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Abstract 

 

Is earlier better? Investigating sensitive periods for musical training in school-aged 

children 

 

 

Kierla Ireland, Ph.D. 

Concordia University, 2019 

 

Sensitive periods for musical training have been proposed, such that starting lessons in 

earlier childhood predicts better rhythm and melody skills in adult musicians. The goal of this 

thesis was to evaluate the effects of age of start (AoS) in musically trained children. We assessed 

whether children with an early AoS showed advantages over those who began later, with 

equivalent training. An inherent psychometric challenge with children is controlling for 

maturation. We started with tasks developed in our lab for adults, adapted them for school-aged 

children, and administered them to 213 children with and without music training. We calculated 

age-based scores, and estimated reliability and validity (Study 1). We then used age-based scores 

to assess contributions of AoS, training, and cognitive abilities to performance (Study 2).  

In Study 1, the children’s Rhythm Synchronization Task (c-RST) and Melody 

Discrimination Task (c-MDT) were found to have adequate convergent validity with adult 

analogues. Further, musically-trained children outperformed those without training, replicating 

findings of a ‘musician advantage’ for auditory tasks. The effect of age on task performance was 

largest for the c-RST, which poses the highest demands on auditory-motor integration.  

In Study 2, we investigated the influence of AoS on task performance at three cutoffs 

(AoS of 5, 6, and 7). We controlled for music training and other variables that predict musical 

engagement and task performance. We found a statistically significant effect of AoS and global 

cognitive ability, but only for the easiest task condition, Simple Melody discrimination. No AoS 

effects were found for the more difficult Transposed Melody discrimination, or for the c-RST, 

and these two were independently predicted by auditory-verbal working memory.  

Taken together, our results support a multidimensional model of musical task 

performance in childhood that includes the interaction of developmental, training-related and 

cognitive factors. The knowledge gained in this thesis may facilitate the application of musical 

training to other cognitive domains including language. Music and language share neural 
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substrates and develop according to similar principles. The underlying mechanisms of language 

and music, and potential applications of our tasks to research on transfer effects, are discussed. 
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CHAPTER ONE:  

GENERAL INTRODUCTION 
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The ability to create and enjoy music is probably uniquely human, and music is a part of 

all known human societies (Honing, ten Cate, Peretz, & Trehub, 2015). Music can be highly 

evocative, with changes in brain chemistry that correspond to peak emotional experiences 

(Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011; Salimpoor, Benovoy, Longo, 

Cooperstock, & Zatorre, 2009). The ability to respond to music begins in utero (Draganova, 

Eswaran, Murphy, Lowery, & Preissl, 2007) and infants can perceive subtle variations in pitch 

and rhythm (Trainor & Corrigall, 2010; Trehub & Degé, 2015). Even without formal training, 

most children learn basic musical abilities  (Seashore, 1915; Stalinski & Schellenberg, 2012). We 

learn music as we learn language; that is, in childhood, through enculturation and modeling from 

our immediate environments (Hannon & Trehub, 2005). It is a common belief that the key to 

becoming a successful musician is to begin music lessons early in life. Indeed, the most highly-

accomplished musicians often started lessons in childhood: Keith Jarrett, known for improvising 

entire performances on the piano, started before his third birthday; pianists Oscar Peterson and 

Lang Lang, and popular musicians Björk and Thom Yorke, all started playing music by age 7. 

More formally, in qualitative interviews of over 150 adult professional musicians aged 21-90, the 

majority had started lessons between ages 5 and 7 (Manturzewska, 1990).  

Sensitive periods for musical training have been proposed, such that starting lessons early 

is associated with better musical task performance later in life (Bailey & Penhune, 2010; Bailey 

& Penhune, 2013, 2012; Skoe & Kraus, 2014; White, Hutka, Williams, & Moreno, 2013). 

However, there are no studies comparing the effects of early and late age of start (AoS) in 

children. Therefore, the goal of this thesis was to test whether children who began training early 

(before age seven) showed advantages over those who began later after an equivalent amount of 

training. An inherent psychometric challenge in the measurement of training-related effects is to 

distinguish these from normative, age-based changes resulting from development. To this end, 

we started with rhythm and melody tasks developed in our lab for adults with a range of musical 

training, and adapted them for school-aged children. We administered these tasks to children 

with and without musical training, and calculated age-based scores to control for the effect of 

maturation. We estimated internal-consistency reliability and external validity for the children’s 

tasks. Finally, we used age-based scores to assess the contribution of early AoS to task 

performance. 
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Neuroplasticity and Musical Training 

Neuroplasticity, or the brain’s capacity to be changed by experience, underlies all human 

learning and development (Hebb, 1949). Neuroplastic changes can be experience-expectant, 

arising from genetically-determined maturational processes; or they can be experience-

dependent, arising from repeated stimulation through an experience or behaviour (Galván, 2010). 

These processes can also interact during what are termed “sensitive periods,” specific points in 

maturation where experience has differential effects (Knudsen, 2004; Penhune, 2011, 2019; 

Stalinski & Schellenberg, 2010; Trainor, 2005; White et al., 2013). Musical training is a 

powerful model for understanding these types of plasticity. Normal maturation, an example of 

experience-expectant plasticity, changes the brain’s capacity to process different types of 

information, and this maturation occurs along multiple trajectories depending on the underlying 

processing requirements (Gerber, Wilks, & Erdie-lalena, 2010; Thompson, White-Schwoch, 

Tierney, & Kraus, 2015). Given that this is genetically determined, it follows that some people 

are born with variations in brain structure that may facilitate their engagement in music, their 

playing ability, or their motivation to continue practicing and learning (Corrigall & Schellenberg, 

2015; Ullén, Hambrick, & Mosing, 2016). Playing music recruits multiple auditory, motor, 

memory, planning, and reward systems of the brain (Herholz & Zatorre, 2012). There is a robust 

body of evidence that music can produce changes in brain structure and function. Thus, musical 

training exemplifies experience-dependent neuroplasticity (Dalla Bella, 2016; Wan & Schlaug, 

2010). A sensitive period for musical training has been posited, such that the interaction of 

experience-expectant and experience-dependent mechanisms in childhood produces long-lasting 

and functionally relevant changes in the brain and behaviour (Knudsen, 1998; Stalinski & 

Schellenberg, 2010; Trainor & Corrigal, 2010; White et al., 2013). Training that occurs during a 

developmental peak engenders structural and behavioural changes that would not occur to the 

same degree with training undertaken outside that period (Penhune, 2019). 

 

Sensitive, not Critical 

A sensitive period is distinct from a critical period, during which a particular behaviour 

and its neural substrates will not develop properly without specific input (Knudsen, 2004; 

Penhune, 2011). A prototypical example of a critical period in the visual system comes from 

Wiesel and Hubel (1965), who found that kittens deprived of visual input to both eyes in the first 
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three months of life did not develop the neural representations underlying binocular vision 

compared to kittens deprived of visual input later in life. A critical period is thought to be 

genetically determined and has an abrupt onset and offset (Knudsen, 2004). By comparison, 

during a sensitive period the system is thought to be flexibly potentiated by experience (White et 

al., 2013). Most of the evidence for sensitive periods in the human auditory system comes from 

studies of language development. Seminal findings include a ‘perceptual narrowing’ near nine 

months of age, such that there is a decrease in the ability to process speech sounds outside of 

one’s native language (Werker & Tees, 1984). Relatedly, ratings of accent in a second language 

have been found to be negatively correlated with the AoS of learning (Flege, 1991; Flege, 

Munro, & MacKay, 1995). In congenitally deaf children who received cochlear implants, 

language proficiency is better the younger the age of implantation (Nicholas & Geers, 2007). 

Finally, bilingual adults who started learning their second language (L2) from birth up to age 7 

showed less lateralization in the left hemisphere, indicating more efficient language processing, 

than those who had started learning L2 between ages 8-12 (Klein, Mok, Chen, & Watkins, 2014). 

The above examples can be considered sensitive periods because development is differentially 

affected by, but not limited to, early exposure to sensory input.  

 

Sensitive Periods for Musical Training: Empirical Foundations 

The earliest hypotheses that there might be sensitive periods for musical training emerged 

incidentally from studies investigating neuroanatomical differences between adult musicians and 

non-musicians. For instance, string players (violin, cello, and guitar) were found to have a 

stronger representation of the fingers of the left hand in primary motor cortex when compared to 

non-musicians, and this was negatively correlated with the AoS of music lessons (Elbert, Pantev, 

Wienbruch, Rockstroh, & Taub, 1995). Similarly, Amunts and colleagues (1997) found a 

negative correlation between the extent of the region of primary motor cortex responsible for 

hand and finger movement, and the age at which adult musicians had begun piano lessons. 

Others have used a categorical approach to explore specific age cut-offs. For example, Schlaug 

and colleagues (1995) found greater grey matter volume in the anterior corpus callosum, 

important for bimanual coordination, in adult musicians compared to non-musicians. This effect 

was largest in those who had started before age seven. Another group of researchers (Pantev et 

al., 1998) found that adult musicians who had started prior to age nine had stronger auditory-
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evoked brain responses to piano tones than those who began after nine. Finally, in a study of 

adult keyboard players, Bengtsson and colleagues (2005) found that white-matter integrity in 

parts of the corpus callosum needed for independent finger movements and bimanual 

coordination was correlated with hours of practice accrued prior to age 11. Thus, early exposure 

to music lessons was hypothesized to interact with and enhance normal trajectories of neural 

development.  

These early studies suggested that AoS was a potentially important factor contributing to 

brain plasticity in musicians. However, in all of these studies AoS was confounded with duration 

of training: those who started younger had trained longer, and might also have had more lessons. 

Years of experience is consistently related to brain structural differences in musician groups 

(Abdul-Kareem et al., 2011; James et al., 2014; Sluming et al., 2002); thus, this factor, and not 

AoS, might drive the relationship of AoS with brain structural differences. Additionally, these 

early studies did not investigate behavioural changes associated with neuroanatomical 

differences, making their functional significance hard to interpret. Therefore, researchers from 

our lab and others have developed behavioural paradigms to probe for sensitive period effects 

while controlling for years of training and other potential confounds such as years of lessons, 

hours of weekly practice, and other variables such as global cognitive function and auditory 

working memory (Penhune, 2019).  

Using a matching paradigm to control for years of experience, duration of formal training, 

and years of lessons, early-trained (ET) adult musicians (AoS < 7) were found to have changes in 

functionally relevant brain structures compared to late-trained (LT) musicians (AoS >7), and 

performed better on tasks of sensorimotor learning, synchronization, and discrimination 

(Penhune, 2019). ET musicians have enhancements in grey matter in ventral premotor cortex 

(Bailey, Zatorre, & Penhune, 2014), white matter in corpus callosum (Steele, Bailey, Zatorre, & 

Penhune, 2013), and reductions in subcortical structures involved in motor control (Baer et al., 

2015; Vaquero et al., 2015). In terms of behavioural task performance, ET musicians have been 

found to have more precise timing than their LT counterparts when reading and playing scales 

from sheet music (Vaquero et al., 2015). Further, in two independent samples, ET musicians 

outperformed LT musicians on a rhythm synchronization task (RST) in which they listened, and 

then tapped along to complex rhythmic patterns (Bailey & Penhune, 2010; Bailey & Penhune, 

2012). In the second sample, researchers also found an ET advantage for auditory discrimination, 
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in the ability to detect deviant notes between two short melodies (Penhune, 2018, personal 

communication; Figure 1.1). Finally, ET musicians also show faster learning and better 

reproduction of visually-presented rhythmic sequences than LT musicians, preserving that 

advantage even after five days of practice (Watanabe, Savion-Lemieux, & Penhune, 2007).   

 

The Question of Cut-offs 

An important consideration is determining an appropriate cut-off for early- and late-AoS. 

In the earliest studies, no specific cut-off ages were explored a priori. Considering that most 

children begin lessons concurrently with the start of formal education, age seven was an 

informed, albeit arbitrary choice for the more recent studies. This cut-off age for adults was 

validated by researchers in our lab, who examined the relationship between AoS and rhythm 

synchronization ability at different cut-offs (6, 7, 8 and 9) in a group of ET and LT musicians (n 

= 77). Age of start was more highly negatively correlated with performance in the ET than the 

LT groups at all four cut-offs, with a significant difference for the age seven cut-off. There is 

also evidence for developmental peaks in grey matter prior to age 8 in cortical regions associated 

with task performance (Gogtay, 2004; Group, 2011). These findings support the use of age seven 

as a boundary for early training, which has informed our own analyses. 

Altogether, results from correlational studies suggest an interaction between neural 

development and musical training beginning before age seven, which is associated with better 

performance on musical tasks much later in life. However, these findings come from studies of 

adult professional musicians who typically have 15-20 years of intensive training and practice 

(Penhune, 2019). Therefore, it is unknown whether any short-term effects of musical training 

during an early sensitive period can be observed in childhood. Thus, one of our aims was to 

investigate early-training effects in children who started music lessons before and after age seven 

and who had 2-3 years of practice. To do this, we used the same matching paradigm as with 

adults, and the same melody and rhythm tasks which were adapted and normed for children. 

Similar to adult studies, we also investigated the validity of various AoS cut-off ages to 

distinguish between ET and LT children. 

 

Measurement of Children’s Abilities: A Research Challenge 
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Researchers who study children have the unique challenge of measuring training effects 

while concurrently controlling for maturational factors. Tests need to be sensitive enough to 

detect changes in training-related musical skills, and specific enough to distinguish these from 

the development of their underlying motor and cognitive skills (Corrigall & Schellenberg, 2015; 

Galván, 2010). The first tests for measuring the development of children’s musical abilities were 

developed by Seashore (1915) and included melodic abilities such as pitch discrimination, and 

timing abilities such as consistency of singing speed. Gordon’s Primary and Intermediate 

Measures of Music Audiation (PMMA and IMMA; Gordon, 1979, 1986) were initially 

developed to identify musical talent and determine which music classes would be most 

appropriate for individual children. These batteries are still the most commonly used in research, 

as the tasks are perceptual and thus easy to administer; moreover, there are norms for children in 

different age groups. However, these norms have not been updated for several decades. Thus, 

cohort effects related to changes in music-listening and in cognitive variables known to be 

related to musical abilities may make them less valid for current use (Nettelbeck & Wilson, 

2004). The Montreal Battery of Evaluation of Musical Abilities (MBEMA; Peretz et al., 2013) 

was normed on a large sample of Canadian and Chinese children aged 6–8. It consists of melody 

and rhythm discrimination tasks and a musical memory task. However, given that the test was 

designed to identify amusia, a deficit in auditory processing, there may be ceiling effects when 

used with children who have intensive music training. Most recently, researchers in Brazil 

developed a battery of music perceptual tests for children, which was standardized on over 1,000 

school-aged children (Barros et al., 2017). However, test items showed no differential 

functioning with age, indicating that the task may not be useful in a developmental context.  

Therefore, for this thesis we aimed to develop tasks that could help delineate specific 

effects of musical training in children while also accounting for normal maturation. To ensure 

that the tasks were sensitive enough to detect differences between musically trained and 

untrained groups, as well as between ET and LT children, we created the children’s Rhythm 

Synchronization Task (c-RST), and children’s Melody Discrimination Tasks (c-MDT). These 

were based on two tasks previously used with adults with a range of musical training (RST; 

Chen, Penhune, & Zatorre, 2008; MDT, Foster & Zatorre, 2010b) and which had previously 

shown differences between ET and LT groups (Bailey & Penhune, 2010; Bailey & Penhune, 

2012; Fig. 1.1). To address the challenge of accounting for maturation, we tested a large sample 
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of children between 7 and 13 years of age, used this data to generate a set of age-based (z) scores 

for all children using the non-musician children as a reference group, and used these scores to 

compare children with early and late AoS.  

 

Children’s Musical Tasks 

The children’s Rhythm Synchronization Task (c-RST) is based on a task first developed 

for adult musicians, to compare auditory and motor neural activation while listening and tapping 

to rhythms (Chen et al., 2008). It was adapted for children in collaboration with the laboratory of 

Dr. Krista Hyde (Tryfon et al., 2017). For this task, children first listen and then tap along to an 

11-note woodblock rhythm. There are six rhythms in total, and three trials per rhythm, for a total 

of 18 trials. There are three levels of metric regularity (low, medium, and high), indicating the 

number of notes of a rhythm that fall on the underlying beat. Performance is measured in terms 

of percent correct (the number of taps which fall in synchrony with the notes in the rhythm), and 

inter-tap interval (ITI) synchrony (the degree to which a child’s taps match the overall temporal 

structure of the rhythm).  

In the children’s Melody Discrimination Task (c-MDT) children listen to two short, 

unfamiliar melodic sequences and click a mouse key to indicate whether the second was the 

same or different from the first. Melodies are between 1.6 and 3.5 seconds (5-11 notes) in 

duration, and come from the Western major scale spanning notes C4-E6. In the Simple 

condition, both melodies are in the same key but each ‘different’ melody violates the contour; 

thus, the child can use absolute pitch cues to detect differences. In the Transposed condition, the 

second melody is in a higher key; thus, the child must ignore contour and focus on relative pitch 

relations to detect differences.  

To adapt the melody task for children, we first consulted with the developer of the adult 

task and referred to relevant literature on the theoretical bases of the specific underlying abilities 

(i.e., relative pitch and auditory discrimination; Foster & Zatorre, 2010b). We followed 

guidelines as instructed by experts in psychometrics and music cognition, including decreasing 

working memory load by reducing test length and difficulty, using stories as a procedural 

framework for the tasks, and estimating and reporting psychometric properties (Corrigall & 

Schellenberg, 2015; Kline, 2008). To decrease working memory load, we first reduced the 

maximum melody duration from 13 notes to 11. Next, we reduced test length from 90 trials per 
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condition to 30, while maintaining a similar distribution of melody durations as in the adult task. 

We developed a short and engaging storyline that could be integrated into the existing rhythm 

task storyline, with a visual display using the same graphical style. To estimate suitability of this 

storyline for a wide age range, we carried out a qualitative pilot trial of this storyline with 

colleagues in a child development laboratory. After data were collected, we consulted with an 

expert in measurement and test design regarding the creation of an even shorter version (a “best 

set”) for sharing with other researchers. We reported data from both the ‘best set’ and the 

original version of the c-MDT in our first publication (Ireland, Parker, Foster, & Penhune, 2018; 

Study 1); details about test construction as described above were reported more briefly for 

reasons of succinctness.  

Given that this thesis aims to explore the interaction of maturation, experience and their 

interaction on children’s melodic and rhythmic abilities, we need to know more about the 

development of these abilities and the auditory and motor systems that underlie them. This 

evidence will allow us to develop specific hypotheses for our investigations of the development 

of these skills in trained and untrained children (Study 1; Ireland et al., 2018) and about the 

differential effects of early and late AoS in child musicians (Study 2; Ireland, Iyer, & Penhune, 

2019).  

 

Auditory Development and Pitch Discrimination Ability: Experience-expectant Plasticity 

Development in the human auditory system occurs early and rapidly, with a substantial 

increase in myelination and connectivity in the primary auditory cortex between the ages of one 

and five (Kral & Eggermont, 2007). Pitch discrimination – the ability to detect a difference in 

relative pitch between two identical melodies – develops in early childhood (Stalinski & 

Schellenberg, 2010; Trehub & Degé, 2015). Between ages 5 and 12, auditory processing 

becomes more sophisticated in terms of the auditory features that can be discriminated. 

Transposition discrimination, the ability to detect a difference in pitch between two melodies that 

are identical in contour but in different keys, requires two separate processes. First is the relative 

pitch discrimination ability as described above, and second is the ability to successfully hear a 

transposition as a form of ‘musical transformation,’ preserving the contour of the original 

melody in memory. Contour, or the pattern of ups and downs in a melody, is a highly salient 

feature of music (Dowling & Fujitani, 1971). Preservation of contour allows two people to sing 
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‘Happy Birthday’ together even when they begin on different notes. This phenomenon is 

conceptually similar to visual rotation; indeed, transposition discrimination is correlated with 

activation in the intraparietal sulcus, important for visuospatial transformation (Foster & Zatorre, 

2010a). Not surprisingly given its complexity, transposition discrimination ability is still in 

development well into adolescence (Sutherland, Paus, & Zatorre, 2013). More globally, the long 

auditory maturational period is also thought to contribute to the acquisition of the complex 

structures of language and music (Kral & Eggermont, 2007). Through an interaction of bottom-

up and top-down processing, specific auditory features in the environment are assimilated and 

integrated by higher-order cortical processing regions, as well as sensory and motor regions. 

Because different regions have different developmental trajectories (Gogtay et al., 2004), early 

neuroplasticity in primary auditory cortex, with later plasticity and connectivity with the whole 

brain, this suggests that different sensitive periods may exist for different auditory abilities 

(Penhune, 2011).  

 

Motor Development and Synchronization Ability: Experience-expectant Plasticity 

Motor development proceeds along a proximal to distal trajectory; thus, control of head 

and trunk movements occurs much earlier than control of limbs and digits, which is necessary for 

a child to begin music training (Altenmueller & McPherson, 2008; Gerber, Wilks, & Erdie-

lalena, 2010). Synchronization – the ability to ‘track’ a regular pulse either internally or 

externally – is the result of two processes, one a ‘timekeeper’ and the other a ‘motor-responder’ 

(Wing & Kristofferson, 1973). These processes are underpinned by oscillatory activity in 

overlapping motor and timing networks in cortical and subcortical structures (e.g., premotor and 

supplementary cortex; suprachiasmatic nucleus of the hypothalamus; basal ganglia) and the 

cerebellum (Altenmueller & McPherson, 2008; Cohen, 2014; Dalla Bella et al., 2017). The 

development of synchronization ability occurs in tandem with the development of these neural 

structures, some of which do not reach a maturational peak until late childhood or early 

adolescence (Group, 2011; Monier & Droit-Volet, 2019; Raznahan et al., 2014). Therefore, 

although children can display a simple ‘synchronous gait’ in which the arms and legs move in 

opposition before age 3 (Gerber et al., 2010), they cannot tap their finger to a metronome 

consistently until age 4-5 (Drake, Jones, & Baruch, 2000; Drewing, Aschersleben, & Li, 2006; 

Monier 2019). These changes in synchronization ability are supported by two mechanisms – an 
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overall slowing of spontaneous tempo and a decrease in tapping variability – which together 

allow children to adapt more flexibly to variations in speed (Monier & Droit-Volet, 2019; 

Thompson et al., 2015).  

 

Longitudinal Effects of Musical Training: Experience-dependent Plasticity 

We know that auditory and motor skills develop along different trajectories in childhood 

with maturation of the underlying neural substrates. Longitudinal studies, though few in number, 

provide the highest standard of evidence that enhancements in both musical abilities and task-

relevant brain structures can occur after brief periods of musical training starting close to or 

before age seven (Habibi, Cahn, Damasio, & Damasio, 2016; Habibi, Damasio, Ilari, Veiga, et 

al., 2018; Hyde et al., 2009b; Putkinen, Tervaniemi, Saarikivi, Ojala, & Huotilainen, 2013). For 

example, 6- and 7-year-old children who received 15 months of private keyboard lessons showed 

increased cortical thickness in the right primary auditory cortex compared to same-aged children 

who received no instrumental lessons (Hyde et al., 2009a). Importantly, changes in cortical 

thickness were significantly correlated with children’s performance on a rhythm and melody 

discrimination task. Children also showed enhanced connectivity in the corpus callosum, 

important for bimanual coordination, which was correlated with improvements on a fine-motor 

task (Hyde et al., 2009a). A more recent study produced similar results. Six-year-old children 

were assigned to group music training following the El Sistema model, team sports training, or 

no systemic training (Habibi, Damasio, Ilari, Sachs, et al., 2018). After one year, children in the 

music group outperformed the others on a task in which they synchronized drumming patterns 

with an adult (Ilari, Keller, Damasio, & Habibi, 2016). These same children showed enhanced 

connectivity in the corpus callosum and better tonal discrimination compared to the two control 

groups (Habibi et al., 2017). Electrophysiological evidence suggests that changes in young 

children’s neural processing of sound occur after as little as 1-3 years of lessons. For example, 

auditory-evoked potentials were larger in amplitude in 4-to-5-year-old children after a year of 

music lessons (Shahin, Roberts, & Trainor, 2004). In another study, responses to violin tones 

were heightened in 4-to-6-year-old children after a year of Suzuki music lessons, when compared 

to children without musical training (Fujioka, Ross, Kakigi, Pantev, & Trainor, 2006). Finally, 

children with and without musical training were assessed every two years between 7 and 13 

years old. The auditory-evoked responses of children with musical training grew larger in 
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amplitude with time, suggesting enhanced auditory processing above and beyond normal 

development (Putkinen et al., 2013). Importantly, in all these studies researchers had controlled 

for baseline brain volume, SES, musical ability and cognitive function.  

Taken together, the neural correlates of pitch discrimination undergo a developmental 

peak near age five. In contrast, brain structures supporting synchronization, a more complex 

integration of auditory and motor processes, take longer to develop, beginning around 6 years of 

age and peaking in late adolescence. Musical training can directly modify the neural correlates of 

both discrimination and synchronization through both bottom-up (sensory) and top-down 

(integration) processes. Thus, our first broad hypothesis was that school-aged children, having 

already ‘passed through’ an auditory-perceptual developmental peak, would perform better on 

the melody task than the rhythm task. Based on the evidence a logical prediction is that, 

controlling for age, the effect of AoS might be larger for early-trained (ET) children, who had 

started lessons within a possible sensitive period, compared to those who had started after this 

developmental peak. We also hypothesized that effects might be limited to older children for the 

more difficult melody transposition task, given its longer developmental trajectory. We 

controlled for demographic and cognitive variables that have been found to predict musical task 

performance, including socio-economic status (SES), working memory, and global cognitive 

ability (Swaminathan & Schellenberg, 2018). 
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Figure 1.1. Melody Discrimination Task performance in adult Early-Trained musicians, Late-

Trained musicians, and Non-musicians. (V. Penhune, 2018, personal communication) 

 

 

 

 

Figure 1.2. Rhythm Synchronization Task performance in adult Early-Trained musicians, Late-

Trained musicians, and Non-musicians. (Bailey & Penhune, 2012). 
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Abstract 

 
Measuring musical abilities in childhood can be challenging. When music training and 

maturation occur simultaneously, it is difficult to separate the effects of specific experience from 

age-based changes in cognitive and motor abilities. The goal of this study was to develop age-

equivalent scores for two measures of musical ability that could be reliably used with school-

aged children (7-13) with and without musical training. The children’s Rhythm Synchronization 

Task (c-RST) and the children’s Melody Discrimination Task (c-MDT) were adapted from adult 

tasks developed and used in our laboratories. The c-RST is a motor task in which children listen 

and then try to synchronize their taps with the notes of a woodblock rhythm while it plays twice 

in a row. There are three levels of rhythmic complexity corresponding to a decrease in beat 

strength. The c-MDT is a perceptual task in which the child listens to two melodies and decides 

if the second was the same or different. Melodies are presented either in the same key or 

transposed upward by four semitones. We administered these tasks to 213 children in music 

camps (musicians, n = 130) and science camps (non-musicians, n = 83). We also assessed 

children’s baseline motor and auditory abilities. We estimated internal-consistency reliability for 

both tasks, and compared children’s performance to results from studies with adults. As 

expected, musically trained children outperformed those without music lessons, scores decreased 

as difficulty increased, and older children performed the best. Using non-musicians as a 

reference group, we generated a set of age-based norms, and used these scores to predict task 

performance with additional years of training. Years of lessons statistically significantly 

predicted performance on both tasks, over and above the effect of age. We also assessed the 

relation between musicians’ scores on music tasks, baseline tasks, auditory working memory, 

and nonverbal reasoning. These tasks and the associated norms fill an important need for 

researchers interested in evaluating the impact of musical training in longitudinal studies, those 

interested in comparing the efficacy of different training methods, and for those assessing the 

impact of training on non-musical abilities, such as reading skills and other cognitive functions. 
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Introduction 

 
Researchers, music teachers, and parents have a strong interest in understanding and 

assessing children’s musical abilities. However, measuring these abilities in childhood can be a 

challenge because training and normal maturation occur simultaneously, making it difficult to 

disentangle the effects of music experience from cognitive and motor development (Corrigall & 

Schellenberg, 2015; Galván, 2010). This also makes comparisons with adult musicians 

problematic. Therefore, the goals of this study were to develop measures of musical ability that 

could be reliably used with school-aged children (7-13), and to generate a set of age-based norms 

for children with and without training. The resulting children’s Rhythm Synchronization Task (c-

RST) and children’s Melody Discrimination Tasks (c-MDT) were based on two tasks previously 

used with adults (RST; Chen, Penhune et al., 2008; MDT, Foster & Zatorre, 2010a). For both 

tasks, we assessed whether children’s patterns of performance would be similar to adults across 

levels of difficulty, whether performance would be better for children with music training, and 

whether scores would increase with age. Using the age-normed scores derived from the non-

musician sample, we also assessed the contributions of years of music training to performance, 

and the possible relationships between music and cognitive abilities, including auditory working 

memory. 

Musical ability is defined as the innate potential to perceive, understand, and learn music 

(Law & Zentner, 2012; Schellenberg & Weiss, 2013). It is assumed that, like other innate 

capacities, musical abilities are normally distributed in the population (Schellenberg & Weiss, 

2013), and that even without musical training these abilities develop with age (Stalinski & 

Schellenberg, 2012). In the first year, infants can discriminate between simple rhythm patterns 

and meters (Hannon & Johnson, 2005). Producing synchronized movement takes longer to 

master. Children as young as four can tap to a beat, and this ability improves between 4 and 11 

years old (Drake et al., 2000). Existing evidence shows that by age 7 children can reproduce very 

short rhythms (Drake, 1993; Drake et al., 2000; Repp & Su, 2013). Children become more 

sensitive to the metrical structures of their culture with exposure to music (Corrigall & 

Schellenberg, 2015), and by adulthood are better at detecting changes in rhythms with a metrical 

structure specific to their culture (Hannon & Trehub, 2005). Basic melody discrimination is in 

place very early in life. Even before birth, near-term fetuses can detect a change in pitch of 
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roughly an octave (Lecanuet, Graniere-Deferre, Jacquet, & DeCasper, 2000). By 2 months old 

infants can discriminate between semitones, and they can process transposed songs, a more 

cognitively demanding task, by early childhood (Plantinga & Trainor, 2005, 2009). The brain’s 

response to auditory stimuli has a relatively long developmental timeframe, continuing to mature 

until 18–20 years old (Ponton, Eggermont, Khosla, Kwong, & Don, 2002). As children move 

through the school years they are more sensitive to aspects of music specific to their culture 

(Corrigall & Schellenberg, 2015). Implicit knowledge of key membership is acquired first, 

followed by implicit knowledge of harmony (Lynch, Eilers et al., 1990; Schellenberg, Bigand et 

al., 2005; Trainor & Trehub, 1994). Explicit knowledge of key membership and harmony begins 

around 6 years old and continues to develop until 11 years old (Costa-Giomi, 1999a). 

School-aged children with musical training – even as little as one to three years – have 

been found to score higher on musical tasks than those with no training. Longitudinal and quasi-

experimental studies provide the most compelling evidence for the effects of musical training on 

musical abilities. Six-year-olds who received 15 months of keyboard lessons improved on a 

combined melodic and rhythmic discrimination score compared to controls (Hyde et al., 2009a). 

In a sample of children aged 7-8, rhythm and tonal discrimination improved significantly more 

after 18 months of musical training than after science training (Roden et al., 2014). In another 

study, children were followed from ages 7-13; those with music training showed better detection 

of deviant musical stimuli, as measured with the mismatch negativity ERP response (Putkinen et 

al., 2013). Most recently, children aged 6-8 were given group music lessons, group soccer 

training, or no training for two years (Habibi et al., 2016). The musically trained children were 

the most accurate at discriminating changes in pitch.  

The earliest tests for measuring children’s musical ability included both perceptual tasks 

such as discriminating among pitches or timbres, and motor tasks such as controlling tempo 

while singing (Seashore, 1915). Subsequent batteries have focused more on perceptual tasks, 

perhaps due to the difficulty of administering and evaluating children’s musical performance 

objectively. The most recent and well-known batteries of music perception with age-equivalent 

scores for school-aged children are the Primary and Intermediate Measures of Music Audiation 

(PMMA and IMMA; Gordon, 1979, 1986). The PMMA and IMMA are commonly used in 

research, given that there are norms for children in different age groups. However, these norms 

have not been updated for three to four decades. Thus, cohort effects related to changes in music-
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listening and in cognitive variables known to be related to musical abilities may make these 

norms less valid for current use (Nettelbeck & Wilson, 2004). More recent test batteries include 

the Montreal Battery of Evaluation of Musical Abilities (MBEMA; Peretz, Gosselin et al., 2013), 

which was administered to a large sample of Canadian and Chinese children aged 6-8. Like the 

PMMA and IMMA, the MBEMA consists of perceptual discrimination tasks (contour, scale, 

interval, and rhythm), with an added memory task. Although scores are reported for children 

with up to two years of musical training, the test was designed to identify amusia (an auditory-

processing deficit), and as such may not be sensitive enough to detect differences in ability 

between children with and without training, or changes with age. Most recently, researchers 

developed a battery of tests of music perception, standardized on over 1,000 Brazilian 

schoolchildren aged 7-13 (Barros et al., 2017). Unfortunately, test scores showed no 

improvements with age, indicating that the task is unlikely to be useful in a developmental 

context. In addition, no musically-trained children were included in the sample. In sum, 

children’s musical abilities change with age, and are influenced by musical training. It also 

appears that the developmental trajectories of rhythm reproduction and melody discrimination 

are different, with melodic abilities developing earlier. Further, current tests of musical abilities 

in children are limited in their utility for examining the effects of development and training. 

Given the increased interest in assessing musical skills in childhood, an important goal of this 

study is to provide the community with reliable tests with up-to-date norms.  

Cognitive abilities such as working memory and nonverbal reasoning change with age, 

and are associated with both musical training and with musical aptitude (Schellenberg & Weiss, 

2013; Swaminathan et al., 2016). Even after very little training, children score higher on age-

equivalent measures of immediate and short-term working memory (Bergman Nutley, Darki, & 

Klingberg, 2014; Roden, Grube, Bongard, & Kreutz, 2014). In a well-known longitudinal study, 

children’s scores on tests of global cognitive function increased after 36 weeks of music lessons, 

when compared to art lessons or no lessons (Schellenberg, 2004). In addition, there is evidence 

of associations between musical and language abilities (Gordon et al., 2015; Patel, 2012). For 

instance, melody perception and language comprehension are correlated by age 5 (Sallat & 

Jentschke, 2015), and young children’s ability to detect large deviations of pitch in speech were 

found to improve after only 8 weeks of music lessons (Moreno & Besson, 2006). By age 6, 

children’s rhythmic perceptual abilities are predictive of their ability to produce complex 
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grammatical structures (Gordon et al., 2016). In children with lower SES, small amounts of 

music lessons may have a protective effect on literacy skills, compared to control subjects (Slater 

et al., 2014). Given the complex overlap between musical, cognitive, and language skills, and 

their relation to music training, in the current study we administered tests of auditory working 

memory and global cognitive function.  

The tests of musical ability developed for the current study are based on adult tasks. Both 

tasks were abbreviated and simplified to be more engaging and have a shorter administration 

time. The children’s Rhythm Synchronization Task (c-RST; Figure 1) and children’s Melody 

Discrimination Task (c-MDT: Figure 2) were adapted following guidelines advanced by 

Corrigall & Schellenberg (2015), including adding a storyline, reducing test duration, and 

providing feedback. 

The Rhythm Synchronization Task (RST) is a computer-based task that assesses the 

ability to tap in synchrony to a series of rhythms that vary in metrical complexity. It is based on 

an adult task initially developed for brain imaging and then modified for behavioural studies 

(Chen et al., 2008). Adult professional musicians scored higher than non-musicians on the RST 

(Bailey & Penhune, 2010, 2012; Karpati et al., 2016). Moreover, irrespective of training, scores 

decreased as metric regularity (indicated by the presence of a steady pulse) decreased (Bailey & 

Penhune, 2010; Chen et al., 2008; Matthews et al., 2016). The RST was recently adapted for 

children, with the purpose of comparing typically developing children and those with autism 

spectrum disorder (Tryfon et al., 2017).  

The Melody Discrimination Task (MDT) is a computer-based task that assesses the 

ability to discriminate between two melodies that differ by one note either in the same key or 

transposed. Adult musicians outperformed non-musicians on this task (Foster & Zatorre, 2010a; 

Karpati et al., 2016) and scores are related to length of musical training (Foster & Zatorre, 

2010b). Moreover, neuroimaging results found that transposition discrimination – the ability to 

recognize deviant pitches irrespective of the key in which they are presented – may be 

anatomically distinct from other discrimination abilities (Foster et al., 2013; Foster & Zatorre, 

2010a, 2010b). For the current study this task was shortened, and a storyline added, for use with 

children. Items were selected for optimal reliability and difficulty.  

The goal of the present study is to assess the influence of age and musical training on 

children’s musical abilities using the RST and MDT. Given that children’s rhythmic and melodic 
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abilities have different developmental trajectories, we measure melody and rhythm separately, 

and provide standardized scores for each age group. We use age-equivalent scores to investigate 

the effects of musical training on task performance. Finally, we assess the relation between 

musical training and cognitive abilities in musically trained children.  

 

Method 

 
Participants 

We tested 213 children aged 7 to 13 years in music and science camps in Montréal, 

Ottawa, and Waterloo, Canada. Children were categorized as musicians (n = 130) or non-

musicians (n = 83) based on a parent questionnaire adapted in our lab (Survey of Musical 

Interests; Desrochers et al., 2006). The term musician was operationalized as a child who had at 

least 2.5 years of consecutive music lessons (M = 5.06 years, SD = 1.58, range 2.74 – 10.00). 

Music lessons were operationalized as extra-curricular, weekly, one-on-one sessions of at least 

30 minutes in duration and taught by an expert. Child musicians also practiced for at least half an 

hour a week (M = 3.16 hours, SD = 2.49, range = 0.50 - 14.00). Music practice could be 

structured (using a book or specific exercises) or unstructured (free playing), as long as it 

occurred outside of lessons and on the same instrument. The term non-musician was 

operationalized as a child with no more than 2.5 years of consecutive lessons (M = 0.43, SD = 

0.74, range 0.00-2.30). We assessed children’s SES by estimating maternal years of education. 

As in the original questionnaire, mothers reported their highest level of education on an ordinal 

scale. We converted this to an approximate interval scale with the following estimates: high 

school = 12 years; college diploma = 14 years; baccalaureate degree = 16 years; master’s degree 

= 18 years; doctorate or medical professional degree = 22 years.  

Demographic and practice-related characteristics for all children by musicianship and age 

group are in given in Table 2.1. Parents provided written consent and children provided verbal 

assent before participating. Children were given a gift card and a small toy as thanks for their 

participation. The study was approved by Concordia University’s Human Research Ethics Board.  

 

Rhythm Synchronization Task 
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The child version of the RST (c-RST; Figs 2.1 & 2.2.) differs from the adult task in 

several ways (Tryfon et al., 2017). First, to make it more engaging, a storyline and corresponding 

graphics were generated. Next, task difficulty was reduced by removing the most difficult (‘non-

metric’) rhythm level, and replacing it with an easy (‘strongly metric’) level. As with the adult 

task, a single trial of the c-RST consists of two phases: (1) ‘Listen’ and (2) ‘Tap in Synchrony.’ 

A giraffe with headphones is displayed on the computer screen. During the Listen phase, the 

giraffe’s headphones are highlighted, indicating that the child should listen to the rhythm without 

tapping. During the Tap in Synchrony phase, the giraffe’s hoof is highlighted, indicating that the 

child should tap along in synchrony with each note of the rhythm using the index finger of the 

right hand on a computer mouse. The c-RST has three levels of rhythmic complexity that vary in 

difficulty from easiest to hardest: Strongly Metric, Medium Metric, and Weakly Metric. There 

are two rhythms per difficulty level, for a total of six rhythms which are presented in 

counterbalanced order. Rhythms consist of 11 woodblock notes spanning an interval of 4 to 6 

seconds. Each of the six rhythm trials is played three times in a row, for a total of 18 trials. 

Before starting the test, children complete five practice trials at the Strongly Metric level, with 

feedback from the experimenter. The rhythms used for the practice trials are not those used in the 

main task. Performance on the RST is measured in two outcomes: (1) proportion correct, or the 

child’s ability to tap within the ‘scoring window’ (as explained below); and (2) percent inter-tap 

interval (ITI) synchrony, or the child’s ability to reproduce the temporal structure of a rhythm. 

The proportion correct is calculated as the proportion of taps that fall within the scoring window 

(i.e., half the ISI before and after the stimulus). The ITI synchrony is calculated as the ratio of the 

child’s response intervals (r) to the stimulus time intervals (t), with the following formula: Score 

= 1–abs(r–t)/t. For both proportion correct and ITI synchrony, proportions are multiplied by 100 

to generate a percentage. 

 

Tapping and Continuation Task 

The Tapping and Continuation Task was included as a test of basic synchronization and 

timing. This task has been frequently used in both adults and children (Aschersleben, 2002; 

Balasubramaniam et al., 2009; Dalla Bella et al., 2017; Matthews et al., 2016; Tryfon et al., 

2017; Whitall et al., 2008; Wing & Daffertshofer, 2004). For this task, children tap along with an 

isochronous rhythm of woodblock notes for 15 seconds (paced tapping), and are instructed to 
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continue tapping at the same tempo for 15 seconds once the rhythm stops (non-paced tapping). 

The tapping task runs for 6 trials at the same tempo (inter-stimulus interval [ISI] of 500 ms). 

Performance is measured in terms of tapping variability; only the non-paced trials are scored. 

The ITIs and their respective standard deviations are averaged across all 6 trials for non-paced 

tapping. The average SD is then divided by the average ITI to generate a coefficient of variation 

(i.e., the child’s tapping variability relative to his or her own performance).  

 

Melody Discrimination Task 

For each trial of the MDT, participants listen to two melodies of equal duration separated 

by a 1.2-s silence, and then indicate whether the second melody is the same or different than the 

first. There are two conditions: Simple and Transposed. In the Simple condition, both melodies 

are in the same key. In the “different” trials, the pitch of a single note in the second melody is 

shifted up or down by between one and five semitones, while preserving the contour of the first 

melody. The participant thus must compare individual pitches to detect the deviant note. In the 

Transposed condition, all the notes in the second melody are transposed upward by four 

semitones (a major third). In the “different” trials a single note is shifted up or down by one 

semitone, while preserving the contour of the first melody. Thus, the participant must use 

relative pitch to perceive the deviant note within a transposed model. All melodies in the MDT 

were composed of low-pass- filtered isochronous harmonic tones (320 ms each, corresponding to 

a tempo of 93.75 bpm) from the Western major scale, using tones taken from the two octaves 

between C4-E6. All major scales are represented except B, F-sharp, and C-sharp; minor scales 

include E, A, and E-flat.  

The child version of the MDT (c-MDT; Figs 2.2 & 2.3) differs from the adult version in 

several ways. The adult version comprises 180 melodies (90 simple and 90 transposed), which 

range from 5 to 13 notes per melody. This was considered too long for testing with children so 

60 items were selected (30 simple and 30 transposed) based on a reduced range of notes for 

lower difficulty (5–11 notes per melody). After this set of 60 items was administered to all 

children, we calculated item-level statistics post-hoc in order to retain a “best set” of data with 

the following criteria: (1) KR-20, or Cronbach’s alpha for dichotomous items, of at least 0.50; 

(2) point-biserial correlation, or the degree to which items correlate with the total score for each 

condition, of at least 0.10; (3) item difficulty above chance; and (4) administration time under 20 
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min, including instructions and practice. The resulting best set is composed of 40 melodies, 20 

per condition, with 5–11 notes per melody. The results reported in the current paper are for this 

best set. Raw score means and standard deviations for the 60-item set are provided for 

comparison in the Appendix.  

The Simple and Transposed conditions each have 20 trials, with an equal number of 

“same” and “different” trials per condition. Each condition is presented as two blocks of 10 trials 

with a break in between. The 20 trials are presented in random order within conditions, but the 

order of conditions is always the same (Simple, Transposed) to preserve the storyline. In the 

corresponding graphical display, children see a teacher elephant who “sings” a melody which is 

then repeated by either the “echoing elephant who sings it perfectly” or the “forgetful monkey 

who always makes a little mistake.”  

In the graphical display for the Transposed condition, children are again shown the 

teacher elephant who sings the melody, which is repeated by the “baby elephant” or the “baby 

monkey” who “sing in a much higher voice” (i.e., in a transposed key); they are instructed to 

ignore this difference and instead listen for the “little mistake.”  

 

Syllable Sequence Discrimination Task 

The Syllable Sequence Discrimination Task (SSDT) was designed as a baseline task for 

the MDT that would place similar demands on auditory working memory ability. In the c-SSDT 

the child hears two sequences of 5–8 non-word syllables, spoken in a monotone with F0 held 

constant, and judges whether they are the same or different. Syllables were generated using 

permutations of 7 consonants [f, k, n, p, r, s, y] and 4 vowel sounds [a, i, o, u], which were then 

selected for minimal semantic association (Foster and Zatorre, 2010a). The c-SSDT contains the 

following 13 phonemes: fah, foh, foo, kah, koh, nah, poh, rah, ree, roh, roo, sah, yah. Sequence 

lengths (5–8 syllables) were selected to match the adult version of the task. In the graphical 

display adapted for this task, the elephant and monkey are shown wearing robot helmets and are 

said to be “copying robot sounds,” with the same response cue as in the c-MDT (“echoing 

elephant” or “forgetful monkey”). 

For both the c-MDT and c-SSDT, children are familiarized through four practice trials, 

two with feedback from the experimenter and two without feedback. After all trials of both tasks, 

the word ‘correct’ or ‘incorrect' is displayed for one second. Experimenters are seated so as not 
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see children’s responses or feedback. Discrimination is scored as the percentage of correct 

responses. The child's responses are scored as 0 (incorrect) or 1 (correct), generating a proportion 

which is then multiplied by 100. 

 

Cognitive Tasks 

To assess cognitive abilities that might be related to performance on the music tasks we 

administered the Digit Span (DS), Letter-Number Sequencing (LNS), and Matrix Reasoning 

(MR) subtests from the Wechsler Intelligence Scale for Children, fourth edition (WISC-IV; 

Wechsler, 2003). Digit Span is a measure of immediate auditory memory, in which the child 

repeats strings of digits forward or backward. Letter-Number Sequencing (LNS) is a measure of 

auditory working memory and manipulation, in which the child hears a string of letters and 

numbers and must repeat them back in numerical and alphabetical order, respectively. Matrix 

Reasoning (MR) is a measure of nonverbal reasoning, and is considered to be a reliable estimate 

of general intellectual ability (Brody, 1992; Raven, J., Raven, J. C., and Court, 1998). For this 

task, the child must identify the missing portion of an incomplete visual matrix from one of five 

response options.  

All subtests were administered according to standardized procedures. Raw scores were 

converted to scaled scores based on age-based norms for all three subtests. The population-based 

mean for subtest scaled scores on the WISC-IV is 10, with a standard deviation of 3 (Wechsler, 

2003).  

 

General Procedure  

Testing took place over a 1-h session. Participants were given short breaks between tasks 

to enhance motivation. Computer- based tasks were administered on a laptop computer running 

Presentation software (Neurobehavioral Systems, http://www. neurobs.com/). Auditory tasks 

were presented binaurally via Sony MDRZX100B headphones adjusted to a comfortable sound 

level. Musical tasks were administered before cognitive tasks, with musical task order (either c-

RST or c-MDT first) counterbalanced across participants. Cognitive tasks were administered in 

the order in which they appear in the original WISC-IV battery.  

All programs for administration and scoring, as well as a user manual with norms, will be 

made available upon request to the first author.  
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Results 

 
Sample Characteristics: Child Musicians and Non-Musicians  

Data for group differences in the sample are presented in Table 2.2. We first conducted a 

chi-square analysis to determine whether the number of boys and girls differed between 

musicians and non-musicians. There were significantly more female musicians than males, and 

significantly more male non-musicians than females [χ2 (1) = 5.89, p = .015]. Subsequently we 

carried out ANOVAs with musicianship and gender as between-subjects factors. For Simple 

melodies there was a significant musicianship-by-gender interaction [F (1, 209) = 5.53, p = .02, 

partial η2 = .03)], such that male musicians outperformed male non-musicians by a greater 

margin (20%) than girls (12%). However, this effect is small in magnitude, and there were no 

musicianship-by-gender interactions for any other outcome variables of interest (C-RST or 

MDT). Thus, gender was not added as a covariate for group difference analyses. 

We conducted independent two-sample t-tests, and calculated Hedge’s g effect sizes, to 

examine the degree to which musicians and non-musicians differed in SES (estimated years of 

maternal education), cognitive variables including auditory working memory (Digit Span, Letter-

Number Sequencing) and general intellectual ability (Matrix Reasoning), or performance on 

baseline tasks (Tapping Variability, Syllable Sequence Discrimination). Cognitive data were lost 

for four children but as they represent fewer than 2% of the sample these scores were not 

replaced (Kline, 2011). Twelve musicians’ mothers and 10 non-musicians’ mothers did not 

answer the question about maternal education.  

There were no statistically significant differences in SES [t(189) = 0.43, p = .67, g = 

0.06] or auditory working memory [Digit Span t(207) = 1.79, p = .08, g = 0.25; Letter-Number 

Sequencing t(207) = 0.75, p = .45, g = 0.10]. Although statistically different, both groups scored 

in the Average range for general intellectual ability [Matrix Reasoning t(207) = 2.28, p = .023, g 

= 0.32.] By contrast, musicians performed significantly better on both baseline tasks [Tapping 

Variability t(211) = -3.86, p < .001, g = 0.54; Syllable Sequence Discrimination t(211) = 3.49, p 

= .001, g = 0.48]. Therefore, these were included as covariates for the regression analyses. 

 

Reliability 
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To examine internal-consistency reliability, we used Cronbach’s alpha for the c-RST, 

which estimates the mean of all possible split-half reliabilities, and KR-20 for the c-MDT, 

equivalent to Cronbach’s alpha for dichotomous variables. Reliability estimates were derived for 

musicians and non-musicians separately. Scores on the c-RST were found to be adequately 

reliable for musicians (α = .64) but slightly less so for non-musicians (α = .60). Score reliability 

is higher on the c-MDT and, similar to the c-RST, is higher for musicians (KR-20 = .86) than for 

non-musicians (KR-20 = .75).  

 

Effects of Musicianship, Task and Age 

To examine the degree to which performance on the c-RST and c-MDT varied between 

musicians and non-musicians, across levels of each task (e.g., rhythmic complexity and melody 

type), and between children of different age groups, we carried out mixed-design ANOVAs with 

musicianship and age as between-subjects factors, and task level as a repeated measure. Outcome 

variables for the c-RST were proportion correct and ITI synchrony; the outcome for the c-MDT 

was percent correct. Partial eta-squared effect sizes were calculated, and post-hoc analyses were 

carried out with Bonferroni corrections for multiple comparisons.  

For the c-RST (proportion correct and ITI synchrony), the assumption of sphericity was 

violated such that the variances of the differences between levels of rhythmic complexity were 

not homogeneous (Mauchly’s W = .94, p = .002 for both). Thus, degrees of freedom for all 

effects were corrected using Greenhouse-Geisser estimates (𝜀 ̂= .94 for proportion correct and 

.95 for ITI synchrony). 

For the c-RST – proportion correct, there was a marginally significant effect of 

musicianship [F (1, 201) = 3.65, p = .058, partial η 2 = .02], and significant main effects of 

rhythmic complexity [F (1.89, 379.64) = 205.24, p < .001, partial η2 = .51] and age group [F (5, 

201) = 5.24, p < .001, partial η2 = .12]. Overall, children’s scored taps decreased in a stepwise 

fashion from Strongly Metric to Medium Metric (p < .001), and from Medium Metric to Weakly 

Metric rhythms (p = .004). Post-hoc comparisons revealed that the oldest children outperformed 

the youngest but there were no stepwise changes between age groups. There was a significant 

interaction between rhythmic complexity and age [F (9.44, 379.64) = 4.48, p < .001, partial η 2 = 

.10]. Decomposition of this interaction revealed that children’s scored taps increased 

significantly more with age for Strongly Metric rhythms than for the more difficult rhythms.  
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For the c-RST – ITI synchrony, there were significant main effects of musicianship [F (1, 

201) = 9.39, p = .002, partial η2 = .05], rhythmic complexity [F (1.89, 379.71) = 250.95, p < 

.001, partial η2 = .56], and age group [F (5, 201) = 12.13, p < .001, partial η2 = .23]. Overall, 

musicians outperformed non-musicians and synchronization ability decreased in a stepwise 

fashion from Strongly Metric to Medium Metric (p < .001), and from Medium Metric to Weakly 

Metric rhythms (p = .005). Post-hoc comparisons revealed that the oldest children tapped more in 

synchrony than the youngest, but there were no stepwise changes between age groups. There was 

also a significant age-group-by-complexity interaction [F (9.45, 379.71) = 2.27, p = .016, partial 

η 2 = .05], such that scores differed the most with age for Strongly Metric rhythms. 

For the c-MDT, significant main effects were found for musicianship [F (1, 198) = 76.01, 

p < .001, η2 = .28], melody type [F (1, 198) = 141.31, p < .001, η2 = .42], and age group [F (5, 

198) = 5.90, p = .001, η2 = .13]. No significant interaction effects were found. Overall, musicians 

scored higher than non-musicians and children’s scores were higher for Simple melodies than 

Transposed melodies. Post-hoc comparisons revealed that, overall, the oldest children performed 

best, but there were no significant stepwise increases between age groups. 

 

Age-equivalent Scores 

Given the main effects of age group for both the c-RST and c-MDT, we created age-

equivalent (z-) scores for children on each task. Means and standard deviations are based on non-

musicians (n = 83), who serve as the reference group with very little or no musical experience. 

Raw score means and standard deviations for musicians and non-musicians are presented in 

Table 2.3, and z-score conversions are provided in Table 2.4. Based on these, researchers using 

the c-RST or c-MDT with new groups of children can compare performance to either the trained 

or untrained sample.  

To examine the contribution of years of training to performance on the c-RST and c-

MDT, we conducted hierarchical multiple regressions for all children with at least one year of 

lessons (n = 151; Tables 2.5-2.8). Outcome variables were z-scores for the c-RST (proportion 

correct and ITI synchrony) and c-MDT (Simple and Transposed melodies). The predictor 

variable for all three analyses was duration of lessons in years. Scores for the two baseline 

variables (Tapping Variability and Syllable Sequence Discrimination) were entered at the first 

step, since these were statistically significantly better in musicians.  
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For the c-RST – proportion correct, the regression model with only baseline variables 

accounted for 4.9% of the variance and was statistically significant (adjusted R2 = .05, p = .009). 

Additional years of training accounted for no additional variance (adjusted R2 = .04, p = .884).  

For the c-RST – ITI synchrony, baseline variables accounted for 2.2% of the variance and 

the regression model was not statistically significant (adjusted R2 = .02, p = .071). When years of 

lessons were added, these accounted for 4.2% additional variance and the model was significant 

(adjusted R2 = .06; p = .011). Specifically, a one-year increase in lessons contributed to an 

increase of .22 standard deviations in ITI synchrony z-scores (β = .22, p = .011). This is 

equivalent to a raw-score increase of 1.5% in children without musical training.  

For the c-MDT – Simple melodies, the model with only baseline variables was 

statistically significant (adjusted R2 = .04, p = .013), and additional years of training accounted 

for 5.2% additional variance (adjusted R2 = .09, p = .004). Specifically, a one-year increase in 

lessons contributed to an increase of .24 standard deviations in Simple melody z-scores (β = .24, 

p = .004). This is equivalent to a raw-score increase of 2.5% in children without musical training.  

For the c-MDT – Transposed melodies, the model with only baseline variables was 

statistically significant (adjusted R2 = .03, p = .037). Additional years of training accounted for 

10.6% additional variance (adjusted R2 = .13, p < .001). Specifically, a one-year increase in 

lessons contributed to an increase of .34 standard deviations in Transposed melody z-scores (β = 

.34, p < .001). This is equivalent to a raw-score increase of 2.9% in children without musical 

training. 

 

Relation Between Musical and Cognitive Abilities 

To examine the relation between musical, baseline, and cognitive task performance in 

musicians, we calculated bivariate correlations between z-scores for c-RST (proportion correct 

and ITI synchrony) and c-MDT, scaled scores on Digit Span, Letter-Number Sequencing, and 

Matrix Reasoning, and raw scores for baseline tasks (Tapping Variability and Syllable 

Sequences). Given the ample prior evidence that musical training and cognitive variables are 

positively correlated, bivariate correlations are reported at the one-tailed level of significance. 

Correlation data are presented in Table 2.9. 

The c-RST – proportion correct was significantly correlated with DS [r (130) = .22, p = 

.007)], but not LNS [r (130) = .13, p = .068)] or MR [r (130) = .04, p = .318)]. The c-RST – ITI 
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synchrony was significantly correlated with all three cognitive tasks, namely DS [r (130) = .40, p 

< .001)], LNS [r (130) = .33, p < .001)], and MR [r (130) = .16, p = .033)]. The c-MDT – Simple 

Melodies was significantly correlated with DS [r (130) = .16, p = .039] but not LNS [r (130) = 

.11, p = .113] or MR [r (130) = .12, p = .095)]. The c-MDT – Transposed Melodies was 

marginally correlated with DS [r (130) = .14, p = .059] and with LNS [r (130) = .15, p = .049)], 

and significantly correlated with MR [r (130) = .20, p = .01)]. Tapping Variability correlated 

with DS [r (130) = -.15, p = .05] and MR [r (130) = -.19, p = .014)], but not with LNS [r (130) = 

.07, p = .215]. Finally, Syllable Sequences correlated significantly with all cognitive variables 

[DS: r (130) = .33, p < .001; LNS: r (130) = .22, p = .007; MR: r (130) = .24, p = .003)]. 

 

Discussion 

 
In the present study, we evaluated two tests of musical ability that were developed for 

school-age children (7-13 years of age), and present normative data for groups with and without 

training. Our findings show that the c-RST and c-MDT are acceptably reliable, and that they are 

sensitive enough to demonstrate differences in performance between children with and without 

musical training, replicating findings from previous studies using the same tasks in adults. Older 

children performed better than younger children, but with no discernible stepwise increases 

between age groups. Within-task performance also mirrored adult patterns, with scores 

decreasing across levels of metrical complexity for the rhythm task and better scores for the 

Simple compared to the Transposed conditions in the melody task. Using z-scores derived from 

the untrained sample, we found that music lessons significantly predicted task performance over 

and above baseline tasks. Finally, we found that, for musically-trained children, performance on 

musical and baseline tasks was highly correlated with most cognitive abilities tested.  

When the c-RST and c-MDT were evaluated for internal consistency, both were found to 

be adequately reliable. However, reliability for the c-RST was lower than for the c-MDT, likely 

due to the smaller number of trials. We also found that reliability for both tasks was lower for 

children without musical training. These issues could be addressed by using psychometric 

techniques based in item response theory. For instance, future iterations of these tasks might 

include items that adapt to individual differences in ability, such that correct responding leads to 

more difficult items and vice-versa (Harrison, Collins, & Müllensiefen, 2017; Kline, 2011). 
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Finally, because these tasks do not assess all aspects of musical skill, we recommend that they be 

used in combination with other complimentary measures. 

In this child sample, musicians outperformed non-musicians on both musical tasks, 

consistent with findings from previous studies in adult musicians using the same tasks (Bailey & 

Penhune, 2010; Chen et al., 2008; Foster & Zatorre, 2010a; Karpati et al, 2016; Matthews et al., 

2016). Moreover, the results are consistent with studies comparing children with and without 

training on other musical tasks (Habibi et al., 2016; Hyde et al., 2009; Moreno et al., 2009; 

Roden et al., 2014). We also found the expected within-task effects in our child sample, such that 

raw scores decreased as task demands increased. For the c-RST, scores were lower as metric 

regularity (i.e., beat strength) decreased, consistent with previous studies using the RST with 

adults (Bailey & Penhune, 2010; Matthews et al. 2016). For the c-MDT, all children were better 

at detecting deviant melodies when presented in the same key rather than a transposed key, 

which is similar to previous studies with adults (Foster & Zatorre, 2010b, 2010a). As predicted, 

the oldest children scored highest on both the c-RST and the c-MDT. This is supported by a 

previous finding using the c-RST (Tryfon et al., 2017), and by more general findings that 

children’s rhythmic and melodic abilities improve with age and exposure to the music of their 

own culture (Stalinski & Schellenberg, 2012; Trainor & Corrigall, 2010).  

Using z-scores derived from children without musical training, we were able to 

successfully predict increases in musical task performance from additional years of lessons, over 

and above the influence of baseline variables. For the c-RST, musical training predicted rhythm 

synchronization ability, over and above the influence of age. However, even with a minimum of 

three years of lessons, child musicians score at the level of non-musician adults (Bailey & 

Penhune, 2012). The neural substrates of auditory-motor integration develop across childhood, as 

demonstrated by cross-sectional studies showing that synchronization ability differs significantly 

between age groups in childhood, and is on par with adult ability by late adolescence (Drake et 

al., 2000; Drewing et al., 2006; Savion-Lemieux et al., 2009). Thus, to perform at adult levels on 

the c-RST, it appears that children need to both be older and have adequate musical training.  

We also found that musically-trained children had better performance on the baseline 

Tapping and Continuation Task than those without music lessons. This is consistent with adult 

studies using similar tasks (Baer et al., 2015; Repp, 2010). However, this apparent advantage for 

musicians appears only at ages 9 and 11 in our sample. This pattern is very similar to a much 
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earlier study in which children with musical experience had lower tapping variability than non-

musicians, but only at 8 and 10 years old; there was no difference for the youngest or oldest age 

groups (Drake et al., 2000). According to Dynamic Attending Theory, the neural oscillations 

underlying auditory-motor synchronization stabilize as children get older (Drake et al., 2000). 

These bottom-up timing abilities, which are based in oscillatory entrainment and increase 

naturally as children get older, may be temporarily enhanced by musical experience in early or 

middle childhood. This experience-dependent boost in middle childhood may then decline as the 

underlying mechanisms mature through adolescence, for both musicians and non-musicians. 

Adult professional musicians, in turn, have the lowest tapping variability as a function of 

extended practice, the benefits of which extend far beyond the changes due to maturation. 

In contrast to rhythm synchronization, musical training predicted improvement in melody 

discrimination ability, for both simple and transposed melodies. Transposition was especially 

sensitive to musical training, with the highest effect size for additional years of training on task 

performance. This is consistent with previous research showing that simple discrimination ability 

stabilizes in childhood (Stalinski & Schellenberg, 2012) whereas, without musical training, 

development of transposition discrimination is limited, with adolescents and adults performing at 

close-to-chance levels on this task (Foster & Zatorre, 2010b; Sutherland et al., 2013). Thus, the 

ability to detect changes in pitch within a transposed model may only develop fully in musically 

trained individuals. Quite unexpectedly, child musicians performed better on the baseline 

Syllable Sequence Discrimination Task (c-SSDT) than children without musical training. This is 

at odds with previous studies with adults where musically trained and untrained participants 

performed equally (Foster & Zatorre, 2010b; Karpati et al., 2016). However, this finding is 

consistent with a possible transfer effect from music training to language-related skills that may 

be specific to childhood. In addition to enhancing bottom-up (sensory) discrimination thresholds, 

musical training also affects multiple top-down cognitive processes that may contribute to 

enhancing performance on non-musical tasks, or far-transfer effects (Moreno & Bidelman, 2014; 

Patel, 2012). One such effect is improved phonological awareness, which is the first stage of 

learning to read and involves segmenting components of speech as they occur in time (Moritz, 

Yampolsky, Papadelis, Thomson, & Wolf, 2013). The c-SSDT requires listening to a pair of 

syllable sequences and identifying whether one syllable has changed. This may tap into skills 

related to phonological awareness. Indeed, brief musical training has been found to increase 
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linguistic abilities in young children (Moreno & Besson, 2006; Moreno et al., 2009). Moreover, 

children at risk of language delays who received 1 year of music lessons showed no decline in 

basic literacy skills relative to control subjects (Slater et al., 2014). 

Finally, we found that musicians’ z-scores for both musical and baseline tasks were 

correlated to nearly all cognitive variables. Correlations between rhythm synchronization and 

tapping with cognitive performance are consistent with other studies of far-transfer 

demonstrating a relationship between rhythm and language skills in children. For example, 

children with specific language impairments score poorly on rhythmic production tasks (Gordon 

et al., 2016) and tapping variability in adolescents is negatively correlated with reading skill 

(Tierney & Kraus, 2013). On the c-MDT we observed an interesting contrast such that 

performance for Simple melodies was correlated with scores on the Digit Span test, whereas 

performance for Transposed melodies was correlated with scores on Letter-Number Sequencing. 

This is likely because Digit Span requires only immediate auditory memory and attention, 

whereas Letter-Number Sequencing requires mental manipulation and thus imposes a heavier 

demand on working memory and executive control. This lends additional behavioural evidence 

to the hypothesis that transposition is distinct from other discrimination abilities (Foster et al., 

2013; Foster & Zatorre, 2010a; Sutherland et al., 2013). Moreover, when considered with our 

regression results, this suggests that transposition relates to higher-order cognitive abilities that 

are especially sensitive to the impact of musical training in childhood. Finally, musicians’ scores 

on the c-SSDT were correlated with all cognitive abilities tested, again consistent with evidence 

of far transfer effects from music lessons to phonological awareness (Moreno et al., 2011; Moritz 

et al., 2013). 

 

Conclusions  

In conclusion, this study demonstrates that we have been successful in developing norms 

for two reliable and valid tests of musical skill for school-age children that are sensitive to the 

effects of training. These tasks and the associated norms fill an important need for researchers 

trying to assess the impact of music training in childhood. We hope that they will be important 

tools for researchers interested in evaluating the impact of musical training in longitudinal 

studies, those interested in comparing the efficacy of different training methods, and for those 
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assessing the impact of training on non-musical abilities, such as reading skills and other 

cognitive functions.   
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Table 2.1  

 

Demographic and Practice Characteristics of the Sample (N = 213), by Musicianship and Age 

Group 
 

 7 8 9 10 11 13 

MUSICIANS (n = 130) 
n = 11 

(6F) 

n = 18 

(13F) 

n = 23 

(15F) 

n = 24 

(12F) 

n = 30 

(16F) 

n = 24 

(18F) 

       

Age (years) 7.59 

(0.41) 

8.46 

(0.26) 

9.50 

(0.33) 

10.46 

(0.28) 

11.69 

(0.40) 

13.00 

(0.49) 

Maternal education (years) 17.27 

(2.87) 

18.53 

(2.77) 

18.29 

(2.31) 

18.17 

(2.33) 

17.00 

(2.61) 

16.94 

(2.24) 

Age of start (years) 4.13 

(0.70) 

4.44 

(0.64) 

4.71 

(1.23) 

5.29 

(1.31) 

5.71 

(1.43) 

7.69 

(1.43) 

Music lessons (years) 3.42 

(0.73) 

4.01 

(0.66) 

4.67 

(1.29) 

5.04 

(1.31) 

5.93 

(1.55) 

5.27 

(1.45) 

Weekly practice (hours) 2.52 

(2.15) 

3.17 

(1.79) 

2.83 

(1.59) 

3.24 

(1.73) 

3.56 

(3.06) 

2.32 

(2.26) 

 
7 8 9 10 11 13 

NON-MUSICIANS (n = 83) 
n = 15 

(5F) 

n = 14 

(6F) 

n = 16 

(7F) 

n = 13 

(7F) 

n = 13 

(7F) 

n = 12 

(5F) 
 

      

Age (years) 7.09 

(0.45) 

8..51 

(0.36) 

9.46 

(0.29) 

10.46 

(0.22) 

11.66 

(0.45) 

13.65 

(0.57) 

Maternal education (years) 17.60 

(2.16) 

17.66 

(2.70) 

18.40 

(2.33) 

16.22 

(1.28) 

18.15 

(2.51) 

15.56 

(0.75) 
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Table 2.2 

 

Group Differences between Musicians and Non-Musicians on Demographic, Baseline and 

Cognitive Tasks 

 

Measure 

Musicians 

(SD)  

Non-musicians 

(SD)  t (df) p g 

Maternal education (years) 17.54 (2.44) 17.34 (2.28) 0.59 (211) .558 0.08 

Digit Span (scaled score) 11.45 (3.08) 10.68 (2.94) 1.79 (207) .076 0.26 

Letter-Number Sequencing (scaled 

score) 

11.68 (1.92) 11.47 (2.18) 0.75 (207) .454 0.10 

Matrix Reasoning (scaled score) 12.44 (2.62) 11.53 (2.84) 2.35 (207) .020 0.33 

Tapping & Continuation Task: Tapping 

Variability 

0.10 (0.05) 0.13 (0.05) 3.49 (211) .001 0.49 

Syllable Sequence Discrimination 

Task: Percent Correct 

0.82 (0.12) 0.76 (0.13) -4.83 (211) <.001 0.68 
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Table 2.3 

 

Raw Score Means and Standard Deviations for Music and Baseline Tasks, by Musicianship and 

Age Group 

 

 
7 8 9 10 11 13 

MUSICIANS 

n = 11 

(6F) 

n = 18 

(13F) 

n = 23 

(15F) 

n = 24 

(12F) 

n = 30 

(16F) 

n = 24 

(18F) 
 

      

RST: Proportion correct        

Strongly Metric 83.18 

(6.10) 

86.17 

(7.13) 

89.26 

(6.37) 

89.50 

(7.22) 

92.80 

(4.66) 

92.96 

(5.86) 

Medium Metric 75.18 

(5.67) 

76.50 

(5.18) 

80.30 

(6.76) 

79.83 

(7.53) 

82.80 

(6.73) 

80.67 

(6.66) 

Weakly Metric 74.64 

(5.45) 

77.17 

(6.19) 

79.52 

(3.80) 

78.00 

(8.02) 

81.73 

(4.68) 

76.83 

(7.23) 

RST: ITI Synchrony       

Strongly Metric 70.82 

(11.33) 

73.94 

(9.94) 

77.48 

(9.64) 

80.54 

(7.33) 

82.77 

(8.08) 

83.96 

(4.86) 

Medium Metric 60.18 

(7.85) 

59.78 

(9.68) 

57.74 

(6.39) 

63.33 

(9.41) 

67.67 

(6.73) 

67.33 

(6.03) 

Weakly Metric 57.36 

(8.82) 

53.61 

(11.48) 

62.74 

(9.09) 

60.75 

(9.56) 

64.83 

(7.21) 

63.79 

(6.05) 

TCT: Tapping Variability 14.06 

(4.76) 

11.49 

(5.82) 

11.08 

(5.57) 

10.33 

(5.19) 

7.88 

(2.23) 

8.85 

(2.72) 

MDT: Percent Correct       

Simple Melodies 70.45 

(19.03) 

75.83 

(14.17) 

78.26 

(12.02) 

80.63 

(12.19) 

86.33 

(8.90) 

80.00 

(12.07) 

Transposed Melodies 56.82 

(12.51) 

60.56 

(13.71) 

70.30 

(13.41) 

62.29 

(16.75) 

72.67 

(10.89) 

70.50 

(15.99) 

SSDT: Percent Correct 72.73 

(14.03) 

81.39 

(14.33) 

78.57 

(13.11) 

81.04 

(12.94) 

86.83 

(8.25) 

85.83 

(10.07) 
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 7 8 9 10 11 13 

NON-MUSICIANS 

n = 15 

(5F) 

n = 14 

(6F) 

n = 16 

(7F) 

n = 13 

(7F) 

n = 13 

(7F) 

n = 12 

(5F) 
 

      

RST: Proportion correct        

Strongly Metric 80.07 

(10.14) 

85.00 

(9.51) 

86.00 

(8.22) 

84.62 

(10.12) 

87.54 

(6.98) 

94.75 

(3.49) 

Medium Metric 78.20 

(6.33) 

77.00 

(5.04) 

78.81 

(9.20) 

77.69 

(5.59) 

81.15 

(3.51) 

79.50 

(6.54) 

Weakly Metric 77.53 

(8.41) 

77.07 

(8.15) 

76.69 

(8.78) 

75.85 

(6.67) 

77.62 

(7.62) 

75.92 

(7.45) 

RST: ITI Synchrony       

Strongly Metric 68.73 

(10.26) 

68.79 

(26.31) 

76.31 

(10.00) 

75.15 

(8.87) 

81.69 

(5.50) 

86.83 

(3.54) 

Medium Metric 56.87 

(4.91) 

56.07 

(7.47) 

63.87 

(7.73) 

58.23 

(8.70) 

60.38 

(8.39) 

66.08 

(9.61) 

Weakly Metric 54.13 

(16.73) 

52.36 

(12.00) 

58.69 

(12.47) 

58.85 

(8.66) 

60.46 

(10.46) 

54.17 

(15.63) 

TCT: Tapping Variability 16. 35 

(4.44) 

13.11 

(4.81) 

15.28 

(8.82) 

12.32 

(5.39) 

11.48 

(2.32) 

9.39 

(4.33) 

MDT: Percent Correct       

Simple Melodies 55.67 

(11.16) 

68.21 

(13.24) 

60.31 

(9.03) 

65.08 

(15.14) 

70.38 

(14.64) 

72.50 

(17.39) 

Transposed Melodies 48.33 

(8.59) 

52.50 

(12.37) 

51.88 

(7.93) 

51.00 

(12.67) 

56.92 

(12.00) 

58.17 

(10.15) 

SSDT: Percent Correct 72.67 

(14.50) 

67.50 

(9.95) 

76.56 

(11.79) 

81.77 

(14.69) 

81.54 

(9.87) 

77.33 

(10.31) 

 

  



 

 38 

Table 2.4  

 

Raw Score to Age-Equivalent (Z-) Score Conversion Table for Music Task Outcome Variables, 

by Musicianship 

 

MUSICIANS 

 

NON-MUSICIANS 

Table 2.5 

 

RST % 

correct 

(Strong) 

RST % 

correct 

(Medium) 

RST % 

correct 

(Weak) 

RST %  

ITI synch 

(Strong) 

RST %  

ITI synch 

(Medium) 

RST % 

ITI synch 

(Weak) 

TCT 

tapping 

variability 

MDT % 

correct 

(Simple)  

MDT %  

correct 

(Transposed) 

SSDT 

% 

correct 

 

z           z 

+3.0 100.00 96.69 92.45 92.00 83.07 81.00 4.12 100.00 95.00 100.00 +3.0 

+2.5 98.76 94.76 89.00 92.00 80.38 78.52 4.30 100.00 95.00 100.00 +2.5 

+2.0 97.14 91.00 88.00 89.14 77.00 74.14 4.97 100.00 90.00 100.00 +2.0 

+1.5 97.00 86.00 85.00 87.00 71.04 70.04 5.37 95.00 85.00 95.00 +1.5 

+1.0 95.00 83.00 82.00 85.00 68.00 67.00 6.59 90.00 75.00 90.00 +1.0 

+0.5 91.00 80.00 79.00 82.00 64.00 63.00 7.59 80.00 67.00 85.00 +0.5 

0 88.00 77.00 76.00 78.00 60.00 58.00 9.23 75.00 60.00 75.00 0 

-0.5 83.00 74.00 73.00 70.00 54.96 51.96 10.12 69.80 50.00 70.00 -0.5 

-1.0 76.00 68.00 65.00 60.00 49.00 45.00 13.35 60.00 44.30 60.00 -1.0 

-1.5 70.62 63.48 62.10 54.24 44.00 39.10 19.08 46.20 38.10 45.00 -1.5 

-2.0 70.00 58.93 56.24 53.00 41.24 35.31 28.40 36.55 35.00 45.00 -2.0 

-2.5 70.00 58.00 55.00 53.00 40.00 35.00 29.62 35.00 35.00 45.00 -2.5 

-3.0 - - - - - - - - - - -3.0 

 

RST % 

scored 

(Strong) 

RST % 

scored 

(Medium) 

RST % 

scored 

(Weak) 

RST % 

ITI synch 

(Strong) 

RST % ITI 

synch 

(Medium) 

RST % 

ITI synch 

(Weak) 

TCT % 

tapping 

variability 

MDT % 

correct 

(Simple)  

MDT % 

correct 

(Transposed) 

SSDT 

% 

correct 

 

z           z 

+3.0 - - - - - - - - - - +3.0 

+2.5 - - - - - - - - - - +2.5 

+2.0 98.64 90.60 92.00 92.32 81.64 76.64 4.28 96.60 75.00 100.00 +2.0 

+1.5 98.00 88.00 88.96 89.00 74.96 73.96 4.28 85.00 70.00 95.00 +1.5 

+1.0 95.00 83.00 85.00 87.00 69.00 69.56 5.14 80.00 65.00 90.00 +1.0 

+0.5 92.00 82.00 79.12 82.24 64.00 63.00 7.04 75.00 60.00 85.00 +0.5 

0 88.00 79.00 77.00 79.00 60.00 59.00 8.67 65.00 50.00 75.00 0 

-0.5 82.00 77.00 74.00 73.88 55.00 51.00 11.14 55.00 45.00 70.00 -0.5 

-1.0 77.00 73.00 68.32 64.00 52.00 43.44 13.11 50.00 45.00 62.20 -1.0 

-1.5 70.00 65.20 64.04 59.04 49.04 35.04 15.28 40.04 33.08 55.00 -1.5 

-2.0 60.72 59.76 57.04 28.56 43.44 19.52 16.35 40.00 30.00 48.40 -2.0 

-2.5 58.00 55.00 55.00 - 38.00 10.00 19.69 40.00 30.00 45.00 -2.5 

-3.0 58.00 55.00 55.00 - 38.00 10.00 29.63 40.00 30.00 45.00 -3.0 
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Summary of Hierarchical Regression Analysis for Variables Predicting Age-Equivalent Scores 

on the c-RST (Proportion correct) 

 

 

 

 

 

 

 

 

 

 

 

 

Note: N = 151 (children with >= 1 year of music lessons). R2 = .06, adj. R2 = .05, F(2, 148) = 

4.83, p = .009 for Step 1; R2 = .06, adj. R2 = .04, F(1, 147) = 0.02, p = .884 for Step 2. 

 

  

 B SE B β t p 

Step 1      

Constant 0.38 0.16  2.35 .020 

TCT: Tapping Variability -1.57 1.43 -.09 -1.10 .271 

SSDT: % correct (z) 0.19 0.07 .23 2.82 .005 

Step 2       

Constant 0.41 0.26  1.56 .121 

TCT: Tapping Variability -1.64 1.49 -.09 -1.10 .275 

SSDT: % correct (z) 0.19 0.07 .22 2.78 .006 

Lessons (years) -0.01 0.04 -.01 -.15 .884 
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Table 2.6 

 

Summary of Hierarchical Regression Analysis for Variables Predicting Age-Equivalent Scores 

on the c-RST (ITI Synchrony) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: N = 151 (children with >= 1 year of music lessons). R2 = .04, adj. R2 = .02, F(2, 148) = 

2.69, p = .071 for Step 1; R2 = .08, adj. R2 = .06, F(1, 147) = 6.70, p = .011 for Step 2. 

  

 B SE B β t p 

Step 1      

Constant 0.45 0.14  3.17 .002 

TCT: Tapping Variability -2.25 1.27 -.14 -1.78 .078 

SSDT: % correct (z) 0.08 0.06 .11 1.37 .174 

Step 2       

Constant -0.01 .23  -0.04 .967 

TCT: Tapping Variability -1.29 1.30 -.08 -1.00 .322 

SSDT: % correct (z) 0.10 0.06 .13 1.65 .101 

Lessons (years) 0.08 0.03 .22 2.59 .011 
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Table 2.7 

 

Summary of Hierarchical Regression Analysis for Variables Predicting Age-Equivalent Scores 

on the c-MDT (Simple Melodies) 

 

 

 

 

 

 

 

 

 

 

 

 

Note: N = 151 (children with >= 1 year of music lessons). R2 = .06, adj. R2 = .04, F(2, 148) = 

4.45, p = .013 for Step 1; R2 = .11, adj R2 = .09, F(1, 147) = 8.60, p = .004 for Step 2. 

 

  

 B SE B β t p 

Step 1      

Constant 1.03 0.21  4.89 <.001 

TCT: Tapping Variability -0.50 1.87 -.02 -0.26 .792 

SSDT: % correct (z) 0.26 0.09 .24 2.95 .004 

Step 2       

Constant 0.26 0.33  0.79 .428 

TCT: Tapping Variability 1.10 1.91 .05 0.58 .564 

SSDT: % correct (z) 0.29 0.09 .26 3.31 .001 

Lessons (years) 0.13 0.05 .24 2.93 .004 
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Table 2.8 

  

Summary of Hierarchical Regression Analysis for Variables Predicting Age-Equivalent Scores 

on the c-MDT (Transposed Melodies) 

Note: N = 151 (children with >= 1 year of music lessons). R2 = .04, adj. R2 = .03, F(2, 148) = 

3.37, p = .037 for Step 1; R2 = .15, adj R2 = .13, F(1, 147) = 18.28, p < .001 for Step 2. 

  

 B SE B β t p 

Step 1      

Constant 1.52 0.30  5.15 <.001 

TCT: Tapping Variability 
-

3.23 
2.64 -.10 -1.23 .222 

SSDT: % correct 0.27 .013 .18 2.20 .029 

Step 2       

Constant 0.00 0.45  0.00 .999 

TCT: Tapping Variability -.05 2.60 .00 -0.02 .984 

SSDT: % correct (z) 0.33 0.12 .21 2.75 .007 

Lessons (years) 0.26 0.06 .34 4.28 <.001 
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Table 2.9 

 

Zero-Order Correlations, Means and Standard Deviations for Music Task, Baseline, and 

Cognitive Variables in Musicians 

Note: Correlations are reported at the one-tailed level of significance. * = p < .05; ** = p < .01; 

*** p < .001 

 

 

 

 

 

  

Measure 1 2 3 4 5 6 7 8 9 M SD 

1. RST: Proportion correct (z) 1.00 .38*** -.12 .15* .19* .21** .22** .13 .04 0.18 0.84 

2. RST: ITI synchrony (z)  1.00 -.13 .05 .05 .16* .40*** .33*** 0.16* 0.28 0.72 

3. TCT: tapping variability   1.00 -.01 -.09 -.10 -.14 -.06 -.17* 0.10 0.05 

4. MDT: Percent correct (Simple; z)     1.00 .44*** .29*** .16* .11 .12 1.09 1.09 

5. MDT: Percent correct (Transposed; z)     1.00 .25** .14 .15* .20** 1.39 1.48 

6. SSDT: Percent correct (z)      1.00 .33*** .22** .24** 0.00 0.98 

7. Digit Span       1.00 .47*** .28*** 11.45 3.08 

8. Letter-Number Sequencing        1.00 .40*** 11.68 1.92 

9. Matrix Reasoning         1.00 12.44 2.62 
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Figure 2.1. Examples of stimuli used in the c-RST. Strongly Metric, Medium Metric and 

Weakly Metric refer to the regularity of the underlying pulse (Strongly Metric = easiest). Figure 

adapted from Tryfon et al. (2017). 

 

 

 

 

Figure 2.2. Graphical display for the c-RST. Image is presented in full colour within the actual 

task. 
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Figure 2.3. Examples of stimuli from the c-MDT Simple Melody condition (L) and Transposed 

Melody condition (R). Children listen to two melodies and decide whether the second was the 

same or different. Arrows represent the ‘different’ note. Figure adapted from Karpati et al. 

(2016).  

 

 

 

Figure 2.4. Graphical display of response probe for the c-MDT. Image is presented in full colour 

within the actual task. Small animals represent ‘same’ and ‘different’ response choices.  
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CHAPTER THREE:  

STUDY 2 

 

Contributions of age of start, cognitive abilities and practice to musical task performance 

in childhood.  

 

 

 

Ireland, K., Iyer, T. A., & Penhune, V. B. (2019). Contributions of age of start, cognitive  

abilities and practice to musical task performance in childhood. PloS one, 14(4), 

e0216119. https://doi.org/10.1371/journal.pone.0216119  
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Abstract 

 
Studies with adult musicians show that beginning lessons before age seven is associated 

with better performance on musical tasks and enhancement in auditory and motor brain regions. 

It is hypothesized that early training interacts with periods of heightened neural development to 

promote greater plasticity and better learning and performance later in life. For this study, we 

assessed whether the effects of early training can be observed in childhood. We also evaluated 

the degree to which such effects are related to training, or whether early training has different 

effects on particular musical skills depending on their cognitive, perceptual or motor 

requirements. We compared groups of child musicians who had started lessons earlier or later on 

age-normed tests of rhythm synchronization and melody discrimination. We also matched for 

age, years of experience, working memory and global cognitive ability. Results showed that 

children who started early performed better on simple melody discrimination and that scores on 

this task were predicted by both age of start (AoS) and cognitive ability. There was no effect of 

AoS for the more complex rhythm or transposed melody tasks, but these scores were 

significantly predicted by working memory ability, and for transposed melodies, by hours of 

weekly practice. These findings provide evidence that earlier AoS for music training in 

childhood results in enhancement of specific musical skills.  Integrating these results with those 

for adult musicians, we hypothesize that early training has an immediate impact on simple 

melody discrimination skills that develop early, while more complex abilities, like 

synchronization and transposition require both further maturation and additional training. 
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Introduction 

 
Studies in adults show that musicians who begin training before age seven show 

enhancements in behaviour and brain structure compared with those who begin later (Baer et al., 

2015; Bailey & Penhune, 2010; Bailey et al., 2014; Bailey & Penhune, 2012; Schlaug et al., 

1995; Steele et al., 2013). Based on this evidence, it is hypothesized that training during specific 

periods of brain maturation in childhood leads to greater plasticity and thus to better learning and 

performance in the long term. However, many studies demonstrating the impact of early training 

are in adults with more than 10 years of experience; thus, it is unclear whether early training has 

immediate effects in childhood, or whether those effects require additional maturation and/or 

long-term practice to develop. Further, early training may have different effects on specific 

musical skills depending on their cognitive, perceptual or motor requirements. Therefore, in this 

study we compared performance on tests of musical ability in groups of children who began 

lessons earlier or later but who were matched for years of experience and other relevant training 

and cognitive factors. In addition to standard matched-group comparisons we also used 

regression to assess the differential contribution of cognitive measures and training. 

Early researchers suggesting that the age of start (AoS) of musical training might 

modulate brain plasticity had compared the surface area of the corpus callosum in musicians and 

non-musicians (Schlaug et al., 1995). They found that overall the anterior corpus callosum was 

larger in musicians, but that this effect was greater for those who began training before age 

seven. No specific rationale for this cut-off was given, either based on the trajectories of brain 

maturation or music training. Most importantly, there was no control for the normally high 

correlation between AoS and years of experience, with earlier AoS related to greater experience. 

Subsequently, a series of studies from our lab and others have examined the impact of early 

training on behavior and the brain using samples of early-trained (< 7; ET) and late-trained (>7; 

LT) musicians matched for years of experience, years of formal training, and hours of current 

practice. Behaviourally, ET musicians have been found to have more accurate performance on 

complex sensorimotor synchronization tasks than LT musicians, using both visual-motor and 

auditory-motor paradigms (Bailey & Penhune, 2010; Bailey & Penhune, 2012; Steele et al., 

2013; Watanabe et al., 2007). In the visual-motor domain, ET musicians outperformed LT 

musicians on a timed motor sequence task (TMST) for which they were trained to reproduce 
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sequences of visually-presented ‘rhythms’ on a piano keyboard. The advantage for ET musicians 

was observed in training periods as short as two days (Steele et al., 2013) or five days (Watanabe 

et al., 2007). In another sample, ET musicians had more precise timing than LT musicians during 

a task that required reading and playing scales from sheet music (Vaquero et al., 2015). In the 

auditory-motor domain, ET musicians outperformed LT musicians on a rhythm synchronization 

task (RST) in which they listened, and then tapped along to each note of rhythms that varied in 

metrical complexity (Bailey & Penhune, 2010). This finding was replicated in a second sample 

of ET and LT musicians with the same complex rhythmic task (Bailey & Penhune, 2012). By 

contrast, in another sample of ET and LT musicians, no differences were found for a simple 

synchronization and continuation task (Baer et al., 2015). Taken together, these results suggest 

that early training has greater long-term effects on more complex rhythmic tasks.  

Longitudinal and quasi-experimental studies provide the strongest evidence that music 

training in childhood can produce changes in brain structure above and beyond normal 

maturation, and that these changes often correspond to improvements on musical tasks. 

Importantly, in these studies all children were found to be equivalent prior to music training in 

terms of brain structure, SES and cognitive abilities. In one study, six-year-old children were 

given 15 months of private keyboard lessons, and compared to a control group with only school-

based music classes (Hyde et al., 2009b). Those with private lessons showed enhancements in 

motor regions which were correlated with improvements on a melody and rhythm discrimination 

task. They also showed enhanced white-matter connectivity which correlated with improvements 

on a fine-motor sequencing task. Another group which followed children aged 6-18 for two years 

found a positive association between musical training and the rate of cortical thickness 

maturation in motor regions (Hudziak et al., 2014). Very recently, six-year-old children were 

assigned to group music training following the El Sistema model, team sports training, or no 

systemic training (Habibi, Damasio, Ilari, Sachs, et al., 2018). After one year, children in the 

music group showed better performance on a task in which they synchronized drumming 

patterns with an adult (Ilari et al., 2016). After two years, children in the music group showed 

enhanced connectivity in the corpus callosum and better tonal discrimination compared to the 

two control groups (Habibi et al., 2017). Electrophysiological evidence suggests that changes in 

young children’s neural processing of sound occur after as little as one to three years of lessons. 

For example, auditory-evoked potentials were larger in amplitude in four- to five-year-old 
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children after one year of music lessons (Shahin et al., 2004). In another study, responses to 

violin tones were heightened in children aged 4-6 after one year of Suzuki music lessons when 

compared to children without musical training (Fujioka et al., 2006). Finally, children with and 

without musical training were assessed every two years from age 7-13. The auditory-evoked 

responses of children with musical training grew larger in amplitude with time, suggesting 

enhanced auditory processing above and beyond normal development (Putkinen et al., 2013).  

As described above, no specific rationale has been developed for the age of seven cut-off 

used in previous work. One study from our lab attempted to validate this cut-off by examining 

the relationship between AoS and rhythm synchronization performance for different age cut-offs 

(6, 7, 8 and 9) in a large sample of adult ET and LT musicians (Bailey & Penhune, 2013). For all 

cut-offs, AoS was more highly correlated with performance in the ET than the LT groups, with a 

significant difference for the age seven cut-off. These findings support the use of age seven as a 

boundary for early training, but they also indicate that it is not a hard cut-off.  

Taken together, these findings indicate training may enhance the developmental 

trajectory for musical skills through interaction with normal maturation and plasticity in auditory 

and motor regions of the brain. Longitudinal studies with children show that one to three years of 

music lessons in childhood can lead to improvements in synchronization and pitch discrimination 

which are related to changes in the underlying neural substrates. Cross-sectional studies with 

adults show that, even when controlling for lifetime musical training, having started before age 

seven was associated with better sensorimotor musical abilities later in life. A non-linear 

relationship has been proposed between AoS and task performance, with better performance 

associated with early AoS up to age nine (Bailey & Penhune, 2013). Therefore, the purpose of 

this study was to investigate the relative contributions of AoS, music lessons, and music practice 

to musical task performance in childhood. A large sample of children aged 6-14 with music 

training were tested on Melody Discrimination and Rhythm Synchronization tasks developed in 

our lab (Ireland et al., 2018; Tryfon et al., 2017). Demographic and training information as well 

as measures of cognitive abilities were also collected. Based on previous studies in adults, we 

first examined group differences between ET and LT child musicians at a range of AoS cut-offs 

(5, 6 and 7) using age-equivalent z-scores. These groups were matched for years of lessons, 

cognitive and demographic variables. In a second step we assessed the relationship between AoS 

and performance between groups across these cut-offs. Finally, we used hierarchical regression 
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to assess the individual contributions of AoS, cognitive and training variables to task 

performance. 

Method 

Participants 

We tested 130 child musicians (age range: 6.50-14.08 years) from music day camps in 

Montréal, Ottawa, and Waterloo, Canada. We operationalized the term “musician” as a child 

fulfilling the following criteria: a) having at least 2.5 consecutive years of weekly, one-on-one 

music lessons on the same instrument (M = 5.06 years, SD = 1.58, range 2.58 – 10.00); (b) 

attending music lessons at time of recruitment; and (c) practicing music at least half an hour per 

week outside of lessons and on the same instrument (M = 3.16 hours, SD = 2.49, range 0.50 – 

14.00). Children were eligible if they answered ‘yes’ to having at least one private music lesson 

per week. We did not inquire about duration of private lessons, or about group lessons. Music 

practice could be structured (using a book or specific exercises) or unstructured (free playing). 

Practice-related and demographic data were collected from parents on a questionnaire adapted in 

our lab (Survey of Musical Interests; Desrochers, Comeau, Jardaneh, & Green-Demers, 2006). 

We estimated SES using maternal years of education (M = 17.54 years, SD = 2.44, range 12.00 – 

22.00). Mothers reported their highest level of education on an ordinal scale, and we converted 

this to an approximate interval scale with the following estimates: high school = 12 years; 

college diploma = 14 years; baccalaureate degree = 16 years; master’s degree = 18 years; 

doctorate or medical professional degree = 22 years. Parents provided written consent and 

children provided verbal assent before participating. Children were given a gift card and a small 

toy as thanks for their participation. The study was approved by Concordia University’s Human 

Research Ethics Board.  

 

Musical Tasks 

For the children’s Melody Discrimination Task (c-MDT), children listen to two melodies 

of equal duration separated by a 1.2-second silence, and then indicate whether the second melody 

is the same or different (Figs 3.1 & 3.2). There are two conditions, Simple and Transposed, each 

with 20 trials (10 same and 10 different). In the Simple condition, both melodies are in the same 

key and in the “different” trials the pitch of a single note in the second melody is shifted up or 

down by up to five semitones. The child thus must compare individual pitches to detect the 
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deviant note. In the Transposed condition, all the notes in the second melody are transposed 

upward by four semitones (a major third) and in the “different” trials a single note is shifted up 

or down by one semitone. Thus, since the melodic contour is preserved, the child must use 

relative pitch to perceive the deviant note. Melodies are composed of low-pass-filtered harmonic 

tones (320 ms) from the Western major scale (range: C4-E6). The 20 trials are presented in 

random order within conditions, but the order of conditions is always the same (Simple, 

Transposed) to preserve the storyline. Before starting each condition (Simple or Transposed), 

children are familiarized through four practice trials, two with feedback from the experimenter 

and two without feedback. The procedure for adapting the c-MDT from the adult version was 

recently published (Ireland et al., 2018). After all trials, the word ‘correct’ or ‘incorrect' is 

displayed for one second. During experimental trials, experimenters are seated so as not see 

children’s responses or feedback. Performance on the c-MDT is scored as the percentage of 

correct responses. The child's responses are scored as 0 (incorrect) or 1 (correct), generating a 

proportion which is then multiplied by 100. Given the evidence of transposition ability being 

anatomically distinct from other auditory discrimination abilities, Simple and Transposed 

melodies are always reported separately.  

For the children’s Rhythm Synchronization Task (c-RST), children listen and then try to 

tap along to each note of a rhythm while it plays, using the index finger on a computer mouse 

(Figs 3.3 & 3.4). Rhythms consist of 11 woodblock notes spanning an interval of 4 to 6 seconds. 

The c-RST has two rhythms at each of three levels of complexity (low, medium, high), for a total 

of six rhythms, which are presented in a counterbalanced order. Low complexity rhythms are 

repetitive and have a strong beat, whereas high complexity includes syncopated rhythms, which 

do not emphasize the beat. In a larger sample of children with and without musical training, ITI 

synchrony decreased consistently with increasing rhythmic complexity (Ireland et al., 2018)]. 

Thus, for this study, we used the average of all three complexity levels. A single trial of the c-

RST consists of a ‘Listen’ phase and a ‘Tap in Synchrony’ phase, and each rhythm is presented 

for three consecutive trials (i.e., Listen-Tap; Listen-Tap; Listen-Tap). Before starting the test, 

children complete five practice trials at the low complexity level, with feedback from the 

experimenter. The rhythms used for the practice trials are not those used in the main task. 

Performance on the RST is measured in inter-tap interval (ITI) synchrony, or the child’s ability 

to reproduce the temporal structure of a rhythm. It is calculated as the ratio of the child’s 
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response intervals (r) to the stimulus time intervals (t), with the following formula: Score = 1–

abs(r–t)/t. This proportion is multiplied by 100 to generate a percentage, with scores closer to 

100 indicating better synchrony.  

Cognitive Tasks 

We administered three subtests from the Wechsler Intelligence Scale for Children, fourth 

edition (WISC-IV; Wechsler, 2003): Digit Span (DS), Letter-Number Sequencing (LNS), and 

Matrix Reasoning (MR). Digit Span is a measure of immediate auditory memory, in which the 

child repeats strings of digits forward or backward. Letter-Number Sequencing (LNS) is a 

measure of auditory working memory, in which the child hears a string of letters and numbers 

and must repeat them back in numerical and alphabetical order, respectively. Together, DS and 

LNS comprise the Working Memory Index and are reported as such herein. Matrix Reasoning 

(MR) is a measure of nonverbal reasoning, and is considered to be a reliable estimate of general 

intellectual ability (Brody, 1992; Raven, J., Raven, J. C., & Court, 1998). For this task, the child 

must identify the missing portion of an incomplete visual matrix from one of five response 

options. All subtests were administered according to standardized procedures. Raw scores were 

converted to scaled scores based on age-based norms.  

General Procedure  

Testing took place over a one-hour session. Participants were given short breaks between 

tasks to enhance motivation and prevent fatigue. Computer-based tasks were administered on a 

laptop computer running Presentation software (Neurobehavioral Systems, 

http://www.neurobs.com/). Task order was counterbalanced across participants. Auditory tasks 

were presented binaurally via Sony MDRZX100B headphones pre-adjusted to a comfortable 

sound level. Cognitive tasks were administered in the order in which they appear in the original 

WISC-IV battery.  

Results 

 
Examining Group Differences Between ET and LT Child Musicians 

We first examined average group differences between ET and LT children by creating 

three sub-samples based on AoS: age five (N = 110), age six (N = 96) and age seven (N = 52), 

with equal numbers of ET and LT musicians in each group. Children who had started prior to the 

cut-off were categorized as ET; those who had started at or after the cut-off were categorized as 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=272508&_issn=10538119&_origin=article&_zone=art_page&_plusSign=%25252525252525252B&_targetURL=http%2525252525252525253A%2525252525252525252F%2525252525252525252Fwww.neurobs.com%2525252525252525252F
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LT. To create matched samples at each AoS cutoff (age 5, 6 and 7) we first selected the group of 

ET children. Then, we matched an LT counterpart that resembled the ET child as closely as 

possible (+/- up to one-half of a standard deviation) on the following variables: years of music 

lessons, gender, Matrix Reasoning, Working Memory Index, Maternal Education and hours of 

weekly practice. For example, if an ET child had a WMI of 24, where M = 20 and SD = 6, we 

selected an LT counterpart with a WMI in the range of 21-27. Demographic, training-related, 

and cognitive characteristics of ET and LT musicians in the three sub-samples are presented in 

Tables 3.1-3.3.  

For the c-RST we predicted that ET children would score higher than LT at an AoS cut-

off of age seven, as in previous findings with adult musicians. There are no published studies of 

the c-MDT comparing ET and LT musicians, given that the task was created by the author; 

however, we previously found that Simple Melody scores were higher than Transposed Melodies 

at all ages (Ireland et al., 2018)]. Moreover, the neural correlates of transposition ability have 

been found to develop later in life (Sutherland et al., 2013). Thus, we hypothesized that any AoS 

effects would be limited to Simple Melodies.  

We conducted a one-way analysis of variance (ANOVA) with group (ET or LT) as the 

two-level factor, at each AoS cut-off (5, 6, and 7) on the age-normed z-scores for each child for 

each outcome measure (c-MDT: Simple and Transposed Melodies; c-RST: ITI Synchrony; Figs 

3.5 & 3.6). All assumptions for one-way ANOVA were met, including univariate normality, 

independence of observations, and homogeneity of variance (Kline, 2004). There were no group 

differences at the first cut-off (ET < 5 ≤ LT) for any outcome (Simple Melodies: F(1, 108) = 

0.39, p = .537, partial η2 = .004; Transposed Melodies: F(1, 108) = 0.41, p = .523, partial η2 = 

.004; ITI Synchrony: F(1, 108) = 0.39, p = .389, partial η2 = .007).  . At the second cut-off (ET < 

6 ≤ LT), ET musicians outperformed LT for Simple [F(1, 94) = 9.56, p = .003, partial η2 = .092] 

but not Transposed melody discrimination [F(1, 94) = 0.69, p = .407, partial η2 = .007]. Groups 

did not differ in ITI Synchrony [F(1, 94) = 0.13, p = .719, partial η2 = .001]. Similarly, at the 

oldest cut-off (ET < 7 ≤ LT), ET outperformed LT for Simple [F(1, 50) = 4.29, p = .043, partial 

η2 = .079] but not Transposed melody discrimination [F(1, 50) = 0.41, p = .524, partial η2 = .008] 

and there were no differences in ITI Synchrony [F(1, 50) = 0.61, p = .439, partial η2 = .012].  

 

Examining ET-LT Cut-offs 
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To explore the validity of AoS cut-offs, we calculated the correlations between AoS and 

z-score for ET and LT groups for each task and at each cut-off. We then compared correlation 

coefficients between groups using Fisher’s z Transformation and z-test (Meng, Rosenthal, & 

Rubin, 1992). In addition, we calculated slopes using regression models and compared them 

using t-test analyses. In a previous study examining ET-LT cut-offs of 6, 7, 8, and 9 in adult 

musicians, younger age of start predicted better performance on the Rhythm Synchronization 

Task at all four cut-offs. Furthermore, correlations and slopes differed the most between ET and 

LT musicians when age seven was used to divide the groups (Bailey & Penhune, 2013). This was 

taken as suggestive of an AoS effect for age seven. If such an effect is observable in childhood, 

we predict that younger age of start will correlate with better c-RST performance at all three cut-

offs. Moreover, we expect that correlations and slopes will differ the most between ET and LT 

children at age seven for the c-RST.  

Overall, there were no statistically significant differences in correlations or slopes at any 

cut-off. However, several patterns of correlations emerged in LT groups which corresponded to 

our hypotheses. For Simple Melodies, younger AoS predicted better performance at the youngest 

cut-off, age five [r(53) = -.25, p = .069]. For Transposed Melodies, task performance was not 

correlated with AoS at any cut-off. For rhythm synchronization, younger AoS predicted higher z-

scores at the oldest cut-off, age seven [r(24) = -.48, p = .013]. 

 

Examining AoS as a Predictor 

Lastly, we conducted a hierarchical polynomial regression analysis (Cohen, Cohen, West, 

& Aiken, 1983) to examine the contributions of AoS, music lessons and practice, and cognitive 

abilities, as well as any non-linear relationships, to musical task performance. In contrast to the 

previous analyses in which we matched children in ET and LT groups, for this analysis we used 

the full dataset (N = 130), limiting the range of potential contributing factors while minimizing 

data loss. To do this, we converted raw values to standardized values, or used standard scores, 

for all predictors (age of start, years of lessons, hours of weekly practice, SES, WMI, MR). We 

removed all cases with an absolute value exceeding 2.50 SD on any of these predictors. This 

limited range resulted in the removal of 16 cases, for a total sample size of 114. As with the 

matched-subjects approach, we used age-based (z) scores for all musical tasks to control for 

differences due to maturation.  
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  For each musical task, predictors besides AoS that were statistically significantly 

correlated with the outcome were added at step 1 as control variables (c-RST: WMI r = .28; c-

MDT Simple: MR [r = .20]; c-MDT Transposed: WMI [r = .20], weekly practice [r = .25]). Our 

predictor of interest, the linear variable ‘age of start’ (AoS), was added at step 2. The power 

terms ‘AoS2’ and ‘AoS3’ were added at steps 3 and 4, to examine quadratic and cubic relations, 

respectively. To reduce multicollinearity with its power terms, we centered the variable AoS at 

its mean for each age group; this centered variable was used as the basis for all regression 

analyses (Kline, 2011).  

For Simple Melodies, a linear regression model with only Matrix Reasoning accounted 

for 4.1% of the variance (β = .20, t = 1.89, adjusted R2 = .03, p = .031). Adding AoS contributed 

3.2% independent variance to the model (β = -.18, t = -1.95, adjusted R2 = .06, p = .054). Power 

terms did not add any independent variance to the model.  

For Transposed Melodies, a linear regression model with only Working Memory 

accounted for 4.0% of the variance (β = .20, adjusted R2 =.03, p = .034). Adding Weekly Practice 

Hours contributed 7.4% independent variance to the model (β  = .27, adjusted R2 = .10, p = 

.003). Neither AoS nor any of its power terms accounted for independent variance to the model. 

For Rhythm Synchronization, a linear regression model with only Working Memory 

accounted for 7.7% of the variance (β = .28, t = 3.06, adjusted R2 = .07, p = .003). Neither AoS 

nor any of its power terms accounted for additional variance to the model.  

 

Discussion 

 
The results of this study showed that children who began training before age seven 

performed better on a simple melody discrimination task than those who started later, after being 

matched for musical training, demographic and cognitive variables. Further, both AoS and a 

measure of global intellectual function independently predicted scores on this task. There were 

no group differences or effects of AoS for the more complex rhythm synchronization and 

transposed melody discrimination tasks, but these were statistically significantly predicted by 

working memory ability. Additionally, weekly practice was an independent predictor of 

transposed melody discrimination. These results provide clear evidence for the contributions of 

maturational, training and cognitive factors in predicting musical task performance.  
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In the present sample, simple discrimination abilities were highest in those who had 

started music lessons before ages six and seven. Our finding of an AoS effect for simple pitch 

discrimination is supported by longitudinal studies showing that even short periods of music 

training during childhood can improve children’s discrimination of simple tones and melodies 

(Habibi et al., 2017; Hyde et al., 2009a), neural processing of musical sounds and pitches 

(Besson, Schön, Moreno, Santos, & Magne, 2007; Fujioka et al., 2006; Putkinen et al., 2013; 

Shahin et al., 2004), and accuracy in singing a simple melody (Hutchins, 2018). This advantage 

for low-level pitch processing is likely a function of early maturation in the primary auditory 

cortex, in which there is a massive increase in the number of synapses and in myelination 

between ages one and five (Kral & Eggermont, 2007; Moore, 2002; Moore & Guan, 2001; 

Moore & Linthicum Jr, 2007). We and others have hypothesized that music training during 

periods of rapid maturational change may lead to greater brain plasticity that would promote 

enhanced learning both immediately and over the long term (Altenmueller & Furuya, 2016; 

Herholz & Zatorre, 2012; Steele et al., 2013).  

We also found that performance on simple pitch discrimination was related to global 

cognitive ability. There are several ways that cognitive and musical abilities might be related. On 

one hand, a global factor is posited to underlie the ability to approach and remain engaged with 

all cognitive tasks, resulting in positive correlations among these tasks, a phenomenon known as 

‘the positive manifold’ (Kovacs & Conway, 2016). This general ability would also support basic 

music-perceptual abilities which, like other cognitive processes, are hypothesized to be innate 

and normally distributed (Schellenberg & Winner, 2011). On the other hand, there is direct 

causal evidence that musical training during middle childhood, when compared to other types of 

training, can increase global cognitive ability (Schellenberg, 2004). Moreover, in a large 

longitudinal study of neuropsychological functioning across childhood, raw scores on tasks of 

global intellect increased sharply between ages 6-10 and reached adult levels by age 12-13 

(Waber et al., 2007). These maturational changes coincide with the time at which children in our 

sample are starting music lessons, and thus changes in cognitive abilities with maturation may 

also contribute to performance on music tasks. Altogether, our results provide evidence that 

music training before age seven results in specific gains in simple pitch discrimination, that are 

likely linked with developmental peaks in brain regions supporting basic auditory processing and 

with global cognitive development.  
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In contrast, we found no evidence that earlier start of training differentially contributed to 

rhythm synchronization ability. This is not consistent with results from studies with adult 

musicians showing that those who begin training before age seven outperform those who begin 

later on rhythm tasks (Bailey & Penhune, 2010; Bailey & Penhune, 2012; Vaquero et al., 2015; 

Watanabe et al., 2007). However, our finding is consistent with the maturation of rhythmic 

abilities in childhood: beat perception is in place by infancy (Hannon, Nave-Blodgett, & Nave, 

Van Noorden & De Bruyn, 2009; Winkler, Háden, Ladinig, Sziller, & Honing, 2009) but 

auditory-motor integration does not develop fully until mid- to late adolescence (Drewing et al., 

2006; Savion-Lemieux et al., 2009). Moreover, rhythmic tapping tasks require basic fine-motor 

abilities that do not mature until late childhood (Gerber et al., 2010; Monier & Droit-Volet, 

2019). Further, even with musical training, children’s rhythmic abilities take time to mature. For 

instance, children aged 6-8 improved on a tonal discrimination task after two years of music 

lessons, but rhythm discrimination did not appear to change (Habibi et al., 2016). Similarly, in 

children receiving music lessons from ages 7-13, there were improvements in the detection of 

pitch errors, but not timing errors, as measured with EEG (Putkinen et al., 2013). To integrate the 

results of studies with child and adult musicians, we hypothesize that children must be older, 

have matured in terms of motor abilities, and have accrued substantial training to perform well 

on this task. This is supported by our previous findings using the same task with 7-13 year-old 

children showing continuing improvement with age, and that years of lessons contribute 

significantly to performance (Ireland et al., 2018). Finally, for rhythm synchronization we also 

found that children’s scores were significantly associated with working memory ability. This 

supports previous findings that scores on the task were correlated with measures of working 

memory in children (Ireland et al., 2018) and adults (Bailey & Penhune, 2010; Bailey & 

Penhune, 2012).  

For discrimination of transposed melodies, we also found no differences between 

matched ET and LT groups, and no effect of AoS. Similar to rhythm synchronization, there was 

a statistically significant association between working memory and task performance. These 

correlational findings support the possibility of a bidirectional relationship between musical 

training and working memory. On the one hand, playing music requires attending to and holding 

sequences of notes in mind, and applying the correct motor program to execute movements. 

These skills are supported by working memory which, like global cognitive function, develops 
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most sharply between ages 6-10 and reaches adult levels by age 12-13 (Waber et al., 2007). On 

the other hand, music practice directly enhances working memory through repetition of 

increasingly complex sensory-motor skills. Correspondingly, children with musical training have 

been found to have better performance on tasks of verbal and visuospatial working memory 

(Bergman Nutley et al., 2014). Thus, children with a better working memory capacity may be 

likely to engage in music training, and by doing so may enhance this skill.  

We also found that hours of weekly practice, but not AoS or duration of musical training, 

significantly predicted transposed melody discrimination. This is consistent with findings from 

studies with adults that lifetime music practice accounted for more than two-thirds of the 

variance in performance on the same task (Foster & Zatorre, 2010b). This task is more difficult 

because it requires the participant to ignore contour, a highly salient auditory feature (Dowling & 

Fujitani, 1971). There are two cues that help children differentiate the melodies: interval 

structure, or the change in pitch from one note to the next (McDermott, Keebler, Micheyl, & 

Oxenham, 2010), and tonal function, or the degree to which the second melody ‘fits’ the key of 

the first (Beckett, 2019, personal communication). Children learn about interval structure and 

key implicitly through enculturation, and explicitly through activities associated with lessons and 

practice such as reading and repetition of musical scales. Thus, although non-musicians may 

understand implicitly, musicians’ explicit practice enables them to perform much better on the 

transposed melody task. More than the other tasks in this study, transposed discrimination seems 

to require active engagement with music training, and with regular weekly practice specifically.  

Our findings provide new evidence in children that earlier start of music training results 

in better performance for simple melody discrimination, even when controlling for years of 

experience. This is likely a metaplastic effect where starting music training during a time of peak 

neurodevelopmental change produces better immediate and long-term learning. Performance for 

the more complex rhythm and transposition tasks did not show an effect of age of start and 

transposition ability was related to hours of practice. Performance for all music tasks was related 

to cognitive ability, indicating that cognitive skills likely both promote engagement in music and 

may be enhanced by training. Integrating these results with those for adult musicians, we 

hypothesize that early training has an immediate impact on skills like simple melody 

discrimination that develop early, while more complex abilities, like synchronization and 

transposition require both further maturation and additional training.  
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Table 3.1. Matched Demographic, Practice-Related and Cognitive Variables in Early-Trained 

(ET) and Late-Trained (LT) Musicians; ET < 5  LT (N = 110) 

 

 

Table 3.2. Matched Demographic, Practice-Related and Cognitive Variables in Early-Trained 

(ET) and Late-Trained (LT) Musicians; ET < 6  LT (N = 96) 

 

 

Table 3.3. Matched Demographic, Practice-Related and Cognitive Variables in Early-Trained 

(ET) and Late-Trained (LT) Musicians; ET < 7  LT (N = 52) 

 

  

Variable ET (n = 55) LT (n = 55) t (108) p g 

Maternal education (years) 17.94 (2.52) 17.40 (2.48) 1.03 0.30 0.20 

Music lessons (years) 5.17 (1.45) 5.09 (1.23) 0.31 0.76 0.06 

Weekly practice (hours) 3.28 (1.94) 2.95 (2.46) 0.78 0.44 0.15 

Working Memory Index (scaled score) 23.76 (4.51) 22.51 (3.92) 1.55 0.12 0.30 

Matrix Reasoning (scaled score) 12.47 (2.74) 12.31 (2.69) 0.31 0.76 0.06 

Variable ET (n = 48) LT (n = 48)  t (94) p g 

Maternal education (years) 17.97 (2.56) 17.08 (2.29) 1.79 .08 0.37 

Music lessons (years) 4.65 (1.31) 4.59 (1.31) 0.22 .83 0.05 

Weekly practice (hours) 2.80 (1.63) 2.14 (1.91) 1.81 .07 0.37 

Working Memory Index (scaled score) 22.04 (3.04) 21.92 (4.69) 0.15 .88 0.03 

Matrix Reasoning (scaled score) 11.98 (2.31) 12.13 (2.54) 0.30 .76 0.06 

Variable ET(n = 26)  LT(n = 26)  t (50) p g 

Maternal education (years) 17.20 (2.27) 16.96 (2.60) 0.31 .76 0.09 

Music lessons (years) 4.20 (1.08) 4.29 (1.08) 0.37 .71 0.10 

Weekly practice (hours) 1.95 (1.75) 1.79 (1.50) 0.35 .72 0.10 

Working Memory Index (scaled score) 21.69 (3.04) 21.92 (4.85) 0.20 .84 0.06 

Matrix Reasoning (scaled score) 11.65 (2.41) 12.08 (2.37) 0.65 .52 0.18 



 

 61 

Figure 3.1. Examples of stimuli from the c-MDT Simple Melodies (L) and Transposed Melodies 

(R). Children listen to two melodies and decide whether the second was the same or different. 

Arrows represent the ‘different’ note. Figure adapted from (Karpati et al., 2016).  

 

 

 

 

Figure 3.2. Graphical display of response probe for the c-MDT. Small elephant and monkey 

represent ‘same’ and ‘different’ response choices, respectively. Image is presented in full colour 

within the actual task. 
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Figure 3.3. Procedure for the c-RST. The child listens and then taps along to a rhythm as it plays 

twice in a row. Figure adapted from (Tryfon et al., 2017).  

 

 

 

 

Figure 3.4. Graphical display for the c-RST. Giraffe’s headphones are highlighted during ‘listen’ 

phase, and hoof is highlighted during ‘listen + tap’ phase. Image is presented in full colour 

within the actual task. 
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Figure 3.5. Results of one-way ANOVA for children’s Melody Discrimination Task (c-MDT). 

Bars represent early-trained (ET) and late-trained (LT) musicians at three age of start cut-offs. 

Performance is measured as age-based z-scores for Simple Melodies (L) and Transposed 

Melodies (R). 

 

 

 

Figure 3.6. Results of one-way ANOVA for children’s Rhythm Synchronization Task (c-RST). 

Bars represent early-trained (ET) and late-trained (LT) musicians at three age of start cut-offs. 

Performance is measured as age-based z-scores. 
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CHAPTER FOUR:  

GENERAL DISCUSSION 
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Summary of Findings 

The goal of this thesis was to test whether children who began their musical training 

earlier in childhood showed advantages over those who began later after an equivalent amount of 

training. To do this, we created child-friendly versions of rhythm and melody tasks that had been 

previously used to investigate the effects of training before age seven in adult musicians. We 

administered the children’s Rhythm Synchronization Task (c-RST) and children’s Melody 

Discrimination Task (c-MDT) to 213 children with and without musical training, and we 

calculated age-based scores to control for the effect of maturation. We estimated internal-

consistency reliability and external validity for the tasks, and we used age-based scores to assess 

the contribution of early age of start (AoS) to task performance. 

Our primary objective in Study 1 was to develop musical tasks with adequate reliability 

and validity for administration in primary school-aged children, and to calculate age-based 

scores for those with and without musical training. The c-RST and the c-MDT were found to 

have adequate convergent validity with adult analogues such that scores decreased as complexity 

increased. Thus, for the c-RST, scores were lowest for rhythms with the highest metric 

complexity (i.e., with the weakest sense of beat), and for the c-MDT, scores were lowest for 

melodies with the highest cognitive processing demands (i.e., in which transposition must be 

ignored). We also found that children with musical training outperformed those without training. 

These results replicate findings from studies of the same tasks with adults, and situate our results 

within a robust literature documenting a ‘musician advantage’ for tasks of auditory perception 

and auditory-motor integration (for a review, see Dalla Bella, 2015). We also found a large effect 

of age for both musical tasks. Consistent with models of child sensory and motor development 

(e.g., Gerber et al., 2010), this maturational effect is largest for the c-RST, which poses the 

highest demands in terms of integration of auditory and motor abilities. Finally, we found that 

auditory-verbal working memory was correlated with c-RST scores, but only in children with 

musical training; moreover, child musicians and non-musicians did not differ in their working 

memory ability. This correlational result supports the notion that musical training moderates a 

bidirectional relation between synchronization and working memory, such that each ability could 

both facilitate and be strengthened by the other.  

For Study 2, we investigated the influence of AoS on task performance at three AoS 

cutoffs (age 5, 6, and 7) for early- and late-trained (ET and LT) child musicians. We used both 
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categorical and continuous approaches to data analysis. We hypothesized that ET children, who 

had started lessons within a developmental sensitive period in the auditory system before age 

seven, would have higher scores compared to those who had started later. We controlled for 

other training-related factors, including duration of consecutive lessons and hours of weekly 

practice. We also controlled for demographic and cognitive variables which have been found to 

correlate positively with musical task performance, including SES, working memory, and global 

cognitive ability (Swaminathan & Schellenberg, 2018). Similar to previous studies with adult 

musicians, we found an AoS effect in children who had begun training before age seven. 

However, contrary to studies with adult ET and LT musicians, this effect was only observable 

for the easiest task, simple melody discrimination. Moreover, both AoS and global cognitive 

ability, as measured by a non-verbal reasoning task, independently predicted simple melody 

discrimination scores. There were no AoS effects for the more difficult transposed melody 

discrimination or rhythm synchronization tasks, and in fact both tasks were predicted by auditory 

working memory. Finally, weekly practice was an independent predictor of transposed melody 

discrimination. Together, these results support a multidimensional model of musical task 

performance in childhood that includes the interaction of developmental, training-related and 

cognitive factors (Penhune, 2019). 

 

Situating our Findings: Development of Pitch and Rhythm 

Musical ability, broadly defined as the ability to perceive, learn and remember music, can 

be considered a fundamental cognitive process that, similar to other abilities, develops naturally 

with age and is normally distributed in the population (Schellenberg & Weiss, 2013; Stalinski & 

Schellenberg, 2012). Supporting this perspective, we found that even children without musical 

training could engage with both of our musical tasks, and produced a range of scores within each 

age group presumably representing variation in ability. Moreover, we found that scores were 

highest in the oldest children, and this effect of age was smaller for the simple pitch 

discrimination task, and larger for the more complex transposition and sensorimotor 

synchronization tasks. This is consistent with what is known of the differential development of 

pitch and rhythmic processing and their neural correlates. The brain’s response to auditory 

stimuli begins in utero and has a long developmental timeframe (Draganova et al., 2007; Ponton 

et al., 2002). Although the sensory processes required for simple pitch discrimination are fully 
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developed by neonatal age (Perani et al., 2010), more complex processes such as transposition 

discrimination and rhythm synchronization develop later (Ismail, Fatemi, & Johnston, 2017).  

Pitch discrimination and transposition. Melody discrimination, the ability to detect 

differences between pitches or sequences of notes, is in place very early in life, even before birth, 

such that near-term fetuses can detect a large change in pitch, roughly an octave (Lecanuet et al., 

2000). Two-month-old infants can detect a difference of one semitone, the smallest interval in 

the Western scales, and they can respond to transposed songs, a more cognitively demanding 

task, by early childhood (Plantinga & Trainor, 2005, 2009). Children’s auditory perceptual 

abilities become more attuned to culture-specific musical features as they move through the 

school years (Corrigall & Schellenberg, 2015). For instance, knowledge of key membership is 

acquired first, followed by implicit knowledge of harmony (Lynch, Eilers, Oller, & Urbano, 

1990b; Schellenberg et al., 2005; Trainor & Trehub, 1994). This understanding begins around 6 

years old and continues to develop until 11 years old (Costa-Giomi, 1999b). Transposition 

discrimination, the detection of a deviant note in another key, requires higher-order association 

and cognitive-control processes in order to retain a melody in a transposed form while ignoring 

contour, a highly salient feature of sound (Dowling & Fujitani, 1971). Adolescents (Sutherland et 

al., 2013) and adults with no musical training (Fig. 1.1) score similarly on the MDT. Moreover, 

task performance was correlated with lifetime practice in musically-trained adults (Foster & 

Zatorre, 2010b), and with weekly practice in our sample of child musicians (Ireland et al., 2018). 

Thus, transposition discrimination may not develop fully without musical training. 

Rhythm synchronization. The ability to perceive simple rhythmic patterns and meters is 

present in the first year of life (Hannon & Johnson, 2005). The ability to synchronize, or align 

one’s movements with a rhythmic cue, requires the integration of perceptual, motor and 

cognitive processes and develops over a longer time frame (Maróti, Honbolygó, & Weiss, 2019; 

Monier & Droit-Volet, 2019; Thompson et al., 2015). Synchronization ability appears to follow a 

roughly quadratic developmental curve across the lifespan, increasing sharply between ages 4-11 

(Drake et al., 2000) and throughout adolescence (Thompson et al., 2015). It reaches a 

developmental peak in the early 20s, stabilizes in early and middle adulthood, then sharply 

decreases as one moves into old age (Drewing, Aschersleben, & Li, 2006; Thompson et al., 

2015). Synchronization relies on the entrainment of the brain’s natural oscillations with those of 

a periodic auditory stimulus (e.g., a pulse, or beat) and requires both an ‘internal timekeeper’ and 
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a ‘motor responder’ (Dalla Bella et al., 2017; Wing & Kristofferson, 1973). Both of these 

theorized components were recently tested in a study of 6- and 7-year-olds with no musical 

training (Maróti et al., 2019). Children listened or tapped along to isochronous tone sequences of 

varying speed while brain activity in auditory and motor cortices was measured with EEG. There 

was no interaction between networks when listening alone (i.e., a test of the internal timekeeper) 

compared to tapping (i.e., a test of the motor responder). This provides further evidence that the 

neural substrates of rhythm synchronization mature later than those that underlie pitch 

processing.  

Taken together, the abilities measured by our tasks (i.e., melody discrimination, 

transposition discrimination and rhythm synchronization) develop along different trajectories 

that are dependent on maturation of the underlying neural processes. Discrimination of simple 

pitches requires only basic perceptual processes and appears early in life. Transposition 

discrimination requires higher-order association and cognitive processes, and rhythm 

synchronization requires the integration of auditory and motor processes; both processes develop 

later in life. In our sample, ET child musicians (AoS < 7) showed better discrimination of simple 

pitches when controlling for age, musical training and practice, and pre-existing demographic 

and cognitive variables. This effect of early training for simple discrimination is consistent with 

having begun music lessons during or very soon after a sensitive period, or a window of 

heightened plasticity, in primary auditory cortex. In contrast, we found no ET effects for 

transposition discrimination or rhythm synchronization. This is consistent with an interactive 

model of complex musical abilities. In other words, children in our sample may have begun 

music lessons during a sensitive period in the underlying auditory, motor, or cognitive control 

regions, but it may not be possible to observe ET effects without both the complete maturation of 

these neural substrates and additional training. 

 

Interactions of Development and Training 

Researchers in our lab and others have found that, as adults, ET musicians outperformed 

LT musicians on complex sensorimotor synchronization tasks, when matched for training-related 

variables including duration of formal training, years of lessons, and hours of weekly practice 

(Bailey & Penhune, 2010; Bailey & Penhune, 2013; Vaquero et al., 2015). For instance, ET 

musicians had better synchronization to complex rhythms on the adult version of our Rhythm 
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Synchronization Task (Bailey & Penhune, 2010) and this result was replicated in a second 

sample (Bailey & Penhune, 2012). These researchers subsequently investigated the validity of 

AoS cut-off ages, and found that the correlation between AoS and rhythm synchronization 

performance differed the most when age 7 was used to divide the groups (Bailey & Penhune, 

2013). Using this validated ET cut-off, others have found that musicians who had started before 

age 7 showed better timing with the left hand in a task in which piano sequences were learned by 

sight-reading (Vaquero et al., 2015).  

Metaplasticity. Training during sensitive periods in brain development may also have 

long-term effects on how those regions adapt to future experience (Altenmueller & Furuya, 

2016; Herholz & Zatorre, 2012). The concept of metaplasticity was proposed by researchers 

studying the physiology of hippocampal learning (Abraham, 2008), and describes how early 

experience can enhance the potential for later learning. Researchers in our lab have explored this 

phenomenon using learning tasks in ET and LT adult musicians (Steele et al., 2013; Watanabe et 

al., 2007). In both samples, ET musicians showed faster initial learning of visual-motor 

sequences, and better overall synchronization, than LT musicians, while controlling for formal 

training and music practice. This ET advantage was sustained over 2 days (Steele et al., 2013) 

and 5 days of learning (Watanabe et al., 2007).  

In the context of our current results it appears that although there may be some degree of 

plasticity induced by early training, the effects observable in childhood are limited to simple 

abilities that were fully developed when training began (i.e., simple pitch discrimination). When 

combined with the results from studies in adults, this suggests that metaplastic changes likely 

occur as children mature and accrue more practice. Thus, although starting before age seven does 

not produce immediate effects on more complex skills, such as transposed melody discrimination 

or rhythm synchronization, that early exposure contributes to metaplastic effects, i.e., better 

learning later in development. To test this hypothesis, future studies could test new cohorts of 

children into late adolescence to assess when the effects of early training appear for these tasks. 

Moreover, a learning task should be added to the battery to test the hypothesis that early 

experience can allow for more rapid learning.  

The most rigorous approach to validating the existence of sensitive periods for musical 

training in childhood would be to conduct a longitudinal, experimental study (Wiens & Gordon, 

2018). Children in two age groups (ET and LT; AoS 5-6 and 8-9, respectively) would be 
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randomly assigned to receive musical training, no training, or an ‘active training’ in a non-

auditory modality, such as visual arts (e.g., Schellenberg, 2004) or sports (e.g., Habibi, Damasio, 

Ilari, Sachs, & Damasio, 2018). Group members would be matched for pre-existing differences 

in factors that facilitate engagement with or maintenance of training, including intellectual 

ability, working memory, SES, and motor development (Corrigall & Schellenberg, 2016; Gordon 

et al., 2015; Habibi et al., 2014; Monier & Droit-Volet, 2019). Following recommendations for 

treatment fidelity in music training interventions as advanced by Wiens & Gordon (2018), the 

theoretical rationale, mechanism(s) of change and dosage would be stated clearly, and 

interventions would be delivered by credentialed personnel using a standardized protocol. 

Outcomes would be assessed at baseline and follow-up, typically 1 and 2 years after training 

starts. In addition to our tasks, a separate musical measure would be used as a manipulation 

check (e.g., Barbaroux, Dittinger, & Besson, 2019), and a learning task would be added to verify 

metaplastic effects after training. Maturational effects would be controlled by using our tasks or 

others for which age-equivalent scores exist (e.g., Gordon, 1986). Carrying out this kind of study 

would be challenging. Researchers need to consider practical limitations (e.g., minimizing drop-

out between baseline and follow-up) and ethical constraints (e.g., assigning children to early- and 

late-start groups). 

 

Going Beyond: Music and Language 

Knowing the developmental timelines for musical abilities tells us about the periods 

during which their underlying substrates are most sensitive to training. The study of experience-

dependent plasticity is not limited to the musical domain. Indeed, sensitive periods are proposed 

in the domain of language acquisition, such that earlier AoS for a new language results in 

enhancements in language processing later in life (Berken, Gracco, Chen, & Klein, 2016). 

Although infants are born with the capacity to perceive the phonemes of all spoken languages, 

this declines rapidly without exposure to other languages. By 9 months, babies can no longer 

perceive non-native speech sounds and by 12 months, they are completely ‘tuned in’ to the 

phonological properties of their own language or languages (Werker & Tees, 1984). Although 

additional languages can be acquired throughout the lifespan and long after this period of 

‘perceptual narrowing,’ earlier AoS relates to better language proficiency as assessed by accent 

in one’s non-native language (Flege et al., 1995). Thus, sensitive periods may operate similarly 
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in music and language, in that they reflect developmental windows during which intensive 

training differentially affects proficiency later in life. 

The primary objective of this thesis was to explore near-transfer effects of musical 

training; that is, enhancements in musical abilities that are present in musically-trained children 

(Ullén et al., 2016). There is also considerable research interest in far-transfer effects, in which 

musical training promotes neuroplasticity and/or improves performance in other cognitive 

domains, such as language abilities (Gordon et al., 2015; Patel, 2011; Ullén et al., 2016; Wiens & 

Gordon, 2018). Language and music are thought to be processed according to common 

principles of auditory perceptual organization including grouping, segmentation and temporal 

regularity, and thus might be expected to influence each other (Hannon, Nave‐Blodgett, & Nave, 

2018; Stevens, 2012). For example, Japanese and English speakers preferred non-linguistic 

rhythmic sequences that more closely resembled accent patterns in their native language 

(Iversen, Patel, & Ohgushi, 2004). Moreover, native Mandarin speakers, who use changes in 

pitch to derive linguistic meaning, are better at detecting key violations when compared to 

English speakers (Wong et al., 2012). Exposure to language thus affects musical development.  

A conceptual framework, known as the OPERA hypothesis, has been proposed to explain 

why transfer from music to language may occur (Patel, 2011). According to this hypothesis, five 

conditions must be met. First, music and language must share a common, overlapping neural 

substrate (O). Next, musical training must require more precision, in terms of neural processing, 

than the language function to which it transfers (P). Third, music must stimulate strong, positive 

emotion (E). Fourth, the musical activities that stimulate language must be repeated frequently 

(R). Finally, the musical training must engage the attentional network (A). The OPERA 

hypothesis was originally applied to the spectral domain of music (i.e., pitch). More recently, 

OPERA has been extended to the temporal domain (i.e., rhythm): the Precise Auditory Timing 

Hypothesis (PATH) uses OPERA criteria to explain why rhythmic entrainment may facilitate 

some language skills (Tierney & Kraus, 2014). These conceptual frameworks are supported by 

evidence that musical abilities independently predict language abilities in typically developing 

children (Gordon et al., 2015; Woodruff Carr, White-Schwoch, Tierney, Strait, & Kraus, 2014; 

Zuk, Andrade, Andrade, Gardiner, & Gaab, 2013).  

Empirical investigations of transfer from music to language. Researchers are interested 

in studying the efficacy of musical interventions on aspects of language processing (Wiens & 
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Gordon, 2018). For example, a ‘rhythmic priming effect’ has been proposed, such that hearing a 

strongly rhythmic auditory sequence prior to hearing a sentence may improve grammar 

processing abilities. This priming effect been observed in well-controlled experimental studies of 

typically developing children (Chern, Tillmann, Vaughan, & Gordon, 2018) and a variety of 

clinical populations including congenitally deaf children with cochlear implants (Bedoin et al., 

2018), children with specific language impairments (Bedoin et al., 2016), and children with 

dyslexia (Przybylski et al., 2013). Others have assessed the use of musical training as an 

intervention to increase aspects of reading ability including phonological processing. For 

example, 8-year-old children were given 6 months of weekly group music or painting classes. 

Those in the music group showed better performance on an age-corrected reading task (Moreno 

et al., 2009). Dégé and Schwarzer (2011) found that kindergarten-aged children showed 

improvements in phonological awareness (rhyme detection, syllable segmentation) after 5 

months of daily, 10-minute music lessons compared to sports. Similarly, phonological processing 

improved in 3- to 6-year-olds after 8 months of group lessons in a music conservatory’s Early 

Childhood Education program (Hutchins, 2018).  

Others have investigated transfer effects within community-based music programs 

(Barbaroux et al., 2019; Slater et al., 2015). Such programs are offered free of cost, and were 

developed to improve civic engagement and social-cognitive skills in children of low SES, who 

may be at risk of lower educational or occupational attainment (Lee & Burkam, 2002). One 

group followed 8-year-old children for a year of either musical training in the school-based 

Harmony Project in Los Angeles, or a waitlist. Children in the music group showed enhanced 

perception of speech in noise, an important factor in everyday communication (Slater et al., 

2015). Another group assessed children aged 7-12 years, before and after 18 months of weekly 

group music lessons offered by the Paris Philharmonic Orchestra. Children’s scores on age-

normed tests of reading abilities improved, as did their scores on a musical task, showing 

evidence for both near- and far-transfer effects (Barbaroux et al., 2019). These studies have less 

experimental control, likely due in part to the practical and ethical limitations mentioned above. 

Nevertheless, they demonstrate the importance of addressing issues of accessibility and 

generalizability of scholarly research on the potential benefits of musical training.  

Transfer from music to language is likely based on common brain networks, including 

the dorsal and ventral auditory processing streams (Rauschecker & Scott, 2009). Multiple 
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features of both music and speech are processed along these pathways, with music being more 

right lateralized and speech left lateralized (Zatorre & Zarate, 2012). The dorsal and ventral 

auditory processing pathways originate in the posterior and anterior primary auditory cortex, 

respectively, and arrive at different targets in the frontal lobes. Along the dorsal pathway, 

features of sound are converted to motor representations, linking sound to action (Rauschecker & 

Scott, 2009). This pathway would be recruited during speech production or while strumming a 

guitar, although it also contributes to perception. Along the ventral pathway, features of sound 

are extracted and parsed hierarchically, allowing for auditory object identification and higher-

level organization (Rauschecker & Scott, 2009). This pathway links sound to meaning, as in 

understanding both the words and grammar of a sentence or musical phrase.   

In sum, there is compelling evidence of far-transfer effects, whereby musical training can 

enhance specific aspects of language including phonological awareness and grammar processing.  

This likely reflects a combination of common neural processing pathways and similar 

developmental trajectories. There is also evidence for sensitive period effects in both language 

and music, and the degree of transfer may depend on the AoS of experience. Researchers 

interested in far transfer use a variety of cross-sectional, experimental and longitudinal study 

designs. Our tasks could be used in the context of such studies to examine changes in musical 

abilities and their associations with measures of language or cognitive ability, while accounting 

for maturation with age-equivalent scores.  

Given the requisite conditions for carrying out rigorous longitudinal research, studying 

the long-term effects of musical training in childhood can be a challenge for any single 

laboratory. Therefore, a secondary goal of this thesis was to expand the reach of our tasks by 

sharing them freely with the scientific community. Indeed, as of this writing we have shared our 

tasks with seven different groups conducting research in both basic science and applied clinical 

settings. One group has used the c-RST as a covariate in a rhythmic reading intervention study 

for children with dyslexia (A. Cancer, 2018, personal communication). Another is using both the 

c-RST and c-MDT within a battery of pre- and post-training measures for a 6-month music 

intervention aimed at improving word learning (N. Ramos-Escobar, 2018, personal 

communication). Yet another used the c-RST in conjunction with MRI to investigate the 

behavioural and neurostructural outcomes of a 6-month intervention comparing music, sports, 

and no training in late childhood (P. Cantou, 2018, personal communication). The c-RST has 



 

 74 

also been shared with researchers who work with typically developing school-aged children (S. 

Hennessy, 2019, personal communication), young children with autism spectrum disorder (C. 

Bowsher-Murray, 2019, personal communication), young children with specific language 

impairments (R. Pfeiffer, 2016, personal communication) and school-aged children with dyslexia 

(J. Zuk, 2019, personal communication). Final results have not yet been published but it is our 

hope that in comparing task performance across a variety of samples, the community can use this 

information to decide upon the most suitable applications. A final extension of this project is to 

develop a user manual. This will include a description of the underlying conceptual framework, 

test design, psychometrics, and norms. Authorized users of these tasks will have access to the 

manual, which will be linked to a shared data repository for continuous updating of psychometric 

properties.  

 

Considerations for Future Research  

Musical Tasks. Our two musical tasks, though useful to address our research questions, 

do not assess the full spectrum of musical behaviours. They were selected because they had 

previously been found to be sensitive enough to detect differences between adult ET and LT 

musicians, and we wanted to be able to compare the outcomes of our work in children to those in 

adults. Unfortunately, at that time we did not consider creating an entire battery that would cover 

a wider range of musical abilities. As described in this thesis, the two tasks differ greatly in the 

degree of basic sensory, motor, and cognitive resources required. The c-RST is a rhythmic 

production task while the c-MDT is a pitch perception task. A comprehensive battery of musical 

abilities should, then, contain tasks assessing the complementary abilities of pitch production 

(e.g., singing or tone-matching; Hutchins, 2018) and rhythm perception (e.g., discrimination; 

Gordon et al., 2015b). Cultural factors should also be considered, as these can affect both pitch 

discrimination ability (Wong et al., 2012) and synchronization ability (Cameron, Bentley, & 

Grahn, 2015). As with language, children readily acquire the musical features (e.g., pitches, 

timbres, and rhythms) to which they are exposed most regularly (Hannon et al., 2018); those who 

grew up hearing more complexity in pitch or rhythms may thus show ceiling effects on our tasks. 

The stimuli are based on a Western major tonal system and use Western rhythms; thus, they 

would need to be tested in a cross-cultural context.  
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Musicianship. Another consideration for future research into sensitive periods is more 

accurately operationalizing the term ‘musicianship’ in terms of frequency, intensity, and nature 

of musical activities in childhood (Zhang, Susino, McPherson, & Schubert, 2018). Standard 

measures in adulthood are years of experience, or cumulative hours of lifetime experience, years 

of formal training and hours of weekly practice. Children by definition cannot accrue the amount 

of training often reported in studies of adult musicians, and their lessons and time of practice 

may be more erratic. This necessitates a more fine-grained tracking of the frequency and 

intensity of musical activities, and perhaps also an expansion of the activities that are included 

beyond formal training. For instance, many children do not attend private music lessons, but are 

given group lessons at school. Still others do not have music lessons in school, but participate in 

other rhythmic or musical activities such as dance lessons. It is proposed that multimodal 

training, which engages the motor system in addition to sensory processes, has greater potential 

to promote neuroplasticity than training in a single modality (Dalla Bella, 2015). However, even 

informal exposure to music at home, via parents and family members, is associated with 

enhanced auditory processing (Putkinen, Tervaniemi, & Huotilainen, 2013). Therefore, more 

precise measurement of the ‘dosage’ of musical exposure received in childhood could be helpful 

in understanding the effects of engagement with music, instrumental or otherwise. Beyond the 

dose, another important consideration in tracking of musicianship is the type, or pedagogical 

approach, of any training the child is receiving. Child musicians in our study were students of the 

Suzuki method, which has a standardized curriculum and is often used in music cognition studies 

(Fujioka et al., 2006; Shahin et al., 2004; Wiens & Gordon, 2018). Suzuki training emphasizes 

learning by ear and starting early in life, often in the preschool years. With simple pitch 

discrimination also developing prior to age 5, Suzuki training may differentially enhance this 

ability. Similarly, rhythm-based approaches to music pedagogy such as Dalcroze Eurhythmics, 

might enhance rhythmic skills during periods of higher plasticity in auditory-motor networks. 

Both the c-RST and c-MDT could be used to compare performance across methodologies, given 

the diversity of auditory, motor, and cognitive processes that are recruited by these tasks. 

 

General Conclusion 

 Previous work has proposed possible sensitive periods for musical training, such that 

starting musical training in childhood predicts better learning and performance on complex 
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musical tasks in adult musicians. The goal of this thesis was to assess whether sensitive period 

effects could be observed in a sample of early- and late-trained children matched for years of 

experience and other relevant cognitive factors. To do this we developed, validated, and normed 

two tests of musical ability for pitch discrimination and rhythm synchronization. Because these 

are among the very few tests of musical ability with up-to-date age norms for children, they are 

already being used by a number of different researchers studying both near- and far-transfer 

effects of musical training in childhood. The development of these tasks allowed us to compare 

ET and LT children and to identify evidence that early start of training produces effects on basic 

pitch discrimination, but not rhythm processing after 3 years of practice. Because the effect of 

AoS was only observed for simple pitch discrimination, and not rhythm synchronization as had 

been observed in adult musicians, we hypothesize that, while there may be metaplastic changes 

induced by early training, these are not observable for more complex tasks until children are 

older and have accrued more musical training. These findings enrich our understanding of how 

AoS can impact the interaction between maturation and experience, giving us a more 

sophisticated model of sensitive periods in human development.  
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