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Abstract

Worst-Case Valuation of Equity-Linked Products Using Risk-Minimizing

Strategies

The global market for life insurance products has been stable over the years. However,

equity-linked products which form about fifteen percent of the total life insurance market

has experienced a decline in premiums written. The impact of model risk when hedging

these investment guarantees has been found to be significant. We propose a framework to

determine the worst case value of an equity-linked product through partial hedging using

quantile and conditional value-at-risk measures. The model integrates both the mortality

and the financial risk associated with these products to estimate the value as well as the

hedging strategy. We rely on robust optimization techniques for the worst case hedging

strategy. To demonstrate the versatility of the framework, we present numerical examples

of point-to-point equity-indexed annuities in multinomial lattice dynamics.
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Chapter 1

Introduction

1.1 Background

Annuities are payments made at equal intervals of time. Traditionally, they serve as a type of

investment for retirement purposes. Annuities whose returns are based on offering participa-

tion from the performance of some mutual fund or equity index are known as Equity-Linked

Products. Here, the policyholder is an individual who makes an investment in the form of a

single premium or periodic payments for a term and in return is guaranteed an accumulation

on premium and some extra benefit at maturity based on the growth of the fund or index.

Equity-linked products whose returns are tied to the performance of a mutual fund and

guarantees a minimum rate of return are known as Variable Annuities (VAs) in the United

States, Segregated Funds in Canada or Unit-Linked in some parts of Europe. Since its intro-

duction in 1995 by Keyport Life Insurance Co., Equity-Index Annuities (EIAs) have become

popular with stable sales over a short period of time. With an estimated sales of $69.6 billion

by the fourth quarter of 2018, Equity-Indexed Annuities (EIAs) have been seen as the most

innovative annuity product to ever hit the United States market. Variable Annuities on the

other hand saw a $100.1 billion in sales in 2018, see LIMRA [2018].

Several models have been proposed for the pricing and valuation of equity-linked products.
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In the Black-Scholes framework, Tiong [2000] considered the use of Esscher transforms to

compute the prices of various types of EIAs in closed form by considering their embedded

options. A more thorough discussion of these guaranteed investments is provided by Hardy

[2003] where she considered the use of regime-switching log-normal index processes to com-

pute the price of equity-linked products. Lee [2003] also develops a model to price EIAs using

path-dependent options. The high volatility of the index creates an increase in the cost of

the embedded options and triggers insurers to lower the participation rates. By consider-

ing path-dependent options, Lee [2003] derives a joint distribution function for the terminal

time value and running maximum of a Brownian motion to use with Esscher transforms and

propose direct pricing formulas.

Some variants of EIAs may be seen as American-type products. In this case, they are

composed of embedded American options. Longstaff and Schwartz [2001] value American

options by simulation. Since the optimal exercise strategy is mainly determined by the

conditional expectation of the payoff from exercising the option immediately, by estimating

the conditional expectation function for each exercise date, a complete specification of the

optimal exercise strategy along each path is obtained. As such, they show that least square

Monte-Carlo simulations can readily and accurately be applicable in path-dependent and

multi-factor situations where traditional finite difference techniques cannot be used.

More recently, Quan et al. [2018] use classification and regression trees to develop the price

of variable annuities using a large sample of variable annuity portfolios. They compare the

predictive accuracy of tree-based models that includes traditional regression trees and ob-

served that these models are generally efficient in producing more accurate predictions based

on the synthetic data-set they generated.

Due to the various financial guarantees embedded in the structure of equity-linked prod-

ucts, traditional actuarial risk management practices cannot be extended to the valuation of

EIAs. Gaillardetz and Lakhmiri [2011] consider a loaded premium that protects the issuers

against the financial and mortality risks by obtaining a fair value contract using arbitrage-

2



free theory and estimating a new participation rate using hedging errors on the investment

loading. Boyle and Hardy [1997] also consider the reserving of maturity guarantees using the

stochastic simulation of future investment returns and option pricing theory. In the former,

they adopt the Wilkie model to calibrate and simulate future returns and compute both the

expected cost and reserves for the guarantees at different risk levels and initial premiums. In

the latter, they consider a modified Black-Scholes pricing model to dynamically hedge the

guarantees for different maturities and volatility.

Equity-linked products are considered to be long term products with maturities spanning as

long as 20 years. However, most hedging strategies in the literature work best for shorter

maturities, considered to be self-financing and priced under market completeness assump-

tions. A market is said to be incomplete if some payoffs cannot be replicated by trading in

marketed securities. As such, perfect transfer of risk is not possible. Staum [2007] iterates

that the classic no-arbitrage theory of valuation in a complete market, based on the unique

price of a self-financing replicating portfolio, is not adequate for non-replicable payoffs in

incomplete markets.

Due to the presence of mortality and financial risk, and even in some cases surrender risk,

EIAs are not suitable to be priced under market completeness. Bacinello [2003] models the

policyholder surrender conditions of a unit-linked product where they extend an analysis

of exogenous minimum guarantees and take into account the possibility that the surrender

values can be determined endogenously. Møller [1998] also explains that due to market in-

completeness the claims cannot be hedged completely by trading stocks and risk-free assets

only. As such they propose risk-minimizing strategies and their associated intrinsic risk pro-

cesses by extending the model to a situation where they can eliminate the risk completely to

determine self-financing hedging strategies. The use of risk-minimizing strategies in hedging

contingent claims has also been considered by Gaillardetz and Moghtadai [2017] where they

made a comparison of the quadratic hedging strategy with two proposed strategies. The op-

timal iterated strategy, that seeks to minimize a risk measure and the allocation constraint

3



minimizes the portfolio value based on some initial value or wealth.

Robust optimization involves several techniques that protect a decision-maker against param-

eter ambiguity and random uncertainty. In finance, the concept has been used in portfolio

management and asset allocation. Scutellà and Recchia [2013] uses robust counterparts of

the classical mean-variance and minimum-variance portfolio optimization problems to ad-

dress uncertainty in portfolio asset allocation by focusing on robust optimization methods.

After showing that errors in expected return estimates can lead to optimal portfolios with

weights that are significantly different from the true optimal portfolio, Ceria and Stubbs

[2006] introduce robust optimization to reduce some of the ill-effects of optimization caused

by estimation error in expected return estimates.

1.2 Motivation

In analyzing the risk underlying investment guarantees, Augustyniak and Boudreault [2012]

considered several econometric models and conducted out of sample analysis of these models

compared to observed equity-linked returns during the financial crisis. They observe that

tail risk measures vary significantly across the various models. More importantly, an analysis

of the delta-hedging strategy, in addition, indicated large hedging errors. These observations

stress the consideration of the impact of model risk when hedging investment guarantees.

Hardy et al. [2006] also validates some long-term models for equity-linked guarantees and

observed that in comparing the results from two models, both had very similar likelihoods but

their residuals gave very different capital requirements. Given that the Canadian Institute

of Actuaries (CIA) and the American Academy of Actuaries (AAA) recommend the use of

stochastic models for reserving losses on equity-linked insurance, including segregated funds

and variable annuities, it is important to have a measure that could serve as a yardstick for

both insurers and regulators to compare various model risks to, and hence the consideration

for the worst-case value of equity-linked products.
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The use of worst-case models in minimizing risk has been considered and proven to be

efficient. Chen [2009] uses the worst-case model in an ε-arbitrage framework to compute the

price of options and observed close matches when the results were compared to observed

market prices. The concept has also been widely adapted in optimizing the returns of

portfolios in finance, see Rockafellar et al. [2000]. Zhu and Fukushima [2009] and Cornuejols

and Tütüncü [2006] also apply this concept to the conditional value-at-risk in portfolio

management.

Our approach to estimate the worst-case value of a contract rests on the solution of a

robust linear optimization problem defined by considering a multinomial lattice for the index

structure coupled with product losses restricted by a risk measure. Our aim is to minimize

the cost of establishing a portfolio that replicates our contingent claim by minimizing the

risk under uncertainty in the index model. This approach allows us to develop the model

using additional information on index return dynamics defined by adjusting the uncertainty

sets used, and the flexibility of selecting different volatility which could also be allowed to

follow the volatility index.

1.3 Thesis Overview

In Chapter 2, we describe the risks that are associated with equity-linked products. For

index risk, we define an index model with discrete state space, specifically a lattice model

and define how a trading strategy can be established from such a model. We further describe

mortality risk and introduce the notations that will be used to define our losses. Since we

use risk-minimizing strategies in our optimization, we discuss two known risk measures and

describe how they can be adapted to suit our model. Lastly, we define a typical loss random

variable for a portfolio that has both financial and mortality risks.

In Chapter 3, we discuss some hedging strategies and define our hedging model that needs to

be optimized. In Chapter 4, we give a brief description of robust optimization, a technique

5



we intend to use to solve our hedging optimization problem. We describe uncertainty in a

model and define some uncertainty sets. We conclude the chapter by exploring some ro-

bust optimization strategies and formulate the robust counterpart of our worst-case hedging

strategy.

In Chapter 5, we briefly explain how we can set up our capital requirement from the model.

A concept that is very important to regulators. In Chapter 6, we describe the investment

guarantees that come with equity-linked products and define the various indexing meth-

ods used in valuing equity-indexed annuities. We conclude the chapter by analyzing the

numerical implications, and relevance of the model to different sampling techniques and un-

certainty sets. We also discuss the sensitivity of the model to basic pricing parameters of

equity-indexed annuities. We conclude with summary and recommendations to our work.

6



Chapter 2

Index, Mortality and Risk

In this chapter, we describe the structure of a typical index and mortality model and intro-

duce the actuarial notations that will be used. We continue to talk about the risk measures

that will be used in the next chapter and provide their characteristics and coherency. Finally,

we define a typical portfolio loss function for an equity-linked product.

2.1 Index Model

Equity-linked products provide returns based on some stock index. There are several models

used to imitate the stock index dynamics. Lattice pricing models over the years have been

shown to be resilient in modeling stock indexes, interest rates, stock, and other securities.

First introduced by Cox et al. [1979], the two-state (binomial) lattice approach proved to be

a valuable model in the valuation of several financial securities. With various assumptions,

their fundamental market process was shown to converge to the independent log-normal

model. The model failed to work when market variations and extreme movement in the long-

term are considered. To adjust the model by Cox et al. [1979], Boyle [1988] introduces a three-

state lattice model whose risk-neutral probabilities were computed by matching the moments

of the discrete model to some mean and variance of a continuous log-normal distribution.

Since then several multi-period discrete multinomial lattice models have been developed with

7



a number of continuous-time approximation models. For example, see Jabbour et al. [2004].

2.1.1 Lattice Model

In our financial model, we assume a finite market where all pertinent quantities take discrete

values. As such, we consider the finite state space Ω such that for all ψ ∈ Ω, P(ψ) > 0. Let

n, the time horizon in years within which all activities are expected to happen, be divided

into N periods per year, each of length Δ = 1
N
. Let the stock price process S = {St : t =

0,Δ, 2Δ, · · · , n} be positive random variables such that the measured space St takes values

in the finite set Ω and define rt to be the annualized risk-free rate effective in the interval

[t, t +Δ]. We denote the time t price of an at-the-money option that matures at time n to

be P (t, n) and without loss of generality, let the index price at time t = 0 be one unit.

The assumption of a finite Ω helps develop a lattice model. For k+1 number of branches per

lattice point in a tree and i = 0, 1, 2, · · · , tk/Δ, let ψi,t be the event of realizations relative

to node i at time t. In Figure 2.1, at t = 0, we denote ψ0,0 to be the unique root node from

which the lattice arises. At t = Δ, we have k + 1 possible states values for ψi,Δ with each

connected to the root node. The lattice can be constructed to grow in such a way that, as

an indication of history, each node at some time t is connected to the root node by a path.

Next we let P[ψi+j,t+Δ|ψi,t] = pi+j,t+Δ|i,t be the conditional probability of moving from state

ψi,t to ψi+j,t+Δ, for i = 0, 1, 2, · · · , tk/Δ, j = 0, 1, 2, · · · , k and t = 0,Δ, · · · , n−Δ.

2.1.2 Recombining Trees

We consider a multi-period multinomial recombining lattice model for our index dynamics.

Here we can set the number of nodes or branches that can be created from the initial stock

index and compute the various index price movements for each node through time. We keep

in mind that we allow the tree nodes to recombine. For some stock index St at time t, the time

t+Δ price is assumed to go up by a factor u, (uSt) or down by a factor d, (dSt) in a binomial

framework. In a trinomial setting, the index either moves up (uSt), remains the same (St)

8



or moves down (dSt). Details of the trinomial lattice framework and the construction of

probabilities can be found in Boyle [1988]. Furthermore, a typical multinomial model will

have the time t+Δ indexes as

St+Δ|St = Stu
k−jdj, {j = 0, 1, · · · , k}, (2.1)

St can be seen as a component of the state variable ψi,t. Also to ensure recombining of the

trees for numerical tractability, we set ud = 1 and define u = eσ
√

Δ/k and d = 1/u for some

σ. When k = 1, σ represents the volatility of the index returns for a discrete time increment

Δ, see Cox et al. [1979]. The construction of the up and down factor using volatility allows

us to capture the market dynamics which relies strongly on volatility. Also, because the tree

is recombining by construction, the level of computation implied is manageable.

We construct the tree by starting with an initial index value at time t = 0. Setting the

initial value to one makes it easy to re-scale the tree by simply multiplying by whichever

initial value is desired. We then compute the first k+1 branches of the initial value at time

t = Δ using (2.1). After this, for each one of the k + 1 branches, we compute their respect

successors for the second period at time t = 2Δ and so on until maturity at time n, resulting

in a multinomial index tree with each node at t+Δ connected to at least one node at t.

2.1.3 Binomial Structure

One difficulty faced when constructing a multinomial lattice is the description of the proba-

bilities of moving from one state to another. The choice of structure of the index in (2.1) is

consistent with the convergence to the geometric Brownian motion. As stated, if pi+j,t+Δ|i,t

is the conditional probability to reach state ψi+j,t+Δ from ψi,t, then using a typical binomial

pricing model, we can set q = eμΔ/k−d
u−d

for some drift μ such that the related binomial dis-

tribution simulates the geometric Brownian motion of the underlying index and hence the

9
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Figure 2.1: Multinomial lattice tree

probability pi+j,t+Δ|i,t using a binomial structure is

pi+j,t+Δ|i,t =
(
k

j

)
qk−j(1− q)j (2.2)

for i = 0, 1, 2, · · · , tk/Δ, j = 0, 1, 2, · · · , k and t = 0,Δ, · · · , n −Δ. A diagram of a typical

multinomial tree for our states and probabilities can be seen in Figure 2.1.

2.1.4 Trading Strategy

Bingham and Kiesel [2013] defines a trading strategy, or more importantly a dynamic port-

folio A to be a stochastic vector process A = {Ai,t}nt=0 = {[ai,t, bi,t, ci,t]′}nt=0 in R
3 to be

adapted. Without loss of generality, we assume the portfolio comprises of three assets, ai,t

dollar amount in an index, bi,t in a risk-free asset and ci,t in an option. It is however, possi-

ble to have multiple assets. Thus a trading strategy is simply a collection of the number of
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shares of an asset, which is determined at time t but are held in the portfolio at time t+Δ.

The values of Ai,t can be both negative and positive so that short-sales can be allowed and

more importantly we assume that assets can be divided perfectly.

With the definition of a dynamic portfolio and the stock process, we can proceed to define

the portfolio value at any time.

Definition 2.1.1 The portfolio value V
(A)
i,t at any time t is the scalar product of the trading

strategies and the asset prices such that

V
(A)
i,t = ai,t + bi,t + ci,t (2.3)

for t = 0,Δ, 2Δ, · · · , n.

Thus V
(A)
i,t can be seen as the wealth of value process generated by the trading strategy A

and V
(A)
0,0 , the initial investment or wealth of an investor.

Definition 2.1.2 A trading strategy A is said to be self-financing if

ai,t
St+Δ

St

+ bi,te
rtΔ + ci,t

P (t+Δ, n)

P (t, n)
= ai,t+Δ + bi,t+Δ + ci,t+Δ (2.4)

for t = 0,Δ, 2Δ, · · · , n.

The definition of a self-financing portfolio implies that although the prices of assets or stocks

change through time, the investor makes no injections or withdrawals from the portfolio.

Thus the strategy is defined by re-allocating the number of asset shares at any point in time.

This result is trivial in a discrete time setting but requires a little argument in a continuous

time setting. An interesting feature of a self-financing strategy is that normalizing the asset

prices has little or no economic effects.

Another feature that is paramount to the description of an index model is the concept of

arbitrage. As several combinations of assets can be created from different trading strategies,

we say a self-financing strategy creates an arbitrage opportunity if the initial portfolio value
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is zero but produces a non-negative final value almost surely and has a positive probability

of positive final value. Bingham and Kiesel [2013] define arbitrage mathematically.

Definition 2.1.3 Let Φ be a set of self-financing strategies, then a strategy A ∈ Φ is an

arbitrage strategy with respect to Φ if P{V (A)
0,0 = 0} = 1 and the terminal wealth of A satisfies:

P{V (A)
i,n ≥ 0} = 1 and P{V (A)

i,n > 0} > 0.

We say a market is complete if every contingent claim is attainable. That is, if we let X
be any contingent claim, there exists a replicating self-financing strategy A ∈ Φ such that

V
(A)
i,n = Xi,n. An arbitrage-free market is then said to be complete if and only if there

exists a unique probability measure equivalent to P under which discounted asset prices are

martingales. A concise proof of completeness in relation to the fundamental theorem of asset

pricing in discrete time can be found in Bingham and Kiesel [2013] and that of continuous

time in Björk [2009].

Time series regime switching methods can be extended to index models. Introduced in

economics series, Hamilton [1989] proposed an adjustable approach to modeling changes in

regimes by considering some parameters of an auto-regressive process as outcomes of some

discrete state Markov process. Thus the probability of changing regime depends only on the

current regime, not on the past observations of the process. A regime switching index model

assumes that the index process switches randomly between some regimes. The rationale

behind this assumption is that index prices may switch through time from say, a bullish

market to a bearish market, a stable or low volatility state to an unstable or high volatility

regime. Due to the uncertainty and randomness surrounding regime switching, stochastic

modeling is used in dealing with such financial complexities. Caccia and Rémillard [2017]

also apply the concept of regime switching to price and hedge options under discrete time

auto-regressive hidden Markov models where they proposed a regime process to follow a

Markov chain with some fixed transition matrix. They do this by first predicting the regime

by assuming some stationary distributions, estimating parameters using the EM algorithm

and conducting a global hedging using the regime predictions.
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2.2 Mortality Model

In this section, we introduce the mortality process and notations in relation to equity-linked

products. We adapt the notations from Dickson et al. [2013] and Gaillardetz and Moghtadai

[2017].

There are types of mortality risk associated with equity-linked products. The systematic

risk and the non-systematic risk. While systematic mortality risk is associated with the

uncertainty due to a population’s development of mortality rates, non-systematic mortality

risk occurs when the number of deaths fluctuates around the probability of survival. The

sale of a large number of homogeneous policies can mitigate the non-systematic risk but not

the systematic risk.

When an equity-linked policy is issued, the insurer does not know the exact day the policy

holder will die, surrender or terminate the policy. The only available future parameters

may be the day the contract or policy matures. As such, there is the need to consider the

mortality process of the policyholder during the term of the policy. If we let (x) : x ≥ 0

denote a policyholder aged x, then we are interested in any future event that occurs after

age x. We denote Tx to be the future lifetime random variable of (x). Thus the probability

that life aged (x) dies before age x+ t,

P[Tx ≤ t] = tqx, (2.5)

and the probability that life aged (x) survives past age x+ t is

P[Tx > t] = tpx. (2.6)

The individual curtate future lifetime random variable of (x) is defined as the integer part of

the future lifetime random variable and is denoted Kx = �Tx�, where �·� is the floor function.
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The probability function of Kx for t = 0, 1, 2, · · · is also defined as

P[Kx = t] = P[t ≤ Tx ≤ t+ 1] = tpxqx+t (2.7)

We consider l0 mutually independent policyholders, and let (xl) be the age of the i-th pol-

icyholder at the time issue, l = 1, 2, · · · , l0, then Txl
is the time until the death of the l-th

policyholder. If we consider the index framework in section (2.1) where the time to maturity

is divided into N sub-periods, each of length Δ = 1
N
, then the curtate future lifetime of (x)

is

Kx = �NTx�Δ. (2.8)

Also, we define nl to be the contract maturity for the l-th policyholder and assume that a

policyholder can exit the contract either through death or as the contract matures. Therefore,

we can define the curtate time until exit as

K∗
xl
= min(Kxl

+Δ, nl) (2.9)

We denote the probability of death for the i-th policyholder in the period [t, t+Δ) as Δqxl+t

and the probability that (xl) remains in the cohort of policyholders for at least t years, t =

{0,Δ, 2Δ, · · · } to be P[K∗
xl
≥ t] = tpxl

such that the probability that (xl) exits the contract

within period Δ having remained a policyholder for t years is P[K∗
xl
= t] = t|Δqxl

= tpxlΔqxl+t.

It is noteworthy to point out that death is not the only decrement in equity-linked contract

and other decrements such as surrender could be considered as well. However, modeling

policy holder surrender behavior has over the years proven to be difficult. Bacinello [2003]

considers pricing with surrender option. We also assume exits from the contract occur at

the end of periods.

Next, if we let Lt denote the group of policyholders with a contract in force and alive at
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time t, then we can define

Lt =

l0∑
l=1

1{min(Txl
,nl)≥t} (2.10)

Let our state process be enlarged to comprise of both the cohort process as well as the

index process with finite states ψi,· ∈ Ω with probabilities pi+j,·|i,·, for i = 0, 1, · · · , tk/Δ,

j = 0, 1, · · · , k. We define the cohort process to comprise of the number of policyholders

that die in the period [t, t+Δ),

N (d)
t =

l0∑
l=1

1{Txl
∈[t,t+Δ),nl>t} (2.11)

and the number of policyholders that terminate the contract at time t

N (e)
t =

l0∑
l=1

1{Txl
>t,nl=t} (2.12)

For further simplification, we assume that the l0 independent policyholders are of the same

age x, with mortality from the same distribution and they purchase the same contract. This

assumption can however, be relaxed for different ages and contract lengths.

2.3 Risk Measures

A risk measure is a method of summarizing the riskiness of a random variable into a single

number or a real-valued function. In loss reserving, Dickson et al. [2013] define a risk measure

to be the function that is applied to some random loss to give a reserve value that reflects

the riskiness of that loss. Actuaries are familiar with the use of premium principles as risk

measures when setting policy premiums. Other common risk measures like the Value-at-Risk

(V aR) and the Conditional Value-at-Risk (CV aR) have proven to be meaningful in business

settings as well.
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2.3.1 Coherent Risk Measures

Introduced by Artzner et al. [1999], if we define G to be the set of all risk, then a risk measure

ρ : G → R is coherent if it obeys the following axioms;

• Translation invariance: for all X ∈ G, risk-free rate r, and all real numbers α,

ρ(X + α · r) = ρ(X)− α (2.13)

• Sub-additivity: for all X1, X2 ∈ G,

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) (2.14)

• Positive homogeneity: for all λ ≥ 0 and for all X ∈ G,

ρ(λX) = λρ(X) (2.15)

• Monotonicity: for all X, Y ∈ G, X ≤ Y ,

ρ(Y ) ≤ ρ(X). (2.16)

2.3.2 Value-at-Risk

We let L be the discounted loss random variable and define the Value-at-Risk (V aR) of L

at c ∈ [0, 1] as

ρ(L) = V aRc(L) = inf{y ∈ R : P[L ≤ y] ≥ c} = πc (2.17)

for t ∈ {0,Δ, 2Δ, · · · }. V aRc, also known as the quantile risk measure may be seen as the

amount that the discounted loss L would not exceed with some probability c. πc may also

be seen as the 100c percentile of the loss random variable.
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2.3.3 Conditional Value-at-Risk

The quantile risk measure has some theoretical and practical problems associated with it.

One problem is, it does not take into account the risk if the worst case (1− c) event actually

occurs. Recent applications introduce the conditional value-at-risk (CV aR) also determined

with respect to some parameter c ∈ [0, 1]. Given some probability measure on a continuous

discounted loss L, the conditional value-at-risk or the CV aR at c is defined as

ρ(L) = CV aRc(L) = E[L|L ≥ πc]. (2.18)

Thus the CV aRc may be seen as the expected loss given that the loss lies in the worst 1− c

part of the distribution of L, where the worst 1− c part is simply that part greater than the

V aRc.

We need to take care when the distribution of L is discrete or mixed and hence defined by

some probability mass function. If the πc falls in the probability mass, (that is ∃ ε > 0 :

πc+ε = πc), then if we consider losses strictly greater than πc, we would be using less than

the worst 1 − c of the distribution. On the other hand, if we consider losses greater than

or equal to πc, we would be using more than the worst 1 − c part of the distribution. We

therefore, define the CV aRc approximation for discrete random losses as

CV aRc(L) = πc +
E[(L− πc)1{L>πc}]

1− c
. (2.19)

When studied in the framework of coherent risk measures, the Value-at-Risk lacks the sub-

additivity property and therefore convexity in the case of general loss distributions with an

exception to some special classes like the normal distribution, see Quaranta and Zaffaroni

[2008]. This drawback creates inconsistencies with well-accepted principles like “diversifica-

tion reduces risk” and also has even more problems when we consider numerical tractability.

For this reason, Rockafellar et al. [2000] focuses on optimizing the conditional value-at-risk
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or conditional tail expectation and approximates it to be

CV aRc(L) = πc +
1

1− c

∑
y∈R

p(y)[L(y)− πc]
+ (2.20)

where p(y) is a probability mass function. Rockafellar et al. [2000] proved that (2.20) is

convex and piece-wise linear with respect to πc and although it may not be differentiable

with respect to πc, it can readily be minimized by some line search techniques or linear

programming.

In relation to the lattice model, the discounted loss random variable is function of the state

ψi,t, thus it depends on the period t and the node i. As such both the V aRc and CV aRc

depend on ψi,t.

2.4 Portfolio Loss Random Variable

Equity-linked products are long term investments. Due to this feature, they tend to be

exposed to mortality and financial risks. As stated in the previous chapter, if we ignore

the possibility of surrender and withdrawal options and assume that an individual exits a

contract either by death or survives the term of the contract, then we can define Xi,t to be

the payoff upon survival or death for policyholder (x) at some time K∗
x and assume that

the insurer pays either the death benefit at the end of the period of death (Kx +Δ) or the

survival benefit at the end of the contract (n).

Given the possible gains and expenses that can happen to a specific insurance contract,

we need to determine the discounted loss random variable that can represent the aggregate

losses for some insurance portfolio. Next, in order to hedge this insurance portfolio, we

assume the insurer can invest in several financial instruments. Let ai,t be the dollar amount

invested in some index shares, bi,t be the dollar amount invested in some risk-free asset

and ci,t be the dollar amount invested in some other financial option all at node ψi,t, then

we can define Ai,t = {ai,t, bi,t, ci,t} to be the hedging strategy for the insurance portfolio,
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t ∈ {0,Δ, 2Δ, · · · , n−Δ} and i = 0, 1, 2, · · · , tk/Δ.

Thus, we denote Vi,t to be the value of the aggregate hedge portfolio at node ψi,t so that,

the initial value of the hedge portfolio is V0,0 = a0,0 + b0,0 + c0,0. The time t node i value of

the hedge portfolio is Vi,t = ai,t + bi,t + ci,t, for t < n. Furthermore, if we let V −
i,t denote the

value of the hedge portfolio before any benefit is payed at state ψi,t+Δ, then

V −
i,t = ai,t

St+Δ

St

+ bi,te
rtΔ + ci,t

P (t+Δ, n)

P (t, n)
. (2.21)

for t < n and i = 0, 1, 2, · · · , tk/Δ.

As such, if we consider the benefits paid out from the current period and risk from the

remaining cohort of policyholders, we can now define the discounted loss random variable.

Combining (2.11), (2.12) and (2.21) and conditioning on the process path, we define the

conditional discounted loss random variable at state ψi,t as,

Li,t = e−rtΔ
(
N (d)

t Xi+j,t+Δ + Vi+j,t+Δ − V −
i,t

)
(2.22)

such that Vi+j,n = N (e)
n Xi+j,n for t < n, i = 0, 1, 2, · · · , tk/Δ, and j = 0, 1, 2, · · · , k.
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Chapter 3

Replicating Portfolio

In this chapter, we propose how the equity-linked products can be hedged under worst-case

situations by minimizing an investment strategy coupled with some constraints on the loss

functions. We discuss as well the various dynamic hedging techniques that will be used.

Hedging is an investment strategy taken to reduce the risk of losses in a portfolio. It usually

involves taking the offsetting position in some future obligation or losses. A hedge portfolio

often referred to as a replicating portfolio in finance is simply a portfolio of some assets or

strategies whose value is able to offset some future losses. A replicating portfolio is said to be

self-financing if no injections or withdrawals are made from the portfolio once it is established.

That is, re-balancing of the portfolio is simply achieved by re-allocating the assets within the

portfolio. In a complete market, it is possible to have a self-financing portfolio that perfectly

replicates any payoff X at time n. However, in an incomplete market, there could exist some

claims X which cannot be perfectly replicated with a self-financing portfolio. We can either

replicate some attainable payoff that is close to X by global hedging or we can establish a

non-self-financing portfolio that replicates X almost surely at time n by local hedging.
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3.1 Super-replication

Another strategy for hedging the contingent claim X is to find a portfolio that eventually

dominates the claim X at time n. For instance, if we assume Vt = at + bt and define the

claim X to be a random variable at maturity n, then a super-replicating portfolio for the

claim X is any self-financing portfolio such that Vn ≥ Xn. This implies that the price of

the claim cannot exceed the price of the portfolio. Any self-financing strategy that satisfies

Vn ≥ Xn is sufficient to ensure super-replication. We note that there could exist infinitely

many portfolios whose value could be greater than the contingent claim at maturity. As

such an upper arbitrage bound for the price of the claim at time 0 is the super-replicating

portfolio that results in the least cost for any long position in the claim X . Thus

V super
0 = inf{V0|(a, b) is self-financing, Vn ≥ Xn}. (3.1)

Also, under some conditions on the contingent claim, the index model and the presence

of transactions costs, Chen et al. [2008] theorize that it may be possible to find a super-

replicating portfolio that costs less than the replicating portfolio. However, when there are

no transactions costs, a super-replicating portfolio must cost at least as much as a replicating

portfolio. Soner also explores the use of dynamic programming to establish super-replicating

portfolios in continuous time.

Davis and Clark [1994] in their paper describe why super-replicating strategies do not form

the basis for a viable theory of option pricing in continuous time. They conjecture that

the trivial buying and holding one share of the risky asset is the cheapest super-replicating

strategy when transaction costs are strictly positive. Finally, they show that the only possible

candidates for super-replicating strategies are those that track the Black-Scholes portfolio

closely by introducing suitable reflecting barriers. However, if these sell and buy barriers are

close together then the transaction cost will become large and super-replication will fail.

The construction of super-replicating portfolios has the condition that the value of such a
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portfolio should be greater than or equal to the contingent claim at maturity or at time n.

Föllmer and Schied [2011] extends this condition to the value of the claim at any time t

within the horizon of n. As such they define any self-financing strategy whose value process

Vt ≥ Xt, almost surely for all t, as a super-hedging or super-replicating strategy for X . The

payoff X is attainable if and only if there exist τ and a super-replicating portfolio whose value

process satisfies Vτ = Xτ almost surely. On the other hand, if X is not attainable, then the

value process of the super-replicating portfolio satisfies P{Vt ≥ Xt, ∀ t} > 0. This implies

that it is possible to construct a super-replicating portfolio even when the time to maturity

is not fixed by constructing a portfolio with a minimal investment which super-replicates the

claim at any time. A proof of this can be seen in Föllmer and Schied [2011]. It is important

to note however that such a portfolio is typically not the arbitrage-free price for claim X .

Before we formulate our hedging model for the value of an equity-linked product under the

worst-case scenario, we consider the creation of a replicating portfolio under an American

claim where the claim can be paid any time before maturity or at maturity. In a general

framework, an American-type product is a type of security or contingency where the issuer

of the product is likely to make claim payment at some period t ≤ n. The holder of an

American derivative security can exercise in any period before or at maturity and receive

some payoff which is a function of the stock price at that period. In EIAs, a situation

where the claim can be paid at any time t could arise when benefits are paid upon death or

surrender. As such this can be seen as a variant of an American-type product.

In order to hedge such a claim, we construct a self-financing trading strategy At as in (2.4)

such that for V
(A)
t , which is the corresponding value process, V

(A)
0 = x, where x is the initial

capital and V
(A)
t ≥ Xt for all t. Next, in a framework where we assume investors behave

rationally, that is, an investor’s decision at any time t will be to make choices that result

in the optimal level of benefit or utility. Thus if we consider constructing a strategy A for

an American-type product, then at time n, the hedging strategy would need to cover the

claim. Hence V
(A)
n = Xn would be a sufficient condition. At time n − Δ, since there is a
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possibility to make a claim, the insurer may either pay Xn−Δ or wait until maturity, in which

case the expected claim payable at time n needs to be covered. Bingham and Kiesel [2013]

use backward induction argument to show that the value, V
(A)
t of a self-financing strategy

under an American claim is the maximum of the current payoff at time t and the holding

value, where the holding value is the expected claim value at the next time step, t+Δ.

3.2 ε-arbitrage

The cost of a super-replicating portfolio is at least the cost of the replicating portfolio.

The idea of ε-arbitrage is to find a portfolio, not necessarily self-financing, whose value at

maturity matches the payoff X of the contingent claim within an error of ε. As such, if

we define A = {a, b} to be a hedging strategy that invests a in a risky asset and b in a

risk-less asset, then an ε-arbitrage hedging strategy can be defined as the strategy that seeks

to minimize the error ε created by the mismatch between portfolio value and payoff of the

contingent claim at maturity. That is the optimal ε-arbitrage hedging strategy for a claim

with payoff X at maturity n can be

A∗ = argmin
a,b

||Xn − Vn||. (3.2)

Chen [2009] try to find the portfolio that minimizes the worst-case ε-arbitrage between the

portfolio value and the claim payoff over some uncertainty set of security returns using robust

optimization. They formulate the optimization problem by considering a call option as the

claim and establish a min-max objective under some uncertainty constraints. We discuss

more the concept of robust optimization and its use in Finance in Chapter 4.

Bertsimas et al. [2001] provide a comprehensive framework for ε-arbitrage in both discrete

and continuous time. Unlike Chen [2009], they consider the square root of the mean-squared

replication error as a measure of success for creating an optimal replicating strategy due to

its tractability and compute the least cost optimal replication strategy and a corresponding
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measure of the minimum replication error ε. They rely on stochastic dynamic programming

algorithms to solve the optimization problem. It is worth noting that ε = 0 creates perfect

replication, although this might be an over-achievement (unrealistic in practice). They

specify that ε may be seen as the degree of market incompleteness that provides a measure

of the difficulty in replicating a portfolio. That said, dynamical market incompleteness may

arise as a result of, but not limited to, the presence of taxes, transactions costs, short-sales,

and borrowing restrictions.

3.3 Quadratic Hedging

Generally, investments in financial products involves risk. Schweizer [1988] considers a

stochastic model where the price process is a semi-martingale and assumes market incom-

pleteness to propose a sequential risk reduction hedging strategy in both discrete and contin-

uous time. On the other hand, Föllmer and Schweizer [1988] propose a local risk-minimizing

strategy to sequentially minimize the square error of the process and indicate that one should

not expect an intrinsic risk to completely vanish. As such any adjustment of the fair price

risk premium should be based on the a priori risk. Coleman et al. [2006] also consider dis-

crete hedging of guarantees in variable annuities using local risk minimization and suggest

that a joint model with both equity and interest rate leads to an effective reduction in risk.

In this section, we discuss another hedging approach known as a quadratic hedging strategy.

First introduced in the financial context by Bouleau and Lamberton [1989], this approach

seeks a strategy that minimizes the sum of expected squared hedging errors. As such, us-

ing the notation of Gaillardetz and Moghtadai [2017], we can define the optimal quadratic

hedging strategy at ψi,t as

A∗
i,t = {a∗i,t, b∗i,t, c∗i,t} = argmin

ai,t,bi,t,ci,t∈R3

E[L2
i,t], (3.3)

24



assuming Vi,t produces the optimal portfolio value under the same minimization criterion,

where Li,t is defined in (2.22). Thus for t = n−Δ, · · · , 2Δ,Δ, 0 and for i = 0, 1, 2, · · · , tk/Δ,

we can iteratively solve for the initial hedging portfolio A∗
0,0 by defining Vi,t = ai,t + bi,t + ci,t

for t < n.

It is important to note that constructing the hedging strategy with the quadratic approach

has a disadvantage over the use of a risk measure in that, the square of hedging errors does

not distinguish the impact of positive losses from negative losses.

3.4 Risk Control

Due to the possibility that the insurer of an equity-linked product could make benefit pay-

ments within the contract horizon and the fact that these products require dynamic hedging

strategies, Gaillardetz and Hachem [2019] in their paper explore some risk control strate-

gies. They propose minimization with risk measures as either objectives or constraints in a

dynamic programming setting. The risk measure is used in the constraints to limit the local

risk while they minimize the portfolio value. On the other hand, the risk measure is used

as an objective and requires additional local control modeling like limiting the value of the

portfolio or setting initial values for the portfolio.

In order to derive an optimal hedging strategy, Rockafellar et al. [2000] use auxiliary variables

to transform CV aR into a linear expression and then minimize it using linear programming.

Gaillardetz and Moghtadai [2017] also propose the minimization of hedge cost using local

risk-minimizing strategies iteratively. They compare the iterative quadratic hedging, which

minimizes the expected squared hedging errors, to the allocation constraint method, the

optimal iterated method and, a no-hedge strategy.

Similar to the quadratic hedging strategy, the allocation constraints rather minimizes the

V aR and CV aR of the discounted losses instead of the squared errors. Since V aR and

CV aR are unbounded, it is possible to simply lower V aR or CV aR at each iteration by
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increasing the value of the hedging portfolio. As such they introduce an initial capital value

as a constraint and recursively minimize the risk measure at each period, by starting from

the maturity until time 0. They obtain an optimal hedging strategy A∗
t = {a∗t , Vt− a∗t} for a

typical two-asset strategy, where the available capital Vt is defined at the beginning of each

period. Lastly, they propose the optimal iterated method, which also aims to minimize a risk

measure iteratively instead of the squared errors. This method sets the strategy such that

the risk measure is equal to a certain threshold γ. For instance, if the insurer sets the V aR

level to be c and the threshold to be γ, then it implies that the hedging strategy requires the

worst (1− c)% of losses to be γ, which provides more flexibility than the quadratic hedging

strategy. This is because an increase in the risk level c makes the strategy more expensive,

while an increase in the threshold γ makes the strategy cheaper.

The selection of the optimal portfolio at any time t is first found by obtaining all possible

combinations of hedging strategies that set the risk measure to γ. A subset of this portfolio

is selected numerically and the portion invested in the risk-free asset is estimated as the value

that minimizes the square of the difference between the threshold γ and the loss at a given

risk level. Details of the sequential approach to use the optimal iterated hedging strategy

can be seen in Gaillardetz and Moghtadai [2017]. It is also worth noting that setting γ = 0

and c → 1 implies that we want losses to be greater than 0. This leads to a super-replicating

strategy. That is we ensure that the replicating portfolio is greater than the claim, X almost

surely.

In an equity-linked product where we guarantee some payment upon the death of the policy

holder, the claim at any time is a combination of the claim payable at death of the insured

life and the value of expected discounted claims from future periods represented by the con-

ditional discounted loss at time t in (2.22). However, unlike American-type products where

the value of the strategy at time t is the maximum of the claim if payed at time t and the

expected value of the claim at maturity, given that investors act rationally, the value of the

strategy of and EIA is a combination of two contingencies. As such we need to relax the
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assumption of self-financing in order to construct a hedging strategy to cover the claims at

all times.

We now formulate the model that needs to be minimized under the worst-case scenario to

obtain the optimal hedging strategy or hedging value. For some portfolio hedging strategy

A, we apply the concept of the optimal iterated dynamic hedging strategy by Gaillardetz and

Moghtadai [2017] to find the optimum portfolio recursively. We denote the optimal hedging

replicating portfolio at time t by A∗
i,t = {a∗i,t, b∗i,t, c∗i,t}. Thus starting from time t = n−Δ and

working backwards, we dynamically optimize the sum of the risky and risk-free assets of the

replicating portfolio at each time step and node. We recall that the conditional probability

of the index reaching state ψi+j,t+Δ, given ψi,t for j = 0, 1, · · · , k, is pi+j,t+Δ|i,t.

Next, we restrict the CV aR at some level c to be less than the threshold γ as in the opti-

mal iterated method. While each state ψi,t comprises of the index value as well as the loss

function of the contract at that state, we define auxiliary/slack variables ui+j,t+Δ to denote

the positive difference between the loss at state i and the value-at-risk at some level c, all at

time t. We then use Rockafellar et al. [2000] formulation of CV aR in (2.20) and constraints

defined by Gaillardetz et al. [2019].

π+
c − π−

c + ui+j,t+Δ − Li,t ≥ 0, ∀ j = 0, 1, 2, · · · , k, (3.4)

ui+j,t+Δ ≥ 0, ∀ j = 0, 1, 2, · · · , k, (3.5)

π+
c , π

−
c ≥ 0, (3.6)

π+
c − π−

c +
1

1− c

k∑
j=0

ui+j,t+Δpi+j,t+Δ|i,t ≤ γ, (3.7)

for t ∈ {0,Δ, 2Δ, · · · , n−Δ} and i = 0, 1, 2, · · · , tk/Δ. Equation (3.4) as constraint ensures

the positive difference between losses and πc. (3.7) as constraint also controls the tail risk of

losses with the threshold γ.

The hedge portfolio that we seek at any time t is the minimum replicating portfolio value

that is able to cover any contingent claim at time t. As we explore ways to approach a
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worst-case solution to this hedging strategy, the introduction of the auxiliary variables in

the expression of the conditional value-at-risk creates a non-linear relation in the constraints.

Attempts to optimize with non-linear min-max algorithms were not reliable for a worst-case

orientation. The use of Lagrange multipliers and Karush-Kuhn-Tucker (K-K-T) conditions

requires our objective function to be continuous and at least twice differentiable, a condition

our objective set function does not satisfy. Also, most non-linear optimization techniques

require initial values as a starting point which usually results in local solutions. As such we

rely on linear programming under robust optimization to obtain a solution for our worst-case

dynamics.
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Chapter 4

Review of Robust Optimization

We intend to find our worst case hedging strategy using linear programming, which is con-

sistent with the approach used by Rockafellar et al. [2000]. However, we notice that the con-

straint in (3.7) is non-linear, since both the auxiliaries (ui+j,t+Δ) and probabilities (pi+j,t+Δ|i,t)

are variables, when we consider a worst-case orientation. Hence a drawback to the use of

the linear programming approach. We, therefore, resort to robust optimization techniques.

4.1 Description of Robustness

Robust optimization techniques are useful in Finance due to the uncertainty that is usually

associated with the inputs to the problem at the time the problem needs to be solved. Other

than just uncertainty, in some cases, these inputs may not be known or even inaccurate.

Cornuejols and Tütüncü [2006] describe robust optimization as the modeling of optimization

problems with data uncertainty so as to achieve a solution that is guaranteed to be satis-

factory for most or all possible realizations of the uncertain variables or parameters. This

type of optimization can be seen as a proxy to either stochastic programming or sensitivity

analysis. According to Cornuejols and Tütüncü [2006], robust optimization methods are

useful when some of the problem parameters are estimated and carry estimation risk, there

are constraints with uncertain parameters that must be satisfied regardless of the values of
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these parameters, the objective function or the optimal solutions are sensitive to deviations,

and lastly when we cannot afford a low probability and high magnitude of risk.

In comparison to our model, we can observe that both the loss random variable and the

index model will require some estimates and hence will carry estimation risks. Also, our

objective is to minimize the worst-case risk, as such we expect a high probability with a low

magnitude of risk, and this makes robust optimization a suitable tool for our optimization

problem.

An important consideration in the robust optimization framework is the way in which we

define or interpret robustness. Each different representation of uncertainty and description

of robustness leads to different formulations of robust optimization. When the uncertainty

is associated with the objective function, it affects the closeness of the generated solutions

to the optimal one. This type of framework is known as objective robustness. On the other

hand, when the uncertainty is associated with the model constraints, there is some risk in

the feasibility of possible solutions. This type of framework is also known as constraints ro-

bustness. It is noteworthy that both objective and constraints robustness have a worst-case

orientation, where we optimize the model solutions under some adverse conditions.

Cornuejols and Tütüncü [2006] categorize model robustness, where we seek just solutions

that optimize the worst-case behaviors, as absolute robust solutions. Conversely, solutions

that evaluate the worst-case behavior relative to some best possible solution under each

scenario are called relative robust solutions. The notion of relativity may be measured by

some regret function linked to a decision after the uncertainty is resolved. Another variant of

relative robustness may measure the regret in terms of closeness of the model solution to the

optimal solution and is very useful for multi-period problems, where revising a decision can

be costly, typically portfolio re-balancing with transaction costs. Other robust optimization

formulations like adjustable robust optimization can be found in literature, see Cornuejols

and Tütüncü [2006].

It is interesting to note that many of these descriptions of robustness can be reformulated
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to a tractable form that reduces the complexity of finding an optimal solution. In light of

the various description of robustness, our model can be seen as a constraint robust model

since the uncertainty only appears in the constraint for CV aR. Also, since we are interested

in the worst-case scenario of the value of the proposed hedging strategy, the model solution

may be seen as an absolute robust solution.

4.2 Uncertainty Sets

In order to accurately optimize a model that can be classified as robust, it is important to

have a thorough understanding of the behavior and influence of the uncertainty parameters.

This will, in fact, affect the choice of strategy to adopt to find the optimal solution.

The formation of uncertainty sets depends heavily on the perception of future values of

certain parameters. In some instances, statistical or Bayesian techniques are applied to his-

torical data to generate alternative estimates of parameters. Cornuejols and Tütüncü [2006]

lists four common types of uncertainty sets that tend to come up in a robust optimization

framework. We denote U to be an arbitrary uncertainty set and pj to be the possible values

of the model uncertainty parameters. Then,

1. U = {p0, p1, · · · , pk}, a set of finite number of scenarios generated for the possible

values of the uncertain parameters.

2. U = {pj : l ≤ pj ≤ u, ∀ j = 0, 1, · · · , k}, a set of intervals that defines each uncertain

parameter.

3. U = {pj : pj = p0 + Mu, ||u|| ≤ 1, ∀ j = 0, 1, · · · , k}, a set of ellipsoids that de-

fines the (confidence) regions of each uncertain parameter and are particular useful for

smoothing the optimal value function.

4. U = conv(p0, p1, · · · , pk), a set of polytopes with a convex number of scenarios gener-

ated for the possible values of the uncertain parameters.
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The desired level of robustness often influences the choice and the size of U . The type of U
will, however, depend on the source of uncertainty and the sensitivity of the optimal solutions

to this U . Usually, we generate estimates of the true parameters by making assumptions

about the stationarity of the random processes. Defining U in a reasonable way is the key

issue to successful practical application. That is, we need to define the likelihood distribution

of the uncertainty as well as their structure. For instance, knowing the bounds for interval

and finite uncertainty or the scaling matrix for ellipsoidal uncertainty. Zhu and Fukushima

[2009] propose estimating the distribution pj’s over U using historical data and then simu-

lating different samples of the likelihood distribution to find the confidence intervals of the

uncertainty parameters. Another is simply to use expert predictions to find the uncertainty

parameters.

Tütüncü and Koenig [2004] describe how uncertainty sets can be generated by using boot-

strapping and moving averages of historical data. Goldfarb and Iyengar [2003] also illustrate

how ellipsoidal uncertainties can be generated by analyzing the confidence regions of some

linear regression model and Rustem and Howe [2009] illustrate how finite uncertainty sets

can be generated using some algorithms. It is also worth nothing that it is possible to de-

termine uncertainty sets by equating model estimates to real-time financial market data and

solving for the implicit uncertainty directly or by calibrating their mismatches.

4.3 Uncertainty in Linear Optimization

There are various types of optimization problems and the solutions to these problems rest

mainly on the structure and description of the problem. An optimization problem is charac-

terized by the structure and the data available to solve the problem. A linear optimization

problem is of the form

min
x

{cTx : Ax ≤ b}, (4.1)
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such that for n number of variables and m number of constraints, x ∈ R
n is a vector of

decision variables with a vector of coefficients c ∈ R
n forming the objective function. A is

an m × n constraint matrix with vector b ∈ R
m as the bounds. The structure of the linear

optimization is specified by the number of constraints and the number of variables. Ben-Tal

et al. [2009] defines an uncertain linear optimization problem as the collection

{
min
x

{cTx : Ax ≤ b}
}

(c,A,b)∈U
(4.2)

of linear optimization instances of common structure with its data varying in some given

uncertainty set U ⊂ R
m×n. The uncertainty set is usually assumed to be parameterized in

an affine structure.

The solution to a single linear optimization problem is governed by the concepts of the feasible

or optimal solution and optimal value. However, uncertain linear optimization problems

like (4.2) are not entirely defined by these concepts but rather by the underlying decision

environment. We rely on the assumptions of a typical decision environment by Ben-Tal

et al. [2009], which states that all decision variables should be assigned specific numerical

values as a result of solving the problem before the actual data reveals itself. This first

assumption is suitable for an index process environment since our hedging portfolio needs

to be constructed before we observe market values. Secondly, the decision maker is fully

responsible for consequences of the decisions to be made when, and only when, the actual

data is within the specified uncertainty set U and lastly, the decision maker should not

tolerate even small violations of the constraints when the data is in the uncertainty set. The

second and third assumptions imply that the feasible solutions to (4.2) should satisfy all the

constraints, whatever the realization of the data from the uncertainty set may be. Based on

these assumptions for a decision environment, they define a feasible solution as

Definition 4.3.1 A vector x ∈ R
n is a robust feasible solution to an uncertain linear opti-

mization problem, if it satisfies all realizations of the constraints from the uncertainty set,
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that is,

Ax ≤ b, ∀ (c, A, b) ∈ U . (4.3)

With the constraints defined on our uncertainty set, the choice of a feasible objective value

can be seen as the value immunized against uncertainty or the worst-case value and leads to

the following definition.

Definition 4.3.2 Given a candidate solution x, the robust value â(x) of the objective in an

uncertain linear optimization problem at x is the largest value of the true objective function

over all realizations of the data from the uncertainty set:

â(x) = max
(c,A,b)∈U

cTx. (4.4)

Having defined the structure of a feasible solution for our objective function and the con-

straint with data uncertainty in our linear optimization model, we then seek the best robust

value of the objective among all robust feasible solutions to the problem. As such Ben-Tal

et al. [2009] defines the robust counterpart of an uncertain linear optimization problem as

Definition 4.3.3 The Robust Counterpart of the uncertain linear optimization problem is

the optimization problem

min
x

{
â(x) = max

(c,A,b)∈U
cTx : Ax ≤ b, ∀ (c, A, b) ∈ U}

}
, (4.5)

minimizing the robust value of the objective over all robust feasible solutions to the uncertain

problem.

Hence, a robust optimal solution to an uncertain linear optimization problem is the optimal

solution of its robust counterpart, and an optimal value of an uncertain linear optimization

problem is the optimal value of its robust counterpart. Thus we can view the robust optimal

solution as the best uncertainty immunized solution that can be associated with the uncertain

linear problem. It is worth noting that we do not lose anything when we restrict an uncertain
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linear optimization program with certain objectives. For instance, if we have a certain

objective function, then the robust counterpart of an uncertain linear optimization will be

of the form

min
x

{
cTx : Ax ≤ b, ∀ (A, b) ∈ U}} , (4.6)

with our uncertainty set now defined in the constraints only. We can further define our

uncertainty for only a part of the constraints as well (for instance only A or only b) and still

preserve the properties of the optimization problem provided the constraints in the uncer-

tainty set are not violated. Ben-Tal et al. [2009] gives a step by step approach to constructing

a constraint robust linear optimization with certain objective function as follows.

• preserve the original certain objective as it is and,

• replace every one of the original constraints (Ax)i ≤ b ⇔ aTi x ≤ bi with its robust

counterpart aTi x ≤ bi ∀ [ai, bi] ∈ Ui, where aTi is the i-th row in A and Ui is the

projection of U on the space of data of the i-th constraint.

In particular, the robust counterpart of an uncertain linear optimization problem with a

certain objective remains appropriate when we extend the sets Ui of uncertain data of re-

spective constraints to their closed convex hulls and extend U to the direct product of the

resulting sets. Ben-Tal et al. [2009] proves that we lose nothing by assuming from the sets

Ui of uncertain data of the constraints are closed and convex, and U is the direct product of

these sets.

4.4 Tools for Robust Optimization

After describing the nature of uncertainty in a robust optimization model, the next step is

to devise a strategy to solve the problem. Tools for solving robust optimization problems are

essentially reformulation strategies that transform the problem into a deterministic one with

no uncertainty. However, there usually arises a trade-off between tractability and economy.
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In this case, while we look for a formulation that can be solved efficiently with standard

optimization techniques, we need to ensure that the new formulation is not much bigger and

complex than the original uncertainty problem.

4.4.1 Sampling

One strategy in dealing with uncertainty in a robust optimization setting is by sampling.

This is done by sampling several scenarios of the uncertain parameters from the set of all

possible values that the parameters can take. This results in a finite uncertainty set and

sampling can be done by using distributional assumptions or random simulations. This

technique can also be used for both objective and constraint robust models. Sampling

is a very useful strategy because it involves little or no formulation thereby preserving the

structural properties like convexity of the model although a large finite uncertainty set results

in a large robust optimization problem, it is often tractable and easy to optimize.

4.4.2 Conic

Other strategies involve conic optimization and saddle-point characterizations. Conic opti-

mization techniques are particularly useful when uncertainty sets are intervals and ellipsoids.

This is due to the continuous nature of the uncertain parameters and such formulations are

termed as semi-finite optimization since there will be a finite number of parameters but

infinitely many constraints indexed by the uncertainty set. Semi-finite optimizations can be

reformulated using finite sets of conic constraints.

4.4.3 Saddle-Point

Saddle-point techniques are also useful in solving objective robust problems. This is because,

when the uncertainty lies in the objective function, saddle-point conditions can be used

to characterize the robust problem provided it satisfies convexity assumptions. Interior-
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point algorithms can readily be used to find optimal solutions. Characterization and use of

saddle-point for robust optimization, especially for special min-max problems can be found in

Halldórsson and Tütüncü [2003], Tütüncü and Koenig [2004] and Rustem and Howe [2009].
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Chapter 5

Robust Optimization

In our search for a measure that can serve as a yardstick for both insurers and regulators to

compare various model risks with, we estimate the worst-case value of the hedge portfolio.

The optimal portfolio that we seek at any time t is the minimum replicating portfolio value

that is able to cover any contingent claim at state ψi,t. As such we seek V ∗
i,t = minVi,t. We

can, therefore, define the optimal replicating portfolio at state ψi,t to be

A∗
i,t = {a∗i,t, b∗i,t, c∗i,t} = argmin

ai,t,bi,t,ci,t∈R3

{Vi,t} = argmin
ai,t,bi,t,ci,t∈R3

{ai,t + bi,t + ci,t}, (5.1)

subject to (3.4)-(3.7) as constraints. Instead of assuming a specific knowledge of the distribu-

tion of the random vector of probabilities, we assume that their values are only known to be-

long to some set Ui,t. Thus pi+j,t+Δ|i,t ∈ Ui,t for all j = 0, 1, · · · , k, where ∑k
j=0 pi+j,t+Δ|i,t = 1

and pi+j,t+Δ|i,t ≥ 0.

We, therefore, define the worst-case value of a hedge replicating portfolio for some losses at

ψi,t with respect to Ui,t to be

WVi,t = max
pi+j,t+Δ|i,t∈Ui,t

V ∗
i,t. (5.2)
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As such for a worst-case scenario, while we seek to minimize the cost of the portfolio at each

node and time, we as well want to maximize the probability of observing the loss.

5.1 Quadratic Approach

In this section, we introduce uncertainty in probabilities and apply robust optimization

techniques to formulate a worse case quadratic hedging approach. Unlike (3.3) which seeks

a hedging strategy that minimizes expected square hedging errors or losses, a worse case

quadratic approach seeks a strategy that minimizes the sum of expected squared errors while

maximizing over the probabilities associated with each node. Consequently, the worst-case

quadratic hedging strategy at ψi,t can be defined as

A∗
i,t = {a∗i,t, b∗i,t, c∗i,t} = max

pi+j,t+Δ|i,t∈Ui,t

min
ai,t,bi,t,ci,t∈R3

E[(Li,t)
2]. (5.3)

Also, the construction of the index model affords us to express the expected squared errors

using the state probabilities. Thus given some uncertainty set Ui,t,

A∗
i,t = {a∗i,t, b∗i,t, c∗i,t} = max

pi+j,t+Δ|i,t∈Ui,t

min
ai,t,bi,t,ci,t∈R3

k∑
j=0

pi+j,t+Δ|i,t(Li,t)
2, (5.4)

for all pi+j,t+Δ|i,t ∈ Ui,t, t ∈ 0,Δ, · · · , n −Δ, i = 0, 1, 2, · · · , tk/Δ and j = 0, 1, 2, · · · , k. To

serve as a control for our hedging model, we explore the use of robust sampling to the worst-

case quadratic hedging and compare the approach to worst-case robust linear optimization

approach.

5.2 Risk Control Approach

In our worst-case risk control approach, the objective is to find the hedging strategy that

maximizes across index movements, the minimum portfolio value. Setting (5.2) as our ob-
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jective, we want to optimize

max
pi+j,t+Δ|i,t∈Ui,t

min
ai,t,bi,t,ci,t∈R3

Vi,t

s.t π+
c − π−

c + ui+j,t+Δ − Li,t ≥ 0, ∀j = 0, 1, 2, · · · , k,

ui+j,t+Δ ≥ 0, ∀j = 0, 1, 2, · · · , k,

π+
c , π

−
c ≥ 0,

π+
c − π−

c +
1

1− c

k∑
j=0

ui+j,t+Δpi+j,t+Δ|i,t ≤ γ,

for t = 0,Δ, 2Δ, · · · , n−Δ, i = 0, 1, 2, · · · , tk/Δ and j = 0, 1, 2, · · · , k, where (π+
c − π−

c ) is

the V aRc at optimality and (3.7) is the risk measure CV aRc controlled by γ. A dynamic

programming approach is used to optimize (5.2) recursively. Starting with the last period n,

we optimize (5.2) subject to (3.4)-(3.7) and Ui,n−Δ to obtain Ai,n−Δ. We then use the same

set of equations to obtain Ai,n−2Δ but this time we set Vi,n−Δ = ai,n−Δ + bi,n−Δ + ci,n−Δ and

so on until we obtain the initial value of the hedge portfolio V0,0 and strategy A∗
0,0. However,

one constraint, (3.7) of the proposed is non-linear. As such with the robust optimization

techniques we can formulate our model to a more tractable form that can be solved easily

with linear programming. Also, robust optimization affords us to solve the problem even with

the uncertainty of the probability variables. To solve our worst-case optimization problem,

we re-formulate (3.4)-(3.7) and (5.2) with the uncertainty set Ui,t in our robust framework.

Theorem 5.1 Suppose X and Y are nonempty compact convex sets in R
n and R

m respec-

tively, and the function f(x,y) is convex in x for any given y, and concave in y for any given

x, that is for λ ∈ [0, 1]; and for x1, x2 in X there exists x3 in X with

f(x3,y) ≤ λf(x1,y) + (1− λ)f(x2,y), (5.5)
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for all y in Y; and for y1, y2 in Y there exists y3 in Y with

f(x,y3) ≥ λf(x,y1) + (1− λ)f(x,y2), (5.6)

for all x in X Then the

max
y∈Y

min
x∈X

f(x,y) = min
x∈X

max
y∈Y

f(x,y). (5.7)

Proof : see Borwein and Zhuang [1986] and Bazaraa et al. [2013].

Rockafellar et al. [2000] after making some adjustment to the CV aR prove that (3.7) is

convex in π and affine (concave) in pi+j,t+Δ|i,t ∈ Ui,t. As such based on (5.7), it suffices to

say that our objective for the worst-case value

max
pi+j,t+Δ|i,t∈Ui,t

min
ai,t,bi,t,ci,t∈R3

Vi,t = min
ai,t,bi,t,ci,t∈R3

max
pi+j,t+Δ|i,t∈Ui,t

Vi,t.

5.3 Uncertainty Sets

The choice of the uncertainty set is vital to the type of solution obtained in the optimization.

In fact, some types of uncertainty can render the optimization infeasible. It is important to

note that description of uncertainty in robust optimization in finance usually relies on the

underlying pricing dynamics, in our case the index model. In their model, Chen [2009] rely

on the Central Limit Theorem (CLT) to construct a bound for the returns on the underlying

asset using a parameter which depends on the risk aversion of the investor to construct a

polyhedral uncertainty set. This technique generates solutions that rely on the uncertainty

of market returns or the state space.

However, we intend to maximize over some probability space that characterizes the index

movement dynamics. As such, we adapt sampling techniques to generate samples of our

uncertainty set Ui,t. For instance, for a index drift, μ of the state variables, we can construct
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an uncertainty set such that

U (1)
i,t =

{
pi+j,t+Δ|i,t :

k∑
j=0

pi+j,t+Δ|i,t = 1,
k∑

j=0

pi+j,t+Δ|i,tψi+j,t+Δ = μ, pi+j,t+Δ|i,t ≥ 0

}
, (5.8)

for i = 0, 1, 2, · · · , tk/Δ and j = 0, 1, 2, · · · , k. More critically, we can also include variations

such as volatility, σ in the state variables to construct a more restrictive uncertainty set.

Thus we can define

U (2)
i,t =

{
pi+j,t+Δ|i,t :

k∑
j=0

pi+j,t+Δ|i,t = 1,
k∑

j=0

pi+j,t+Δ|i,tψi+j,t+Δ = μ,

k∑
j=0

pi+j,t+Δ|i,t(ψi+j,t+Δ − μ)2 = σ2, pi+j,t+Δ|i,t ≥ 0

}
,

(5.9)

for i = 0, 1, 2, · · · , tk/Δ and j = 0, 1, 2, · · · , k.
Another way to define our uncertainty set is to allow the values of μ and σ to vary as well

within some specified region. For instance, one can keep track of market returns and volatility

in order to determine an appropriate value of mean and volatility to choose. However,

since we cannot be certain that these values will be exact, we can further introduce some

uncertainty by creating an ε region around the chosen values. As such, we could also consider

our uncertainty with only μ as

U (3)
i,t =

{
pi+j,t+Δ|i,t :

k∑
j=0

pi+j,t+Δ|i,t = 1,
k∑

j=0

pi+j,t+Δ|i,tψi+j,t+Δ ∈ μ± ε1, pi+j,t+Δ|i,t ≥ 0, ε1 ≥ 0

}
,

(5.10)

42



for i = 0, 1, 2, · · · , tk/Δ and j = 0, 1, 2, · · · , k. And with a second constraint involving the

volatility,

U (4)
i,t =

{
pi+j,t+Δ|i,t :

k∑
j=0

pi+j,t+Δ|i,t = 1,
k∑

j=0

pi+j,t+Δ|i,tψi+j,t+Δ ∈ μ± ε1,

k∑
j=0

pi+j,t+Δ|i,t(ψi+j,t+Δ − μ)2 ∈ (σ ± ε2)
2, pi+j,t+Δ|i,t ≥ 0, ε1, ε2 ≥ 0

}
,

(5.11)

for i = 0, 1, 2, · · · , tk/Δ and j = 0, 1, 2, · · · , k.
Lastly, we can also define uncertainty by considering a region around some specific proba-

bilities determined uniquely. For this choice, we adopt the binomial structure in (2.2) under

our physical measure. That is, we replace r with μ and define q = eμΔ/k−d
u−d

. We can then

create an uncertainty set by defining

U (5)
i,t =

{
pi+j,t+Δ|i,t = qj + εj : qj =

(
k

j

)
qk−j(1− q)j,

k∑
j=0

pi+j,t+Δ|i,t = 1,
k∑

j=0

εj = 0

}
,

(5.12)

for i = 0, 1, 2, · · · , tk/Δ and j = 0, 1, 2, · · · , k.
With the types of our uncertainty sets now defined, we can solve our optimization by

max
pi+j,t+Δ|i,t∈Ui,t

V ∗
i,t for i = 0, 1, 2, · · · , tk/Δ

where V ∗
i,t = min

ai,t,bi,t,ci,t∈R3
Vi,t|U (i)

i,t

such that (3.4)-(3.7) holds ∀ j = 0, 1, 2, · · · , k

However, we notice that our optimization is a constraint robust optimization since the gen-

erated values of uncertain probabilities pi+j,t+Δ|i,t’s lie in the constraint (3.7). As such, if

π+
c − π−

c +
1

1− c

k∑
j=0

ui+j,t+Δpi+j,t+Δ|i,t ≤ γ,
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holds, it follows that

max
pi+j,t+Δ|i,t∈Ui,t

π+
c − π−

c +
1

1− c

k∑
j=0

ui+j,t+Δpi+j,t+Δ|i,t ≤ γ,

also holds for all i = 0, 1, 2, · · · , tk/Δ. Hence we can finally re-formulate our worst-case

optimization into a more tractable form with the help of the transformations in (5.7) and

(4.5). Thus the robust counterpart becomes

min
ai,t,bi,t,ci,t∈R3

Vi,t (5.13)

s.t. π+
c − π−

c + ui+j,t+Δ − Li,t ≥ 0, ∀ j = 0, 1, 2, · · · , k,

ui+j,t+Δ ≥ 0, ∀ j = 0, 1, 2, · · · , k,

π+
c , π

−
c ≥ 0,

π+
c − π−

c +
1

1− c

k∑
j=0

ui+j,t+Δpi+j,t+Δ|i,t ≤ γ, ∀ pi+j,t+Δ|i,t ∈ Ui,t,

for i = 0, 1, 2, · · · , tk/Δ, and j = 0, 1, 2, · · · , k. Hence our optimal hedging strategy A∗
i,t =

{a∗i,t, b∗i,t, c∗i,t} = argminai,t,bi,t,ci,t∈R3 Vi,t. Since we now have a method to eliminate the non-

linearity in (3.7), the remainder of the problem is simplified and we adopt linear programming

to solve our optimization problem. Although we simplify our optimization problem, using

linear programming makes the problem no less tractable, since the accuracy of our results

rests on the number of uncertainty sets we can generate. In Chapter 6, we apply the model

to an equity-index annuity and investigate the numerical accuracy and consistency of the

model.

5.4 Sampling Techniques

With our index tree defined, we proceed to describe two sampling techniques that will be

considered for the worst-case analysis.
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5.4.1 Homogeneous Sampling

The first sampling technique is the homogeneous sampling of the probabilities or our un-

certainty set. We say homogeneous because we generate a single sample of the uncertainty

set and assume the probabilities of the index dynamics remain the same throughout the

period of the contract. Thus assuming we choose our uncertainty set based on U (1)
i,t for in-

stance, then we can generate several vectors, each containing the probabilities pi+j,t+Δ|i,t for

i = 0, 1, 2, · · · , tk/Δ, and j = 0, 1, 2, · · · , k. Hence, if the probability of the index moving

from state ψi,t to the next period ψi+j,t+Δ is pi+j,t+Δ|i,t, then this probability remains the

same for a movement from state ψi,t+Δ to state ψi+j,t+2Δ and so on until maturity. Thus for

homogeneous sampling technique,

pi+j,t+Δ|i,t = pi+j,t+2Δ|i,t+Δ = pi+j,t+3Δ|i,t+2Δ = · · · = pi+j,n|i,n−Δ,

for i = 0, 1, 2, · · · , tk/Δ, j = 0, 1, 2, · · · , k, and t ∈ 0,Δ, · · · , n−Δ.

5.4.2 Non-homogeneous Sampling

Since we are interested in studying the behavior of the model to the uncertainty or these

probabilities, we also explore a non-homogeneous sampling of the probabilities. Unlike ho-

mogeneous sampling, we explore changes in the probability vectors through time. These

changes could be defined by a function of the initial sample generated and time or simply

by sampling randomly the probability vectors of the uncertainty set at each node or branch

in the index tree. It is noteworthy that the samples of the uncertainty should be generated

from values of the state variables. Thus for a non-homogeneous sampling technique,

pi+j,t+Δ|i,t �= pi+j,t+2Δ|i,t+Δ �= pi+j,t+3Δ|i,t+2Δ �= · · · �= pi+j,n|i,n−Δ,
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for i = 0, 1, 2, · · · , tk/Δ, j = 0, 1, 2, · · · , k, and t ∈ 0,Δ, · · · , n−Δ.

Lastly, we also explore a situation where we consider no uncertainty within the model and

compute the state probabilities as in the binomial structure, 2.2. This is simply to serve as

a control to compare our results from using the two sampling techniques on the model. We

refer to this as the “no sampling” technique.

5.5 Capital Requirement

Capital requirement is the standardized requirement or amount that financial institutions

need to hold. It is simply how much liquidity financial regulators require issuers of financial

securities or investment and insurance products to have to be stable and cover future obliga-

tions. For instance, Pillar I of Solvency II defines the Solvency Capital Requirement (SCR)

as the amount of capital required by an insurance company to cover losses that occur with a

probability of 99.5% over the next 12 months (i.e. VaR99.5%). Insurers are faced with a wide

range of risks like disability, surrender, mortality and interest rate uncertainties. Similar

to Gaillardetz and Moghtadai [2017], in order to estimate the capital requirement, we need

to evaluate the losses that pertain to the specific contract. These losses are as a result of

the differences between the hedge portfolio Vi,t and the insurer’s obligations Xi(x, t) at some

time t and happen whenever the insurer’s portfolio is re-balanced. Thus the hedging errors

either appear as income or losses to the insurer. Let H be the discounted hedging errors

random variable and using (2.22) we define

H =
nN−1∑
k=0

e−kΔrkΔLkΔ. (5.14)

Equity-linked contracts require the policyholder to make an initial investment and are

promised some returns or guarantee at a future time. As such, for a unit initial invest-

ment from the holder and initial contract value of V0,0, it suffices to say that the insurer will

be required to set up V0,0−1 to establish the replicating portfolio. However, with mismatches

46



H, we define the capital requirement (CR) to be

CR = V0,0 + V aRc(H)− 1, (5.15)

where c is the desired retention level for computing the capital requirement and can be set

differently from that used in the linear optimization when estimating the initial value of the

contract.

This implies that an insurer who holds the amount CR at the beginning of the contract

will have approximately (1− c)% probability of positive losses over the term of the contract.

This form of capital requirement implies that the insurer will have to invest the excess of

fund from the difference between the initial premium and V0,0 in the risk-free asset.

It is noteworthy that CR can be a negative value, which could imply no capital requirement

needs to be set for the contract. One importance of estimating the capital requirement this

way is that, unlike most financial products, equity-linked products are priced by tweaking

some internal parameters like the participation rates or percentage of initial premium that

goes into the guarantees, see Tiong [2000] and Boyle and Hardy [1997]. This way, an insurer

could numerically set these critical parameters such that the capital requirement is acceptable

for the insurer.
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Chapter 6

Numerical Applications

In this chapter, we apply our model in the previous chapter to some type of equity-linked

contract and discuss the results for various parameters in the model. We begin this chapter

by introducing a brief introduction of equity-linked products currently in the market and

describe one of the contracts known as the Equity-Index Annuity.

6.1 Investment Guarantees

The principal component for an equity-linked product is that it allows an investor to partic-

ipate in some underlying fund, stock index or even a mixture of some funds. However, these

products tend to be different from other financial products due to the insurance component

it provides through guarantees that are agreed at the inception of the contract. It is the

presence of these guarantees that creates risk for the insurer since the payout structure of

the guarantees is tied to the performance of the underlying fund or index.

6.1.1 Guaranteed Minimum Living Benefits (GMLB)

One category that describes the payout structure of the equity-linked product is the Guar-

anteed Minimum Living Benefits (GMLB). This type of contract has its payout effected
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while the insured is alive. It can further be separated into Guaranteed Minimum Maturity

Benefit (GMMB) which promises the insured some guaranteed amount when the contract

matures. While the insured has an upside benefit when the underlying stock index performs

well, the insured is protected from downside risk by the guaranteed amount which could be

subject to regular increase or be fixed over the term of the contract. Guaranteed Minimum

Accumulation Benefit (GMAB) provides a reentry option or contract renewal at the end of

the initial contract, see Hardy [2003]. Guaranteed Minimum Withdrawal Benefit (GMWB)

allows the policyholder to make periodic withdrawals from the fund until some premium

that was paid at the commencement of the contract is depleted. However, the policyholder

is allowed to make guaranteed withdrawals, at the cost of the insurer, even if the account

depletion occurred before the end of the term of the contract. Milevsky and Salisbury [2006]

presents the valuation of GMWB using both static and dynamic models. Unlike GMMB,

Guaranteed Minimum Surrender Benefit (GMSB) guarantees the policyholder the cash value

of the contract beyond some fixed date when the policy is surrendered. This type of contract

may be seen as some return of premium contract. Finally, Guaranteed Minimum Income

Benefit (GMIB) simply ensures that the amount accumulated by the fund can be converted

into some annuity at a guaranteed rate.

6.1.2 Guaranteed Minimum Death Benefit (GMDB)

Contrary to GMLBs, the Guaranteed Minimum Death Benefit is a type of guarantee that

promises the insured some guaranteed amount contingent on death during the term of the

contract or some deferred period. This guaranteed amount could simply be the original pre-

mium or may be accumulated at some specified interest rate and is payable to the surviving

beneficiaries of the insured life, see Hardy [2003].

The expenses charged by the insurer on these investment guarantees may be financed as

some fixed fee or by the rate of participation in the index. A segregated fund contract is a

special type of equity-linked product sold in Canada which requires a single premium to be
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partitioned and invested in some mutual funds for the policyholder which is independent of

the insurer’s fund and mostly has separate management. Variable Annuities and Unit-Linked

Insurance are very similar to Segregated funds but are widely sold in the United States and

the United Kingdom respectively.

6.2 Equity-Indexed Annuities (EIAs)

Next, we describe a special type of equity-linked product known as Equity-Indexed Annuity

(EIA). While EIA guarantees some rate (between 1% to 3%) that accumulates annually un-

til maturity on a portion (usually 87.5%) of the initial premium invested, at maturity, the

policyholder benefits from additional returns which is linked to some increase in the stock

index (typically S&P 500) over the period of the contract.

In contrast to variable annuities (specifically GMMB) or segregated funds (Canadian ver-

sion), EIAs have shorter terms but can generally be considered as long-term financial deriva-

tives. Hardy [2003] regards EIA as a call option on the underlying equity index, while

variable annuities are rather put options. Also, unlike variable annuities, the indexes for

EIAs are price indexes and not total return indexes which allow for dividend reinvestments.

As such, EIAs give more risk and potential gains than fixed annuities but less risk and po-

tential gains than variable annuities. Also, EIAs do not require policyholders to pay taxes

on the earnings until a withdrawal is made and hence are tax-deferred.

6.2.1 EIA Indexing Methods

The design of EIA contracts is based on the indexing method used. The Point-to-Point

(PTP) indexing method simply ignores any dynamics of the index during the term of the

contract and compares the change in the index from the beginning to the end of the policy.

Let G be the value of the accumulated guarantee at contract maturity (t = n) and α the

participation rate in the index returns, then for a unit initial investment, the payoff at
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maturity for a typical PTP is the

max

[
1 + α

(
Sn

S0

− 1

)
, G

]
= G+

[(
1 + α

(
Sn

S0

− 1

))
−G

]+
. (6.1)

Another indexing method is the Lookback or High Water Mark which differs slightly from

the PTP by comparing the highest value of the index throughout the term of the con-

tract with the initial stock index value at the beginning of the contract. Let Smax =

max{SΔ, S2Δ, · · · , Sn} such that the payoff of a high water mark EIA contract at matu-

rity is

max

[
1 + α

(
Smax

S0

− 1

)
, G

]
= G+

[(
1 + α

(
Smax

S0

− 1

))
−G

]+
. (6.2)

The last type of indexing method is the Annual Ratchet (Cliquet). Unlike the PTP method,

the Clique method evaluates the index participation annually. Thus it disregards declines

and compares the changes in the stock index every year. A typical the Annual Ratchet

method could have a simple annual payoff

max

[
n∑

t=Δ

[
1 + max

(
α

(
St

St−Δ

− 1

)
, 0

)]
, G

]
, (6.3)

or compound annual payoff

max

[
n∏

t=Δ

[
1 + max

(
α

(
St

St−Δ

− 1

)
, 0

)]
, G

]
. (6.4)

It is worthy to note that a fixed or varying cap could be placed on each of these methods to

limit the maximum amount the policyholder can earn should the index rise throughout the

contract.

In the valuation of EIAs, we face the mathematical challenge of pricing and risk-management

due to the embedded options in these products. Tiong [2000] presents closed-form pricing

formulas under the assumption that the market is complete - there exists a unique risk

neutral measure and a constant risk-free force of interest. Index price process are also
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assumed to follow geometric Brownian motions. Lee [2003] further proposed explicit pricing

formulas and proposes a floating-strike lookback option to tackle the increase in the cost of

the embedded options due to the high volatility of the equity market.

Also Hardy [2003] explains that if one is interested in calculating the purchase price of the

options cover from a third party or planning to use a dynamic hedging approach, the basic

Black-Scholes-Merton results can be modified to value EIAs. On the other hand, if mortality

and lapses are not taken into consideration, then there is no difference between valuing the

option outside or within the EIA contract.

6.3 Numerical Examples

The description of various indexing methods used in the valuation of equity-index annuities

provides an expression for the product payoff or contingent claim X in our model. We

proceed to conduct an analysis of the results from the model obtained by considering different

variations of our parameters.

For our base-case example, we adopt a simple point-to-point EIA with GMAB and GMDB

payoffs as stated in (6.1). For illustration purposes, we assume all policyholders are age (50)

at the time of purchasing the contract and mortality is assumed to follow the illustrative life

table, see Bowers et al. [1986]. We assume there is no cap on the potential returns of the

investment and a premium of $1 is paid at inception. The guaranteed amount is given by

G = β(1 + g)t. This implies, we only guarantee β% of the initial premium at some growth

rate of g at time t. Also, we set the participation rate in the index returns to be α% and

assume constant r, μ, and σ to be the annualized risk-free interest rate, the index average

return, and the index volatility respectively. We also assume that the market is frictionless.

That is, no transaction cost, no taxes and also our set of calculations does not include any

allowance for expense charges and premium loading.
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6.3.1 Worst-Case Analysis

Next, we consider variations in the worst-case value due to sampling with restrictions on the

mean and both the mean and volatility. Also, we compare situations when sampling of the

uncertainty set is performed once for the whole index model (homogeneous sampling) or per-

formed at each node or branch of the index model (non-homogeneous sampling). We rely on

Markov Chain Monte-Carlo (MCMC) simulation methods, specifically the Hit-and-Run sam-

pler to generate samples of pi+j,t+Δ|i,t’s for Ui,t since it guarantees that all imputations satisfy

the constraints of the uncertainty set. The Hit-and-Run sampler generates one continuous-

state Markov chain sample path over some parameter space. Chen and Schmeiser [1996]

provide a technical proof of the convergence of the sampler whiles Florescu and Viens [2008]

reveal that this Monte Carlo method converges as the number of probability samples and

the number of Monte Carlo samples increases. Berger and Chen [1993] also explain that

this sampler is particularly useful when the parameter space is constrained. After several

numerical computations, we found that we attain convergence in the initial worst-case value

of the hedge portfolio with at least 4000 samples of Ui,t.

For our worst-case analysis, we initially choose (5.8) and (5.9) as our uncertainty set and

generate the samples for the probabilities. Starting at maturity or time n, we first compute

the claims at n using S0, Sn and the other parameters in (6.1). Then using the samples from

(5.8) and (5.9), we solve the linear optimization (5.13) for the worst-case values at Vi,n−Δ as

well as the optimal hedging solutions A∗
i,n−Δ = {a∗i,n−Δ, b

∗
i,n−Δ, c

∗
i,n−Δ} for each node. Next,

we combine these values to obtain (2.22) at i, n−Δ which is then used in the linear optimiza-

tion alongside the samples generated to obtain the worst-case values at Vi,n−2Δ as well as the

optimal hedging solutions A∗
i,n−2Δ = {a∗i,n−2Δ, b

∗
i,n−2Δ, c

∗
i,n−2Δ}. This dynamic programming

approach is done recursively until we get to time 0 and obtain the worst-case values at V0,0

and A∗
0,0 = {a∗0,0, b∗0,0, c∗0,0}. Thus for some initial value of the contract V0,0, a

∗
0,0 is to be

invested in the index, b∗0,0 in a risk-free asset that earns returns at r0 and the final part

c∗0,0 in buying a call option that matures at n. The price of the at-the-money call option is

53



l0=1, β= 100%, g=0%, α= 50%, c=95%,r=4%, μ=8%, σ=20%, k=7, N=1 , γ=0

Sampling with μ Sampling with μ and σ No sampling

n V0,0 a0,0 b0,0 c0,0 V0,0 a0,0 b0,0 c0,0 V0,0

3 1.0084 0.1869 0.7965 0.0250 1.0034 0.1815 0.7961 0.0258 1.0021

5 0.9976 0.2460 0.7333 0.0184 0.9873 0.2297 0.7368 0.0209 0.9829

7 0.9855 0.2665 0.7023 0.0167 0.9738 0.2487 0.7058 0.0193 0.9678

10 0.9761 0.2837 0.6775 0.0149 0.9618 0.2617 0.6818 0.0183 0.9554

Table 6.1: Hedging strategy for different terms to maturities with homogeneous sampling.

computed using the Black-Scholes pricing model.

In comparing our sampling strategies, Table 6.1 shows the values computed from homoge-

neous sampling. In this case, we generated one set of samples for the uncertainty set and

assumed uncertainty to be homogeneous with respect to time, that is, the distribution of the

uncertainty set remains the same through time. Also, Table 6.1 further indicates a decrease

when we sample with both mean and volatility to when we sample with only mean. For

a 3-year maturity EIA, there is a decrease of 0.5% from sampling with μ to sampling with

both μ and σ. The difference increases to 1.43% when we consider a 10-year the term to

maturity contract. Contract values obtained through sampling with μ tends to be higher

than sampling with both μ and σ because, while volatility is allowed to vary in the former,

the latter has fixed volatility in the distributed values of the uncertainty set. As such while

there may not be drastic changes in volatility in the short term, having fixed volatility for

a long duration contract may understate the worst-case value of the contract. Although we

do not model volatility, it is worth noting that this observation encourages the inclusion of

index volatility models to further estimate the worst-case scenario.

On the other hand, Table 6.2 shows the values computed from sampling our uncertainty set
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l0=1, β= 100%, g=0%, α= 50%, c=95%, r=4%, μ=8%, σ=20%, k=7, N=1 , γ=0

Sampling with μ Sampling with μ and σ No sampling

n V0,0 a0,0 b0,0 c0,0 V0,0 a0,0 b0,0 c0,0 V0,0

3 1.0088 0.1865 0.7972 0.0251 1.0036 0.1820 0.7959 0.0258 1.0021

5 0.9986 0.2467 0.7335 0.0184 0.9875 0.2297 0.7370 0.0208 0.9829

7 0.9865 0.2671 0.7027 0.0167 0.9740 0.2487 0.7059 0.0194 0.9678

10 0.9767 0.2800 0.6802 0.0155 0.9620 0.2622 0.6815 0.0184 0.9554

Table 6.2: Hedging strategy for different terms to maturities with non-homogeneous sam-
pling.

at each node of the index model. That is, for each node at every time point, we generate

samples of the uncertainty set used to estimate the value of the hedge portfolio and insurers

obligation. The differences in the values computed are similar to that of Table 6.1. How-

ever, one thing worth noting is the increase in the values of the initial hedge portfolio from

homogeneous sampling to sampling at each node. The values increase by 0.04% for the 3

years contract through to 0.1% for the 10 years contract under the sampling with μ and also

increase by 0.02% for the 3 years contract through to the 10 years contract under the sam-

pling with both μ and σ. While the decrease from sampling with μ to sampling with both

μ and σ could be attributed to the fixed volatility, the overall increase from single sampling

to node-wise sampling is as a result of allowing for more variability at each node, and hence

the greater chance of observing the worst-case situation in the sampled uncertainty set.

The last column in Tables 6.1 and 6.2 show the value of the initial hedge portfolio using the

risk control method without the worst-case framework and uncertainty set. As expected,

both sampling schemes used to compute the price under the worst-case environment show

higher contract values as compared to having no sampling, with as large as 2.1% decrease
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l0=1, β= 100%, g=0%, α= 50%, c=95%, r=4%,
μ=8%, σ=20%, k=7, N=1 , γ=0

Sampling with binomial uncertainty No sampling

n V0,0 a0,0 b0,0 c0,0 V0,0

3 1.0031 0.1817 0.7956 0.0258 1.0021

5 0.9861 0.2267 0.7381 0.0213 0.9829

7 0.9712 0.242 0.7088 0.0205 0.9678

10 0.9585 0.2547 0.6843 0.0195 0.9554

Table 6.3: Hedging strategy for different terms to maturities with binomial uncertainty
sampling.

in the value, when valuation is not done under the worst-case for a 10 years contract term.

Table 6.3 shows the values computed from sampling our uncertainty by constructing a 1%

region around the probabilities obtained from the binomial structure by using (5.12). In this

case, we explore an ε = 1% region around the probabilities used to obtain the values from

no sampling and observe the usefulness of allowing uncertainty when considering worst-case

valuation. It can be observed that although the initial values of the contract are not as high

as when we include only μ or both μ and σ, they are slightly greater than when we do not

include uncertainty with a 0.3% decrease in the value when valuation is done with the no

sampling strategy for a 10 years contract term.

Table 6.4 shows the values obtained from using quadratic hedging to estimate the strategy

for different terms to maturity of the contract. In this analysis, we use the uncertainty ob-

tained by generating homogeneous samples of (5.8). With our losses defined in (2.22), we

use dynamic programming to optimize the expected squared errors starting from contract

maturity using (5.4) until we obtain the initial hedging strategy at t = 0.
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l0=1, β= 100%, g=0%, α= 50%,r=4%,
μ=8%, σ=20%, k=7, N=1

Quadratic Hedging No sampling

n V0,0 a0,0 b0,0 c0,0 V0,0

3 0.9913 0.1948 0.7711 0.0253 1.0021

5 0.9628 0.2662 0.6789 0.0178 0.9829

7 0.9357 0.2988 0.6220 0.0150 0.9678

10 0.8883 0.3495 0.5282 0.0106 0.9554

Table 6.4: Hedging strategy for different terms to maturities with the quadratic approach.

We observe that, in comparison to the rest of the worst-case analysis made, applying a worst-

case dynamic to the quadratic approach yields the minimum initial value of the contract.

There is a steady decrease from 1% to 7% for increasing maturities when we compare the

quadratic hedging to the no sampling strategy. This decrease is attributed to the absence of

the tail risk measures in the quadratic approach. While the squaring of the hedging errors

imply that we cannot differentiate between positive and negative errors, the use of a tail

risk measure like the CV aR allows the model to consider those losses greater than some

threshold. This accounts for the higher values of our worst-case hedging strategy as opposed

to that of the quadratic strategy. Estimating the hedging strategy using the quadratic ap-

proach may be seen as a regression.

Tables 6.1 to 6.4 show the cost of establishing the hedge portfolio at the inception of the

contract as well as the allocations to each investment strategy in the hedge portfolio, when

increasing the term to maturity of the contracts. We use 3, 5, 7 and 10 years for our analysis.

In all tables, we observe that the value of the contract decreases as the term to maturity

increases. This can be attributed to the use of the optimal iterated hedging strategy. As the
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Figure 6.1: Initial values for different worst-case strategies and contract terms

term to maturity increases, there is a possibility for the index to grow exponentially if the

probabilities are well set. As such the replicating portfolio takes advantage of this behavior

in the index. Thus, the mismatches between the contact payoff and hedge portfolios tend to

cancel out when hedging strategies are applied. This is in contrast to vanilla options, whose

prices are increasing function of the time to maturity.

A 2 years increase in the term to maturity decreases the value of the contract by 1.2%,

while a 5 years increase causes a decrease of 2.2% in the value of the contract. One reason

that explains this decrease is that for longer maturities, the initial premium invested would

have generally accumulated enough to absorb quite substantial market value fluctuations

without falling below the guarantee level, which could trigger an increase in the value. This

observation is consistent with why EIA’s are considered long-term investments. It is clear

that, based on these results, the insurer could target and reward long-term investors.

Another observation is the shift in investment strategy from the risk-free asset to the index
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asset under both sampling strategies as the term to maturity increases. This is due to the

fact that equities have historically outperformed cash accounts and risk-free assets, over the

long-term, and hence a diversified hedging strategy for a long term contract allocates a sub-

stantial amount to be invested in the index. The same can be said for sampling with both

index average returns and volatility. Figure 6.1 gives a summary of the initial values for

different worst-case strategies and term to contract maturities.

6.3.2 Sensitivity Analysis

We finally test the sensitivity of the model to some changes in the internal parameters. We

discuss the results of estimates when we consider the sensitivity of the worst-case value of the

contract to changes in index mean and volatility. Next, we also examine the behavior of the

worst-case value to changes in parameters that are usually set by the insurer. For instance,

while the mean and volatility are strictly determined by the index market, the choice of the

desired level of retention, number of branches on the tree, number of trading period per

year, number of policyholders, participation rate and percentage of premium guaranteed are

determined by the insurer. As such we also discuss the impact of these parameters on the

capital requirement as well as the initial value of the replicating portfolio.

Here, we consider the case where sampling the uncertainty set is done once (homogeneous)

for the index model and compare sampling with fixed mean only and sampling with both

mean and volatility fixed. Since we are interested in the sensitivity of the model to changes

in the market, such as mean and volatility, we choose (5.10) and (5.11) as our uncertainty

sets and ε1 = 1% for a fixed mean, and ε2 = 5% when we fix volatility. We then choose the

running maximum for 10, 000 simulations of the hedging strategy.

Table 6.5 gives the initial values of the replicating portfolio as well as the asset allocations

for different values of average returns, μ. As expected, a change in the average returns has

very little or no effect on the initial value of the hedge portfolio. This indicates that the

hedge portfolio is indeed able to cover the worst-case index dynamics since changes in the
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l0=1, β= 100%, g=0%, α= 50%, c=95%, r=4%, n=3, σ=20%, k=7, N=6 , γ=0

Sampling with μ Sampling with μ and σ

μ V0,0 a0,0 b0,0 c0,0 V0,0 a0,0 b0,0 c0,0

6% 1.0057 0.2754 0.7261 0.0042 1.0056 0.2773 0.7241 0.0041

8% 1.0055 0.2763 0.7251 0.0042 1.0055 0.2788 0.7226 0.0040

10% 1.0055 0.2783 0.7231 0.0041 1.0054 0.2803 0.7210 0.0040

Table 6.5: Hedging strategy for different means.

market movement have no effect on the value of the portfolio.

When the uncertainty set is conditioned on μ, we notice that a 2% change in the average

returns has no effect on the value of the initial portfolio. The same can be said when we

sample with both μ and σ. In both instances, we notice that while the initial worst-case

value remains fairly constant, the hedging strategies suggest an increase in the investment

of the index, a0,0 by approximately 0.1% for a 2% increase in the average returns. This is

due to the increasing nature of the index if the probabilities are well set, the strategy takes

advantage of this increase to allocate more investment in the index returns while keeping

the value of the contact immune to fluctuations in the index returns.

To test the effect of volatility on the worst-case value, Table 6.6 illustrates the initial values

of the replicating portfolio and asset allocations when volatility increases from 15% to 30%.

Although a change in the average return has no effect on the worst-case value of the contract,

an increase in their variances causes an increase in the value of the hedge portfolio.

A 5% increase in σ increases the value of the contract by 2% and a 10% increase in σ in-

creases the value of the contract by 4%. However, there is only an approximate reduction by

0.04% when we move from sampling with only mean to sampling with volatility. It is worth

mentioning that the values in Table 6.6 are the running maximum of the simulations and for
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l0=1, β= 100%, g=0%, α= 50%, c=95%, r=4%, n=3, μ=8%, k=7, N=6 , γ=0

Sampling with μ Sampling with μ and σ

σ V0,0 a0,0 b0,0 c0,0 V0,0 a0,0 b0,0 c0,0

15% 1.0052 0.2791 0.7221 0.0040 1.0049 0.2760 0.7247 0.0042

20% 1.0238 0.2782 0.7406 0.0050 1.0234 0.2761 0.7422 0.0051

30% 1.0610 0.2860 0.7683 0.0068 1.0609 0.2854 0.7687 0.0068

Table 6.6: Hedging strategy for different volatility.

each fixed value of σ, we allow a 5% region around it. As such like any financial product,

increasing volatility increases the worst-case value of the contract.

Once the optimal hedging portfolios are estimated, we also compute the capital requirements

for each dynamic with (5.15) based on a V aR99% by running 100, 000 simulations to compute

the hedging errors (5.14). This ensures that the insurer will have a 1% probability of positive

losses over the term of the contract with this capital requirement at the beginning of the

contract.

Table 6.7 also shows values for the initial hedge portfolio for different retention levels, c, and

their respective capital requirements. Notice that an increase in retention level from 20% to

50% causes a 99% approximate increase in the initial value when we sample with just the

mean, but 1.7% increase when we fix volatility. Also, there is a relatively small change in

the initial value of 0.1% for a 30% increase in the level of retention but an increase of 1.8%

for a 20% change in the level of retention.

Since we constrain the c−conditional value-at-risk to be less than 0 in our optimization, it

implies that we want the expected loss, given that the loss lies in the worst 1 − c part of

our loss distribution, to be less than 0. As such lower retention levels put less weight on

the worst-case value of the contract whiles higher levels of retention put more weight on the
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l0=1, β= 100%, g=0%, α= 50%, r=4%, n=3, μ=8%, σ=20%, k=7, N=6 , γ=0

Sampling with μ Sampling with μ and σ

c V0,0 a0,0 b0,0 c0,0 CR V0,0 a0,0 b0,0 c0,0 CR

20% 0.0145 0.0000 0.0000 0.0145 1.4047 0.0006 0.0000 0.0000 0.0006 0.8414

50% 1.0002 0.2864 0.7100 0.0038 0.0746 0.0176 0.0000 0.0000 0.0176 0.4040

80% 1.0012 0.2847 0.7126 0.0039 0.0743 0.8979 0.0000 0.8959 0.0020 0.3330

99% 1.0190 0.2428 0.7704 0.0058 0.0741 1.0181 0.2530 0.7609 0.0052 0.0735

Table 6.7: Hedging strategy and capital requirements for different retention levels.

worst-case values of the contract, when we maximize over a homogeneous uncertainty set.

This explains why the initial value for c = 20% is less than that of c = 99%. However, the

capital requirement tends to decrease when the retention level increases. This is because,

although fewer weights are assigned to the worst-case value when c is small, an expected loss

in the worst 50% is riskier than an expected loss in the worst 1% part of the distribution.

Hence, higher levels of retention yield higher contract values but a low capital requirement.

Thus the choice of the level of retention is entirely based on the insurer’s trade-off between

contract value and capital requirement.

The use of a multinomial lattice for the index model makes it necessary to study the sensi-

tivity of the initial value of the replicating portfolio and their capital requirements when we

vary the number of branches or nodes. Table 6.8 illustrates this dynamic for an increasing

number of branches, k = 4, 9, 14, 19. An increase in k by 5 increases the value of V0,0 by

approximately 0.7% and 0.05% for the capital requirement.

Also, an increase in the number of branches by 10 increases the initial value on the average

by approximately 2.3%, but reduces as the branches get larger for both sampling techniques.

The capital requirement also increases for larger values of k, but the difference reduces as
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l0=1, β= 100%, g=0%, α= 50%, c=95%, r=4%, n=3, μ=8%, σ=20%, N=6 , γ=0

Sampling with μ Sampling with μ and σ

k V0,0 a0,0 b0,0 c0,0 CR V0,0 a0,0 b0,0 c0,0 CR

4 1.0047 0.2990 0.7029 0.0027 0.0756 0.8961 0.0000 0.8961 0.0000 0.0625

9 1.0114 0.2755 0.7318 0.0042 0.0761 1.0112 0.2764 0.7306 0.0042 0.0763

14 1.0303 0.2823 0.7442 0.0038 0.0864 1.0299 0.2819 0.7443 0.0038 0.0865

19 1.0315 0.2703 0.7566 0.0046 0.0869 1.0306 0.2683 0.7575 0.0047 0.0868

Table 6.8: Hedging strategy and capital requirements for different number of branches.

the branches get larger. It can be observed that when volatility is fixed, the variability of the

model is reduced and as such, smaller number of branches, k = 4, allocates the entire port-

folio to the risk-free asset. Due to our lack of computational power, we could not investigate

the number of branches beyond which convergence in the value is achieved. The increase

in values can be attributed to the wider range of market of movements which increases the

value of the portfolio under the worst-case scenario.

Table 6.9 shows the sensitivity of the initial hedge portfolio to different frequencies of trad-

ing. Here we consider instances where we re-balance the hedge portfolio monthly (N = 12),

quarterly (N = 4), semi-annually (N = 2) and annually (N = 1). When the hedge portfolio

is re-balanced monthly, we observe that the value of the initial portfolio is slightly less than

quarterly and the value increase as we trade less frequently. An increase in the value of Δ

from monthly through to annual gives an increase in initial value from 0.3% to 0.1%.

Notice from Table 6.9 that when we fix volatility the overall value in V0,0 and capital re-

quirement decreases. Another interesting observation is that, when volatility is fixed, the

variability of the model is reduced and hence, investing all the initial value in the risk-free

asset is shown to be optimal when you consider re-balancing monthly or frequently. Also,
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l0=1, β= 100%, g=0%, α= 50%, c=95%, r=4%, n=3, μ=8%, σ=20%, k=7, γ=0

Sampling with μ Sampling with μ and σ

N V0,0 a0,0 b0,0 c0,0 CR V0,0 a0,0 b0,0 c0,0 CR

12 1.0038 0.2964 0.7053 0.0021 0.0708 0.8964 0.0000 0.8964 0.0000 0.0602

4 1.0067 0.2642 0.7364 0.0061 0.0747 1.0061 0.2647 0.7353 0.0061 0.0749

2 1.0085 0.2329 0.7636 0.0121 0.0795 1.0073 0.2294 0.7653 0.0126 0.0783

1 1.0097 0.1881 0.7965 0.0250 0.0829 1.0084 0.1815 0.7960 0.0258 0.0831

Table 6.9: Hedging strategy and capital requirements for different number of re-balancing
per year.

Figure 6.2: Hedging errors for different frequency of re-balancing
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β= 100%, g=0%, α= 50%, c=95%, r=4%, n=3, μ=8%, σ=20%, k=7, N=6 , γ=0

Sampling with μ Sampling with μ and σ

l0 V0,0 a0,0 b0,0 c0,0 CR V0,0 a0,0 b0,0 c0,0 CR

1 1.0054 0.2768 0.7245 0.0042 0.0729 1.0053 0.2794 0.7219 0.0040 0.0732

3 1.0053 0.2769 0.7241 0.0042 0.0694 1.0052 0.2793 0.7218 0.0040 0.0693

5 1.0052 0.2764 0.7245 0.0043 0.0694 1.0051 0.2788 0.7221 0.0042 0.0691

10 1.0046 0.2746 0.7255 0.0045 0.0694 1.0041 0.2780 0.7218 0.0043 0.0690

Table 6.10: Hedging strategy and capital requirements for different number of policyholders.

there is a significant reduction in the magnitude of hedging errors and this explains the lower

value of capital requirement for the frequent re-balancing.

It is worth noting however that incurring transaction costs, bid-ask spreads and the like

during re-balancing could make frequent re-balancing quite expensive, since increasing the

frequency of trading in a year will also imply increasing the cost associated in the trading

although it reduces the risk associated of the contract. We, however, require more capital

if we intend to trade less frequently. This can be seen in the increasing trend of capital

requirement as we balance less frequently. Figure 6.2 illustrates the density of the hedging

errors and their respective re-balancing frequencies generated from 100, 000 simulations. The

diagram shows that there is a significant reduction in the variance of the hedging errors as

we increase the frequency of re-balancing.

Table 6.10 gives the normalized values of the initial hedge portfolio and capital requirement

for different cohort sizes of l0 = 1, 3, 5 and 10 homogeneous policyholders. As expected, the

initial values of the contract tend to decrease when we increase the number of policyhold-

ers, although not by much. This is due to the reduction in non-systematic mortality risk

as a result of diversification. We observe a 0.01% decrease in the initial value for every 2
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l0=1, g=0%, c=95%, r=4%, n=3, μ=8%, σ=20%, k=7, N=6 , γ=0

Sampling with μ Sampling with μ and σ

α β V0,0 a0,0 b0,0 c0,0 CR V0,0 a0,0 b0,0 c0,0 CR

0.25
0.7 0.9282 0.2500 0.6782 0.0000 0.0996 0.9280 0.2500 0.6780 0.0000 0.0996

0.9 0.9307 0.2321 0.6982 0.0004 0.0826 0.9305 0.2323 0.6979 0.0004 0.0823

0.50
0.7 0.9526 0.4953 0.4571 0.0001 0.2290 0.9522 0.4953 0.4567 0.0001 0.2287

0.9 0.9726 0.3857 0.5843 0.0025 0.1273 0.9722 0.3842 0.5853 0.0026 0.1271

0.75
0.7 0.9836 0.6947 0.2876 0.0014 0.3092 0.9834 0.6940 0.2879 0.0014 0.3092

0.9 1.0218 0.5256 0.4916 0.0046 0.1760 1.0216 0.5255 0.4916 0.0046 0.1755

1.0
0.7 1.0251 0.8529 0.1689 0.0033 0.3504 1.0250 0.8528 0.1689 0.0033 0.3503

0.9 1.0757 0.6680 0.4013 0.0064 0.2266 1.0756 0.6673 0.4019 0.0064 0.2266

Table 6.11: Hedging strategy and capital requirements for different guarantees and partici-
pation rates.

extra policyholders we add to the contract, but a 0.06% decrease for accommodating 5 extra

policyholders. Although there is a decrease in the initial value for an increasing number

of policyholders, the capital requirement stays fairly constant. This can be attributed to

the simulation of hedging errors when we computed the capital requirements. Since taking

on more policyholders implies bearing more risk, there could be an overall decrease in the

shared contract value per policy due to diversification but increasing risk requires higher

capital and hence no reduction in capital requirement per policy. It is important to note

that this observation is highly influenced by our capital requirement formula.
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Generally, EIA’s are priced by tuning some internal parameters. There is not much flex-

ibility around the parameters that affect the index and mortality risk directly. As such,

the participation rate and the percentage of initial premium guaranteed tend to be the best

parameters to be tuned for desirable risk tolerance of capital requirement.

Table 6.11 shows the initial values, strategies and capital requirements for participation rates

α = 25%, 50%, 75%, 100% and percentage of initial premium β = 70%, 90%. When the pol-

icy holder is allowed a 25% participation in the returns from the index, the value of the

initial hedge portfolio increases by 0.25% with a 20% increase in the percentage of initial

premium invested. There is also a 5.3% increase in V0,0 for a 50% increase in the partic-

ipation rate. Although an increase in participation rate increases the capital requirement,

an increase β decreases the capital requirement. This is because, when the insurer allows a

high participation in the index, the overall value of the contract increases since there is an

increase in the insurer’s obligation. Albeit, a high percentage of initial premium guaranteed

reduces the insurer’s obligation since there is little or no risk associated with the payment of

the guarantee. As such it is favorable to set α low and β high to ensure a minimum capital

requirement.

Other parameters like the growth of the guaranteed amount, the presence of a cap rate,

surrender rate or a withdrawal option can also be considered in setting the fair price of

an equity-linked product. These internal parameters can also be chosen based on some

considerations for management expense ratios, loading, and other transaction costs.
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Conclusion

In this thesis, we sought to present a partial worse case hedging strategy for an equity-linked

product. We achieved this by defining a loss random variable which consisted of two main

risks, the financial and mortality risks. While non-systematic mortality risk can be reduced

by selling more policies to independent homogeneous lives, systematic mortality risk affects

the whole population. The distribution of returns as well as volatility are major risks that

affect the index or financial model. We assume the market is incomplete and frictionless

and rely on the coherency of the conditional value-at-risk and the optimal iterated hedging

strategy to locally minimize the cost of establishing a replicating portfolio that immunizes

the worst-case value of the contract.

Our proposed strategy requires us to solve a linear optimization problem with data uncer-

tainty. Thus we resort to robust optimization techniques. With our uncertainty defined with

the probability of states in the index model in mind, we formulate the robust counterpart of

our linear optimization and solve it using linear and dynamic programming approaches. The

capital requirement is determined using the hedging errors of our risk minimization strategy,

which also includes investments in the index, a risk-free asset, and a European call option,

assuming investors behave rationally.

A detailed numerical analysis is performed for a point-to-point equity-indexed annuity with

GMAB and GMDB investment guarantees based on a multinomial lattice tree for the index.

Based on our analysis, we observe that sampling with average returns and allowing volatility

to vary gives higher worst-case contract value than when we fix volatility. Also, the non-
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homogeneous sampling strategy showed slightly higher values than the homogeneous and

binomial strategies. The quadratic strategy had the least worst-case contract values due to

the absence of a tail risk measure. In analyzing the sensitivity of the model to changes in

parameters, we observe that while the worst-case value of the contract increases with in-

creasing volatility, they remain unchanged for changes in the average return, a feature very

useful for setting reserves and capital requirements and also suitable to serve as a benchmark

for comparing models.

To illustrate the reduction in non-systematic risk, we observe a reduction in the worst-case

value per policyholder when we increase the number of policyholders. Also, our model is

consistent with the concept that frequent re-balancing reduces the variance of hedging er-

rors. Lastly, since equity-linked products are priced with internal parameters, we explore the

changes in the worst-case value and capital requirements to different participation rates and

percentage of premiums guaranteed and observed that it is best to set participation rates

low and percentage of premium guaranteed high to ensure a minimum capital requirement.

Our methodology may be extended to other equity-linked products such as variable annuities

(segregated fund contracts in Canada) due to the similarities in their payoff structure. In the

future, we intend to further explore this local risk-minimizing strategy with the conditional

value-at-risk as the objective function instead of as a constraint. We also look to explore the

use of the box and ellipsoidal uncertainty to converge at the worst-case value since sampling

can be computationally extensive for longer maturities and higher trading frequencies.
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Bjarni V Halldórsson and Reha H Tütüncü. An interior-point method for a class of saddle-

point problems. Journal of Optimization Theory and Applications, 116(3):559–590, 2003.

James D Hamilton. A new approach to the economic analysis of nonstationary time series

and the business cycle. Econometrica: Journal of the Econometric Society, pages 357–384,

1989.

Mary Hardy. Investment Guarantees: Modeling and Risk Management for Equity-linked Life

Insurance, volume 215. John Wiley & Sons, 2003.

Mary R Hardy, R Keith Freeland, and Matthew C Till. Validation of long-term equity

return models for equity-linked guarantees. North American Actuarial Journal, 10(4):

28–47, 2006.

George M Jabbour, Marat V Kramin, Timur V Kramin, and Stephen D Young. Multinomial

lattices and derivatives pricing. pages 1–15, 2004.

Hangsuck Lee. Pricing equity-indexed annuities with path-dependent options. Insurance:

Mathematics and Economics, 33(3):677–690, 2003.

LIMRA. Limra secure retirement institute: Total annuity sales continued to decline in 2017,

2018. URL https://www.limra.com/en/newsroom/news-releases/2018.

Francis A Longstaff and Eduardo S Schwartz. Valuing american options by simulation: a

simple least-squares approach. The Review of Financial Studies, 14(1):113–147, 2001.

73



Moshe A Milevsky and Thomas S Salisbury. Financial valuation of guaranteed minimum

withdrawal benefits. Insurance: Mathematics and Economics, 38(1):21–38, 2006.

Thomas Møller. Risk-minimizing hedging strategies for unit-linked life insurance contracts.

ASTIN Bulletin: The Journal of the IAA, 28(1):17–47, 1998.

Zhiyu Quan, Guojun Gan, and Emiliano A Valdez. Tree-based models for the efficient

valuation of large variable annuity portfolios. Available at SSRN 3247100, 2018.

Anna Grazia Quaranta and Alberto Zaffaroni. Robust optimization of conditional value at

risk and portfolio selection. Journal of Banking & Finance, 32(10):2046–2056, 2008.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk.

Journal of Risk, 2:21–42, 2000.

Berc Rustem and Melendres Howe. Algorithms for Worst-case Design and Applications to

Risk Management. Princeton University Press, 2009.

Martin Schweizer. Hedging of Options in a General Semimartingale Model. PhD thesis, ETH

Zurich, 1988.
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