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Abstract

Statistical learning of human body shape can be used for reconstructing or estimating body shapes from incomplete data,
semantic parametric design, modifying images or videos, or simulation. A digital human body is normally represented in
a high-dimensional space, and the number of vertices in a mesh is far larger than the number of human bodies in publicly
available databases, which results in a model learned by Principle Component Analysis (PCA) can hardly reflect the true
variety in human body shapes. While deep learning have been most successful on data with an underlying Euclidean or
grid-like structure, the geometric nature of human body is non-Euclidean, it will be very challenging to perform deep
learning techniques directly on such non-Euclidean domain. This paper presents a deep neural network (DNN) based
hierarchical method for statistical learning of human body by using feature wireframe as one of the layers to separate
the whole problem into smaller and more solvable sub-problems. The feature wireframe is a collection of feature curves
which are semantically defined on the mesh of human body, and it is consistent to all human bodies. A set of patches
can then be generated by clustering the whole mesh surface to separated ones that interpolate the feature wireframe.
Since the surface is separated into patches, PCA only needs to be conducted on each patch but not on the whole surface.
The spatial relationship between the semantic parameter, the wireframe and the patches are learned by DNN and linear
regression respectively. An application of semantic parametric design is used to demonstrate the capability of the method,
where the semantic parameters are linked to the feature wireframe instead of the mesh directly. Under this hierarchy,
the feature wireframe acts like an agent between semantic parameters and the mesh, and also contains semantic meaning
by itself. The proposed method of learning human body statistically with the help of feature wireframe is scalable and
has a better quality.
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1. Introduction

Statistical learning of human body is a fundamental
problem in many areas and applications such as biomet-
ric analysis, generative design, and products customiza-
tion. Traditional way of acquisition of human body model
is using 3D scanner to attain scans of human body and
then register the scans together to generate a consistent
model. However, this process is time consuming and re-
quires expensive scanning device and reconstruction plat-
form. Therefore, many studies have been done to learn the
variations of body shapes [1, 2] and correlate them to their
semantic parameters [3] – a parametric design method for
human body modeling. With the correlation, the shape of
a human body can be generated from a set of given pa-
rameters such as body height, chest-girth and waist-girth.

A digital human body is normally represented in a high-
dimensional space, e.g., a mesh with n vertices each of
which is defined by its three-dimensional (3D) coordinate
(x, y, z). Prior to statistical learning, a common practice
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is to conduct Principal Component Analysis (PCA) on the
data to transform the data to a lower-dimensional space
such that the complexity is reduced while preserving suffi-
cient variance [3]. PCA can be done by eigenvalue decom-
position of a data covariance matrix. However, the number
of human bodies (m) in publicly available databases is usu-
ally far less than the number of vertices, i.e., m� 3n, and
the PCA result only has m− 1 eigenvectors with non-zero
eigenvalues. Therefore, with limited samples, the learning
directly on the whole human body can hardly capture the
true variety in body shapes. Furthermore, if both n and m
are large, it will be very challenging to perform eigenvalue
decomposition on such a large matrix (3n×3n or m×m).

On the other hand, as a new area in machine learning
research, deep learning is becoming an important tool in
many applications [4]. Deep learning is successful when
dealing with Euclidean data structure with large sample
size such as speech and images [5]. However, it is known
to suffer from overfitting when the data have high dimen-
sion and low sample size [6], such as the database of human
body model. Another issue is the long computational time
due to the number of training parameters increases dra-
matically with the dimension of data and the number of
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layers. Despite these challenges, the superior learning ca-
pability of deep learning makes it worth to be applied in
statistical learning of human body.

To solve the practical issues arisen in the usage of PCA
and deep learning, the dimension of data must be reduced.
However, many mesh vertices are needed to represent the
shape of a human body confidently, and simply down-
sampling the mesh will lose much shape information. We
observe that although the vertices size of a mesh is huge,
the vertices are not totally independent to each other. Ac-
tually, human bodies are described by a set of feature
curves in many garment industries. Based on this obser-
vation, we hypothesize that if the learning process can be
taken on the feature curves, then the dimension of dataset
would be reduced, so that the training through PCA and
deep learning will be more efficient and the trained model
will be more accurate. To test this hypothesis, this paper
develops a wireframe-assisted deep learning method. The
feature wireframe is a collection of feature curves which
are semantically located on the chest, bust, hip, waist,
etc. Instead of analyzing all the mesh vertices directly, we
use feature wireframe to separate the whole surface into
patches. In this way, PCA does not need to be conducted
on the whole surface but just on each patch. The spatial
relationship between the patches are preserved through the
wireframe. Furthermore, deep learning has a much better
performance in this much lower dimensional space. The
technical contributions of the paper are summarized as
follows:

1. To the best of our knowledge, this is the first time
applying feature wireframe as a defined internal layer
to guide the statistical learning of human modeling.

2. The feature wireframe divides a whole human model
into small patches. Each of the patches has much less
shape variation, and PCA can achieve high rate of
dimension reduction in the patches, up to 99.72%.

3. With the lower dimensional space, deep learning can
be applied to correlate the feature wireframe and se-
mantic parameters, enabling parametric design, in
which it is the first time deep learning is applied.

We compare our method with the previous human body
learning method [3] which applied PCA on the whole
model and used linear regression to learn the correlation.
The same human body database (77 subjects) is used, so
that the results can be directly compared. To emphasize
the usefulness of feature wireframe, we also compare our
method with which the DNN replaced by linear regression.
Experimental results show that the proposed method with
linear regression can already outperform the previous work
in terms of reliability, accuracy, and robustness. Together
with deep learning, the performance is further enhanced
greatly. The proposed method for statistically learning
human body with the help of feature wireframe is effective
and scalable.

The rest of the paper is organized as follows. Section 2
will briefly review the related works. The technical detail

of the methodology for human modeling will be discussed
in Section 3, and it is followed by the experimental results
in Section4. Section 5 will conclude the paper.

2. Related Work

The state of human body learning mainly includes para-
metric design and shape or pose modeling. This section
gives a brief review of these aspects.

2.1. Parametric design

To reduce the complexity of human model and achieve
dimension reduction, many studies focus on the parametric
design of human body and related product. For example,
a feature based parameterization approach of human bod-
ies from the unorganized point cloud is presented in [7].
What’s more, Wang et al. [8] investigated a feature-based
human model for digital apparel design. Kwok et al. [9]
proposed an optimization algorithm for the complexes and
the shape of common base domains in cross parameteriza-
tion for reducing the distortion of the bijective mapping.

Another aspect of research is concentrated on the para-
metric design of human-related products. For example,
an approach for computing planar patterns for compres-
sion garments is proposed in [10], while Hasler et al. [11]
studied how to estimate the detailed 3D body shape of
dressed humans. The approach is based on the space of
human shapes learned from a large database of registered
body scans. Li et al. [12] proposed a method for fitting
a given 3D garment model onto human models of various
body shapes and poses. Pons-Moll et al. [13] proposed a
method for seamless 4D clothing capture and retargeting.
Baek et al. [14] developed parametric human body shape
modeling framework for human-centered product design.
Au et al. [15] addressed the definition, development and
application of garment features with an associative fea-
ture approach. Chu et al. [16] proposed a computational
framework for personalized design of the eyeglasses frame
based on parametric face modeling. Similarly, Huang et al.
[17] presented a virtual try-on system based on augmented
reality for design personalization of facial accessory prod-
ucts.

2.2. Human shape/pose modeling

Many researchers have investigated the human shape
and pose estimation. For example, Anguelov et al. [1] pro-
posed a data-driven method, Shape Completion and Ani-
mation for People (SCAPE), for building a human shape
model that spans variation in both subject shape and pose.
While Hasler et al. [18] presented a learning method for es-
timating a rigid skeleton for shape and pose. A DeepPose
method is proposed for human pose estimation based on
Deep Neural Networks in [19]. Shotton et al. [20] proposed
a method to predict human pose and the 3D positions of
body joints from a single depth image. A biomechanical
model of the human body to synthesize realistic swimming
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Figure 1: Sketch idea of our parametric design method

animation was proposed in [21]. A retargeting method for
human motion to arbitrary 3D mesh models with as little
user interaction as possible is presented in [22].

However, most of these works focused on the human
pose estimation, few works addressed the human body
modeling. In order to generate and animate realistic hu-
mans, Hasler et al. [2] proposed a learning based approach
which could model muscle deformations as a function of
pose. Streuber et al. [23] proposed a method to learn
a model of how 3D shape and linguistic descriptions of
shape are related. Allen et al. [24] proposed a paramet-
ric freeform mesh design to reconstruct human model from
range scans. While a system of modeling the effects of mus-
cle, fat, and bone growth with a given input 3D anatomy
template was proposed in [25]. Seo et al. [26] proposed an
example-based approach which utilizes a modeling synthe-
sizer that learns from preprocessed examples to interpolate
new body geometry.

3. Methodology

To test our hypothesis in enabling PCA and deep learn-
ing on human body data with high dimension and small
sample size, this paper aims to develop a wireframe-
assisted learning method with the application of paramet-
ric design for human body modeling. Instead of correlat-
ing semantic parameters and human model directly, we
use feature wireframe as an intermediate layer as demon-
strated in Fig. 1. The feature wireframe is defined by a set
of feature curves based on the anthropometrical rules [7].
This method is widely used as semantics measurements
in garment industries. Although it cannot guarantee to
capture all the features of a human body, the wireframe
contains enough industrial meaning. Specifically, some of
the selected feature curves are the girths of head, neck,
neck-base, elbow, wrist, bust, under-bust, thigh, knee, and

...

...

...

...

Figure 2: Wireframe definition and patch extraction

ankle, as well as armhole circumstance. The wireframe is
represented and displayed as polylines, but only the points
(1197 vertices in the database) are used in the training.
Therefore, it is a topology graph that is defined on the
mesh of human body, and it is consistent to all human
bodies. A set of feature patches can then be generated
by clustering the whole mesh surface to separated ones
that interpolate the feature wireframe, which is depicted
in Fig. 2. Since all the human models in database have the
consistent mesh connectivity, the patches can be generated
consistently as well for all of the models. Therefore, there
are three major layers in the framework for parametric de-
sign: semantic parameters (SP ), feature wireframe (WF ),
and mesh patches (MP ). Each has the same size of train-
ing samples equal to the number of models in the database,
and they are used to train the learning model to compute
the correlation between the layers. Firstly, we need to find
a model that relates the whole wireframe WF to a func-
tion of the semantic parameters SP (Ψ : SP →WF ), i.e.,

WF ≈ Ψ(SP, ψ), (1)

where ψ is a vector of unknown variables that need to
be solved. As the relationship between semantic parame-
ters and the wireframe is highly non-linear, and semantic
parameters always inter-affect the wireframe, while deep
learning has a good capability to learn such complicated
non-linear relationship, hence, a Deep Neural Network
(DNN) will be used here for building Ψ.

Secondly, assume the mesh is separated by the wire-
frame into K patches, then the wireframe can be sepa-
rated into K sets accordingly, each of which is the feature
curves that are interpolated by the corresponding patch,
i.e., the boundary of the patch. Let the sets of separated
wireframes and patches are wf and mp, we have

wfk ∈WF, mpk ∈MP (k = 1, . . . ,K).

Similarly, we need to find a model that relates mpk to a
function of wfk for each patch (Υk : wfk → mpk), i.e.,

mpk ≈ Υk(wfk, υk), (2)
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Figure 3: Flowchart of the proposed parametric design method

where υk is a vector of unknown variables that need to
be solved. Thanks to the separation by the wireframe,
the models here are close to linear, and we will show that
linear regression is good enough to build the function Υk.

It is worth to note that the original method conducting
PCA on all n vertices for m models results in a 3n×m ma-
trix, in which only m− 1 principal components are mean-
ingful. For n = 11, 000 and m = 77 in the database [3],
much information is lost when the matrix is condensed
from the dimension of 33, 000 to 76 (434 times) even all
principal components are selected. In this new hierar-
chy, PCA is performed on each patch separately, and each
patch has around two hundred vertices (e.g., 198). From
198 to 76 is only 3 times compression, and we will show
that just a few principal components are needed to de-
scribe the shape confidently because of the low shape vari-
ation in each patch. The proposed method can avoid losing
feature information of human model and is much faster by
solving smaller sub-problems with the help of wireframe.

A more detailed illustration of the proposed methodol-
ogy is shown in Fig. 3. The proposed method includes
two phases: statistical learning phase and parametric de-
sign phase. The technical details of learning the corre-
lation functions Ψ through deep neural network and Υ
through linear regression are presented in Sections 3.1 and
3.2. They are followed by the parametric design phase in
Section 3.3. The detail of PCA is standard and is provided
in Appendix A.

3.1. Deep Neural Network: Parameter & Wireframe

The goal of this section is to learn the relationship
(Ψ : SP → WF ) between the semantic parameters and
the wireframe of human models as shown in the left por-
tion of Figure 1. In the previous work [3], a linear regres-
sion is used to correlate the semantic parameters and the
mesh. Although the dimension of data is significantly re-
duced in the wireframe (compared to the mesh), a feature
curve may rely on several semantic parameters and their
relationship is still non-linear. Furthermore, linear regres-
sion fails to separate the influence when the number of
semantic parameters s is large [3], and it would over-affect
the wireframe generation. Therefore, a non-linear correla-
tion is needed to characterize the relationship between SP
and WF , and DNN is applied here.

Specifically, the Principal Component Analysis (PCA)
is applied to both the semantic parameters and feature
wireframe to reduce their data dimension by discarding
the last principal components (PCs) with total variance
less than 5%, which are unimportant even in the linear
space (see Appendix A). Their dimensions are reduced to
11 and 14 on average respectively, which are much smaller
than the sample size. Hence, over-fitting in training is less
likely to happen here. After that, a DNN is built to learn
the relationship between the two sets of PCs: SP and
WF (same notation is used for simplicity). The DNN is a
feed-forward, artificial neural network with multiple hid-
den layers between its input and output. The network is
called deep as many layers are employed [27]. The optimal
parameters of the network are obtained by minimizing a
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multinomial regression loss function:

`reg(ψ) = −
∑

(SP,WF∗(SP ))∈T

log Ψψ(SP,WF ∗(SP )) (3)

where WF ∗(SP ) denotes the ground-truth WF for
SP , and samples of ground truth are collected: T =
{(SP,WF ∗(SP ))}. The network architecture is detailed
in the following section.

3.1.1. Network architecture

The architecture of deep network consists of different
layers:

Fully connected (FC) layer is a linearly connected
layer to adjust the input and output dimensions. Given
a P -dimensional input Xin = (xin1 , ..., x

in
P ) the fully con-

nected layer produces a Q-dimensional output Y out =
(yout1 , ..., youtQ ) by using a learnable weights w,

youtq = η(

P∑
p=1

wqpx
in
p ); q = 1, ..., Q (4)

The output is optionally passed through a non-linear
function such as the ReLU [28], η(t) = max{0, t}.

Dropout(π) layer is a fixed layer to prevent overfit-
ting [29]. The term ”dropout” refers to dropping out
units (hidden and visible) in a neural network. By drop-
ping a unit out, it means temporarily removing it from
the network, along with all its incoming and outgoing
connections. The choice of which units to drop is ran-
dom. It injects binomial noise on each of the compu-
tational units of the network. During training stage,
an independent and identically distributed binary mask
mp ∼ Binomial(πdrop) is generated for each input dimen-
sion, each element is 1 with probability 1− πdrop,

xoutp = mpx
in
p (5)

During testing stage, all possible binary masks have to
be integrate over. In practice, the unit is always presented
and by using an approximation method: multiplied by the
input with the drop probability of the layer:

xoutp = πdropx
in
p (6)

Hence, the output at test stage is same as the expected
output at training stage.

Pooling layer is also a fixed layer which combine the
outputs of neuron clusters at one layer into a single neuron
in the next layer, it is used to reduce the input dimensions.

Batch normalization layer is another fixed layer to
reduce the training time of large network [30]. It nor-
malizes each mini-batch during stochastic optimization to
have zero mean and unit variance, and then performs a
linear transformation of the form:

xoutp =
xinp − µ√
σ2 + ε

γ + β (7)

where µ and σ2 are the mean and the variance of the tan-
ning dataset by using exponential moving average. To
avoid numerical errors, a small positive constant ε is used.

For task of image/speech/computer vision processing
which need to extract features from Euclidean data struc-
ture, a convolution layer [5] is included in the architecture.
In this paper, the input is the PCs of semantic parame-
ters (SP ) and don’t have to extract such features, hence
a convolution layer does not needed. The DNN architec-
ture consists different types of layers, acts as a non-linear
parametric mapping function Ψ to the output, WF , with
the set of all learnable parameters ψ of the network.

3.2. Linear Regression: Wireframe & Mesh Patch

This section moves the focus to the right part of Fig. 1
and computes the function Υ in Eq.(2) to find the rela-
tionship between the feature wireframe and the mesh. The
wireframe clusters and separates the human body into a
set of mesh patches. Together with the separated patches
(mpk ∈ MP ), the wireframe is also separated into differ-
ent parts (wfk ∈ WF ) correspondingly as the boundary
of each patch. The correlation is then built separately on
each of the patches, so that the whole problem is divided
and solved by a number of sub-problems. Noted that the
semantic parameters are correlated with the whole wire-
frame in the previous section, but a mesh patch is corre-
lated with only part of the wireframe here.

The human models in the database share the same mesh
connectivity, and thus the separated patches are consistent
among the models too. Let mpak be the k-th mesh patch
on the a-th model, where a = 1, . . . ,m, and wfak be the
corresponding boundary. Since a mesh patch k among the
models (i.e., mp1k,mp

2
k, . . . ,mp

m
k ) can be learned individ-

ually now, they are independent of the absolute position
on the human body. Therefore, we can first align all the
patches from different human models, and then learn the
variance of the patches in their own coordinate system,
which is very similar to the procedure of Generalized Pro-
crustes analysis (GPA) without the estimation of scaling
factor. In this way, the real geometry and shape variances
can be learned within a patch rather than the space vari-
ance, which was not possible when the training is done on
the whole mesh. In short, the alignment is done by find-
ing a rigid transformation that can best-align the patch
boundary on each of the human models (wf2k , . . . , wf

m
k )

to one of them (wf1k ). The rigid transformation can then
be used to align the whole patch (mpak) to the static one
(mp1k). Noted that the patches are aligned by the trans-
formation that best-align their boundaries instead of the
whole patch. This is because the goal here is to elim-
inate the space variance with the least influence of the
shape variance among patches, and more importantly the
boundaries are designed in such a way that similar proce-
dure can also be done during the parametric design phase
when the mesh patch is not available. Once the wireframe
of a new model is synthesized, the patches (mpak) can be
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Table 1: Dimension reduction of mesh patch and boundary wireframe

wfk mpk
Before PCA 84 ∼ 96 123 ∼ 2496
After PCA 3 ∼ 8 3 ∼ 7
Reduction ratio 0.85 ∼ 0.98 0.97 ∼ 0.99

generated and transformed back to the absolute position
based on their boundaries (wfak ).

After the k-th patch from all models are aligned, the
linear regression similar to the one presented by Chu et
al. [3] is used to compute the function Υk, except that
they applied it once to the whole mesh and we apply it K
times to each of the patches. Again, the PCA is applied for
dimensionality reduction to both the wireframe (wfk) and
the mesh patches (mpk). Remarkably, since the meaning-
ful wireframe separates the whole human body into small
patches, each patch is relatively simple in geometry com-
plexity. Although the DoF (w.r.t. number of vertices) is
still large in a patch (e.g., 2,500), they are highly linear-
dependent. This is evidenced by the dimensionality re-
duction results that the retained numbers of PCs (95%
variance) are very similar for both the patch (mpk) and
its boundary (wfk) as shown in Table 1. In other words,
the wireframe can really capture the high-level spatial rela-
tionship between the patches and is a good representation
as a intermediate layer to connect the semantic parame-
ters and the mesh. Moreover, a very high reduction ratio
(e.g. 99% : 2, 500→ 7) can be achieved for a patch (mpk)
and thus the correlation can be built based on the real
geometry and shape features.

As the dimensions of wfk and mpk after PCA are similar
and small, a linear system is good enough to represent the
relationship:

wpk = Ak ·mfk + bk (k = 1, ...,K) (8)

where K is the number of patches, mpk ∈ MP , wfk ∈
WF , Ak is a relation matrix, bk is a vector of correspond-
ing residuals, and υk = {Ak, bk} in Eq.(2). Depending on
the number of PCs retained for wfk and mpk, this linear
system can be over-determined, under-determined, or ex-
actly determined. The QR solver is used to compute the
values of Ak and bk. This is done on each of the patches.

3.3. Parametric Design

Once the correlation functions Ψ in Eq.(1) and Υk in
Eq.(2) are trained and constructed, the learning phase is
done, and we can move to the design phase – the right part
of Fig.3. In this section, the trained correlations will be
used to synthesize new human model with new designated
semantic parameters.

Given a new set of semantic parameters, its principal
components SP ∗ can be obtained by the same procedure
in Section 3.1. With SP ∗ and by means of the trained deep
net, the new feature wireframe WF ∗ can be computed by
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Figure 4: The neural network architecture.

WF ∗ = Ψ(SP ∗, ψ). (9)

The newly generated wireframe can then be separated into
K different sub-sets as the patch boundaries {wf∗k} ∈
WF ∗, using the same connectivity in the database. Noted
that a boundary alignment is done here as described in
Section 3.2. Then, the new mesh patches {mp∗k} can be
generated using Eq.(2):

mp∗k = Υ(wf∗k , υk) (k = 1, 2, ...,K) (10)

Specifically, it is computed based on the linear regres-
sion model in Eq.(8). After all mp∗k are determined, each
of the new mesh patches can be obtained by the back-
transformed to the absolute position. The synthesized
patches are assembled into an intact human model.

It should be noted that if the learning is simply sepa-
rated by patches, the reconstructed results will be incom-
patible, and this is also our motivation to apply wireframe
as the middle man to connect the patches. The local wire-
frames are the subsets of the whole wireframe, in which
the correspondences are always defined. As the local wire-
frames are at the same time the patch boundaries, the
patches are always connected and intersect exactly at the
wireframes, so the compatibility is guaranteed.

4. Experiment

In this paper, we have proposed a new hierarchy method
for statistical learning of human models. In order to verify
the effectiveness and efficiency of the proposed method,
several experiments are conducted in this section to in-
vestigate the performance of the proposed methodology
compared with the previous methods. The database [3]
has 77 subjects of woman model and all of them share
the same mesh connectivity. Each model contains 11, 072
mesh vertices and 39 mesh patches separated by wire-
frame, and there are 1,197 vertices on the feature wire-
frames. To assess the DNN quality, the first 60 sub-
jects from the database are used for training and the re-
maining 17 subjects are used for testing. DNN is imple-
mented with Keras in Python, and for the sake of effi-
ciency, the ADAM stochastic optimization algorithm [31]
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Figure 5: Reconstructing human models with different numbers of semantic parameters (S), Color maps display the Hausdorff distance.

is used with a learning rate of α = 10−3, β1 = 0.9 and
ε = 10−8. The network architecture has five layers as:
FC20+ReLU+Dropout+FC13+ReLU, as shown in Fig.4.
The two fully connected layers have 20 and 13 neurons
respectively, and the ReLU activation function is used in
both layers.

4.1. Sensitivity to System Setting

In the dataset, there are 47 semantic parameters, e.g.,
body height, neck girth, bust, and waist, collected to de-
scribe the human body model. Intuitively, more input
semantic parameters would characterize the human model
more precisely. However, too many parameters may inter-
affect the synthesis of human model. It has been seen that
the learning system of Chu et al. [3] is very sensitive to the
number of input semantic parameters. Being sensitive to
system setting leads to a long pre-processing time of cal-
ibrating the system parameters, and which will limit its
practical uses. Therefore, it is desired to have a learning
system that is stable even under different settings.

In this paper, the wireframe is introduced as an inter-
layer in the learning model, such that the semantic param-
eters are correlated to an abstract and more meaningful
representation of the whole mesh. It is expected that the
impact of semantic parameters will be localized and more
focused. To evaluate the sensitivity performances of the

proposed method and the previous method [3], we con-
duct an experiment using different semantic parameters
to train the learning model, which is then used to syn-
thesize and reconstruct human models. Here, a model is
selected randomly from the database, and its parameters
are used for the synthesis. The performance can be ob-
served easily in Fig. 5 by comparing the “original model”
with reconstructed results of the two methods: “Chu et al”
and “Our”. It can be seen that the previous method [3]
is indeed very sensitive to the number of parameters (S).
When 8 parameters are used, the reconstructed model is
close to original model, but when the number of parame-
ter is larger (e.g., S = 16, 32 and 47), the results become
unreasonable and the larger the worse. In contrast, our
results are more or less similar with different parameter
sizes. This experiment shows that our method is less sen-
sitive to the setting of the system, more repeatable, and
more practical.

To further verify our contribution of using wireframe
as an intermediate layer and applying DNN to model the
relationship, an additional comparison is added in Fig. 5
named “WF&Linear”, which stands for wireframe is used
but only linear regression is applied for both layers (i.e.,
without DNN). Although it is also affected by the number
of parameters used, the results are smoother and closer to
the original model for all the tests compared to “Chu et
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Figure 6: Synthesis error of design methods with various size of input
semantic parameters
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Figure 7: Synthesis error of all 77 models in database with three
design methods

al.”. This comparison reveals the usefulness of wireframe
in stabilizing the learning system. Moreover, the compar-
ison between “WF&Linear” and “Our” demonstrates the
usefulness of DNN in characterizing the non-linear correla-
tion between semantic parameters and feature wireframe.

4.2. Accuracy of Synthesis

To quantitatively compare the accuracy of synthesis re-
sults with the previous method [3], a L2-norm is defined to
measure the difference between two human models (h, h̃):

‖h, h̃‖2 =

n∑
i=1

(xi − x̃i)2, xi ∈ h, x̃i ∈ h̃ (11)

where xi and x̃i are the vertices of h and h̃ (xi, x̃i ∈ <3),
and n is the number of vertices (n = 11, 072 and the unit

of database is cm in this paper). Given a model h from the
database, this experiment is done by synthesizing a new
model h̃ with the same semantic parameters of h and com-
paring the difference between the original model h and the
reconstructed model h̃ using Eq.(11). Ideally, if the trained
model is perfect, the difference should be zero. Therefore,
the smaller the value in difference, the better performance
of the method. Firstly, the previous test on sensitivity to
parameter size is re-evaluated using this error metric, and
the results of synthesis error against parameter size are
plotted in Fig. 6. It supports and further verifies the con-
clusion in Section 4.1 that by using the wireframe as an
inter-layer in the learning model, the proposed method can
localize the impact of semantic parameters through corre-
lating to an abstract representation of the whole mesh,
even when the parameter size increases.

Secondly, a more comprehensive test is done by using
all models from the database, and the results are plotted
in Fig. 7. It can be seen that “WF&Linear” on average
has a smaller value in difference than “Chu et al.”, which
again indicates the usefulness of wireframe. “Our” gives
lowest values in all the tests with a clear level of differ-
ence. The results not only verify the use of DNN, but also
demonstrate that the proposed method can outperform
the previous work significantly. The comparisons are also
visualized in Fig. 8, which shows the Hausdorff distance
using color map on several models synthesized by three
methods. It can be seen that the models reconstructed by
“Chu et al.” and “WF&Linear’ have large differences es-
pecially on the head and arms, but our method generates
very close results and have a higher accuracy.

4.3. Robustness to Extremity

In this experiment, we test the robustness of methods
under some extreme cases in terms of design parameters.
The range of each design parameters in the dataset are
listed in the table of Fig. 9, and we conduct two experi-
ments based on these values. The first one is to test with
extreme values but still within the range, i.e., the smallest
value is used for all semantic parameters to synthesize a
new model. For example, the range of neck girth parame-
ter in the database is [29, 44], and the input neck girth is
set as 29. Reminded that, even the parameters are set as
the smallest values in the data ranges, none of the models
in the database have exactly the same set of values. The
second one is an extrapolation test, i.e., parameters are set
out of the data range. For example, the height is set as 185
beyond its range of [145, 181], and similarly for width, hip
and inseam. Figure 9 has shown the results generated by
the three methods “Chu et al.”, “WF&Linear” and “Our”
using these two parameter sets, which is also included in
its table.

In case 1, the reconstructed model by “Chu et al.” [3]
is intertwined especially on the hands and body. While
“WF&Linear” can generate a more reasonable model but
the surface is a bit rough. “Our” method can generate a
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Figure 8: Comparison of Hausdorff distance color map with different design methods for reconstructed models

smooth and reasonable model. Quantitatively, the para-
metric dimensions of the reconstructed models are mea-
sured by drawing curves on the digital models and cal-
culating the length of the curves. For example, the in-
put “neck girth” is 29, and the measured values of the
models reconstructed by the three methods (Chu et al.,
WF&Linear, Our) are (31.5, 31.3, 30.1); the input “under
bust” is 70, and the results are (74.8, 71.6, 71.8); the input
“waist” is 60, and the results are (62.6, 60.6, 60.0). The
data show that “WF&Linear” and “Our” can synthesize
much more accurate results than “Chu et al.” from a set
of input parameters that is different from all the models
in the database.

In case 2, both the methods of “Chu et al.” and
“WF&Linear” give very abnormal results with either flat-
tened or stretched shapes. It makes sense because extrap-
olation is generally very challenging, and Chu et al. [3]
used a feasibility check to prevent these cases. Surpris-
ingly, “Our” method can still generate a reasonable model
visually, thanks to the stability given by the DNN train-
ing with non-linearity. Similarly, the parametric dimen-
sions are measured. For example, the input “width” is
28, and the results are (33.3, 31.6, 30.6); the input “waist”
is 80, and the results are (88.6, 76.3, 78.9); the input “in-
seam” is 85, and the results are (80.9, 80.4, 84.6). The data

show that “Our” can outperform both “Chu et al.” and
“WF&Linear” in terms of extrapolation.

Therefore, the results from both cases reveal that the
proposed method has a good robustness on parametric de-
sign even for extreme cases and thus more practical for
industrial uses.

4.4. Application: Generative Design

Parametric design method have been used to many in-
dustrial applications, and digital human body is widely
applied in medical, sport, garment design, virtual try-on
systems, etc. However, scanning human body is expen-
sive and time consuming, as a result, small-to-medium
enterprises may have very limited data. Even a huge
amount of data are collected, the design parameters may
not all lie in the range of dataset with the evolution of
design and requirements. Moreover, to create a new de-
sign style that can fit to one or more customer groups, a
fast method is needed to generate a comprehensive dataset
of human body and explore design possibilities. In such
cases, the generative design based on parametric model-
ing can be applied to facilitate product design and sat-
isfy the requirements of various customer’s unique prefer-
ences. The challenge in parametric design of human body
is that the semantic parameters are usually related to each
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Parameter Body height Neck girth Width Bust Under bust Waist Hip Inseam
Data Range (cm) [145, 181] [29, 44] [29, 63] [79, 117] [70, 107] [60, 115] [85, 126] [63, 84]
Case 1 145 29 29 79 70 60 85 63
Case 2 185 35 28 82 78 80 82 62

Figure 9: Comparison of extremity design with different methods

other [32, 33], e.g., height is related to weight, and waist
is related to bust.

From the experiments in previous sections we can see
that the proposed method has a significant improvement
on parametric design of human body design. DNN is used
to learn a good representation of the complex correlation
among human models. The robust design capability of
the proposed method enables its application to high qual-
ity generative design. In this section, a generative design
experiment is conducted to reveal the generative design
capability of the proposed methodology. In the experi-
ment, four design parameters: body height, bust, waist
and hip are varied with different values to study the effect
on the resulting human model and design capability of the
proposed method. Figure 10 shows the generated results
with various parameters. It can be seen that the generated
human models can reflect the variance of input design val-
ues. For example, when the input body height increased
from 140cm to 190cm by 10cm for each model, the result-
ing meshes are also getting taller. Similarly for the bust,
when increasing the design values from 78cm to 98cm by
increasing 4cm on sequent models, the resulting meshes
have a clear increasing effect on the bust area. The simi-
lar design effect can be also found with varying the waist
and hip values. This indicates the proposed design method
is effective and robust.

5. Conclusion

In this paper, we presented a wireframe-assisted deep
learning method for parametric design of human body
modeling. A hierarchy design system consists of build-
ing relationship between semantic parameters and feature

wireframe by DNN, modeling correlation between feature
wireframe and mesh patches with linear regression is de-
veloped. Experimental results show that the proposed de-
sign method outperforms the previous methods and can
capture more feature information of human bodies, less
sensitive to system settings, more robust to extreme cases,
and more accurate in model reconstruction. The intro-
duced intermediate layer of feature wireframe proved to
be useful for human modeling and can be applied to prac-
tical applications such as product customization, the DNN
based method is robust and could be utilized for generative
design in many industrials such as virtual try-on systems.
The framework simply follows a previous work to define
the wireframe, a future work is to study how the defini-
tion of wireframe will affect the learning quality, and find
a quantitative way to verify a wireframe.
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Appendix A. PCA and Dimension Reduction

Demonstrated in Fig. 3 , the correlations between any
two dataset are done on their principal components (PCs).
The details of PCA are briefly discussed using wireframe
here. One of the reasons to apply PCA on the data is for
dimensionality reduction, which is a very useful step for
processing high-dimensional datasets, while still retaining
as much of the variance in the original dataset as possible.

Assume there are N scanned human models in the
database, the wireframe on human model can be defined
by a set of vertices collected as H = [h1 h2 . . . hN ]3M×N ,
where hi is a vector with M three-dimension vertices from
the wireframe of the ith human model in the database.
Letting:

h̄ =
1

N

N∑
i=1

hi (A.1)

Here we have H̄ = [h1 − h̄ h2 − h̄ . . . hN − h̄], and its
covariance is V = H̄(H̄)T , which dimension is 3M × 3M .
Since 3M � N , we instead compute the transpose of its
covariance W = (H̄)T H̄. Then by eigenvalue decompo-
sition, we have Wx = λx. Then n eigenvectors [xj ]N×1
could be obtained, with xj , the jth eigenvector of C can
be determined: yj = H̄xj , here yj is a 3M × 1 vector.
The normalized eigenvectors ŷ = yj/

∥∥yj∥∥ (j = 1, . . . , N)
are the principal vectors of H̄, where each is associated
with a variance σj . The vectors are sorted according to
σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
N . The largest variance means the cor-

responding vector yj has the most dominant effect in the
model space. We keep the first m principal components
according to the percentage of the total variance explained
α by each principal component.

α =
λ1 + λ2 + · · ·+ λm

λ1 + λ2 + · · ·+ λm + · · ·+ λN
≥ 0.95 (A.2)
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Then the wireframe of each human model of all scanned
models serving as training data set can be projected onto
m-dimensional points by:

wf i =


ŷT1
ŷT2
...
ŷTm

 (hi − h̄) (i = 1, . . . , N) (A.3)

Thus, we map H3M×N into a reduced matrix WFm×N =
[wf i] (m � 3M) spanning the linear space of exemplar
patches of human bodies, named as the reduced exemplar
matrix. After PCA, a wireframe hi is projected to a m-
dimensional point wf i and its collection is the principal
components WF .

Similarly, suppose we have S semantic parameters, PCA
can be applied to the semantic parameters to obtain s prin-
ciple components, i.e., SP = [sp1 sp2 . . . spN ]s×N where
spi is a s× 1 vector.
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