of RF (C), not significant, ns. 
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In experiment 2, rats were tested for within group differences in FAA before and after 

AMPH treatment (Fig 5A). Fig 5B shows no differences in FAA when comparing RF-

before to RF-after in rats injected with AMPH and non-handled controls as measured by 

FAA ratios; time factor F(1,10) = 1.14, p = 0.31, group factor F(1,10) = 0.52, p = 0.49 and no 

interaction F(1,10) = 0.002, p = 0.96. Unexpectedly, at the end of the experiment when all 

rats underwent an AMPH challenge procedure, there was no difference in distance-

travelled ratios between groups, both on habituation day and on the following AMPH 

challenge day (t10 = 0.94, p = 0.37 and t10 = 0.32, p = 0.76, respectively). The results 

suggested that RF could have resulted in locomotor sensitization of the control group 

(Fig 5C). 
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Fig 5. Exp 2: measuring FAA to RF before and after AMPH sensitization compared 
to non-handled controls, within group design. Home-cage activity expressed in 
wheel revolutions /10 min +/- SEM before and after AMPH sensitization for AMPH-
pretreated and non-handled controls, closed box indicates feeding window (A). FAA 
ratios +/- SEM expressed as individual rat FAA ratios during RF-before and RF-after 
(B). AMPH-pretreated rats and non-handled controls injected with saline on habituation 
day and AMPH on test day, with open-field activity measured as total movement 
distance +/-SEM in 5 min bins (C). 
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In experiment 3, we tested whether rats fed a daily RT, without caloric restriction, would 

show enhancement of FAA when pretreated with AMPH compared to saline controls. 

RT is known to induce FAA prior to a daily scheduled treat, although this activity is not 

as robust as FAA in rats with caloric restriction and takes longer to develop (Mistlberger 

& Rusak, 1987; Angeles-Castellanos, Salgado-Delgado, Rodriguez, Buijs, Escobar, 

2008). Even by prolonging the feeding schedule of RT and placing rats into constant 

darkness to check for any masking effects of light on activity during the final week, we 

found no difference in FAA between rats pretreated with saline or AMPH as measured 

by FAA ratios, F(1, 10) = 0.85, p = 0.38. Both groups increased FAA from week 1 to week 

5, F(4, 40) = 4.40, p < 0.01, with no significant interaction between time and group F(4, 40) = 

0.73, p = 0.58 (Fig 6A and 6B). At the end of the experiment, an AMPH challenge was 

conducted, which appeared to show that AMPH-pretreated rats were more active than 

controls (Fig 6C), although these distance-travelled ratios were not significantly 

different t9 = 0.31, p = 0.76, and neither were scores summing total activity post-

injection, t9 = 1.69, p = 0.13. 
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Fig 6. Exp 3: measuring FAA to a RT in rats previously exposed to AMPH or saline 
injections, between group design. Home-cage activity of AMPH and saline pretreated 
rats subjected to RT during week 1 and week 5 (constant darkness, DD), expressed in 
wheel revolutions /10 min +/- SEM, closed box indicates feeding window (A). FAA ratios 
+/- SEM for each week of RT (B). Open-field activity measured as total movement 
distance +/- SEM in 5 min bins for AMPH and saline pretreated rats injected with AMPH 
(C). 

 

 
 
 
 
 
 



	 45	

Exp 4–9: Crossover LS of circadian feeding to AMPH depends on caloric 

restriction, time of day and continuity of circadian RF 

Experiments 4–9 tested the hypothesis that RF itself resulted in LS. We suspected that 

the reason experiments 1–3 failed to show an enhancement in FAA after AMPH 

treatment was that RF resulted in LS of the control group, which could then produce a 

ceiling effect in FAA between groups. We reasoned that if circadian RF resulted in 

sensitization of motor output, then possibly it was through the same mechanism as 

AMPH sensitization and therefore crossover sensitization should be possible from RF to 

an acute injection of AMPH. To test this hypothesis we placed rats under various 

feeding paradigms, returned them to AL feeding to restore body weight and then 

administered a low-dose of AMPH to measure locomotor activity in an open-field test. 

Feeding schedules varied, with the intent of testing the importance of caloric versus 

non-caloric restriction, circadian versus non-circadian feeding times, and feeding 

windows restricted to the day versus night. Because experiments 4–8 tested for cross-

sensitization after a period of incubation (10–15 days post-RF), in experiment 9 we 

tested cross-sensitization during RF after 1, 3, 7 and 14 days of RF as well as 5 and 10 

days post-RF. 

 

In experiment 4 we tested whether RF resulted in cross-sensitization to AMPH 10 days 

post-RF. On test day, feeding groups were divided and administered an acute injection 

of AMPH or saline. A significant difference in distance travelled scores was found 

between injection treatment groups F(1, 8) = 15.35, p < .01, but not between feeding 

groups, F(1, 8) = 0.08, p = 0.78, and there was no interaction, F(1, 8) = 0.17, p= 0.69. 
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Sidak's multiple comparison found differences between RF-AMPH and RF-saline, but 

not between CTRL-AMPH and CTRL-saline (Fig 7). In experiment 5, we tested whether 

cross-sensitization to AMPH was present in rats fed a VRF schedule. On test day 

differences in open-field activity between groups was detected, F(2, 8) = 4.62, p < 0.05. 

Dunnett's post hoc test (α < .05) revealed RF to be significantly higher than CTRL, but 

not VRF compared to CTRL (Fig 7). In experiment 6, we tested whether cross-

sensitization to AMPH was present in rats subjected to RT or VRT. On test day there 

were no statistically significant differences in open-field activity between RT and VRT 

compared to CTRL, F(2, 9) = 1.91, p = 0.20 (Fig 7). In experiment 7, we tested whether 

cross-sensitization to AMPH was present in rats subjected to RF, VRF, NRF and NVRF 

and found that there was a significant increase in open-field activity between 

groups, F(4, 18) = 2.98, p = 0.05. Dunnett's multiple comparison (α < .1) revealed RF to 

be significantly higher than CTRL. NVRF, although it appeared to have a high response 

to AMPH, was not statistically significantly different than CTRL (Fig 7). Upon inspection 

of individual rats’ responses for NVRF, we found high variability that was evenly divided; 

2 rats had high responses and 2 rats had a response similar to CTRL. In experiment 8, 

we tested whether cross-sensitization was present in rats subjected to RF, VRF, NRF 

and NVRF when tested during the lights off phase. On test day there was a significant 

difference in open-field activity between groups, F(4, 16) = 3.35, p = 0.04. Dunnett's 

multiple comparison (α < .1) revealed differences for RF and NRF compared to CTRL 

(Fig 7). In experiment 9, we tested whether cross-sensitization to AMPH was present in 

rats during day 1, 3, 7 or 14 of RF (RF1, RF3, RF7, RF14) and 5 or 10 days post 2 

weeks RF (AL5, AL10) compared to CTRL rats. A significant difference in open-field 
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activity was detected between groups, F(6, 37) = 7.607, p < 0.01. Dunnett's revealed 

significant differences for RF14 and AL5 compared to CTRL (Fig 7). 
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Fig 7. Feeding schedule cross-sensitization to AMPH test. 
Distance travelled to an acute injection of AMPH, plotted in 5-min time bins +/- SEM for 
feeding groups in experiments 4–9, respectively. Dotted line indicates injection time. 
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Percent of pre-RF/RT body weight on cross-sensitization test day 

Rats typically regained 100% pre-RF/RT body weight by test day, indicating RF cross-

sensitization to AMPH does not run in parallel to the return of body weight (S1 Fig). 

Discussion 

Restricting caloric intake is known to enhance behavioral response to drugs of abuse in 

rats. We thought to investigate whether the opposite could be true of circadian RF, 

namely whether enhancing LS through repeated AMPH exposure would enhance FAA 

to RF. The latter hypothesis was of particular interest since AMPH sensitization is 

known to act through the DA system and food entrainment is believed to involve DA. 

Therefore, if both AMPH sensitization and food entrainment act through the same DA 

neuronal networks, then we should see additive effects on FAA. We found no evidence 

for AMPH sensitization enhancing FAA. This outcome was not completely explained by 

our second hypothesis that RF resulted in LS of control groups and therefore a ceiling 

effect in FAA, when compared to AMPH-pretreated rats subjected to RF. 

 

With the second part of our study we verified that RF results in LS as measured by RF 

cross-sensitization to an acute injection of AMPH. LS from RF was found to require 

more than one week for behavioral expression, since an acute injection of AMPH on 

days 1, 3, and 7 of RF did not result in cross-sensitization. The latter finding was 

unexpected, as we had expected LS to be present as soon as caloric restriction was 

implemented. Therefore, if LS does not occur during the initial stages of food 

entrainment, some alternative explanation needs to be offered for why FAA among 

control groups did not differ from AMPH pretreated rats during the first week of RF in 
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experiments 1–3. One explanation may be related to the high variability and instability of 

FAA during the initial stages of food entrainment, typically seen in the first week of RF. 

Although a more plausible explanation is that AMPH sensitization and food entrainment 

have partly different neuronal mechanisms that do not overlap to produce additive 

effects on downstream locomotor output. In the intracranial self-stimulation paradigm it 

has been shown that caloric restriction increases AMPH reward, while AMPH 

sensitization does not increase AMPH reward (De Vaca, Krahne, & Carr, 2004). Our 

results may likewise be attributed to the inability of AMPH sensitization to produce 

additive effects on FAA. 

 

The effectiveness of the chosen AMPH sensitization protocols to our experimental 

design may also be questioned. It is possible that AMPH sensitization protocols were 

not ideal for home-cage testing. Placing animals into a novel environment following 

AMPH injection facilitates sensitization (Badiani & Robinson, 2004) something that we 

did not do in the current protocols; however, the doses used for each protocol were high 

enough for sensitization to occur regardless of environmental conditions (Browman, 

Badiani, & Robinson, 1998). Different doses of AMPH and diurnal time of administration 

during sensitization and incubation have also been shown to produce differences in 

behavioral sensitization (Gaytan, Swann, & Dafny, 1998a, Gaytan, Swann, & Dafny, 

1998b) and these factors were taken into account when selecting AMPH sensitization 

protocols. Additionally, AMPH withdrawal is known to result in an initial decrease in DA 

levels in the dorsal striatum (Paulson & Robinson, 1996), which is believed to contribute 

to the sensitization process. Since we did not measure DA levels directly, we cannot 
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confirm whether DA levels in AMPH-pretreated rats were low at initiation of RF, and 

perhaps this was why we did not observe FAA enhancement. 

 

Given that DA is involved in food entrainment (Gallardo et al., 2014; Smit, et al., 2013; 

Liu et al., 2012; Opiol et al., 2015), a second reason why FAA may not have increased 

in rats repeatedly exposed to AMPH is that the neuroplasticity of DA through which 

AMPH achieves behavioral sensitization is different from the changes in DA that occur 

with RF. For example, AMPH sensitization relates more to dopaminergic changes 

involving the D1 receptor, rather than D2 (Vezina, 1996; Vezina & Stewart, 1989; 

Fletcher et al., 2005). Circadian links to DA appear to work closely with D2 receptor 

function, e.g. clock gene expression in the dorsal striatum (Hood et al., 2010) and FAA 

is shifted by treatment with D2 receptor agonists, but not D1 agonists (Smit et al., 2013) 

or D1 antagonists (Mistlberger & Mumby, 1992). Future experiments should test 

whether there are additive effects on FAA with psychostimulants that achieve behavioral 

sensitization through the DA D2 receptor (Beyer & Steketee, 2002; Song et al., 2014). 

 

Since rats also show FAA to a RT, we examined whether a circadian feeding schedule 

without caloric restriction would show differences in FAA after being pretreated with 

AMPH. No differences in FAA were observed in AMPH-pretreated rats compared to 

controls while on a RT schedule, despite maintaining the schedule for an extended time 

and placing rats into constant darkness to unmask potentially hidden locomotor activity. 

Additionally, both RT and VRT schedules did not result in crossover sensitization to an 

acute injection of AMPH, indicating that some element of negative energy balance may 
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be necessary for feeding-related LS. Circadian feeding schedules without caloric 

restriction do not alter forebrain and hypothalamic oscillators to the same extent as RF 

(Verwey et al., 2007; Verwey et al., 2008). Caloric restriction is an important aspect 

contributing to the clock function of food entrainment and likewise is necessary for 

circadian feeding-induced LS. 

 

As seen in experiments 4–8, cross-sensitization to AMPH in groups subjected to 

circadian RF was present when tested 10–15 days post-feeding. Experiment 9 showed 

that RF did not result in LS during the first week of RF. Similar findings have been 

demonstrated with acute food deprivation, and its failure to enhance brain stimulation 

reward (Fulton, Woodside, & Shizgal, 2000). FAA also requires about a week before it 

reaches its maximum and stable amplitude in daily locomotor activity, suggesting that 

LS may be related to the enhancement (or reorganization) of locomotor activity during 

the first week of RF. One limitation of our study is that we cannot rule out the possibility 

that behavioral expression of LS may have been detected earlier had we used a higher 

dose of AMPH. Whether the expression of LS can be present during the first week of 

RF with a higher AMPH dose, or whether brain neuroplastic changes that underlie LS 

require more than a week to manifest as behavioral enhancement remains to be 

determined. It does not appear that LS is related to the amount of daily running wheel 

activity between groups. Both RF and VRF groups have similar levels of 24-h running 

activity, which are divided equally between the night and day (S2 Fig). LS, if affected by 

locomotor activity, may be related to the way it is reorganized across the 24-h cycle 

during the period of RF rather than the total amount of activity itself. 
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LS in RF but not VRF may be explained by RF's ability to maintain shifted clock gene 

expression. Recent studies have implicated transcription factors that comprise the 

molecular circadian clock to changes of neural plasticity (McClung & Nestler, 2008). By 

maintaining the same feeding time, RF may result in more consolidated neuroplastic 

changes important for LS, whereas VRF, which must readjust clock gene expression on 

a daily basis (Escobar et al., 2007), may not. It is important to note that even though 

changes to clock gene expression by VRF may not be to the same extent as RF, VRF 

has been shown to dampen rhythms of PER2 in several brain regions, including the 

dorsal striatum (Verwey & Amir, 2011), which may be relevant to the development or 

maintenance of RF LS. Finally, since we did not test whether LS is present in VRF 

groups during the VRF period, we cannot say that caloric restriction during VRF would 

not result in cross-sensitization; only that LS is maintained 10–15 days post-RF but not 

post-VRF. Therefore, LS may persist longer after cessation of circadian RF than non-

circadian caloric restriction. 

 

It is uncertain why cross-sensitization to AMPH was present in some NVRF rats when 

tested during the day, as this response was not present when NVRF were tested at 

night. In contrast, rats fed a circadian feeding schedule at night (NRF) showed cross-

sensitization only when tested during the night. Unpredictable schedules involving non-

caloric/ non-circadian food rewards have also been shown to result in cross-

sensitization to a low dose of AMPH (Singer, Scott-Railton, & Vezina, 2012). Both in the 

latter and present study the effects of cross-sensitization were unrelated to body weight 
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loss. Similarly, Avena & Hoebel evaluated various feeding schedules comprised of 

restricted access to sugar and/or lab chow and came to the hypothesis that cyclic 

feeding affects DA signaling to produce sensitization independently of body weight 

changes (Avena & Hoebel, 2003). 

 

Our results show that the combination of circadian feeding and caloric restriction result 

in LS as measured by an acute injection of AMPH. VRF, RT and VRT do not result in 

LS and NVRF shows high within-group variability. Interestingly, NRF only resulted in 

cross-sensitization when AMPH was administered during the night, while daytime RF 

resulted in cross-sensitization irrespective of the time of day. The latter may not be 

surprising, given that daytime RF results in the uncoupling of circadian oscillators from 

the SCN, such that both brain and peripheral oscillators can oscillate in anti-phase 

compared to oscillations under free-feeding conditions (Verwey & Amir, 2009). The 

amount of time it takes for non-SCN oscillators to resynchronize to the SCN, once 

animals are returned to free-feeding conditions, has not been extensively studied; 

however it is reasonable to hypothesize that brain regions important for both LS and/or 

food entrainment may remain coupled to the timing of feeding for some extended time 

post-RF. Unexpectedly, LS was not present during the first week of RF, but was present 

at 2 weeks into RF and 10–15 days post-RF. Body weight per se did not appear to play 

a role in these results since rats typically regained pre-RF body weight by test day. 

These results signify that food entrainment can play a role in experimental outcomes 

when chronic food restriction is used to study drug addiction. Moreover, LS resulting 
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from circadian RF appears to be a distinguishing feature of food entrainment, and 

further supports the role of DA in the food entrainment pathway. 
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S1 Fig. Percent pre-RF/RT body weight +/- SD for individual rats within each 
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S2 Fig. Running wheel activity by stage of experiment. 
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S3 Fig. Feeding schedule cross-sensitization to AMPH test: Individual rats. 
	

 

 

 

 

 

 

 

 

 



	 59	

 

CHAPTER 2 

 

 

Molecular measures of dopamine function in the dorsal striatum resulting from 
circadian restricted feeding 

 
Hanna Opiol, Tara Delorme, Nick Van Oirschot, Pavel Solis,  

Nuria de Zavalia, Shimon Amir 
 
 
 

Author Contributions: 

Conceptualization: Hanna Opiol, Shimon Amir. 
Data curation: Hanna Opiol, Shimon Amir. 
Formal analysis: Hanna Opiol. 
Funding acquisition: Shimon Amir. 
Investigation: Hanna Opiol, Tara Delorme, Nick Van Oirschot, Pavel Solis. 
Methodology: Hanna Opiol, Shimon Amir. 
Project administration: Shimon Amir. 
Resources: Shimon Amir, Uri Shalev. 
Supervision: Shimon Amir. 
Validation: Shimon Amir, Nuria de Zavalia. 
Visualization: Hanna Opiol, Shimon Amir. 
Writing – original draft: Hanna Opiol. 
Writing – review & editing: Shimon Amir. 

 

 

 

 

 

 

 



	 60	

Abstract 

Placing rats on restricted feeding (RF) for 2 weeks results in behavioral cross-

sensitization to amphetamine (AMPH) as measured by increased activity in an open-

field test. Cross-sensitization to AMPH and the absence of this phenotype in the first 

week of restricted feeding are indicators that neuroplastic changes in dopamine (DA) 

function develop with sufficient time exposure to RF. To investigate which dopaminergic 

mechanism may be responsible for the enhanced response to AMPH, three different 

measures of DA function from the dorsal striatum (DS) were evaluated in rats exposed 

to RF. In the first experiment, rats were subjected to 2 weeks of 3h-RF followed by 10 

days re-feeding. Tissue was analyzed for FOS expression and found no differences 

compared to controls. In the second experiment, rats were subjected to 4 weeks of 5h- 

RF and tissue was analyzed for tyrosine hydroxylase (TH), revealing no differences 

from controls. In the third experiment, rats were subjected to 1, 3, 7, or 14 days of 3h-

RF, and 5 or 10 days of re-feeding, and tissue was stained for dopamine transporter 

(DAT). Optical density of DAT in the DS was significantly higher in rats exposed to RF 

for 14 days, including groups that had been re-fed. The increase in DAT is consistent 

with the timeline by which behavioral cross-sensitization to AMPH is manifest. 
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Introduction 

Dopamine (DA) in the dorsal striatum (DS) is currently believed to play a key role in the 

circadian food entrainment pathway (Liu et al., 2012; Smit et al., 2013; Gallardo et al., 

2014; De Lartigue et al., 2018; LeSauter et al., 2018). Previous work from our lab is 

consistent with this hypothesis, whereby food entrainment results in an enhanced 

locomotor response (cross-sensitization) to amphetamine (AMPH). AMPH is known to 

exert its effects through the DA system. The enhanced locomotor effects of AMPH have 

also been shown to increase over time, whereby levels of DA in the DS increase in 

response to AMPH the longer the period of incubation (Paulson & Robinson, 1995). 

Similarly, RF cross-sensitization to AMPH manifests itself only if there is sufficient time 

exposure to RF (Opiol et al., 2017). In particular, 14 days of RF, but not 1, 3 or 7 days, 

is required for cross-sensitization. Food entrainment also requires time in order for 

circadian rhythms driving behavioral output to readjust with feeding time. We 

hypothesize that food entrainment is resulting from neuroplastic changes in the DS, 

which are reflected in the enhanced behavioral response to AMPH. Our intent for this 

study was to determine what type of neurosplastic changes are occurring that could 

explain the enhanced DA function resulting from food entrainment.    

 

To further investigate the role of the DS in RF cross-sensitization to AMPH, we 

analyzed three molecular measures of this brain region following RF and an acute 

injection of AMPH. Firstly, we checked to see the levels of FOS activation. FOS is a 

protein product of the immediate early gene c-FOS, and serves as an indirect marker of 

neuronal activity. Nikulina et al. (2004) found that cross-sensitization to AMPH resulting 
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from repeated social defeat stress showed elevated levels of FOS in the DS. Likewise, 

we hypothesized that food entrainment would result in elevated FOS in the DS. 

Secondly, a western blot analysis of tyrosine hydroxylase (TH) was conducted. TH is a 

marker for dopaminergic neuronal activity, since it is the rate-limiting enzyme needed for 

DA synthesis. It is possible that food entrainment results in increased DA turnover in the 

DS. Increased TH activity has been shown to elevate the response to acute AMPH 

(Vecchio et al., 2017). Finally, we evaluated DAT density at various time-points during 

RF and post-RF to see whether DAT function may contribute to the enhanced response 

to AMPH. DAT is known to be one of the three main mechanisms through which AMPH 

produces its behavioral effects (Calipari & Ferris, 2013). 

 

Methods and Materials 

Animals and Housing 

Eighty-four male Wistar rats (150-175 g at arrival) purchased from Charles River (St. 

Constant, QC, Canada) were single housed in clear plexiglass containers (9.5"x8"x16") 

with a running wheel and mesh flooring (experiments 1 and 3) or corncob bedding and 

frizzy paper (experiment 2). Rats were maintained in a 12:12 LD cycle and had 10-14 

days to habituate to their home environment prior to beginning RF, whereby there was 

free access to tap water and lab chow. Rats were handled every other day prior to 

beginning feedings and once a week thereafter. All experimental procedures were 

conducted under the guidelines of the Canadian Council of Animal Care and approved 

by the animal care ethics committee at Concordia University, Quebec. 
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Experimental procedure 

Exp 1: Rats were divided into two groups: CTRL and RF. CTRL had no changes to diet. 

RF was subjected to 2 weeks of time-restricted feeding, whereby food was restricted to 

a 3h-feeding window at Zeitgeber time (ZT) 5-8, where ZT 0 is lights on. Free access to 

food was provided for 10 days post-RF for rats to regain body weight. All rats were 

administered a low dose of AMPH (.5 mg/kg i.p.) between ZT 5-7. Animals were 

perfused ~90 minutes after injection and the DS was analyzed for FOS (Nikulina et al., 

2004).  

  

Exp 2: Rats were divided into two groups: CTRL and RF. CTRL had no changes to diet. 

RF was subjected to 3-4 weeks of daily 5-h time-restricted feeding, from ZT 2-7. 5-h 

feedings did not result in significant body weight loss compared to CTRL. On the last 

day of RF, rats were allowed at least 1 h of food prior to AMPH injection. Thirty minutes 

after injection rats were deeply anesthetized with sodium pentobarbital (100 mg/kg i.p.) 

and brains flash frozen in isopentane, placed on dry ice and stored in -80°C for analysis 

of TH.  

 

Exp 3: Rats were divided into 7 feeding groups: RF1, RF3, RF7, RF14, AL5, Al10 and 

CTRL. RF1-14 were subjected to 1, 3, 7 and 14 days of 3h RF, respectively. AL5 and 

AL10 were subjected to 14 days RF followed by 5 or 10 days re-feeding, respectively. 

CTRL had no changes to feeding. All rats were injected with AMPH on the final day of 

RF or re-feeding and tissue was collected for DAT analysis, as in experiment 1.  
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Immunohistochemistry  

Following the acute injection of AMPH, rats were anesthetized with sodium 

pentobarbital (100 mg/kg) and perfused intracardially with 300 ml of cold 0.9% saline, 

followed by 300 ml of cold 4% paraformaldehyde. Brains were removed and post-fixed 

for 24 h in 4% paraformaldehyde and stored at 4°C overnight, then sliced to 50 µm 

serial coronal sections on a vibratome in phosphate buffered saline, and stored at 

−20°C in Watson’s Cryoprotectant. Immunohistochemistry for FOS (1:100,000 - 

Calbiochem Gibbstown, NJ, USA) was as described in Al-Safadi et al. (2014). Staining 

for DAT was first prepared with a quenching phase of 30% H2O2 for 30 min, followed 

by a pre-block containing Triton TBS and 5% normal goat serum for 1 h. The primary 

was a monoclonal antibody raised in rat (1:1500; Millipore) in Triton TBS containing 2% 

NGS incubated for 40 h at 4°C, followed by an anti-rat IgG secondary (1:500 - Millipore) 

for 1 h at 4°C, and an avidin-biotin peroxidase solution for 2 h at 4°C (Vectastain Elite 

ABC kit; Vector Laboratories). Sections were then rinsed in a 0.5% 3,3-

diaminobenzidine (DAB) solution, and IR nuclei were visualized with a solution 

containing 0.5% DAB, 0.1% H2O2, and 8% NiCl2.  

 

Microscopy  

Stained sections were mounted onto gel-coated slides and dehydrated in a series of 

alcohols and Citrisolv (Fisher), then coverslipped. The sections were examined under a 

light microscope (Leica, DMR) and images were captured with a Sony XC-77 video 

camera, Scion LG-3 frame grabber with a 400 x 400 µM template, and Image J 1.52a 

software (http://imagej.nih.gov/ij, W. Rasband). The mean number of FOS and DAT 



	 65	

immunoreactive (IR) cells per region was then calculated for each animal from the 

counts of six unilateral images showing the highest number of labeled nuclei, using 

ImageJ freeware (http://imagej.nih.gov). Images were calibrated for optical density 

measures using a 21-step tablet with optical density range of 0.05-3.05, as provided by 

Image J (https://imagej.nih.gov/ij/docs/examples/calibration/).	

  

Western blot  

Sleipness et al. (2007) found that TH is higher in the DS at ZT 20 compared to ZT 4, 

which is consistent with the idea that DA levels peak during the mid-dark phase when 

rats are most active (Hood et al., 2010). Since DA levels realign with the time of feeding 

(Liu et al., 2012), we hypothesized that TH, a rate-limiting enzyme of DA, would peak in 

parallel with DA for RF rats. We expected that collecting brains during RF at feeding 

time ~ZT 5 would yield high levels of TH, while control brains collected at this time 

would reflect low levels. Brains were sliced using the cryostat (~ 0.1 mm) and bilateral 

punches (1.5 mm diameter) were taken from the DS of 3-4 slices/ brain.  

 

For protein quantification, tissue punches were homogenized using a sonicator with 150 

µL of lysis buffer (3 x 5 sec) cooling in between on ice. Samples were then frozen and 

thawed (3x) using liquid nitrogen and a heat block (37°C) and centrifuged for 30 min at 

4°C. Using the Pierce BCA protein assay kit (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA), a standard curve was generated (R2= 0.9214) and protein 

concentrations for each sample were interpolated using optical density. Running and 

stacking gel preparations were made the day before running the western, as indicated 
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in Mahmood & Yang (2012). Tissue homogenates were thawed, centrifuged (30 sec) 

and the loading buffer was prepared, containing 20 µg of protein sample, 4.5 µL loading 

dye, 0.5 µL of 10% Beta-mercaptoethanol and distilled water for a total volume of 25 µL. 

Loading buffer was loaded onto prepared gels and subjected to electrophoresis. 

Proteins were transferred to nitrocellulose membrane for 60 min. Following transfer, the 

membrane was blocked in 5% non-fat dry milk/10mM Tris, 150 mM NaCl, 0.1% Tween- 

20 (TBST) with shaking and incubated overnight at 4°C with anti-TH (1:1000, 

Chemicon). The following day, the membrane was rinsed in TTBS (3 x 10 min) and 

placed into the secondary antibody (1:2500) in 5% non-fat dry milk/TTBS on a rotator 

for 1 h at room temperature. Finally the membrane was rinsed in TBST (2 x 10 min), 

TBS (2 x 10 min) and developed for 5 min using the enhanced chemiluminescence 

(ECL) substrate kit (PerkinElmer, Inc.). 

 

Luminescence from the blots was detected using the Amersham Imager 600 (GE 

Healthcare). Analysis of the bands was performed using Image J 1.52a. Raw densities 

were normalized according to the following steps: A relative value was calculated for 

each sample's actin optical density value by dividing it by the largest actin value in the 

control group. TH adjusted values were calculated by dividing TH optical density by its 

corresponding relative value. Lastly, TH adjusted values were normalized by dividing 

each value by the average in the control group. 
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Statistical analysis  

Differences between groups were analyzed using an unpaired t-test or a one-way 

ANOVA, with α = 0.05. Post-hoc testing was applied if ANOVA detected significance.  

 

Results 

RF cross-sensitization to AMPH is not reflected in FOS or TH 

The DS is an important brain region for driving locomotor activity; therefore we 

hypothesized that the enhanced locomotor response from RF cross-sensitization to 

AMPH would be reflected in the neuronal activation of this region. Unexpectedly, there 

was no difference in FOS between CTRL and RF after an acute injection of AMPH, t18 = 

0.33, p = 0.75 (Fig 1). Next, we evaluated TH levels from the DS to see if this indirect 

measure of DA correlated with RF cross-sensitization to AMPH. Again, there were no 

differences in TH between CTRL and RF, t9 = 0.36, p = 0.73 (Fig 2). 
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Fig 1. No difference in number of FOS immunoreactive cells (IRC) in the DS 
following acute AMPH 10 days post RF, compared to controls. Means +/-sem are 
shown, n = 10 per group. 
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Fig 2. Western blot of TH protein levels in the DS of rats subjected to 4 weeks RF, 
relative to CTRL. n = 5-6 per group. 
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DAT levels reflect the timeline of cross-sensitization to AMPH 

AMPH is known to act through DAT in exerting its effects on locomotor activity, 

therefore we intended to measure whether DAT density could explain the timeline of 

AMPH cross-sensitization seen in RF. DAT optical density scores for rats subjected to 

1, 3, 7, or 14 days of RF and after 5 or 10 days of re-feeding following AMPH were 

analyzed using ANOVA. A significant difference was detected F (6,23) = 6.41, p = 0.0004. 

Dunnett's multiple comparison found differences for RF14, AL5 and AL10 compared to 

CTRL. 
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Fig 3. DAT optical density scores for the DS in rats subjected to RF for 1, 3, 7, or 
14 days RF and 5 or 10 days post-RF. Means +/- sem are shown, n = 4 per group.  
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Discussion 

In this study we evaluated three measures of neuronal activity in the DS, which could 

explain RF cross-sensitization to AMPH. In experiment 1 and 2, it was shown that FOS 

and TH expression in the DS did not differ between feeding groups. The lack of 

difference in FOS expression indicates that the acute effect of AMPH on the DS, 

intracellularly, does not differ as a result of RF, and therefore does not explain the 

behavioral differences in cross-sensitization. TH protein levels in the DS also showed 

no difference as a result of RF, which may indicate that RF does not affect DA 

synthesis. Similarly, chronic caloric restriction resulted in no changes to total TH (Pan et 

al., 2006). However, the latter study also reported that there were differences in TH 

activation (phosphorylation at Ser-40) in the DS as a result of acute AMPH, but not 

under basal conditions (no AMPH). Since TH phosphorylation at serine residues is 

unaffected by AMPH treatment itself (Janenaite et al., 2017), it supports the idea that 

TH activation by AMPH is due to chronic caloric restriction. TH phosphorylation at Ser40 

results in an increase in TH activity and DA synthesis (Dunkley et al., 2004), which 

could explain the effects of AMPH cross-sensitization. An alternative hypothesis may be 

that RF results in changes to DA regulation at the synapse, such as through DAT, which 

would enhance homeostatic feedback by increasing TH phosphorylation when blocked 

by AMPH. 

 

DAT is the main mechanism through which AMPH produces its effects on striatal DA 

and behavioral output (Sulzer et al., 2005; Calipari & Ferris, 2013). Genetic depletion of 

DAT results in a two-fold increase of DA synthesis (Gainetdinov et al., 1998), and 
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increased TH phosphorylation (Ser-40) in the DS (Salvatore et al., 2016). Mice with 

overexpression of DAT show elevated response to acute AMPH, without a hyperactive 

phenotype during baseline testing (Salahpour et al., 2008). Thereby, our final 

experiment tested whether RF might change DA metabolism due to elevated DAT. 

Additionally, we evaluated whether the differences in DAT developed over time, as seen 

with behavioral cross-sensitization. To our surprise, DAT levels were significantly higher 

at 14 days into RF, as well as, 5 and 10 days after food was returned compared to 

CTRL, consistent with the timeline of RF behavioral cross-sensitization. Therefore, DAT 

may explain the locomotor sensitization effects of RF, although it is not necessary for 

food entrainment. DAT knockout mice develop normal food anticipatory activity (FAA) 

(Enriquez, 2018).  

 

Enhanced DAT function may be an important component of the behavioral sensitization 

that develops with food entrainment. In humans, during a weight-loss program, the time 

of day when the largest meal is consumed has been shown to differentially affect DAT 

binding in the striatum (Versteeg et al., 2017). It is hypothesized that Insulin may play a 

critical role in regulating striatal DA release and uptake through DAT. In particular 

insulin has been shown to indirectly result in striatal DA release, through insulin 

receptors located on striatal cholinergic interneurons (Patel et al., 2018). Furthermore, 

the effects of insulin on striatal DA uptake via DAT are the result of chronic food 

restriction rather than acute insulin exposure. In contrast, rats that are hypoinsulenemic 

have decreased DAT surface area and impaired response to AMPH due to insufficient 

DA release into the synapse (Williams et al., 2007). It is unknown how food entrainment 
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affects insulin receptors on cholinergic interneurons, however we do know that food 

entrainment shifts the hormonal rhythm of insulin to anticipate feeding time (Diaz-Munoz 

et al., 2000), which could then regulate striatal DAT expression. We hypothesize that 

RF cross-sensitization reflect changes to DAT function that occur with prolonged 

changes to insulin levels. It has been suggested that insulin's effects on enhanced 

striatal DA function could be regulating motivation and mood (Stouffer et al., 2015). 

Future work should evaluate the effects of RF for the potential role it may have in 

regulating mood or in preventing the development of mood disorders under conditions 

of circadian disruption. 
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Supplementary information 

S1 Fig. Cross-sensitization to AMPH is present using 5h RF. (A). Distance travelled 

(cm) +/-sem across 30 minutes of habituation to the open-field, followed by 30 minutes 

post-AMPH injection. (B). Distance travelled ratio +/-sem is significantly different 

between CTRL and RF. ** Significance p < 0.01. The AMPH test was intended to verify 

that cross-sensitization was present in rats using a 5h RF schedule, which did not result 

in significant weight loss. Previously, cross-sensitization to AMPH was confirmed using 

3h RF (Opiol et al., 2017). 
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Abstract 

Circadian restricted feeding (RF) is known to have many health benefits in relation to 

metabolic function. However, there is very little research to evaluate how RF could 

affect mental health. Previous work in our lab showed that RF results in the 

enhancement of dopamine (DA) function as measured by cross-sensitization to 

amphetamine (AMPH). Current understanding of the DA system implies that it is critical 

for emotion, motivation, and is believed to underlie mood disorders. In the present study 

we evaluate the effects of RF on measures of depression and anxiety in the male rat. 

Two rat strains are evaluated in their behavioral response to the forced swim test (FST) 

10 days post-RF, a time previously shown to result in cross-sensitization to AMPH. No 

significant differences were detected in either strain. To test whether RF may have 

some preventative effects on the development of mood disorders, rats were tested in 

the FST, elevated plus maze (EPM) and open-field (OF) over the course of RF during 

constant light conditions. RF increased swimming behavior in the FST and some 

measures of activity in the EPM and OF, indicating possible antidepressant and/or 

anxiolytic effects. More work is needed to further investigate the effects of RF on mental 

health. 
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Introduction 

The study of RF on circadian rhythms has traditionally confined feeding to a single 2-3 

hour feeding window. Recent studies have shown that larger feeding windows of 12 

hours can also harness circadian rhythms and provide health benefits. The health 

benefits are attributed to appropriate circadian function rather than calorie restriction or 

the type of diet eaten. High-fat diets with no caloric restriction, known to result in diet-

induced obesity, can have their detrimental effects on metabolic disease prevented or 

reversed by simply restricting the time of food consumption (Hatori et al., 2012; Chaix et 

al., 2014; Manoogian & Panda, 2017; Zarrinpar et al., 2014). In rodents, maintenance of 

appropriate circadian function through RF results in improved cardiac health and sleep, 

reduced inflammation, reduced hepatic glucose production, increased metabolism and 

innate immune function (Froy, 2011; Gill et al., 2015; Cisse et al., 2018). In humans, 

overnight fasting of >12 hours is correlated with reduced breast cancer incidence 

(Marinac et al., 2015a; Marinac et al., 2015b), improved sleep and elevated daytime 

alertness (Gill & Panda, 2015), enhanced immune function in young and older men 

(Gasmi et al., 2018), as well as improved blood pressure, insulin sensitivity and 

oxidative stress in prediabetic men (Sutton et al., 2018). The maintenance of circadian 

rhythms by RF reveal numerous benefits to metabolic function, however research has 

yet to evaluate if the benefits of RF are extended to mental health. RF shifts clock gene 

rhythms in the brain, including regions important for learning and memory, motivation 

and reward processing (Verwey & Amir, 2009). If circadian disruption or misalignment of 

these brain regions is a contributing factor in affective disorders (Salgado-Delgado et 
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al., 2011; Li et al., 2013; Vadnie & McClung, 2017; Bedrosian, 2017; Lyall et al., 2018), 

then RF may serve a preventative or therapeutic function to mental health.  

 

From animal studies it is known that RF can resynchronize biological rhythms under 

conditions of circadian disruption, whether the disruption originates from removing the 

suprachiasmatic nucleus (SCN) (Stephan et al., 1979; Hara et al., 2001), clock gene 

mutation (Storch & Weitz, 2009) or external factors that indirectly affect clock function 

(Lamont et al., 2005; Novakova et al., 2011; Oike et al., 2015; Baez-Ruiz et al., 2018). 

In the case of chronic constant light (LL)-induced disruption on the SCN, it is the 

individual cells in the SCN that become unsynchronized from each other that cause 

circadian arrhythmicity (Ohta, Yamazaki & McMahon, 2005). LL does not compromise 

the ability of the SCN to generate rhythms and thereby RF can rescue circadian function 

by resynchronizing cells in the SCN. However, since RF can also correct circadian 

rhythms in the absence of the SCN and clock gene function, it is evident that a second 

independant clock mechanism exists and can be controlled by RF. The molecular 

mechanisms through which this food entrainable oscillator (FEO) functions have yet to 

be determined. Recent work suggests an important role for dopamine (DA) motor 

circuits (Smit et al., 2013; Gallardo et al., 2014; De Lartigue & McDougle, 2018). 

Previous work in our lab supported the idea that RF results in sensitization of DA 

function (Opiol et al., 2017). Therefore, in addition to correcting circadian disruption, RF 

may elevate levels of DA, a neurotransmitter critical for driving motivation and affective 

processes. We hypothesized that since DA is implicated in the regulation of affective 
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disorders and since the pharmacological treatments often target the DA system, RF 

may serve a non-pharmacological preventative or treatment option for regulating mood.  

 

The current study sought to evaluate the effects of RF on mood by observing their 

effects in animal models of anxiety and depression. Firstly, we tested the effects of RF 

on the forced swim test (FST). The FST is the gold standard for measuring 

antidepressant efficacy. Since there are strain differences in the FST, we tested two 

popular rat strains known to behave differently (Bogdanova et al., 2013). Initial testing 

was done 10 days post-RF since previous work showed cross-sensitization to AMPH at 

this time point. Secondly, we tested how RF could affect behavior in animal measures 

associated with anxiety-like behavior, the elevated plus maze (EPM) and open-field 

(OF). Lastly, we tested how rats would behave under these behavioral tests when 

subjected to short-term chronic LL. If LL did disrupt emotional processing, perhaps RF 

could prevent its development by maintaining circadian rhythmicity. 

 

Methods and Materials 

Animals and Housing 

Forty male Wistar rats and 10 male Long Evans (150-175g at arrival) purchased from 

Charles River (St. Constant, QC, Canada) were single housed in clear plexiglass 

containers (9.5"x8"x16") with corncob bedding and frizzy paper. Rats had free access to 

tap water and rodent lab chow, except when subjected to RF. Rats were handled every 

other day at the end of the light phase/ beginning of the dark phase prior to beginning 

RF, and 1-3 times weekly to measure body weights during RF. All experimental 
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procedures were conducted under the guidelines of the Canadian Council of Animal 

Care (http://www.ccac.ca) and approved by the animal care ethics committee at 

Concordia University, Quebec. 

 

Feeding and light schedules 

Rats were introduced to a 12:12 light/dark cycle prior to starting experimental conditions 

and were maintained under this light schedule throughout the experiment unless 

undergoing LL. Half the rats in experiment 3 were subjected to LL following habituation 

until the final day of testing. Light intensity inside each homecage ranged from 90 to 130 

lux. For a visual representation of feeding and light schedules see fig 1. 

 

In experiment 1 and 2, rats were subjected to 3h RF in the middle of the light phase, 

ZT5-8 (where ZT0 is lights on) for 14 days, followed by 10-14 days of ad libitum feeding 

to regain body weight. In experiment 3, rats were subjected to a 5h RF, ZT 2-7. The 

longer feeding window intended to reduce weight loss over the course of RF. Similarly, 

LL is known to increase body weight (Fonken et al., 2010; 2013), therefore body weight 

was monitored and the FST was conducted prior to significant changes in weight, ~3 

weeks into LL. Rats were given at least 1 hour to eat prior to testing. The intention was 

not to test rats in a fasting state, however, still within the hours that food-entrained 

rhythms were driving arousal.  
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Fig 1. A schematic of experiments 1-3. All rats first underwent 7 days of habituation to 
home cage environment prior to feeding or lighting changes. In experiments 1 and 2, 
rats were divided into a feeding group for 14 days that included 3h of restricted feeding 
(RF) or no changes to feeding (CTRL) followed by 10 days of re-feeding to regain body 
weight prior to the FST. In experiment 3, rats were subdivided into 4 groups: CTRL, RF 
CTRL-LL, or RF-LL. The latter two groups were kept in LL from day 8 until the end of 
the experiment. Since body weight can affect behavior in the FST, RF was extended to 
5h to avoid weight loss and LL did not exceed 3 weeks to avoid weight gain. Multiple 
open-field tests (OF1-3) and the elevated plus maze (EPM) were conducted during 
experiment 3.  
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Forced swim test 

The modified forced swim test (FST) was conducted as described by Cryan, Valentino, 

& Lucki (2005). Briefly, the test consists of two days: habituation day and test day. On 

habituation day, the rat is placed into a cylinder of water where it cannot escape. After 

10 minutes the rat is removed from the water, dried with a towel, and placed back into 

its home cage. Twenty-four hours later the test is repeated for 5 min. Fresh water is 

provided for each trial and the water temperature must be between 23-25 degrees 

Celsius. Each trial is recorded using a standard video camera.  

 

The modified FST uses a water depth of 30-35 cm, compared to the original Porsolt 

(1977) protocol that uses 15-18 cm. By increasing the water depth the modified FST 

prevents rats from balancing on their tails and using this posture as a behavioral 

adaptation. Pharmacological and lesion studies have shown that by using the modified 

FST the active behaviors of climbing versus swimming can be differentiated as being 

under the control of separate neurotransmitter systems. More specifically, 

antidepressants acting on the catecholamine system selectively increase climbing 

behavior and serotonergic agents selectively increase swimming (Slattery & Cryan, 

2012). 

 

Testing was done during the light phase ZT4-6 with the lights on in the testing room, to 

stay consistent with the timing of the light schedule in their home environment. As noted 

by Kelliher et al. (2000) there is more escape-oriented behavior when testing during the 

diurnal phase. Our rational was to conduct the FST during the peak time for anxiety-like 
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response, as some have argued the FST may be more appropriate for measuring 

anxiety-like behavior than depression-like behavior (Anyan & Amir, 2018).  

 

Elevated plus maze 

To test for anxiety-like behavior, a standard elevated plus-maze (EPM) test was 

conducted. The EPM is the most common method used by researchers to evaluate 

behavior in a novel environment, which simultaneously evokes curiosity and fear and 

creates an approach-avoidance conflict that is beneficial to detecting an anxiety-like 

state (Carobrez, Kincheski, & Bertoglio, 2015). The maze consisted of two open arms 

(50 x 10 cm), two closed arms (50 x 10 x 52 cm), and was elevated 52 cm off the floor. 

Testing was conducted in the light phase between ZT 4-6, under similar lighting 

conditions to home environment. Rats undergoing LL were tested at the same time as 

control counterparts. It has previously been shown that circadian phase and illumination 

do not affect anxiety-like behaviors (Jones & King, 2001). Each trial began by placing 

the rat in the center of the EPM facing an open arm, and left to explore for 5 minutes. 

The maze was cleaned using sanitizer wipes prior to the next rat. Activity was recorded 

using a camera placed above the EPM. 

 

Open-field  

In experiment 3, rats were subjected to the open-field at three time points throughout 

the experiment to monitor if there would be changes in behavior under RF, LL, or RF-LL 

compared to controls. The open-field is traditionally used as a measure of stress-

response to a novel enviornment, in which thigmotaxis, among other measures, is 



	 85	

evaluated (Prut & Belzung, 2003). Thigmotaxis refers to anxiety-like behavior that 

rodents show by maintaining close proximity to the wall of the OF, which then 

diminishes within a few minutes. In particular we were interested in whether LL resulted 

in an increased stress response over time that could be seen with repeated OF testing, 

and if so, whether RF-LL would show a reduced stress-response or anxiolytic-like 

behavior in parallel to their CTRL-LL counterparts. Testing was done over a 30-minute 

period. Rats were placed in a sound-attenuated plexiglass open-field box (39 x 42 x 50 

cm) facing the left corner and allowed to explore for 30 minutes. Three to four rats were 

tested simultaneously within the same room, in separate boxes. Dim lighting (~5-10 lux) 

was used in the room to promote explorative behavior. Boxes were cleaned out using 

70% ethanol after each session.  

 

Data collection and analysis  

Video recordings of the FST were scored for climbing, swimming or immobility using a 

time-sampling technique described by Slattery & Cryan (2012). The technique labels the 

predominant behavior for each 5-sec bin out of the 300-second test. Climbing is defined 

as frantic/vertical behavior directed at the wall. Swimming is defined as horizontal 

behavior not directed at the wall. Immobility is defined as floating or minimum 

movement to maintain head above water. Although the modified FST does not 

recommend scoring for time to immobility, we decided to evaluate this measure for both 

habituation and test days in experiment 3 to see a within subject comparison of this 

learned response. Time to immobility was scored as the first 5-sec bin in which 

predominant behavior was defined as floating.  
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Video recordings of the EPM were scored for total time in the center, total time spent in 

the closed arms, total time spent in the open arms, latency to enter open arm, the 

number of open arm entries and the number of transitions between arms. These 

behavioral scores for the EPM were chosen to evaluate any differences between groups 

in anxiety-like behavior, as compared to the control group. If the rat fell off the arm he 

was disqualified from analysis unless there was sufficient data for the measure of 

interest. 

 

Open-field data was collected using Tru Scan 2.0 activity monitoring system (Coulbourn 

Instruments, Whitehall, PA). Total distance travelled, total distance in the center, total 

time in the center, total time moving and total entries into the center was collected in 5-min 

bins during a period of 30 min during OF1-3 for each rat. To measure anxiolytic 

behavior, a ratio of total distance in the center/ total distance travelled was calculated.  

 

Statistical analysis  

Unpaired t-tests or one-way ANOVA were used to evaluate the FST and EPM for 

experiments 1-3 and body weight for experiments 1 and 2. Two-way repeated measures 

ANOVA was used in experiment 3 to evaluate each OF test over 30 minutes (six 5-min 

bins), time to immobility comparing habituation to test day, and body weight over the 

course of RF. Post-hoc analyses were applied when the test yielded significance.  
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Results 

Exp 1-2: No differences in the FST 10 days post-RF 

As shown in Fig 2A, there were no significant differences between RF and CTRL in 

immobility t11 = 0.72, p = 0.49, swimming t11 = 0.52, p = 0.61, or climbing t11 = 1.31, p = 

0.21 for male Wistar 10 days post-RF. Similarly, shown in Fig 2B, there were no 

differences in immobility t8 = 1.347, p = 0.22, swimming t8 = 0.8998, p = 0.40, or 

climbing t8 = 0.1286, p = 0.90 for male Long Evans 10 days post-RF. 

 

According to Slattery & Cryan (2012) controls should have a score of 25-30 for total 

immobility on test day. An analysis of mean scores for immobility found Wistar controls 

to have a mean +/- SD score of 25.33 +/- 8.98, which appears to be within the 

appropriate range as stated above. Long Evans controls had a mean +/- SD score of 

18.60 +/- 7.83, which is lower than indicated by the above protocol, and is likely due to 

strain differences (Bogdanova et al., 2013).  
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Fig 2. FST scores for immobility, swimming and climbing behavior 10 days post-
RF. (A). Total score means +/- sem for Wistar rats in experiment 1, n = 6 or 7 per group. 
(B). Total score means +/- sem for Long Evans rats in experiment 2, n = 5 per group. 
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Exp 3: Swimming increases in the FST for rats under RF, but not RF-LL 

As shown in Fig 2, ANOVA revealed a difference in swimming behavior F(3, 21) = 

3.674, p = 0.029. Dunnett's post hoc test found a difference between RF, but not RF-LL 

or CTRL-LL, compared to CTRL. There were no significant differences between groups 

in immobility F(3, 21)  = 1.313, p = 0.30 or climbing F(3, 21) = 0.142, p = 0.93. 

 

An analysis of mean scores for immobility found CTRL to have a mean +/- SD of 32.8 

+/- 13.37, which appears to be within the appropriate range for the modified FST 

(Slattery & Cryan, 2012). CTRL-LL and RF-LL had similar immobility scores to the 

CTRL group: 31.33 +/- 18.75 and 30.14 +/- 5.58 respectively. RF had a lower mean 

score for immobility at 20.29 +/- 10.78. 
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Fig 3. FST scores for immobility, swimming, and climbing behavior during 5h RF. 
Total score means +/- sem for CTRL, CTRL-LL, RF and RF-LL in experiment 3. n = 5-7 
per group. * Significantly different from CTRL, p < .05, ns, not significant. 
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Exp 3: No differences in time to immobility on test day 

Figure 4 shows time to immobility in the FST on habituation day and test day had no 

significant effect of group F(3, 21) = 0.8376, p = 0.49, however there was an effect of time 

F(1, 21)  = 4.545, p = 0.05, and an interaction effect F(3, 21)  = 3.536, p = 0.03. Bonferroni 

revealed RF-LL to have a significantly reduced time to immobility from habituation to test 

day.  
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Fig 4. Time to immobility in the FST. Mean time to immobility +/- sem on habituation 
and test days of the FST for CTRL, CTRL-LL, RF and RF-LL. n = 5-7 per group. 
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Exp 3: EPM and OF during RF and/or LL 

To evaluate anxiety-like behavior, the EPM was conducted after >2 weeks of RF and/ or LL.  

Fig 5A shows a difference between groups for time spent in the center, F(3, 19) = 15.59, p < 

0.001. Dunnett's post hoc test (α =.05) revealed the difference to be for CTRL-LL 

compared to CTRL. Fig 5B-E shows no differences between groups for time spent in the 

open arm F(3, 19) = 1.163, p = 0.35, latency to enter the open arm F(3, 19) = 1.534, p = 0.24, 

number of entries into the open arm F(3, 19) = 1.617, p = 0.22, and number of transitions 

between arms F(3, 19) = 0.6050, p = 0.62, respectively.  Fig 5F shows a difference in the 

ratio of total open arm entries/ total transition between arms F(3, 19) = 3.037, p = 0.05. 

 
 
To evaluate how rats adapted to the OF over the course of LL and whether RF served 

any preventative function, CTRL and RF fed rats were tested after 1, 2 and 4 weeks of 

LL. Statistical analysis found the group factor to be significantly different for time in the 

center, with significant changes over time for every measure. Post-hoc testing revealed 

that the CTRL group did not significantly change over time for any measure, and that 

the group difference was between CTRL and CTRL-LL for time in the center at OF3. 

See Table 1 for two-way ANOVA (Group x Time), with post-hoc analysis shown in Fig 6A-E.   
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Fig 5. Activity in the EPM after 2 weeks RF and/or LL. Various measures evaluating 
anxiety-like activity in the EPM for CTRL, CTRL-LL, RF and RF-LL. Means +/-sem are 
shown for (A). Time in the center (sec), (B). Time in the open arm (sec), (C) Latency to 
open arm (sec), (D). Number of open arm entries (sec), (E). Number of transitions between 
arms and (F). Number of open arm entries/ number transitions between arms. n = 5- 7 per 
group. Significant difference * p < .05, ***p < .001. 
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Table 1.  
Two way ANOVA, OF activity measures across time exposure to LL and/or RF, OF1-3 
corresponding to 1, 2 and 4 weeks in LL and/or RF 
 

 
OF activity (5min) 
 

 
Group  

 
TIme in LL (OF1-3) 

 
Group x time in LL 

 
Total distance  

F (3, 21) = 0.3708 
P = 0.7748 
ns 
 

F (2, 42) = 5.406 
P = 0.0081 
** 
 

F (6, 42) = 0.8571 
P = 0.5340 
ns 
 

 
Center distance 
 
 

F (3, 21) = 2.077 
P = 0.1338 
ns 
 

F (2, 42) = 5.424 
P = 0.0080 
** 
 

F (6, 42) = 0.6684 
P = 0.6755 
ns 
 

 
Time moving 
 
 

F (3, 21) = 1.957 
P = 0.1514 
ns 
 

F (2, 42) = 7.389 
P = 0.0018 
** 
 

F (6, 42) = 1.305 
P = 0.2762 
ns 
 

 
Time in center 
 
 

F (3, 21) = 3.718 
P = 0.0274 
* 
 

F (2, 42) = 12.62 
P < 0.0001 
**** 
 

F (6, 42) = 1.009 
P = 0.4323 
ns 
 

 
Center/total distance ratio 
 
 

F (3, 21) = 1.279 
P = 0.3073 
ns 
 

F (2, 42) = 16.57 
P < 0.0001 
**** 
 

F (6, 42) = 1.360 
P = 0.2531 
ns 
 

 
Entries into center 

F (3, 21) = 1.243 
P = 0.3192 
ns 

F (2, 42) = 2.244 
P = 0.1186 
ns 
 
 

F (6, 42) = 1.852 
P = 0.1120 
ns 
 
 

 
ns, not significant 
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Fig 6. Activity in OF 1-3, corresponding to 1, 2 and 4 weeks into LL and/or RF. Means 
+/-sem are shown for (A). Total distance (cm), (B). Center distance (cm), (C). Time moving 
(sec), (D). Time in center (sec), (E). Center/ total distance ratio, and (F). Number of center 
entries. n = 6 or 7 per group. Significant differences between groups compared to CTRL. 
Significant differences within groups over time, compared to OF1.  * p < .05, ** p < .01, *** p 
< .001. 
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No differences in body weight during FST  

Experimental designs for RF took into consideration that body weight can affect 

behavior in the FST (Bogdanova et al., 2013). In experiments 1 and 2, the FST was 

conducted 10 days post-RF. Previous work in our lab found that 10 days post-RF is the 

earliest time at which body weight of RF is no longer significantly different from controls 

and cross-sensitization to AMPH is still present. Body weight of RF compared to CTRL 

in exp1 and 2 do did not significantly differ during the FST, t20= 1.76, p= 0.01. In 

experiment 3, RF groups were subjected to a 5h-feeding window intended to maintain 

similar body weight to controls throughout the experiment. From time of arrival to the 

final day of RF there was a significant increase in weight among groups F(6, 120) = 

2179, p < 0.10, with an interaction between time and group F(18, 120) = 4.49, p < 0.01, 

however there was no difference in body weight between groups F(3, 20) = 2.97, p = 

0.058. Post-hoc analysis found one significant difference between groups RF and 

CTRL-LL on day 16 of RF, which was not present at day 20 of RF.  

 

Discussion 

Overall, our findings revealed no negative effects of RF for measures of depression and 

anxiety-like behavior in the male rat. Behavior in the FST showed no differences at 10 

days post-RF for both Wistar and Long Evans rats. Furthermore, when testing rats 

during a 5h RF window, which did not result in significant weight loss, it was found that 

RF increased swimming behavior. Although there are conflicting views on the 

interpretation of the FST, swimming behavior is not attributed to anxiety or depression-

like behavior, as is the case with climbing and immobility (De Kloet & Molendijk, 2016; 
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Commons et al., 2017; Anyan & Amir, 2018). In particular, increased swimming could 

reflect elevated activity in the serotonin system (Cryan, Valentino & Lucki, 2005), which 

is a targeted system in pharmacological treatments for depression. Finally, time to 

immobility for rats on RF did not differ from the control group on both habituation day 

and test day. RF-LL took significantly longer to become immobile on habituation day 

relative to test day, indicating an elevated response to acute stress over other groups, 

however this difference was not present on test day. Unexpectedly, we did not find 

differences in the FST as a result of LL. Previous studies evaluating the effects of light 

at night (LAN) on FST behavior in mice (3 weeks LL) and hamsters (8 weeks LL) have 

noted depressive-like phenotypes as indicated by increased immobility (Fonken et al., 

2009; Bedrosian et al., 2011). It is important to note that in these studies the FST is a 

one-day test, which does not reflect a learned response, but rather an acute response 

to stress.  

 

Caloric restriction in rodents has previously been shown to have anxiolytic effects in 

EPM and OF (Lutter et al., 2008; Dietze et al., 2016), as has circadian RF in the EPM 

(Inoue et al., 2004). Interestingly, in the latter study they determined that the anxiolytic 

effects reflect the same timeline as RF's effects on cross-sensitization to AMPH (Opiol 

et al., 2017). In the current study we did not find significant differences in the EPM for 

RF compared to CTRL, however there appeared to be a trend toward anxiolytic 

behavior for both RF groups. CTRL-LL spent more time in the center of the EPM, which 

may reflect a delay in decision-making strategy (Sestakova et al., 2013) as a result of 

LL. If so, RF may have prevented the delay in decision-making, since RF-LL did not 
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significantly differ from CTRL. RF-LL also displayed more entries into the open arm in 

proportion to total arm transitions, indicating less anxiety. Three weeks of LL has 

previously been shown to result in increased time in the open arm (Ma et al., 2007; 

Fonken et al., 2013), a finding we did not confirm. 

 

In the OF there was a significant difference between CTRL and CTRL-LL for time spent 

in the center after >4 weeks in LL. One interpretation is that LL resulted in an anxiolytic 

effect. However, it is more likely that the increased time spent in the center may be a 

maladaptive effect of LL. Examining the within group changes over the course of LL, 

CTRL-LL was the only group that significantly reduced its activity in total distance 

travelled and decreased time spent moving from OF1-3. Distance travelled in the center 

for CTRL-LL did not change, although time spent in the center significantly increased 

from OF1-3. In contrast, RF-LL also increased time spent in the center from OF1-3, 

however this was (appropriately) paralleled by an increase in total distance travelled in 

the center. Thereby, it appears that the increase in time spent in the center for CTRL-LL 

is not spent moving or "exploring" and may reflect a delay in decision-making as in the 

case of the EPM. Evaluating the behavior as a ratio of distance travelled in the center 

relative to total distance, it appears that over time both RF and LL result in an increased 

amount of exploratory activity. Albeit the reason that CTRL-LL has an elevated ratio 

score at OF3 is due to a significant decrease in total distance travelled rather than 

increased distance travelled in the center.  
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In contrast to our findings, studies that tested acutely fasting (24-48h) and calorie 

restricted (25-80% body weight) rats using similar methodology, including testing at the 

same time of day and after rats had fed, found more center activity on the first trial in the 

OF relative to controls (Heiderstandt, 2000; Levay et al., 2007; Dietze et al., 2016). 

Perhaps weight loss or caloric restriction may be a contributing factor to exploratory 

activity or overall increased activity in the OF. In our case, RF did not result in significant 

weight loss and OF activity did not differ relative to controls at any time point.  

 

A limitation of this study is that rats were not monitored for circadian rhythms in locomotor 

activity or body temperature, which are indicators of internal circadian rhythmicity. 

Therefore, we cannot ensure that there was sufficient circadian disruption. Tapia-Osorio et 

al. (2013) evaluated the effects of 6 weeks LL on OF activity and found elevated levels of 

grooming stereotypy. We found no differences in stereotypic behavior (not shown), 

thereby ~4 weeks LL may not have been enough time for circadian disruption. Future 

investigation should evaluate whether RF prevents negative effects of chronic stress 

models of depression, social-defeat and repeated light cycle changes that simulate jet-lag 

or shiftwork schedules to better understand whether RF could prevent any disruptions to 

stress-coping strategies, which may translate to better outcomes in human mental health.   
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GENERAL DISCUSSION 

The work presented in this thesis supports the idea that DA is involved in the circadian food 

entrainment pathway. We show that food entrainment results in changes to the DA system, 

which are paralleled by an enhanced locomotor response (cross-sensitization) to AMPH. 

One, 3 and 7 days of RF are insufficient to produce cross-sensitization. Cross-sensitization 

is present at 2 weeks of RF and persists for at least 10-14 days following the return of ad 

libitum food. Counter to what previous studies have indicated in regards to food restriction 

and reward-related cross-sensitization to AMPH (Carr, 2002; De Vaca, Krahne, & Carr, 

2004), the effects of circadian RF on cross-sensitization are unrelated to body weight at the 

time of testing. Our work finds that cross-sensitization by RF is present after body weight is 

regained post-RF, as well as, when a larger feeding window is used that does not result in 

significant weight loss. However, the element of negative energy balance is necessary, as 

the presence of a daily-restricted treat does not result in cross-sensitization. 

 

Interestingly, we did not find an enhancement of FAA from AMPH sensitization. Three 

different AMPH sensitization protocols were used to evaluate the question of whether 

increasing DA sensitivity via AMPH sensitization would likewise show an increase in 

locomotor output prior to feeding time. Our speculation is that FAA may have reached a 

ceiling effect, and thereby does not imply that DA is not involved in food entrainment. The 

ceiling effect may be the result of the instrumentation used to measure FAA or perhaps, 

more likely, it may reflect an upper limit of locomotor output. The latter is supported by the 

finding that RF itself results in the enhancement of locomotor response to AMPH. 
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To investigate the role of the DS in RF cross-sensitization to AMPH, three measures of DA 

function were evaluated. Unexpectedly, we did not find differences in FOS expression in the 

DS, which has been reported in cross-sensitization to AMPH resulting from repeated social 

defeat stress (Nikulina et al. 2004). DA in the DS has been shown to be critical in the 

expression of FAA (Gallardo et al., 2014) and the resetting of clock rhythms (Hood et 

al., 2010), thereby we hypothesized this region might show increased neuronal 

activation that would explain the effect of RF on cross-sensitization to AMPH. In 

measuring total TH in the DS, we also did not find differences that would explain RF 

cross-sensitization. However, it is possible that had we measured phosphorylated TH 

we might have found differences, as is suggested by one study evaluating chronic food 

restriction (Pan et al., 2006).   

 

Ironically, we found that the expression of DAT increased with time exposure to RF. 

Although DAT is one of the main mechanisms through which AMPH produces its 

effects, it has also been shown that DAT is not necessary for the development of FAA 

(Enriquez, 2018). One explanation for our finding is that DAT in the DS acts as a critical 

regulator of DA clearance in the synapse during FAA, since DA and its metabolites 

increases prior to the feeding window (Liu et al., 2010). In the absence of DAT, a 

compensatory mechanism for regulating DA would be required to take its place, such as 

through enzymatic degradation, astrocytes, or a secondary neuronal uptake 

mechanism, such as norepinephrine transporter (Jennings & Rusakov, 2016; Sulzer, 

Cragg & Rice, 2016). The compensatory mechanism is likely not through the DA D2 

autoreceptor, as DAT knockout mice do not show elevated levels of D2 when placed on 
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RF and still display FAA (Enriquez, 2018).  

 

One interesting hypothesis for the role of DA in the DS in driving circadian activity is that 

it is responsible for setting the pace (De Lartigue & McDougle, 2018). This hypothesis is 

largely supported from work conducted in Dr. Kai-Florian Storch's lab. Storch's lab has 

demonstrated that dopaminergic neurons oscillate with ultradian rhythms, which can be 

observed in activity patterns when dissociated from the SCN. When circadian clock 

function is disrupted through SCN lesion or genetic manipulation, locomotor activity will 

occur in shortened bouts of ~ 4h  (Blum et al., 2014). Conversely, when SCN lesioned 

mice have DAT function genetically disrupted, such that DA accumulates in the 

synapse, the 4h ultradian rhythms are lengthened to 12 hours. It is argued, rather 

convincingly, through strong correlational data between DA levels, period-manipulation 

and the resulting locomotor output, that extracellular DA levels act as a period 

determinant. Thereby, given the ongoing work showing that DA release in the DS 

occurs in food restricted individuals during initial food intake, as an immediate 

orosensory response and as a delayed post-ingestive response (Small, Jones-Gotman 

& Dagher, 2003; Thanarajah et al., 2018) and given its necessity for conditioned 

learning (Voorn et al., 2004; De Lartigue & McDougle, 2018), time-restricted food intake 

through DA in the DS could act as the period determinant in food entrainment.  

 

We hypothesize that elevated DAT with time exposure to RF is likely a homeostatic 

regulatory response to manage the clearance of DA in the synapse. A new feeding time 

would trigger an elevated DA response in the DS that would initially result from food 
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intake, and over time could develop into a conditioned, anticipatory, response of DA that 

could drive circadian food entrained rhythms, such as FAA. AMPH cross-sensitization 

seen with RF likely reflects this new diurnal rhythm of DAT to feeding time, as DAT in 

the DS is a primary mechanism through which AMPH produces its locomotor effects 

(Sulzer et al., 2005; Calipari & Ferris, 2013). On a side note, DAT appears to play a 

critical role in driving the diurnal cycle of extracellular DA in the DS, since mice with 

disrupted DAT function do not show a rhythm (Hood et al., 2010; Gallardo et al., 2014). 

It is possible that DAT may likewise be important for maintaining DA rhythms in the 

absence of a food reinforcement on DA, such as with the maintenance of FAA when 

meals are omitted. Food entrained rhythms are also hypothesized to compete with input 

from the SCN, when the feeding window is out of phase with the LD cycle, either 

through inhibition of the SCN or elevated activation of arousal circuits (Acosta-Galvin et 

al., 2011; Datollo et al., 2016). Therefore, food entrainment could result from a new 

rhythm in DA regulation, one that occurs with a stronger DA tone driving circadian 

periodicity, rather than an ultradian rhythm that is overshadowed by or integrated 

together with input from the SCN. 

 

Though there has been much research conducted towards understanding the underlying 

mechanisms of food entrainment, equally important is the research that has shown the 

beneficial health outcomes of food entrainment. Although we cannot answer how exactly 

the benefits arise, we can evaluate the practicality of its implementation.  As mentioned in 

chapter 3, there are many physiological benefits to RF; however, less is known about how 

RF affects mental health. Affective disorders often stem from or result in the disruption of 
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circadian rhythms, whether that is through chronic stress, inability to attain sleep, a 

traumatic event, or any number of negative lifestyle habits that result in changes to food 

intake or exposure to light at night. Given that DA is involved both in the locomotor 

sensitization of RF and in the pharmacological treatment of affective disorders, RF may 

serve a therapeutic function. The ability for RF to maintain and strengthen circadian 

rhythms through dopaminergic brain circuits may serve a preventative or non-

pharmacological treatment option for depression and/or anxiety. 

 

To investigate how RF may affect emotional processing, we evaluated behavioral tests for 

depression and anxiety in the male rat. We found that RF did not result in any negative 

effects in the FST, a common measure of depression-like behavior. Firstly, we found no 

behavioral differences in the FST at 10 days post-RF, a time previously shown to display 

cross-sensitization to AMPH. This finding was confirmed in two rat strains known to behave 

differently in the FST. Next, we tested rats during RF, by using a longer 5h RF schedule that 

did not result in significant weight loss, but which did yield cross-sensitization to AMPH. In 

this scenario, RF resulted in increased swimming behavior. Increased swimming is 

indicative of elevated serotonergic activity (Slattery & Cryan, 2012). Although there are 

conflicting viewpoints on the behavioral interpretations of the FST, the gray area lies with 

the definitions for climbing and immobility in regards to which one reflects adaptive or 

maladaptive behavior- anxiety or depression (De Kloet & Molendijk, 2016; Commons et 

al., 2017; Anyan & Amir, 2018). In either case, swimming behavior is not argued as 

maladaptive. Therefore, the effects of RF on measures of depression or anxiety-like 

behavior in the FST do not suggest a negative outcome on affect, and perhaps reflect an 
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increase in adaptive response to a stressor.  

 

We also investigated whether LL, a known disruptor of circadian rhythms, would have 

negative effects in behavioral measures of the FST, EPM or OF, of which the latter two are 

measures of anxiety-like behaviour. We postulated, that whatever negative effects LL may 

precipitate, RF might serve a preventative function against LL. To our surprise, LL itself did 

not result in any significant negative effects in the FST. Perhaps 3- 4 weeks LL was 

insufficient to disrupt circadian rhythms in rats; however previous work in mice reported 

depressive-like behavior after 3 weeks LL (Fonken et al., 2009).  In the EPM, LL may have 

resulted in deficits to decision-making strategy (Sestakova et al., 2013), to which RF may 

have prevented this deficit. RF appeared to show a trend towards more activity in the 

open-arms, a sign of reduced anxiety, also previously reported with caloric restriction 

(Inoue et al., 2004). Finally, we evaluated OF activity at three time points during LL and/or 

RF exposure. We found only one group difference, for time spent in the center in the CTRL-

LL group during the final week of LL. After evaluating within group activity, we believe that 

the time spent in the center reflects a maladaptive behavior. The time spent in the center 

was not indicative of active behavior, and therefore, similar to the EPM, may reflect a deficit 

in decision-making strategy. Taking the latter interpretation, we believe that RF prevented 

the development of the maladaptive effect of LL. 

 

The ability of food entrainment to harness circadian rhythms is an appealing idea for health 

practitioners. It is a relatively simple, non-pharmaceutical intervention, through which 

internal rhythmicity can be resynchronized at multiple levels of physiology. Both rhythms in 
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the body and brain respond to RF under conditions of disrupted communication from the 

SCN. Given that artificial lighting, shift work, jet-lag from travel or social events are 

increasingly a part of our culture, the environment is more likely to impair circadian rhythms 

and weaker at reinstating them. Our work suggests that RF does not have negative effects 

on mental health, and even positive effects, depending on one's interpretation. Our work 

also suggests a regulatory effect of RF through the DA system, an area known to be 

involved in many psychological disorders. Due to the limitations that animal research has 

on the evaluation of mental health, future work on RF will need to be conducted in humans. 

Future considerations should acknowledge that RF might require an extended timeframe 

for the reorganization of circadian rhythms and DA function to positively contribute to 

mental health. We hypothesize that any negative effects RF may have on mental health 

would likely be temporary, as the animal literature is decidedly in agreement in regards to 

the long-term benefits of RF at multiple levels of physiology. 
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