
Studying and Leveraging User-Provided Logs in Bug Reports for

Debugging Assistance

An Ran Chen

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

September 2019

© An Ran Chen, 2019

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: An Ran Chen

Entitled: Studying and Leveraging User-Provided Logs in Bug Reports for

Debugging Assistance

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr. Aiman Hanna

Examiner
Dr. Emad Shihab

Examiner
Dr. Weiyi Shang

Supervisor
Dr. Tse-Hsun Chen

Approved by
Dr. Leila Kosseim, Graduate Program Director

September 10, 2019
Dr Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Studying and Leveraging User-Provided Logs in Bug Reports for Debugging

Assistance

An Ran Chen

B ug reports provide important information for developers to debug user-reported issues. Dur-

ing the debugging process, developers need to study the bug report and examine user-

provided logs to understand the system execution paths that lead to the problem. Prior studies

on bug reports also found that such user-provided often contain valuable debugging information

to developers. In this thesis, we conduct a tool-assisted study to study user-provided logs in bug

reports. Our goal is to study any challenges that developers may encounter when analyzing the

logs, and how many additional buggy classes can the logs help to identify. In particular, we study

both system-generated logs and exception stack traces. Our approach tries to simulate developers’

debugging process by 1) identifying the location in the source code where the logs were generated, 2)

re-constructing execution paths by finding the call paths are can be traced back from the logs, and 3)

studying the additional buggy classes that the re-constructed execution paths identify. We conduct

our study on eight large-scale open-source systems with a total of 1,145 bug reports that contain

logs. We find that the execution paths cannot be constructed in 32% of the studied bug reports,

since many logs can no longer be found in the source code due to code evolution, and users often pro-

vide logs that are generated by third-party frameworks. In the rest of the cases, the re-constructed

execution paths can identify 15% additional buggy classes in 41% of the bug reports. Through a

comprehensive manual study, we find that the main reasons that the re-constructed execution paths

fail to identify additional buggy classes are that reporters often only attach logs that describe the

unexpected behavior (e.g., stack traces) without additional logs to illustrate the system execution.

In summary, this thesis highlights both the challenges and potentials of using user-provided logs to

assist developers with debugging. It also revealed common issues with user-provided logs in bug

reports, and provided suggestions for future research.

iii

Statement of Originality

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners. I understand that my thesis

may be made electronically available to the public.

iv

Acknowledgement

First, I express my deepest gratitude to my supervisor (Dr. Tse-Hsun Chen) and our co-author

(Dr. Shaowei Wang) who helped me so much in completing this thesis, as well as giving me the

opportunity to work on such interesting project. Although this is only my first thesis, I learned a

lot from you guys.

Second, I express my sincere thanks to Dr. Emad Shihab and Dr. Weiyi Shang for their valuable

suggestions. They give necessary advices and guidance to make this thesis better.

Third, SPEAR lab holds a great research environment, with wonderful colleagues and friends. I

thank my follow labmates in SPEAR lab: for stimulating discussions, for keeping company, and for

all the fun we have had outside of the campus.

Finally, to my caring family: thank you.

v

Contribution of Authors

UBugs: An Empirical Study on Using User-Provided Logs in Bug Reports for Debug-

ging Assistance

An Ran Chen: manual analysis, program implementation, writing, editing and proofing

Tse-Hsun (Peter) Chen: research supervisor, funding, experimental guidance, manual analysis, writ-

ing, editing and proofing

Shaowei Wang: writing, editing and proofing

An Empirical Study On Leveraging Logs For Debugging Production Failures

An Ran Chen: manual analysis, program implementation, writing and proofing

vi

Related publication

An Ran Chen, Tse-Hsun (Peter) Chen and Shaowei Wang, “UBugs: An Empirical Study on Using

User-Provided Logs in Bug Reports for Debugging Assistance”, The 42nd International Conference

on Software Engineering, ICSE 2020, under review.

An Ran Chen, "An Empirical Study On Leveraging Logs For Debugging Production Failures", in

Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings,

ICSE-SRC 2019, Montreal, QC, Canada, May 25-31, 2019, pp. 126-128.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Thesis Overview . 3

1.1.1 Chapter 2 . 3

1.1.2 Chapter 3 . 3

1.1.3 Chapter 4 . 4

1.1.4 Chapter 5 . 4

1.1.5 Chapter 6 . 4

2 Related Work 5

2.1 Log Analysis. 6

2.1.1 Debugging and Maintaining software . 6

2.1.2 Testing . 6

2.1.3 Detecting Anomaly. 6

2.1.4 Diagnosing Performance Problems. 7

2.2 Debugging Using Information in Bug Reports. 7

2.2.1 Bug Report Analysis. 7

2.2.2 Bug Localization. 8

3 Motivating Example 9

4 Collecting Bug Reports 12

4.1 Studied Systems. 13

4.2 Collecting and Filtering Bug Reports. 13

4.3 Identifying Bug Reports that Contain Logs . 14

viii

5 Our Approach to Study User-Provided Logs in Bug Reports 15

5.1 Step 1: Extracting Logs from Bug Reports. 16

5.1.1 Challenges and Our Solution. 16

5.2 Step 2: Locating Extracted Logs in Source Code. 16

5.2.1 Locating log snippets in the code. 19

5.2.2 Locating stack traces in the code. 19

5.2.3 Challenges and Our Solution. 20

5.3 Step 3: Constructing execution paths from logs. 20

5.3.1 Challenges and Our Solution. 21

6 Case Study Results 23

6.1 RQ1: To what extent can user-provided logs be used to re-construct execution paths? 24

6.1.1 Motivation. 24

6.1.2 Approach. 24

6.1.3 Results. 24

6.2 RQ2: How many additional buggy classes can the re-constructed execution paths

identify? . 29

6.2.1 Motivation. 29

6.2.2 Approach. 30

6.2.3 Results. 30

6.2.4 Discussion. 32

6.3 Highlights and Implications of the Findings . 34

6.4 Threats to Validity . 35

6.4.1 External Validity. 35

6.4.2 Internal Validity. 35

6.4.3 Construct Validity. 35

7 Conclusion and Future Work 36

Bibliography 38

ix

List of Figures

1 An overview of our approach to study the logs in bug reports. 17

2 An example that shows an overview of our approach to study the logs in bug reports. 18

x

List of Tables

1 An overview of the studied systems. BR represents bug reports; BRNL represents

bug reports with no logs; BRWL represents bug reports with logs (i.e., either contain

log snippets, stack traces, or both). 13

2 Manually-derived categories for which the log snippets/stack traces in a bug report

cannot be used to re-construct execution paths. 25

3 Distribution of the manually-derived categories for which the log snippets/stack traces

in a bug report cannot be used to re-construct execution paths. 26

4 An overview of the bug reports where the bug fixing locations can be identified on

the re-constructed execution paths. The numbers are calculated per each bug report. 31

5 Manually-derived categories for bug reports which the fix locations have no overlap

with the recovered execution path. 32

xi

CHAPTER 1

Introduction

S oftware debugging is an important and challenging task in software maintenance. As the

complexity of modern software systems increases, developers need to spend more time on

understanding system execution in order to locate the problem. A prior study [1] finds that de-

velopers, on average, spend 33% of their time on debugging. To assist developers with debugging,

prior studies [2, 3, 4, 5, 6, 7] re-construct execution paths using crash reports or complete system

logs. However, these prior approaches often assume that developers have access to the entire system-

generated logs or instrumented system runtime data. In practice, such information may not always

be available due to privacy or technical (e.g., system overheads and the logs can be large in size)

concerns [8, 9, 10], e.g., users usually only attach a portion of the system-generated logs in their bug

reports, since the size of the entire log file is often several gigabytes or even larger [9, 11].

Bug reports provide important information for developers to fix the problems that users en-

counter [12, 13]. Typically, when reporters create a bug report, they need to provide a title, the

severity (e.g., major or minor), the description of the problem, and system-generated logs (e.g., log

messages or stack traces) which illustrate the system execution paths when the problem occurs. In

particular, such logs may contain valuable debugging information for developers [12]. Based on the

user-provided information, developers then diagnose the problem and resolve the issue. In general,

developers first look at the description of the bug report and manually examine the attached logs.

Then, they investigate where the logs were generated in the source code to find out where the bug

might be. Finally, developers manually examine the source code and the corresponding logs, trying

to understand how the system was executed when the bug happened and resolve the bug.

Intuitively, user-provided logs in bug reports illustrate the problems that users encounter and

may help developers with the debugging process [12]. In this thesis, we study user-provided logs

(i.e., either system-generated logs or stack traces) and their quality to validate the assumption. We

conduct a tool-assisted study to identify how many additional buggy classes can the re-constructed

1

execution paths identify to developers. As shown in prior studies [1, 3, 14], developers use logs to

manually re-construct system execution to debug problems. Hence, our tool tries to re-constructed

system execution paths using the user-provided logs automatically.

We first extract logs from bug reports, and then we use a combination of text analysis and static

analysis to locate the extracted logs to where they are generated in the source code. We call this

part of the approach direct log mapping, since it simulates how developers may do to locate where

the logs are generated in the source code. Then, we re-construct the execution paths by finding

call paths that are able to connect the logs in the source code. Finally, we examine how many

studied logs are able to re-construct execution paths, and how many additional buggy classes can

the re-constructed execution paths identify compared to directly locating logs to the source code.

We also conduct a comprehensive manual study on the user-provided logs to understand: 1) the

reasons why some user-provided logs cannot be used to re-construct execution paths; 2) even when

the execution paths are re-constructed successfully, why some re-constructed paths cannot identify

additional buggy classes.

We conducted a case study on eight large-scale open source systems (i.e., Hive, Hadoop Common,

YARN, MapReduce, HDFS, ZooKeeper, ActiveMQ, and Storm), which are commonly used in prior

log studies [15, 16, 17]. We studied a total of 1,145 bug reports that contain logs. In summary, this

thesis makes the following contributions:

• We developed a tool to simulate the debugging process of developers to understand the qual-

ity of user-provided logs, i.e., 1) whether the user-provided log can be used to re-construct

execution paths and 2) how many additional buggy classes could be identified if the execution

paths could be re-constructed.

• We find that our assumption is only partially true. The user-provided logs in 32% (365/1,145)

of the studied bug reports cannot be used to re-construct execution paths. Even in the rest

780 cases, in which the execution paths are re-constructed successfully, 59% (460/780) of them

do not identify additional buggy classes compared to direct log mapping.

• Through a comprehensive manual study, we find that the main reasons why some logs fail

to re-construct execution paths are: 1) code evolution (e.g., source code that generates logs

is deleted or modified in prior versions); 2) the user-provided logs are incomplete or from

third-party libraries.

• Through a comprehensive manual study, we find that the main reasons why some logs fail to

identify additional buggy classes are: many user-provided logs only provide information for the

point of failure (e.g., where the exception happens). However, the root cause of the problem

may happen in an earlier part of the execution paths.

2

• The findings of our manual study furnish insights in the challenges of debugging process using

user-provided logs in bug reports. We highlight the research topics that require greater atten-

tion for future studies. Future research on bug reports and debugging focus on some directions,

such as analyzing development history when locating the user-provided logs; helping reporters

provide more accurate logs; and leveraging additional readily-available runtime data to help

developers better understand system execution for debugging.

In short, our study highlights the possibility of using readily-available logs in bug reports to

assist developers with debugging. We also highlight several issues with the quality of user-provided

logs. Our findings may inspire future research on debugging and bug report quality, and provide

insight to practitioners on improving the attached logs in bug reports.

1.1 Thesis Overview

Chapter 2 surveys the related work. Chapter 3 presents motivating examples of our study.

Chapter 4 discusses our case study setup and data collection process. Chapter 5 presents our

approach of studying user-provided logs by re-constructing execution paths. Chapter 6 presents the

motivation, approach, results to our research questions, and the threats to validity. Chapter 6.3

provides a discussion and implication of our findings. Finally, Chapter 7 concludes this thesis.

1.1.1 Chapter 2

We discuss related work in two areas: log analysis and bug report analysis. Each area is then

further discussed from different aspects. We describe the prior studies based on their approach and

main contributions. From this chapter, we notice that all prior studies, that leverage logs to assist

developers, have a common assumption that developers have access to the entire logs, which is not

the case in practice due to privacy or technical concerns. Developers often only have access to a

portion of the logs which is provided by reporters. Thus, different from prior studies, we study

user-provided logs in bug reports.

1.1.2 Chapter 3

We present a motivating example that describes a developer’s debugging process when resolving

a bug report. Then, we discuss the real-life challenges that developers may face. Finally, we pro-

pose our two research questions: 1) To what extent can user-provided logs be used to re-construct

execution paths? 2) How many additional buggy classes can the re-constructed execution paths

identify?

3

1.1.3 Chapter 4

We first describe the studied systems. Then, we present the steps of collecting and processing

bug reports that contain logs in the studied systems. After analyzing 6,434 bug reports, we find

that there is a non-negligible number (an average of 22.6%) of bug reports that contain logs.

1.1.4 Chapter 5

We present our approach in detail in this chapter. Our approach simulates the debugging process

of developers in practice, to understand to what extent can the user-provided logs assist developers

with debugging.

1.1.5 Chapter 6

We study the quality of developer-provided logs by answering two research questions. For RQ1,

We find that for 32% of the studied bug reports, user-provided logs cannot be used to re-construct

execution paths. We manually evaluate the reasons why logs in some bug reports cannot be used to

re-construct execution paths and derive five categories: code evolution, third-party logs, incomplete

logs, limitation of static analysis and others. For RQ2, we show that the re-constructed execution

paths identify additional buggy classes in only 41% of the bug reports for which the execution paths

can be re-constructed, and the re-constructed execution paths can identify an additional 6% to 25%

of buggy classes. Furthermore, we discuss the implications on these findings in the last sub-section.

4

CHAPTER 2

Related Work

I n this chapter, we survey related work in two areas: log analysis and bug report analysis. Our

goal is to understand the current practices of leveraging logs and bug reports to assist developers

with the debugging process.

5

2.1 Log Analysis.

Logs are commonly used for understanding system execution [18, 19], debugging and maintaining

software [3, 4, 14, 15], testing [11, 20, 21], detecting anomalies [22, 23, 24, 25, 26] and diagnosing

performance [18, 19, 27].

2.1.1 Debugging and Maintaining software

Prior studies [14, 15] found that developers continuously improve logging code in software systems

to assist in diagnosing production bugs. These log messages are often the only information that is

available for diagnosing production bugs [3, 28]. Some studies [4, 28] tried to improve log messages

(e.g., record values for important variables) to assist developers in diagnosing production bugs. Yuan

et al. [3] proposed a technique to assist developers with debugging by leveraging system runtime

logs. However, the authors themselves manually evaluated their technique on only eight production

bugs. Other studies apply machine learning techniques to identify anomalies in the log messages,

which may be an indication of possible problems [11, 22, 29]. Different from prior studies, in this

thesis, we focus on studying the logs that are provided in bug reports, where the quality of the logs

depends on the reporter. We found that although the user-provided logs can help to debug by re-

constructing execution paths to some extent, there are still some challenges. We manually studied

and documented the challenges that we found in user-provided logs and provide future research

directions.

2.1.2 Testing

Some existing studies also apply log analysis to improve testing. For instance, Chen et al. [21]

estimate the code coverage using execution logs. The proposed approach matches the logs to the

corresponding execution path, and resolves three code coverage criteria: method-level coverage,

statement-level coverage and branch-level coverage. Chen et al. [11] compares systems’ workload

generated during testing to the one from historical execution to resolve test design challenges.

2.1.3 Detecting Anomaly.

Log analysis is widely used in anomalies detection in the past decades. Typically, researchers

apply different techniques to detect the anomalies from the abundant information that the system

provides. For example, Xu et al. [22] propose an approach to automatically detect run-time anomalies

using machine learning technique (i.e., PCA). In such case, the approach requires no human input

nor internal knowledge of the software. Fu et al. [23] propose an anomaly detection technique

6

that models the log sequences into Finite State Automaton (FSA). This approach uses the log

sequences to characterize the normal workflow and does not rely on any specific system knowledge.

In practice, only a small portion of logs are problematic. He et al. [24] design an approach to

correlate the clusters of log sequences with system KPIs (Key Performance Indicators) in order to

identify impactful service problems. The proposed approach is clustering-based and achieves a high

accuracy. In particular, there are four steps to their approach: log parsing, sequence vectorization,

cascading clustering and correlation analysis. Lou et al. [25] mine the program invariants from log

sequences. Their technique reveals the anomalies based from the learned invariants. He et al. [26]

review and evaluate six log-based anomaly detection techniques. Their paper provides guideline for

better adoption of these techniques.

2.1.4 Diagnosing Performance Problems.

Prior research also apply log analysis on performance diagnosis. Nagaraj et al. [30] use a machine

learning approach that leverages system logs to automatically determine the relationship between

system components and performance. Chow et al. [27] model the performance based on logs. By

performing a critical path analysis, the approach suggests potential performance improvements. This

study attributes latency to specific component. Chen et al. [18] leverage system logs to uncover the

relationship between a workload and database access. The approach models the cache configuration

with a Petri net from which an optimal cache configuration is infered. Zhao et al. [19] leverage

runtime logs to understand the system’s performance behavior and associate logs to specific requests

from static analysis.

2.2 Debugging Using Information in Bug Reports.

Prior studies found that bug reports are essential for debugging [12, 13, 31]. In particular,

Bettenburg et al. [12] found that stack traces and steps to reproduce bugs are important for a good

quality bug report. Due to the rich information in bug reports, some studies proposed approaches

to locate bugs in the source code by using text information in bug reports [32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42].

2.2.1 Bug Report Analysis.

In particular, Wang et al. [36] and Ripon K. et al. [33] found that different parts of bug reports

(e.g., title and description) may provide more information to help locate the bugs in the source

code. Different from prior studies, in this thesis, we conduct a tool-assisted study to simulate the

developers’ debugging process when analyzing user-provided logs in bug reports. We found that

7

user-provided logs can identify additional buggy classes in some cases. However, more often, we

found that there is some missing information in the logs that may prevent developers from using the

logs to understand the system execution.

2.2.2 Bug Localization.

There exist many prior studies on bug localization. The techniques can be categorized into two

categories: dynamic and static. Dynamic bug localization techniques localize a bug by exercising

the system using test cases, which, in general, give better results than static techniques. In particu-

lar, many prior studies propose techniques for spectrum-based bug localization [43, 44, 45, 46, 47].

Spectrum-based bug localization techniques use system execution traces that are collected during

test execution to locate the bug. If a software artifact (e.g., code statement, basic blocks, or meth-

ods) appears more in failed executions, it is considered to be more suspicious [46]. However, the

effectiveness of such dynamic techniques is highly dependent on the existence of the test cases.

Static bug localization techniques, on the other hand, do not require exercising the system. Many

prior studies apply information retrieval (IR) techniques to statically locate bugs in the code using

natural language text in bug reports [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Sisman et al. [41] found

that by using past version development history can help improve bug localization accuracy. Dao et

al. [39] further combines dynamic information (e.g., failed test execution) with IR-based techniques

to improve localization accuracy. Wang et al. [36] and Saha et al. [33] found that different parts of

bug reports (e.g., title and description) should be assigned different weights in IR models. However,

one major limitation of IR-based techniques is that they suffer from low localization accuracy and

are only able to localize the bugs at the file level.

8

CHAPTER 3

Motivating Example

I n this chapter, we present a motivating example that lists the challenges that a developer may

face when debugging and resolving a bug report.

9

Prior studies [3, 4, 28] show that developers often use logs to understand system execution during

the debugging process. In this chapter, we discuss a hypothetical but realistic motivating example

to explain the process and the challenges of debugging such bugs using logs.

A user, Bob, encounters a bug during system runtime. The only information that Bob has is

the system-generated logs (i.e., either system generated log messages, stack traces, or both) when

the bug occurred, because he does not have the exact sequences of inputs to reproduce the bug.

Bob then creates a bug report, providing a high-level description of the problem. In addition, Bob

attaches a portion of the system-generated logs, since the size of the entire log file is often several

gigabytes or even larger [9, 11]. Alice, a developer of the system, is assigned to work on the bug

report. By following common debugging practices [3, 4], Alice conducts the approaches described

below:

1. Alice first looks at the description of the bug report and manually examines the attached logs.

2. Alice investigates where the logs were generated in the source code to find out where the bug

might be.

3. Alice manually examines the source code and the corresponding logs, trying to understand

how the system was executed when the bug happened.

Nevertheless, there are several potential challenges that Alice may encounter. First, the logs that are

provided in the bug report may be incomplete or low quality [12]. Second, Bob may have provided

a portion of the logs that is irrelevant to the bug. Third, Alice may need to spend a large amount

of time to analyze tons of files just to locate where the logs were generated. Finally, Alice needs

to go through a manual-intensive process of studying the source code and acting like a detective to

connect the logs to understand the execution.

A number of prior studies aim to debug or reproduce bugs using system execution information [2,

3, 4, 5, 6]. However, these prior approaches often assume that developers have access to the entire

system-generated logs or instrumented system runtime data. Such debugging data may not always

be available to developers. In many cases, developers need to rely on data in bug reports for

debugging, which may be incomplete or inaccurate [12]. In this thesis, we conduct a tool-assisted

study to understand the advantages and challenges of analyzing user-provided logs for debugging.

In particular, we seek to answer the two following research questions:

RQ1: To what extent can user-provided logs be used to re-construct execution paths?

RQ2: How many additional buggy classes can the re-constructed execution paths identify?

Our findings provide an insight on leveraging readily-available information in bug reports to

assist developers with debugging, and provide a deeper understanding of the reasons and potential

10

solutions to the challenges that developers may encounter when analyzing user-provided logs in bug

reports.

11

CHAPTER 4

Collecting Bug Reports

I n this chapter, we first describe the studied systems. Then, we present the steps of collecting

and processing bug reports that contain logs in the studied systems. After analyzing 6,434 bug

reports, we find that there is a non-negligible number (an average of 22.6%) of bug reports that

contain logs.

12

Table 1: An overview of the studied systems. BR represents bug reports; BRNL represents bug

reports with no logs; BRWL represents bug reports with logs (i.e., either contain log snippets, stack

traces, or both).

System LOC BR with BR with BR with Total Total Total

only log only stack both BRWL BRNL BR

snippets traces

Hive 1.7M 3 109 14 126 (5.5%) 2,185 (94.5%) 2,311

Hadoop Common 364K 23 71 58 152 (17%) 750 (83%) 902

YARN 313K 29 147 96 272 (46%) 316 (54%) 588

MapReduce 291K 26 100 66 192 (30%) 446 (70%) 638

HDFS 560K 29 99 74 202 (20%) 811 (80%) 1,013

Zookeeper 144k 8 20 18 46 (19%) 195 (81%) 241

ActiveMQ 480k 10 55 27 92 (28%) 237 (72%) 329

Storm 346k 6 44 13 63 (15%) 349 (85%) 412

Total 134 645 366 1,145 5,289 6,434

4.1 Studied Systems.

Table 1 shows an overview of the studied systems. We conduct our case study on eight Java-

based open source systems: Hadoop Common, YARN, MapReduce, HDFS, ZooKeeper, ActiveMQ,

Hive, and Storm. These studied systems are widely used in prior log-related studies [15, 16, 17].

We choose these systems because they are large in scale, actively maintained, well-documented, and

have many bug reports that contain logs [15, 16]. These systems cover different domains, varying

from virtual machine deployment systems to data warehousing solutions.

4.2 Collecting and Filtering Bug Reports.

We collect all the bug report data available on the Jira repositories [48] of the studied systems

and compute the lines of code (LOC) on the master branch (data collected in January 2019). To

collect the bug reports, we built a web crawler that sends REST API calls to the Jira repositories.

We select the bug reports based on the criteria that are used in a prior study on bug reports with

logs [17]. Namely, we select “Resolved” or “Fixed” bug reports of the type “Bug” with the priority

marked as “Major” or above. Finally, we filter out the bug reports that do not have a corresponding

code commit (i.e., a bug fix) in the source code repository. At the end of this step, we collected a

total of 6,434 bug reports.

13

4.3 Identifying Bug Reports that Contain Logs

In this thesis, we consider two types of user-provided logs: log snippets and stack traces. We refer

log snippets as the system-generated logs and refer stack traces as the reported messages in stack

frames (e.g., in the case of exception). These two types of logs are often the only information that

is available for debugging production problems [3, 28, 49]. A log snippet is composed of consecutive

log messages generated at runtime. Log messages often contain a static message, values for dynamic

variables, and the log verbosity level (e.g., info, warning, or error). An example log message is:

“2018-08-29 15:37:47.891 Utils [INFO] Interrupted while waiting for fencing command: cd” , where

it shows the timestamp of when the event happened, the executed class (i.e., Utils), the log level

(i.e., INFO), and the log message. Note that such log messages usually contain system execution

information and may not always be an indication of an error [3, 11]. The second type of logs is

the system generated exception message and stack trace. Stack traces show the stack frame of the

system when exceptions occur. Similar to a prior study [15], we use regular expression to identify

both types of logs in the bug reports. We describe our log extraction process in detail in Chapter 5.

In general, we find that there is a non-negligible number (an average of 22.6%) of

bug reports that contain logs (i.e., either log snippets, stack traces, or both). Table 1

shows the number of bug reports in the studied systems. In total, we find that 1,145 bug reports

contain logs and 5,289 bug reports do not contain any logs. We observe that 5.5% to 46% of the bug

reports contain at least one type of logs, which indicates that logs are often attached by reporters to

help debug problems. In addition, reporters are more likely to include stack traces in a bug report

compared to log snippets. One possible reason is that stack traces are more straightforward to

interpret (e.g., with clear exception messages and stack traces); whereas the information in the log

snippets may vary depending on how reporters attach the logs and how developers write the logging

statements in the source code [3, 4, 16]. However, many bug reports still contain both log snippets

and stack traces, which shows that both types of logs are commonly provided in bug reports to help

debugging.

14

CHAPTER 5

Our Approach to Study User-Provided Logs in Bug Reports

I n this chapter, we present our approach into three steps. Figure 1 shows an overview of our

approach and Figure 2 shows a running example. First, our approach extracts both types of

logs (i.e., log snippets and stack traces) from bug reports. Second, we locate the logs in bug reports

to their corresponding locations in the source code. We call the first two steps direct log mapping,

since these two steps simulate how developers locate the logs to the source code. Finally, once the

logs are located in the source code, we use static analysis to analyze the code and re-construct

the system execution path based on the user-provided logs. Our approach simulates the debugging

process of developers in practice, to understand to what extent can the user-provided logs assist

developers with debugging. More specifically, in RQ1, we study to what extent user-provided logs

can be used to reconstruct execution paths. In RQ2, we study how many additional buggy classes

can the re-constructed paths identify compared to our baseline – direct log mapping.

15

5.1 Step 1: Extracting Logs from Bug Reports.

We follow a similar approach proposed by Chen et al. [15] to extract logs from bug reports. Since

the studied systems use specific logging conventions on the structure of the log snippets (e.g., ordered

as timestamps, verbosity level, class name, and message), we use regular expressions to capture the

log snippets and exception stack traces in bug reports. Specifically, we look for log snippets by

extracting lines that contain timestamps and log-related keywords (e.g., info, debug, and error).

We look for stack traces in a similar fashion by using both keywords (e.g., a line beginning with

“at...”) and line formats (e.g., followed by method invocation, class name, and line number) that are

specific to stack traces. Note that if a bug report contains both log snippets and stack traces, our

approach captures and extracts both types of logs. For each log message in log snippets, we extract

the following information: verbosity level, class name, and message. Figure 2 shows an example

of extracted log messages after removing dynamic information (i.e., values generated by dynamic

variables in logging statements): INFO DataStorage Upgrading storage /dir/hadoop.

To evaluate the accuracy of our approach, we randomly sampled 50 bug reports and manually

examined the extracted logs. All 50 bug reports have correctly identified the logs (i.e., a precision

of 100%).

5.1.1 Challenges and Our Solution.

The main challenge of this step is to continuously improve our accuracy in capturing the logs

with regular expressions. We have one regular expression for every studied system, as the format

differs from one to another. We are able to achieve a 100% precision only after several iterations of

our regular expressions.

5.2 Step 2: Locating Extracted Logs in Source Code.

Once we extract the log snippets and/or stack traces from bug reports, the next step is to find

their corresponding locations in the source code (i.e., where the logs are generated). We present

different strategies applied for log snippets and stack traces in subsections.

We evaluate the accuracy of the matched code snippet by random sampling, and manually

studying 50 bug reports. For each bug report, we checked whether every identified code snippet

corresponds to its log (i.e., a log message from log snippet or an execution line from stack trace).

All 50 bug reports achieve a precision of 100%.

16

Step 1. Extracting
Logs from

Bug Reports

Step 2. Locating
Extracted Logs in

Source Code

Step 3. Constructing
Execution Paths

from Logs Recovered
Execution Paths

Corresponding
Logging

Statements in
Code

Log
Snippets &

Stack Traces

Source Code

Bug Reports

RQ1: To what extent can user-
provided logs be used to re-
construct execution paths?

RQ2: How many additional buggy
classes can the re-constructed

execution paths provide?

Our Approach (Chapter 5)

Figure 1: An overview of our approach to study the logs in bug reports.

17

INFO

INFO

2014-07-15	12:55:55:99	INFO	org.apache.hadoop.DataStorage:	Upgrading	storage	/dir/hadoop
2014-07-15	12:55:56:00	INFO	org.apache.hadoop.DataNode:	Setting	up	storage
...

class	DataStorage{

				public	void	doUpgrade(){
								log.info("Upgrade	storage	"+storageLocation);
								checkVersionUpgradable();
								DataNode.initialStorage();
				}
				...
}

class	DataNode	{

				public	void	initialStorage(){
								log.info("Setting	up	storage");
				}
				...
}

INFO	DataStorage
Upgrading	storage
/dir/hadoop

DataStorage.doUpgrade	->	
DataStorage.checkVersionUpgradable	->	
DataNode.initiateStorage

Relevance	Score
Log	Template

Location Message

1.0

0.8

DataStorage.doUpgrade

BlockStorage.upgrade

Upgrading	storage	+
$storageLocation

Upgrade	storage
.	.	.

Relevance	Score Log	Template

0.9 DataNode.initiateStorage Setting	up	storage

.	.	.

Extracting	Logs	from	Bug	Report

Locating	Extracted	Logs	
in	Source	Code

Generating	
Log	

Templates

INFO	DataNode
Setting	up	storage

.	.	.

DataStorage.doUpgrade

DataNode.initiateStorage

.	.	.

Bug	Report	with	Logs Source	Code

Call	Graph

Identifying	
Logging	

Statements	
in	Source	Code

Re-constructed	Execution	Path

Re-constructing	
Execution	Path

Locating	
in	the	Call	
Graph

.	.	.

.	

Method	Declaration:	DataStorage.transition

DataStorage.readProperties	->
DataStorage.doUpgrade	->
DataStorage.checkVersionUpgradable	->
DataNode.initiateStorage

Extracted	Logs
Level

INFO

Figure 2: An example that shows an overview of our approach to study the logs in bug reports.

18

5.2.1 Locating log snippets in the code.

To find the location where the system log messages are generated in the source code, we imple-

ment a static log parser to analyze log-generating code (i.e., logging statements). The log parser

uses JavaParser [50] to analyze the abstract syntax tree (AST) and identify all the logging state-

ments in the source code. Each logging statement is composed of a verbosity level, static messages,

and dynamic variables. As shown in Figure 2, the structure of a logging statement in source code

can be: logger.info(“Upgrade storage” + storageLocation);), where “info” defines the verbosity level;

“Upgrade storage” is the static message; and storageLocation is the dynamic variable, recorded at

runtime. Similar to prior studies [3, 21, 51], we generate log templates by removing dynamic vari-

ables in the logging statements. Each log template defines three pieces of information: verbosity

level, location, and content of the logging statements. For example, the above-mentioned logging

statement would become INFO DataStorage.doUpgrade “Upgrade storage”+$storageLocation. Since

the extracted log message obtained from bug reports may contain some text strings generated by the

dynamic variables, we also record the positioning of dynamic variables in the log template. Then,

by finding the log template that has the highest similarity (i.e., relevance score) with the extracted

log message, we can locate where the log message is generated in the source code [3, 21, 51]. To do

so, we compare the message portion of the extracted log message to the one from the log template.

The two messages should only differ by the dynamic variables generated at runtime. We leverage

an existing implementation of vector space models (i.e., Elasticsearch) to determine the relevance

score between them. The higher the relevance score is, the more similar they are. To improve the

mapping accuracy, we apply three additional steps to identify the most similar pair of abstracted

log message and log template. 1) We select the log template with the highest relevance score. 2)

We ensure that if a class name is recorded in the abstracted log message, it must be the same as the

class shown in the log template. 3) Finally, we validate the mapped logging statement by checking

if all its static texts can be located in the log message, and whether the verbosity levels are consis-

tent. For example, as shown in Figure 2, the extracted log “INFO DataStorage Upgrading storage

/dir/hadoop” is mapped to the first log template, since the relevance score is 1.0, they contain the

same class information, and contain exactly the same static text.

5.2.2 Locating stack traces in the code.

To find the location of where the stack traces are generated in the source code, we analyze the

called methods in the stack trace. Since the executed method information is well-recorded in the

stack trace, mapping the trace to the source code is straightforward. We parse the executed methods

and the corresponding class in the stack trace. In the case where an executed method cannot be

19

found in the source code (i.e., from a third party library), we ignore the method call.

5.2.3 Challenges and Our Solution.

Our main challenge occurs in evaluating the precision from the results generated by the vector

space model. A prior study [16] shows that the source code might contain duplicated logging

statements. In those cases, our vector space model generates an equal relevance score. To improve

the mapping accuracy, we add two other steps described above: 1) match the class name if it exists,

2) validate the results by comparing the static texts.

5.3 Step 3: Constructing execution paths from logs.

We use JavaParser [50] to analyze the source code and to build a call graph. We build a call

graph based on logs because the information in logs (i.e., both log snippets and stack traces) is

sparse and does not provide enough branch coverage information [4, 14]. We build the call graph

and re-construct the execution path for every bug report that contains logs (a total of 1,145 bug

reports, as shown in Table 1). For each bug report, we analyze the source code in the commit that

is prior to the bug fixing commit. The rationale is that the code in such commits are often the latest

code in the software development repository that developers are working on.

Once we build the call graph, we want to re-construct the execution path between the methods

that contain the recorded logs. Algorithm 1 shows a pseudo of our implementation. The algorithm

takes extracted logs from bug reports and an empty list of sets as input. This list of sets, matched-

SetList is later used to record the set of log messages that have already been processed. After

re-constructing the path between logs, it outputs the potential execution paths. First, we initiate

two global variables (line 2-3) unmatchedLogs and executionPaths. unmatchedLogs is used to store

the logs that cannot construct a path when placed in the current order of execution. The main idea

is that when traversing the log messages, although it is in sequence, some portions may be generated

by a different thread or process. Thus, logs that cannot be matched in the current traversal will be

stored in unmatchedLogs for the next iteration. executionPaths is used to store the re-constructed

execution path. We put the current log at position i and the next log at position i+1 into a set (line

5-7). Before proceeding to the next step, we check if this set has already been processed (line 8).

If so, we skip the current log and proceed to the next one (line 9). Then, the execution paths are

derived from the log (line 11). In detail, we traverse the call graph using the Breadth-First-Search

(BFS) algorithm in the findPathBetween function (line 11). During this process, we record every

possible path that connects the two targeted logs. If two consecutive logs are identical (i.e., have

the same log template), we remove one from the logs (e.g., the logs may be generated in a loop).

20

Once the execution path is re-constructed, we store it in the local variable path (line 11). If the

execution path is null (i.e., cannot be re-constructed), the first log is added into unmatchedLogs (line

12-14). If not, it is stored in the global variable executionPaths (line 15-16). In addition, we add

the current set into matchedSetList to avoid repetitive processing of the same set (line 17). From

there, we check if the loop has reached the last log in our current logs and whether unmatchedLog

contains some logs (line 20). In such case, it means there are some logs that may not belong to the

same thread, then we call findExecutionPath function recursively (line 22) to construct the execution

paths on those logs. Inside this recursive function, all log messages should be grouped into their

corresponding thread (based on reachability in the call graph) and return the generated execution

paths back to otherPaths variable. We add otherPaths into our previously generated execution paths

(line 23). Lastly, we return the global variable executionPaths (line 26).

Note that a path is constructed for each sequential set of logs (e.g., logs belong to the same

thread). Thus, after we have obtained the re-constructed execution paths, there may be some

duplicated paths due to the looping of some logs generated at runtime by different threads. Therefore,

we compare the sequence of method calls inside each generated path and remove the duplicated paths.

5.3.1 Challenges and Our Solution.

The main challenge lays in efficiently processing the call graph for 1,145 bug reports. Each bug

report requires a specific version of the studied system. The size of the system varies from 144k to

1.7M LOC. To efficiently transforming systems of such scale, we continously improve our log parser

throughout the process. Initially, the largest call graph construction (i.e., the serialized data file

size of this call graph is 120 MB) requires up to 15 minutes. This slow processing speed is due to

the large memory consumption used by JavaParserFacade, a JavaParser component which is used

to resolve the class name for the AST nodes. Our solution is to implement a listener that clears

JavaParserFacase’s cache for every one thousand call graph generated. In additional, we configure

ParserConfiguration for parsing features that we don’t need. The final processing time for the largest

call graph reaches under 8 minutes.

21

Algorithm 1 Execution Paths Re-Construction Algorithm

Input: Logs, MatchedSetList (EMPTY list)

Output: Execution Paths

1: procedure findExecutionPath(logs, matchedSetList)

2: initialise unmatchedLogs

3: initialise executionPaths

4: for i=1; i<=logs.length do

5: currentLog = logs.atPosition(i)

6: nextLog = logs.atPosition(i+1)

7: currentSet = Set(currentLog, nextLog)

8: if matchedSetList.contain(currentSet) then

9: continue

10: end if

11: path = findPathBetween(currentLog, nextLog)

12: if path == null then

13: /* unmatchedLogs stores the log messages that cannot construct a path in the current

sequence */

14: unmatchedLogs.add(currentLog)

15: else

16: executionPaths.add(path)

17: matchedSetList.put(currentSet)

18: end if

19: lastLogPos = logs.length-1

20: if i == lastLogPos && !isEmpty(unmatchedLogs) then

21: /* call the function recursively to construct paths on the log messages that cannot

construct a path previously */

22: otherPaths = findExecutionPath(unmatchedLogs, matchedSetList)

23: executionPaths.add(otherPaths)

24: end if

25: end for

26: return executionPaths

27: end procedure

22

CHAPTER 6

Case Study Results

I n this chapter, we study the quality of developer-provided logs by answering two research ques-

tions. For each research question, we provide the motivation, approach, and results.

23

6.1 RQ1: To what extent can user-provided logs be used to

re-construct execution paths?

6.1.1 Motivation.

Due to the increasing popularity of DevOps practices, developers nowadays are in the front-

line of solving problems that users encounter. Unlike bugs that are uncovered during development

phases, many user-reported bugs are difficult to reproduce and often lack test cases [17, 28, 52]. In

such cases, as discussed in Chapter 3 Motivating Example and prior studies [3, 4, 28], developers

rely on logs during the debugging process. However, different from analyzing crash reports or

instrumented data [2, 3, 4, 5, 6], many of the user-provided logs in bug reports can be incomplete or

even inaccurate [12]. Hence, in this RQ, we aim to understand to what extent user-provided logs can

be used to re-construct execution paths. If some user-provided logs cannot be used to re-construct

execution paths, what are the reasons? The findings of our RQ may inspire future research and

provide an initial guideline on helping practitioners attach better logs in bug reports.

6.1.2 Approach.

Since there are over a thousand bug reports that contain logs, it is infeasible to manually study the

bug reports and the attached logs. Therefore, we apply the approach that we describe in Chapter 5

to extract the logs from bug reports, locate the extracted logs in source code, and re-construct the

execution paths. Then, we examine how many attached logs can be used to re-construct execution

paths. We also perform a quantitative study to understand the reasons why logs in some bug reports

cannot be used to re-construct execution paths.

6.1.3 Results.

Overall, our approach can re-construct execution paths in 780 out of 1,145 bug reports that

contain logs. For the remained 32% (365/1,145) of the studied bug reports, user-provided logs cannot

be used to re-construct execution paths. To examine the reason why logs in some bug reports cannot

be used to re-construct execution paths, we conduct a manual study on a statistically representative

sample of the 365 bug reports. We manually went through each bug report, examined the logs, and

studied the source code of the systems. We also studied different versions of the system for each bug

report, if necessary, to understand the reason (e.g., the source code that generates the user-provided

logs was deleted in a prior version). In total, we manually studied 76 such bug reports (with a

confidence level of 95% and a confidence interval of 10%) [53]. During the process, we took notes for

24

Table 2: Manually-derived categories for which the log snippets/stack traces in a bug report cannot

be used to re-construct execution paths.

Category Description

Code evolution
The execution path cannot be re-constructed since the correspond-

ing logs or source code have been modified/deleted.

Third-party logs
The reported log snippets or stack traces are generated by third-

party libraries.

Incomplete logs
The reporter only attached an incomplete portion of the log snip-

pets or stack traces.

Limitation of static analysis

Some execution paths cannot be statically re-constructed due to

the limitation of static analysis, such as failed in catching dynamic

casting, dynamic polymorphism, or reflection.

Others
Other reasons such as the reporter attached logs from external

systems (e.g., database management systems).

25

Table 3: Distribution of the manually-derived categories for which the log snippets/stack traces in a bug report cannot be used to re-construct

execution paths.

Category Total # of BR BR with only log snippets BR with only stack trace BR with both

Code evolution 26 15 11 0

Third-party logs 23 1 13 9

Incomplete logs 13 7 3 3

Limitation of static analysis 11 0 5 6

Others 3 2 0 1

26

each bug report. Once the process is completed, we uncovered a list of categories of the causes that

prevent re-constructing execution paths using the attached logs. We then revisited the bug reports

and assigned the corresponding category to the bug reports. Lastly, we verify the assigned category

of each bug reports. Note that each bug report may belong to more than one categories.

Table 2 shows the list of categories that we uncovered, and Table 3 further shows the distribution

of the categories. Below, we discuss the finding of each category in more detail.

Code Evolution (26/76). We observe that most of the manually studied bug reports that fail to

re-construct execution paths are due to code evolution. This is the most common reason for bug

reports that only contain log snippets and no stack traces (15 out of 26). In all the cases that we

manually studied, the corresponding logging statements in the source code either no longer exist,

are moved to another location, or are deleted. For bug reports that contain only stack traces, the

updated source code no longer reflects the same sequence of method calls as the one shown in the

stack trace. The reasons are that some methods are no longer invoked by the same method (i.e.,

the call stack has changed), some are moved to a different location, or some are completely removed

from the source code. An example of such category could be found in a HIVE bug report: the

reporter attached a log snippet to show that a new SessionState instance was created each time a

new connection happens. Then, the developer pointed out that a new connection should no longer

create a new SessionState object in the current version. The reporter later confirmed that the

attached logs were outdated and no longer reflect the execution path of the current version. Our

finding is different from a prior study, where Yuan et al. [14] found that logging statements often

do not get deleted. In our study, we find that code evolution (and especially the deletion of logging

statements, which accounts for 11/15 of the studied bug reports with log snippets) may introduce

maintenance overheads for developers when they are analyzing logs in bug reports. Future studies

should propose approaches to assist developers with logging code migration to minimize the impact

when debugging user-reported bugs.

Third-party Logs (23/76). We find that reporters are likely to attach logs that are generated by

third-party frameworks. In our manually studied bug reports, 22/23 cases are related to reporters

providing stack traces generated by external libraries. In such cases, developers may have diffi-

culties analyzing the stack traces when debugging the problem. For instance, a reporter in AMQ

attached some third-party stack traces in which an external framework, org.apache.felix, threw an

“ClassNotFoundException” :

java.lang.ClassNotFoundException:HandlesTypes not found

at org.apache.felix.BundleWiringImpl.find(BundleWiringImpl.java:15)

at org.apache.felix.BundleWiringImpl.access(BundleWiringImpl.java:70)

...

However, the above-mentioned stack traces do not contain useful information, such as where the

27

problem occurred in AMQ, which can better assist developers with debugging the issue. Our finding

shows that, in some cases, reporters may not have enough knowledge of the systems, so they may not

be able to provide the needed logs to diagnose the problem. Future studies on exception handling

should help reporters provide debugging information that is relevant to the system (e.g., reporting

the failure of the original source code instead of third-part libraries), and help developers diagnose

and resolve exceptions that are related to third-party frameworks.

Incomplete Logs (13/76). Sometimes reporters provide incomplete logs in bug reports, which

do not contain enough information to re-construct execution paths. In some cases, the reporter was

asked to provide more logs to help locate bug fixing locations. In a ZOOKEEPER bug report, the

initially attached log snippets only illustrate a repetitive sequence of log snippets showing Client not

found:

WARN KerberosProtocolHandler - Client not found in Kerberos database

WARN KerberosProtocolHandler - Client not found in Kerberos database

...

However, after the manual study, we noticed that additional stack traces were later provided as

Attachments. The stack traces that appeared to be right after the user-provided logs revealed the

actual cause of the failure, which was due to the failed initialization of an authentication mechanism.

In other cases, reporters may attach incomplete logs and point out that the log snippets are confusing

and mislead system diagnosis. In short, incomplete log snippets or stack traces provide less or

insufficient information to developers/reporters, and may sometimes increase debugging difficulties.

Future studies should help developers analyze such incomplete logs by incorporating information

from other sources (e.g., past bug report or development history) to better diagnose the reported

bugs [18, 21].

Limitation of Static Analysis (11/76). Since we are using static analysis to analyze the logs,

we find that we cannot re-construct the execution paths in some studied bug reports due to the

limitation of static analysis. All the cases that we studied are related to problems analyzing stack

traces. The challenge lies in the dynamic nature of modern programming languages. The following

example is extracted from a HDFS bug report. The reporter attached some stack traces in which

our approach was able to find these two log lines in the source code (note that the order of the call

stack goes from the bottom to the top):

...

at packagename.FsDatasetImpl.getBlockReports(FsDatasetImpl.java:1599)

at packagename.BPServiceActor.blockReport(BPServiceActor.java:458)

...

When re-constructing the execution path, our approach did not find any calling relationship between

the two called methods (i.e., getBlockReports and blockReport). During our manual study, we find

28

that these two are connected by an abstract method. One potential way to overcome this issue is to

use the line number and the called methods to re-construct the execution path. However, we find that

almost all of the reported line numbers in the stack traces cannot be mapped to the corresponding

line in the source code. The reason is that reporters may not use the same version of the source code

that developers are using. Therefore, when the source code has evolved, the line number no longer

matches with the source code, or the method may even be removed. Future studies on debugging

using user-provided logs need to take the source code changes into consideration, especially when

recovering system execution traces using stack traces.

Others (3/76). There are a few cases that only happen once, so we did not assign them to any of

the above-mentioned categories. For example, one reporter attached logs that are related to database

access to debug configuration issues in database management systems (e.g., MySQL). In the other

case, the reporter attached some log messages that have no static text in the corresponding logging

statement; therefore, we could not locate the logging statement in the source code.

The user-provided logs in 32% (365/1,145) of the studied bug reports cannot be used to re-

construct execution paths. Our manual study finds some common issues with user-provided logs:

1) many logging statements can no longer be found in the source code due to code evolution;

2) the user-provided logs may only contain information from third-party libraries; 3) the user-

provided logs may be incomplete to show system execution.

6.2 RQ2: How many additional buggy classes can the re-

constructed execution paths identify?

6.2.1 Motivation.

When debugging user-reported bugs, logs (i.e., either log snippets, stack traces, or both) are

usually the only source of information that is available to developers [3, 28, 49]. Developers usually

use logs to manually re-construct system execution for debugging and such manual process is time-

consuming [1, 3, 14]. Therefore, it is very important to know whether the re-constructed execution

path can identify additional buggy classes. Hence, in this RQ, we study if the user-provided logs can

be used to give insights to developers in debugging, and, in particular, whether the re-constructed

execution paths may identify additional buggy classes.

29

6.2.2 Approach.

We study how many additional buggy classes can the re-constructed execution paths identify

to developers. As discussed in the motivating example (Chapter 3), developers often first locate the

source code that generates the logs to understand the system execution. Hence, we apply the first

two steps of our approach that are described in Chapter 5 to identify logs in bug reports, and locate

the source code classes that generate these logs (we call the approach direct log mapping). If there

is an overlap between the bug fixing location (i.e., fixed classes) and source code that generates the

logs, we assume that logs can provide debugging support to developers. To collect the list of fixed

classes for each bug report, we retrieve the list of commits that is associated with the bug report

ID (i.e., collected in Chapter 5) using the git grep command. For each commit, we get the list of

changed Java classes using ChangeDistiller [54]. Finally, our goal is to examine if the re-constructed

execution paths can identify additional buggy classes (i.e., identifying additional bug fixing locations

on the re-constructed execution paths) compared to direct log mapping (i.e., baseline). Hence, we

apply the last step of our approach described in Chapter 5 to re-construct the execution paths using

user-provided logs. We study if the classes on the re-constructed paths can help developers locate

more bug fixing classes.

6.2.3 Results.

Overall, the re-constructed execution paths can identify additional buggy classes in 320/780 bug

reports (compared to direct log mapping). In the first part of this RQ, we report the additional

buggy classes that the re-constructed execution paths can provide in these 320 bug reports.

As shown in Table 4, the re-constructed execution paths can identify an additional 6% to 25%

(an average of 15%) of buggy classes for developers. In other words, if we provide such execution

path information to developers, we may reduce their debugging efforts by showing them the relevant

classes. In these 320 cases, the average number of located classes does not increase significantly

compared to that of the direct log mapping. On average, using the re-constructed execution paths,

we only map to an average of 1.7% additional classes per bug report. In other words, the re-

constructed execution paths do not increase the list of classes that developers need to examine for

fixing a bug. Moreover, we are able to help developers identify significantly more classes that need

to be fixed (i.e., 15% more on average). Prior studies [55, 56, 57] also find that presenting execution

paths to developers can help them with code comprehension and debugging.

30

Table 4: An overview of the bug reports where the bug fixing locations can be identified on the re-constructed execution paths. The numbers are

calculated per each bug report.

System Num. of BR Avg. fixed Direct log mapping With re-constructed execution paths

classes per BR Avg. num. of classes located % of fixed classes that are located Avg. num. of classes located % of fixed classes that are located

Hive 45 3.2 17.9 61.8% 18.1 (+1%) 67.3% (+9%)

Hadoop Common 37 4.2 11.6 48.5% 12.0 (+4%) 57.5% (+19%)

YARN 69 4.2 11.2 46.6% 11.3 (+1%) 49.4% (+6%)

MapReduce 53 3.1 11.1 35.2% 11.3 (+2%) 44.0% (+25%)

HDFS 61 3.8 10.7 48.1% 11.1 (+3%) 59.8% (+24%)

Zookeeper 9 3.8 12.2 60.0% 12.4 (+2%) 66.7% (+11%)

ActiveMQ 28 4.5 22.9 49.7% 23.0 (+0.6%) 57.4% (+15%)

Storm 18 3.7 12.8 43.6% 13.1 (+0.2%) 49.4% (+13%)

31

Table 5: Manually-derived categories for bug reports which the fix locations have no overlap with

the recovered execution path.

Category Description

Logs to illustrate unexpected behaviors

Logs that describe an unusual system behavior. The logs are not

necessarily showing the root of the bug, instead they provide the

inputs or contextual information that might lead to failure.

Fixes provided in newly added code Developers provide the fixes in some newly added code.

Code evolution
The reported logs or the corresponding source code no longer exist

due to code evolution.

Non-java code changes The bug fixes involve only non-Java code.

Others Other categories, e.g., reporters attached their newly-added logs.

Limitation of static analysis tool

Some execution paths cannot be statically re-constructed due to

the limitation of static analysis, such as failed in catching dynamic

casting, dynamic polymorphism, or reflection.

The re-constructed execution paths identify additional buggy classes in only 320/780 (41%) of

the bug reports for which the execution paths can be re-constructed. In these 320 bug reports,

the re-constructed execution paths can help to identify 15% more buggy classes.

6.2.4 Discussion.

We find that the re-constructed execution paths can help the debugging process by identifying

more buggy classes in some, but not all, bug reports. Therefore, we further manually investigate the

reasons. The author of the thesis manually studied a statistically representative sample of such bug

reports. In total, we studied 240 out of 460 such bug reports (with a confidence level of 95% and a

confidence interval of 5%) [53]. We studied the bug reports, the attached logs, the bug fixes, source

code classes, and the development history (e.g., prior commits). We took notes while studying each

bug report. At the end of the process, we uncovered a list of categories for which the re-constructed

execution paths cannot identify additional buggy classes. We then revisited and assigned each bug

report with the uncovered categories. Note that each bug report may belong to more than one

category. In total, we uncovered six categories. Table 5 shows the categories that we uncovered

from our manual study. Below, we discuss each category in detail.

Logs to illustrate unexpected behaviors (157/240). We find that reporters in most of the

32

studied bug reports attach related logs to the bug, but the logs (and the re-constructed execution

paths) do not have an overlap with the bug fixing locations. In all the cases that we manually

studied, the logs are reported to illustrate an unexpected behavior. The majority (153/157) of the

cases are related to stack traces. As stack traces are used to provide debugging information at

the point of failure, the bug introducing location (i.e., the cause of the bug) may not fall into the

execution path of the stack traces. As an example, a reporter reported a bug in AMQ and attached

the stack trace for a NullPointerException. The stack trace is used to illustrate that the state of the

variable is null (i.e., where the exception happens), but the essential problem of this failure occurs in

a prior class (i.e., a database helper), which did not check for null values in the variable. Our finding

indicates that reporters often only attach debugging information for the point of failure (e.g., stack

traces). Although such information is helpful, reporters may consider attaching additional logs for

developers to understand the system execution and the causes of the problem.

Fixes provided in newly added code (31/240). We find that sometimes developers might add

new code to fix the bug. For example, a bug in YARN is caused by the ApplicationMaster object

which failed to register the client token in the transition process. This registration responsibility was

first assigned to the ClientToAMTokenSecretManagerInRM class, which was on our re-constructed

execution path. However, when fixing the bug, the developer added a new method in another class

(i.e., RMAppAttemptImpl.registerClientToken) and used a different method to register the client

token. In short, developers may add new code in a class other than the one illustrated on the

re-constructed execution path when fixing bugs.

Code evolution (12/240). We find that sometimes the source code that generates the logs no

longer exists. In other words, the logs that the reporters provide are from an older version of

the system. The log or the source code class may have been removed during evolution. In such

cases, developers may have additional challenges in understanding and fixing the bug. Our finding

highlights that version information is essential for a high-quality bug report. Therefore, reports are

strongly suggested to include version information of the buggy system when submitting a bug report.

Future studies should also help developers analyze such bug reports by taking the past development

history (e.g., prior source code changes) into consideration.

Non-java code changes (11/240). We find that the fixes for some bug reports are located in non-

Java code. For example, in 6/11 cases, the bug fixing changes only happen in XML configurations

to add missing dependencies.

Others (11/240). There are a few other reasons where the bug fixing locations cannot be located

in the re-constructed execution paths. For instance, in a HDFS bug report, the reporter already

provided a fix to the bug and attached newly-added logs to illustrate what the correct behavior of

the system should be. Hence, the provided logs cannot be used to re-construct execution paths in

33

the developers’ version of the source code.

Limitation of static analysis tool (18/240). We find that some execution paths cannot be

statically re-constructed due to the limitation of static analysis, such as failed in catching dynamic

casting, dynamic polymorphism, or reflection.

Our manual study also finds that user-provided logs are often attached to show only the unex-

pected behavior without additional logs to assist debugging. Developers also often add new code

to fix the bugs, so the re-constructed execution paths cannot directly locate buggy classes.

6.3 Highlights and Implications of the Findings

More research and supports are needed for logging code evolution. In our manual study

in both RQs, we find that many user-provided logs (i.e., either stack traces, log snippets, or both)

can no longer be found in the version that developers are working on. Different from a prior

study [14], we found that many logging statements or methods in stack traces are removed from

the source code. If developers are not familiar with the system, such logging code changes can

cause additional challenges during debugging. Future studies should consider analyzing software

development history and help developers locate the user-provided logs, for which the corresponding

logging statements/methods were deleted or moved. In addition, for reporters, it is essential to

provide the version information of the system when reporting a bug.

Reporters need additional assistance on providing logs in bug reports. Although logs pro-

vide important debugging information for developers, reporters may not be able to provide accurate

logs that can illustrate the problem. For example, we find that reporters may attach incomplete

logs or logs that only illustrate the exception. Hence, future studies should also consider helping

reporters provide more accurate logs that can better assist debugging. One potential way is to apply

the approach that is described in this thesis to analyze reporters’ logs, and automatically identify

logs that are related to the system execution, which eventually lead to unexpected behaviors or

failures.

Future studies may consider using execution paths that are re-constructed from readily-

available runtime data to identify the buggy classes. We find that, even though the quality of

user-provided logs may not be perfect, the re-constructed executions still identify additional buggy

classes in many bug reports. Our finding highlights a potential direction that may further assist

developers with identifying buggy classes. For example, future studies may leverage other readily-

available runtime data (e.g., sampled execution traces or other types of logs) to help developers

understand the system execution.

34

6.4 Threats to Validity

6.4.1 External Validity.

To increase the generalizability of our study, we conduct our case study on eight large-scale

open source systems that vary in size and infrastructures (i.e, data warehouse, realtime computation

system, distributed file system). These systems are actively maintained and widely used. Although

all the systems are Java-based, our approach does not limit to Java systems. We present our approach

in a generic way that can easily be adapted to fit other programming language (e.g., by changing the

AST parser). Future studies may extend and validate our approaches on systems implemented in

other programming languages. For both RQs, we mitigate the sampling bias by ensuring the sample

fall into a confidence level of 95% with a confidence interval of +/- 10% for RQ1 and +/- 5% for

RQ2. When sampling for the manual data set, we carefully respect the sample size of each studied

system, and sampled proportionally according to the number of bug reports per system.

6.4.2 Internal Validity.

In this thesis, we show that the results of the re-constructed path highly depend on the quality

of the user-provided logs. Thus, the extracted logs are an internal validity of our study. However,

we also provide detailed manual studies on samples of the logs in the thesis. For future studies, one

can choose systems varying in software maturity to better observe the difference in log quality in

each project.

6.4.3 Construct Validity.

In this thesis, we have two manual studies. One investigates the reasons why some user-provided

logs cannot be used to re-construct execution paths, and the other one studies the reasons why some

re-constructed execution paths cannot identify any additional buggy classes. Although we have a

second author to verify the assigned categories, some results may contain subjective bias. Hence,

we may miss some other categories that is more rare to observe. In addition, as mentioned by Li et

al. [16], some logging statements may contain the exact same text message. To mitigate the problem,

when we locate the extracted log snippets, we ensure that both the class name and parameter order

are matched.

35

CHAPTER 7

Conclusion and Future Work

D ebugging is an essential step in software maintenance to improve software quality. In partic-

ular, developers often rely on bug reports to debug user-reported issues. When a reporter

creates a bug report, she may include the description of the bug and attach system-generated logs

to illustrate the execution paths when the bug happened. To analyze the bug report and debug

the problem, developers first need to locate where the logs are generated in the source code, and

understand the system execution path when the problem happened.

In this thesis, we conduct a tool-assisted study to simulate how developers leverage the user-

provided logs (i.e., either stack traces, system-generated log messages, or both) during the debugging

process. Our approach re-constructs the execution paths using the user-provided logs, and study the

overlap between the bug fixing locations and the execution paths. We conducted our study on eight

large-scale open source systems and their 1,145 bug reports that have logs. We find that the user-

provided logs cannot be used to re-construct execution paths in 32% (365/1,145) of the studied bug

reports. Our manual study found that the main reasons are: user-provided logs may be removed

in the latest version of the system due to code evolution, the logs may contain only information

from third-party libraries, and the logs may be incomplete. For the bug reports where we can

re-construct execution paths, we can only help developers identify 15% more bug fixing locations

in 41% of the bug reports. We further conducted a manual study to understand the reason. We

found that reporters often attach logs that only describe the unexpected behavior (e.g., stack traces)

without additional logs to help developers understand system execution. In summary, this thesis

highlights the potential of using readily-available system runtime information to assist developers

with debugging. Our manual study also revealed common issues with user-provided logs in bug

reports.

Future work should investigate the usefulness of the identified buggy classes to developers. We

wish to conduct a survey as an extension to the current thesis to verify whether the identified buggy

36

classes do provide additional debugging supports. Additionally, we plan to use the approach to

extract the method-level code execution and investigate how we can improve the assistance to both

reporters and developers.

37

Bibliography

[1] Thomas D. LaToza and Brad A. Myers. Developers ask reachability questions. In Proceedings

of the 32Nd ACM/IEEE International Conference on Software Engineering, ICSE ’10, pages

185–194, 2010.

[2] Wei Jin and Alessandro Orso. Bugredux: Reproducing field failures for in-house debugging.

In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pages

474–484, 2012.

[3] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy.

Sherlog: Error diagnosis by connecting clues from run-time logs. In Proceedings of the 15th

International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 143–154, 2010.

[4] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improving software

diagnosability via log enhancement. In ASPLOS ’11: Proceedings of the sixteenth international

conference on Architectural support for programming languages and operating systems, pages

3–14, Newport Beach, California, USA, 2011. ACM.

[5] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. Crashlocator: Locating

crashing faults based on crash stacks. In Proceedings of the 2014 International Symposium on

Software Testing and Analysis, ISSTA 2014, pages 204–214, 2014.

[6] M. Soltani, A. Panichella, and A. Van Deursen. Search-based crash reproduction and its impact

on debugging. IEEE Transactions on Software Engineering, pages 1–1, 2018.

[7] Francesco A. Bianchi, Mauro Pezzè, and Valerio Terragni. Reproducing concurrency failures

from crash stacks. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, pages 705–716, 2017.

[8] Yu Cao, Hongyu Zhang, and Sun Ding. Symcrash: Selective recording for reproducing crashes.

In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engi-

neering, ASE ’14, pages 791–802, 2014.

38

[9] Weiyi Shang, Zhen Ming Jiang, Hadi Hemmati, Bram Adams, Ahmed E. Hassan, and Patrick

Martin. Assisting developers of big data analytics applications when deploying on hadoop

clouds. In Proceedings of the 2013 International Conference on Software Engineering, ICSE

’13, pages 402–411, 2013.

[10] Kiavash Satvat and Nitesh Saxena. Crashing privacy: An autopsy of a web browser’s leaked

crash reports. CoRR, abs/1808.01718, 2018.

[11] Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora. Analytics-driven load testing: An industrial experience report

on load testing of large-scale systems. In Proceedings of the 39th International Conference on

Software Engineering: Software Engineering in Practice Track, ICSE-SEIP ’17, pages 243–252,

2017.

[12] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and Thomas

Zimmermann. What makes a good bug report? In Proceedings of the 16th International

Symposium on Foundations of Software Engineering, November 2008.

[13] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In Proceedings of

the 28th International Conference on Software Engineering, ICSE ’06, pages 361–370, 2006.

[14] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices in open-source

software. In Proceedings of the 2012 International Conference on Software Engineering, pages

102–112, 2012.

[15] Boyuan Chen and Zhen Ming (Jack) Jiang. Characterizing logging practices in java-based open

source software projects – a replication study in apache software foundation. Empirical Software

Engineering, 22(1):330–374, Feb 2017.

[16] Zhenhao Li, Tse-Hsun (Peter) Chen, Jinqiu Yang, and Weiyi Shang. DLfinder: Characterizing

and detecting duplicate logging code smells. In Proceedings of the 41st International Conference

on Software Engineering, ICSE ’19, pages 152–163, 2019.

[17] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,

Pranay U. Jain, and Michael Stumm. Simple testing can prevent most critical failures: An

analysis of production failures in distributed data-intensive systems. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pages 249–

265, 2014.

[18] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder

Flora. Cacheoptimizer: Helping developers configure caching frameworks for hibernate-based

39

database-centric web applications. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, pages 666–677, 2016.

[19] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding Yuan, and

Michael Stumm. Lprof: A non-intrusive request flow profiler for distributed systems. In Pro-

ceedings of the 11th USENIX Conference on Operating Systems Design and Implementation,

OSDI’14, pages 629–644. USENIX Association, 2014.

[20] Heng Li, Tse-Hsun (Peter) Chen, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora.

Adopting autonomic computing capabilities in existing large-scale systems: An industrial ex-

perience report. In Proceedings of the 40th International Conference on Software Engineering:

Software Engineering in Practice, ICSE-SEIP ’18, pages 1–10, 2018.

[21] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming (Jack) Jiang. An automated

approach to estimating code coverage measures via execution logs. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, ASE ’18, pages 305–

316, 2018.

[22] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detecting large-

scale system problems by mining console logs. In SOSP ’09: Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles, pages 117–132, Big Sky, Montana, USA,

2009. ACM.

[23] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly detection in distributed

systems through unstructured log analysis. In 2009 ninth IEEE international conference on data

mining, pages 149–158. IEEE, 2009.

[24] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and Dongmei Zhang.

Identifying impactful service system problems via log analysis. In Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pages 60–70. ACM, 2018.

[25] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. Mining invariants from console

logs for system problem detection. In USENIX Annual Technical Conference, pages 23–25,

2010.

[26] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience report: system log analysis

for anomaly detection. In 2016 IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE), pages 207–218. IEEE, 2016.

40

[27] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch. The mystery

machine: End-to-end performance analysis of large-scale internet services. In Proceedings of the

11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pages

217–231. USENIX Association, 2014.

[28] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming Tang, Yuanyuan

Zhou, and Stefan Savage. Be conservative: Enhancing failure diagnosis with proactive log-

ging. In Presented as part of the 10th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 12), pages 293–306, 2012.

[29] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. Log clustering

based problem identification for online service systems. In Proceedings of the 38th International

Conference on Software Engineering Companion, ICSE ’16, pages 102–111, 2016.

[30] Karthik Nagaraj, Charles Edwin Killian, and Jennifer Neville. Structured comparative anal-

ysis of systems logs to diagnose performance problems. In Proceedings of the 9th USENIX

Symposium on Networked Systems Design and Implementation, NSDI ’12, pages 353–366, 2012.

[31] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. Duplicate bug

reports considered harmful... really? In Proceedings of the 24th IEEE International Conference

on Software Maintenance, ICSM ’18, September 2008.

[32] Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed? - more accurate

information retrieval-based bug localization based on bug reports. In Proceedings of the 34th

International Conference on Software Engineering, ICSE ’12, pages 14–24, 2012.

[33] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry. Improving bug

localization using structured information retrieval. In Proceedings of the 28th IEEE/ACM

International Conference on Automated Software Engineering, ASE’13, pages 345–355, 2013.

[34] Mohammad Masudur Rahman and Chanchai K. Roy. Improving bug localization with report

quality dynamics and query reformulation. In Proceedings of the 40th International Conference

on Software Engineering: Companion Proceeedings, ICSE ’18, pages 348–349, 2018.

[35] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. Bug localiza-

tion with combination of deep learning and information retrieval. In Proceedings of the 25th

International Conference on Program Comprehension, ICPC ’17, pages 218–229, 2017.

[36] Shaowei Wang and David Lo. Amalgam+: Composing rich information sources for accurate

bug localization. Journal of Software: Evolution and Process, 28(10):921–942, 2016.

41

[37] Bing Liu, Lucia, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. Simulink fault

localization: an iterative statistical debugging approach. Software Testing, Verification and

Reliability, 26(6):431–459, 2016.

[38] Pablo Loyola, Kugamoorthy Gajananan, and Fumiko Satoh. Bug localization by learning to rank

and represent bug inducing changes. In Proceedings of the 27th ACM International Conference

on Information and Knowledge Management, CIKM ’18, pages 657–665, 2018.

[39] Tung Dao, Lingming Zhang, and Na Meng. How does execution information help with

information-retrieval based bug localization? In Proceedings of the 25th International Con-

ference on Program Comprehension, ICPC ’17, pages 241–250, 2017.

[40] Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Maddila, and Adithya Abraham Philip. Orca:

Differential bug localization in large-scale services. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages 493–509. USENIX Association, 2018.

[41] Bunyamin Sisman and Avinash C. Kak. Incorporating version histories in information retrieval

based bug localization. In Proceedings of the 9th IEEE Working Conference on Mining Software

Repositories, MSR ’12, pages 50–59, 2012.

[42] O. Chaparro, J. M. Florez, and A. Marcus. Using observed behavior to reformulate queries

during text retrieval-based bug localization. In Proceedings of the 33rd International Conference

on Software Maintenance and Evolution, ICSME ’17, pages 376–387, 2017.

[43] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based multiple fault

localization. In Proceedings of the IEEE/ACM International Conference on Automated Software

Engineering, ASE ’09, pages 88–99, 2009.

[44] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of spectrum-based

fault localization. In Proceedings of the Testing: Academic and Industrial Conference Practice

and Research Techniques - MUTATION, TAICPART-MUTATION ’07, pages 89–98, 2007.

[45] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A practical evalua-

tion of spectrum-based fault localization. Journal of Systems and Software, 82(11):1780–1792,

November 2009.

[46] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula automatic fault-

localization technique. In Proceedings of the 20th IEEE/ACM International Conference on

Automated Software Engineering, ASE ’05, pages 273–282, 2005.

42

[47] Diptikalyan Saha, Mangala Gowri Nanda, Pankaj Dhoolia, V. Krishna Nandivada, Vibha Sinha,

and Satish Chandra. Fault localization for data-centric programs. In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software

Engineering, ESEC/FSE ’11, pages 157–167, 2011.

[48] Apache. Aapache JIRA, 2019. Last accessed: Feb. 1, 2019.

[49] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei Zhang,

and Tao Xie. Where do developers log? an empirical study on logging practices in industry.

In Proceedings of the 36th International Conference on Software Engineering, ICSE-SEIP ’14,

pages 24–33, 2014.

[50] JavaParser. https://javaparser.org/, 2019. Last accessed Aug 1 2019.

[51] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. Towards automated log parsing for large-scale log

data analysis. IEEE Transactions on Dependable and Secure Computing, 15(6):931–944, 2018.

[52] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou. Triage: Diag-

nosing production run failures at the user’s site. In Proceedings of 21st ACM SIGOPS Sympo-

sium on Operating Systems Principles, SOSP ’07, pages 131–144, 2007.

[53] D.S. Moore, G.P. MacCabe, and B.A. Craig. Introduction to the Practice of Statistics. W.H.

Freeman and Company, 2009.

[54] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change distilling: Tree differ-

encing for fine-grained source code change extraction. IEEE Transactions on Software Engi-

neering, 33(11):725–743, November 2007.

[55] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. Portfolio:

Finding relevant functions and their usage. In Proceedings of the 33rd International Conference

on Software Engineering, ICSE ’11, pages 111–120, 2011.

[56] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan Borchers.

Stacksplorer: Call graph navigation helps increasing code maintenance efficiency. In Proceed-

ings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST

’11, pages 217–224, 2011.

[57] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding program comprehension by

static and dynamic feature analysis. In Proceedings of the IEEE International Conference on

Software Maintenance, ICSM ’01, pages 602–611, 2001.

43

https://javaparser.org/

	List of Figures
	List of Tables
	Introduction
	Thesis Overview
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Related Work
	Log Analysis.
	Debugging and Maintaining software
	Testing
	Detecting Anomaly.
	Diagnosing Performance Problems.

	Debugging Using Information in Bug Reports.
	Bug Report Analysis.
	Bug Localization.

	Motivating Example
	Collecting Bug Reports
	Studied Systems.
	Collecting and Filtering Bug Reports.
	Identifying Bug Reports that Contain Logs

	Our Approach to Study User-Provided Logs in Bug Reports
	Step 1: Extracting Logs from Bug Reports.
	Challenges and Our Solution.

	Step 2: Locating Extracted Logs in Source Code.
	Locating log snippets in the code.
	Locating stack traces in the code.
	Challenges and Our Solution.

	Step 3: Constructing execution paths from logs.
	Challenges and Our Solution.

	Case Study Results
	RQ1: To what extent can user-provided logs be used to re-construct execution paths?
	Motivation.
	Approach.
	Results.

	RQ2: How many additional buggy classes can the re-constructed execution paths identify?
	Motivation.
	Approach.
	Results.
	Discussion.

	Highlights and Implications of the Findings
	Threats to Validity
	External Validity.
	Internal Validity.
	Construct Validity.

	Conclusion and Future Work
	Bibliography

