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Abstract

A State-Based Proactive Approach to Network Isolation Verification

in Clouds

Gagandeep Singh Chawla

The multi-tenancy nature of public clouds usually leads to cloud tenants’ concerns

over network isolation around their virtual resources. Verifying network isolation in

clouds faces unique challenges. The sheer size of virtual infrastructures paired with

the self-serviced nature of clouds means the verification will likely have a high com-

plexity and yet its results may become obsolete in seconds. Moreover, the fine-grained

and distributed network access control (e.g., per-VM security group rules) typical to

virtual cloud infrastructures means the verification must examine not only the events

but also the current state of the infrastructures. In this thesis, we propose VMGuard,

a state-based proactive approach for efficiently verifying large-scale virtual infras-

tructures against network isolation policies. Informally, our key idea is to proactively

trigger the verification based on predicted events and their simulated impact upon

the current state, such that we can have the best of both worlds, i.e., the efficiency of

a proactive approach and the effectiveness of state-based verification. We implement

and evaluate VMGuard based on OpenStack, and our experiments with both real and

synthetic data demonstrate the performance and efficiency.
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Chapter 1

Introduction

Security and privacy issues, such as the lack of transparency, accountability and

auditability, remain as the main concerns for individuals and enterprises to fully in-

tegrate their workflow into clouds [1, 16, 74]. In particular, the multi-tenancy nature

of public clouds means cloud tenants would likely keep worrying about the lack of

sufficient network isolation around their virtual resources. Recent studies show that

almost 70% of cloud users consider security as a major issue in clouds, of which 80%

agree that network isolation is the biggest obstacle to adopting clouds [2, 63]. Cloud

providers often have an obligation to provide clear evidences for sufficient network

isolation [4], either as part of the service level agreements, or to demonstrate com-

pliance with security standards (e.g., ISO 27002/27017 [26, 27] and CCM 3.0.1 [15]).

Moreover, cloud providers may gain a competitive edge in today’s highly competitive

market by providing the capability of verifying network isolation as a security service

to their tenants.

However, in contrast to traditional network environments, the virtual infrastruc-

tures hosted in clouds pose unique challenges to network isolation verification.
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– First, the sheer size of cloud means different network configurations may be

constantly introduced by multiple tenants which can easily lead to an isola-

tion breach. For example, a descent size cloud contains a few hundred tenants

running thousands of virtual machines deployed in a cloud data center [55].

The tools verifying isolation within traditional networks [24, 23, 73, 22] cannot

work with virtual infrastructures. Tools designed for clouds, such as NOD [36],

takes hours to detect a breach within a data center. Contrary to which, Ten-

antGuard [69] generates reachability for a data center within seconds. Yet

compliance verification to detect an isolation breach is off-line process in [69].

– Second, the self-service nature of a cloud multiplexes the operational complex-

ity with the number of tenants in an environment where any tenant triggered

operation may invalidate existing verification results. The dynamical nature

of cloud calls for proactive solutions such as LeaPS, PVSC [41, 40], that pre-

computes for a critical event in advance for minimum delay to verification at

run-time. But these approaches use signatures based prevention which makes

them limited only to the known vulnerabilities in cloud platform.

The sheer size of such virtual infrastructures paired with their self-serviced and

highly dynamic nature means most verification techniques designed for traditional

networks would cause so much delays that their results may become obsolete before

they are ready (a more detailed review of related work will be given in Chapter 6). To

that end, TenantGuard [69] and LeaPS [41] are two promising solutions specifically

designed for clouds, as demonstrated in the following.

2



1.1 Motivating Example

Figure 1 employs a sequence of administrative events (upper-left) inside a simplified

virtual infrastructure (upper-right) to demonstrate the limitations of existing works

and our key ideas (lower). Suppose a user Bob wants to forbid all the ingress traffic

from subnet SNA1 to his billing server (IP: 10.1.1.7) by deleting its security group

rule [52]. However, he is not aware of an OpenStack vulnerability OSSA-2015-021 [51],

which causes the change of security group to fail silently on already running VMs.

At a later time, another user Alice creates her own VM (10.1.5.9) and connects it to

subnet SNA1. At this time, the network isolation has been compromised since Alice

can now access Bob’s billing server via subnet SNA1.
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Figure 1: The motivating example

– In such a case, TenantGuard [69] could generate all-pair reachability results

within seconds by examining the state of the virtual infrastructure. However,

TenantGuard by itself does not support verification against isolation policies

(e.g., no ingress traffic from subnet SNA1 to Bob’s billing server), and applying

an additional verification tool on top of the all-pair reachability results may

again introduce a significant delay (e.g., Congress [53] may take minutes to

3



hours for large clouds based on our evaluation).

– As a promising solution, LeaPS [41] would predict event EK as soon as it sees

EK−1 (since the next thing to do after creating a VM is typically attaching it to

a subnet), and consequently start the verification for EK long before it actually

arrives. However, since we assume the vulnerability is not known, the first halve

of this undesired reachability (from Bob’s billing server to SNA1) can only be

detected by examining the state of the virtual infrastructure. Therefore, with-

out looking at the state, the event-based verification in LeaPS [41] will consider

EK as normal and miss the isolation breach.

This example shows that the state-based approach and the proactive approach

both have their advantages and drawbacks. A natural question is: Can we design a

state-based, and proactive approach, such that we can have the best of both worlds?

1.2 Contributions

In this thesis, we present VMGuard as an answer to the aforementioned question, as

demonstrated at the bottom of Figure 1. We tackle several unique challenges in de-

signing VMGuard. Specifically, the state-based verification only works after an event

has actually occurred (with its effect on the state materialized). However, since each

event can lead to multiple predicted next events with different effects on the current

state, how to verify those predicted events without adversely affecting the true state

of the virtual infrastructure (since predicted events may never happen) becomes a

major challenge. We will tackle this and other challenges in the remainder of this

thesis.

4



Our main contributions in this work are as follows:

– To the best of our knowledge, VMGuard is the first state-based proactive ap-

proach to network isolation verification that excels in both effectiveness and

efficiency in comparison to existing methods.

– We implement VMGuard based on OpenStack [52] and evaluate its performance

through experiments with both real and synthetic data. Our results confirm the

superior performance of VMGuard.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 covers necessary

background on both the state-of-art approaches. In Chapter 3, we first illustrate the

main challenges for this work and dive into methodology. The implementation and

experimentation details of VMGuard are elaborated in Chapter 4. Chapter 5 include

discussion over features of VMGuard, its portability to different cloud platforms and

application to NFV environment. Chapter 6 compare VMGuard with related works.

Chapter 7 briefly introduces other contributions made during period of this thesis.

Chapter 8 briefs future directions and concludes the thesis.

5



Chapter 2

Preliminaries

This chapter provides necessary background on two state-of-the-art verification ap-

proaches to facilitate further discussions and then defines the threat model.

2.1 State-Based Verification

As a state-based (the state here refers to the collection of all reachability information

inside the virtual infrastructure) verification tool, TenantGuard [69] can efficiently

verify all-pair VM-level reachability for large clouds (e.g., 13 seconds for 168 millions

of VM pairs) with its hierarchical approach, as demonstrated in Figure 2 and detailed

below.

• In [Step 1], TenantGuard checks the subnet-to-subnet reachability within the

same network (using the private IPs), e.g., between SNA1 and SNA2.

• In [Step 2], TenantGuard verifies the subnet-to-subnet reachability involving

external networks (using the public IPs), e.g., between SNA1 and SNA3.

• In [Step 3], TenantGuard only needs to check VM-level reachability (mainly

based on security group rules of VMs) for the reachable subnets obtained from

6
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Figure 2: Examples of the state-based verification by TenantGuard [69]

the first two steps, leading to significant cost savings.

We will leverage TenantGuard in a proactive fashion in Chapter 3.

2.2 Proactive Verification

As a proactive verification tool, LeaPS [41] initiates the verification before an event

actually arrives, leading to millisecond-level response time. This is possible due to

the so-called dependency model, which captures the likelihood of next events (either

by design, or extracted as frequent patterns from historical events), as demonstrated

in Figure 3 and detailed below.

• When a create VM event occurs, LeaPS identifies a highly probable next event,

attach port, from the dependency model.

• LeaPS verifies this predicted event (attach port) based on a pre-defined signature

of critical events (i.e., events causing isolation breaches, e.g., plugging a port

7
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Figure 3: Examples of the proactive verification by LeaPS [41]

on another tenant’s VM under vulnerability OSSA 2014-008 [56]), and if this

event causes no breach then its parameters (e.g., VM ID: 2134 ) will be added

to the watchlist (which is essentially a tenant-specific white list).

• Later, when an attach port event actually occurs, all LeaPS needs to do is to

search for its parameter (e.g., VM ID) in the watchlist (a match means the

event will be allowed), resulting in a negligible delay.

We will enhance LeaPS with state-based verification in Chapter 3.

2.3 Threat Model

The in-scope threats include any implementation flaws, misconfigurations, and vul-

nerabilities in the cloud platform that may be exploited by malicious cloud users to

violate the network isolation policies specified by cloud tenants or the provider. Since

our solution is based on the system state instead of the events, such threats are in the

scope even if they are previously unknown, as long as their effect on network isolation

is visible in the state of the virtual infrastructure. On the other hand, we focus on the

8



virtual network management layer in the cloud and only consider network isolation-

related security policies. We also assume the cloud platform may be trusted for the

correctness of the inputs (e.g., logs and configuration database). Any security breach

that is not reflected in such inputs (either due to the nature of such breaches, such

as side-channel attacks, or due to inputs tempered by attackers) is out of the scope,

and potential privacy leakage from the verification results is out of the scope.

9



Chapter 3

Methodology

In this chapter, we first show the main challenges and provide an overview before

delving into the details of our methodology.

3.1 Challenges

We first show the challenges in designing a state-based proactive verification ap-

proach, by discussing why the integration between the state-based TenantGuard [69]

(see Section 2.1) and the proactive LeaPS [41] (see Section 2.2) will not be straight-

forward, as illustrated in Figure 4. In [Step 1], upon the occurrence of event Ek−1

(create VM ), we follow the LeaPS approach to predict the next event to be attach

port based on the dependency model. In [Step 2], we obtain the updated state of

the virtual infrastructure based on the effect of this predicted event. In [Step 3],

we apply TenantGuard to the updated state to obtain the reachability result. In this

case, since there is an isolation breach, the predicted event will not be added to the

watchlist (white list), and when the actual event Ek (attach port) arrives it will be

denied.

10



Figure 4: Challenges in designing a state-based proactive verification approach

However, the above description has omitted some major challenges. Specifically,

unlike the event-based LeaPS, the state-based TenantGuard only works on the resul-

tant state of an event (i.e., the collection of all the reachability information with the

effect of that event taken into consideration). Obtaining such a state for an event

that is only predicted, but has not actually occurred, poses a series of challenges as

follows.

• First, the dependency model can only predict the type of events (e.g., attach

port) but not their detailed parameters (e.g., to which subnet) [41]. However,

we cannot obtain the resultant state of an event without its parameters.

• Second, even if we could predict the event parameters (e.g., attach port to

either subnet SNA1, SNA2, or SNA3), obtaining the resultant state for those

events would still be a challenge. We cannot directly apply such events to the

virtual infrastructure, since the predicted events may never occur, while their

effects may be irrevocable (e.g., information leakage or denial of service as the

result of an isolation breach).

11
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Figure 5: An overview of VMGuard

• Third, while a viable solution is to emulate the effect of predicted events on

a new copy of the current state, creating such a copy may lead to prohibitive

computational and storage overhead in clouds. To make things worse, an event

may lead to multiple predicted events with different and incompatible effects

on the state (e.g., P1 and P3 lead to breaches but P2 does not) which requires

creating multiple independent copies of the state.

3.2 Overview

To address the aforementioned challenges, we design our state-based proactive ap-

proach, namely, VMGuard. Figure 5 shows an overview of VMGuard with three

main modules, proactive verification, incremental verification, and pruning.

• First, the proactive verification module performs pre-computation and proactive

verification. In the pre-computation phase, all the predicted next events will be

instantiated with potential parameters based on the current state of the virtual

infrastructure.

• Second, the incremental verification module forks multiple copies of the state
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Figure 6: Applying VMGuard on the running example

each of which is used to evaluate the impact of one instantiated event. Each

copy of the state is flushed immediately once the verification is done; only the

compliant results are stored in a watchlist.

• Third, to minimize the overhead of incremental verification, the pruning module

further limits the scope of the verification to the intersection between the set of

VMs involved in the policies and the set of VMs that may be impacted by the

instantiated event.

• Finally, when the actual event arrives, the proactive verification module matches

it against the watchlist and the incremental verification module merges its effect

to the actual state of the virtual infrastructure.

13



3.3 Proactive Verification

3.3.1 Pre-Computation

Each received event will trigger the pre-computation to identify potential next events

based on the dependency model described in Section 2.2. Any event exceeding the pre-

defined threshold becomes a candidate for pre-computation. A candidate event gets

instantiated based on all possible parameters, as demonstrated through an example

based on OpenStack [52] in Table 1. To illustrate this, Figure 6 shows how VMGuard

works on our running example; the upper part of the figure is the timeline for incoming

events and the actions taken by VMGuard, and the lower part of the figure shows the

dependency model (left), the network state (center), and the watchlist for the event

EN (right).

Event Parameters # of Predicted Parameters

Attach Interface Router ID and subnet ID* #Routers × #Subnets
Attach Port VM ID and subnet ID #Subnets
Attach Public IP VM ID and unallocated public IP #VMs × #unallocated public IP
Delete Router Router ID #Routers
Detach Interface Router interfaces ID #Router Interfaces
Detach Port VM port ID #Port
Detach Public IP Allocated public IP #Allocated public IPs
Detach Security Group Rule Security Group ID #Security group rules
* Exception: A router should not have any overlapping subnets

Table 1: Examples of reachability-related events, their parameters to be instantiated,
and the number of possible instantiations

Example 1

From the sequence of events in Figure 6, event EK−1 creates a VM (ID: 2134 ).

According to the dependency model, the next event could be Delete VM or Attach

port. Assume the threshold is 0.5 in all our examples. The pre-computation module

selects Attach port as the next event to be evaluated in advance. As shown in Table 1,

to instantiate this event, both VM ID and subnet ID are the required parameters.
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The event generator generates three possible events based on the current network

state: “Post create 2134, SNA1”, “Post create 2134, SNA2”, and “Post create 2134,

SNA3”.

3.3.2 Proactive verification

Two possible scenarios may happen for proactive verification, i.e., the actual event

may either occur before, or after the pre-computation process finishes. In the first

case, VMGuard will switch to the intercept-check mode, which only verifies the inter-

cepted event, e.g., attach port verification in Figure 6 (some other situations, e.g., a

mistakenly predicted event, will also trigger the intercept-check mode). In the second

case, VMGuard will trigger proactive verification which searches for the event in the

watchlist, e.g., delete router verification. In either case, the watchlist is flushed, as it

is no longer valid with the state of cloud. The verification process will be detailed in

Section 3.4, and for now it can be regarded as a black-box.

Example 2

The next event for attach port is “EN : delete router”. After instantiating the event

with the three available routers, RA1, RA2, and RA3, VMGuard triggers the incre-

mental verification. The results of the verification are added to a watchlist, shown in

Figuer 6 (lower right). Assume the network isolation policy says “VME1 allows all

ingress traffic from the external network”, which means Eve’s VM under RA2 must

be reachable to the external network. Then, “Delete router RA2” is a non-compliant

event and will be removed from the watchlist, whereas “Delete router RA3” is com-

pliant and will be kept in the watchlist and allowed later when it occurs.
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3.4 Incremental Verification

As we discussed in Section 3.1, emulating the effect of multiple predicted events

requires creating copies of the state of the virtual infrastructure. For this purpose, we

propose the Fork and Merge procedures in the VMGuard incremental verification

module.

3.4.1 Fork

During the fork procedure, each instantiated event will be associated with an indepen-

dent copy of the current state of the virtual infrastructure. To maintain the scalability

of this solution, we will leverage the pruning module (detailed in Section 3.5) to limit

the scope of verification and we will further evaluate the overhead of the fork pro-

cedure through experiments in Chapter 4.2. Once the instantiated event is applied

to a copy of the state and the pruning module has been applied, we will employ the

resultant state to verify the reachability against the given isolation policy, and then

delete that copy of the state as soon as the verification completes. In this way, we

do not incur the additional storage overhead for maintaining multiple copies of the

state, and only the compliant results will be stored in the watchlist for proactive

verification. The actual state of the virtual infrastructure remains intact until the

merge procedure is triggered.

3.4.2 Merge

The merge procedure will be triggered when a compliant event is actually received.

It will update the actual state of the virtual infrastructure based on the effect of this

event.
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Algorithm 1: Incremental Verification

Input: Event, RadixTries, PrunedList, ReachabilityRelatedEvents
Output: result∈{Compliant, Non-Compliant}

1 Copy RadixTries to RadixTriesFork
2 if event ∈ ReachabilityRelatedEvents then
3 Update RadixTriesFork with event
4 for VMdst ∈ PrunedList do
5 for VMsrc ∈ PrunedList do
6 Triepub ← getBTrie(VMdst.publicIP.CIDR,VMsrc.subnet id)
7 Triepriv ← getBtrie(VMdst.private.CIDR, rounter id)
8 routable ← Route-Lookup(Triepub,TriePriv)
9 if routable is true then

10 if VerifyPolicy(VMsrc,VMdst) is true then
11 result ← Compliant
12 else
13 result ← Non-Compliant
14 break

15 return result
Input: event response, Radixtries

16 if event response is success then
17 Update RadixTries with event

In Algorithm 1, lines 10-15 present the fork procedure. It takes an event, the

current radix tries (the data structure used in TenantGuard to store the state of the

virtual infrastructure [69]), the prunedList (this list will be generated in Algorithm 2

in Section 3.5) and ReachabilityRelatedEvents (See Table 1 as an example). Lines

1-3 in the algorithm generate a copy of the state for a reachability event and apply

the event to the state. Lines 4-5 take the pair of VMs from the prunedlist, then

lines 6-8 evaluate the reachability between two VM pairs (getBtrie, getBtrie, and

Rounte-lookup are the VM-level isolation verification functions from TenantGuard).

Function VerifyPolicy checks whether the reachability between VMsrc and VMdst

is allowed. Then lines 9-14 generate compliance results by comparing the policy

to the reachability results of TenantGuard. If a non-compliant result is found, this

instantiated event is marked as non-compliant. Lines 16-17 show the merge procedure
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only update the state when the event response is success.

Example 3

In Figure 6, EK−1 triggers proactive verification for event EK . The fork procedure

emulates the impacts of three events on three independent copies of the state. How-

ever, since the actual event “attach port SNA1” occurs before the pre-computation

phase completes, the verification against other copies gets flushed immediately; the

verification happens only on the copy of state with the actual event. TenantGuard

will identify the new reachability in the copied state between the newly created VM

(ID: 2134 ) and Bob’s VM. Assume the policy is “VMBob,*, Deny” (i.e., denying

all ingress traffic to this VM), which means this actual event is non-compliant and

therefore, will be blocked by VMGuard.

3.5 Pruning

To improve the scalability of our incremental verification, we present the pruning

module in this section. The main purpose of this module is to reduce the number

of VMs for incremental verification. Only the compliant results corresponding to the

pruned list of VMs are stored in a watchlist to wait for the actual event.

In Algorithm 2 (pruning procedure), lines 1-3 list the VMs that have at least

one policy associated with the input event’s tenant ID. If the list is not empty, lines

4-11 also list the VMs that might be affected by the input event by comparing the

attributes of the events, e.g., the type and the parameters of the event. In the end, a

pruned list is generated with the intersection of the two VM lists in line 11 and this

result will be returned to the incremental verification module.

Example 4

We illustrate how pruning works for Example 3. We first check the policy“VMBob,*,
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Algorithm 2: Pruning

Input: Event, Policies, RadixTries
Output: PrunedList

1 for each Policy ∈ Policies do
2 if Policy.TenantID == Event.TenantID then
3 Add Policy.VMs to VMsUnderTenantPolicy

4 if VMsUnderTenantPolicy is not empty then
5 if event is a Routing event then
6 for each RouterInterface ∈ RadixTries.RouterInterfaces do
7 for each port ∈ RounterInterface do
8 Add get(VM) to VMsUnderEventScope

9 else
10 Add get(VM) to VMsUnderEventScope
11 PrunedList ← VMsUnderTenantPolicy∩VMsUnderEventScope

12 return PrunedList

Deny” to identify Bob’s VM as the only VM under the policy. Since attach port

event may affect reachability under the same subnet, which applies to Bob’s VM, the

pruning module intersects the two lists and generates a pruned list with only Bob’s

VM. As a result, instead of verifying all the eight pairs of reachability, the verification

will only need to be performed between Bob’s VM and the newly created VM.
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Chapter 4

Implementation and Experiments

In this chapter, firstly we detail implementation that distributes the operations of

VMGuard into three phases. Secondly we present experimentation, where we first

describe experimental settings and then present experiment results with both real

and synthetic data.

4.1 Implementation

We implement VMGuard based on OpenStack [52], a widely used open source cloud

management platform. Figure 7 illustrates the high-level architecture. There are

mainly three phases in VMGuard. First, the initialization phase is for pre-processing

the given policies and dependency models, which is conducted only once. At initiation,

the compliance verification for policies is performed to check that no violation had

already occurred before initialization of VMGuard. Second, the run-time phase is

for event-driven verification and is conducted with each successive event. Third, the

audit phase is to ensure the correctness of prediction and verification. An audit

is triggered periodically in background to identify implementation flaws that can

introduce errors in the accuracy of verification and improvises tenants’ dependency
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models as elaborated in Chapter 5.1. Each phase is detailed as follows.

Figure 7: The high-level architecture of VMGuard

4.1.1 Initialization Phase

Before initialization, the dependency model is generated for each tenant with the logs

collected from two OpenStack services, Nova (compute) and Neutron (network). The

raw service logs comprise of all tenants requests which are first parsed into column

format and then filtered sequentially for each tenant to obtain tenant’s logged requests

that are used to model the tenant’s cloud usage patterns. The processed logs are

fed into the Bayesian network tool, SMILE & GeNIe [8] in order to generate the

dependency model for each tenant. The configuration information that summarizes

virtual network infrastructure resides in Nova and Neutron databases. We fetch

these databases and process them to generate the radix tries [28], which facilitates
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optimized searching using IP prefixes. The policies stated by both tenants (intra-

tenant) and cloud service provider (inter-tenant) are collected from databases and

inter-tenant policies are processed into intra-tenant format to aid the policy pruning

and verification process, as discussed in Chapter 5.1. Finally, an initial verification

is conducted to check the compliance of current cloud state against specified policies.

Figure 8 provides an excerpt of initialization phase.
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Figure 8: Flowchart of initialization phase

4.1.2 Run-Time Phase

The run-time phase is even-driven which is performed with each successive event to

ensure continuous compliance. Each Neutron and Nova even is intercepted from the
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cloud pipeline using an audit middleware [13]. The middleware redirects the event

towards VMGuard that decides the compliance of event before it is actually executed

within the cloud pipeline. We leverage the TenantGuard’s [69] implementation, writ-

ten in Java [59]. Firstly, we add policy-based puring that shortlists policies affected

by events based on affected components of virtual infrastructure. We further utilized

the deep object copy mechanism [70] that helps creating an identical independent

copy of existing virtual infrastructure which can be used to apply events and perform

verification without affecting the original virtual infrastructure (referred as fork in

incremental verification). Multi-threading [60] is leveraged for parallel verification

(i.e., either pre-compute or intercept-check) where multiple events are verified trig-

gered from different tenants. An intercept-check verification for an event occurs at a

whitelist miss. Therefore, an intercept-check event requires immediate attention as

it leads to direct delays in event processing time. The intercept-check event threads

are executed with a higher thread priority that grants an event immediate process-

ing resources. The pre-computation for predicted events need to verify various events

with parameters. Therefore, the pre-computation might not complete before an event

is triggered by the tenant. So pre-computation threads are executed as background

processes with lower thread priority for freeing resources when idle. To aid the man-

agement of threads, we initialize them with corresponding tenant ID for whom the

verification is being performed. Only one thread will run for each tenant at any

moment, i.e., either a pre-computation or an intercept-check thread will exist for a

tenant. Figure 9 illustrates the thread work-flow in the run-time phase
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Figure 9: Flowchart of thread execution flow

4.1.3 Audit Phase

An audit phase devises implementation and prediction corrections for verification and

dependency model. An audit phase is performed periodically as a low priority thread
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and ID as audit to distinguish it from run-time threads. For identifying implementa-

tion flaws a two step audit is performed. Firstly, sync-check verifies synchronization

of the virtual infrastructure. State derived incrementally is checked against the actual

state of cloud which resides in the service databases. Secondly, state-check verifies

policies against virtual infrastructure for their compliance. The interpretation of

sync-check and state check outcomes to identify implementation flaws is elaborated

in Chapter 5.1. Sync-check is done by graph comparison [68], using JGraphT [29],

a Java graph library, to verify nodes, edges and their connections within the states.

State-check uses a special incremental verification fork which takes input as both the

states and policies. Compliance check is performed and variation in states result im-

plies implementation flaws elaborated in Chapter 5.1. Audit phase also improvises

the prediction ability of VMGuard with log learner which learns over simultaneous

log trails. It collects Nova and Neutron logs from Ceilometer, the telemetry service in

OpenStack. The logs are parsed to column format for GeNIe to update the tenant’s

dependency model. A few other measures are adopted to enhance event dependencies

based on platform learning discussed in Chapter 5.1. Figure 10 illustrates the thread

work-flow of audit phase.
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Figure 10: Flowchart of thread execution flow

4.2 Experiments

We perform all our experiments based on OpenStack [52], a widely used open source

cloud management platform. Firstly, we describe experimental settings and then

present experiment results with both real and synthetic data.

4.2.1 Experimental Settings

Our test cloud is an OpenStack release Mitaka with one controller node and 80 com-

pute nodes. Each node runs Ubuntu 16.04 server on an Intel i7 dual-core CPU with

2GB memory. The neutron network driver is ML2 OpenVSwitch with L3 agent plu-

gins, which is a popular networking deployment. We use the cloud schema presented
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Dataset Tenants VMs Routers Subnets Policies per tenant
DS1 50 4,362 300 525 100
DS2 100 10,168 600 1,288 200
DS3 150 14,414 800 1,828 300
DS4 200 20,207 1,000 2,580 400
DS5 250 25,246 1,200 3,210 500

Table 2: Statistics of the datasets

in the recent OpenStack survey [55] as a basis for our simulation where we simulate

an environment with maximum 250 tenants and 25,000 VMs. We conduct the experi-

ment on five different datasets varying the number of tenants from 50 to 250, policies

per tenant from 100 to 500, subnets from 500 to 3,200, routers from 300 to 1,200,

while keeping the number of VMs fixed to 100 per tenant. We believe these data

sets represent a wide-range of cloud setups. Every experiment is performed over 100

iterations.

4.2.2 Performance of VMGuard

The Initialization Phase

We first compare the performance of our work with the state-of-art solution, Ten-

antGaurd [69] for the initialization phase. All the experiment results are gathered

from a single machine. Parallelization can still be applied to further improve the per-

formance, which is considered as future work. The first set of experiments compare

the time consumption for the initialization phase including data collection and initial

verification.
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Figure 11: The data collection time for VMGuard and TenantGuard in the initializa-
tion phase

Results and Implications for Initialization

In general, the one-time initialization phase takes longer than other phases. Due to

the extra policy processing module, compare to TenantGuard, VMGuard requires a

slightly longer time to finish data collection as shown in Figure 11. However, VM-

Guard performs much better in initialization verification. We observe that Tenant-

Guard’s initialization time increases exponentially with the size of the cloud, whereas

VMGuard shows negligible increase largely due to the pruning module which limits

the scope of the verification.

The Incremental Verification and Pruning

TenantGuard is originally designed to work on the static snapshot of the virtual

infrastructure [69]. Making TenantGuard incremental and suitable for an event-driven

application faces many implementation challenges (some of these are demonstrated in

Chapter 3.1). In implementing VMGuard, we have tackled those challenges and, by

disabling both the pruning and proactive modules of VMGuard, we basically obtain
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Figure 12: The initialization time for VMGuard and TenantGuard in the initialization
phase

an incremental version of TenantGuard, which will be called VMGuard0 from now

on. Also, the VMGuard with only the proactive module disabled (which means it

has both the incremental and pruning modules) will be called VMGuard1. In the

second set of the experiments, we compare VMGuard0 (incremental) and VMGuard1

(incremental+pruning) with events selected from different hierarchical levels of the

virtual infrastructure. Figure 13, 14 and 15 correspond to VM-level, subnet-level,

and router-level events, respectively.

Results and Implications for Incremental Verification and Pruning

Both VMGuard0 and VMGuard1 perform verification within a promising time range

(0.4s to verify a high complexity event in the largest dataset) for different types of

events. We can observe that VMGuard1 takes significant less time than VMGuard0

in all cases, which clearly demonstrates the benefit of the pruning module. When

comparing between the three figures, we can see the time consumption for VMGuard0

and VMGuard1 is similar in both Figure 13 and Figure 14. This is because, although
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Figure 13: The performance of VMGuard0 (incremental) and VMGuard1 for VM level
events

attach security group rule and attach port are the events at two different levels, the

scope of these two events is similar (i.e., the VMs that directly correspond to the

security group rule or the port). Other updating/deletion/addition events at these

two levels are expected to share a similar trend. Also, as shown in Figure 15, delete

router requires significantly longer verification time, because the verification depends

on the number of subnets under the router and the number of VMs under each subnet;

the scope of the verification is therefore larger than with the previous two events (even

add router event would generate less verification overhead than delete router).

The Proactive Verification

The third set of the experiments evaluates the performance of the proactive module,

namely, VMGurad2 (the complete version of VMGuard with all modules enabled).

Since whether the proactive verification is triggered depends on the given threshold,

VMGuard1 can be considered as a special case of VMGuard2 by setting the threshold

as 1 (means no event can trigger the proactive module). In this experiment, we

use real data collected from a real world community cloud hosted at one of the
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Figure 14: The performance of VMGuard0 (incremental) and VMGuard1 subnet level
events

largest telecommunications vendors to obtain the dependency model and extract the

sequences of events.

Results and Implications for Proactive Verification

Figure 16 shows the verification time comparison between the intercept-check VMGuard1

and the proactive VMGuard2. The latter one requires significantly less, sometimes

negligible, verification time, which demonstrates the benefit of the proactive module.

The upper figure of figure 17 shows the run-time memory consumption of VMGuard2

under two different thresholds, as well as the results of VMGuard1 and VMGuard0.

The high memory consumption for VMGuard0 is mainly due to its need to maintain

a large number of pair-wise reachability. After the initialization phase, the memory

consumption stays nearly plateau because each successive event will only affect a

limited amount of reachability. Comparing VMGuard2 (under both threshold values)

to VMGuard1, the number of triggered pre-computations show a positive correlation

with memory consumption. During the idle time, VMGuard2
0.5 finishes the pre-

computation and shares the same memory consumption as VMGuard1; however, due
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Figure 15: The performance of VMGuard0 (incremental) and VMGuard1 for router
level events
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Figure 16: The performance for VMGuard2 and VMGuard1 vs. Time
.

to the larger number of pre-computation candidate events, VMGuard2
0.1 still shows a

higher memory consumption during idle time to finish the ongoing pre-computation

tasks. The CPU consumption shares almost the same trend as memory consumption.
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Figure 17: The performance for VMGuard2 and VMGuard1 vs. Memory (up) and
CPU (bottom)

Results and Implications for Scalability

As shown in Figure 17, the proactive module significantly reduces the performance

time of VMGuard. For evaluation purposes, we disable this module in the scalability

tests. Note that this configuration represents the worst case scenario.

Overall, we achieve promising results during scalability with different types of

event. In this experiment, we observe that the router event and router interface event

require more time during the verification. This is mainly because each event in router

or router interface level is associated with a larger number of pruned list VMs due

to the impacted VM list is larger than the event happen in a lower hierarchical level.

In VMGuard, the intercept check module verifies all the VMs in the pruned list,

which means the larger pruned list, the longer verification time; when the pruned list

stays the same, the verification time would be constant as well. As we discussed in

Section 3.5, the pruned list is directly associated with two lists, the number of VMs

under the policy and the number of VMs under the impact of the event. In Figure 18,
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Figure 18: Performance comparison by varying the # of VMs per subnet

the number of VMs under the policy stays the same, however, the impacted number

of VMs under router and router interface event increases with the number of VMs

per subnet. Therefore, we can observe the increase of time consumption for both

types of events. Different than Figure 19, only the impact of router event increases

with the number of subnet per router; we observe the increase of router event and a

constant trend for the other two events. In Figure 20, the number of VMs under the

policy increases since the number of policy per tenant increases. In other words, the

number of pruned list increases in all level of events; we observe the increase of time

consumption for all the events.
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Figure 19: Performance comparison by varying the # of subnet per router
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Figure 20: Performance comparison by varying the # of policies per tenant
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Chapter 5

Discussions and Application to

NFV

In this chapter, firstly we discuss effect of wrong perdition, choice of threshold value,

correctness of input, policies supported by VMGuard and various cloud platform

portability. Secondly, we extend our solution for NFV environment proactively en-

forcing network isolation within VFN’s using state-based verification.

5.1 Discussions

5.1.1 The Effect of a Wrong Prediction

We distinguish our dependency models from LeaPS [41] and PVSC [40], as they pro-

pose common dependency model for all the tenants in an environment. For our case,

the dependency model for each tenant is distinct and represents the cloud operations

usage patterns of the tenant. VMGuard pre-computes verification for the predicted

event. If there is a wrong prediction resulted from the inaccuracy of tenants’ depen-

dency model, the pre-computed results are not useful and hence, VMGuard works

36



as an intercept-check solution in such circumstances. To continuously improve the

prediction accuracy of the dependency model for each tenant, we periodically trigger

log learner that updates this model using the tenants cloud logs in the audit phase.

Cloud logs stores operations requested by all the tenants which are first segregated

for each tenant and then learning is performed to update tenants dependency models.

In addition, to be more accurate in the prediction, we incorporate structural depen-

dencies specific to the cloud platform with dependency model that adjusts prediction

probability for scenarios that cannot exist for the tenant (For example, In OpenStack

[52], a subnet cannot be deleted by the tenant before detaching all the created ports).

5.1.2 Choice of Threshold Values

In VMGuard, the amount of pre-computation effort is controlled through a threshold

value. The operations with prediction probability higher than or equal to the thresh-

old value are chosen as precomputation candidates. The verification is performed for

each candidate operation with all its possible variants. The lower value of thresh-

old results in a higher number of prediction candidates and vice versa. Therefore,

precomputation is simultaneously performed for all the tenants by VMGuard which

requires a careful estimation by the cloud service provider. The threshold provided

by the cloud provider can be decided based on the service level agreement (SLA) with

customers as well as based on the experiences of cloud service provider.

5.1.3 Correctness of VMGuard Inputs

The correctness of state-based verification performed by VMGuard relies on two fac-

tors. First, the correctness of extracting operation parameters from the cloud manage-

ment application interface which produces the events. Second, determining the event

which affects reachability. The occurrence of any error in the extraction of operation
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parameters will result in a deviation of incrementally produced state from the actual

state of the cloud. Missing reachability can add a delay in detection (an isolation

breach will still be detected but it will be retroactive). To overcome the aforemen-

tioned challenges to the correctness of verification, we perform synchronization and

state check. These checks are triggered periodically in the audit phase.

– In synchronization check, the incrementally obtained virtual infrastructure (state)

is checked against actual configuration (state) of the cloud. Both states (actual

state of the cloud and incrementally derived state) are organized as graphs. The

graph contains vertices as virtual components (e.g., router, interfaces, ports,

subnets, VM, etc.) and the edges connect the components. The vertices and

edges are cross-checked within both graphs. The failure in matching vertices and

edges implies the existence of an error which occurred during the extraction of

operation parameter from the management application interface. Further, the

vertex or an edge that does not match with the actual configuration indicates

the exact operation which was not correctly extracted.

– The state check is performed in addition to the synchronization check, only if

no error is found. In the previous step, we determine that the state obtained

incrementally is coherent with the actual cloud configurations. Now we verify

the compliance of all the network isolation policies over the state (can be any

state as both of them are coherent). A fork thread is assigned with a low

priority and the ID audit to distinguish the thread from precomputation and

intercept-check threads. The input to an audit fork is the state (from the

previous step) and all the network isolation policies. The failure of verification

implies misidentification of reachability affecting operation. The policy which

is violated can be used to trace back to the reachability operation that went

misidentified.
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5.1.4 Policies Supported by VMGuard

VMGuard is designed to verify policies related to virtual network isolation. As an

example, VMGuard supports the list of policies proposed in NoD [36]. The list of

security policies (defined by the cloud provider and/or its tenants) is an input to the

VMGuard system. These policies can vary in nature, such as inter-tenant (i.e., cross-

tenant reachability policy) specified only by the cloud service provider, and intra-

tenant (i.e., tenant scoped reachability policy) specified by tenants for themselves.

The format for specifying policy is as follow:

Intra-Tenant Policy={SRCVM,DSTVM,TID,Protocol,Action}

Inter-Tenant Policy={SRCVM,SRC TID,DSTVM,DST TID,Protocol,Action}

For the ease of pruning and verification, VMGuard processes an inter-tenant policy

into two intra-tenant policies where destination in each is replaced with the exter-

nal network of the corresponding tenant. Protocol in policy specifies both direction

(i.e., ingress and egress), port numbers (i.e., access control list parameters) for the

reachability. The action states whether the reachability amongst VMs should exist

or not.

5.1.5 Cross-Platform Portability

Cloud platforms are developed by various vendors such as Amazon EC2 [3], Google

GCP [25], Microsoft Azure [42] and VMware vCD [67] (i.e., the big four). Each vendor

has their own application interfaces and virtual infrastructure model. VMGuard

leverages the models from both TenantGuard [69] and LeaPS [41] and inherit their

interoperability amongst different cloud platforms. In TenantGuard [69], the virtual

infrastructure model comprises forwarding and filtering rules which are used with

different cloud platforms as per their vendor specification. The probability of a virtual
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infrastructure model is illustrated in Table 3. The inter-tenant, intra-tenant, and L3

routing uses different nomenclature for various vendor-specific cloud platforms.

Routing/ Fil-

tering

OpenStack

[52]

Amazon EC2-

VPC [3]

Google GCE

[25]

Microsoft

Azure [42]

VMware vCD

[67]

Intra-tenant

routing

Host routes,

routers

Routing tables Routes System and

user-defined

routes

Distributed logi-

cal routers

Inter-tenant

routing

Routers, exter-

nal gateways

Internet gate-

way/VPC

peering

Internet gateway System route to

Internet

Edge gateway

L3 filtering Security groups Security groups Firewall rules Network secu-

rity groups

Edge firewall

service

Table 3: Virtual infrastructure model portability under different cloud platforms [69]

Operation OpenStack [52] Amazon EC2-

VPC [3]

Google GCE [25] Microsoft Azure

[42]

create VM POST /servers aws opsworks –region

create-instance

gcloud compute in-

stances create

az vm create l

delete VM DELETE /servers aws opsworks –re-

gion delete-instance

–instance-id

gcloud compute in-

stances delete

az vm delete

update VM PUT /servers aws opsworks –re-

gion update-instance

–instance-id

gcloud compute in-

stances add-tags

az vm update

create security group POST /v2.0/security-

groups

aws ec2 create-

security-group

N/A az network nsg create

delete security group DELETE/v2.0/

security-groups/

{security group id}

aws ec2 delete-

security-group

–group-name {name}

N/A az network nsg delete

Table 4: An excerpt of mapping operation application interfaces of different cloud
platforms [41]
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Similarly, each vendor-specific cloud platform uses different nomenclature for their

management application interfaces. LeaPS [41] presents the analogy in nomenclature

used with various cloud platforms in contrast to OpenStack [52] as illustrated in

Table 4. Hence, the interoperability of VMGuard among different vendor-specific

cloud platforms can be easily derived from the interoperability of its two ancestors,

i.e., TenantGuard [69] and LeaPS [41].

5.2 Application to NFV

5.2.1 Introduction

The telecommunication industry has increased over-subscribed usage of their core

networks each successive year as it faces rapid increase in the consumer base with an

exploding number of devices that need to communicate (e.g., Internet of things [34]),

which increases the demand for data exchange, requiring a higher bandwidth to oper-

ate. According to a Cisco forecast, the global mobile data traffic is expected to reach

approximately 31 Exabytes per month by 2020, i.e., roughly a seven-time increase

since 2017 [12]. To cope up with market demands, the telecoms are often forced

to substantially increase both CAPEX (Capital Expenditures) and OPEX (Operat-

ing Expenditures) for upgrading their physical network infrastructure. Traditionally,

a network service (NS) deployed by telecoms required specialized networking hard-

ware (known as middle-boxes or network appliances) that are vital components to

operate core networks [11]. The expansion and upgrade of network services faced

enormous challenges such as equipment compatibility, space to accommodate new

equipment and manual efforts required to deploy and manage new network services.

The aforementioned challenges of the telecom network operators to incorporate net-

work expansions and deliver reliable services with a high bandwidth brings about
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a new line of solution with ETSI NFV [18, 19]. With seven of the world’s lead-

ing telecoms network operators, European Telecommunications Standards Institute

(ETSI; The world standardization organization for telecommunications) is the home

of industry specification group for Network Function Virtualization (NFV). NFV de-

vises virtualization (Clouds) to decouple hardware from the software for a network

functions to be deployed as a Virtual Network Function (VNF) over the Commercial

Off-The-Shelf (COTS) servers.

Virtualization moves traditional data centers into the Clouds, making them re-

source efficient through multi-tenancy that relies on a virtualized pool of resources

to reduce computation cost, aid flexibility, and provide metered services. To that

end, NFV is an evolution of clouds and therefore shares its attack surface. Yet till

date, from Berkeley’s view of clouds, the lack of visibility into underlying infrastruc-

ture limits auditability in the cloud which makes it as one of the top ten security

concerns [7]. Therefore, there is a need for auditing NFV to enhance the guarantee

of stakeholders with transparency and accountability as illustrated in the motivating

example below:

Motivating Example: Recall the attack scenario presented in Chapter 1 , con-

sider that Alice and Bob are now considered as tenants with an NFV service provider,

who is running the orchestration platform by leasing infrastructure resources from a

cloud provider as a cloud tenant.
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Figure 21: The NFV motivating example

Figure 21 illustrates a series of events triggered by the NFV clients Alice and Bob.

With event E1, Bob initiated a VNF having the security group which forbids SSH

Ingres and Egress traffic to the VNF. Unaware of an existing vulnerability in the

underlying VIM ( i.e. Cloud; discussed in a section later), Bob found himself to be

secure. Alice initiated a VNF with event EK−1 and update the VNF to attach with

the management network (subnet) of Bob, with event EK . This created an isolation

breach between Alice and Bob, which made Bob’s VNF reachable to Alice’s VNF. To

that end, we can observe that the NFV environment resides on clouds and therefore

shares a common attack surface which makes it subject to network isolation breaches.

Hence, we extent our cloud-based solution VMGuard to target an NFV environment

to enhance network isolation guarantee delivered by NFV. VMGuard extends its ap-

plication to proactively enforcing network isolation between VNFs using state-based

verification.
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5.2.2 Preliminaries

This section reviews NFV reference architecture with a focus on the role of cloud in

NFV. Later we review the interaction between cloud and NFV to orchestrate and

manage network services. Finally, we present an enhanced threat model associated

with the application to NFV.

NFV Reference Architecture

Figure 22 illustrates the high-level reference architecture defined by ETSI as the

guidelines to NFV. [19]. Also, know as MANO (management and orchestration ar-

chitecture); it has three major components identified as the driving unit for NFV,

which aid automation, orchestration and management of the network services. The

three components are detailed as follows.

– Network Function Virtualization Orchestrator (NFVO)

NFVO acts as a management interface, where the client specifies their network

service requirements. Commonly known as OSS/BSS (Business/Operations

Support System), it supports end-to-end telecommunication services require-

ment gathering which is encoded as the descriptors [71]. A descriptor can be

coded with different specification standards, out of which the most widely ac-

cepted descriptor standard is TOSCA [44] [20].The templates are on-boarded

and stored as catalogs. A client can choose an already existing catalog or can

onboard a customized network services descriptor based on their specific re-

quirements. NFVO orchestrates VNFs on the underlying cloud infrastructure

and manages them by coordinating with VNFMs.
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Figure 22: ETSI NFV architecture

– Virtual Network Function Manager (VNFM)

A VNFM manages the life-cycle for the VNFs. A VNF may exhibit opera-

tions such as query, scale, heal, subscribe, terminate, notify, etc. as a part of

the life-cycle, which are common to all the VNFs (know as health monitoring).

VNFM also coordinates with the EMS (Element Management Systems). An

EMS is specific life-cycle manager for a VNF, which requires mission-critical

health operations. An EMS is provided by vendors to assist health-checks from

their VNFs requirements [21].
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– Virtual Infrastructure Manager (VIM)

VIM manages and controls Network Function Virtualization Infrastructure (NFVI)

i.e., the pool of virtualized compute, storage and network resources. The phys-

ical servers are combined in order to act as a common pool of resources, which

are then logically redistributed. The resource pool can be driven either in pres-

ence of hypervisor, i.e. Virtualization, or in absence of it, i.e. Containerization.

Virtualization runs guest OS on the host OS which is completely isolated. Con-

tainerization runs guest containers that are packaged container specific utilities

and uses the common utility from host OS, which makes containers partially

isolated from host. [17]. Figure 23 illustrates the architectural view of virtual-

ization and containerization. The open source platforms for virtualization based

VIM is OpenStack [52] and containerization based VIM is Kubernetes [14]. Note

that, VMGuard is designed to work with the cloud environment, therefore, In

our use-case, we only cover virtualization based VIM i.e., OpenStack.

Figure 23: Virtualization vs Containerization
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Deploying a Network Service

TOSCA

OASIS standardizes descriptors as the means to encode interoperable services and

applications for enterprise workloads hosted on the cloud [43]. TOSCA, in particular,

enables interoperability and portability with automated management across the cloud

regardless of an underlying platform or infrastructure [44]. OASIS drafts descriptor

specification for NFV using which a network service can be created, managed and up-

dated (scaling, alarming, downgrading, etc.) [45]. The descriptors are of three types

based on the targeted part of a network service.

- Virtual Network Function Descriptor (VNFD)

VNFD describes the specification of a VNF. A VNF comprises of virtual de-

ployment units (VDUs) as the main component. A VDU corresponds to the

virtual machine and its specifications for running VNF software on it. The con-

nection points (CP) corresponds to the ports that attach VDUs to the network.

The virtual links (VL) corresponds to the routing rules connecting a network to

the router. The floating IPs (FIP) corresponds to the public IPs that connect

VDUs to the Internet. Figure 24(left) excerpt a sample VNF descriptor.

- VNF Forwarding Graph Descriptor (VNFFGD)

VNFFGD describes the forwarding paths which connects the VNFs. The for-

warding graphs require neutron-SFC (service function chaining) [57], which we
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do not support with current VMGuard. It can be included in the future with

upgrades in the verification algorithm.

- Network Service Descriptor (NSD)

NSD describes the complete end-to-end network service which is composed by

connecting VNFs and the forwarding graphs.
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Figure 24: VNFD Sample TOSCA Descriptor
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HOT

Heat [47] is an OpenStack [52] orchestration engine, which implements a service

that enables the tenants to automate launching of multiple composite cloud applica-

tions that are written as HOT(Heat Orchestration Template) [48]. The templates are

human and machine accessible codes written in YAML which manages the entire life-

cycle of infrastructure and applications within the cloud. Figure 24 (right) presents

an excerpt of a heat orchestration template.

Deploying a network service

The NFV tenants (Bob and Alice in the motivating example) can either choose

from an on-boarded VNFD catalog or can upload a customized VNF descriptor based

on their requirements. The NFV provider hosts NFVO that facilitates the platform

for NFV clients. An NFV tenant initiates VNF by choosing the corresponding catalog,

VIM and NFVO orchestrate the descriptor definitions in a chosen VIM. The VNF

descriptors specified using TOSCA specification is provided by the NFV tenant as

illustrated in Figure 24. The NFVO parses template with TOSCA-Parser [58], which

converts it to a heat orchestration template (HOT). The heat template is provided

to OpenStack (VIM) for orchestrating the network service in the cloud. The heat

orchestration template defines a workflow for the cloud. The workflow is then executed

and NFVO is acknowledged for successful orchestration.

Threat Model

We adopt a thread model targeting threats such as implementation flaws, misconfig-

uration, and vulnerabilities in the cloud platform which a malicious cloud user may
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exploit in-order to violate the network isolation policies specified by cloud tenants

or the provider. We assume data (e.g., logs and configuration databases) from cloud

platform are intact and any attack prior to the current state of cloud which is not

reflected in the input data is out of scope. Any potential privacy leakage from the

verification results is out of the scope. Additionally, the change in policy is subjected

to an action triggered only by an orchestrator or the cloud provider. An NFV client

can only choose from recommended policies and may not have direct interaction to

devise their custom policies. Lastly, the scope of verification is strictly restricted to

be inside the VIM. Any service that stretches over more than one VIM is subjected

to verification within their corresponding VIMs.

5.2.3 NFV Network Isolation with VMGuard
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Figure 25: Applying Network Isolation Policies with VMGuard
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Figure 25 shows how VMGuard interacts with NFV. The tenants deploy VNFs which

are stored as TOSCA and converted to heat template as elaborated before. The

HOT is passed to VIM (i.e., OpenStack), which uses heat-parser and heat-engine to

deploy the template. VMGuard resides at VIM coordinates with the heat database

to extract VNF definition to recommend network isolation policies.

In Algorithm 3, line 1 is to extract resources requested by heat which is currently

in YAML format. Lines 2-4, shows queries to collect the requested network resources

(virtual machines, ports, security group rules, routing interfaces, and router). A

state fork in line 5 and all pair reachability in-scope of tenant is derived in line 6.

Reachability is identified in lines 8-11, based on which policies are produced with

corresponding actions. Line 12 returns the policies applicable to network isolation

within the tenant. The tenant can now present isolation policies to VNF owners to

proactively audit their VNFs with state-based verification.

Algorithm 3: Policy Processing

Input: Heat Orchestration Template
Output: Policies

1 Resources = ParseYAML(HOT)
2 for each Resource ∈ Resources do
3 if Resource.Type == (Server/Subnet/Port/Router/Interface/Security

Group) then
4 NetwrokResource=Resource;

5 Graph = Fork(NetworkResource);
6 Reachability = IntraTenantAllPair(Graph);
7 for each Result ∈ Reachability do
8 if Result==Reachable then
9 Policies=policies(Result,Allow);

10 else
11 Policies=policies(Result,Deny);

12 return Policies
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5.2.4 Implementation

NFV Test Bed

We extend our testbed further to add NFV platform. With the existing OpenStack

environment, we add OpenStack Heat [47] project that executes the workflow. We

develop an NFV platform with OpenStack MANO project Tacker [61] and its pre-

requisites Keystone [54], Barbican [46] and Mistral [50]. Further, we modify policy

processing methodology with VMGuard to support automated policy recommenda-

tion for the NFV tenants.

Proof-Of-Concept

We integrate VMGuard with ERDC (Audit Ready Cloud platform), elaborated in

section 7.5. VMGuard addresses the limitations of existing proactive and retroactive

solutions with state-based proactive verification and enforcement. Figure 26 shows

the VMGuard graphical interface. In Figure 26 (top), we can see the initiation button

for VMGuard which performs processes prerequisites such as dependency model for

tenants. Once done, it asks for policy specification mode, where the automatic mode

is to extract heat policies for NFV users and manual mode for cloud tenants. On

receiving the auditing of auditing policies, VMGuard is initiated.

In Figure 26 (bottom), we show alert board for VMGuard which indicates isolation

breach violations. Each violation is presented with details such as tenant involved,

policy violated, detection mode (i.e., proactive or intercept-check). Further, a viola-

tion prevented by VMGuard can be viewed with the state-based effect (reachability)

which it would have exerted if the violating event had been executed.
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Figure 26: VMGuard with Audit Ready Cloud tools in ERDC
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Chapter 6

Related Work

VMGuard integrates the best of both state-based verification and proactive ap-

proaches. Firstly, we review existing solutions which verify network isolation in the

non-cloud or cloud environments. Secondly, we review the solutions with proactive

abilities for non-cloud and cloud environments. Finally, we compare the collection of

cloud-based solutions with VMGuard to showcase the advantages that our solution

possesses.

6.1 Network Isolation Verification

Table 5 shows existing works for network isolation (i.e., State-Based) verification solu-

tions.] The first column classifies existing works based on targeted environments, i.e.,

either cloud (virtual networks) or non-cloud (traditional networks). The second and

third columns list existing works and indicate their verification methods, respectively.

The next column compares those works based on various features, e.g., the support

of parallel implementation, incremental verification, NAT, and all pairs reachability

verification. The next two columns respectively compare the scope of those works,

i.e., whether the work is designed for physical or virtual networks, and whether it
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addresses control or data plane in such networks.

There exist several works (e.g., [32, 31, 39, 33, 72, 73, 24, 22, 23]) that tar-

get non-cloud networks (i.e., either traditional network or SDN). Works such as

[32, 39, 73, 24, 22, 23] cover physical network . Most of these works face issues in

scalability for the cloud environment. Other existing works [31, 33, 72, 9, 65, 38, 69],

like VMGuard, covers virtual networks and can scale to the large scale cloud envi-

ronments. Networking functionality is divided into planes where traffic steering is

managed by the control plane and the data plane is responsible for traffic forwarding.

Existing works such as [24, 22, 23, 65] focus on the control plane whereas VM-

Guard, TenantGuard [69] and [32, 31, 39, 33, 72, 73, 36, 64] are developed for the

data plane. Based on the features incorporated by existing works, only VMGuard,

TenantGuard [69], Libra [73], Anteater [39] and NetPlumer [31] can leverage parallel

processing. VMGuard can parallelize state of virtual infrastructure to verify events

simultaneously whereas TenantGuard [69] uses parallel processing for in-memory stor-

age. The incremental verification helps to cope with the dynamicity of the network.

Existing works such as [31, 72, 73, 33], TenantGuard [69] and VMGuard can operate

incrementally. TenantGuard [69] proposes incremental verification but does not eval-

uate it. VMGuard enhances the proposed methodology by TenantGuard [69] with

pruning and evaluates the technique. Network address translation used for public IP

in the cloud is only covered in [32, 31, 39, 72, 73, 36, 64], TenantGuard [69] and

VMGuard. Existing works such as [31, 23, 36, 64] and TenantGuard [69] target

cloud-wide reachability which is different from VMGuard as it performs verification

in the scope of network isolation policies.
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Platform Proposal Methods

Network Plane Features

Phys. Virt. Control Data Paral. Incr. NAT All Pairs Reach.

Hassel [32] Custom algorithms X X X

NetPlumber [31] Graph-theoretic X X X X X X

Anteater [39] SMT Solver X X X X

Veriflow [33] Graph-theoretic X X X

Non-Cloud AP verifier [72] Custom algorithms X X X X

Libra [73] Graph-theoretic X X X X X

ARC [24] Graph-theoretic X X

ERA [22] Custom algorithms X X

Batfish [23] SMT Solver X X X

NoD [36] SMT Solver X X X X

Plotkin et al. [64] SMT Solver X X X X

Cloud Radar [9] Graph-theoretic X

Cloud Probst et al. [65] Graph-theoretic X X

Madi et al. [38] CSP Solver X X

TenantGuard [69] Custom algorithms X X X X X X

VMGuard Custom algorithms X X X X X

Table 5: Comparing network isolation solutions with VMGuard

6.2 Proactive Verification

Table 6 summarizes proactive solutions for cloud and non-cloud environments. The

first and second columns enlist existing works and their verification methods. The
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next column compares the coverage such as supported environment (cloud or non-

cloud) and cloud layers (virtual infrastructure and/or user-level). ’Both’ means the

work supports both virtual infrastructure and user-level cloud layers. The next six

columns compare these works according to different features, i.e., proactiveness, auto-

mated and dynamic dependency capturing, cloud-platform-agnostic and probabilistic

dependencies.

Solutions such as Jiang et al. [30], Ligatti et al. [35] are for non-cloud environment

whereas PVSC [40], Weatherman [10], Congress [53], LeaPS [41], Patron [37] and

VMGuard works with cloud environment. Only VMGuard and Jiang et al. [30] work

in an automatic mode. VMGuard facilitates automatic policy extraction from heat

templates. VMGuard inherits the probabilistic model of LeaPS [41]. Others [30], [40]

and [37] also employ probability based dependency model. VMGuard and Patron [37]

are the only self-reliant works; VMGuard relies on its audit phase for the correction

of implementation flaws which may pose a threat to its accuracy. Congress [53] and

Ligatti et al. [35] are the only works with policy expressiveness as all other works have

customized policies. Ligatti et al. [35] and Weatherman [10] can support dynamic

modeling, whereas for VMGuard the model remains fixed, yet they are interoperable

(manual effort required) with different cloud platforms.
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Platform Proposal Methods Coverage

Features

Proactive Automatic Dynamic Probabilistic Expressive Self-Reliant

Non-Cloud Jiang et al. [30] Regression Technique N/A X X - X - X

Ligatti et al. [35] Model Checking N/A X N/A X - X X

PVSC [40] Custom Algorithm Both X - - X - -

Weatherman [10] Graph-theoretic Virtual Infr. X - X - - -

Cloud Congress [53] Datalog Both X - - - X -

LeaPS [41] Custom + Bayesian Both X - - X -

Patron [37] Custom Algorithm User-level X - - X - X

VMGuard Custom Algorithm Virtual Infr. X X - X - X

Table 6: Comparing proactive solutions with VMGuard

6.3 State-Based Proactive Verification

Table 7 summarizes the comparison between existing works on state-based proactive

verification and VMGuard. The first and second columns enlist existing works and

their verification methods, respectively. The next eight columns compare these works

according to different features, i.e., retroactive, intercept-check (I-C), proactive, in-

cremental (Incr.), parallel workload distribution (Paral.), pruning-based verification,

and multi-threading to manage multiple requests (M-Thread). The last two columns

compare the scope of network isolation works, i.e., virtual networks (Vir. Net.), and

data plane (D. Plane) in such networks. The main benefit of VMGuard over those

works is that VMGuard provides a real-time response while verifying virtual network

isolation in the data plane. To that end, VMGuard’s unique combination of features

is: proactive, incremental and pruning.

There exist several works (e.g., [36, 64, 31, 69]) for virtual network isolation ver-

ification. Among them, NoD [36], Plotkin et al. [64] and TenantGuard [69] adopt a
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retroactive approach, which detects an isolation breach after the fact. Specifically,

NoD [36], is a logic-based verification engine that checks reachability policies using

Datalog. Plotkin et al. [64] leverage the regularities existing in data centers to lessen

the verification overhead using bi-simulation and modal logic. However, both of these

works may cause hours to days of delay in verifying reachability. Whereas, Tenant-

Guard [69] achieves verification time of 18 minutes for the same dataset by performing

a hierarchical verification approach. However, for policy verification, TenantGuard

relies on Congress [53], which causes a significant delay (as discussed in Chapter 2).

Unlike these works, VMGuard achieves a practical response time (e.g., in a few mil-

liseconds), as reported in Chapter 4.2 by adopting a proactive approach. There exist

some other works (e.g., [31, 33, 32, 24, 23, 73]) for SDN-based or traditional networks.

Among them, NetPlumber [31] leverages verifying hypotheses before deploying, but it

is only applicable to SDN-based networks. In contrast, VMGuard verifies hypothesis

in the virtual network environment for clouds.

There exist some proactive verification solutions (e.g., [53, 10, 41, 40]) for clouds.

Weatherman [10] performs proactive verification on the virtual infrastructure based

on the future change plan. Similarly, Congress [53] performs proactive verification

over the proposed hypothetical configuration for the cloud. Both of those works rely

on manual identification of future plan, and otherwise, cause a significant delay as

an intercept-and-check solution. Whereas, VMGuard adopts an automated proactive

approach (based on dependency model), and achieves a response time of a few mil-

liseconds. Similar to VMGuard, PVSC [40] and LeaPS [41] achieve the response time

in milliseconds. However, those works rely on signatures and cannot detect many

isolation breaches (as demonstrated in Chapter 3). To that end, VMGuard adopts a

state-based approach and hence, overcomes this limitation.
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Chapter 7

Other Contributions

During this master thesis study, other than VMGuard, which is the main contribution

of this master thesis project, we also contributed to other projects that are described

in the following sections.

7.1 ProSAS: Proactive Security Auditing Sys-

tem for Clouds through Caching and Pre-

Computation

The dynamic nature due to self-service in clouds calls for run-time auditing to ensure

continuous security compliance. However, the existing auditing approaches, intercept-

and-check and proactive ones, fail to provide a practical response time due to the sheer

size and multi-tenancy in most of the cloud environments. ProSAS is a proactive se-

curity auditing system, which reduces the response time and significantly improves

the efficiency over the existing auditing approaches. The main idea is to perform

costly verification proactively (ahead of time) to reduce run-time delay. ProSAS
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builds a dependency model leveraging the relationship between cloud events to trig-

ger pre-computation, and performs verification at the occurrence of the critical event.

ProSAS further employs caching techniques to improve the efficiency of search against

the stored pre-computation results.

Our contribution to this work are listed in the following.

– Implemented a cloud environment by utilizing OpenStack [52] version Mitika.

In our environment, a controller and compute nodes are implemented to col-

lect input for ProSAS. The connecting technology between different nodes is

LinuxBridge.

– Implemented and evaluated the caching mechanisms using LRU (Lease Recent

Used) and MRU (Most Recent Used), which improved the hit rate of values

searched.

ProSAS is an extension of [40] and is currently under revision for the IEEE Trans-

actions on Dependable and Secure Computing journal.

7.2 ProxiMet: Security Metrics for Evaluating

and Mitigating Co-residency Threats in Public

Cloud

Multi-tenancy in cloud benefits the resource optimization but also lead to several se-

curity concerns such as co-residency of tenant’s virtual infrastructures, including VMs

and virtual networks. The nature of co-residency demands a quantitative approach for

63



measuring the relative distance between cloud resources, which is currently missing

in most existing works. ProxiMet is a quantitative approach to security compliance

auditing which devises security metrics to define a distance-based co-residency level

of tenant’s virtual infrastructures.

Our contribution to this work are listed in the following.

– Implemented a simulator that simulated the cloud environment to distribute

virtual resource. Further, implemented the suite of security metrics which cal-

culated the distance of co-residency for a virtual resource in the environment.

– Evaluated the security metrics for two real cloud data sets. The first data set

was from one of the largest telecommunication service provider and the second

from Google public cloud.

ProxiMet is currently under revision for the IEEE Transactions on Dependable

and Secure Computing journal.

7.3 TenantGuard+: Efficient Cloud Network Pol-

icy Verification at Runtime using Formal

Methods

In this work, we audit the compliance of high-level policies specified by the network

operators or by the cloud tenants, using a twofold approach. First, we used state of

the art network verification tool TenantGuard, to model the network behavior and

extract information about the relationship between different components in the vir-

tualized network, such as which VM is reachable from which others, the flow path
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information such as, the path length from the source to the destination. Second, we

leverage the results provided by the network verification tool to verify the compliance

of the networking configuration against predefined high-level policies. We formalize

the network policy as CSP (Constraint Satisfaction Problems), for a constraint solver,

namely Sugar [66], to validate the compliance.

Our contribution to this work is listed in the following.

– Performed data collection from TenantGuard [69] for different data sets, col-

lecting all pair reachability paths.

– Installed an SAT solver, implemented data pre-processing, parsing and data

mapping scripts. Evaluated CSP files for 100 iterations executed under SAT

solver to obtain timing results.

TenantGuard+ is a paper in preparation for submission to a journal.

7.4 Modeling NFV Deployment to Identify the

Cross-level Inconsistency Vulnerabilities

By providing network functions through software running on standard hardware, Net-

work Functions Virtualization (NFV) brings many benefits, such as increased agility

and flexibility with reduced costs, as well as additional security concerns. Although

existing works have examined various security issues of NFV, such as vulnerabilities

in VNF software and DoS, there has been little effort on a security issue that is in-

trinsic to NFV, i.e., as an NFV environment typically involves multiple abstraction

levels, the inconsistency that may arise between different levels can potentially be
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exploited for security attacks. In this paper, we propose the first NFV deployment

model to capture the deployment aspects of NFV at different abstraction levels, which

is essential for an in-depth study of the inconsistencies between such levels. Based on

the model and an implemented NFV testbed, we present concrete attack scenarios in

which the inconsistencies are exploited to attack the network functions in a stealthy

manner. Finally, we study the feasibility of detecting the inconsistencies through

verification.

Our contribution to this work is listed in the following.

– Assisted in designing deployment model to capture the deployment aspects of

NFV at different abstraction levels.

– Assisted with other editorial efforts for publication.

This paper is currently submitted to CloudCom19.

7.5 ERDC: Ericsson Research Demo Cloud

We have played a major role in developing ERDC which is a proof of concept plat-

form for research works developed at Audit Ready Cloud (ARC) project [5]. The

platform integrates all major auditing approaches at different cloud layers. Figure 27

presents a reference architecture integrating our state-of-art research solutions. Up-

coming modules are planned proof-of-concept to be integrated in future, and only

platform initialization and deployed modules are part of the contribution.
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Figure 27: ARC tools integration reference architecture

The Platform: The platform runs in a virtual machine deployed within Eric-

sson research cloud. The machines is a headless server and is virtualized using vir-

tualbox [62] and managed by phpvirtualbox client [6]. We run a controller node and

four compute nodes to host infrastructure as a service cloud service deployed using

open source cloud platform OpenStack [52]. We use OpenStack version Mitika with

network communicating mechanism ML2 with OpenvSwitch, which is most used real

cloud configuration [55]. The machines inside are reachable via Apache HTTP proxy

where URL/horizon 1 serves OpenStack Horizon (cloud management dashboard) [49]

and URL/arc connects to ARC auditing dashboard. Dashboard provides a detailed

view of the cloud environment services and status with alert warning mechanisms.

It centralizes the control for all the auditing tools using which an auditor can make

on-demand requests and analyze results from each tool. We use HTML, CSS. JS,

1The URL to connect demo machine is a public IP address and is disclosed for Ericsson’s internal
use.
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Bootstrap, and Angular for front-end and back-end in PHP. Currently, ERDC com-

prises of following tools integrated:

• Layer 2 Verification: The cloud layer two is being audited with ISOTOP [38],

which uses flow rules from virtual switches of compute nodes to detect inter-

tenant and intra-tenant breaches.

• Layer 3 Verification: The cloud management layer is audited using Tenant-

Guard [69], which verifies all pair reachability amongst virtual machines.

• Proactive Verification: Existing solutions were after the fact detection where

proactive verification precomputes in-advance for the critical event to prevent

violation.

• Multi-tenant Co-residency: The suite of co-residency matrices Proximet

determine proximity between tenants sharing an environment.

• Log Anonymization: Sharing of cloud logs is made easier by SegGuard which

prevents privacy, preserving the utility of logs for third-party auditing.
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Figure 28: Cloud management using OpenStack Horizon and Audit Ready Cloud
dashboard covering complete cloud environment
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Figure 29: Layer 2 Auditing using Isotop [38]

70



Figure 30: Layer 3 Auditing using TenantGuard [69]
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Figure 31: Proactive Auditing using LeaPS [41]

72



Figure 32: Security Metrics for Co-residency Evaluation using ProxiMet
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Figure 33: Log Anonymization using SegPriv
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Chapter 8

Future Work and Conclusion

8.1 Future Work

As future work, firstly, we further plan to investigate the feasibility of integrating

a formal policy specification language with our solution to enhance its policy sup-

port. Secondly, we plan to recommend policies based on type of virtual machine

with deployed network function (i.e., firewall, IDS, etc.). Lastly, we see scope of pol-

icy optimization by prioritization and minimization of policies applied by VMGuard,

which is currently not the case. We also see future in carrying forward our verification

methodology to other cloud components (such as storage, identity management, etc.)

8.2 Conclusion

In this thesis, we addressed two major issues (e.g., inefficiency and inaccuracy) in the

existing virtual network isolation verification approaches, and proposed VMGuard,

which is a state-based proactive approach to efficiently verify network isolation poli-

cies in a large scale virtual infrastructure. To achieve better efficiency, VMGuard
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proactively conducted the verification of future events. On the other hand, to en-

sure the effectiveness, VMGuard simulated all possible impacts on the current state

and verified all those simulated states. Furthermore, we integrated VMGuard with

OpenStack, and evaluated its performance and efficiency through extensive experi-

ments using both real and synthetic data. We extended our solution to the network

function virtualization (NFV) environment to proactively verify and enforce network

isolation.
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