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Montréal, Québec, Canada

September 2019

© Matthew Storms, 2019



Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Matthew Storms

Entitled: Electromechanical Resonances in Suspended Bilayer

Graphene

and submitted in partial fulfillment of the requirements for the degree of

Master of Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Valter Zazubovits Chair

Dr. Pablo Bianucci Examiner

Dr. Saurabh Maiti Examiner

Dr. Alexandre Champagne Supervisor

Approved

Chair of Department or Graduate Program Director

20

Dean of Faculty



Abstract

Electromechanical Resonances in Suspended Bilayer Graphene

Matthew Storms

Bilayer graphene is a promising material to explore the physics of two-dimensional

Nanoelectromechanical Systems (NEMS) due to its mechanical strength and low-onset

nonlinearity. We describe a procedure to fabricate and anneal bilayer graphene NEMS

(BG-NEMS) which are nearly disorder free (charge mobility µ ≈ 76000 cm2/V s,

charge doping n0 < 6.6× 10−9 cm−2, mass density ρ ≈ 1.01 ρgraphene).

We calibrate a current mixing measurement circuit for simultaneous resonance

actuation, resonance detection, and conductivity measurement in annealed BG-

NEMS. Using our circuit, we detect high-quality and reproducible BG-NEMS

resonances with frequencies in the range f0 = 137MHz to f0 = 220MHz and quality

factors of Q > 3000 at amplitudes between δz = 50 pm and δz = 1 nm.

Our data show significant Duffing nonlinearity (α ≈ −1.0× 1035 Hz2/m2). When

the resonators are strained, we observe anomalous frequency tuning. At higher powers

our data show mode mixing with high cooperativity (C ≈ 4 and C ≈ 36). The mode

mixing (α12 ≈ 6.9× 1033 Hz2/m2 and α12 = 3.3× 1036Hz2/m2) matches the Duffing

parameter and suppresses mobility (low µ) and electromechanical dissipation (high

Q).

Disordered morphology of the samples accounts for decreased mobility (lattice

disorder associated with ripples and wrinkles), mode mixing (nonlinear mode coupling

to ripples), and anomalous membrane dispersion (catenary wrinkle deformation).
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Chapter 1

Carbon NEMS: Motivation to

Study Bilayer Graphene NEMS

We begin this chapter with an overview of modern electromechanical systems

and their applications to consumer electronics. We review recent progress in

nanoelectromechanical systems (NEMS) made from one- and two-dimensional carbon

allotropes like graphene, multi-layer graphene, and carbon nanotubes as the eventual

evolution of electromechanical systems. We highlight the advantages of bilayer

graphene relative to other NEMS in terms of its unique physics. We describe the

mechanical and electronic properties of bilayer graphene, emphasizing its similarity

to and differences from monolayer graphene. We conclude with an outline of this

experimental thesis studying electromechanical resonances in bilayer graphene NEMS

(BG-NEMS) such as the example shown in Figure 1.1.

1.1 Electromechanical Sensors for Industry and

Research

Microelectromechanical Systems (MEMS) are widespread in modern consumer

electronics such as clocks, barometers, thermometers, gyroscopes, hygrometers,

1



Figure 1.1: Electromechanical resonance in a bilayer graphene sample at 160K.
Imix (current proportional to the mechanical oscillation amplitude) versus f (a drive
frequency generated by an RF source). The raw data is shown in black. A theoretical
model of the resonance is presented in Chapter 3 and included here in red. From
Device A.

magnetometers, and accelerometers [1]. While MEMS are traditionally many

microns in size, demands for improved accuracy and energy efficiency have driven

increasing miniaturization to the point where the MEMS dimensions (length and/or

width/thickness) are approaching nanometer scale and below [2]. This downsizing is

complicated, however, by the very small length and energy scales involved.

Nanoelectromechanical systems are the final stage in the miniaturization of the

electromechanical sensors which have become ubiquitous in the last decades; NEMS

sensors from 2D and 1D materials have been used as pressure sensors [3], mass sensors

(as seen in Figure 1.2) with atomic resolution [4], strain sensors [5], and ultrasound

detectors [6]. Because of their sensitivity, they have already been used to detect

physical phenomena such as the quantum Hall effect [7], electron-phonon interaction

[8], and light-matter interaction [9] at the smallest scales. Understanding physics of

2D and 1D NEMS is therefore an important technological objective.

The value of NEMS for fundamental physics research is also clear. Electronic
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transport in 2D and 1D materials like graphene and carbon nanotubes is confined

to a reduced number of dimensions, resulting in unusual physical properties [10].

Electromechanical oscillators made from these novel materials are a promising avenue

to explore their electronics [11].

Figure 1.2: Graphene NEMS mass sensor.

Frequency (2πf =
√︂

k
m
, where k describes the strain and m describes the mass) vs

VG (a gate voltage to control strain). a the frequency change due to increasing strain.
b after depositing 1.5 nm of pentacene, the frequency is less tunable. c the tuning
improves after the device is cleaned. d reproducing the result from b. This figure
was reproduced from a paper by C. Chen et al. [12].

Measurements of 2D NEMS resonance (frequency, quality factor, and amplitude)

have been made using frequency modulation and amplitude modulation techniques

[13][14], atomic force microscope nano-indentation [15], optical readout [16], and

current mixing [14]. NEMS show nonlinear behaviour at low drive amplitudes [17],

bistable (or more) mechanical states [18], nonlinear mode coupling [19] as well as

tunable nonlinearities which can be varied to minimize dissipation [20].

The physics accessible through the electromechanical resonance is also very rich.

The quality factor is a readout of the electromechanical loss and can be used to

probe all sources of dissipation simultaneously. The energy dissipation in NEMS is

sensitive to electronic phase transitions (as seen in Figure 1.3) [7], potentially allowing

3



mechanical detection of exotic fractional quantum Hall effect states. Lastly, NEMS

present a possibility to study highly nonlinear oscillators in the quantum regime [21].

Figure 1.3: Electromechanical detection of quantum Hall effect.
The left axis is the shift in the resonance frequency; the bottom axis is the magnetic
field. As the system passes through a quantum Hall phase transition, the resonance
frequency is shifted by electromechanical coupling. This figure was reproduced from
a paper by V. Singh et al. [7].

“2D materials” is a relatively new field of study [22] which has developed rapidly

since the discovery of graphene [23]. While many 2D systems are now known,

the most versatile and best studied is the original graphene. The advantages of

graphene-based 2D materials are myriad: stability in air, ease of production, relative

robustness, adequate simplicity for quantitatively modelling. Graphene poses several

problems for applications however [10], especially in NEMS. Graphene lacks a band

gap and therefore its charge conductivity cannot be “turned off” - an essential

feature of logic transistors. Moreover, while some of the most interesting and

potentially technologically disruptive physics takes place when there are very few

charge carriers—near the so-called “Dirac Point”, or “Charge Neutrality Point”

(CNP). Electromechanical disorder (including wrinkles, charge density fluctuations,

and impurities) often prevents robust electromechanical measurements in this regime

(in the seminal paper by C. Chen et Al. [12], there was a ∼ 1 V (corresponding

to ∼ 1 × 1010 cm−2) region around the CNP where the resonance could not be

4



distinguished from noise). Lastly, monolayer graphene is a poor platform to study the

general properties of NEMS because it cannot mimic 2D heterostructures (wherein

2D materials are stacked onto one another). Bilayer graphene is a promising avenue

towards overcoming all of these challenges.

1.2 The Advantages of Bilayer Graphene for

Electromechanical Resonators

Bilayer graphene NEMS (BG-NEMS) are the simplest platform which can

overcome many of the limitations of monolayer graphene NEMS. In bilayer graphene,

it is possible to open a tunable band gap ( >250 meV [24] as compared to 1.1

eV in silicon [25]) using an electric field transverse to the layers [26]. Moreover,

bilayer graphene is much less sensitive to electromechanical disorder and noise at the

charge neutrality point because of its parabolic (discussion in Section 1.3.2) dispersion

relation [27], which leads to a non-vanishing density of states for charge carriers at low

energy; specifically, this means that adding charge carriers or electromechanical fields

leads to much smaller local fluctuations of the local Fermi energy than in monolayer

graphene.

Whereas pristine monolayer graphene has only one crystal structure, interlayer

interactions in bilayer graphene provide a simple platform to understand the vast

potential of engineering layered 2D systems. For example, bilayer graphene is a

fascinating laboratory for new 2D physics: twisted bilayer is the simplest system

which exhibits unconventional superconductivity [28][29] (see Figure 1.4), the band

gap opened by a transverse electric field is electrostatically tunable [27], and the

FQHE in bilayer graphene includes even denominator states which are studied as

possible topologically protected qubits [30].

Based on the present understanding of the electronic and mechanical properties of

bilayer graphene, BG-NEMS can provide a versatile platform to explore and exploit

the still largely unexplored electromechanical interactions in bilayer graphene.

5



Figure 1.4: Observing unconventional superconductivity in twisted (magic-angle)
bilayer graphene.
The x axis is the carrier density, the y axis is temperature, and the colour scale is
resistance. A transition from an insulating state due to electron-electron interactions
to a zero resistance superconducting state has been observed. This transition is
characteristic of unconventional superconductors. This figure is reproduced from a
paper by Y. Cao et al. [28][29]

1.3 Basics of Electronics, Mechanics, and

Electromechanics in BG-NEMS

To understand the properties of BG-NEMS, it is important to be able to

distinguish the excitation energies of graphene’s mechanical degrees of freedom,

electronic degrees of freedom, and their electromechanical couplings. To understand

the mechanics and electronics of pristine bilayer graphene, we start with a discussion

of its crystal structure. Using the tight-binding approximation, we then derive its

electronic bands. The mechanical excitations of bilayer graphene are described by

phonon modes which are also extracted from the atomic structure. In BG-NEMS,

macroscopic mechanical vibrations are described as excitations of a damped harmonic

oscillator.
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1.3.1 Crystal Structure of Monolayer and Bilayer Graphene

The basic electronic and mechanical properties of bilayer graphene are determined

by its crystal structure, which consists of stacked layers of monolayer graphene as seen

in Figures 1.5 and 1.6. We begin by motivating these properties.

Figure 1.5: The atomic structure of monolayer graphene.
a Graphene is a honeycomb lattice (special case of hexagonal with a two atom basis).
b The reciprocal lattice of a honeycomb is a triangular lattice with a hexagonal first
Brillouin zone. This figure is reproduced from a review by A. Castro Neto et al. [10].

It is helpful to begin by familiarizing ourselves with the material in question.

Graphene is a honeycomb lattice. A honeycomb lattice is a triangular lattice with

lattice vectors a⃗1 =
(︂

3
2
,
√
3
2

)︂
a and a⃗2 =

(︂
3
2
,−

√
3
2

)︂
a where |δ| is the carbon bond

length and a is the lattice constant (see figure 1.5).

The honeycomb shape is described by the basis a⃗ = (0, 0) and b⃗ = (1, 0) a (note

that we have chosen a hexagon side length of a and oriented the armchair axis along

x for definiteness). The vectors to nearest neighbours are therefore δ⃗1 =
(︂

1
2
,
√
3
2

)︂
a,

δ⃗2 =
(︂

1
2
,−

√
3
2

)︂
a, and δ⃗3 = (−1, 0) a.

The reciprocal lattice is defined by the reciprocal lattice vectors: g⃗1 =
2π
3a

(︁
1,
√
3
)︁

and g⃗2 = 2π
3a

(︁
1,−

√
3
)︁
. In reciprocal space, the hexagon with side length 2π

3a
defines

the first Brillouin zone. In reciprocal space, the vertices are all equivalent to one of

the two points: K⃗ = 2π
3a

(︂
1, 1√

3

)︂
and K⃗ ′ = 2π

3a

(︂
1,− 1√

3

)︂
.
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Figure 1.6: The atomic structure of bilayer graphene.
Bilayer graphene stacking is Bernal (AB). This figure is reproduced from a review by
A. Castro Neto et al. [10].

We now have enough information to solve for the electronic states of monolayer

graphene.

1.3.2 Electronic Structure of Monolayer and Bilayer

Graphene

The electronics in graphene can be effectively described by the tight-binding

model. When the dominant contribution to the Hamiltonian is the potential of the

electrons “tightly-bound” to each atomic site, the hopping potential can be treated

as a perturbation. The discussion in this section is self-contained, but inspired by the

lecture notes available online from Leggett [31].

Since electrons in graphene are tightly bound to the atoms, it is also possible to

neglect all hopping except for to nearby atoms. For graphene, good agreement is

achieved for the nearest neighbours only and the Hamiltonian for the hopping can be

written in reciprocal space as:

Hk⃗
TB = −γ0

(︂
e−iδ⃗1 ·⃗k + e−iδ⃗2 ·⃗k + e−iδ⃗3 ·⃗k

)︂
ak⃗

†bk⃗ +H.C. (1.1)
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Where γ0 ≈ 2.8 eV is called the hopping parameter and the creation and

annihilation operators (ak⃗
†, bk⃗

†, ak⃗, bk⃗) represent the plane-wave electron states on

the A sublattice and the B sublattice [10]. This can be simplified as the matrix:

Hk⃗
TB =

(︂
ak⃗

† bk⃗
†
)︂⎛⎝ 0 ∆∗

∆ 0

⎞⎠⎛⎝ak⃗

bk⃗

⎞⎠ (1.2)

Where ∆ = −γ0e
−ikxa

(︂
1 + 2ei

3
2
kxa cos

(︂√
3
2
kya
)︂)︂

. Taking the determinant gives

the energies:

Ek⃗ = ±γ0

⌜⃓⃓⎷1 + 4 cos

(︃
3

2
kxa

)︃
cos

(︄√
3

2
kya

)︄
+ 4 cos2

(︄√
3

2
kya

)︄
(1.3)

The system has two non-overlapping energy bands shared by two free electrons.

When the system is charge neutral, there should be one band each completely full

and completely empty.

Figure 1.7: Band structure of monolayer graphene.
The low-energy physics takes place at the maximum symmetry points where the
allowable states are described by a cone. This figure is reproduced from a review by
A. Castro Neto et al. [10].
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The bands touch at the K⃗ and K⃗ ′ points, so this is where the low energy physics

should take place. Expanding ∆ about k⃗ = 2π
3a

(︂
1,± 1√

3

)︂
+ q⃗ gives:

∆ = −3at

2

(︂
ei

5π
6

)︂
(kx ± iky) (1.4)

The phase does not affect the physics. In terms of the Pauli spin matrices and

the Fermi velocity vF = 3aγ0
2ℏ ≈ 1.0× 106 m

s
, the low-energy Hamiltonian is:

H = ℏvF ⃗̂σ · k⃗ (1.5)

This is the form of the Dirac Hamiltonian for a massless 2D spin-1
2
particle, where

valley (K⃗ or K⃗ ′) plays the role of spin.

In AB-stacked bilayer graphene (refer to Figure 1.6), the first order Hamiltonian

is two monolayer graphene subspaces coupled only from abot to btop as follows:

H =
(︂
atop
k⃗

†
btop
k⃗

†
abot
k⃗

†
bbot
k⃗

†
)︂
⎛⎜⎜⎜⎜⎜⎜⎝

0 ∆∗ 0 0

∆ 0 γ1 0

0 γ1 0 ∆∗

0 0 ∆ 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
atop
k⃗

btop
k⃗

abot
k⃗

bbot
k⃗

⎞⎟⎟⎟⎟⎟⎟⎠ (1.6)

Where γ1 ≈ 0.1γ0 is the interlayer hopping parameter [32]. Since we are most

interested in the physics when ∆ is near zero (the so-called “Dirac” point), this first

order, nearest neighbour description is inadequate (the matrix becomes singular).

The full resolution of this problem involves solving a 4× 4 matrix with four hopping

amplitudes [32]. The fundamental idea, however, can be seen by considering the

hybridized bands due to the inter-layer hopping term γ1. The btop − abot subspace

generates two hybridized bands with energy E = [0, γ1]. When ∆ is small relative

to γ1, one of these bands will always be filled and one of these bands will always be

empty. Accordingly, we can consider only what is going on in the atop− bbot subspace.

We need to consider electrons which hop from atop to the btop part of the unfilled
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hybridized band (amplitude ∆), and then from the abot part of the hybridized band

to bbot (amplitude ∆). The hopping is suppressed by the energy of the intermediate

state (γ1), resulting in the following effective Hamiltonian at low energies:

H =

⎛⎝ 0 ∆2

γ1

∆∗2

γ1
0

⎞⎠ =
ℏ2v2F
γ1

⎛⎝ 0 (kx + iky)
2

(kx − iky)
2 0

⎞⎠ =
ℏ2

2meff

(︂
⃗̂σ · k⃗

)︂◦2
(1.7)

Figure 1.8: Electronic dispersion in bilayer graphene.
E vs kx) for bilayer graphene. Lattice basis with twice as many atoms as monolayer
giving twice as many bands. Moreover, in bilayer graphene, the band structure is
quadratic at low energy and the carriers resemble “massive” Dirac Fermions. This
figure is reproduced from a review by E. McCann [32].

Where meff = γ1
2v2F

is the effective mass of the electrons at the CNP. Note that

Â◦2 denotes the Hadamard or element-wise square of Â. The electronic dispersion in

bilayer is illustrated in Figure 1.8. Bilayer graphene has parabolic dispersion at low

energy. This increases the density of states near the Dirac point, making the physics
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there more robust to charge density fluctuations. This also affects the winding number

and the so-called “Berry Phase” (equal to π in graphene and 2π in its bilayer) [33].

There are also two additional bands at energy E = ±γ1 which can couple strongly to

the mechanics [34]. Since the wavefunctions of the electronic states are substantially

different, the electronic properties are similarly affected.

The electrons in bilayer graphene are said to be “massive” Dirac Fermions because

of their dispersion. The band structure of bilayer graphene is similar to monolayer,

with the key difference that the dispersion near the Dirac point (below ≈ 5 meV )

becomes quadratic [35]. In this sense, low-energy electrons in bilayer graphene are

“massive” Dirac Fermions described by Equation 1.7 [35].

Away from the Dirac Point, the 2D structure and linear density of states leads to

conductivity which is proportional to charge density (see Equation 1.8) [36].

G0 =
W

L
neµ (1.8)

Figure 1.9: DC conductivity (σ = L
W
G) data for a bilayer graphene device.

The bottom axis is the gate voltage used to control the charge density and the left
axis is the conductance. Mobility and contact resistance can be extracted by fitting
the data [37].

Where G0 is the conductance of the bare device, n is the charge density, and µ

is a constant called mobility. For a real device, we need to account for impurities

and contact resistance [38]. The measured conductance (G) is determined by the
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conductance of the channel (G0) and contact resistance Rc. Since the sample is truly

two-dimensional, the charge density can be varied capacitively via the gate voltage

(VG). Charge density in graphene is also influenced by temperature and impurities.

Finally, hole density and electron density can be described by a Fermi function.

This description is sufficient to understand the DC conductance data in real

electronic devices made from monolayer and bilayer graphene. An example of such

data is shown in Figure 1.9, showing one of our bilayer graphene samples which can

be analyzed to extract contact resistance (Rc), mobility (µ), and other quantities.

With this understanding of the electronics, it becomes possible to identify signatures

of the mechanical behaviour in the electronic data.

1.3.3 Mechanical Excitation of 2D Carbon NEMS in the

Quantum and Classical Regimes

The mechanical excitations of pristine 2D carbon NEMS can be described by

their phonon dispersion (quantized atomic-level vibrational modes), as well as their

macroscopic vibrational modes. Due to the conservation of momentum, a major

source of electronic resistivity arises from collisions between charge carriers and

phonons. It is important to know which phonons exist in graphene.

Despite having 2D electronic states, these materials exist in 3D, leading to six

phonon modes [39] (the additional two modes are quadratic out-of plane modes).

The phonon dispersion can be seen in Figure 1.10. Some of the optical phonon modes

can be probed by Raman spectroscopy [40].

The relative amplitudes of Raman processes are highly sensitive to interlayer

interactions. The shape and relative intensity of the various Raman peaks can be

used to determine layer number, as demonstrated in Figure 1.11.

Suspended bilayer graphene is not an infinite crystal, so it also has macroscopic

mechanical modes called vibrons determined by its length, width, and boundary

conditions [41]. The mechanics of linear mechanical modes are described by a second
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Figure 1.10: The phonon modes of graphene.
While graphene electrons are 2D, we measure it in three-dimensional (3D) space.
This gives graphene (with a two atom basis) the usual 4 phonon modes (two acoustic
plus two optical) for 2D, and an additional two out-of-plane phonon modes (one
acoustic, one optical). The same modes are present in bilayer graphene with modified
frequency. This figure was reproduced from a review by M. Dresselhaus et Al. [39].

order linear differential equation:

z̈ +
ω0

2Q
ż + ω2

0z =
F

meff

cos(ωt) (1.9)

Where z is the mechanical displacement, Q is the quality factor and commonly

reported as the full width at half max divided by the frequency, ω0 is the angular

frequency at resonance, controlled by the elastic modulus and the tension, and F

is the maximum amplitude of the sinusoidal driving force. The line shape of the

resonance is given by a Lorentzian [14] as described by Equation 1.10. If F is due to

capacitive coupling to a gate, it is proportional to the square of the drive voltage by

the usual relation Fcap ∝ C2V 2.
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Figure 1.11: Raman modes in bilayer graphene compared to those in monolayer and
trilayer.
The effects of increasing layer number on Raman spectrum. a bilayer graphene b
monolayer graphene and c graphite. As layer number increases, the second order G
peak (red) splits and the first order D peak (blue) becomes more important. This
figure was reproduced from a thesis by S. Yiğen [37].

δz =

√︄
F

meff

⌜⃓⃓⎷(︄(ω2
0 − ω2)

2
+

(︃
ωω0

2Q

)︃2
)︄−1

(1.10)

Where δz is the amplitude of the sinusoidal mechanical response. Q describes

describes the lossiness of the resonance, and ω0 =
√︂

k
m

where k is the spring constant

andm is the effective mass (details in Chapter 3). NEMS resonance can be explored in

suspended graphene sheets by electronic actuation of the sheet mechanical resonance.

Q for low-disorder monolayer graphene NEMS can be as high as 2.45×105 [42]. Due to

their high quality factors, these modes generate a large out-of-equilibrium population

of out-of-plane acoustic vibrons.

Realistic sheet NEMS also exhibit more complex mechanics because of effects

such as wrinkling (static surface corrugations) and rippling (time-dependant surface

corrugations) [43].

1.3.4 Bilayer Graphene Nanoelectromechanical Systems

A suspended bilayer graphene sheet can be deflected by an applied gate voltage

via a force due to electrostatic coupling (see Figure 1.12).

The gate voltage also controls the charge density and therefore the conductivity.
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Figure 1.12: Capacitive gate coupling to a bilayer graphene electromechanical
resonator.
A doubly clamped rectangular graphene membrane on an SiO2 substrate suspended
above a global back gate.

Both of these effects are mediated by the capacitance between the gate and the bilayer

graphene sheet. Varying the height of the bilayer graphene sheet (a mechanical degree

of freedom) above the gate electrode varies the capacitance and couples the mechanics

into the electronics.

1.4 Outline of this Thesis

Our three main results are: development, deployment, and fine-tuning of the

samples, methods, and platform for the simultaneous DC and RF characterization of

low-disorder BG-NEMS; the detection of BG-NEMS resonance at MHz frequencies;

and reporting of tunable resonance, amplitude, quality factor, and morphology in

BG-NEMS.

In Chapter 2, we report our fabrication methods for low-disorder BG-NEMS. The
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fabrication process to isolate low-disorder crystalline bilayer graphene with lengths

of around 1 µm is described. We also developed measurement methods to directly

measure, optimize, and characterize the resonance. An annealing process is described

which can achieve impurity charge density as low as n ≈ 109 cm−2, this corresponds

to EF = n × πℏ2 × v2F
γ1

≈ 1.8 meV or about 21 K (calculated using the density

of states [32]). In the annealed samples, a high-frequency current mixing circuit

is demonstrated which can resolve conductivity fluctuations due to resonance. The

current mixing signal is used to find and probe the electromechanical resonance in

our suspended bilayer graphene samples.

In Chapter 3, a study of the properties of bilayer graphene electromechanical

resonators. The frequency, quality factor, and amplitude of the resonance can be

directly extracted from the mixing data. Frequencies range from 130 MHz to 220

MHz. We extract quality factors up to ≈ 2000. A gap in the resonance frequency is

observed versus strain. At higher drive powers, Duffing nonlinearity is observed. The

nonlinearity is the correct magnitude to explain the frequency gap as mode mixing

between a wrinkled conformation and a membrane conformation of the resonating

membranes. Large negative differential mobility is observed near the frequency

gap. Suppression of mobility is consistent with a picture where surface variations

induce doping disorder. Negative nonlinear damping is also present despite not being

predicted from a geometric description of the oscillator. Nonlinear losses are also

present in the devices. Morphological disorder is proposed as a source of these

nonlinear losses. We posit that the nontrivial morphology is a result of a fabrication

process which takes place at different temperature than the measurement.

In Chapter 4, we summarize the major results of this thesis. Furthermore, we

conclude with a list of questions raised by this thesis and its implications for future

study of bilayer graphene NEMS.
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Chapter 2

Methods to Explore Bilayer

Graphene Electromechanical

Resonances

This Chapter describes the methods we used to fabricate and study

electromechanical resonances in bilayer graphene samples. These methods are based

off of those previously used to study monolayer graphene NEMS. We made several

unique optimizations to enable our measurement.

Bilayer graphene samples exfoliated from highly ordered pyrolitic graphite were

used to eliminate the lattice disorder associated with chemical vapour deposition.

Samples were fabricated to dimensions of approximately 1 µm to accommodate for

for the issues of collapse and low quality factor at larger samples as well as poor

annealing and small signal size for smaller samples. Current annealing was used to

bring the samples as close as possible to ideal bilayer graphene sheets. Finally, a

highly-tuned mixing measurement was made to allow resolution of signals smaller

than 1 pA.

Electromechanical resonance in bilayer graphene NEMS (BG-NEMS) is a coupling

between the mechanical displacement and the electronic transport through the

capacitance. In our system, charge oscillations induced by a gate electrode exert
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a force which drives the oscillations of the tension and the out-of-plane displacement

of the sample.

In Section 2.1 we present the fabrication (see Figure 2.3) of electromechanical

resonators actuated by capacitive coupling of a doubly-clamped suspended bilayer

graphene transistor. In Section 2.2 we present an annealing procedure to remove

doping impurities absorbed on the channel. In Section 2.3, the mixing RF current

measurement whereby the BG-NEMS can be actuated and detected is discussed.

Since the electrical impedance between the channel and the back gate substrate

(doped Si) is frequency dependent (ZC = 1
ωC

where ω = 2πf), we expect channel–

back-gate to be shorted at high frequency. The solution used in this work is to perform

a mixing measurement between the source and gate signals. The detection is made

at a lower frequency equal to the difference in frequency (∆f) between the signals on

the source and gate.

2.1 Microfabrication of Suspended BG-NEMS

Doubly clamped resonators can be fabricated by the following procedure [44]:

� Highly-crystalline bilayer graphene samples are exfoliated onto an SiO2

substrate prepared with a gold coordinate grid.

� Source and drain electrodes are lithographically defined (see Figure 2.2).

� The samples are liberated by wet-etching the SiO2 substrate (see Figure 2.3).

Large scale growth of graphene layers can be accomplished using chemical vapour

deposition and molecular beam epitaxy; however, 2D NEMSs with the highest

mobility and lowest disorder must be produced by the so-called “Scotch Tape Method”

whereby Highly-Ordered Pyrolitic Graphite (HOPG) is exfoliated (or “peeled”) using

adhesive tape until it has the desired range of thicknesses and then pressed onto the

desired substrate.

The method used by our group is:
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1. Start with as large as possible a flake of HOPG

2. Split the flake as thin as possible with clean tweezers and a razor

3. Place the flake onto about fifteen centimeters of scotch tape

4. Fold the two halves of the tape together and press out the air bubbles

5. Peel slowly to split the graphite onto both halves, repeat twenty times

6. Press the tape onto substrate and compress with a book for ≈ 5 minutes

Since exfoliated graphene is more-or-less randomly distributed, a photolithography

mask is used to pre-pattern chips with gold alignment marks to allow candidate flakes

to be easily located once found. Each graphene layer absorbs roughly 2.3% of light

(and significantly more when placed on a 300 nm SiO2 substrate) allowing reasonably

good identification of candidate bilayer graphene using optical microscopy (see Figure

2.1). On our substrates of metallic sillicon covered in 295 nm of SiO2, this results

in a characteristic deepening of the “blue” oxide as can be seen in Figure 2.1. Once

candidate chips have been established, their layer number is determined by looking

at the second order 2D peak of the Raman shift (as described in Figure 1.11).

Figure 2.1: Alignment and lithography to define bilayer graphene transistors.
a Bilayer graphene (darker blue) is identified under a microscope (confirmed
afterwards with Raman spectroscopy). b Bilayer graphene transistors are defined
by electron beam lithography in a layer of resist.

BG-NEMS are fabricated by suspending a bilayer graphene crystal between two

gold electrodes (doubly clamped geometry) above a gate electrode. The resonator
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lengths needed for this experiment are between 1-2 µm. Long devices collapse at much

lower gate voltages, making the measurement unfeasible. Shorter devices are much

harder to anneal because they are nearly ballistic (heat is localized at contacts). To

make devices of these dimensions, electron beam lithography with an MMA/PMMA

bilayer resist is used to define source/drain electrodes and contact pads onto which 3

nm chrome and 120 nm gold are evaporated. This process is illustrated in Figure 2.2.

Figure 2.2: Evaporation of gold electrodes.
a Electron beam lithography is used to define a negative pattern of the desired
electronic contacts in resist (large purple structures). The candidate devices occur
in random positions and orientations, so alignment of the lithography design and the
graphene flake is acheived with the aid of a gold grid deposited beforehand. b Gold
contacts (in yellow) are evaporated onto the sample to define the channel length. [44]

HF buffered oxide etch is used to remove about 200 nm of oxide in order to

suspend the sample. Surface tension can cause the samples to collapse as they dry

[45], so they are dried in a critical point dryer.

Suspension can be confirmed by analysis with either AFM or SEM, although these

are usually done after experimental measurements because the analysis can damage

the sample [12]. Suspended devices, with suspension confirmed from a tilted SEM

image can be seen in Figure 2.3. The desirable electronic features of a bilayer graphene

transistor are high mobility and a charge neutrality point near zero. These properties

are illustrated in Figure 2.4.

After fabrication, our suspended bilayer graphene transistors are not yet ready for

measurement. Firstly, their surface is contaminated by water and nanofabrication

residues. Without further processing, they have limited charge mobility and
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Figure 2.3: SEM imaging of suspended BG-NEMS.
After measurement, the suspension of the sample can be confirmed with SEM. When
the tilt angle is high enough, an image showing full suspension can be acquired (inset).

inhomogeneous charge density. Moreover, the impurity charge density is too large

to see the charge neutrality point. Once the samples have been liberated from the

substrate, however, it is possible to anneal them by flowing a large annealing current

which must dissipate in a cross section only two atoms thick.

2.2 Annealing to Ultra-Low Disorder

Since graphene’s sp2 carbon bonds are extremely robust, bilayer graphene crystals

can withstand temperatures approaching that of the surface of the sun (4500 Kelvin)

[46]. At such temperatures and under high vacuum (P ≲ 10−6), water is desorbed

and polymer residue is ashed off. The heating is accomplished by passing a large

current through the samples and is called Joule annealing [47].

To perform current annealing, we built a feedback-controlled circuit which can

monitor source-drain current. Computer feedback makes the process more repeatable
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Figure 2.4: Illustrating the desired µ and VCNP in DC data.
Carrier mobility (µe for electrons and µh for holes) describes the conductivity (σ)
increase as charge carriers are added (deviations from a line are due to contact
resistance RC). The minimum of the conductivity occurs at the minimum of the
charge density (charge neutrality point VCNP ). To perform the measurement, we
want high µ and accessible VCNP .

through high sensitivity manual control of the voltage ramp and hold rates. Large

changes in resistance also trigger an automatic safe rampdown.

As seen in Figure 2.5 (panels b, c, and d at high currents), saturation (flattening)

of the Ohmic response of the device indicates that the device has begun to anneal.

Care must be taken however, as this is also the regime where you need to worry most

about device failure however. In this regime, annealing power should be increased

in small steps. Between the steps, DC characteristics are measured. Once the Dirac

point is visible, significant change between anneals indicates that a measurement

should be attempted before continuing. Figure 2.5 shows the effects of annealing on

our sample.

Annealing improves two features of the I−VG data shown in Figure 2.5 (panels e, f,

g, and h). First, the charge neutrality point (conductance minum) moves towards 0 V

as the impurity charges are burned off. Second, as the disorder decreases, the mobility

increases, leading to steeper slope as you approach the charge neutrality point. The

measurement sensitivity is proportional to responsiveness of the conductivity to a

varying charge density, as characterized by the mobility. This step is important

because the device fabrication exposes the graphene to glue, resist, and moisture
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Figure 2.5: Joule
annealing of BG-NEMS.
a Circuit schematic
Source and drain are
gold, sample is blue.
b,c,d Annealing data
Deviations from the line
VB = IR occur in the
annealing regime (high
VB).
e,f,g,h Improvement
after annealing Anneals
reduce doping (lower
ICNP , VCNP → 0) and
increases mobility (higher
slope).
Data from Device A.

resulting in charged, low-mobility samples.

Annealing also presents a significant risk of device failure (see Figure 2.6). Since

changes in resistance at a given voltage can lead to large changes in annealing power,

it is important to anneal slowly. Computer control of the annealing circuit aids with

this issue, but does not eliminate it entirely.

After the annealing has improved our mobility to approximately the 50 000

cm2/V s range (at a temperature of 4 Kelvin), it becomes possible to search for

the electromechanical resonance via a mixing measurement. This device quality is

required because the current mixing is proportional to the derivative of the I − VG
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Figure 2.6: Catastrophic device failure during annealing.
I−VB data in a device destroyed by current annealing. Rapidly changing conductivity
can cause uncontrolled current increases which destroy the device.

data.

2.3 Mixing Source and Gate Signals

Mixing current measurement is a low-noise technique to measure the slope of the

I−VG data. The technique is also sensitive to mechanical resonance. To observe BG-

NEMS resonance, however, the circuit must be specially designed to accommodate

the radio frequency (RF) resonance. Furthermore, detection of mechanical resonance

in bilayer graphene is more difficult than in monolayer because the conductance

minimum is less sharp, the mobility is somewhat lower, annealing is harder, and

disorder has a greater impact on the device performance.

2.3.1 DC Conductivity Model in Bilayer Graphene

The conductivity of a bilayer graphene transistor cannot be described satisfactorily

using the channel conductivity σ = neµ. In our devices, there is a large

contact resistance (RC) between the gold electrodes and the bilayer graphene sheet.

Furthermore, the mobility of the electrons is not the same as for holes (particularly at

low temperatures). The goal of this section is to present a model of the DC electronics

that is sufficient to fit to our DC data and aid in understanding of the electronics at
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higher frequencies.

The conductance of the device is the conductance of the channel added in parallel

with the conductance of the contacts.

G =
(︁
Rc +G−1

0

)︁−1
(2.1)

Where Rc is the contact resistance and G0 = W
L
σ. The measure of quality of a

DC transistor is typically given as a mobility (µ), which is related to the conductivity

as:

µ =
σ

ne
(2.2)

Where e is the elementary charge. In a 2D semiconductor, the gate doping can

be determined by assuming that the device is a parallel plate capacitor.

nG =
cG
e

(VG − VCNP ) (2.3)

Where cG is capacitance per unit area and VCNP is the gate voltage at the charge

neutrality point. The conductivity minimum determines the charge neutrality point

in bilayer graphene. In our devices, the capacitance is the series capacitance of the

oxide and the air gap, which can be modelled as parallel plate capacitors since the

graphene width is much greater than the suspension height.

cG ≈ ϵ0

(︃
hsuspended +

hSiO2

ϵSiO2

)︃−1

(2.4)

Where ϵ0 is the the permittivity of free space, ϵSiO2 is the relative dielectric

constant of the substrate, hsuspended is the suspension height, and hSiO2 is the height
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of the remaining (un-etched) SiO2 substrate.

Charge density is partly controlled by the gate, but also partly controlled by

thermal doping and impurities [48][49].

ne/h ≈ 1

2

[︃
±nG +

√︂
n2
G + 4n2

0

]︃
(2.5)

Where n0 includes both impurity charges (reduced by annealing) and thermal

charge carriers (reduced by lowering temperature).

Figure 2.7: Extracting charge mobility, charge impurity density, and contact
resistance for σ − VG data.
From Equation 2.6. Pictured: fits of conductivity versus gate voltage to extract
mobility (overlaid, black) on the raw data (red dots), showing excellent agreement
and great mobility in both a device A and b device B at T = 4 K. A mobility for holes
has been extracted by fitting with Equation 2.6. Since the conductance minimum can
be extracted without fitting and temperature is known, the only fit parameters are
µe, µh, Veff , and Rc.

These equations, when put together, allow for the determination of the mobility

by the fitting following equation:

σ =
L

W

I

VB

≈

[︄
W

L
Rc +

{︃
(µefe(V ) + µhfh(V )) cG

√︂
(VG − VCNP )

2 + 4V 2
eff

}︃−1
]︄−1

(2.6)
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Where the impurities are captured by the Veff and the difference between holes

and electrons is captured by making the approximation ne = fen and nh = fhn,

where fe and fh are the Fermi-Dirac function for holes and electrons respectively.

This approximation is valid in bilayer because its density of states at low energy is

constant [48].

An example of fitting the DC data with this equation and extracting mobility for

holes and electrons is shown in Figure 2.7.

In devices outside the quantum regime with low disorder and negligible edge

effects, a constant mobility is expected for electrons and another for holes.

Since the suspension height appears in the equation for capacitance, the

conductivity fluctuations due to mechanical motion contribute to the mixing current.

For a sufficiently large mobility and a sufficiently large-amplitude resonance, it should

be possible to detect the resonance in the mixing current.

2.3.2 Low-Noise Current Mixing Measurement at Radio-

Frequency

The following methods for detection of the mechanical resonance by mixing

measurement follow those described by C. Chen et Al. [14]. Nonetheless, particular

care had to be taken with the device geometry, annealing procedure, and circuit

design in bilayer graphene.

Since the gate electrode is short-circuited to the sample at high frequencies, we

measure at low frequency. The technique used is called current mixing. In a mixing

measurement, the sample acts as a radio-frequency mixer between high frequency

signals on the source f +∆f and gate f , creating a signal on the drain electrode at

the difference between them (∆f chosen to be easy to measure) [41]. The mixing is

proportional to the fluctuation of the conductance δG due to the gate voltage. As

shown in Equation 2.6, the gate voltage VG varies the conductance G through the

capacitance cG. Since the capacitance depends on the suspension height, the mixing
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current is also sensitive to mechanical motion at the drive frequency f , allowing the

detection of the NEMS resonance (see Equation 2.7).

δG =
∂G

∂VG

(︃
δVG +

C ′
G

CG

VGδz

)︃
(2.7)

Reflections off the sample also pose a problem [41]. Since the impedance of the

coaxial cable is much smaller than the sample resistance, standing waves in the cable

affect the voltage on the sample. This was solved by adding a capacitor and matching

load in parallel, so that the radio frequency (RF) power is absorbed but the voltages

still reach the sample.

Figure 2.8: Simplified schematic of the RF mixing measurement circuit.
Frequencies ω and ω + δω are administered to the gate (δVG) and source (δVB)
electrodes respectively. At resonance, the motion of the graphene will modulate the
capacitance and contribute an additional term proportional to the DC gate voltage
(VG). The low-frequency, mixed-down currents can then be detected by ordinary
means. Tees block reflections from a large impedance mismatch for frequencies where
1
ωC

<< 50Ω.

A circuit diagram illustrating the principal considerations is shown in Figure 2.8.

The full circuit requires several additional components.
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As shown in Equation 2.8, mixing is a high-resolution technique to measure the

transconductance (derivative dG
dVG

of the conductance G). Because of this, we can work

backwards from the DC conductance measurements to verify whether our circuit is

working.

The mixing response in our model mixes the voltage at the source with the charge

density induced by the gate. The charge density varies by two mechanisms. Off

resonance, the signal is due directly to the applied gate voltage (proportional to

δVG). Near resonance, another term due to the capacitance variation as the oscillator

moves (proportional to δz) must be included [14]:

Ipredictedmix =
1

2
δVs

dG

dVG

(︃
δVG +

C ′
G

CG

VGδz

)︃
(2.8)

Where δVs is the amplitude of the RF source voltage, δVG is the amplitude of the

RF gate voltage, VG is the DC gate voltage, dG
dVG

is the DC transconductance,
C′

G

CG
is

the detection sensitivity, and δz0 is the amplitude of the oscillation. And where the

detection sensitivity is given by:

C ′
G

CG

=
dzavg
dzmax

c′G(0)

cG(0)
=

dzavg
dzmax

(︃
hsuspended +

hSiO2

ϵSiO2

)︃−1

(2.9)

For our mode shape, we assume the factor to be dzavg
dzmax

= 1
2
. The DC

transconductance can be related to the nonresonance mixing current by the first

term in Equation 2.8: Ipredictedmix = 1
2

dG
dVG

δVsδVG.

The detection of the small signals coming from the devices was enabled by a

current preamplifier. Because of the background noise, a lock-in amplifier was also

needed [50]. RF and DC generators were used to excite the devices.

Control of RF amplitude is accomplished with programmable attenuators. Bias

tees are used on the source and gate; these enable DC and RF measurements in a

single circuit. High pass filters and low pass filters were added in the appropriate
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Figure 2.9: Detailed current mixing circuit schematic.
The circuit allows simultaneous control of DC and RF voltages. A current preamp
and a lock-in amplifier are used to detect the small currents produced by the NEMS.

locations; these reduce noise and ensure the signal which is detected comes only from

the sample. For the full circuit diagram, see Figure 2.9 and Table 2.1.

Part Manufacturer Part #

Bias Tees Pasternack PE1611
DC Blocks Mini Circuits BLK-89
Matching Loads Mini Circuits ANNE-50
Programmable Attenuators Agilent (now Keysight) J7211C
High Pass Filters Mini Circuits SHP-25
Low Pass Filters Mini Circuits BLP-1.9
RF Generators Berkeley Nucleonics Corporation BNC 3
DC Generators Tektronix Keithley 2400
Mixer Mini Circuits ZX05-10L
Splitters Mini Circuits ZFSC-2-4-S

Table 2.1: List of circuit components for RF mixing measurement of bilayer graphene
NEMS in 4He cryostat.

While the mixing circuit can only detect the mechanical motion on resonance,

there is a background signal due to the first term in Equation 2.8. This contains

useful information about the RF performance of the graphene transistor and also

serves as a first demonstration of the circuit.

For any frequency at which the measured mixing current obeys the relationship in

Equation 2.8 (where the ∂G
∂VG

term can be found from the DC I−VG data), we expect

be able to measure a high-quality electromechanical resonance if it exists. As seen in
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Figure 2.10: Test of agreement between measured Imix and theoretical expectations.
a The DC gate sweep data in Device B. b The measured mixing current (red) is
compared to the predicted mixing current (black) based on the data in a using the
Equation 2.7. Good agreement is obtained.

Figure 2.10, the mixing current measured with our circuit agrees very well with the

mixing current predicted based on the DC data.

2.3.3 Advantages of Our Optimized BG-NEMS

Measurement Platform

The major advantages of our measurement platform are threefold: annealing to

resolve BG-NEMS mixing, single-circuit access to DC and RF data, and the access

to simultaneous conductivity and resonance data.

Our carefully chosen device geometry allows us to anneal BG-NEMS which

are nearly disorder free (charge mobility µ ≈ 76000 cm2/V s, charge doping

n0 < 6.6× 10−9 cm−2, mass density ρ ≈ 1.01 ρgraphene). Moreover, the annealing can

be accomplished with a single circuit. Accordingly, we are able to clean bilayer

graphene sufficiently for mixing to be performed and then immediately measure it.

As the RF and DC data is taken with a single circuit, we are then able to compare

the transconductance between a well-behaved DC setup and our experimental RF

data. This feedback allows for calibration of the circuit and, most importantly,

confirmation that our BG-NEMS are sufficiently annealed for measurement.

As the measurement is fundamentally electromechanical in nature, the same
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data set allows for the extraction of electronic properties like mobility as well

as the extraction of resonator properties like frequency, mobility, and amplitude.

Importantly, this permits us to explore of the impact of the mechanical properties of

our BG-NEMS on the electronics.

One final incidental advantage is the compatibility of the measurement with our

existing fabrication procedure. Measuring directly at the resonance frequency requires

additional fabrication steps (as shown in Figure 2.11).

Figure 2.11: Example of fabrication for detection at resonance frequency.
a A cartoon of the fabrication process. b Scanning electron microscope image of the
device. c Microscope image of the gate. This figure is reproduced from a paper by
Song et Al. [13].

The yield for our fabrication method (from identification to measurement) is on

the order of 10%. Not only are these additional steps lower-yield, but they prevent

33



us from using our existing chip packaging system and preclude using our existing DC

setup for magnetic field sweeps and temperature sweeps.
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Chapter 3

High Quality Bilayer Graphene

Electromechanical Resonators

This Chapter reports the detection of high-quality electromechanical resonances

in BG-NEMS. We extract the frequency (f ≈ 135 MHz and f ≈ 220 MHz), quality

factor (up to Q ≈ 2000), and amplitude (δz from few pm to nearly 1 nm). These

numbers are comparable to those reported in monolayer graphene [50]. The behaviour

of the electomechanical resonances is explored at temperatures between 50 mK and

150 K with the majority of the data taken at 4 K under high vacuum.

First, we resolve the electromechanical resonance mixing at charge densities as low

as n ≈ 108 cm−2 thanks to the finite low-energy density of states for bilayer graphene,

a major improvement over monolayer graphene. Next, the nonlinear properties of the

resonances are explored at drive forces between F ≈ 5µN/cm2 and F ≈ 5N/cm2,

revealing complicated nonlinear properties. The devices are doped with gate charge

densities of up to nG ≈ 1011cm−2, resulting in a static strain force of 40 MN/cm2.

We measure high cooperativity nonlinear mode-mixing and quadratic gate hardening

inconsistent with a membrane model. We describe these behaviours of our BG-NEMS

in terms of rippled and wrinkled morphology.
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Figure 3.1: Observation of electromechanical resonance in devices A and B.
Mixing current is measured vs the frequency at the gate. Making the measurement
required good agreement between the DC gate sweep and the RF gate mixing
sweep. Since the resonance frequency depends on geometry and built-in strain, it
was essential to sweep a wide range of frequencies to find the resonance. To achieve a
noise level which allows such sweeps to be taken in a reasonable amount of time, the
following steps were taken: make the sweep at the best gate voltage (high VG

∂G
∂VG

),
identify the lowest noise combination of source and gate voltage, and make the
measurement at 4 Kelvin. The pictured flat frequency response was also needed
to distinguish the resonance signals from the background. a device A. The data in
device A was taken at VG = 3.2 V , δVB = 2 mV , and δVG = 1 mV . b device B. The
data in device B was taken at VG = 2 V , δVB = 10 mV , and δVG = 20 mV .

3.1 Detection of Bilayer Graphene

Electromechanical Resonances

With the devices and circuitry described in Chapter 2, it is possible to detect the

small, high-frequency resonance signal. To understand our data we use a model that

relates the shape of the resonance to its physically meaningful quantities such as the

quality factor, the resonance frequency, and the amplitude of oscillation.

Although the shape of the resonance is indeed a Lorentzian, there is a phase
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difference between the δVG and δz, which must be accounted for in the fit tan(ϕ) =

(2Q)−1
(︂

ω0

ω
− ω

ω0

)︂−1

. To fit the frequency response, you need to treat the current as

a phasor and add the phase-dependant contributions from the two terms.

Figure 3.2: Electromechanical resonance line shapes.
a and b The frequency response in devices A and B respectively. The gate voltage
is chosen so that the frequency and the resonance width can be easily estimated by
eye. Essentially a close-up of Figure 3.1. c and d The model in Equation 3.1 is
a good match for the shape and has good agreement with the estimated frequency
and linewidth. Good agreement with the fit function adds confidence in the extracted
parameters for less obvious lineshapes. The difference in frequency between this figure
and Figure 3.1 is due to frequency tuning at the gate, as illustrated in Figure 3.11.

Ifitmix = A+Bω + Iresonancemix

ω
ω0

cos(ϕ)− (2Q)
(︂
1− ω2

ω2
0

)︂
sin(ϕ)

ω2

ω2
0
+ (2Q)2

(︂
1− ω2

ω2
0

)︂2 (3.1)

Where ϕ is the phase between the mixing due to δVG and δz [14]. Good agreement

between this equation and the measurement suggests that the model can be trusted.
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Moreover, the relationship between non-resonant mixing signal and the mixing signal

due to resonance can be exploited in order to arrive at the following useful relation

to extract the resonance amplitude from the fit:

δz =
cG
c′G

Imix
resonance

A+Bω0

δVG

VG

(3.2)

We also observe good quality factors in the (Q ≈ 1 000) range at 4 K. The

resonance frequency of our oscillators is comparable to those of monolayer graphene

resonators from previous works. We are also able to observe resonances up to 160 K

(see Figure 3.3).

Figure 3.3: Electromechanical resonance in a bilayer graphene resonator at 160 K.
The raw data is shown in black and the theoretical model is shown in red. A
sharp, high frequency, high quality resonance in Device A can be seen at 160 K.
Note that the fitting works even when the oscillation is completely out-of-phase and
the Lorentzian lineshape is hard to distinguish. Above 160 K, our cryostat could
not cryopump effectively and the sample got dirty. With a more reliable vacuum, it
should be possible to measure bilayer graphene electromechanical resonances at room
temperature. The data was taken at VG = −6 V , δVB = 5 mV , and δVG = 5 mV .

At the level of understanding described thus far, the resonance becomes a platform

to explore the properties of the resonator, such as nonlinearity and morphology.
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3.2 Duffing Nonlinearity in BG-NEMS

A driven damped harmonic oscillator obeys the equation z̈+ ω0

Q
ż+ω2

0 = f(t). This

equation is insufficient to explain oscillators whose behaviour changes qualitatively

with varying drive power (nonlinear oscillators), which we observe in our resonators

(see Figure 3.4).

Figure 3.4: Nonlinear frequency softening in device A at 4 K and 77 K.
The left axis indicates the mixing current measured. The bottom axis is the frequency
of the sweeps. Colour scale is increasing drive voltage from red to blue. As drive
force is increased, resonance frequency is decreased. The data at 4 K were taken
at VG = 6 V and δVS = 5 mV . The data at 77 K were taken at VG = −6 V and
δVS = 2.85 mV .

The simplest and most studied nonlinear restoring force is called Duffing

nonlinearity (parameterized by the “Duffing parameter” α). This is also the most

studied type of nonlinearity in graphene NEMS [14]. A Duffing oscillator is described

by the equation [51]:

z̈ +
ω0

Q
ż + ω2

0z + αz3 = f(t) (3.3)

Where z is the displacement from equilibrium, ω0 is the resonance frequency, Q

is the quality factor, and f(t) is the sinusoidally varying forcing function. While this

describes our system well enough to explain its behaviour in most regimes, Samanta et

Al. [51] provide a full description of the geometric nonlinearity of an electromechanical
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membrane oscillator. In this description, instead of only αz3, terms of all orders∑︁∞
2 αiz

i are included. At realistic values of strain and amplitude, most of these

terms are suppressed so an effective Duffing parameter αeff [6] is usually used. The

dominant terms in the expression for αeff are quadratic α2 and cubic α3.

αeff = α3 −
10α2

2

9ω2
0

(3.4)

The geometry of a membrane resonator results in the following expressions for the

quadratic and cubic nonlinearities [51]:

α2 =
Eδzdc
6ρ

(︃
2π

L

)︃4

− 5Eδz3dc
72ρ

(︃
2π

L

)︃6

− 5

2

√︃
2

3

c
(3)
G

ρt

(︁
V DC
G

)︁2
(3.5)

α3 =
E

18ρ

(︃
2π

L

)︃4

− 5Eδz2dc
72ρ

(︃
2π

L

)︃6

− 35

9

c
(4)
G

ρt

(︁
V DC
G

)︁2
(3.6)

Where E is the effective 3D Young’s modulus, ρ is the density (we use the density

of graphite in our calculations), t is the thickness, and c
(n)
G is the nth derivative of the

capacitance per unit area with respect to the suspension height.

For weak nonlinearity, the Duffing parameter can be extracted from the frequency

shift as amplitude is increased [52] (see Equation 3.7). This procedure is performed

on our data in Figures 3.5 and 3.6.

ω = ω0 +
3

8

α

ω0

(δz0)
2 (3.7)

BG-NEMSs have nonlinearity which turns on at low amplitude and can be seen

in our samples as frequency shifting versus amplitude.

Based on the length and frequency of our oscillator, we calculate a Duffing
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Figure 3.5: Extracting the Duffing parameter in device A at 4K.
From the data in panel a of Figure 3.4, we extract amplitude squared (right) and
resonance frequency (left). The derivative is ∂δz2

∂f
= (−1.39± 0.14) × 10−25 m2s.

Using Equation 3.7, this corresponds to αeff = −1.0× 1035 Hz2/m2.

parameter with similar magnitude to our measurements (calculated αeff =

(2.6± 0.2) × 1034 Hz2/m2 compared to our measured value αeff = −1.0 × 1035

Hz2/m2). For this calculation, and throughout the thesis, we follow C. Chen [14]

and assume an effective Young’s modulus of 1 TPa. An effective Young’s Modulus

(3D) is reported instead of a 2D Young’s Modulus in order to facilitate comparison

between monolayer and bilayer graphene as well as to simplify some equations. There

are several contradictory reports of this value in literature: 1± 0.2 TPa [53], 2± 0.5

TPa [54], and 594 ± 45 GPa [18], for example. We artificially exclude the error on

this value from the reported uncertainties. The sign of our measured nonlinearity is

opposite our expectations, suggesting that quadratic nonlinearity plays a larger role

than anticipated (by Equation 3.4).

At higher amplitudes and higher temperature (more noise, less strain), two

different regimes for nonlinearity can be identified (see Figure 3.6).

As discussed in Samanta et. Al. [51], bistable or even mutistable behaviour (which

shows as jumps on the frequency sweep) can be present in the strongly nonlinear

regime, which we also observe.

There is disagreement between our results and the mathematical predictions for
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Figure 3.6: Extracting Duffing parameter in device A at 77K.
From the data in panel b of Figure 3.4 following the procedure from Figure 3.5. a
Raw data at 77K, two regimes are identified in red and blue corresponding to the
two regimes seen in panel b of Figure 3.4. b Fit of the high amplitude regime with a
higher αeff ≈ 6α(4K). c Fit of the low amplitude regime with lower αeff ≈ 3α(4K).

the nonlinearity of a membrane resonator (and, as we shall see, the relationship

between strain and frequency). We propose a simple picture in which changing

morphology can cause these behaviours and present evidence that this picture is

correct and represents an improvement in understanding BG-NEMS.

3.3 Tuning BG-NEMS through Wrinkles and

Ripples

When a 2D resonator is subjected to an electric field, the capacitive forces affect

its morphology. We show that our measurements are consistent with morphological

wrinkling and rippling present in literature. The evidence which we found that

supports this picture is:

1. Quadratic frequency hardening which is inconsistent with the quartic behaviour

from the theory for membrane oscillators [14]. Refer to Figures 3.8 and 3.10.

2. A gap in the frequency of oscillation at a frequency where membrane behaviour

begins to resemble the observed hardening [41]. Refer to Figure 3.11.
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Figure 3.7: Multistable electromechanical resonance in device A and also in device B.
Similar to the report by Samanta et Al. in monolayer graphene [51], we observe
discontinuities in the frequency of oscillation. These discontinuities with a sample at
different drive powers represent jumps between two stable oscillation amplitudes for
a given frequency of oscillation. a Device B at ≈ 4 K, VG = 1.18 V , δVB = 10 mV .
b Device A at ≈ 120 K, VG = −6 V and δVB = 2.85 mV .

3. A gap size in quantitative agreement with nonlinear mode mixing between a

mostly-flat mode shape and a spatially varying mode shape [19][55]. Refer to

Equation 3.14.

4. An intra-band conductance minimum coincident with the mode mixing, as

expected from morphological irregularity [56]. Refer to Figure 4.3.

5. Nonlinear damping which is not accounted for by the membrane model, and

other nonlinearities corroborate this picture [57]. Refer to Figure 3.15.

The frequency of a membrane resonator can be tuned by varying the DC gate

voltage. Since the device is a capacitor, charge from the gate builds up on either

plate of the capacitor causing an attractive force and thereby inducing a tension and

varying the frequency [14].

C. Chen et Al. demonstrated that modelling graphene NEMS as membrane

resonators reproduces the qualitative behaviours that were observed [50]. On Page

71 of C. Chen’s thesis [14], however, it is clear that this qualitative agreement does

not fully capture the shape (quadratic hardening) which was measured for the NEMS
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Figure 3.8: Disagreement between the quartic hardening of f − VG (as predicted for
a membrane oscillator) and the data reported in literature.
When a gate voltage is applied to NEMS, it induces a tension which tunes the
frequency. The fit from C. Chen’s PhD thesis overlaid on the quadratic hardening
behaviour actually presented in the same thesis [14]. The left axis is frequency and
the bottom axis is gate voltage used to modulate the tension in the sample. The
colour scale is mixing current and the black line is the fit to the frequency tuning
data reported in the PhD thesis.

most similar to ours (see Figure 3.8).

3.4 Frequency, Strain, and Nonlinear Mode

Mixing

The force stretching the membrane induces a tension described by the static

displacement of the oscillator with an effective spring constant given by:

k =

(︃
16ELWtε0

L2
− c′′LWtV 2

G

2L

)︃
+

256ELWt

9L4
z2 (3.8)

Moreover, when net force is zero, kz =
c′WtV 2

G

2
. Since the frequency is given by
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f =
√︂

k
meff

, we can rearrange to get [14]:

f 2

f 2
0

=
(︁
1− β0V

2
G

)︁(︄
1 +

1

3

(︃
R2 − 1

R

)︃2
)︄

(3.9)

Where R =

(︄(︃
1 +

(γ0V 2
G)

2

(1−β0V 2
G)

3

)︃ 1
2

−
(︃

(γ0V 2
G)

2

(1−β0V 2
G)

3

)︃ 1
2

)︄ 1
3

, c′′L2

32Etε0
= β0, and(︂

1
ε0

)︂ 3
2 9c′L

16Et
= γ0. ε0 is the built-in strain and C ′, C ′′ are the first and second derivatives

of the gate capacitance. The resonance frequency at zero gate is f 2
0 = 16Eε0

ρL2 and finally

γ0 = 9c′L
16Etε0

ε
− 1

2
0 , β0 = 3c′′L2

32Etε0
. Extracting f0 and VCNP from the bottom of the curve

reduces the problem to a two-parameter fit for the frequency tuning (demonstrated

in the red fit in Figure 3.10).

Figure 3.9: Comparison between catenary and membrane tuning in device A.
Left axis is frequency, bottom axis is gate voltage. a Raw 2D f − VG mixing data.
Colour scale is the rate of variation of current versus frequency (chosen to achieve
a uniform background and good visibility of resonance tuning). Taken at ≈ 4 K,
δVS = 2 mV and δVG = 1 mV . b Extracted data and predicted frequency hardening
for a membrane (red, using Equation 3.9) and a catenary beam (blue, using Equation
3.10). Surprisingly, the catenary physics is in much better agreement. The fitted
values are given in Equation 3.11.
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V. Sazonova et Al. give a different mechanism for frequency tuning [41], albeit in

carbon nanotube NEMS. In the so-called “catenary” regime, the frequency of a system

under slack changes primarily due to morphology as opposed to strain (demonstrated

in the blue fit in Figure 3.10).

Figure 3.10: A cartoon of the catenary regime.
There are three regimes for a beam-like oscillator. The first (least strain) regime is the
bending regime governed by the stiffness of the oscillator; in this regime the frequency
is constant. The next (intermediate strain) regime is the catenary regime governed
by changes in shape but not length; in this regime, quadratic tuning is expected. The
final regime is the strained regime governed by strain ∆L

L
; in this regime, we expect

the membrane description to be mostly valid. This figure was reproduced from the
thesis by V. Sazonova [58].

ωcat =
22.4

L2

√︄
Et2

12ρ
+ 0.28

Lc′G
t2
√
8s

√︃
1

ρE

(︁
V DC
G

)︁2
(3.10)

The above equation should be valid for a beam-like oscillator between VG =√︃
Et3

Lc′G

√︂
2s
3
and below VG =

√︃
2( 27

25)
3
2Ets

3
2

Lc′G
[41].

Surprisingly, this quadratic hardening is a much better fit for the data in our

device A as well (as shown in Figure 3.10). It describes a beam resonator with some

slack so that changes in frequency are due to changes in geometry, not tension. In

our device A, we find excellent agreement with the fit:

f = (135.38± 0.01MHz) +

(︃
44.5± 0.4

kHz

V 2

)︃
(V − (0.30± 0.01 V ))2 (3.11)
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Under what condition can we expect a BG-NEMS oscillator to obey the catenary

equation for a beam oscillator? In terms of the displacement from equilibrium (δzDC),

the equation for frequency of a membrane oscillator is (by rearranging Equation 3.8):

ω =

√︄
k (VG) +

32ELWt
9L4 z2 (VG)

meff

(3.12)

Suspended 2D materials in literature have been observed to exhibit “wrinkling”

[43]. Suppose the “built-in” strain of the wrinkles were greater than the strain

from the gate. By Equation 3.12, this corresponds to an RMS height of z >(︂(︁
2π
22.4

)︁2 ρf2
0L

4

E

)︂ 1
3 ≈ 10 nm, similar to the wrinkles reported in literature [43].

In this scenario, the wrinkles would contribute an amount of virtual “slack”

s = 0.282

96

c′g
2L2

(2π df

dV 2 )
2
Et4

≈ 10−4 for which a catenary beam model would represent the

dynamics (changing shape without changing tension). Since the catenary model is

expected to represent the dynamics of such a system above VG ≈
√︂

Et2
√
s

L3c′g
≈ 1V (from

Equation 3.10) [58], it is consistent that it should describe our samples.

In the catenary picture, we would also expect a crossover to membrane physics

once the static strain is greater than the built-in strain of the wrinkles. From Equation

3.12, the unwrinkling regime is k0 ≈ 32ELWt
9L4 z2RMS, which would correspond to f0 >

8zRMS

3L2

√︂
E

ρeff
or approximately 100 MHz.

Moreover, when two different modes are excited simultaneously (ex: degeneracy,

pumping, or harmonics) they couple through the Duffing nonlinearity (discussion by

Mathew et. al. [55]) according to the following equations:

z̈1 + 2ζż1 + ω2
1z1 + α1z

3
1 + α12z

2
2z1 = f1 (t)

z̈2 + 2ζż2 + ω2
2z2 + α2z

3
2 + α12z

2
1z2 = f2 (t)

(3.13)

Where αi = α
(︁∫︁

dzϕ′
i
2
)︁2

and α12 = α
(︁∫︁

dzϕ′
1
2
)︁ (︁∫︁

dzϕ′
2
2
)︁
. The subscripts 1 and

2 denote the two modes which are coupling to one another. The Duffing parameter
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Figure 3.11: Presence of frequency gap in devices A and B.
At high power, we observe a gap in the frequency. a Frequency tuning in Device A at
4.2 K at δVs = 5 mV and δVg = 10 mV . c Frequency tuning in Device B at 4.2 K at
δVS = 10 mV and δVG = 10 mV . From Equation 3.14, b α12 = 6.9×1033Hz2/m2 for
device A and d α12 = 3.3× 1036 Hz2/m2 for device B. Both differ by a factor of 100
(in opposite directions) from the measured Duffing parameter. This is consistent with
coupling to modes with dramatically different mode shapes

∫︁
dzϕ′

2
2 such as between

wrinkled and membrane oscillations.

α is involved via the α12, which also contains a term related to the mode shape.

When the two modes couple strongly, a gap in the frequency appears (also known

as an avoided crossing). We observe avoided crossings in both our devices at high

power (see Figure 3.11).

∆ω =

(︄√︃
ω2
1 + α12

δz22
2

)︄
− ω1 (3.14)

The strength of the mode coupling is usually given by the cooperativity C [59], a

dimensionless factor which is used to report device performance:

C =
Q1Q2

ω1ω2

∆2
ω (3.15)
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Figure 3.12: Gate-tunable δz showing impact of avoided crossings on Q.
Highly tunable amplitude and quality factor at high drive in device A at 4K. a and c
correspond to the data in panel a of Figure 3.11 at δVS = 5 mV and δVG = 10 mV .
b and d correspond to the data in panel b of Figure 3.11 at δVS = 10 mV and
δVG = 10 mV .

From the α12’s in Figure 3.11, we extract cooperativity C ≈ 4 for device A and

C ≈ 36 for device B using Equation 3.15.

In Figure 3.12, we can see highly tunable amplitude at constant power. While this

is an interesting applied property by itself, it also accounts for the large difference in

gap size for holes and electrons in Figure 3.11 (from Equation 3.14). Furthermore,

in Figure 3.13 we can see the phase of the oscillator is negative on either side of the

gap, showing strong leakage of mechanical energy.

Our mode mixing measurement permits indirect detection of mode shape

variation. Accordingly, we suggest that further study on electronic effects of

dynamical chaos in BG-NEMS is a promising and near-term aim in the understanding

of 2D NEMS, particularly for the relationship between their nonlinearity and

morphology.

Suppression of the conductivity as charge density increases is observed coincident

to the frequency gap (see Figure 4.3). This is consistent with our picture since
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Figure 3.13: Effects of mixed mode on oscillator phase above and below avoided
crossings.
The phase (c,d) of the resonance on either side of the discontinuity (a,b) has opposite
sign. The data are taken at the same parameters as in Figure 3.11.

surface disorder can be related to an effective suppression of the mean free path (and

therefore mobility). The fractal ripples of graphene are well-studied [60] and the

relationship between the wrinkle fractal dimension and the suppression of mobility

is known theoretically [56]. In particular, the excess resistivity δρ for highly fractal

graphene is given by Equation 3.16.

δρ =
h

4e2
z̃4

R̃2a2
(3.16)

Where h is Planck’s constant, z̃ is the characteristic height of the ripples, R̃ is the

characteristic radius of the ripples, and a is the lattice constant.

As a membrane geometry fails to account for the magnitude of the nonlinearity,

the morphological change provides a unified mechanism that can explain the effects

observed in this section.
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Figure 3.14: Impact of RF NEMS mode mixing on DC charge conductivity.
a Morphological mode mixing in Device A. b Intra-band conductance minimum
corresponding to suppression of mobility. The excess resistance at the frequency
gap can be described by large morphological disorder via Equation 3.16. The data
are taken at the same parameters as in Figure 3.11.

3.4.1 Nonlinear Damping in BG-NEMS

A second form of nonlinearity has been reported in graphene NEMS and is called

nonlinear damping [57][20]. Nonlinear damping is described by the parameter η in

Equation 3.17.

z̈ +
ω0

Q
ż + ω2z + ηz2ż + αz3 = f (t) (3.17)

When the frequency shift due to Duffing nonlinearity is on the order of the

linewidth broadening due to nonlinear damping, the linewidth changes proportionally

to the frequency shift grows proportionally to one another, according to the

relationship in Equation 3.18 [57]:

Q−1
δz = 2

η

α
(ω − ω0) +Q−1 (3.18)

Although nonlinear damping is not expected for a system that behaves strictly

like a membrane resonator [57], we observe nonlinear damping in our BG-NEMS as
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Figure 3.15: Extracting η from amplitude dependence of Q.
Nonlinear damping can be seen from a linear relationship between the frequency
shift and the broadening in device A at 4 K and 77 K.. At 4K ∂Q−1

∂f
= −3.841 ns

corresponding to η = 5.0× 1027 Hz/m2

a resonance broadening with increased drive force (subtle, but visible effect in Figure

3.4). We plot the frequency shift versus the resonance broadening in Figure 3.15.

Using Equation 3.18, we obtain a value of η ≈ 5.0 × 1027 Hz/m2 at 4K and a value

of η ≈ 9.4× 1027 Hz/m2 at 77K.

Nonlinear damping has been observed in literature with a magnitude greater than

can be explained by a membrane geometry alone [57][20]. In our devices, we also

observe nonlinear resonance broadening which is linear in frequency shift (see Figure

3.15). This is consistent with nonlinear damping.

Our observation of suppressed mobility in Figure 4.3 of the preceding section

provides a possible mechanism of action for nonlinear energy loss through nonlinear

mode coupling to modes associated with the wrinkled morphology.

3.5 Summary of our Results: Tunable, Nonlinear,

Wrinkled BG-NEMS

We demonstrated the clear detection of high-quality and tunable

electromechanical resonances in two BG-NEMS. The properties of our resonators are

summarized in Table 3.1.
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Device A B

L (µm) 1.07 1.64
W (µm) 1.21 0.29
µ ( cm

V s
) 76 000 57 000

f (MHz) 137 216
δzmax (nm) 0.5 0.1
α2 (Hz2/m) 4.4 ×1025 1.6 ×1024

α3 (Hz2/m2) 2.9 ×1034 5.3 ×1033

α(calc) (Hz2/m2) 2.6 ×1034 5.3 ×1033

α(meas) (Hz2/m2) -1.0 ×1035

η (Hz/m2) 5.0 ×1025

|αµν | (Hz2/m2) 6.9 ×1033 3.3 ×1036

C 4.2 36

Table 3.1: Summary of the NEMS properties of devices A and B at 4K.
Nominal values for the following quantities: length, width, mobility, frequency, max
amplitude. Calculated values for: quadratic and cubic nonlinearity. Measured values
for: effective Duffing parameter and nonlinear damping as well as nonlinear mode
coupling and cooperativity. A discussion of the uncertainty is made in the body of
the text.

Using the gate voltage, we were able to tune the frequency of both of our devices

by 1%. We were able to observe these resonances at temperatures up to 160 K. By

varying the morphology via the gate voltage, we were able to tune the quality factor

by 400% and the resonance amplitude by 700%. For a change in strain on the order of

1%, we see a qualitative change in the f−VG dispersion. By comparing the measured

f−VG dispersion to expectations for both a membrane and a catenary oscillator, and

by comparing our measured α’s to our measured α12’s, we explain the behaviour of

our devices in terms morphological wrinkles and ripples.
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Chapter 4

Conclusions

In this thesis, we have contributed three clear advancements to the study of 2D

NEMS. Firstly, we have presented a mixing detection of electromechanical resonance

in BG-NEMS. Next, we have demonstrated gate-controlled tuning of the frequency

and quality factor of these resonators. Lastly, we have examined how nonlinearity of

the BG-NEMS is related to tunable morphological features.

4.1 Electromechanical Actuation and Detection of

Bilayer Graphene NEMS Resonance

To the best of our knowledge, electromechanical activation of BG-NEMS,

measurement of their mobilities, and detection of their electromechanical resonances

has not been explicitly reported. We fine-tune methods from literature to fabricate

BG-NEMS of high quality, anneal BG-NEMS to low-disorder, and measure BG-NEMS

at their driven resonances with minimal circuit artefacts.

This simultaneous actuation and detection allowed us to report two BG-NEMS

resonators (example in 4.1) with frequencies f ≈ 137 MHz and f ≈ 220 MHz, at

mobilities up to µ ≈ 76000 cm2/V s, with quality factors as high as Q ≈ 2000, at

temperatures as high as 160 K.
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Figure 4.1: Mixing current detection of electromechanically actuated BG-NEMS.

Given our results, we expect that small modifications to the cryostat vacuum

system will permit room-temperature measurements of BG-NEMS. Moreover, we

expect our techniques to extend to novel carbon 2D materials like twisted bilayer

graphene and ABC-stacked trilayer graphene.

4.2 NEMS with Tunable f Near the Charge

Neutrality Point: Study of Low-Energy 2D

Physics

The BG-NEMS we report are tunable with an applied gate voltage. The gate

voltage controls charge density and the strain, allowing the resonance frequency to

be tuned.

Using the gate voltage, the resonance frequencies of our BG-NEMS can be tuned
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Figure 4.2: Raw f − VG mixing current data clearly showing resolution of CNP.

by ≈ ±1%. Moreover, we report good resolution of the charge neutrality point (see

Figure 4.2): we detect resonances at charge densities as low as n < 6.6× 10−9 cm−2).

With tunable resonance frequency, good resolution of the low-energy physics, and

detection at temperatures as low as 50mK, we expect to be able to mechanically

detect low-energy excitations in BG-NEMS and related systems, such as the quantum

Hall effect states, proximity-induced superconductivity, quantum dots, and correlated

electrons.

4.3 Morphologically Tunable Nonlinearity in BG-

NEMS

By varying the drive power of the BG-NEMS, we measured nonlinear behaviour

including hardening, softening, broadening, and multistability. The properties of our
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nonlinear oscillators depended strongly on strain and temperature and allowed us to

propose a relationship with the morphology.

When as the gate voltage approaches critical values, a large increase in the

amplitude (up to 4000%) and the quality factor (up to 550%) were observed. Even

when not on resonance, the differential mobility became negative at these values. At

higher drive powers, these critical values also corresponded to gaps in the frequency

of oscillation (∆f ≈ 500 kHz and ∆f ≈ 6 MHz), corresponding to mode mixing with

high cooperativity (C ≈ 4.2 and C ≈ 36). Warming up, evidence of higher-order

nonlinearity with hardening, softening, and as many as 3 quasi-stable amplitudes was

seen.

Figure 4.3: Morphological suppression of mobility.

While the evidence presented is consistent with literature in graphene monolayer

NEMS experiment, it is not consistent with the accepted description of 2D NEMS as

a membrane oscillators. We propose that 2D-NEMS morphology is tunable from 2D

and membrane-like because of high strain to 3D and beam-like because of wrinkles

from cooling and annealing.
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4.4 Future Study: Pushing the Boundaries of

Bilayer Graphene NEMS

We demonstrate bilayer graphene NEMS (example in Figure 4.4) with unique

advantages such as the resolution of mixing current near the charge neutrality point.

With the methods and devices described in this thesis, several avenues of future study

can be identified.

Figure 4.4: SEM image of our BG-NEMS.

An immediate objective is to measure at room temperature and above. Given our

ability to resolve the resonance at 160 Kelvin, this is a realistic goal. In addition to

exploring realistic device applications, access to room-temperature BG-NEMS would

permit electromechanical measurement of graphene’s thermal expansion.

Given the recent excitement surrounding twisted bilayer, the realization of this

measurement in BG-NEMS opens up the possibility of studying the correlated

electrons in magic-angle twisted bilayer graphene.
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