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Abstract

Toward a Flexible Facial Analysis Framework in OpenISS for Visual

Effects

Yiran Shen

Facial analysis, including tasks such as face detection, facial landmark detection,

and facial expression recognition, is a significant research domain in computer vision

for visual effects. It can be used in various domains such as facial feature mapping for

movie animation, biometrics/face recognition for security systems, and driver fatigue

monitoring for transportation safety assistance. Most applications involve basic face

and landmark detection as preliminary analysis approaches before proceeding into

further specialized processing applications. As technology develops, there are plenty

of implementations and resources for each task available for researchers, but the key

missing properties among them all are flexibility and usability. The integration of

functionality components involves complex configurations for each connection joint

which is typically problematic with poor reusability and adjustability. The lack of

support for integrating different functionality components greatly impact the research

effort and cost for individual researchers, which also leads us to the idea of providing a

framework solution that can help regarding the issue once and for all. To address this

problem, we propose a user-friendly and highly expandable facial analysis framework

solution. It contains a core that supports fundamental services for the framework,

and a facial analysis module composed of implementations for facial analysis tasks.

We evaluate our framework solution and achieve our goals of instantiating the facial

analysis specialized framework, which essentially perform tasks in face detection,

facial landmark detection, and facial expression recognition. This framework solution

as a whole, solves the industry problem of lacking an execution platform for integrated

facial analysis implementations and fills the gap in visual effects industry.
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Chapter 1

Introduction

In this chapter, we will first introduce the facial animation background of our thesis.

We summarize our research problems by identifying and analyzing two concrete

problems in the facial animation movie production procedure. Following this, we

state the goal of this thesis, define our usage scenarios and extract both functional

and non-functional requirements. Finally, we list our contributions, followed by a

brief overview of the structure of the thesis.

1.1 Motivation

The primary motivation for this research work stems from a research and development

problem faced with by our partner in China — the China Research Institute of File

Science & Technology (CRIFST). CRIFST is a research lab that aims to introduce

visual effects in the film-making process. As a part of our collaboration with CRIFST,

they are looking for a solution to match actor-based facial expressions to animated

characters, ideally in real-time, to save editing and artists costs during production

and post-production in the creation of facial animation motion pictures.

Facial animation movie (FAM) is a kind of movie that only focuses on creating

facial actions of a character. Facial animation movie could be used in clips in an

animated movie, a cinematic opening trailer of a game or the facial details of any

animated characters. In our thesis, we are going to focus on two specific and concrete

problems in the production process of the facial animation movie.

3



1.1.1 FAM Production Procedure Overview

Generally, producing any movie can be divided into three simplified steps:

• Pre-production — represents the period of writing scripts (storyline), finding

resources, actors, locations, etc.

• Production — represents the period when the movie starts being shot until the

shooting finishes. Shots can be traditional and/or computer-graphics based.

• Post-production — represents the period when the editor modifies the entire

recorded shots to fit the director’s vision for the movie until the end of the

editing process. In here, different special effects and virtual scenes may be

added, etc.

When it comes to the facial animation movie, there are two specific problems that

need to be solved. They can be expressed in simple terms as the following:

Concrete Problem 1: During the production phase, when the actor needs to

perform in the scene, the director will need to have a synchronized view of

the generated animation imagery in order to provide feedback and instructions

to the actor for each shot. A well-produced animation movie requires extensive

attention to detail, which requires delicate body-parts movements, accurate

facial expressions, and sounds. For the facial animation, which is our area of

focus, the human actor needs to perform actions such as talking, appearing to

be shocked, scared and so on while following the movie’s script.

In order to allow the director to view the corresponding animation on a screen,

a convenient real-time technology is needed to track the actor’s facial actions

and translate them into an animation sequence.

Concrete Problem 2: At the post-production phase, editors would review the

entire movie with the director and animation artists and make adjustments,

additions, or eliminations of certain scenes and shots, clips or frames. The

director might expect a different result for some facial expression in certain

4



scenes than the initial version that was done through a motion capture after

watching the resulting animation.

Therefore, the editors need a technology that can help the them to access more

appropriate facial animation frames or sequences and do the replacement editing

in the case where such sequences and frame are already available from the

current or previous movie projects.

1.1.2 Existing Solutions

To address Concrete Problem 1, one of the mainstream solutions utilized for

facial animation movie production process is 3D scanning [16]. The procedures for

the animation movie production that use 3D scanning technology typically involve

dozens of cameras arranged around the actor’s face at different angles to perform

simultaneous facial scan. Although this allows us to capture high resolution topology

with extremely detailed texture maps, the overall process is very complicated. During

the production phase of a facial animation movie, the facial capture is performed

frame by frame, and each frame scan needs a considerable amount of processing time,

this requires a tremendous cost budget for the movie producer, and it prolongs the

shooting and production process. Due to its nature of frame-based scanning, it would

not allow real-time generation and viewing on site for a complete scene that spans

dozens of frames.

For the Concrete Problem 2, the traditional way to do it is that the editors use

the keyword of the expected expression to search a database and find the appropriate

expression. Editors might spend a prohibitively long time browsing through all facial

animation sequences in a database for a replacement. However, existing matching

technology only allows filtering the model database by facial expression keywords,

and on many occasions, the results are not precisely accurate.
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1.1.3 A Requested Need

CRIFST VFX Studio requests a need to address these two concrete problems. The

need can be illustrated as Figure 1. The steps of the production phase shown by the

blue box, can be described as following:

1. The movie shooter will capture the actor’s performance streaming into the facial

feature extractor1.

2. The extracted facial features then will flow into the animation translator which

map those features to the digital model enabling the directors to see the

synchronized animation character movie on their monitors.

As mentioned above, the editor may need to replace some of the frames within a

recorded movie. For each unsatisfied frame, the steps of the post-production phase

shown in brown box can be described as below.

1. The editor will input an expected expression image to indicate what kind of

expression they need to replace the unsatisfied frame.

2. The facial feature extractor2 will extract the facial features of the given image.

At the same time, the facial expression extractor will determine the expression

category of the input image. All these two intermediate results will be sent to

the database matcher.

3. The database matcher will use the extracted features and the detected

expression to search among the well-defined expression database and return

the most similar one.

4. The result frame from the database will be used to replace the unsatisfied frame

within the animation movie.

For further references, we would like to define two terms to refer the techniques

used in the two phases described above.
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Figure 1: FAM production procedure diagram

• Landmark-based facial action mapping, refers to the techniques used in

production phase.

• Human-face-based facial animation expression matching, refers to the

techniques used in post-production phase.

1.2 Focus of Research

According to this requested need from CRIFST VFX Studio, we have performed a

comprehensive survey and propose our own solution. We found that the animation

translator in production phase can already be realized by some existing software

like REALLUSION [2] and Autodesk Maya [17]. Assuming you already have your

character model defined, what you need as input is just the facial landmarks for

the actor’s face. Under such consideration, we are not going to re-implement the

animation translator but focus on the facial landmark extraction. For the post-

production phase, since there is no existing solution can do such a job, we will have

to provide our own solution for it.

For a given movie shooting image, if we want to obtain the facial features,

the general approach is that we will need to perform two steps, one is the face

detection and the other is facial landmarks (aka. keypoints) detection. Then for

facial expression recognition, also two steps are required. One is the same as the

previous, face detection, and the other is facial expression recognition.
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For our focus of research, we propose our subset solution based on the background

research, which is to implement everything except the animation translator within the

requested need from CRIFST VFX studio as illustrated in Figure 1.

1.3 Research Problems

In the previous section, we described our focus of research which lies under the general

scope of facial analysis and introduce some of the related terminologies. In this

section, we will give the scientific definitions of them in this thesis.

1.3.1 Face Detection

Face detection as a specific case of object detection has almost the same definition

as object detection. You are given an image I and the task is to detect instances of

face within I. For each face i, you need to return a bounding box B to indicate the

location of face i.

1.3.2 Facial Landmark Detection

Facial landmark detection is a series of methods that could locate the facial key

points in a human face. The number of key points is based on the model we choose,

illustrated by Figure 2. So the definition of facial landmark is: you are given one

face image I and a facial landmark model M . You need to match or detect facial key

points on face image I and return the locations of each key points in image i.

Figure 2: Facial landmark model example [1] with 20, 68 and 194 key points
respectively
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1.3.3 Facial Expression Recognition

As for facial expression recognition, you are given a face image I and a list of facial

expression interpretative categories L. The task is to analyze the facial features and

classify this information into one category c which belong to L.

Three facial analysis domains mentioned above cover our facial analysis methods

research. The first part for this operation is face detection. Most of time, camera can

only fetch video streams, which means there are more than faces information fetched,

but also some related background is captured. We need to use a reliable face detection

method to find where the faces are to extract related features. On the other hand,

facial landmark is a good facial feature as quantifiable feature to define a facial model.

In animation modelling technology, the expression of facial model are controlled by

adjusting key points on face, which are perfectly matching the characteristics of

facial landmark. And with facial landmark and facial expression recognition, we

can automatically classify human’ s expressions into a specific category.

1.4 Goal

With the background and motivation, we stated the existing solution and pointed

out their limitations in Section 1.1.2. Then we describe a proposed idea by an

organization, CRIFST, to address two concrete problems in the facial animation movie

production procedure.

Inspired by the CRIFST’s needs, we would like to provide our concrete solution

on top of it. So we propose our goal of this thesis: we would like to design a facial

analysis solution that can realize the proposed idea. Precisely, it should

be able to provide the functionality for face detection, facial landmark

detection and facial expression recognition. The solution should also be

designed in such way that it can integrate more new components easily as

well as user-friendly.
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1.5 Scenarios and Requirements

With the definitions defined above, we would like to refine our concrete problems

and represent them in more detail usage scenarios. All of them, each in their own,

highlight some problems that are not solved by existing solution. And our solution is

not only aiming to solve these problems individually, but also to provide a solution,

in general, for all these problems.

1.5.1 Real-time Landmark-based Facial Action Mapping

Actors

• Facial animation movie application developer –below referred as A

• Facial animation movie director –below referred as D

• Facial animation movie actor –below referred as C

Effect: Real-time generation of facial animation movie involving human

actors on site

Imagine an animation movie production procedure. During the production phase,

C will need to act on the scene, and D requires to have a synchronized viewing

of the generated animation in order to provide feedback and instruction. In order

to allow D to see the corresponding animation on his viewing portal, A decides to

take landmark-based facial action mapping technology to develop real-time landmark-

based facial action mapping application. More specifically, A integrates our facial

analysis solution, which could continuously take images of C as input and output

the facial landmarks of C ’s face in real-time, into his real-time landmark-based facial

action mapping application, so D could see the corresponding generated animation

on his viewing portal of the application in real-time.

This usage scenario can be abstractly summed-up as the following, which becomes

our requirements:

FR1: The solution shall be able to detect the areas of human face inside a given

image and provide a corresponding bounding box for each of the detected location.
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FR2: The solution shall be able to detect facial landmarks on human face image

which is masked by bounding boxes.

FR3: The solution shall be able to connect the required features from FR1 and

FR2 together seamlessly, ensuring the whole process can be done in real-time.

1.5.2 Human-face-based Facial Animation Expression

Matching

Actors

• Facial animation movie application developer –below referred as A

• Facial animation movie director – below referred as D

• Facial animation movie editor – below referred as E

• Facial animation movie character – below referred as C

Effect: Editor gets more appropriate facial animation models by inputting

human image

Imagine during an animation movie post-production phase, where the production

team will review the entire movie and make adjustments, addition, or elimination of

certain frames. For example, the smile that shows on C was not as dramatic as D

wanted, so D paused the movie clip and asks E to find a more appropriate animation

picture of the smile expression of C to replace the original frame. In a traditional

way, E need to browse the whole facial expression database using keyword to find the

most likely expression as the one expected by D, then use it to replace the original

one. Now, E wants to use a human face image with the required smile, to get a

similar animation expression from the database instead of using keyword search.

In order to meet the requirement from E, A decides to build an application

based on human-face-based facial animation expression matching technology. More

specifically, A uses our facial analysis solution, which could take a static human

image as input and output the facial landmarks and expression category of the
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face. Then A implements a database matcher which employs facial landmarks and

expression category to search a pre-populated facial animation expression database.

It is significant to mention that with facial expression category label, we can find all

existing expressions in the same category just like keyword search. But with facial

landmarks, we can differentiate the expression even within the same category.

Although this matching application greatly helps E to find suitable expressions

faster than before, he also wants the result to be as accurate as possible. So in order

to improve the accuracy of this application, A analyzes the performance of all the

components involved and identifies the bottleneck being a specific component in our

facial analysis solution. After doing research, A finds that there is a new deep learning

implementation available for this component which could achieve higher accuracy and

solve the problem. With a few hours of work, A easily replaces the implementation of

the bottleneck component with the new one and thus provides a more accurate facial

animation expression matching application to E.

This usage scenario can be abstractly summarized as the following, which becomes

our requirements:

FR4: The solution shall be able to recognize the facial expression on human face

and assign it to an expression category.

FR5: The solution shall be able to connect the required features from FR1, FR2

and FR4 together seamlessly ensuring the whole process can be done.

FR6: The solution shall enable the developer to easily achieve adaptability by

replacing bottleneck component in our solution to meet their specific expectations.

FR7: The solution shall enable the developer to easily enable deep learning

approaches to work with our solution.

1.5.3 Camera Support

Actors

• Facial animation movie application developer –below referred as A

• Facial animation movie production company –below referred as M
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• Camera type 1 –below referred as C1

• Camera type 2 –below referred as C2

Effect: Instant integration for new camera types

Imagine A has developed a real-time landmark-based facial action mapping

application for M. The whole application is divided into two parts: (1) integrate

camera adapter of C1 into application, so this C1 adapter could transfer the data

format of C1 into human RGB image stream (2) input transferred human RGB

image stream into our landmark-based facial action mapping module to get generated

animation video stream. After a few years, M decided to buy a new type of camera C2

with higher resolution and they wanted to add C2 into the shooting flow. After trying

to get the new camera in use, M found that this new camera was not supported by

their real-time animation shooting application. M asked A to solve the compatibility

issue. A did some research and found the root cause being unsupported new data

format that C2 uses. This could be solved by adding an adapter for C2 into their real-

time animation shooting application. After hours of development, A implemented this

new camera adapter and integrated it into their application. Now, M can have C2

available to shoot and have the recorded data successfully processed by the application

for later stages.

This usage scenario can be abstractly summed-up as following, which becomes

our requirement:

FR8: The solution shall allow developers to add new cameras or switch existing

cameras into their current processing platform with minimal effort.

1.5.4 Non-functional Requirements

For a solution to achieve what we have described in previously mentioned usage

scenarios, we found that our solution must meet the following non-functional

requirements:

NFR1 Real-time performance: The system should be able to perform the task
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in the scenario mentioned in Section 1.5.1 in a speed of at least 30 frames per

second (FPS).

Real-time is the key factor determining the proficiency of the result generation

for the scenario mentioned in Section 1.5.1, which enables the director to watch

the synchronized viewing of the generated animation and give feedback and

instruction in a timely manner. If this process is not real-time, the director’s

experience will significantly decrease as there are noticeable lags in the generated

animation video. Based on the definition provided in Kapoor et al. [18], a real-

time facial analysis system needs to have a speed of at least 30 FPS. Thus, we

will use 30 FPS as our baseline for real-time evaluation.

NFR2 Accuracy: The system should be able to perform the scenario tasks

mentioned in the Section 1.5.1 and Section 1.5.2 with an accuracy comparable

to the state of the art solutions.

For mapping scenario mentioned in Section 1.5.1, the real-time performance is

the first priority, while ensuring that, we still want the whole task to achieve an

accuracy as close to state of the art solutions as possible.

For matching scenario mentioned in Section 1.5.2, each matching task is an

independent one-time operation, and the purpose of this functionality is to

provide a more automated and accurate search result for editors. Therefore,

the sole requirement for this scenario is the accuracy performance that ensures

the best result possible, which should be comparable to the state of the art

solutions.

NFR3 Extensibility: The ability of a system to be able to add new functionality

or modify existing functionality without impairing existing system functions.

In a fast-developing world with constant hardware and software technology

upgrade, professionals in facial analysis industry will need to utilize more and

more advanced technologies. It is essential to design a solution with wide range

of extensibility that allows us to add, modify or integrate devices and algorithms
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into our solution with minimal effort.

NFR4 Usability: The ability of a software system to effectively provide the

expected functionality to the user, in a manner that is as intuitive and the

least strenuous or problematic as possible.

Our solution should provide the required functionalities stated in our goal to

ensure the foundations of usability. Secondly, providing simple, meaningful

and understandable APIs is the key to make a software user-friendly. This

requires our solution to have concise, compact and logical naming conventions

throughout the build. Technical documentations and comments should also

be provided to ensure other experienced/inexperienced users have complete

support for them to quickly adapt to our solution’s APIs.

1.6 Contributions

Our contribution is five-fold:

• We offer a way for researchers to perform face detection, facial landmark

detection, static-based facial expression recognition, and dynamic-based facial

expression recognition on their facial experiment data. Especially, face detection

and facial landmark detection ensure real-time performance.

• We offer a way for researchers to integrate their facial analysis implementations

and test them in a real-world environment with input being frames directly

captured by the camera.

• We offer a way for researchers to combine facial analysis algorithms from various

research domains and compare application practicability.

• We offer a platform for researchers to combine deep learning facial analysis

implementations written in Python with other facial analysis implementations

written in C++.

15



• We offer a way for researchers to assemble various components to form their

applications without worrying about the connection between components or

handling intermediate results.

To achieve the above, we did the following works:

• Design and implement a framework solution which consists of the core and

facial analysis module that enables face detection, facial landmark detection,

static-based facial expression recognition, and dynamic-based facial expression

recognition.

• Design and implement a device module which could enable our solution to

support different depth cameras or add new camera devices.

• Design and implement a pipeline module that provides a linear execution

mechanism, which allows users to execute a series of functionality components

in their chosen order, and also automatically handles the actual component

connection and transfers intermediate results.

• Design and implement a deep learning support module that enables the

integration of Python-based deep learning facial analysis implementations.

• Design a face detection submodule, provide three default face detectors, and

compare the accuracy and speed performance between them.

• Design a facial landmark detection submodule, provide three default facial

landmark detectors, and compare the accuracy and speed performance between

them.

• Design a static-based facial expression recognition submodule, provide three

default recognizers, and compare the accuracy and speed performance between

them.

• Design a dynamic-based facial expression recognition submodule, provide two

default recognizers, and compare the accuracy and speed performance between

them.
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1.7 Thesis Outline

In this chapter, we introduced the background of facial animation followed by

discussing two concrete problems and limitations. With a proposed idea in hand,

we pointed out our research of interests. In the end, we refined two phases of FAM

production procedure to become more detailed usage scenarios. In the following

chapters, the layout of our thesis is listed below:

• In Chapter 2, we will review the major dominated methods in our research area

as well as the related libraries we may use in our solution.

• In Chapter 3, we will propose our solution with the reason why we design it in

a framework manner followed by the design of core and specialized frameworks.

• In Chapter 4, we will create an instance of the proposed framework stating the

implementations of each facial analysis submodule in detail. Also, we describe

how do we create two specific applications to address the problems we mentioned

in Section 1.1.

• In Chapter 5, we will demonstrate that our framework solution fulfills all

the requirements listed in Section 1.5 and report the results obtained from

community acknowledged metrics.

• In Chapter 6, we summarize our work with advantages and limitations. Then

we propose some potential research directions in the future.
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Chapter 2

Related Work

In this chapter, we mainly discuss the related work of our research. There are two

parts of related work that we would discuss in this chapter: (1) the representative

works of facial analysis domains (2) the related libraries of our work.

2.1 Facial Animation Background

In the traditional animation industry, animators draw images on a transparent paper

with a colored pencil, one frame at a time. This is extremely time and budget

consuming. Nowadays, animation modeling, also referred as computer-generated

imagery (CGI), is made by generating images using computers. Animation modeling

works in a completely different way than the traditional animation, which is more

like playing with puppets rather than drawing. People animate and pose models,

then conform to the frame-by-frame approach with controllable settings to build a

complete animation movie. Characters in animation modeling are digitally modeled

in the program, then fitted with a skeleton which could be eventually controlled by

animators.

The facial expression of characters can also be modeled and controlled by the

computers, which known as facial animation. The common way for making facial

animation is to build a head model first and cover it with face texture, then control

the key points on the face model to change the expression of characters [19]. And there
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Figure 3: Facial animation model [2] Figure 4: Facial animation texture [2]

are several animation software providing such convenient method, like REALLUSION

[2], Autodesk Maya [17] and etc. Figure 3 and Figure 4 show the facial animation

model and texture respectively, and Figure 5 shows an example of facial animation

with different facial expressions. The whole process of making an animation video is

done by connecting different facial frames in order.

Figure 5: Facial animation example [2]

2.2 Face Detection

In this section, we would like to introduce the related work of face detection domains

mentioned in Section 1.3. We select three representative works of face detection

domain: haar-like features detector, histograms of oriented gradients (HOG) face

detector, and convolution neural network face detector. Haar-like features detector

and HOG face detector are more traditional face detectors, whereas convolution neural

network (CNN) face detector is recently proposed.
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2.2.1 Haar-like Features Detector

Viola and Jones face detector is one of the most impact face detector in 2000s [20].

There are three key points for Viola-Jones face detector: the integral images, classifier

learning with AdaBoost, and the attentional cascade structure. The integral image

could compute the sum of values in a rectangle subset of a grid quickly and efficiently.

In Viola-Jones face detector, integral image is used to calculate haar-like features,

which improve the speed of Viola-Jones face detector [21]. Boosting is a kind of linear

regression method. The key point of boosting is combining many weak hypotheses

with moderate accuracy to a highly accurate hypothesis [22]. AdaBoost corresponds

to a single iteration of the back-fitting algorithm, it has better performance in

accuracy and does not penalize overconfident predictions. The attentional cascade

structure can reject most of the negative sub-windows in early stages and keep almost

all the positive examples [23]. A cascade is formed by a series of classifier windows and

used as a degenerate decision tree, and this cascade structure has a great improvement

in accuracy compared with single classifier.

2.2.2 HOG Face Detector

HOG face Detection is combined with histograms of gradients (HOG) and linear

support vector machine (SVM). HOG face detector is proposed by Dalal et al. [3] in

2005. Basically, the HOG is a descriptor for local object appearance and shape. The

image is divided into small connected regions called cells, a histogram of gradient

directions is calculated within each cell. Figure 6 is an example of combining lots

of faces together to represent distribution of intensity gradients or edge directions.

Finally trained Linear Support Vector Machine model is used to detect faces in an

image.
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Figure 6: HOG face descriptor from lots of face images [3]

2.2.3 Convolution Neural Network Detector

For convolution neural network (CNN) detector, convolution layer is the core layer.

It is able to capture the spatial and temporal dependencies and extract the high-level

features from input images. The low-level layers of CNN mainly extract the abstract

features from the input image, and high-level layers will reconstruct the extracted

features to calculate result.

2.2.3.1 Single Shot MultiBox Detector

Single Shot MultiBox Detector (SSD) is a kind of CNN-based face detector proposed

by Liu et al [4]. The main theory of SSD is generating a fixed-size collection of

bounding boxes and using CNN to scores for object class instances in those boxes.

Finally, using a non-maximum suppression to predict the right bounding box. The

models of SSD is shown in Figure 7. In extra feature layers, it produces the key

features, multi-scale feature maps, convolutional predictors, default boxes and aspect

ratios for prediction. These layers decrease size of feature maps to create multiple-

scales feature maps. For a feature layer of size (m,n) with p channels, the basic

element is a small kernel with size of (3, 3, p) that produces either a score for a

category or a shape offset relative to the default box coordinates. The bounding box

offset values are measured relative to the feature map location. For each feature map

cell, there are a set of default bounding boxes to detect. The position of each box to

its corresponding cell is fixed. For each feature map cell, the offsets relative to the

default box shapes and per-class scores in each boxes are predicted.
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Figure 7: SSD model [4]

2.3 Facial Landmarks Detection

The aim of facial landmark detection is to get key points coordinate on images

or videos. The key points consist of two parts, one is the special location of a

facial component like profiles of eyes, nose, and mouth, the other part is points

connecting facial components and facial contour. In this section, we will discuss

three main categories of facial landmark detection: active appearance model methods,

constrained local methods and regression-based methods.

2.3.1 Active Appearance Model Methods (AAM)

In order to construct active appearance model, we need to build the global facial shape

model and holistic facial appearance model based on principal component analysis.

After the construction of model, the model detects landmark locations by fitting the

learned appearance and shape models to the input image. There are three steps for

AAM to construct model [24]. Firstly, using Procrustes analysis to register training

facial shapes, which could remove the affine transformation and normalize training

face images. Secondly, using principal component analysis (PCA), to learn mean

shape and capture the shape variations. Lastly, using normalized facial images to

generate a mean appearance.
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2.3.2 Constrained Local Methods

The constrained local methods (CLM) use local appearance model to detect each

landmark independently first, then refine the local detection results with global face

shape model variations [25]. Minimizing the misalignment error subject to the shape

patterns could find the landmarks for local appearance model.

x = arg(minQ(x) +
∑

Dd(xd, I)) (1)

xd represents the position of different landmarks in x. Dd(xd, I) represents the

local confidence score around xd. Q(x) represents a term to penalize the infeasible or

anti-anthropology face shapes in a global sense. Through the calculation, we could

find the best set of landmark locations that have strong independent local support

for each landmark and satisfy the global shape constraint.

2.3.2.1 Constrained Local Neural Fields (CLNF) Facial Landmark

Detector

CLNF facial landmark detector is based on CLM facial landmark detector and

proposed by Tadas et al. [5]. They try to detect facial landmarks with poor lighting

conditions and extreme pose or occlusions. Compared with the traditional CLM

method, CLNF detector uses a Local Neural Field (LNF) patch expert to learn non-

linear and spatial relationships between the input pixels and probability of a landmark

being aligned. On the other hand, CLNF detector uses a Non-uniform Regularised

Landmark Mean-Shift (NU-RLMS) optimization technique to optimise the model.

The overview of CLNF model is shown in Figure 8. In CLNF model, LNF patch

expert is used to calculate more reliable response maps. NU-RLMS method is used

to optimize the patch responses and takes the reliability of each patch expert into

account to get more accurate fitting.

LNF patch expert is shown in Figure 9. Solid lines represent vertex features fk,

dashed lines represent edge features gk or lk. The input vector xi is connected to

the relevant output scalar yi through the vertex features, the neural layer, and the
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vertex weights. The outputs of model are connected with edge features gk or lk. The

neighboring and longer distance between pixels is learned by LNF patch expert. LNF

can also capture complex non-linear relationships between pixels and output.

Figure 8: CLNF model [5]

Figure 9: LNF model [5]
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2.3.2.2 Convolutional Experts Constrained Local Model (CECLM) Facial

Landmark Detector

CECLM detector is proposed by Zadeh et al. [6]. Compared with tranditional

CLM facial landmark detectors, CECLM detector uses a kind of new structure,

Convolutional Experts Network (CEN), which combines the advantages of neural

architectures and mixtures of experts in end-to-end frameworks. There are two

main parts of CECLM: shape parameter update and CEN-based response map

computation. For parameter updating, the position of aligned landmarks are updated

jointly, then penalized for misaligned landmarks and irregular shapes using a point

distribution model.

The CEN model is shown in Figure 10. There is a nxn pixel region of interest

(ROI) as input and a response map as outputs. This model aims to compute a

response map to localize individual landmarks. According to the model, ROI as the

first layer is a contrast normalizing convolutional layer and using shape 500 x 11 x

11 which performs Z-sore normalization. Mixture of Expert Layer (ME-layer) as the

most important layer can model different landmark appearance prototypes and is a

convolutional layer of 100 x 1 x 1 using sigmoid activation and output individual

experts vote on alignment probability. According to CEN theory, the landmark i in

position xi follows the equation:

yixi
= p(li = 1, L = Lxi

) (2)

li is an indicator for aligned landmark number i. L is the image ROI at location

xi. yi represents the response maps of size n x n.

2.3.3 Regression-based Methods

Compared with methods mentioned above, regression-based methods do not build

any face shape model but learn the mapping from image appearance to the landmark

locations directly [26].
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Figure 10: CECLM model [6]

2.3.3.1 Local Binary Features (LBF) Facial Landmark Detector

The LBF facial landmark detector we mentioned here, is based on paper titled ”Face

Alignment at 3000 FPS via Regressing Local Binary Features” by Shaoqing at el. [7].

LBF facial landmark detector is based on the regression approach. The basic training

process of LBF facial landmark detector is shown in Figure 11.

There are two steps in the training phase. They begin by learning a feature

mapping function ϕt(Ii, S
t−1
i ) to generate local binary features. Then based on given

features and target shape increments {∆St
i = Si−St−1

i }, they learn a linear projection

W t by linear regression. In the testing phase, the shape increment is directly predicted

and applied to update the currently estimated shape [7].

Figure 11: Overview of LBF training process [7]

2.4 Facial Expression Recognition

Facial expressions as an important signal for human beings, which could convey

their emotional states and intentions, has always been a cutting-edge research
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field. Facial expression recognition could combine with lots of other fields to create

specialized applications. For example, sociable robotics, human figure recognition,

and human-computer interaction systems. According to a cross-culture study [27]

in the twentieth century, there are six basic expressions: anger, disgust, fear,

happiness, sadness, and surprise. Most of facial expression recognition studies focus

on recognizing these six expressions plus neutral expression. There are two main

categories for facial expression recognition: static image facial expression recognition

and dynamic sequence facial expression recognition. Static-based methods define

human’s expression based on the current single image, and dynamic-based methods

recognize expression by analyzing a set of contiguous frames.

Handcrafted features and regression learning are the most popular methods

before machine learning, just like local binary patterns and non-negative matrix

factorization. Since 2010, deep learning has achieved great accuracy and speed due to

dramatically increased calculation ability of computer and better training datasets. In

this paper, we do not introduce traditional facial expression recognition and instead,

pay more attention on deep learning facial expression recognition methods. We first

introduce the common facial expression recognition datasets that are used to judge

the performance of algorithms, and show the regular steps for deep learning facial

expression recognition methods. Then we show details about representative studies

for static-based methods and dynamic-based methods.

2.4.1 Facial Expression Recognition Datasets

For facial expression recognition, a dataset with sufficient labeled training data and

many variations of the face and environments is very helpful. The datasets that we

introduce are public available which contain basic expressions and are used widely in

many researches.

CK+ The Extended CohnKanade (CK+) dataset proposed by Cohn et al. [8] is the

most popular facial dataset for evaluation with a laboratory-controlled environment.

There are 593 video sequences that vary in duration from 10 to 60 frames and contain
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123 subjects, and all of these sequences show the shifting process from the neutral

expression to the peak expression. Figure 12 shows the example images in CK+

dataset.

Figure 12: CK+ image sequences example [8]

FER2013 FER2013 database [9] is an unconstrained dataset which contains 28709

training images, 3589 validation images, and 3589 test images. The images are

collected by Google image search. The facial region is cropped from each image

and resized to 48 x 48 pixels. All images are labeled with seven expressions (sadness,

neutral, surprise, happiness, anger, disgust, and fear). Figure 13 shows the example

images.

Figure 13: FER2013 image example [9]

AFEW The Acted Facial Expressions in the Wild (AFEW) dataset [10] was

established and used in annual Emotion Recognition In The Wild Challenge

(EmotiW) as evaluation dataset. The data in AFEW was collected by selecting

different movies clips with various head poses, occlusions, illuminations, and seven

basic expressions: anger, fear, disgust, surprise, neutral, sadness, and happiness.

After several years of updating, AFEW contains 773 training samples, 383 validation

samples, and 653 testing samples. Figure 14 shows the examples of AFEW dataset.
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Figure 14: AFEW image sequences example [10]

SFEW The images in the Static Facial Expressions in the Wild (SFEW) [28] were

selected from the AFEW dataset, whose selection algorithm is based on facial point

clustering. The SFEW dataset was used as evaluation dataset for the SReco sub-

challenge in EmotiW 2015. There are 958 training samples, 436 validation samples

and 372 testing samples in SFEW dataset. The expression classes of SFEW is same

as the AFEW dataset.

MMI The MMI dataset proposed by Pantic et al. [11] is a laboratory-controlled

facial dataset. There are 326 sequences from 32 subjects and 213 sequences labeled

with six basic expressions without contempt. The expression sequences follow the

rules of neutral-peak-neutral process, which means that the sequence starts with

neutral expression and reaches peak, then returns to neutral again. Compared

with most public facial datasets, MMI provides more challenging factors for facial

expression recognition with glasses, mustache and various occlusion. Figure 15 shows

the examples of the MMI dataset.

Figure 15: MMI sequences image example [11]
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Multi-PIE The Multi-PIE database was built by Gross et al. [29] and contains

755,370 images from 337 subjects. The differences between Multi-PIE database and

other facial datasets are that the Multi-PIE dataset provides multi-viewpoints and

various illumination conditions. There are six expressions used to label the images:

smile, squint, surprise, neutral, scream and disgust.

EmotioNet EmotioNet database [30] contains millions of facial expression images

which are collected automatically from the internet. Especially, EmotioNet provides

not only expressions labels but also the action unit (AU) labels, there are 95000

images labeled with AU model.

VGGFace VGGFace dataset [12] is a large face dataset containing hundreds of

example images for thousands of unique identities. There are over 2.6 million images

and 2,6000 people. This dataset provides a good face collection for facial research,

especially in facial re-identification. Lots of researches train the face-related network

based on this dataset. Figure 16 shows the example images from VGGFace dataset

for six identities.

Figure 16: VGGFace image examples [12]

2.4.2 Deep Learning Based Facial Expression Recognition

In this section, we introduce three main steps for deep-learning based facial expression

recognition methods, i.e., pre-processing, feature learning and feature classification.

we describe briefly about popular methods for each step.
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2.4.2.1 Pre-processing

Before training deep learning networks, we need to pre-processing datasets to

normalize irrelevant variations. Backgrounds, illuminations head poses and so on

are common influence for training networks, so some pre-processing methods, just

like face alignment, data augmentation and face normalization are used to deal with

input data.

2.4.2.2 Deep FER Networks

Deep learning networks capture high-level abstractions through neural networks. For

facial expression recognition, there are several kinds of neural networks architectures

to be used.

Convolutional Neural Networks: For convolutional neural network, there are

two types of important layers: convolutional layers and pooling layers. The

convolutional layer does most of the computational heavy lifting that is the core

block of CNN. With convolution operation, the network learns correlations among

neighboring pixels, reduces parameters quantity by sharing weight in the same

feature map, and becomes shift-invariance to input images. The pooling layer

reduces calculation cost of the network by reducing size of feature maps. Besides

convolutional layer and pooling layer, the fully connected layer could convert 2D

feature maps to 1D feature maps for classification at the end of networks. There

are kinds of CNN architecture to be proposed to solve facial expression recognition

problem: Faster region-based CNN, 3D CNN, and so on. Each architecture shows

different advantages and disadvantages for facial expression recognition, but most of

CNN-based architecture have better performance compared with other deep learning

architectures.

Dropout Layer: Dropout layers is a kind of structure which could randomly ignore

units during the training phase. More technically, each node are chosen to be dropped

or kept with specific probability at each training stage, and reduced network is left
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to continue calculating. The dropout layer is proposed by Srivastava et al. [13] to

prevent over-fitting.

Dropout layer helps to reduce interdependent learning amongst the neurons by

regularizing neural networks. Regularization is a kind of approach to prevent over-

fitting in machine learning by adding a penalty to the loss function. Figure 17

compares the difference between standard neural network and dropout neural

network. In the training phase, for each training sample, each hidden layer ignores a

random fraction of nodes for every iteration.

Based on the structure of dropout layer, networks learn more robust features that

are useful in various random subsets. As for learning calculation, the number of

iterations is doubled, but training time for each epoch is shorter.

Figure 17: Dropout model [13]

Batch Normalization Layer: Firstly, we explain what internal convariate shift is.

In most of neural networks training, we need to do data pre-processing to normalize

input. One of data normalization is resembling data to normal distribution (zero mean

and unitary variance). This kind of normalization could prevent the early saturation

of non-linear activation functions, assuring that all input data is in the same range of

values. But in the intermediate layers, the problem appears because the distribution

of the activation keeps changing during training. The whole training process is slow

because each layer needs to learn new distribution during every training step, and

this problem is known as internal convariate shift.

Ioffe et al. [31] proposed Batch Normalization (BN) layers to solve internal
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convariate shift. The basic theory of BN layers is normalizing the output of a

previous activation layer by subtracting the batch mean and dividing by the batch

standard deviation. Batch Normalization provides two trainable parameters to each

layer, so the normalized output is multiplied by a standard deviation parameter

and add a mean parameter. This operation lets stochastic gradient descent do the

denormalization by changing only these two weights rather than all the weights, and

keep the whole network stable. Besides, we can use higher learning rates since BN

layers keep the output of activation stable and reduce over-fitting. According to

Ioffer’s article, their ImageNet-based model achieves the same accuracy with fewer

training steps and reaches higher accuracy with unlimited steps.

ResNet: The ResNet was proposed by Kaiming et al. [14]. Before ResNet, deeper

neural networks are difficult to train. When networks go deeper, a degradation

problem will be exposed, accuracy get saturated and degrades rapidly. As we can

see, in deeper network, the gradient back-propagated to earlier layers is very small

and these layers are hard to change. Figure 18 shows the experiment of comparison

of two different depth networks. It shows that with the same number of iterations,

the network with 56 layers gets worse performance compared with the network with

20 layers.

Figure 18: Deeper network with worse performance [14]

In the ResNet, shortcut connection is used to solve the problem of

vanishing/exploding gradients. Figure 19 shows the structure of shortcut connection.

The output of this block is the following:
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Figure 19: Block of ResNet network [14]

Equation 3 [14] represents the output of the block during training where F (x)

and x represent the stacked non-linear layers and the identity function respectively.

Equation 4 [14] represents the actually learnt output for weight layers. This structure

makes sure the earlier layers can still have the identity x to gradient, even if there

is no gradient for the layers. If the identity mapping is optimal, the residuals can

easily be pushed to zero F (x) = 0 than to fit an identity mapping (x) by a stack of

non-linear layers.

H(x) = F (x) + x (3)

F (x) = H(x)− x (4)

Figure 20 shows the three structures (VGG-19, VGG-34, ResNet-34) that Kaiming

has tested. The one on the left is VGG-19 which is a state-of-the-art method in

ILSVRC 2014, and the one in the middle is VGG-34 which is the deeper network

version of VGG network. The one on the right is 34-layer residual network (ResNet).

The Figure 21 shows the comparison result. When plain network is used, VGG-19

has a better validation error than VGG-34 because of the vanishing gradient problem.

On the other hand, ResNet-34 is better than ResNet-19, which means the vanishing

gradient problem has been solved by shortcut connections. Comparing the left result

with the right result, ResNet-19 has almost the same performance as VGG-19 since

there is rarely any vanishing gradient problem.
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Figure 20: Plain VGG and ResNet structures [14]
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Figure 21: The validation error comparison between VGG-19, VGG-34 and ResNet-34
[14]

2.4.2.3 Facial Expression Classification

For facial expression classification, it tries to classify the feature maps from networks

to expression categories. Most of the time we could directly use fully connected layer

to calculate results, and it is based on the back-propagation theory of deep learning. In

CNN, the most common loss to be used is softmax loss. Besides softmax loss, support

vector machine and neural forests could be used to classify expression categories.

Support vector machine minimizes a margin-based loss instead of the cross-entropy,

whereas deep neural forests use softmax loss with neural forests structure to achieve

multiple results.

2.5 Static-Based Deep FER Networks

To recognize facial expressions on static images through deep learning networks,

people tried with lots of strategies and network structures to improve speed and

accuracy. In this section, we will introduce some good performance studies.

2.5.1 Fine-Tuning

To do facial expression recognition, normal shallow networks can not provide higher

accuracy, even when we provide better quality images or larger datasets. However,

when we take complex deep neural networks like AlexNet, GoogleNet, and VGG,
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which have a huge number of parameters, the result overfits easily if we train them

with a small dataset. Therefore, one would use fine-tuning method to train complex

networks to solve the over-fitting problem.

For facial expression recognition, there are many existing deep networks training

on large face dataset. VGG-Face is used to perform object recognition and is trained

on ImageNet [32]. Based on the study of Knyazev et al. [33], fine-tuning VGG-Face

networks with additional datasets can have good performance on facial expression

recognition. Besides fine-tuning deep networks directly, some studies do multistage

fine-tuning to achieve better performance. According to the work of Ng et al. [34],

they used two stage fine-tuning strategy with three different datasets and achieved

better performance than directly training.

2.5.2 Diverse Network Input

Most of the time, input images are only pre-processed by face alignment and face

normalization, which makes input data lack some information, such as textures or

invariance of scaling, rotation, occlusion and illumination. Thus, some studies try to

diverse input images by withdrawing multiple features as input.

According to G Levi [35] study, Local Binary Patterns (LBP) feature could

provide illumination-invariant for facial expression recognition, whereas SIFT [36]

could provide scale-invariant. Zeng et al. [37] tried to combine different kinds of

feature descriptors together and improved performance. Besides extracting features

from global images, splitting faces into regions of interest is a kind of approach to

diverse input. Chen et al. [38] tried to split face images into eyebrows, eyes and mouth

regions, and obtained 89.31% accuracy in CK+ dataset.

2.5.3 Network Ensemble

Cirecsan et al. [39] achieved near-human performance for image classification for

the first time by assembling multiple networks. According to previous research,

the diversity of networks and effective ensemble method are two important factors
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for network ensemble. In order to have diverse networks, using different training

data or architectures is a good way. Besides, pre-processing methods described in

Section 2.4.2.1 can generate different kinds of input to train networks. Size of filters,

size of neurons and number of layers also enhance network diversity. For network

ensemble, finding an optimal set of weights is an important part, SE Kahou[40]

proposed a method called random search which was able to exploit the complementary

information within the predictions of all models and yielded highest performing

technique on the test set.

2.6 Dynamic-Based Deep FER Networks

In this section, we introduce all kinds of dynamic-based deep networks and methods

for facial expression recognition. We can classify these methods into three categories:

frame aggregation, expression intensity network and deep spatio-temporal network.

2.6.1 Frame Aggregation

Frame aggregation techniques combine feature maps learned from sequential images

to predict facial expressions. The quality of each frame decides the accuracy of facial

expression recognition. There are kinds of studies proposed to aggregate the output

of network in each sequence to improve the performance.

According to the study of Kahou et al. [40], for each convolutional network, 7-class

probability vectors are aggregated to a fixed-length representation for each video-clip

and order their representations based on time. The result of frame aggregation is

represented by concatenating the averaged probabilities of a vector of 70 features. And

three years later, Kahou et al. [41] developed another way to do frame aggregation

by repeating frames uniformly to get 10 frames in total, which is able to solve the

insufficient frames with detected faces.
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2.6.2 Expression Intensity Network

Most of the time, the videos in databases for facial expression recognition use fixed

high-intensity to get better quality, but the intensity of videos keep changing in the

real world. Some of the studies tried to develop intensity-invariant facial expression

recognition methods.

Yu et al. [42] proposed Deeper Cascaded Peak-piloted Network (DCPN) for weak

expression recognition. There are three main techniques for DCPN: supervise non-

peak expression of the same type and subjects with peak expression; design a special

back-propagation algorithm that makes intermediate-layer feature maps close to

corresponding peak expression; use cascaded fine-tune to prevent the network from

over-fitting. DCPN hits 99.6% accuracy on CK+ database.

2.6.3 Deep Spatio-Temporal Network

The differences between normal convolutional neural networks and deep spatio-

temporal networks is that the later one takes a range of frames in a temporal window

as a single input, so deep spatio-temporal networks do prediction not only by spatial

relation feature, but also the temporal relation. There are lots of studies about deep

spatio-temporal network, such as RNN, C3D, and network ensemble. We introduce

the representation studies of each method and discuss their features.

2.6.3.1 RNN and C3D

The RNN is a kind of artificial neural network where connections between nodes

form a directed graph to extract temporal features in sequential frames. The decision

reached in a recurrent network at time step t − 1 affects the decision at time step

t. Based on this architecture, recurrent networks have two sources of input, the

present and the recent past, that is how RNN extract temporal features. After the

development of RNN, a variation of recurrent networks called long short-term memory

(LSTM) was proposed by Sepp et al. [43]. One of the most important improvements

for LSTMs is preservation of the error that can be back-propagated through time
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and layers. LSTMs allow recurrent neural units to continue learning over many time

steps, which opens a channel to link causes and effects.

It is always difficult for the recurrent neural network to train because of vanishing

and exploding gradients. Quoc et al.[44] proposed a method to use the identity

matrix or scaled version to initialize the recurrent weight matrix to solve hard-learning

problem in RNN. Some works tried to adjust LSTM structure to improve performance.

Zhenbo et al. [45] proposed an end-to-end architecture called Spatio-Temporal

Convolutional features with Nested LSTM (STC-NLSTM). This architecture used

3DCNN to extract spatio-temporal features from video and modeled the dynamics

of expressions with two sub-LSTMs, T-LSTM and C-LSTM. T-LSTM modeled the

temporal dynamics of the spatio-temporal features in each convolutional layer, and

C-LSTM integrated the outputs of all T-LSTMs to encode the multi-level features.

Overall, STC-NLSTM achieved 99.8% on CK+ database.

Actually, the advantages of convolutional neural networks in computer vision is

remarkable compared with recurrent neural networks. In 2015, Du et al. [46] proposed

an effective approach for convolutional neural networks to learn spatio-temporal

feature, called 3D ConvNets. The key points in 3D ConvNets are the structure

of the 3D convolution layer and pooling. Unlike 2D kernels, 3D convolutional layer

and pooling layer use 3D kernels with shared weights, which is able to capture the

temporal features. Besides the kind of convolution kernel whose weight is sharing

along the time axis, there is proposed deep temporal appearance network (DTAN)

whose 3D filters vary in importance over time proposed by Jung et al. [47]. By using

this kind of kernels, each filter plays a different role depending on the time.

2.6.3.2 Network Ensemble

Network Ensemble in facial expression recognition is almost the same as ensembling

all kinds of networks. The outputs of the whole architecture are based on combination

of various networks. The earliest network ensemble method in facial expression

recognition was proposed by Simonyan et al. [48]. Two CNN are trained to recognize

human action in sequential frames. One CNN is provided to extract dense optical
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flow on the multi-frame, while the other stream of CNN extracts appearance features.

In 2019, There is a multi-channel deep neural network that learns and fuses

the spatial and temporal features for facial expression recognition in image stream

proposed by Sun et al. [49]. The network extracts optical flow from the changes

between the peak expression face image and the neutral face image as the temporal

information, and uses emotion images as the spatial information. Then they fuse the

information to predict the expression result.

2.7 Related Libraries

In this section, we introduce the related softwares and libraries used to implement

our solution. They are Freenect, OpenNI2, NITE2, RealSense SDK, and CPython.

2.7.1 Freenect

Microsoft Kinect is one of the most popular RGB-D cameras presently, which is

developed by Microsoft Company. It is widely used to develop motion-related

games and applications. Freenect is an open-source driver for Kinect, which

could help Kinect to work on Linux, macOS and Windows. The features that

Freenect library provides are color image processing, IR and depth image processing,

registration of color and depth images, and multiple GPU and hardware acceleration

implementations for image processing.

2.7.2 OpenNI2

The main usage of OpenNI2 is to access compatible depth sensors of PrimeSense Inc.

The application could use it to initialize a sensor and receive depth, RGB, and IR

video streams from the device. OpenNI2 not only provides a single unified interface

to sensors, but also an interface that developers could use for implementing third

party middleware. The main three functions that OpenNI2 provides are: voice and

voice command recognition, hand gestures, and body motion tracking.
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2.7.3 NITE2

Like we mentioned in Section 2.7.2, there are many developed middlewares that could

provide powerful functions for users and NiTE2 is one of them. NiTE2 was developed

by PrimeSense Inc. The features provided are human detection, posture estimation,

hand tracking, and gesture detection. Although NiTE2 has been closed source for

many years, there are still many useful functions we can use, such as gesture detection

and skeleton detection.

2.7.4 RealSense SDK

RealSense SDK is a cross-platform library for RealSense cameras, which is also used by

OpenISS. This SDK has many functions that users could use to develop applications.

There are five main categories in SDK: viewer, depth quality tool, debug tools, code

samples, and wrappers.

In the viewer part, users could view the depth stream from multiple cameras,

record and playback camera depth stream data files, and control the camera settings.

As for depth quality tool, the z-accuracy, spatial noise, fill rate and distance to target

are already provided by this SDK, which saves a lot of extra work for users. RealSense

SDK also provides debug tools and allows users to access enumerate devices, fireware

logger, data collection and basic terminal. All of them cover almost everything to

tackle the possible issues. Finally, RealSense SDK supports multiple programming

languages and wrappers, such as C, C++, Python, Node.js and etc.. In OpenISS,

this SDK is integrated with C++.

2.7.5 CPython

CPython is implemented by Python and C, which could be defined as an interpreter

and a compiler since the Python code part is compiled into binary code before

being interpreted. The foreign function interface supports several other programming

languages. In OpenISS framework, CPython is used to pass the Python data structure

to C++ data structure and connect two different programming languages.
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2.8 Summary

In this chapter, we gave a brief review on facial analysis domains, especially on

face detection, facial landmark detection, and facial expression recognition. In face

detection part 2.2, we gave an introduction about the most common face detection

algorithms, which are based on haar-like detectors, HOG detectors, and convolution

neural network. And for facial landmark detection part 2.3, we explained the three

main categories, active appearance model methods, constrained local methods and

regression-based methods. As for facial expression recognition part 2.4, we mainly

researched for the deep learning based facial expression recognition works in this

area. We gave some details about datasets used in facial expression recognition part,

and discussed the main steps for developing a deep learning based facial expression

recognition solution. Besides that, there are two main categories for facial expression

recognition, which are static-based facial expression recognition and dynamic-based

facial expression recognition. We showed the basic network structures used in these

two areas in 2.5 and 2.6 separately. Lastly, we introduced the libraries that we used

in our work. In the next chapter, we will explain how we create our solution based

on these concepts.

43



Chapter 3

Framework Design

To achieve our goals mentioned in Section 1.4, we would like to propose an original

design for our solution. In this chapter, we will first explain why we decided to use

a framework solution. After, we introduce the architecture design of our proposed

framework, and explain how it addresses our requirements. Then, we present in more

details the structure of the modular components for the core framework. Lastly, we list

and explain all module components within the facial analysis specialized framework.

3.1 Why Framework Solution?

To achieve our goal, we decided to implement our solution using a framework design

approach. Below, we will explain how a framework solution can enable us to meet

each of the functional requirement listed in Section 1.4.

A software framework, with inherent generic architecture and development

environment, allows us to take it at our ease for its provided generic functionality, or

to implement customized code within its structure and make our application-specific

software. It is a commonly utilized tool in the software engineering and computer

programming industry with wide options of customization while providing a guided

structure to enforce the application flow [50] [51] [52]. According to the work of Pree

et al. [53], a software framework consists of two components:

• Frozen spot: Within a framework, frozen spots define the overall architecture
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of a software system, that is to say its basic components and the relationships

between them. These remain unchanged (frozen) in any instantiation of the

application framework.

• Hot spot: Within a framework, hot spots represents those parts where the

programmers using the framework add their own code to add the functionality

specific to their own project.

Based on analyzing our goal and usage scenarios mentioned in Chapter 1, we find

that the features of the framework design solution perfectly matches our requirements.

From the information we gathered, the three main features of the framework design

solution are as follows:

Inversion of control: In a library or application solution, the control flow of the

program is dictated by the caller, whereas it is dictated by the framework’s frozen

spots in a framework solution [54]. In order to realize the landmark-based facial action

mapping scenario mentioned in Section 1.5.1, we need to satisfy the following concrete

requirements: face detection in FR1 and facial landmark detection in FR2. And in

FR3, we determined to provide a solution to connect the processes of face detection

and facial landmark detection seamlessly, which means there exists a data flow from

the former output to the latter’s input. But from the user’s perspective, they only

want to obtain a valid result to continue with their proceeding work rather than

to take extra time to process intermediate results between the processing phases. In

this case, the framework solution could help them achieve a clean and simple program

flow by setting the process flow in advance. It is like boarding on a non-stop flight

rather than a connecting flight. Under such consideration, having a predictable and

controllable program flow that is important. Using a framework design approach, the

framework’s frozen spots architecture can allow the user to defined such a control

flow, which is then enacted automatically by the framework’s inversion of control.

Extensibility: A user can extend the framework, usually by selective overriding

or by adding specialized code to provide specific functionality [54]. In our case,

we have mentioned in Section 1.5.4 that one of our non-functional requirements
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is extensibility, which should allow developers to add new functionality or modify

existing functionality without impairing the existing system functions. We need an

extensible solution which can support various kinds of cameras (FR8) as well as

facial analysis algorithms (FR6 and FR7). For example, one of the requirements

is to allow the utilization of deep learning algorithm to increase the accuracy in

expression matching, as we move forward, the demand for more and more accurate

results will lead the incorporation of new algorithms in the system, which should not

impact other pre-existing solutions. Framework extensibility provides us with such a

convenience that enables us to easily change or add specialized implementations and

cameras to provide the required functionality.

Non-modifiable framework code: The framework code, in general, is not

supposed to be modified, while accepting user-implemented extensions. In other

words, users can extend the framework, but cannot modify its existing code [54]. A

framework solution has hot spots for addition and modification to allow developers

to implement their own application, and it also has frozen spots that are fixed

unchangeable code. The frozen spots controls the flow of the program by acting

as a skeleton. This structure allows developers to add their own extensions (i.e. hot

spot instances) to the existing skeleton to make a complete solution. This increases

the reliability of our solution and reduces the programming and testing effort.

Based on the above features, we can conclude that a framework solution addresses

our needs and requirements. Our abstract structure of the framework solution

can be defined with two major components: core framework formulated by frozen

spots and specialized implementations as hot spot instantiation. Within the core

framework, frozen spot helps define infrastructures like cameras, common data

structure, viewer portal and etc. Then we add specialized implementations such as

specialized algorithms on top of the core framework to build the complete framework

solution that achieves desired functionality. The framework is designed so that it can

eventually be used for the implementation of a wide array of image processing needs

for the computer animation and augmented reality applications. In our work, we only

focus on facial analysis.
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3.2 OpenISS Framework Design Overview

Figure 22 shows the overall design of our framework solution named the OpenISS

framework. It is designed to implement three kinds of computer analysis: facial

analysis, body analysis and gesture analysis. The OpenISS framework has two major

components. The first is the core framework, which consists of frozen spots. The

second is a group of three analysis modules hot spots.

Figure 22: Framework structure diagram

The core framework provides fundamental service modules for the entire

framework, here are their basic definitions:

• Device Module: Provides the device extensibility of our framework, which could

support different camera devices or add new cameras to be used as OpenISS

camera input.

• Common Data Structures Module: Provides the framework-wise data structures

for our own algorithms which were adapted from existing lower level libraries

and software.

• Viewer Module: Provides the framework’s visualization abstraction, which in

our case can be used to help visualize our system’s result, and ultimately allows
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the user to check their output (i.e. images, videos).

• Deep Learning Support Module: Provides support for users to implement or

invoke deep learning based solutions.

• Pipeline Module: Provides an infrastructure to define and control the task flow.

It provides control of flow from the entry for the program until the end of

the entire process, while being responsible for constructing different functional

pipelines.

As for the other three analysis modules in OpenISS framework, facial analysis

module, gesture analysis module and body analysis module, each of them provides

different analysis functionalities. For our facial analysis focus, the facial analysis

module provides face detection, facial landmark detection, and expression recognition,

which are all kinds of facial analysis functionalities that satisfy our research need.

Note that the facial analysis module combined with the framework core forms the

OpenISS Facial Analysis Specialized Framework. This naming convention will

be used for our custom designed framework from now on. As shown in the Figure 23

below.

Figure 23: OpenISS facial analysis specialized framework
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3.3 OpenISS Core Framework

In this section, we explain the details of the five modules in OpenISS core framework:

device module, viewer module, pipeline module, deep learning support module and

common data structure module.

3.3.1 Device Module

The device module provides functionality for adapting different data structures of

various camera devices to provide common APIs for data processing. For example,

the data streams provided by different camera devices are various and need to be

analyzed and processed by different SDKs and libraries. The library for transferring

Kinect v1 data stream is Freenect, the library for Kinect v2 data stream is Freenect2,

and web cameras can directly get image stream without any SDK or library. This

requires us to provide a specialized adapter to analyze different data streams for each

type of camera device we use. Figure 24 shows the structure of device module.

Figure 24: Device module structure

Class OIDevice is an abstract class, which contains the following functions:

Function init() is used to initialize different camera devices before using it. Functions

open() and close() are used to control the opening and closing of the camera

device. Functions enableColor(), enableDepth(), and enableRegistered() enable
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device to capture different types of frame stream, like RGB stream, depth stream

and IR stream. Function readFrame(StreamType frameType) allows users to obtain

different frames by passing different enumerate values of the stream type, which

represents the type of the stream’s frame elements. For example, if users pass

value openiss::COLOR STREAM of StreamType to readFrame, then they can get

a OIFrame instance with captured RGB frame information inside.

This module incorporates the factory design pattern, which removes the

instantiation of actual implementation classes from user-implemented code. In this

way, we can manage different concrete subclasses more easily. For example, now,

our framework can support three types of camera devices: Kinect v1, Kinect v2, and

RealSenseD435. Assuming we want to use RealSenseD435 in our system as the camera

device, there are only two steps to implement: create a OIDeviceFactory instance,

get the OIDevice pointer that points to OIRealSenseD435 instance by inputting

“RealSenseD435” into the create(const char *devName) function of OIDeviceFactory

instance. After these two steps, we can get the OIDevice pointer and use it to transfer

RealSenseD435’s data structure into our common data structure.

On the other hand, there are only two steps for device module to provide support

for new device: (1) create a subclass inheriting OIDevice and implement the virtual

methods (2) add the logic to instantiate the new device in OIDeviceFactory class.

3.3.2 Common Data Structures Module

The OpenISS framework modules need to communicate in a uniform and consistent

way, which leads to the requirement for having common data structures. These

common data structures are accepted by all modules within the framework. They

enable a uniform representation of various data captured by input device and ensure

the standardization of the intermediate result between modules from the capture until

the final output.

The core class is OIFrame, whose structure is shown in Figure 25. Each OIDevice

will transfer data stream into this common data structure class. And the data

structure inside OIFrame is saved as cv::Mat which belongs to the OpenCV library.
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Besides, RGB image, depth image and IR image (image captured by infrared imaging

technique) are also saved as different OIFrame instances.

Figure 25: OIFrame class

3.3.3 Deep Learning Support Module

Based on our functional requirements FR7, we want to support deep learning

implementations(FR7) in our framework. According to our research, Python has

better support for deep learning libraries such as TensorFlow, Keras and etc.

compared with C++. Thus, it is common for people to train or to execute deep

learning algorithms under Python. Since our framework is implemented with C++

for better execution speed, we need this module to realize data transfer from our

framework input in C++ to Python based deep learning implementations, and allows

the computation result from Python deep learning script to transfer back to our

framework.

In order to bridge between C++ and Python, we integrate CPython into our

framework. The introduction of CPython are mentioned in Section 2.7.5. Figure

26 shows how an adapter written with C++ could communicate with Python

implementation written with Python. And in Section 4.1.1.3 and 4.1.1.4, we will

give more concrete examples for this module.

Figure 26: Data flow between C++ and Python

In this module, OIPythonEnv is the core class. Figure 27 shows the main functions
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of OIPythonEnv. With this class, you can instantiate an object of a Python class, load

a Python function, invoke a Python method, etc. In order to integrate Python-based

deep learning implementations into the framework, you can create a C++ wrapper,

which contains a OIPythonEnv instance. Then set up the Python script file name

and target C++ function name in OIPythonEnv, and so OIPythonEnv will know

which python file it can access and which function it could invoke. Finally, you can

access your Python-based implementations in our C++ framework. More details will

be discussed in Section 4.1.1.3 and Section 4.1.1.4.

Figure 27: OIPythonEnv class

3.3.4 Viewer Module

The viewer module is responsible for displaying the resulting data for visualization

purpose. Figure 28 shows the structure of viewer module.

OIViewer is an abstract class which provides functionalities around data structure

visualization. ViaOIViewer, we are able to look at RGB image, depth image and other

image data types that exist in our framework on the same screen. OIViewerFactory is

used to create concrete subclass instances for OIViewer by passing different strings.

Currently, we only provide one implementation, OIOpenCVViewer, based on the

OpenCV library.
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Figure 28: Viewer module structure

3.3.5 Pipeline Module

The pipeline module is the framework’s pipeline definition/execution module. It

allows developers to set up an execution sequence within the framework. It determines

and then controls the whole process execution from the entry point to the final

output of our framework solution. Figure 29 shows the structure of pipeline module.

OIPipeline is an abstract class used to execute an image processing process in the

OpenISS framework. The execute() function starts the execution of framework

solution and the close() function is used to terminate the execution.

OIPipelineFactory is used to create the concrete subclass of OIPipeline.

In the function of createPipeline(const char *functionName, std::vector<string>

paramStrings), parameter functionName determines the type of OIPipeline’s

subclass, and paramter paramStrings determines the functionalities and execution

order inside concrete instance. We are going to discuss more details with specific

examples in Section 4.1.2 and Section 4.2.

3.4 Facial Analysis Specialized Framework

In this section, we introduce the design of our facial analysis specialized framework.

Like we mentioned at the end of Section 3.2, the facial analysis specialized framework

consists of two parts: OpenISS core framework and facial analysis module. The
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Figure 29: Pipeline module structure

combination of these two constitutes the Facial Analysis Specialized Framework. We

have given details of the OpenISS core framework in Section 3.3, so we introduce

the facial analysis module here. We shall explain how we instantiate this specialized

framework and create concrete applications through it in Chapter 4. According to

Figure 22, the facial analysis module consists of four submodules (face detection

submodule, facial landmark detection submodule, static-based facial expression

recognition submodule, dynamic-based facial expression recognition submodule).

Figure 30 shows the general relationship between our framework common data

structure, OIFrame, and the specialized data structures for each analysis module.

Generally, after initial processing, OIFrame passes information into each specialized

data structure of each analysis module, so each module can use this frame information

to do corresponding analysis. Our focus is the facial analysis module which hasOIFace

as its common data structure. As data arrives in facial analysis module, OIFace copies

the frame information from OIFrame. After that, OIFace obtains the produced facial

analysis data from each submodule, such as bounding box location of detected face,

facial landmarks, and expression category probabilities. We will explain the details

about OIFace and the functional submodules in this section.
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Figure 30: Data relationship between core framework and analysis modules

3.4.1 OIFace

OIFace can store different types of images (RGB image, depth image, IR image)

based on the input data of camera devices. For example, web camera only provides

RGB image, whereas Kinect v1 could provide RGB image, depth image and IR image

at the same time for one frame. On the other hand, there could be many faces that

exist in one frame.

Figure 31: OIFace class

The variable faceVector represents a vector which is used to store the bounding
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box locations for all faces in a captured frame. The nested vector is used to save

the four location points of one bounding box. The outer vector stores all these

nested vectors which belong to each of the different faces in the frame. Variable

facialLandmarkVector has the same structure as variable faceVector. The nested

layer vector is used to store facial landmark location points for one face and the outer

vector is used to store all these nested vectors which belong to different faces. It

is the same for variable expressionVector, but the nested vector is used to store the

expression categories probability for each face. For example, if the nested vector stores

five numbers, (0.1, 0.2, 0.2, 0.4, 0.1), it represents the corresponding probability value

calculated for each expression category. For our example, it means: expression 0 is

0.1, expression 1 is 0.2, expression 2 is 0.2, expression 3 is 0.4, and expression 4 is

0.1.

3.4.2 Functional Submodules of Facial Analysis Module

In this section, we will discuss the common structure design of the four submodules

of the facial analysis module. Then we shall explain why we landed on this structure

design. The details of instantiating each functional submodule will be discussed in

Chapter 4.

Figure 32: Common structure of functional submodule
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Figure 32 shows the common structure of facial analysis submodules. As we

can see from this figure, all our facial analysis submodules follow factory design

pattern. For each submodule, there is one AdapterFactory and one Adapter abstract

superclass. In this way, we could switch among different adapters and add new

adapters with different implementations easily. For example, assuming that some

developers want to integrate their facial analysis implementation into our framework.

Since we employed the factory design pattern, you still need to add the logic to

instantiate the appended device in OIDeviceFactory class as well as the device-related

memory deallocation when it is useless. There are two steps for integration:

• create a new adapter inheriting OIAdapter and implement the virtual methods.

• add the logic to instantiate the new adapter in OIDeviceFactory class.

As for the switching between existing implementations, the user could easily create

different instantiation of OIAdapter through AdapterFactory. More details will be

discussed in Chapter 4. Here are the structure of four functional submodules.

3.4.2.1 Face Detection Submodule

This submodule is aiming to get the bounding box location points of all the faces in

one frame. Figure 33 shows the structure of face detection submodule.

Figure 33: Face detection submodule structure

Class OIFaceDetectionAdaptorFactory is used to create concrete subclass of

OIFaceDetectionAdater and OIFaceDetectionAdapterFactory will create different
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subclass objects according to different input parameters of the function cre-

ateAdapter(const char *adapterName).

OIFaceDetectionAdapter is an abstraction class which contains a main function:

getFaceVector(), which is used to get bounding box for all faces in one frame. The

input for this function is OIFace, which contains the necessary information, like RGB

image, depth image or IR image for face detection algorithm. And the detected

bounding box will be stored inside the variable faceVector of OIFace object, and the

copied result be returned.

3.4.2.2 Facial Landmark Detection Submodule

This submodule is aiming to get the facial landmark location points which are the

key points on a face. Figure 34 shows the structure of facial landmark detection

submodule.

Figure 34: Facial landmark detection submodule structure

The class OIFLDAdapterFactory is used to create concrete subclass of

OIFLDAdapter, where “FLD” represents facial landmark detection. The class

OIFLDAdapterFactory will create different subclass objects according to different

input parameters of the function createAdapter(const char *adapterName).

OIFLDAdapter is an abstraction class. The main function for this class is

getFacialLandmarkVector. The input for this function is OIFace which contains

related facial information for facial landmark detection. In order to get the facial

landmark location points, the algorithm needs the detected face images, which

could be obtained from the OIFace object. And after getting the result of the
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facial landmark detection algorithm, these landmarks will be stored in the variable

faceFacialLandmarkVector of the OIFace object and also be returned

3.4.2.3 Static-based Facial Expression Recognition Submodule

This submodule is aiming to get the probabilities of facial expression categories for

each face in one frame. Figure 35 shows the structure of this submodule.

Figure 35: Static-based facial expression recognition submodule structure

The class OISFERAdapterFactory provides the function for creating concrete

subclass of OISFERAdapter. It can create different subclass objects according to

different input parameters of the function createAdapter(const char *adapterName).

OISFERAdapter is an abstract class. The main function for this class is

getFacialExpressionVector(). As we discussed in related work Section 2.5, static-

based facial expression recognition could recognize the expression categories based on

single human face image.

By passing an OIFace instance to the getFacialExpressionVector() function, the

static-based facial expression recognition algorithm can receive the detected face

image from variable faceVector of OIFace and calculate the probability for each

expression category. The result will be stored in variable expressionVector of OIFace.

3.4.2.4 Dynamic-based Facial Expression Recognition Submodule

Unlike static-based facial expression recognition (FER) that only classifies the single

frame expression to a category, dynamic-based FER focuses on the underlying
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expression progression, further analyze the facial features change across the frames

to determine the trend in expression change, and assign the trend demonstrated over

the frames to a certain expression category.

Based on the characteristics of these two FER approaches, static-based FER takes

a single frame as input whereas dynamic-based FER takes frame sequences as input.

Therefore, they belong to two submodules with two different abstract classes.

This submodule is aiming to generate calculated probabilities for facial expression

categories for the detected face images according to their frame sequence, while

supporting multi-face concurrent processing. The definition of dynamic-based facial

expression recognition can be found in Section 2.6. The number of input frames

depends on the algorithm. Figure 36 shows the structure of this submodule.

Figure 36: Dynamic-based facial expression recognition submodule structure

Class OIDFERAdapterFactory provides the function for creating concrete

subclass of OIDFERAdapter. It can create different subclasses according to different

input parameters of function createAdapter(const char *adapterName).

OIDFERAdapter is an abstract class. The main function for this class is

getFacialExpressionVector. As we discussed in related work Section 2.6, dynamic-

based facial expression recognition could recognize the expression categories in

continuous facial expression frame sequences. So the input for this function is vector

of OIFace. The algorithm can receive the stream of detected facial expression images

from the vector of OIFace and calculate the probability for each expression category.

The result will be stored in variable expressionVector of each OIFace.
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3.5 Summary

In this chapter, we introduced the design of our framework solution. At the beginning,

we introduced how a framework solution could fulfill our goals and requirements in

Section 3.1. Then we presented the structure of our framework solution, which could

be split into two parts: core framework design in Section 3.2 and facial analysis

specialized framework design in Section 3.4. In each part, we gave details about the

structure, the functions and general usage of each component and how we composed

each component together. In the next chapter, we will introduce how we instantiate

our framework and how to build concrete applications with framework instance.
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Chapter 4

Framework Instantiation and

Application

In Chapter 3, we have discussed the design of our framework. In this chapter, we

are going to introduce how we create an instance of the framework to implement our

facial analysis solutions. We will introduce how we instantiate different functional

submodules inside the facial analysis module, which includes the implementation

details of each facial analysis methods. Besides that, we will also propose an instance

of the pipeline module, OIFacePipeline, which is used to provide the key feature

known as inversion of control of our framework solution. It can help the users to create

their customized applications easily. At the end of this chapter, we give concrete

examples of how we build applications using our framework. Figure 37 shows the

relationship between framework instance and applications.

4.1 Framework Instantiation

4.1.1 Facial Analysis Module Instantiation

In this section, we explain the methodology used in our facial analysis module

instantiation process. From Figure 37, we can see that our facial analysis module

consists of four submodules, and for each of them there are 2 or 3 kinds of
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Figure 37: Framework instance

implementations. The details are listed below:

Submodule Name Number of Implementation
Face Detection 3
Facial Landmark Detection 3
Static-based Facial Expression Recognition 3
Dynamic-based Facial Expression Recognition 2

In the following subsection, we will describe them in detail one by one.

Our framework design is based on the assumption that some users might prefer

to add their implemented algorithm into our framework, including using ready-to-use

algorithms provided by other libraries. Therefore, we named our concrete subclass as

‘adapter’ meaning that the user can choose either to write their own code inside our

framework, or to simply adapt existing functions of other libraries into our framework.

4.1.1.1 Face Detection Submodule Instantiation

According to our research on face detection area in Section 2.2, we select three face

detectors and integrate them into our framework. They are:

• Haar-cascade face detector
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• HOG face detector

• Single shot multiBox face detector (SSD)

The reason why we choose them is that these detectors are all widely used in real-

world applications. And more importantly, they can satisfy the real-time requirement

and achieve good accuracy according to our survey. Figure 33 shows the structure of

face detection submodule.

Figure 38: Face detection submodule instantiation

From the implementation point of view, these three face detectors are implemented

as three concrete subclasses. They are HaarFaceDetectionAdapter, HogFaceDe-

tectionAdapter and SSDFaceDetectionAdapter. “HaarAdapter”, “HOGAdapter”,

and “SSDAdapter” are three key words which could be fitted into function

createAdapter(const char *adapterName) of OIFaceDetectionAdapterFactory to

determine which concrete subclasses instance will be created. In the following

paragraph, we will describe their implementation in detail.

(1) Haar-cascade Face Detection

Haar-cascade face detector (HFD) is a technique for face detection depending on

handcrafted feature.

In our solution, we are not going to implement the HFD algorithm from scratch

but import the OpenCV’s implementation into our framework. More specifically, that
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can be done by the class named CascadeClassifier. The following 3 steps are required

to enable this functionality:

1. Create an instance of cv::CascadeClassifier

2. Load a Haar-cascade pretrained model into cv::CascadeClassifier by cv::-

CascadeClassifier::load method

3. Process the input image with cv::CascadeClassifier::detectMultiScale method,

and the boundary rectangles for the detected faces will be returned with type

std::vector<cv::Rect>

(2) Histograms of Oriented Gradients Face Detection

Histograms of Oriented Gradients face Detection is a combination of Histograms

of Gradients (HOG) with LinearSVM, which has been mentioned in Section 2.2.2.

In our solution, we adapted the implementation of HOG face detector from the

Dlib library [55]. The model they produced was trained on 2825 images from LFW

dataset [56]. The adaptation process can be described as following:

1. Get an instance of class dlib::frontal face detector by using method

dlib::get frontal face detector()

2. Convert the format of the input image to type cv image<bgr pixel>

3. Fit the transferred input image into face detector and get the boundary box of

the detected face with type std::vector<dlib::rectangle>

(3) SSD Face Detection

The face detection method we chose here is Single Shot MultiBox Detector

(SSD)[4], which is a CNN-based face detection. More details have been given in

Section 2.2.3.1.

The way we implement the SSD face detector is based on the ResNet-10

architecture of the OpenCV library [57]. This architecture provides the OpenCV
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library with the ability to load serialized networks models from different deep learning

frameworks and calculate a model result. The SSD model that we provide are trained

on the WIDER-FACE dataset [58] with 14000 epochs under Caffe deep learning

framework. The basic framework integration steps are the following:

1. Load trained SSD model into class cv::dnn::Net of OpenCV dnn architecture

2. Preprocess our input image by calling function cv::dnn::blobFromImage()

3. After calculation of SSD model, save the detected bounding box of each face

into OIFace

4.1.1.2 Facial Landmark Detection Submodule Instantiation

According to our research on facial landmark detection area in Section 2.3, we select

three face detectors and integrate them into our framework. They are:

• Local Binary Features (LBF) facial landmark detector

• Constrained Local Neural Fields (CLNF) facial landmark detector

• Convolutional Experts Constrained Local Model (CECLM) facial landmark

detector

According to our survey, these detectors satisfy our real-time functional

requirements (FR3) mentioned in Section 1.5.1. Meanwhile, these detectors are all

implemented based on 68-points facial landmark model, which is consistent in terms

of performance speed and accuracy, and is easy for us to compare the performance

result. Figure 39 shows the instantiations of this submodule.

From an implementation point of view, these three facial landmark detectors

are implemented as three concrete subclasses. They are LBFFLDAdapter,

CLNFFLDAdapter and CECLMFLDAdapter. “LBFAdapter”, “CLNFAdapter”,

and “CECLMAdapter” are three keywords which could be fitted into function

createAdapter(const char *adapterName) of OIFLDAdapterFactory to determine
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Figure 39: Facial landmark detection submodule instantiation

which concrete subclass instance will be created. In the following paragraphs, we

will describe their implementations in detail.

(1) LBF Facial Landmark Detector

The LBF facial landmark detector is based on the paper titled “Face Alignment

at 3000 FPS via Regressing Local Binary Features” by Shaoqing at el. [7] and it is

also a regression approach. The details of LBF facial landmark detector have been

mentioned in Section 2.3.3.1.

The way we implement this detector is based on OpenCV library [57]. In order

to implement LBF facial landmark detector, we load the LBF detector model into

the Facemark class. The implementation steps to integrate this algorithm in our

framework are the following:

1. Use cv::FacemarkLBF::create() function to create a facial landmark detector

instance of class Facemark

2. Load a pretrained model of LBF into Facemark instance

3. Pass the captured frame and detected face rectangles to the created facial

landmark detector, the output of the facial landmark detector will be 68 facial

landmarks on each face of the frame
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(2) CLNF Facial Landmark Detector

CLNF facial landmark detector is based on constrained local methods (CLM)

facial landmark detection algorithm and proposed by Tadas et al. [5]. The details of

CLNF facial landmark detector have been mentioned in Section 2.3.2.1.

The way we implement this detector is based on OpenFace library [59]. The

implementation steps to integrate this algorithm in our framework are the following:

1. Create a facial landmark detector parameter setter instance of class

LandmarkDetector::FaceModelParameters

2. Pass the path of a pretrained CLNF model to LandmarkDetector-

::FaceModelParameters instance

3. Create a class LandmarkDetector::CLNF instance as facial landmark detector

by passing LandmarkDetector::FaceModelParameters instance as a variable to

constructor function

4. Fit class LandmarkDetector::CLNF instance and a grayscale face image

into function LandmarkDetector::DetectLandmarks(), the output of the facial

landmark detector will be the 68 facial landmarks on each face of the frame

(3) CECLM Facial Landmark Detector

The CECLM facial landmark detector is proposed by Zadeh et al. [6]. The details

of the CECLM facial landmark detector have been mentioned in Section 2.3.2.2.

The way we implement the CECLM facial landmark detection algorithm is based

on OpenFace library [59]. The implementation steps to integrate this algorithm in

our framework are the following:

1. Create a facial landmark detector parameter setter instance of class

LandmarkDetector::FaceModelParameters

2. Pass the path of a pretrained CECLM model to LandmarkDetec-

tor::FaceModelParameters instance
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3. Create a class LandmarkDetector::CECLM instance as a facial landmark

detector by passing LandmarkDetector::FaceModelParameters instance as a

variable to the constructor function

4. Fit class LandmarkDetector::CECLM instance and a grayscale face image

into function LandmarkDetector::DetectLandmarks(), the output of the facial

landmark detector will be the 68 facial landmarks on each face of the frame

4.1.1.3 Static-based Facial Expression Recognition Submodule Instanti-

ation

According to our research on static-based facial expression recognition area in Section

2.5, we pretrained three deep learning models and adapted them into our framework,

which could help us implement our static-based expression recognition functionality.

These models are:

• Shallow 2D-CNN model

• ResNet34 model

• Fine-tuning ResNet50 model

The reason why we choose them is that according to our survey, deep learning methods

are predominant methods with the highest accuracy in static-based facial expression

recognition area. Most methods that are not implemented with deep learning have

rather poor performance from the accuracy point of view. Therefore, due to the

solid requirement in expression recognition accuracy (FR6 and FR7), we chose to

incorporate deep learning methods for our implementations.

On the other hand, with the research time and budget constraints, it is unrealistic

to do deep learning training on large human face expression database (multimillion

images). In this case, there might be issues like over-fitting if we insist on training the

state-of-the-art complex deep learning models on a small facial expression database.

To avoid these issues, we chose the shallow 2D-CNN and the ResNet network

architecture for model training. The former, as a shallow model with a small number
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of parameters, would be less likely to cause over-fitting on small facial expression

database. The latter has a special architecture designed for eliminating the over-

fitting issue, and will be discussed in detail later in this section. Figure 40 shows the

instantiations of this submodule.

Figure 40: Static-based facial expression recognition submodule instantiation

From an implementation point of view, these three face detectors are

implemented as three concrete subclasses. They are ShallowCNNSFERAdapter,

ResNet34FERAdapter and FineTuneSFERAdapter. “ShallowCNNAdapter”,

“ResNet34Adapter”, and “FineTuneAdapter” are three keywords which could be

fitted into function createAdapter(const char *adapterName) of OISFERAdapterFac-

tory to determine which concrete subclasses instance will be created. In the following

paragraphs, we will describe their implementation in detail.

(1) 2D-CNN

2D-CNN shallow network learns the complex and abstract features to recognize

facial expression. The structure of our shallow network is a 14-layer convolutional

neural network, which includes convolutional layers, pooling layers, dropout layers

and batch-normalization layers.

The whole structure of the network is shown in Table 1. The input of the

network is 48 x 48 pixels face image. In our framework, we take the RGB image

of the detected face as input of our network. And the output of the network
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are probabilities of 7 expression categories . Besides regular convolutional blocks

(convolutional layer, pooling layer), we plug in additional dropout layers and batch-

normalization layers. Dropout layers reduce over-fitting and improve generalization

error remarkably by randomly ignoring nodes in each iteration during training phase.

Batch normalization layers solve the internal covariate shift problem by normalizing

the output of activation layers. The details of dropout layers and BN layers are

discussed in Section 2.4.2.2.

Table 1: 2D-CNN Shallow Network Model

Layer Type Output shape
1 Conv2D (None, 48, 48, 32)
2 Conv2D (None, 48, 48, 64)
3 Conv2D (None, 48, 48, 64)
4 MaxPool (None, 9, 9, 64)
5 Dropout (None, 9, 9, 64)
6 Conv2D (None, 7, 7, 128)
7 Conv2D (None, 5, 5, 128)
8 MaxPool (None, 1, 1, 128)
9 Dropout (None, 1, 1, 128)
10 BN (None, 1, 1, 128)
11 Flatten (None, 128)
12 Dense (None, 500)
13 Dropout (None, 500)
14 Dense (None, 7)

Implementation Details There are two main steps for the implementation:

train a suitable 2D-CNN FER model and integrate the model into our framework.

In the model training phase, we choose the FER2013 database mentioned in

Section 2.4.1 as our training database. Based on the features of the FER2013 dataset,

we take data augmentation and normalization as our pre-processing methods. In the

data pre-processing phase, we use Python to read 32,298 face images and split them

into a 28,709 images training set and a 3,589 images testing set. After encoding the

training labels with one-hot encoding, we take flipping, rotating from -15 degree to 15

degree, noising and cropping operations on training images as our data augmentation

methods, which extend our dataset and improve our network robustness. In order

to normalize our training images, each pixel of all images are normalized to float
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number and ranged among (-1, 1). After resizing each image to 48 x 48 pixels,

we input these processed images to train our model. According to our experiment,

the data augmentation improves the accuracy by 10% and the image normalization

improves the accuracy by 4%.

After we get the trained model, we integrate the model into our framework.

We have discussed the deep learning support module in Section 3.3.3. Figure 41

shows how one static-based facial expression recognition adapter calls the Python-

based deep learning model to get the predicted facial expression probabilities result.

OISFERAdapter represents the concrete three adapter subclasses. FER2D.cpp is

a C++ wrapper class mentioned in Section 3.3.3, which is used to transfer data

structures betweem C++ and Python. Class OIPythonEnv only accepts or returns

the PyObject data structure, which needs to be transferred inside C++ wrapper

class. OIPythonEnv invokes the function we defined in fer 2d.py and the Python

script will call our trained neural network model to calculate the facial expression

probabilities result of our input image. Reversing the flow, OISFERAdapter can get

the facial expression probabilities result calculated by deep learning model. Figure

42 shows the main function of our C++ wrapper class FER2D. Function predict()

takes an image img and an integer model as input. The img represents the current

face image and integer model represents the model that we choose to calculate our

result. According to our design, we save all the deep learning models in file fer 2d.py.

For static-based facial expression recognition, there are three deep learning networks

saved in fer 2d.py, “Shallow 2D-CNN”, “ResNet34” and “Fine-tuning ResNet50”.

Once function predict() of fer 2d.py gets parameter model. It can choose different

trained models to calculate results.

Figure 41: Process for static-based facial expression recognition adapter calling
Python network model
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For shallow 2D-CNN, the OISFERAdapter is ShallowCNNSFERAdapter. Once

we fit model with “1”, we select “Shallow 2D-CNN” network model as our deep

learning network model for static-based facial expression recognition. In order to

satisfy the requirements of network input, each image needs to be pre-processed by

resizing and normalization. And after being calculated by our trained 2D-CNN model,

the one-hot encoding expression vector is returned as the recognition result.

Figure 42: Main function of FER2D class

(2) ResNet34:

The structure of ResNet34 that we take is based on Kaiming et al. [14]. We

have discussed the details of ResNet in Section 2.4.2.2. The reason for choosing the

ResNet34 neural network structure is for solving the vanishing gradient problem in

deeper networks. Unlike the original structure of ResNet34, we add dropout layers,

BN layers, and we do not initial CP blocking, which increase the accuracy by 6%

compared with the accuracy of the original ResNet34 model. At the flatten layer, we

provide a more narrow structure with 256 feature maps rather than the original 512

feature maps. The input of our ResNet is 3 x 48 x 48, which is a 48 x 48 pixels image

with three channels. And our output are probabilities of seven expressions.

Implementation Details We first discuss the details of how to train the

ResNet34, then propose the integration of network model and our framework. Based

on the input and output of our network, we choose FER2013 dataset mentioned in

Section 2.4.1 as our training dataset. After obtaining face images from FER2013, we

divide these images into three parts: 25,839 training images, 2,870 validation images

and 3,589 testing images. The input for the network is 3 x 48 x 48, so we resize the

images into 48 x 48 pixels with three channels. Besides resizing, we provide rotation,

shearing, zooming and flipping as data augmentation methods to extend our training
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set. In order to have a good accuracy for our network, we use Adam as our optimizer

with 0.001 learning rate. The loss function that we choose is categorical cross-entropy.

The deep learning support module provides same integration method for

“ResNet34” network model as “Shallow 2D-CNN” network model. The data flow

between ResNet34SFERAdapter and fer 2d.py is the same as Figure 41. The slight

difference between the two models is that ResNet takes 3 x 48 x 48 as input and 2D-

CNN takes 1 x 48 x 48 as input, which means we need to use different pre-processing

methods to process our input image.

(3) Fine-tuning ResNet50

This network is the most accurate method that we provide in static-based FER

submodule. The network structure is 50-layer ResNet and the input is 3 x 197 x 197.

3 represents the number of channels of each image and 197 x 197 represents the size

of each image.

Implementation Details In the training phase, we use the fine-tuning methods

to train our ResNet50 model. Fine-tuning is a kind of method for neural network

training, which tries to solve the over-fitting problem by multi-stage training.

The standard process for fine-tuning is to first use a large-scale dataset to train

the network, then use a more specific dataset to help the network focus on the

requirements of our research. The details of the fine-tuning method is mentioned

in Section 2.5.1. In our fine-tuning method, we use VGGFace [12] dataset to pre-

train our neural network. VGGFace dataset is a large face dataset with 2,6000 people

and 2.6 million images. This dataset provides a thousand images per identity, which

is a good collection for face. The details of VGGFace are mentioned in 2.4.1. So

the first step of training is using VGGFace dataset to train ResNet50 network. After

obtaining the proper network model with the ability to recognize face, we start to

train this network model to recognize facial expressions. In this stage, we choose

FER2013 as our fine-tuning dataset. The details of FER2013 are mentioned in 2.4.1.

The input of our network model is 3 x 197 x 197, so we need to resize each image

of FER2013 into 197 x 197 pixels. In order to keep the quality of the training images,
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we choose bilinear interpolation as our scale-up algorithm, which means each value

of the interpolated pixel is a weighted average of the value of four surrounding pixels.

Figure 43 shows the performance of bilinear interpolation. After resizing, we provide

multiple data augmentation methods (rotation, shearing, zooming, and flipping) to

extend our dataset and keep the network robust. Then we choose centering and

meaning normalization to deal with our input images. In order to keep the face

recognition features that the earlier layers learn, we divided the training process into

two phases: train top-3 layers only by freezing later layers, and then train all the layers

together. In the earlier layers training, we use Adam optimizer as our optimizer with

lr = 0.001 and epsilon = 1e− 08. The loss function is categorical cross-entropy. For

this training phase, we have trained seven epochs, which could not only extract face

feature from FER2013 but also keep the face features learned from the VGGFace

dataset. In the second phase, we keep the pre-processing methods for input images,

but change the hyper-parametric and defreeze all later layers. The optimizer that we

take is stochastic gradient descent (SGD) with lr = 0.0001, momentum = 0.9, and

decay = 0. And we setup the scheduler for the learning rate of the network that it

halves the learning rate every 3 epochs.

Figure 43: Bilinear interpolation example

As for the framework integration for Fine-tuning ResNet50 and facial analysis

framework, it is basically like the integration of the other two static-based FER

networks mentioned above. The data flow diagram can be found in Figure 41. In

order to fit the captured ROI face images into the network, we need to resize the
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image to 3 x 197 x 197. On the other hand, the input image needs normalization to

fit into the network and needs to be the same as training images.

4.1.1.4 Dynamic-based Facial Expression Recognition Submodule Instan-

tiation

According to our research on dynamic-based facial expression recognition area in

Section 2.6, we pre-trained five deep learning models and adapted them into our

framework, which could help us implement our dynamic-based expression recognition

functionality. These models are:

• 8F-7E Shallow 3D-CNN model

• 4F-7E Shallow 3D-CNN model

• 8F-4E Shallow 3D-CNN model

• 4F-4E Shallow 3D-CNN model

• ResNet18 3D model

For the naming conventions followed by the first four models, “F” represents

the number of input frames and “E” represents the number of output for facial

expression categories. They are the same type of model with different input

and output configurations for different accuracy needs, but they all belong to

Shallow3DCNN subclass. Therefore, we have two subclasses in total. Figure 44

shows the instantiations of this submodule.

The reason why we chose them is similar to what we stated in Section 4.1.1.3,

which is to avoid over-fitting issues when training on small facial expression

databases. The detailed analysis will be given below. From an implementation

point of view, they are implemented in two concrete subclasses: “8F7EShallow-

3DCNNAdapter”, “4F7EShallow3DCNNAdapter”, “8F4EShallow3DCNNAdapter”,

“4F4EShallow3DCNNAdapter” and “ResNet3DAdapter” are five keywords which

could be fitted into the createAdapter(const char *adapterName) function of the
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Figure 44: Dynamic-based facial expression recognition submodule instantiation

OIDFERAdapterFactory to determine which concrete subclass instance will be

created. The words “8F7E”, “4F7E”, “8F4E”, “4F4E” represent the different modes

for Shallow3DCNNDFERAdapter, which tell the class Shallow3DCNNDFERAdapter

which specific shallow 3D CNN model to use. In the following paragraphs, we will

describe their implementations in detail.

(1) Shallow 3D-CNN

Shallow 3D-CNN is a kind of structure with shallow depth and 3D convolutional

block. 3D convolutional block consists of 3D convolutional layer and 3D pooling layer.

The difference between a normal convolutional layer and a 3D convolutional layer is

the structure of the kernel. A normal convolutional kernel is a two-dimensional filter

that extracts static features from an image, whereas a 3D convolutional kernel is a

three-dimensional filter which could not only calculate the static features from one

image, but also combine multiple continuous frames together to extract temporal

features. The details and basic structure of 3D convolutional layers are discussed in

Section 2.6.3.1.

The structure of our shallow 3D-CNN is a 9-layer 3D-CNN network. The structure

of this network is shown in Table 2. This network model could predict the probabilities

of seven expression categories with four continuous face frames as input. Actually, we

provide four kinds of structures of shallow 3D-CNN which could do different dynamic-

based facial expression recognition according to different conditions. These network
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structures are 8F-7E shallow 3D-CNN, 4F-7E shallow 3D-CNN, 8F-4E shallow 3D-

CNN, and 4F-4E shallow 3D-CNN. The notations of “8F” and “4F” represent that

the network could recognize expressions through eight continuous face frames or four

continuous face frames. The notations of “7E” and “4E” represent the network could

recognize seven expression categories or four expression categories. The reason for

training these different structures is to study the influence of number of input frames

and number of expression categories available on accuracy and speed performance.

“4E” includes the selected four expressions, which are anger, happiness, sadness,

and surprise, out of the main seven categories. The reason for excluding fear and

disgust is that they are more difficult to distinguish as they share similar facial

expression traits. Figure 45 shows the comparison between happiness, fear, disgust,

and sadness. Neutral expression, in dynamic-based facial expression recognition, is

less meaningful for detecting since they will all be faces with no expression(blank

expression). Overall, we exclude fear, disgust, and neutral which leaves four stronger

expression categories for testing.

Figure 45: Comparison between happiness, fear, disgust, and sadness

Table 2 shows the structure of “4F 7E shallow 3D-CNN”, the input of the network

is 4 x 64 x 64 x 3, which means that we need fit four frames with size of 64 x 64 x

3 images into our network. 64 x 64 represents the height and width of each image,

and 3 represents the number of channels of each image. The reason for only taking 9

layers of neural network structure is the following:

In order to train our network to recognize facial expressions from continuous

sequence, we choose CK+ [8] as our training dataset. CK+ provides 593 video

sequences with 123 subjects. However, we only have hundreds of training sequences
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Figure 46: CK+ frame image[8] Figure 47: Detected face image[8]

for each expression to fit the network, which means the network is prone to over-fitting

once the network gets too deep.

Table 2: 4F-7E 3D-CNN Shallow Network Model

Layer Type Output shape
1 Conv3D (2, 64, 64, 3)
2 MaxPool (1, 30, 30, 3)
3 Conv2D (1, 26, 26, 29)
4 MaxPool (1, 13, 13, 29)
5 BN (1, 13, 13, 29)
6 Flatten (None, 4901)
7 Dense (None, 512)
8 Dropout (None, 512)
9 Dense (None, 7)

Implementation Details In order to train the shallow 3D-CNN network, we

need to perform face detection for each frame. Figure 46 shows the original frame.

As we can see, each image is captured from video, which can not be used as a network

input directly as there are some unrelated information inside the image like the sign

of time and background. The face detection method we chose for pre-processing is

CNN face detection. The details of this face detection method are mentioned in

Section 4.1.1.1. Figure 47 shows the output of the face detection method.

On the other hand, for each video sample, it shows the whole process from the

neutral expression to peak of an expression, just like Figure 48. To train the network

model to extract static and dynamic features from frame sequences, we choose the

frames which could represent the changing process of facial expression. Figure 49
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shows an example of a changing expression sequence. In order to extend our training

dataset to prevent the over-fitting issue during the training phase, we take data

augmentation as our solution, which increased the model accuracy on test dataset by

about 18%.

Figure 48: Frame sequence example[8]

Figure 49: Selected frame sequence example[8]

Like we mentioned in Section 3.3.3 and Section 4.1.1.3, after obtaining the

pre-trained network, we integrate the network into our framework to implement

different instantiations. Figure 50 shows how a dynamic-based facial expression

recognition adapter calls the Python network model to get the expression

categories result. OIDFERAdapter represents the two concrete adapter subclasses

(Shallow3DCNNDFERAdapter and ResNetDFERAdapter). Figure 51 shows the

main function of FER3D.cpp, which is the C++ wrapper class mentioned in Section

3.3.3. Unlike the predict() function in fer 2d.py which takes one image as an input

parameter, the predict() function in fer 3d.py takes a vector of images, imageVector,

as the input argument. Variable imageVector saves a frame sequence for one

expression, which could be different according to different network model. For

example, imageVector fits four image frames into the model saved in fer 3d.py for

“4F Shallow 3D-CNN” networks, where eight image frames are fit into “8F Shallow
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3D-CNN” networks. Additionally, parameter model is used to choose different pre-

processing methods and different models to calculate the results, which is the same

as static-based facial expression recognition flow.

Figure 50: Process for dynamic-based facial expression recognition adapter calling
Python network model

Figure 51: Main function of FER3D class.

(2) 3D-ResNet18

3D-ResNet18 is an 18-layers-ResNet with 3D kernel for each neuron. The ResNet

structure can avoid the over-fitting problem when the network gets deeper. The

3D kernel extracts the spatial and temporal features from the input. The details of

ResNet and 3D-CNN can be found in Section 2.4.2.2 and Section 2.6.3.1.

Implementation Details This network is used for four expression recognition

with four frames. The input of network is 4 x 64 x 64 x 3, which denotes four

frames with 64 x 64 pixels and 3 channels per image. During the pre-processing of

the training phase, we provide almost the same pre-processing method as shallow 3D-

CNN. Expanding the dataset by data augmentation and avoiding exploding/vanishing

gradient by data normalization. The details of pre-processing can refer to the data

pre-processing of Shallow 3D-CNN 4.1.1.4. The training dataset chosen for 3D-

ResNet18 is CK+, and the optimizer for training is Adam.

The integration between the “3D-ResNet18” network and facial analysis

framework is basically like the “4F4E Shallow 3D-CNN” model since they have the
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same input and output structure. Once we choose the parameter model to be “5”,

the pre-processing and model will be set up for the “3D-ResNet18” model.

4.1.2 Pipeline Module Instantiation

In order to control the data flow of the facial analysis specialized framework, we create

a subclass, OIFacePipeline, inheriting OIPipeline. Figure 52 shows the structure of

OIFacePipeline.

Figure 52: OIFacePipeline structure

In OIFacePipeline, we declared an abstract type pointer variable for each module

inside the facial analysis specialized framework. Based on different applications, we

make these pointers referring to different concrete instances, which could help the

developer to integrate different implementations into their applications. For example,

we can attach a SSDFaceDetectionAdapter instance to the member variable with

type OIFaceDetecionAdapter, so the face detection algorithm used in the application

will be the CNN-based face detection method. On the other hand, if we choose to

not attach any instance for specific member variable, then the functionality of this

member will not be used in this customized OIFacePipeline instance. For example, if

we choose to not attach instances to OISFERAdapter and OIDFERAdapter, then the

created OIFacePipeline instance could not realize the functionality of facial expression

recognition. As for the member method execute() and close() of OIFacePipeline, they

are used to control the execution and termination of program’s flow.

The OIFacePipeline class is used to realize inversion of control in the framework,

so users could directly focus on input, output of OIFacePipeline instance, and simply
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use execute() and close(). And the details about how to connect different modules

and how to check correctness of customized instance will be implemented inside the

OIPipelineFactory class. Figure 53 shows the OIFacePipeline usage diagram.

Figure 53: OIFacePipeline usage diagram

In order to create our OIFacePipeline instance, we fit “Face” into functionName.

And in order to control the data flow, we fit different string parameters into

paramStrings. For example, assuming a developer wants to create a OIFacePipeline

which could detect face and facial landmark. More specifically, the developer want

to use Haar-cascade face detector and LBF facial landmark detector to implement

detection parts. Here are steps that are required:

1. Create a OIPipelineFactory instance oiPipelineFactory

2. Fit function createPipeline(const char *functionName, std::vector<string>

paramStrings) of oiPipelineFactory with “Face” and {“OIFaceDetection-

Adapter:HaarFaceDetectionAdapter”, “OIFLDAdapter:LBFAdapter”} to get

oiFLDPipeline instance of OIPipeline.

4.2 Applications Using the Framework

In this section, we introduce the applications that we built based on our framework.

They are real-time facial landmark detection application, human-face-based facial

animation expression matching application, and static-based facial expression

recognition application.
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4.2.1 Real-time Facial Landmark Detection Application

In the first scenario we described in Section 1.5.1, we need to provide the movie

director with a synchronized view with the character’s face when shooting a human

performer’s acting. To demonstrate our realization of this scenario, we created a

real-time facial landmark detection application which depends on two components of

our framework. One is the face detection submodule and other is the facial landmark

detection submodule. In this application, for each incoming frame, we perform the

steps described below which can be visualized by Figure 54.

Figure 54: Facial landmark detection application

1. The data from the physical camera device will firstly flow into the device module

in the core framework then is encapsulated as our framework’s common data

structure, precisely, OIFrame.

2. OIFace copies the frame data from OIFrame, so our frame data is now

transferred to and stored as facial-specific data structure.

3. The frame data of OIFace is sent to one of the face detectors resided in the face

detection submodule of our face analysis module. All the faces within the input

image will be detected and their location will be populated back into OIFace.
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4. The detected faces are masked out from the original image using their location

and feed into a selected facial landmark detector within the corresponding

submodule. Finally, the landmarks will be found and stored back to the

corresponding data holder in OIFace.

5. For demonstration purpose, the original input image with all detected

landmarks drawn will be displayed by the viewer module.

As mentioned in Section 4.1.1.1 and Section 4.1.1.2, there are three kinds of

implementations for the face detection submodule in our framework as well as facial

landmark detection submodule. In this application, we selected the SSD method

for face detection and CLNF method for facial landmark detection. With the

support from the pipeline framework module, the application developer don’t need

to worry about handling the intermediate results but just inform the framework

which implementation they want to employ then the framework will take care of

the rest including pipeline construction, selective filters instantiation and data flow

control. More precisely, the procedure of this specific application can be described as

Algorithm 1.

With the real-time facial landmark detection application, for each streaming

frame, we can obtain an annotated image with detected facial landmarks, regardless

of one more multiple faces presented, which can be shown by Figure 55 and 56. The

discussion of real-time response will be presented in Section 5.1.1.
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Algorithm 1: The procedure of real-time facial landmark detection application

Input: An image captured by a supported depth camera.
Output: Facial landmarks for all detected faces.

1 plFactory ← create an instance of OIPipelineFactory
2 noEcsPressed = True
3 params ← create an instance of vector
4 params.push back(“OIDevice:KinectV1”)
5 params.push back(“OIFaceDetectionAdapter:SSDAdapter”)
6 params.push back(“OIFLDAdapter:CLNFAdapter”)
7 params.push back(“OIViewer:OIOpenCVViewer”)
8

9 fldApp ← plFactory.createPipeline(“Face”, params)
10

11 while noEsrPressed do
12 // process one frame each execution
13 fldApp.execute();
14 if Ecs Pressed then
15 noEcsPressed = False;
16 end

17 end

Figure 55: Facial landmark detection example (single face)
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Figure 56: Facial landmark detection example (multiple faces)

4.2.2 Human-face-based Facial Animation Expression

Matching Application

In the second scenario we described in Section 1.5.2, we need to make a facial

expression matching application that can take a frame of expected human facial

expression image as input, output the expression category with landmarks detected,

then pass them to the database matcher to find the appropriate expression image.

To demonstrate the realization of this scenario, we created a human-face-based

facial animation expression matching application. This application depends on

three components of our framework: face detection submodule, facial landmark

detection submodule, and static-based facial expression recognition submodule. In

this application, for each incoming frame, we perform the steps described below which

can be visualized by Figure 57.

1. The expected expression image is firstly be encapsulated as our framework’s

common data structure, precisely, OIFrame.

2. OIFace copies the frame data from OIFrame, so our frame data is now

transferred to and stored as facial-specific data structure.

3. The frame data of OIFace is sent to one of the face detectors residing in the

face detection submodule of our facial analysis module. All the faces within the

input image are detected and their location are populated back into OIFace.
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4. The detected faces are masked out from the original image using their location

and feed into a selective facial landmark detector within the corresponding

submodule. Finally, the landmarks are found and stored back to the

corresponding data holder in OIFace.

5. The detected faces are masked out from the original image using their location

and feed into a selected static-based facial expression recognizer within the

corresponding submodule. Finally, the facial expression category probabilities

are calculated and stored back to the corresponding data holder in OIFace.

6. Facial expression category probabilities and landmarks stored in OIFace are

passed to the database matcher, then the matcher will output the image with

highest similarity score.

Figure 57: Human-based-face facial animation expression matching application
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In this application, we selected the SSD method for face detection, LBF

method for facial landmark and Fine-tune ResNet50 method for static-based facial

expression recognition. The procedure of this specific application can be described as

Algorithm 2.

Algorithm 2: The procedure of human-face-based facial animation expression
matching application

Input: Expected expression image: inputImg
Output: Similar image from database

1 plFactory ← create an instance of OIPipelineFactory
2 params ← create an instance of vector
3 matcher ← create an instance of Matcher
4 params.push back(“OIFaceDetectionAdapter:SSDAdapter”)
5 params.push back(“OIFLDAdapter:LBFAdapter”)
6 params.push back(“OISFERAdapter:FineTuneAdapter”)
7

8 matchApp ← plFactory.createPipeline(“Face”, params)
9

10 matchApp.oiFrame ← new instance of OIFrame(inputImg)
11 matchApp.execute()
12

13 landmarks = matchApp.oiFace->getFacialLandmarkVector()
14 expressions = matchApp.oiFace->getExpressionVector()
15

16 result ← matcher(landmarks, expressions, Database)

The database mentioned here is an animation expression database. But according

to our research, there are no existing suitable animation expression databases that

allows us to do the experiment. In order to solve this problem, we decided to build a

simple human expression database, which could also provide the expression category

and landmarks for each expression image. Realizing the matching process on this

database could also prove the integrity of our application. We built an expression

database including seven expression category subsets: anger, disgust, fear, happiness,

sadness, surprise, and neutral. There are five images for each subset with different

types of that same expression category. Figure 58 shows sample images of expression

category subset of happiness. Furthermore, each image in the database has its own

text file that stores its landmarks and expression category.
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Figure 58: Happiness subset of database

With the database content implementation explained above, we need to further

discuss how we implemented our database matcher. Since the matcher is not our

research focus, here we only give a brief explanation. There are two steps to implement

our matcher:

1. Based on expression category probabilities to downscale our search range.

2. Based on landmarks to calculate the similarity score between our input

expression image and the target expression image in database.

For step 1, our expression recognizer can perform a preliminary test on the

input image regarding seven expression categories, anger, disgust, fear, happiness,

sadness, surprise, neutral. For each expression category, the probabilities for

resemblance will be calculated and stored in the tuple (Panger, Pdisgust, Pfear,-

Phappiness, Psadness, Psurprise, Pneutral), and the sum of all elements will add to 1. If

any subset has a probability value greater than 0.5, we will move on to search

only within that expression category subset. For example, if the probability value

Phappiness is greater than 0.5, then we will only search for expressions that belong

to the happiness subset. On the other hand, if no probability value exceeds 0.5, we

then search for expressions that belong to subsets with probability value greater than

0.2. For example, if the expression preliminary test result is (Panger = 0.1, Pdisgust =

0.3, Pfear = 0.3, Phappiness = 0.1, Psadness = 0.05, Psurprise = 0.05, Pneutral = 0.1), which

has no expression category exceeding probability value of 0.5, we then downscale our

search range and focus only on disgust and fear subsets.

For step 2, after obtaining the downscaled search range, there is a pre-processing

step before comparing which is eye-corner-based face alignment. This alignment will
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be performed on both input image and the image in the database so that the eyes

of two source images will be vertically and horizontally aligned with the same eye

distance. This method will help us minimize inaccurate calculations due to rotated

face or faces of different scales. After alignment, we will generate an overlapped

composite image that contains aligned landmarks from two source images. This

intermediate result will be used for calculating similarity score, which is performed

using the following formula:

similarityScore =
1

1
50

∑68
i=18 ||di − gi||2

(5)

Note that we are using a 68-point facial landmark model. In order to avoid the

impact on the result from different facial profiles, we will not incorporate landmarks

for facial profile (point 0-16) in our calculation. Figure 59 shows an example of the

68-points facial landmarks model.

Figure 59: Example of 68-points facial landmark model [15]

This formula will output the similarity score between the two expression images.

Eventually, the expression image from the database with the highest similarity score

will be chosen as the matching result. Figure 60 shows two sample results generated

through human-face-based expression recognition matching process.
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Figure 60: Two sample matching results

4.2.3 Static-based Facial Expression Recognition Applica-

tion

Following the last framework application on human-face-based facial animation

expression matching, we aim to test the performance of the expression recognition

functionality. We created a static-based facial expression recognition application

which takes input from a camera device rather than a single expression image and

output the visualization result on our screen directly. This application depends on

two components of our framework. One is the face detection submodule and other is

the static-based facial expression recognition submodule. For each incoming frame,

we perform the steps described below which can be visualized by Figure 61.

1. The data from the physical camera device firstly flows into the device module

in the core framework then is encapsulated as our framework’s common data

structure, precisely, OIFrame.
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2. OIFace copies the frame data from OIFrame, so our frame data is now

transferred to and stored as facial-specific data structure.

3. The frame data of OIFace is sent to one of the face detectors resided in the

face detection submodule of our facial analysis module. All the faces within the

input image are detected and their locations are populated back into OIFace.

4. The detected face is masked out from the original image using their location

and fed into a selected static-based facial expression recognizer within the

corresponding submodule. Finally, the facial expression category probabilities

are calculated and stored back to the corresponding data holder in OIFace.

5. For demonstration purpose, the original input image and calculated

probabilities for each expression category are displayed by the viewer module.

As mentioned in Section 4.1.1.1 and Section 4.1.1.3 there are three kinds of

implementations for the face detection submodule in our framework as well as the

static-based facial expression recognition submodule. In this application, we selected

the the HOG method for face detection and the ResNet50 method for static-based

facial expression recognition. The procedure of this specific application can be

described as Algorithm 3.

Figures 62 and 63 show two sample frames generated by the static-based facial

expression recognition application. The output includes the original image, the

detected face area and the calculated probabilities for each expression category.

According to “Probability distribution histogram of happiness face image recognition

result” in Figure 62, the recognized probability of “happiness” is over 70%, which is

higher than any other expression. As for sad face example, Figure 63 shows that the

probability of “sadness” is over 80%.
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Algorithm 3: The procedure of static-based facial expression recognition
application

Input: An image captured by a supported depth camera.
Output: Expression category probabilities for all detected faces.

1 plFactory ← create an instance of OIPipelineFactory
2 noEcsPressed = True
3 params ← create an instance of vector
4 params.push back(“OIDevice:RealSenseD435”)
5 params.push back(“OIFaceDetectionAdapter:HOGAdapter”)
6 params.push back(“OISFERAdapter:FineTuneAdapter”)
7 params.push back(“OIViewer:OIOpenCVViewer”)
8

9 sferApp ← plFactory.createPipeline(“Face”, params)
10

11 while noEsrPressed do
12 // process one frame each execution
13 sferApp.execute();
14 if Ecs Pressed then
15 noEcsPressed = False
16 end

17 end

Figure 61: Static-based facial expression recognition application
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Figure 62: Happy face recognition example of static-based facial expression
recognition

Figure 63: Sad face recognition example of static-based facial expression recognition

4.3 Summary

In this chapter, we describe the instantiation of our specialized framework, which

includes the instantiation of different facial analysis submodules as well as the details

of their implementations. We then gave three concrete examples of how to build facial

analysis applications based on our framework solution. In the next chapter, we will

describe the tests we designed and demonstrate that we have met the objectives and

requirements that we stated in Chapter 1.
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Chapter 5

Evaluation

The purpose of this chapter is to give an overview of our research results and

evaluation. We begin by a discussion to evaluate the quality of our framework in

Section 5.1. Then we do a series of experimental evaluation in Section 5.2 to assess the

quality of the applications we have developed using the framework. In both of these

sections, we do our assessments versus the goals we had identified in Section 1.4 and

the usage scenarios and requirements identified in Section 1.5. For the experimental

evaluation, we provide supporting experimental data for common metrics that are

acknowledged by the research community. Moreover, we follow the same approach

for algorithms or models evaluation, and finally, report our result based on the metrics.

5.1 Framework Evaluation

In this section, we evaluate our solution by checking whether or not goals mentioned

in Section 1.4 are attained. At the same time, we check whether the motivation

scenarios mentioned in Section 1.5 can be addressed by using our framework solution.

5.1.1 Real-time Facial Landmark Detection

In Section 1.5.1, we stated the scenario of real-time landmark-based facial expression

mapping. We extracted some functional requirements from this scenario. Here are
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our evaluations about these requirements.

In Section 4.1.1.1 and Section 4.1.1.2, we described the design of our framework

solution, which shows the ability to implement the face detection and facial landmark

detection. In Section 4.2.1 we described how to use our framework solution to build

an application which could detect the bounding box of human face from human image

and detect the landmark locations from a human face image. This application exactly

fulfills FR1, FR2 and has the ability to run processes of FR1 and FR2 as a whole

process, which is part of FR3.

According to real-time definition of Kapoor et al. [18], if a system could achieve

30 FPS, then we could say it is a real-time system. In order to prove that our solution

has real-time performance, we designed experiments to test our implementations

in face detection and facial landmark detection in Section 5.2.1 and Section 5.2.2

respectively. According to the results in Table 4 and Table 5, we could say that, with

the combination of LBF facial landmark detector and any other implemented face

detectors presented in our solution, the whole analysis process eventually achieves

real-time performance. For real-time performance evaluation, details will be further

elaborated in Section 5.1.6. So according our analysis above, we can say that FR3 is

clearly fulfilled by our solution.

5.1.2 Facial Animation Expression Matching

In Section 1.5.2, we stated the scenario of facial animation expression matching and we

extracted some functional requirements from this scenario. Here are our evaluations

about these requirements.

In Section 4.1.1.3 and Section 4.1.1.4, we described the design of our framework

solution, which shows the ability to implement the static-based facial expression

recognition and dynamic-based facial expression recognition. In Section 4.2.3 we

described how to use our framework solution to build an application which could

detect the bounding box of human face from a human image and recognize the

expression category from a human face image. This application exactly fulfills FR4

proposed in this scenario. As for FR5, we have built a facial animation expression
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matching application in Section 4.2.2, which proves that our solution fulfills the

functional aspect of the requirement FR5.

In order to prove our solution could satisfy FR6, we give a specific

scenario as the following: Assuming a developer has used FaceDetectionAdapter1

and FacialLandmarkDetectorAdapter1 to implement a facial landmark detection

application by following the steps mentioned in Section 4.2.1. Now this developer

finds out that the accuracy of FacialLandmarkDetectorAdapter1 is too low.

And there exists another implementation in FacialLandmarkDetectorAdapter2

which could achieve higher accuracy. The developer now wants to use the

better implementation for facial landmark detector to replace the bottleneck,

FacialLandmarkDetectorAdapter1, of the existing application. The developer only

need to change one line in the existing code: replace the input parameters

paramStrings of createPipeline(const char *functionName, std::vector<string>

paramStrings) from {“OIFaceDetectionAdapter:FaceDetectionAdapter1”, “OIFLD-

Adapter:FacialLandmarkDetectorAdapter1”, ...} to {“OIFaceDetectionAdapter:-

FaceDetectionAdapter1”, “OIFLDAdapter:FacialLandmarkDetectorAdapter2”, ...}.

After saving the modified code, the developer could get a better performing appli-

cation consisted of FaceDetectionAdapter1 and FacialLandmarKDetectorAdapter2

ready to work immediately. So according to our analysis above, we can say that FR6

is clearly fulfilled by our solution.

In addition to process optimization by replacing a bottleneck, our framework also

allows users to add new implementations including deep learning approaches to our

solution, as stated in FR7. In Section 3.3.3 we have explained how we provide

Python-based deep learning support module, and how we integrate this module into

our facial analysis framework. Specifically, the user could create a specific OIAdapter

first, which is used to implement deep learning based facial analysis algorithm. Then

users could create a Python invocation flow shown in Figure 26 to support Python

invocation flow for the above OIAdapter. With Python invocation flow, the developer

can then invoke Python-based deep learning implementations within OIAdapter. This

is how we provide deep learning support for our solution.
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Section 4.1.1.4 provides a successful example for realization and fulfillment of

FR7. In the implementation of “Shallow 3D-CNN” method, we integrate deep

learning support module with Shallow3DCNNDFERAdapter by creating invocation

flow shown in Figure 50. After all the details mentioned in Section 4.1.1.4, we

implement “Shallow 3D-CNN” deep-learning based facial expression recognition

method in Shallow3DCNNDFERAdapter. So according to our analysis above, we

can say that FR7 is clearly fulfilled by our solution.

5.1.3 Camera Support

In Section 1.5.3, we stated the scenario of camera support and we extracted a

functional requirement from this scenario. Here are our evaluations about this

requirement.

The steps of how to create a new camera device adapter or switch to a different

camera device adapter can be found in Section 3.3.1. To prove that our solution fulfills

this requirement, we can first look at the two applications mentioned in Section 4.2.1

and Section 4.2.3. As you can see, we used two different cameras for the applications.

There’s only one line change in the code that allows us to switch input camera

device: replace the input parameters paramStrings of createPipeline(const char

*functionName, std::vector<string> paramStrings) from {“OIDevice:KinectV1”, ...}

to {“OIDevice:RealSenseD435”, ...}. In addition to camera switch, we can also easily

add new camera by: (1) create a subclass inheriting class OIDevice and implement the

virtual methods (2) add the logic to instantiate the new device in OIDeviceFactory

class. Therefore, we can say that FR8 is clearly fulfilled by our solution.

5.1.4 Extensibility

In Section 1.5.4, we noticed that our system needs to have extensibility as a non-

functional requirement by analyzing the scenarios mentioned in Section 1.5. In Section

5.1.3, we have proved that our solution could add a new camera or switch between

existing cameras without impairing existing system functions.
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In terms of extensibility of facial analysis components, we take static-based facial

expression recognition as our example. As we explained in Section 4.1.1.3, we follow

the design of “Adapter + AdapterFactory”. When we want to develop and integrate

a new adapter, we can follow the steps below:

1. Create a concrete adapter subclass inheriting the OISFERAdapter abstract

class, so the pure virtual methods of OISFERAdapter will also be inherited from

the subclass, and then implement the static-based facial expression recognition

algorithm inside the inherited pure virtual method.

2. Add a new string as name to indicate the appended adapter and create an entry

logic of it in the OISFERAdapterFactory class.

According to this example, we confirmed that we can add new implementation to

the specific facial analysis module. In Section 5.1.2, based on proof of FR6, we have

proved that our solution can switch different facial analysis implementations without

impairing existing system.

5.1.5 Usability

In Section 1.5.4, we noticed that our system needs to have usability as a non-functional

requirement by analyzing the scenarios mentioned in Section 1.5.

To prove the usability of our framework solution, we would like to demonstrate

how new users could start using our solution quickly with a short learning curve.

Below is a list of tested sample tasks that our framework application can do:

• perform human face detection from RGB image

• perform real-time facial landmark detection on the previously detected human

face image

• perform facial expression recognition on single human face image

• support multiple types of input from different camera devices
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• allow users to easily add new implementations

Our framework provides a universal entry point through the pipeline module,

which consists of function names that all follow a logical and concise naming

convention. To perform certain tasks provided by our framework, users only need to

first create an OIPipelineFactory instance, then enter their desired functional module

and implementation names as a string into the createPipeline() function within the

factory instance. Take the example from Section 4.2.2. There are only 16 lines of

code needed to obtain functionalities such as camera support, face detection, facial

landmark detection, and static-based facial expression recognition. On the other

hand, as mentioned in Section 3.3.1 and Section 3.4.2, users only need to perform two

steps for integrating new implementations into our framework. Plus, our framework

shall be very user-friendly with superior learnability given the provided comments in

source code and technical documentations that will be provided upon the completion

of the entire solution. Users only need to consult to API documentations instead of

diving into each functional module to get insights of framework utilization. However,

the user-friendliness is not yet proven as our solution is still under development and

have no actual user that can provide feedback. This is an assumption based on the

user support resources we planned, which will be verified later when our finished

OpenISS framework is used as a tool in FAM production.

5.1.6 Real-time Performance

We want to evaluate the real-time performance since it is one of our non-functional

requirements mentioned in Section 1.5.4. To ensure the facial landmark detection

application to be real-time, which should be faster than 30 FPS according to Kapoor

et al. [18], we ran a test on the speed of the application described in Section 4.2.1.

The experiment we designed is about recording the time t spent to process 1000

frames captured from the camera. Then the speed of our application is calculated as

1000
t
. The combination of our fastest face detector, HOG, and fastest facial landmark

detector, LBF, achieved 16.94 FPS, which is slower than 30 FPS. However, we found
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that our camera devices, Kinect V1, Kinect V2, and RealSenseD435, have their own

performance limit and can only capture frames up to 30 FPS. To eliminate limitations

from our camera devices, we decided to read the human face image directly from

300 Faces taken from the in-the-Wild Challenge (300-W) [15] database. In order to

calculate the speed performance of our application, we calculated how much time the

application needs to process 1000 images and derived the FPS value of our application.

The experiment result demonstrated that even with the slowest face detector and

facial landmark detector combination, “SSD” and “LBF”, which is implemented

in SSDFaceDetectionAdapter and LBFFLDAdapter, we still achieved 31.81 FPS

according to our experiment, which is above the real-time standard of 30 FPS.

Additionally, our fastest combination, “HOG” and “LBF”, which is implemented in

HOGFaceDetectionAdapter and LBFFLDAdapter, achieved 50.58 FPS. This proves

that our implementation meets the real-time performance when we have high-frame-

rate cameras.

5.1.7 Accuracy

We want to evaluate the accuracy of our solution since it is one of our non-functional

requirements mentioned in Section 1.5.4. As we mentioned in Section 1.5.2, the

human-face-based facial animation expression matching should achieve an accurate

result in general. Since there is no state-of-the-art method or evaluation database

available to test the accuracy of the whole animation expression matching pipeline, we

can only segment the pipeline and test the accuracy for each functionality to conclude

that our entire process indeed achieves a certain level of accuracy comparable to what

is found in the literature.

Our segmented pipeline accuracy test includes individual tests on three

functionalities: face detection, facial landmark detection, and static-based facial

expression recognition. For face detection accuracy test, SSD face detector had the

highest accuracy result among all our available detectors, which ranked 19th over 60

published face detectors according to the evaluation of Face Detection Data Set and

Benchmark (FDDB) [60].
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For facial landmark detection accuracy test, we chose 300 Faces in-the-Wild

Challenge database [15] as our test database and we chose the survey of Wu et al. [1]

as our reference. We found that the CECLM facial landmark detector had the highest

accuracy result among all our available detectors, which ranked 3rd over 11 detectors

that were tested from the experiment in the survey.

For the static-based facial expression recognition accuracy test, we chose FER2013

[9] as our evaluation database and we chose the survey of Shan et al. [61] as our

reference. Based on the six state-of-the-art tested methods in the article, we can

see that the overall accuracy range is 71.2% - 75.2%. The accuracy of our trained

model, ResNet50, achieved an accuracy of 71.02%. Thus, we consider that our facial

expression recognizer has a rather satisfying performance on accuracy. More details

about these tests will be discussed in Section 5.2.1, Section 5.2.2, and Section 5.2.3.

5.2 Experimental Evaluation

In this section, we discuss the experimental evaluation of each phase of our facial

analysis implementation: face detection, facial landmark detection, static-based

facial expression recognition, and dynamic-based facial expression recognition. Each

implementation is tested using multiple facial image databases, which is a standard

way to evaluate an algorithm in the facial analysis research domain. Our evaluation

focuses on the accuracy on specific image database and the average speed under

specific large image database. Especially, we need to point out that our speed test is

using facial analysis algorithm to process large number of images, and we are going

to record the average number of images the algorithm can process per second. The

unit of our speed parameter is FPS. We will discuss the results of experiments and

compare algorithms at the end of each subsection. The experimental environment of

an algorithm has great influence on speed. We show our experiment environment in

Table 3. All experiments stated below are tested under this environment.
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Table 3: Experimental Environment

Hardware Type
Operating System Ubuntu 18.04.2 LTS

Processor Intel i7 920
RAM 12GB
GPU NVIDIA GTX 1080 Ti with 11 GB RAM

5.2.1 Face Detection

For the face detectors in our framework, they are used in two scenarios mentioned

in Section 1.5.1 and Section 1.5.2. For landmark mapping scenario, the face detector

needs to satisfy real-time performance as the first priority, then try to achieve higher

accuracy. For human-face-based facial animation matching scenario, the face detector

only needs to try and achieve higher accuracy according to the sole requirement for

the scenario.

In order to test the accuracy and speed of each face detection algorithm, we chose

mAP (mean Average Precision) as our accuracy unit and FPS (Frames Per Second)

as our speed unit. Before introducing our experiment details, we would like to give

an overview of the evaluation concepts used in face detection domain.

Confusion Matrix: Confusion matrix is a specific table layout that allows

performance visualization of a classification algorithm. Each row represents the

instances in a predicted class and each column represents the instances in an actual

class. Figure 64 shows the example of a confusion matrix.

Figure 64: Confusion matrix example
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• “True Positive(TP)” represents the model correctly predict the positive class.

• “True Negative(TN)” represents the model correctly predict the negative class.

• “False Positive(FP)” represents the model incorrectly predict the positive class.

• “False Negative(FN)” represents the model incorrectly predict the negative

class.

Precision and Recall: Precision measures how accurate are your predictions, i.e.

the percentage of how your predictions match with the actual classification. Recall

measures how good you can find all the positives, i.e. the percentage of the possible

positive cases in top K predictions. Here are mathematical definitions for precision

and recall:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

IoU (Intersection over union): IoU measures the overlap between 2 boundaries.

In face detection domain, we use IoU to measure how much our predicted face

boundary overlaps with the real face boundary (ground truth). Figure 65 gives an

example of IoU. IoU = area of overlap
area of union

.
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Figure 65: IoU example

Precision-Recall (P-R) Curve: The P-R curve can be used to show the

relationship between precision and recall with various prediction confidence. For

example, in face detection domain, we can set a threshold for IoU to calculate precision

and recall. We consider the following definitions to describe a detection:

• TP, when calcualted IoU >= threshold

• FP, when calcualted IoU < threshold

• TN, does not apply

• FN, a ground truth not detected

We collect all the predictions made for faces in all the test images and rank

predictions in descending order according to the predicted confidence level. Here

we give a simple example to demonstrate the calculation of the average precision.

Assuming that there is a dataset that contains five faces, we collect all the predictions

made for faces in all the images and rank them in descending order according to the

predicted confidence level. The second column indicates whether the prediction is

correct or not. We chose IoU >= 0.5 as correct prediction. Figure 66 shows the

precision-recall table ordered by predicted confidence level.
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For the row with rank 3, Precision = TP
TP+FP

= 2
2+1

= 0.67, Recall = 2
2+3

=

2/5 = 0.4. According to the relation between precision, recall and rank, we could

draw the Precision-Recall (P-R) curve. Figure 67 shows the matched P-R curve under

IoU >= 0.5.

Figure 66: Example of precision-recall table ordered by predicted confidence level

Figure 67: Precision-recall curve example

AP (Average precision): AP is defined as the area under the precision-recall

curve. The mathematical definition of AP is Equation 8.

AP =

∫ 1

0

p(r)dr (8)
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The definition of mAP is averaging the value of AP under different IoU. Equation

9 shows the calculation equation of mAP.

mAP =

∑9
i=0AP

IoU=(0.5+0.05i)

10
(9)

5.2.1.1 Experiment Design

In the evaluation part of face detection, we took the most common evaluation

database, Face Detection Data Set and Benchmark (FDDB) [60], which could help

us to compare our implementations with the state-of-the-art algorithms. It is a facial

image dataset with 2845 labeled images and 5171 faces in total. With the default

evaluation method provided by the FDDB dataset, we directly got the mAP for each

method. As for the speed test, we calculated the average time for each algorithm to

process all 2845 images and calculated their respective FPS.

5.2.1.2 Experiment Result

Table 4 shows the evaluation result for each face detection algorithm we implemented

in Section 4.1.1.1.

Table 4: Accuracy and speed evaluation result of face detection

Face Detector mAP Speed(FPS)
Haar-Cascade 0.639 51.24

HOG 0.538 71.03
SSD 0.891 36.84

From the FDDB dataset [60], we checked the published state-of-the-art algorithms

for face detection and we found that the highest mAP ranking is the HR face detection

algorithm proposed by Hu et al[62], which achieved 0.969 mAP. According to Table

4, we can see that our implementation of SSD gets the highest mAP, which means it

is the most accurate face detection algorithms among all implemented methods. On

the other hand, in terms of speed, HOG face detection algorithm is a better choice

than SSD since HOG face detector has almost double the speed of SSD face detector.

Based on test results, we conclude that, for landmark mapping scenario, SSD face
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detector is more suitable since it achieves higher accuracy with real-time performance;

for facial animation expression matching scenario, SSD face detector is also more

suitable since it produced the highest accuracy result.

5.2.2 Facial Landmark Detection

For the facial landmark detectors in our framework, they are used in two scenarios

mentioned in Section 1.5.1 and Section 1.5.2. For landmark mapping scenario, the

facial landmark detector needs to satisfy real-time performance as the first priority,

then try to achieve higher accuracy. For human-face-based facial animation matching

scenario, the facial landmark detector only needs to try and achieve higher accuracy

according to the sole requirement for the scenario.

In order to test the accuracy and speed of our implemented facial landmark

detection algorithms, we choose normalized error as our accuracy standard and FPS

as our speed unit. Before introducing our experiment details, we would like to give

an overview of evaluation concepts used in facial landmark detection domain.

Normalized Error: In order to evaluate the accuracy of facial landmark detection

algorithm, we use normalized error mentioned in Wu et al. [1] as the measurement

criteria, which focuses on comparing the detected landmark locations to the

groundtruth facial landmark locations. Assuming a location i, the detected landmarks

locations as di = (dxi, dyi) and ground truth landmark locations gi = (gxi, gyi).

Regular landmark detection error is:

errori = ||di − gi||2 (10)

The problem for this equation is that the error could change because of different

size of faces. So in our experiments, we normalize our error by calculating the distance

of left and right pupil centers. Assuming left pupil center location and right pupil
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center location as gle and gre. The normalized error for location i is :

normErrori =
||di − gi||2

||gle − gre||2
(11)

The average error for one image is:

normErrorImage =
1

N

N∑
i

||di − gi||2

||gle − gre||2
(12)

5.2.2.1 Experiment Design

We chose 300 Faces in-the-Wild Challenge (300-W) [15] as the validation dataset,

which comprises of five sub-datasets: Annotated Faces in the Wild(AFW) [25],

AFLW[63], LFPW[64], Helen[65] and IBUG [66]. Especially, we chose IBUG, the

testing sets of LFPW, and the testing sets of Helen as our testing dataset since they

use 68-points facial landmark model, which has 689 images in total. Since the 300-W

dataset provides the bounding boxes for initialization, we directly performed affine

transformation of bounding box to match the bounding box around the 68 labelled

facial landmarks. We used inter-ocular distance (IOD) normalized error mentioned

above to measure accuracy. For profile faces where one of the eyes is visible, we

used the average of width and height of the face, and we then tested the speed for

each algorithm to process 500 selected images and record the FPS as speed. In this

way, we could compare our implementations with other baseline and state-of-the-art

facial landmark detection algorithms according to the survey of Wu et al. [1]. Our

evaluation method followed the same way in the work of Wu et al. [1].

5.2.2.2 Experiment Result

Table 5 lists the normalized error and speed for each implemented algorithm.
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Table 5: Facial Landmark Normalized Error and Speed Evaluation

Facial Landmark Detector Normalized Error Speed (FPS)
LBF 6.34 256.29
CLNF 6.77 24.64
CECLM 5.89 19.38

According to the survey work of Wu et al. [1], we chose the TCDCN facial

landmark detection algorithm proposed in paper, “Facial Landmark Detection by

Deep Multi-task Learning”, of Zhang et al. [67] and the 3DDFA algorithm proposed

in paper, “Face alignment across large poses: A 3d solution”, of Zhu et al. [68] as

our baseline algorithms. These two algorithms achieved the best results listed in the

survey paper of Wu et al. [1] on 300-W datasets, the normalized error of TCDCN

achieved 5.54 and 3DDFA achieved 6.31.

According to Table 5, we can see that LBF-based facial landmark detector has

much faster speed than the other two facial landmark detectors. On the other hand,

in terms of accuracy, CECLM facial landmark detector has better performance than

the other two detectors.

Based on test results, we conclude that, for landmark mapping scenario, LBF

facial landmark detector is more suitable since it is the only one achieving real-

time performance. For facial animation expression matching scenario, CECLM facial

landmark detector is more suitable since it produced the highest accuracy result.

5.2.3 Static-based FER Evaluation

For the static-based facial expression recognizer in our framework, they are used in

one scenario mentioned in Section 1.5.2. The expression recognizer only needs to try

and achieve higher accuracy according to the sole requirement for the scenario, and

we also tested the speed performance as an extra research interest.

In order to test the accuracy and speed of each static-based facial expression

recognition model, we chose the top-1 accuracy as our accuracy measure and FPS as

our speed measure.
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5.2.3.1 Experiment Design

For static-based FER evaluation, we chose FER2013 and SFEW 2.0 as our validation

datasets. The details of FER2013 and SFEW 2.0 have been mentioned in Section

2.4.1. With these two datasets, we could compare our implementations with state-of-

the-art methods according to the survey of Shan et al. [61]. Since the training dataset

we used for training networks is the training subset of FER2013, we can only use the

other 3589 test images left of FER2013 and 372 test images of SFEW2.0 to evaluate

our models.

5.2.3.2 Experiment Result

According to the survey of Shan et al. [61], the highest accuracy performance result

on FER2013 is 0.752, which was achieved by Pramerdorfer et al. [69]. As for SFEW

2.0 dataset, the highest accuracy achieved 0.6129, which was achieved by Kim et

al. [70].

Table 6 shows the result of static-based FER evaluation. According to this table,

we can see that Fine-tuning ResNet50 is slower than 34 layers ResNet and is much

slower than shallow 2D CNN model. On the other hand, ResNet50 achieved the

highest accuracy on FER2013 and SFEW2.0 datasets. Based on the six tested state-

of-the-art methods in the survey for FER2013 dataset, the overall accuracy range

is 71.2% - 75.2%; and for SFEW2.0 dataset, the overall accuracy range is 54.51%

- 61.29%. The accuracy of our trained model, ResNet50, achieved an accuracy of

71.02% on FER2013 dataset and 54.17% on the SFEW2.0 dataset.

Based on test results, we conclude that, for facial animation expression matching

scenario, fine-tuning ResNet50 recognizer is more suitable since it produced the

highest accuracy result.

Table 6: Static-based Facial Expression Recognition Evaluation

Model Accuracy on FER2013 Accuracy on SFEW2.0 Speed (FPS)
Shallow 2D CNN 0.6712 0.5127 15.26

ResNet34 0.6917 0.5315 11.18
Fine-tuning ResNet50 0.7102 0.5417 10.04
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5.2.4 Dynamic-based FER Evaluation

For the dynamic-based facial expression recognizers in our framework, they can

not be used in any scenario mentioned in our thesis. For our facial animation

expression matching scenario, the user only inputs one human expression image, but

dynamic-based facial expression recognizer takes a frame sequence as input to predict

expression category. However, we provide this functionality as an extra research

interest, which could help us understand the influences of network structure, the

number of input frames and the number of expression categories on the accuracy and

speed of models.

In order to test the accuracy and speed of each of the dynamic-based facial

expression recognition models that we have implemented, we chose the top-1 accuracy

as our accuracy measure and FPS (Frames Per Second) as our speed measure.

Especially, we would like to emphasize that for dynamic-based facial expression

recognition, they each take several continuous frames as input to predict the

corresponding probabilities for each expression category.

The speed of dynamic-based facial expression recognition is defined as the number

of frames that can be processed per second, not the number of frame sequences that

can be processed per second. For example, there are 250 frame sequences with four

images per sequence group, which means there are 1000 frames in total. Assuming

there is a dynamic-based facial expression recognition model which could process

these frames in one second, then the speed of this model is 1000 FPS, not 250 FPS.

5.2.4.1 Experiment Design

For the dynamic-based FER evaluation, we chose CK+ and AFEW7.0 as our

validation datasets. With these two datasets, we could compare our implementations

with the state-of-the-art implementations according to the survey of Shan et al. [61].

CK+ is a facial image dataset with six labeled expression categories plus neutral

face. Since it is our training dataset, we only used the test subset of CK+ as our

testing dataset. The details of CK+ can be found in Section 2.4.1. In addition, we
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used the test subset of AFEW7.0 as the testing dataset. The details of AFEW7.0

can be found in Section 2.4.1. In total, there are 100 frame sequences and 653 frame

sequences chosen from CK+ and AFEW7.0 database, respectively.

5.2.4.2 Experiment Result

According to the survey of Shan et al. [61], the highest accuracy performance result

on CK+ is 0.993, which was achieved by Zhao et al. [71]. The highest accuracy

performance result on AFEW7.0 is 0.486, which was achieved by Vielzeuf et al. [72].

Table 7 shows the evaluation result for accuracy on different datasets and speed

with the different models’ implementation. The sign of “F” at the beginning of model

implementations denotes the number of frames used to classify expressions and “E”

denotes the number of the total expressions that need to be recognized. For example,

“8F 7E” indicates that this model uses 8 frames as input to recognize 7 expressions.

Table 7: Dynamic-based Facial Expression Recognition Evaluation

Model Accuracy on CK+ Accuracy on AFEW7.0 Speed (FPS)
8F 7E Shallow 3D CNN 0.9621 0.3732 13.83
4F 7E Shallow 3D CNN 0.9520 0.3587 19.68
8F 4E Shallow 3D CNN 0.9775 0.3915 14.59
4F 4E Shallow 3D CNN 0.9689 0.3868 20.14
4F 4E ResNet18 3D CNN 0.9829 0.4118 18.20

According to Table 7, we can see some potential patterns of these models. Firstly,

while keeping number of expression category consistent, the more frames processed

for recognition, the higher accuracy the network can achieve. For example, the “8F

7E Shallow 3D CNN” has higher accuracy in CK+ and AFEW7.0 compared with “4F

7E Shallow 3D CNN”, and it is the same for “8F 4E Shallow 3D CNN” and “4F 4E

Shallow 3D CNN”. Besides the pattern on the number of input frames, if we keep the

number of frame input consistent, the networks with fewer expressions to classify has

better accuracy performance. For example, “8F 7E Shallow 3D CNN” and “4F 7E

Shallow 3D CNN” have higher accuracy compared with “8F 4E Shallow 3D CNN”

and “4F 4E Shallow 3D CNN” separately.
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In terms of accuracy performance, “4F 4E ResNet18 3D CNN” has higher accuracy

compared to other shallow 3D CNN models; “4F 7E Shallow 3D CNN” has the lowest

accuracy which follows the pattern we discussed above.

As for the speed performance, the solutions with 8 frames as input are slower

than the solution that has 4 input frames, which could be seen from speed result

comparison between “8F 7E Shallow 3D” and “4F 7E Shallow 3D”, or comparison

between “8F 4E Shallow 3D” and “4F 4E Shallow 3D”. Overall, “4F 4E Shallow 3D”

solution has the highest speed compared with other solutions.

Note, the patterns mentioned above are tested under a small dataset with limited

experiment. We need to gather more data and conduct more experiments to prove

the legitimacy of these potential patterns in the future.

5.3 Summary

In Section 5.1, we described how our framework solution meets its goal and

requirements. We evaluated our facial analysis methods implemented in our solution

in Section 5.2. The evaluation approaches we used are based on the literature and are

used to evaluate some state-of-the-art algorithms in specific facial analysis domains.

On the other hand, the results in Section 5.2 are also used to prove the realization

of our goals in stated in Section 5.1. In the next chapter, we will give a summary of

our work. Then we will discuss the limitations of our work and the future work we

are planning to do.
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Chapter 6

Conclusion and Future Work

In this chapter, we restate the major ideas of this thesis and summarize the results

obtained in Chapter 5 briefly. We also discuss the known limitations we have currently

and analyze some potential research focuses for other researchers who would like to

work on top of this thesis.

6.1 Summary of Results

In this thesis, we developed a developer-friendly and extensible facial analysis

framework solution that realizes the functionalities of face detection, facial landmark

detection, facial expression recognition, and such solution accomplishes our goal in

Section 1.4.

By analyzing the requirements mentioned in Section 1.5, we implemented our

solution in a software framework manner. More specifically, our solution is built upon

a core framework which provides infrastructure services, and a facial analysis module

consists of four submodules: face detection submodule, facial landmark detection

submodule, static-based facial expression recognition submodule, and dynamic-based

facial expression recognition submodule.

Within the core framework, we provided a device module, a framework-level

common data structure module, a deep learning support module, a viewer module,

and a pipeline module. The device module provides functionality for adapting
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different data structures of various camera devices to provide common APIs. The

common data structure module ensures communication between different modules

uniformly and consistently. The deep learning support module realizes data transfer

between Python and C++, hence allowing the integration of Python-based deep

learning implementations. The viewer module displays the resulting data for

visualization purpose. The pipeline module allows the developers to define and

control the whole process execution by setting parameters without worrying about

the connection between the pipeline filters or handling intermediate results.

In order to realize the three facial analysis functionalities proposed in our

goal (Section 1.4), we instantiated three face detectors, three facial landmark

detectors, three static-based facial expression recognizers, and two dynamic-based

facial expression recognizers. With different instantiations on the same functionality,

we found the implementation that better address the actual requirements, and at the

same time made our framework more versatile.

For the face detector, we implemented three kinds that are widely-practical and

are advanced in speed performance: The Haar-cascade face detector, the HOG face

detector, and the SSD face detector. In Section 5.2.1, we designed more calibrated

experiments to verify the accuracy and speed performance of the three face detectors,

and we landed on the statement that the three detectors all satisfy our real-time

performance requirement. Furthermore, the SSD face detector had the highest

accuracy result among all our implemented detectors, which ranked 19th over 60

published face detectors according to the evaluation of Face Detection Data Set and

Benchmark (FDDB) [60].

For facial landmark detectors, we chose to implement three different types of

fast facial landmark detectors, LBF, CLNF, and CECLM, based on the same 68-

points facial landmark model, which implies that they all detect and output the same

number of landmarks. This enables us to compare the performance results intuitively.

In Section 5.2.2, we designed more calibrated experiments to verify the accuracy and

speed performance of the three detectors, and we found that only the LBF detector

can achieve real-time performance with the benchmark of real-time being 30 FPS,
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and its accuracy performance ranked 5th over 11 detectors that were tested from the

experiment in the survey. The CECLM facial landmark detector had the highest

accuracy result among all our available detectors, which ranked 3rd over 11 detectors

that were tested from the experiment in the survey.

For facial expression recognition (FER), we provided two approaches: The first

approach is static-based FER, and the second is dynamic-based FER. We trained

three different deep learning models for static-based FER to compare the performance

on accuracy and speed for networks with different structures. The ResNet50 model

achieved 71% accuracy, which is only 4% lower than the best state-of-the-art method

and is very close to the accuracy range 71.2% - 75.2% for representative work in the

survey we used for comparisons [70].

We trained five different models for dynamic-based FER to demonstrate how the

number of input frames, output expression categories, and different network structures

might affect the accuracy and speed performance. All models tested in the CK+

database achieved accuracy of 95% and above. Especially, the ResNet model reached

98.29% accuracy, which is only 1% lower than the accuracy of 99.3% obtained by the

state-of-the-art method in survey [70].

To prove that our solution satisfies the proposed scenarios listed in Section 1.5,

we created concrete applications employing our framework instance in Section 4.2.

For the two scenarios mentioned in Section 4.2.1 and Section 4.2.2, we will next

provide more specific recommendations based on the scenarios and experimental

performance analysis conducted on each instantiation. For real-time landmark-based

facial action mapping to keep a relatively high accuracy while ensuring real-time

performance, we recommend the combination of SSD face detector and LBF facial

landmark detector. For human-face-based facial animation expression matching, we

recommend the combination that achieved the highest accuracy performance, which

consists of SSD face detector, CECLM facial landmark detector, and fine-tuning

ResNet50 facial expression recognition.
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6.2 Limitations

Objectively speaking, although we claim that our proposed solution in this thesis

accomplished the goals we set up in Section 1.4 and fulfilled the requirements stated

in Section 1.5, there are still some limitations with our current solution:

• Our current framework solution could only support the depth camera. Other

types of camera devices like motion capture camera and 3D camera would not

be supported, which hinders our solution from achieving a broader definition of

extensibility.

• Although we proved the mechanism integrity of our current human-face-based

facial animation expression matching application, we cannot verify the accuracy

of the system without an actual animation expression database.

• Our currently implemented algorithms for facial expression recognition are

based on deep learning network, so these default facial expression recognition

algorithms could be slower in speed performance on a CPU-based running

environment.

• Our current facial expression recognition models are trained on single dataset

which is minimally compliant for the validity of our scientific experiments. If

we trained the models under multiple datasets, the models could learn more

generic features, hence making them more accurate in practice.

• Our facial landmark detection algorithms can only detect 68 landmarks on

human face and do not allow users to add more landmarks for finer facial

detection. This may limit the area of application for our solution, as it might

not suffice for more granulated facial feature detection.

• Our current framework solution is only a subset of CRIFTS VFX Studio’s

requested need and has not yet been tested in the context of movie production.
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6.3 Future Work

The work in this thesis is a foundation stone of the OpenISS framework and facial

analysis specialized framework. We believe our solution can further evolve and be

leveraged and segmented into more powerful specialized applications in the future,

such as dysmorphic facial signs detection for medical diagnosis, biometrics/face

recognition for security systems, driver fatigue monitoring that spans numerous

areas of application. Below, we would like to list some research topics that we are

continuously working on or planning to do.

More devices support: Just as we mentioned in the limitations, our framework

can only support three kinds of RGB-D camera devices at the current stage. Recently,

Azure Kinect has been released which could provide better performance in speed and

resolution, and at the same time, RealSense released two new cameras named D435i

and T265. We would like to provide timely support for new released camera devices

of different types in the future, which could enhance the usability and practicality of

our framework.

More facial analysis functions: At this moment, our facial analysis specialized

framework provides facial analysis functionalities in face detection, facial landmark

detection, and facial expression recognition. Nevertheless, there are lots of works in

facial analysis domains, such as eye gaze detection, head pose detection, facial action

unit detection and etc, which could be integrated into our solution. We would like

to provide more facial analysis functions for our solutions and build it towards a

comprehensive facial analysis solution.

Java API wrapper: Currently, our solution is written in C/C++, in order to

use the OpenISS framework as the back-end, we would like to support a Java API

wrapper in the future.

Visual Effect: Besides the analysis on face, we could also combine the visual

effect with detected facial features to propose more creative applications, for instance,

live communication with animation character or creation of an animated human face.

Full-platform support: Up until now, our solution can only work with Linux

120



(Ubuntu distribution) and macOS. In the future, we would like to provide support

for more operating systems.

Integration to production pipeline: Integrate the OpenISS instance with

CRIFST VFX Studio production pipeline to deploy our complete solution in the

context of movie production.
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