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Abstract 

Recent multi-material additive manufacturing (AM) technologies enable the fabrication of an object with accurate deposition of 

different types of materials. Hence, in addition to geometric shapes, it is possible to use different material compositions to 

optimize the mechanical properties of a component for given design requirements. However, current AM processes have a 

limitation on the number of materials that can be deposited during the fabrication process. Due to the constraint, it is critical to 

optimize the material distribution using the limited base materials; however, an extremely large design space exists in a design 

domain that is enabled by the AM technologies. In this paper, we introduce a digital material design framework to generate 

digital material compositions that can be printed and be able to achieve the desired behavior. We take analog material 

composition as the input and perform the analog-to-digital conversion using an exemplar-based approach based on a pre-

computed material library. The patterns in the library are constructed with different combinations of the given base materials, 

and their mechanical properties are computed using finite element simulation. Accordingly, the design goal of the analog-to-

digital conversion is to find material composition in the design domain with matching mechanical properties. A tensor-based 

error diffusion algorithm has been developed to reduce the approximation error during the conversion effectively. Experimental 

tests based on the design framework have been performed. The test results demonstrate our framework can quickly find 

effective solutions for various multi-material design problems. 
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1. Introduction  

Additive manufacturing (AM), a.k.a. three-dimensional (3D) printing, is capable of using multiple types of materials to 

fabricate heterogeneous objects [1] [2]. Its layer-based fabrication strategy allows the controlled deposition of different materials 

in a single object during the fabrication of each layer. Currently, several multi-material AM processes have been developed that 

can print heterogeneous objects (HO), including multiple-nozzle deposition [3], multiple-powder deposition [4], multiple-

droplet dispensing [5], and multiple-vat-based polymerization [6].  In a multi-material AM process such as multiple-vat-based 

polymerization, a 3D model is first sliced into a set of cross-sectional two-dimensional (2D) images to control the solidification 

of different photocurable resins in a layer. Because of the accurate material deposition capability in the layer-based multi-

material AM process, tremendous design flexibility is provided in defining heterogeneous material composition in a computer-

aided design (CAD) model. Hence, in addition to geometric shapes, designers can now refine and optimize material distributions 

in a product component to meet design requirements. Varying material distribution in an object may also help designers to 

address a broader spectrum of design challenges [7]. For example, a tweezers fabricated from a single material as shown in Fig. 

1(a) has a grasp force that is proportional to the input force; for an input force of 5 N, the grasp force would be 2.5 N. Such a 

force may be too large to grasp a fragile object such as a pill or a cell. To avoid the added force to crush the object, assume a 

maximum grasp force is given (e.g., 0.3N). The tweezers based on a single material will require the user to apply a very small 

force or to incorporate an additional mechanism in the design to control the added force by the user. Such a design challenge can 
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easily be addressed by altering the material properties throughout the tweezers to change the relationship between the applied 

force and the grasp force. For example, a design with the continuous material distribution expressed by Young’s modulus is 

shown in Fig. 1(b). Without changing the geometric shape of the tweezers, the multi-material design can achieve 10x smaller 

grasp force based on simulation [7].  

 

 

Fig. 1. (a) When a tweezers with a default material is used, the normal contact force is so large that may break a fragile object; (b) a customized material 

distribution is favorable for this case leading to a lower contact force with the same applied force. However, the design cannot be fabricated by the existing 3D 

printing technologies. This paper aims at converting the continuous material composition into a manufacturable design for multi-material AM technologies. 

Although objects with continuously varying material properties (called analog material composition in the paper) can 

accurately achieve desired mechanical performance, none of multi-material AM technology can fabricate such an object with 

analog material composition, since its fabrication requires a very large number of materials. The digital printing concept [6] [8] 

[9] using a voxel-based representation enables digital material composition to be fabricated by AM processes. That is, an object 

can be decomposed into many assembled voxels, and a multi-material AM machine can be used to control the deposition of 

limited types of base materials in the voxel domain. The deposited material in each voxel is homogeneous instead of 

continuously varying. Directly using the available digital materials to compute the material composition with desired material 

properties is an optimization problem, in which the material variables in the design domain are discrete integers. The 

optimization of material composition is an integer programming problem, which is known to be NP-hard. Even with a limited 

number of based materials (e.g., 2-4), the design space of the digital material composition defined on voxels is extremely large. 

For example, for a simple cubic model represented by 100×100×100 voxels and only two base materials, there would be 21e6 of 

possible combinations that need to be considered. Hence, for a given design requirement, how to optimize digital material 

composition is very challenging due to the extremely large design space that is discrete. The goal of this paper is to present a 

new design methodology for computing digital material composition using an analog-to-digital material converter. 

Recently a fast multi-material design approach [10] based on analog material composition has been developed for 3D 

volumetric meshes. Our design framework takes such analog materials composition as the input. The main focus of the paper is 

to develop an analog-to-digital material conversion so that an accordingly designed multi-material component can be 3D-printed 

using a few base materials and can achieve a similar design behavior. In other words, to address the challenging problem of 

optimizing digital material composition to achieve a given design requirement, we will utilize the analog material composition 

as underlying guidance in computing a 3D-printable design that only consists of the available base materials that are defined on 

a set of voxels. In our approach, the whole design domain is subdivided into a set of tiles, and the analog-to-digital material 

conversion on each tile is implemented through the search of the closest pattern from a digital material library, which was pre-

constructed using finite element analysis (FEA) for a given AM technology. The searching of the closest pattern and the related 

error diffusion are done by considering the mechanical properties of a tile. Our contributions are summarized as follows. 

• An exemplar-based approach has been developed that makes use of the analog material composition as guidance to generate 

digital material composition. The method subdivides a design domain into a set of voxels and tiles whose material 

depositions can be determined based on the pre-computed digital material library. 

• To compare the mechanical properties of heterogeneous tiles, a tensor representation to describe the deformation behavior 

has been developed to enable the search of the closes pattern from the digital material library.  

• A novel error-diffusion algorithm has been introduced to propagate and minimize the approximation errors of digital 

material composition in terms of mechanical properties of the accordingly printed heterogeneous object.  

In our research work, we demonstrated the use of a small number of base materials to approximate the mechanical 

properties of analog material composition closely. We validated our results through both simulation and physical experiments on 

multiple test cases. Although the HO fabrication in our tests was carried out using the multi-vat-based polymerization process 

[6], our approach can be applied to other multi-material AM processes. For the challenging problem of digital material design to 

achieve prescribed design performance, our work is a proof-of-concept that may present a research path for the exploration of 

optimal HO solutions for future engineering systems. The rest of the paper is organized as follows. Section 2 reviews the related 



 

works. Section 3 presents the algorithm overview. The implementation details are discussed in section 4. The experimental 

results are presented in Section 5. Finally, section 6 concludes the paper with future works. 

 

2. Related Work  

Since the capability of designing digital material composition with specified elastic property is the focus of the paper, we 

review the literature related to varying mechanical properties of materials in this section. 

Structural Design. Micro-structured material can be seen as a new material with totally different mechanical properties [11]. 

Sigmund et al. [12] introduced a method to design the periodic microstructure of a material to obtain prescribed constitutive 

properties. They formulated the problem of finding the simplest possible microstructure to achieve desired elastic properties as 

an optimization problem named inverse homogenization problem. Since then, much progress has been made in developing and 

identifying microstructures with desired behaviors [13, 14, 15]. These microstructures can be obtained using various topology 

optimization algorithms, such as the homogenization method [16], the solid isotropic material with penalization (SIMP) [17], 

and the level-set method [18]. However, topology optimization (TO) is an iterative approach that performs FEA repeatedly until 

the best solution is found. Recently some non-iterative and fast approaches for optimal structure design have also been 

developed [19]. The TO process typically results in high computational efforts, especially for a design domain that requires a 

fine resolution. Bickel et al. [19] presented a method to measure deformations of base material’s structures and stack them to 

reach a target behavior through combinatorial optimization.  Schumacher et al. [21] extended this idea by designing 

microstructure to match given homogenous material properties. These microstructures are tiled to create objects with spatially 

varying elastic properties. On the other hand, Panetta et al. [21] introduced a library of tileable parameterized 3D 

microstructures to control the elastic material properties of an object. By choosing a space of structures with a limited but 

sufficiently large set of parameters, a small family of structures can be optimized to achieve specific material properties. 

However, the boundary matching problem between the neighboring tiles must be handled carefully. Also, some fabrication 

constraints (e.g., avoid supporting structures) need to be considered. A recent work [22] presented a framework to optimize the 

structure and material distribution of an object based on given design specifications. The authors utilized multi-material 

microstructures to map the optimal material properties with the corresponding properties so that the objects with prescribed 

functional performances can be fabricated. Different from their work, the proposed method is a direct digital material design 

approach that avoids the burden of high-dimensional optimization. 

Material Design. Heterogeneous objects that comprise two or more materials have been widely used in engineering systems to 

achieve desired performances. HO offer an advantage over homogeneous objects since their functionality can be satisfied by 

designing the material variations in the objects. Some research has been done for modeling and representing a heterogeneous 

object so that the flexibility of controlling both the material distributions and geometric shape design is allowed. For example, 

several mesh-based approaches [23, 24] were presented to represent functionally graded material objects. They decomposed a 

HO model into finite elements and offered local control on material composition. However, these methods show limitations due 

to the approximation of geometry. To address the issue, the feature-based approaches [25, 26, 27] have been introduced to relate 

material composition with design features directly. These methods have enabled a HO to exhibit different properties by using 

features that play a key role in defining the object’s performance. To form a HO with target behaviors, its material properties 

must be determined first. Various designing approaches for modeling heterogeneous objects have been developed in the field of 

computer graphics. For accurately modeling deformable materials, one popular way is to use continuum elasticity laws together 

with finite element modeling. By selecting a proper constitutive material model and tuning its parameters, a large range of 

materials can be modeled, including those with nonlinear and heterogeneous deformation behavior. Also, methods to estimate 

material parameters of the constitutive model have been proposed such as considering Young’s modulus alone [28] and Young’s 

modulus with Poisson ratio [29]. Recent works on acquiring complex heterogeneous deformation were developed through either 

a data-driven modeling approach [30] or a material distribution optimization approach [10]. However, these design approaches 

are not fabricated-oriented. To fabricate smooth heterogeneous objects using a limited number of materials, 3D halftoning using 

error diffusion filters [31, 32] and dithering method [33, 34] have been employed before. Yet, none of these approaches have 

provided a general fabrication-oriented design approach to generate digital material composition for AM technologies that can 

achieve target behavior.  

3. Definition and Algorithm 

An object with multi-material compositions can bring tremendous design freedoms that may enable a HO to achieve 

performances that were difficult to achieve using a single material. However, how to design a heterogeneous object that can be 

fabricated by current multi-material AM processes and achieve given design performance at the same time is still an open 

question. Directly optimizing digital material composition using the given base materials is a mixed-integer optimization 



 

problem, which is well-known difficult and NP-hard. Our framework makes use of the previously developed multi-material 

design approach [10] that uses tetrahedron meshes as design elements to speed up the optimization process. The computed 

analog material composition can satisfy the user’s specified deformation behavior at specified locations. Based on the analog 

material design result, we compute the related digital material composition that has similar deformation behavior and, more 

importantly, is 3D-printable by the current AM technologies.  

One important assumption underlying the use of our design framework is that the spatial distribution of base materials can 

generate intermediate mechanical properties of these materials. This assumption has been physically validated by Huang et al. 

[9], allowing our design framework to be directly used to address real-world problems. Without the loss of generality, our 

discussion focuses on 2.5D cases for the sake of simplicity. A similar method can be extended to 3D cases as discussed in future 

work (Section 6). Given a 2D domain Ω of arbitrary shape, we discretize the domain into finite elements of squares and group 

them into a set of tiles. Assume each tile is a 3-by-3 grid of elements denoted as 𝐶. Each of the elements is associated with a 

designated Young’s modulus. Hence the problem considered in this research is defined as follows:  

For a query tile 𝐶 made of m materials, find a tile 𝐿 that can best-approximate the mechanical property of 𝐶, where 𝐿 is 

made of k materials and  𝑚 ≫ 𝑘.  

To solve the problem, we propose an exemplar-based framework (shown in Fig. 2) that consists of both offline and online 

phases. In the offline phase exemplars of material compositions are created to build a digital material library, and in the online 

phase, the best pattern is searched from the library to closely match the behavior of a queried tile with continuously varying 

materials properties. 

 
Fig. 2. Overview of our design framework. 

The matching of the materials in a local region by “average” properties (e.g., Young’s modulus) has been applied in 

computer graphics [35] and fabrication [20]. However, it is not accurate enough because Young’s modulus does not follow a 

linear relationship with the material composition. The error would be large when the material properties of the base materials in 

the structure differ vastly. Hence searching and matching material patterns with average properties may lead to significant errors 

when the material property differences between the base materials are large [9]. In this paper, we define a tensor 𝑻𝑪 and propose 

using it to describe the mechanical property of a tile 𝐶 . The tensor contains the longitudinal and transverse deformations 

incurred by normal stresses σ and shear stresses τ. Hence, compared with using simple properties such as Young’s modulus, 

tensor 𝑻𝑪 can be better similarity measurement criteria when searching and matching material compositions. The presented 

search approach based on tensors is a novel use of the explicit behavior matching in finding a close match to a target material 

property. The tensor  𝑻𝑪 is defined as follows.  

 

 



 

3.1 Tensor Definition 

Given a square 𝟑 × 𝟑 grid with 𝟒 × 𝟒 nodes and made of m linear elastic materials, the tensor 𝑻𝑪  is defined by four 

independent components: 𝒆𝒙𝒙, 𝒆𝒚𝒚, 𝒆𝒙𝒚  and 𝒆𝒚𝒙. The 𝒆𝒙𝒙 and 𝒆𝒚𝒚 represent the deformations subjected to axial tensile forces, 

while the 𝒆𝒙𝒚  and  𝒆𝒚𝒙 represent the deformations subjected to axial shear forces as illustrated in Fig. 3(b). Both Young’s 

modulus and Poisson’s ratio 𝝊 can vary in the tile. In response to the applied loads, deformations can be expressed in functions 

of 𝒙 and 𝒚. Considering all elements in the tile as a whole, our main interest is the explicit behaviors on element boundaries. 

Hence we can concatenate the deformations on the 𝟒 × 𝟒 nodes to form vectors, which can be defined as follow: 

𝑻𝑪 =

[
 
 
 
 
𝒆𝒙𝒙(𝟑, 𝟎) 𝒆𝒙𝒙(𝟑, 𝟏) 𝒆𝒙𝒙(𝟑, 𝟐) 𝒆𝒙𝒙(𝟑, 𝟑)

𝒆𝒚𝒚(𝟎, 𝟑) 𝒆𝒚𝒚(𝟏, 𝟑) 𝒆𝒚𝒚(𝟐, 𝟑) 𝒆𝒚𝒚(𝟑, 𝟑)

𝒆𝒚𝒙(𝟑, 𝟎) 𝒆𝒚𝒙(𝟑, 𝟏) 𝒆𝒚𝒙(𝟑, 𝟐) 𝒆𝒚𝒙(𝟑, 𝟑)

𝒆𝒙𝒚(𝟎, 𝟑) 𝒆𝒙𝒚(𝟏, 𝟑) 𝒆𝒙𝒚(𝟐, 𝟑) 𝒆𝒙𝒚(𝟑, 𝟑)]
 
 
 
 

                                                        (1) 

where the index (𝑖, 𝑗) corresponds to the node index in the grid, and each deformation vector is determined by the nodal 

displacement. For example, the element 𝑒𝑥𝑥(3,2) is derived at node 𝑛(3,2) in Fig. 3(a), where the line is subjected to a force 

acting in the 𝑥-direction. The amount of elongation depends upon the displacement at nodes 𝑛(0,2) and 𝑛(3,2). If the end node 

displaces 𝑑(3,2) and the start node displaces 𝑑(0,2), the deformation 𝑒𝑥𝑥(3,2) is equal to 𝑑(3,2) − 𝑑(0,2). Each node along the 

boundary captures a unique response of the tile to a load. Hence by combining them together, a material property identification 

can be created for tile 𝐶. We used finite element structural analysis to calculate the nodal displacements in order to compute the 

tensor information. The result is a combination of both shear and tensile strains that capture the characteristics of the tile. Four 

boundary conditions are used for four components (as shown in Fig. 3(b)) and each component represents the deformation state 

in a single DOF that satisfy the boundary conditions. Therefore they can be independently computed and combined to construct 

tensor 𝑻𝑪. With the definitions of the problem and the tensor, the implementation of our digital material design framework will 

be discussed in Section 4. 

 

 

Fig. 3. (a) Element 𝒆𝒙𝒙(𝟑,𝟐) of deformation vector 𝒆𝒙𝒙 is derived from two node points. (b) Four boundary conditions (represented in four types of arrow) are 

applied on a tile to extract the corresponding behavior. 

4. Implementation 

To approximate an arbitrary material distribution of k base materials, we propose an exemplar-based framework to enable 

a direct digital material design by subdividing the whole design domain into a set of tiles. Accordingly, the framework consists 

of an offline phase to generate the exemplar tiles in a digital material library and an online phase to search and match a queried 

tile from the library. 

4.1 Offline Process 

As a pre-processing step, the offline phase consists of constructing a digital material library with k base materials to 

enumerate the possible spatially distributed patterns from such materials. Each pattern is defined by a n-by-n unit-square grid. 

Elements in the grid are assigned with one of the base materials such that every grid forms a unique pattern in the library. The 

digital material library is a collection of tiles that made up of two or more isotropic materials, where each tile can have various 

behaviors when subjected to external forces. The tile can be defined with different size n (n  2). A large size n results in an 

exponential growth of library size and the stresses experienced by the tile are more complicated that may result in a larger 



 

approximation error, while a small size n results in fewer degrees of freedom with simpler stress conditions when finding a 

close approximation from the library. As a balance between the quality, the simplicity, and the efficiency, a 3-by-3 tile (𝑛 =  3) 

is selected in this research. Suppose there are 2 base materials (i.e., 𝑘 =  2, 𝑀𝑠𝑜𝑓𝑡  𝑎𝑛𝑑 𝑀ℎ𝑎𝑟𝑑) provided by a multi-material 

AM machine. The flexibility of the two materials could have over 100 difference. Accordingly, the number of the patterns in 

the digital material library is  𝑘𝑛×𝑛 = 512. We enumerated all the possible patterns by changing the number and the position of 

the two base materials. For example, if 3 soft elements and 6 hard elements are placed in one tile, we can have 84 different 

patterns for all the combinations, which is an n-choose-k problem. A tensor 𝑇𝐿 (𝐿 stands for a tile in library) is then computed to 

describe the mechanical property of the related tile. We employ the k-d tree data structure to store the result so that this high-

dimensional search in the online phase can be sped up. 

4.2 Online Process  

In the online phase, the input analog material composition is quickly converted into the related digital material 

composition. An input model with continuous material composition is first voxelized into cubic block elements. In the analog-

to-digital conversion, it is always preferred to use a higher resolution so that the approximation error can be smaller. However, 

limited by the physical constraints, the resolution of a voxel needs to be setbased on the fabrication resolution of the used 3D 

printer. As the element size is small and the material distribution in an object is smooth, the Young’s modulus of each element 

can be represented by the value of the input continuous material distribution at its centroid point. Accordingly, tiles are 

generated from the voxels and approximated by the exemplars in the digital material library. 

Tile Generation. In solving the material distribution problem, the domain Ω is divided into tiles. Each tile is a 3-by-3 grid that is 

the same as the ones that were used in constructing the offline library. A tensor 𝑇𝐶 is associated with the tile 𝐶 describing the 

deformation behavior of the subdomain.  Tensors are extracted for all the tiles with the same loading and boundary conditions as 

the ones used in the offline phase. While the tiles in the library are squares, the tiles in the object maybe irregular especially for 

an object with freeform shapes. That is, when the boundary of the domain 𝜕Ω is not straight, the related tiles contain empty 

elements inside. During the matching process, we fill the empty elements by 𝑀𝑠𝑜𝑓𝑡. This is because the soft elastic material has a 

minimum effect on the deformation of other elements, and the empty elements are more likely to be assigned as soft material. 

After finishing the matching process, the elements filled by 𝑀𝑠𝑜𝑓𝑡 will be reassigned as empty and no material will be deposited 

to empty elements during fabrication.  

Similarity Measures for Tensors. We aim to find a deformation tensor 𝑇𝐿 from the library that maps the corresponding tile 𝐿 

onto the target tile 𝐶 by minimizing the objective function: 

𝝐(𝑪) = 𝝐𝒔𝒊𝒎(𝑻𝑪, 𝑻𝑳)                                                                                     (2) 

where 𝜖𝑠𝑖𝑚  stands for the distance measure between two tensors. The similarity is measured by the Frobenius norm of the 

distance between the tensors 𝑇𝐶  and 𝑇𝐿s, i.e., argmin
𝑖

‖𝑇𝐶 − 𝑇𝑖
𝐿‖𝐹 , where 𝑖 is the index for the samples in the library. The 

tensor distance, 𝜖𝑠𝑖𝑚, between two tensors 𝑇𝐶  and 𝑇𝐿 is given by 

𝝐𝒔𝒊𝒎 = ‖𝑨‖ = (∑ ∑ |𝒂𝒊𝒋|
𝟐𝟒

𝒋=𝟏
𝟒
𝒊=𝟏 )

𝟏

𝟐
                                                                       (3) 

where 

𝐴 = 𝑇𝐶 − 𝑇𝐿, 

and 

𝐴 =  [
𝑒𝑥𝑥

𝐶 (3,0) − 𝑒𝑥𝑥
𝐿 (3,0) ⋯ 𝑒𝑥𝑥

𝐶 (3,3) − 𝑒𝑥𝑥
𝐿 (3,3)

⋮ ⋱ ⋮
𝑒𝑥𝑦

𝐶 (0,3) − 𝑒𝑥𝑦
𝐿 (0,3) ⋯ 𝑒𝑥𝑦

𝐶 (3,3) − 𝑒𝑥𝑦
𝐿 (3,3)

] 

In this way, the tile is treated as though it has undergone multi-axial states of stresses during the comparison. The 

approach individually captures four loading responses for each tile and combines them all to determine the dissimilarity between 

any two tiles. For example, the tensor matching results of all the tiles in a L-shaped slot (refer to the test case in Fig. 10) are 

shown in Fig. 4. For each tile, the closest digital material pattern was identified in the library based on the similarity measures 

and the related error was calculated. As shown in Fig. 4, most tiles show small errors. One of the tiles with a large error is shown 

in Fig. 4. The target material distribution has Young’s modulus ranging from 1.13e8 to 1.22e8. The digital material pattern using 

the based materials with Young’s modulus of 2e6 and 2.5e8 to match the given tile is also shown in Fig. 4. The large error 

suggests there is no close digital material pattern in the library for some given material composition due to the limited amount of 

patterns in the library. 



 

 

Fig. 4. An example of the similarity measures for tensors based on the tiles of a L-shaped model. One tile and the matched digital material pattern are shown 

with the related errors. 

 

Error Diffusion. An approximation in each tile often comes with an error. The errors can be cumulative if they are in the same 

direction or compensating if they are in the opposite direction. If the errors are cumulative, they are magnified, and the overall 

result of a designed HO becomes too far away from the desired material property. Therefore, it is important to consider the 

neighboring tiles together to make sure the errors are properly compensated. Inspired by the error diffusion methods that have 

been widely used in 2D color printing  [36], we extended the concept of half-toning in 2D color printing to 3D printing by 

distributing errors among neighboring tiles for the developed tensor representation.  

Error diffusion is a halftoning technique that has been commonly used for image manipulation. Through the distribution of 

pixel quantization residual by a weight ratio to neighboring pixels, a multi-level image can be converted into a restricted level of 

the image (e.g., a binary image). A key difference for the error diffusion methods used in 2D color printing and the ones used in 

3D printing is the basic principle and the related criteria. That is, the physical principle for 2D color printing is the gray scale 

levels of a printed 2D image can be visually interpolated by a human brain; in comparison, the physical principle for error 

diffusion in 3D printing is the material behavior under external loads and constraints should be the same.  

Hence, instead of using the approach of spreading error with constant weight ratios that is generally used in 2D color 

printing, we divided the error into four components in the tensor-based error diffusion method. Each component represents the 

deformation error between two tiles that under the same loadings in a single DOF. The error components are spread individually 

across the domain, and each of them needs to follow the governing equation of the related physical property. For example, 

assuming there are two neighboring cells, 𝑐1  and  𝑐2 . They are assigned to materials with Young’s modulus  𝐸1  and  𝐸2 , 

respectively. If 𝑐1 is approximated by a Young’s modulus 𝐸1
̅̅ ̅, our target is to find a new value of Young’s modulus  𝐸2

̅̅ ̅ such that 

the deformation for both  𝑐1 and  𝑐2 after the approximation will be the same. Following the stress-deformation equation, the 

compensation can be governed by 

𝝈𝒍

𝑬𝟏
+

𝝈𝒍

𝑬𝟐
=

𝝈𝒍

𝑬𝟏
̅̅̅̅ +

𝝈𝒍

𝑬𝟐
̅̅̅̅                                                                    (4) 

where 𝑙 is the length of the cells and σ is the stress applied along the 𝑥-direction. With this equation, we can understand how 𝑐2 

should be compensated to reduce the approximation error in 𝑐1. We extend this idea to a tile with multiple Young’s modulus; the 

performance is now not described by a simple scalar value. The tensor representation is also used to describe both the tensile and 

shear response along the 𝑥- and 𝑦-directions as well as the shearing behavior of multi-material tiles.  

Let’s define the approximation error for a tile as 𝜆 =  𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝑎𝑝𝑝𝑟 . The target tensor 𝑇𝑡𝑎𝑟𝑔𝑒𝑡  is the desired value and 

𝑇𝑎𝑝𝑝𝑟 is the approximated tensor that is searched from the digital material library with the minimum distance 𝜖𝑠𝑖𝑚. Note that the 

components of the error λ =  [Δ𝑥 Δ𝑦 Δ𝑥𝜏 Δ𝑦𝜏] are independent of each other and any operations done on them are 

component-wise. Our goal is to produce a correction factor that will be added to the neighbouring tiles such that the total 

*Target tile:   1.13e8            1.22e8 *Base material:    2e6                   3.5e8
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approximation error is reduced. An example of diffusing the component Δ𝑥𝜏 into 3 neighbors is shown in Fig. 5. For the sake of 

simplicity, we only show the deformation caused by shear stress 𝜏𝑥.  

 

Fig. 5. Error diffusion of shear component 𝜟𝒙𝝉. (a) A big tile with edge length 𝒍 is formed by four 3-by-3 grids. (b) The big tile is deformed under shear stress, 

such that the edge length is deformed to �̅�. (c) Tile 𝑻𝟏
′  replaces the original tile with new displacement 𝒅𝟏

′ .  (d) In order to compensate the error ∆𝒅 =  𝒅𝟏 − 𝒅𝟏
′ , 

𝑻𝟐 has to deform (𝒅𝟐 − ∆𝒅) to reach to the same deformed edge length. (e) For the tiles 𝑻𝟑 and 𝑻𝟒, they have to move ∆𝒅 to reach to the original positions of 

top edge. 

In the first block, a tile 𝑇′ from the library is used to replace the original one with the new displacement 𝑑1
′ . Our goal of 

the diffusion operator is to maintain the same length deformation ∆𝑙 =  𝑙 ̅ − 𝑙 of the line between 𝑝1 and 𝑝2 after the replacement. 

Therefore, we need to diffuse the error ∆𝑑 = 𝑑1 − 𝑑1
′  to the block 2 such that ∆𝑙 = (𝑑2 − ∆𝑑) − 𝑑1

′   remains the same. The new 

target 𝑑2
′ = 𝑑2 − ∆𝑑 in the second tile is to compensate for the error from the first one. While for the third and fourth tiles, the 

shear error is diffused such that the top edge of the tiles can stay in the same position. In this way, we try to achieve a similar 

boundary behavior of the tiles when one of the tiles is replaced. Based on these boundary rules, we distribute other error 

components as depicted in Fig. 6 (left most). And the error diffusion operator 𝜌𝑑𝑖𝑓𝑓  can be expressed as 

𝝆𝒅𝒊𝒇𝒇(𝑻𝒊+𝟏,𝒋) = 𝑻𝒊+𝟏,𝒋 + (𝝀𝒊,𝒋
𝑻 ∙ 𝒖𝒙)                                                                 (5) 

𝝆𝒅𝒊𝒇𝒇(𝑻𝒊,𝒋+𝟏) = 𝑻𝒊,𝒋+𝟏 + (𝝀𝒊,𝒋
𝑻 ∙ 𝒖𝒚)                                                          (6) 

𝝆𝒅𝒊𝒇𝒇(𝑻𝒊+𝟏,𝒋+𝟏) = 𝑻𝒊+𝟏,𝒋+𝟏 + (𝝀𝒊𝒋
𝑻 ∙ 𝒖𝒙𝒚)                                                             (7) 

where 
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Fig. 6. Diffusion inside a group of tiles. The gray tile diffuses the error 𝝀 to other white tiles, and the tensor of the white tiles will be updated for the computed 

compensation. The operations are performed four times in total to see which one is the best approximation for this big tile. 

Each tile can either update its tensor or diffuse the error to the neighboring tiles. Updating the tensor means the current tile 

needs to compensate the error 𝜆 induced by its neighbors, while diffusing the error to others means current tile is the one to 

generate 𝜆, and its neighbors’ tensors will be updated accordingly. The algorithm starts with one initial tile 𝐶(𝑖, 𝑗) and a group of 

four tiles is formed by  𝐶(𝑖, 𝑗), 𝐶(𝑖 + 1, 𝑗), 𝐶(𝑖, 𝑗 + 1), 𝐶(𝑖 + 1, 𝑗 + 1) . To make sure the error diffusion does not have any 

directional bias, the tiles will be considered four in a group using the error diffusion principle as discussed in Fig. 5. For a group 

with four tiles , the target tensor based on the continuous material distribution of the four tiles is computed using FEA. 

Because there are only four update/diffusion compositions (refer to Fig. 6), instead of applying any heuristics to decide which 

should be updated and which should be diffused, we simply test all the four cases. For each case, we identify the digital 

material pattern in the library with the most similar tensor for each of the four tiles. Then we use FEA to compute the tensor 

for the group with replaced digital material composition. Finally the case that gives the lowest tensor approximation error is 

chosen as the diffusion result. After that, the process will proceed to the next tile 𝐶(𝑖 + 1, 𝑗) and form another group of four 

tiles to update the associated tensors. In other words, we determine the local diffusion for every four tiles and repeat the 



 

operation over the entire domain. As a result, the global deformation of the computed digital material composition is capable of 

being approximated closely to the target one. There are special cases for the tiles on the domain boundary 𝜕Ω that have empty 

elements. As their empty elements are just filled by 𝑀𝑠𝑜𝑓𝑡 and they are the free ends, their approximation errors will not be 

propagated to their neighbors during the error diffusion; however, they still receive errors from their neighboring tiles. Because 

this method is basically a greedy algorithm, different starting points and the related sequence will lead to different diffusion 

results. However, due to the aforementioned selection approach among four update/diffusion compositions, the diffusion results 

and the related approximation errors are similar in our experimental tests. The indifference could be due to the low shape 

complexity of the tested models. A strategy of determining the starting point and error diffusion sequence for more complex 

models will be studied in our future work.  

5. Results and Discussion 

The proposed digital material design framework was implemented using C++. All the tests were performed on a computer 

with Intel i7-4790 CPU @3.60GHz and 16GB RAM. The main goal of the framework is to use only the two base materials to 

approximate the mechanical properties of given analog material composition. For the framework to compare the deformations 

between the continuous and digital materials, both simulations and physical experiments were performed under the same loading 

and boundary condition. All the simulation in the tests was done using FEA software COMSOL Multiphysics 5.1 on a Matlab 

platform. In the physical experiments, a mask-image-projection-based Stereolithography (MIP-SL) process [6] was adopted to 

fabricate the designed heterogeneous objects with digitally controlled multi-material deposition. The two photocurable resins 

selected for our experimental testing are 𝑀𝑠𝑜𝑓𝑡 = 2𝑀𝑃𝑎 and 𝑀ℎ𝑎𝑟𝑑 = 350𝑀𝑃𝑎. The two base materials enable one to cover a 

range of the input continuous Young’s modulus from 2MPa to 164MPa. 

For each test case, an input 3D model is sliced into 2D layers that are defined as mask images. The generated mask images 

are then projected onto the related photocurable resin tank to solidify the materials in the corresponding pixels selectively. For 

two base materials considered in a HO design, two mask images are used to specify the position of the two base materials in 

each layer. An example for a CAD model (refer to Fig. 9) is shown in Fig. 7. After the related material is deposited in a layer, 

we switch resin tanks between Msoft and Mhard, and the extra resin is cleaned after the switch. Hence for each layer of the 3D 

model, two mask images for both materials are generated based on the computed digital material composition. The resolution of 

the design domain is defined by the 3D printer’s XY resolution. Each element is corresponding to a regular grid of pixels. The 

resolution of our 3D printer was 0.05 mm per pixel. However, it is challenging to use a single pixel size to fabricate the 

checkerboard type of geometry due to uncontrolled noises in environment, material, and hardware and the requirements of 

removing extra resin. For the sake of reliability and repeatability, we defined the size of voxels as 0.25mm, which was used in 

all the tests in the paper.  

  

Fig. 7. Mask images generated for fabrication. The red pixels indicate the position of hard material while the green pixels refer to soft material. 

5.1 Quality 

To evaluate the performance of the presented design framework, we used Hausdorff distance to measure the shape error of 

the digital material design results. The Hausdorff distance 𝑑𝐻 describes the maximum distance of a set to the nearest point of 

another set. Let 𝐴 = {𝑎1, … , 𝑎𝑚} and 𝐵 = {𝑏1, … , 𝑏𝑛} denote the mesh nodes of two models. The Hausdorff distance is defined 

as 
𝒅𝑯(𝑨, 𝑩) = 𝒎𝒂𝒙(𝒉(𝑨, 𝑩), 𝒉(𝑩, 𝑨))                                                                                          (8) 

where   ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖. 

In our experiments, 𝑑𝐻 is computed to estimate the deviation of the approximation solutions. Table 1 lists the Hausdorff 

distance for all the test cases. We also listed the Young’s modulus range 𝐸𝑟𝑛𝑔 of the given designs, the number of elements 𝑛, 

and the runtime performance during the online phase. In general, the results show that the approximation error is small (<
0.05%) relative to the size of the domain.   



 

Table 1. Simulation performance for various examples. The different columns show the shape deviation of the approximated designs, the Young’s modulus 

range of the given designs, the time in minutes needed to compute the online phase and the number of elements in the domain. 

Model Fig. 𝒅𝑯 𝑬𝒓𝒏𝒈(MPa) T(min) #n 

Rabbit 8 0.036% 2.0-8.8 16.3 2725 

Flappy 9 0.028% 2.0-16.1 7.5 1458 

Slot 10 (up) 0.011% 2.0-21.3 19.5 3156 

 10 (down) 0.033% 2.0-21.3 19.5 3156 

Tweezers 11 (1) 0.014% 2.0-16.9 30.3 4661 

 11 (2) 0.021% 2.0-164.1 30.3 4661 

 

In Fig. 8, we show an example that the same geometry (the rabbit ears) can have different deformations under the same 

applied force due to different material compositions. The left ear is designed to be more rigid than the right ear. When the same 

force is applied to both ears, the right ear is deformed more than the left one. Similarly, Fig. 9 shows an example of a 

symmetrical shape with symmetrically applied loads. However, the heterogeneous material composition results in asymmetrical 

deformation that is non-intuitive to specify the digital material composition. The two test cases highlight the motivation for our 

work. For multi-material design, directly optimizing the material composition using k base materials is extremely challenging; 

interactively finding the right combinations as well as the right positions of where to put the base materials is also difficult for 

designers.  

 

Fig. 8. (a)The rabbit model is subjected to equivalent force on the ears. (b) Desired deformation is predicted by FEA simulation. (c) A design uses two materials 

to approximate the deformation. (d) Physical test of the fabricated model. (e) The actual deformations are consistent with the predicted result. 

 

Fig. 9. (a) Flappy CAD model. (b) Predicted deformation with the analog material distribution. (c) Predicted deformation with approximation solution. The 

result shows that the framework can approximate accurately the behavior using two materials. (d) Fabricated model and its deformation result.  

The L-shape slot shown in Fig. 10 is a more complex example with internal holes. It also demonstrates that our approach 

is not force-oriented. As shown in Fig. 10, two forces are applied to different locations in each design. Their deformation 

behaviors are similar in both the approximated and continuous material distributions. The test case shows that the presented 

tensor representation is general and able to approximate the desired material properties for two or more specified deformations. 

Finally, the tweezers in Fig. 11 demonstrates a robotic grasper whose design can benefit from our multi-material design 



 

framework. In the test case, we studied the displacement at the tipping point of the tweezers (yellow dot) under various loading 

conditions to verify the impact of different applied forces on the accuracy of the deformation behaviors of different designs. A 

similar force-displacement relationship is observed in the target and the approximation results. The errors of one of the tweezers 

designs (Design 1) are summarized in Table 2. We report the shape deviations in terms of Hausdorff distance. More details of 

the physical experiments for the tweezers case are shown in Appendix A. 

 

Fig. 10. Two forces are applied to the L-shape slot model. The results show that the solution is able to approximate the material properties instead of specific 

deformations. 

Table 2. Hausdorff distance of the approximated tweezers (Design 1 in Fig. 11) under various loads. 

Force 
(𝑁/𝑐𝑚2) 

𝒅𝑯 

0.05 0.003% 

0.13 0.007% 

0.20 0.009% 

0.27 0.013% 

0.45 0.021% 

0.69 0.033% 

We also compared the deformation of the tweezers subjected to 0.27 𝑁/𝑐𝑚2 in the single material and multi-material 

designs. As shown in Fig. 11, two multi-material tweezers designs possess mechanical properties that are between the two single 

material designs, which suggest the proposed multi-material approach can generate a range of configuration solutions for more 

complex deformation behaviours under the same load. Thousands of possible heterogeneous designs can be incorporated in 

more complex product components that were previously impossible to design and fabricate. All the test cases show that our 

design framework is general for various geometric shapes and material variations. 



 

 

Fig. 11. An example of multi-material tweezers models demonstrates the ability to convert designs with target deformations into real products for additive 

manufacturing. Force and displacement relationship are plotted for the target and approximation designs, in addition to the single material designs. Both the 

simulation and physical experiment results proved that the proposed method could provide good approximations for input analog material compositions, 

regardless of their geometric shape and material variations. 

5.2 Performance 

While the primary focus of our study is the effectiveness of the computed multi-material solutions, we discuss the 

efficiency of our approach in the section. From the computation point of view, the framework can be divided into three phases: 

library construction, input analysis, and error diffusion (refer to Fig. 1). The computation of the first two phases mainly relies on 

the finite element simulation using COMSOL. To extract a tensor from one tile, the finite element analysis needs to be 

performed four times with different force conditions, which takes around ~2.2 seconds in total. Since we need to extract 512 

tensors for all the patterns in a digital material library, this could require around 20 mins in the library construction phase. 

Compared with the optimization method for designing microstructures [21], it took around 2 hours to converge per structure 

with about 4000 elements, and there is an error of 0.6% - 2.5% between the predicted and the measured results. For the second 

and third phases, the performance depends on the number of tiles, which is related to the input geometric shape and element 

sizes. Table 1 lists the number of elements for all the test cases. For example, in the tweezers model, extracting the tensors from 

the input analog material takes around 30 mins, while the error diffusion takes about 13 seconds. It can be seen that the error 

diffusion phase is very fast compared with the other two phases. The main bottleneck of the framework is the communication of 

our software with COMSOL during the process of extracting tensor. In the future, we will implement an integrated  FEA solver 

to reduce the computation overhead in the current implementation.  

6. Conclusions and Future Work 

In summary, we have presented a novel digital material design framework to generate heterogeneous objects with user-

specific behavior. The computed heterogeneous objects can then be printed by multi-material additive manufacturing processes. 

Our work provides a solid foundation on how to utilize multi-materials to achieve specified mechanical properties, and how to 

ensure the solution can be manufactured by the current 3D printing technology. While most AM processes have limited base 

materials that can be printed, a heterogeneous object that can now be 3D-printed may still have a design space that is too large to 

explore. It is difficult to directly optimize the digital material composition in a given design domain due to the exponentially 

increased degrees of freedom. Our proposed framework offers a promising path on generating digital materials that are 3D-

printable and, at the same time, meet the given design requirements. We have performed both simulation and physical 

experiments to validate the design framework for multiple test cases. The results show good consistency between the simulation 



 

and the physical test results.  Our framework is also general and can be scalable to support more than two materials as well as 

including Poisson’s ratio as a design parameter.  

In our future work, we plan to extend the work from 2D to 3D using a similar principle. That is, the tile in 3D cases would 

be a cubic of size 3 × 3 × 3; and for the behavior of the cubic tile, the tensor should include the deformations subjected to forces 

along the x, y, z directions and in three shearing planes. Accordingly, the digital material library for 3D cases needs to be 

expanded dramatically with the number of patterns to be 23×3×3. Although the idea seems straightforward, the computation will 

be significantly increased. Hence a data-driven approach with compression technique may be considered in our future work to 

reduce the searching and matching complexity. We also plan to extend the framework for an increased number of grids such as 

4-by-4 or 5-by-5 elements as well as different loading conditions. Similarly, the required computation will be significantly 

increased as well. 
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Appendix A. Physical Experiment of the Tweezers Case 

Physical experiments (see Fig. 12) were conducted to verify the performance of the multi-material designs. We measured 

and plotted the displacement of the tweezers tip point against the predicted displacements from the FEA simulation. Four 

fabricated tweezers were tested using a soft material, a hard material, and two mixtures of the two base materials that were 

generated by our design framework. In the first and second experiments, we hypothesized the Young’s modulus of the soft and 

hard materials. The simulation result for the third and fourth experiments are acquired based on the hypothesized results. By 

comparing the measured and predicted performance of the tweezers designs, it can be observed that the response of the 3D-

printed objects is closely matched to the predicted one. The discrepancy between the tested and predicted results is also shown 

in the plots, which could be caused by measuring and manufacturing errors. Overall, the experiments verify the effectiveness of 



 

the presented multi-material design approach. 

 

  

 
 

  

Fig. 12. Physical setup for the experiments.  (a) Tweezers fabricated in pure soft material. (b) Tweezers fabricated in pure hard material. (c)(d) Tweezers 

fabricated with two materials as designed in Fig. 11. A comparison between the actual and the predicted deformation values is plotted, with some minor 

discrepancy that is probably due to measuring and manufacturing errors. 

 

(a) pure soft material 

(b) pure hard material 

(c) digital material design 1 

(d) digital material design 2 


