
Calculation of two-dimensional pulse electron paramagnetic resonance (EPR) signals using

Stochastic Liouville equation and application to a system of coupled electron spin ½ and nuclear

spin ½ in a malonic acid crystal

Lin Li

A Thesis

In the Department

of

Physics

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Physics) at

Concordia University

Montreal, Quebec, Canada

June 2019

© Lin Li, 2019

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Lin Li

 Entitled: Calculation of two-dimensional pulsed electron spin resonanc

(ESR) signals using Stochastic Liouville equation and applicaton to

a system of coupled electron spin 1/2 and nuclear spin 1/2 in

malonic acid crystal

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Physics)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 Chair

 Dr. Yogendra Chaubey

 External Examiner

 Dr. Arthur Van der Est

 External to Program

 Dr. Gilles Peslherbe

 Examiner

 Dr. Mariana Frank

 Examiner

 Dr. Calvin Kalman

 Thesis Supervisor

 Dr. Sushil K. Misra

Approved by __

 Dr. Valter Zazubovits, Graduate Program Director

August 6, 2019

 Dr. Andre Roy, Dean

 Faculty of Arts and Science

iii

ABSTRACT

Calculation of two-dimensional pulse electron paramagnetic resonance (EPR) signals using

Stochastic Liouville equation and application to a system of coupled electron spin ½ and

nuclear spin ½ in malonic acid crystal

Lin Li, Ph.D.

Concordia University, 2019

This dissertation is devoted to the subject of computations for pulse EPR by solving the

Liouville von Neumann equation in Liouville space in the presence of relaxation, providing a

comprehensive theoretical treatment, including a detailed description of relaxation processes.

The algorithm is illustrated here to simulate SECSY and echo-ELDOR signals for an

electron-nuclear spin coupled system (electron spin S=1/2; nuclear spin I=1/2) in an irradiated

malonic-acid crystal, taking into account spin-phonon modulation. The simulated results so

obtained are compared with the experimental results of Lee et al. (1993). The experimental and

simulated spectra are found to be in reasonably good agreement.

In addition, the developed algorithm is used to simulate the spectra for a specific case of

the electron-electron dipolar interaction of two nitroxide radicals, each with electron spin S=1/2,

nuclear spin I=1/2, for a proposed experiment, intended for distance measurements. The Pake

doublets in the Fourier transform of both the signals calculated with and without relaxation

correctly indicate the spacing of 10 MHz of dipolar coupling as assumed in the simulation.

This algorithm is also extended to calculate the effect of relaxation due to fluctuation of

spin-Hamiltonian parameters by phonon modulation (Freed and Fraenkel, 1963; Slichter, 2013).

From a comparison of the Figures showing the simulated SECSY and echo-ELDOR signals for

an electron-nuclear spin-coupled system (S = I = ½) in an irradiated malonic acid crystal as

calculated for 𝜏𝑐 = 10−5, 10−6, 10−7 and the fluctuation ∆(𝑆𝐻𝑃) = 10 %,1%, 0.1% of their

static values as fitting parameters with the experimental results of Lee et al. (1993), it is seen

that for the two cases considered (SECSY and echo-ELDOR) the best agreement is obtained for

the following ranges: 𝜏𝑐 = 10−6𝑠 - 10−7𝑠 and ∆(𝑆𝐻𝑃) = 0.1 % - 1.0 %. The value of

𝜏𝑐~10−7𝑠 as calculated by Freed (1965) is found to be in the range of values found here that

provide a good agreement of the calculated spectra with the experimental ones. In the light of

these observations, it appears that the fluctuation model considered here, may indeed be refined

further to reproduce the simulations to be in satisfactory agreement with the experiment.

iv

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Dr. Sushil K. Misra for his

continuous support of my Ph.D study and research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in my entire research work and writing of this

thesis.

I would like to express my special gratitude to Dr. Mariana Frank and Dr. Calvin S. Kalman for

providing me with encouragement during my studies at Concordia University.

I thank the Graduate Program Directors Dr. Laszlo Kalman, Dr. Pablo Bianucci and Dr. Valter

Zazubovits, and Assistant to the Chair Madam Marie-Anne Cheong Youne for their help in my

studies.

I also thank Mr. Hamid Reza Salahi for his careful checking of my calculations and constructive

suggestions.

 Financial assistance from Dr. Misra’s NSERC grant towards my bursary is gratefully

acknowledged.

Last but not the least; I would like to thank my wife and children for their support throughout my

study.

v

Table of Contents

List of Figures ... vii

List of Abbreviations ... viii

1. Introduction ... 1

2. Pulse electron paramagnetic resonance (EPR) .. 3

2.1 Overview ... 3

2.2 Pulse EPR.. 3

2.3 Coherence pathways ... 6

2.4 Applications of pulse EPR and simulation software libraries ... 7

3. LVN equation in pulse EPR .. 8

3.1 Liouville von Neuman Equation ... 8

3.2 Rotating frame .. 10

3.3 Solution of LVN during free evolution ... 10

3.4 Solution of LVN during a pulse .. 13

3.5 Phenomenological relaxation matrix elements ... 19

3.6 Coherence pathways ... 20

3.7 Simulation procedure .. 21

4. Simulation of SECSY and echo-ELDOR ... 22

4.1 Spin Hamiltonian and parameters ... 22

4.2 Relaxation ... 24

4.3 Gaussian inhomogeneous broadening effect ... 26

4.4 Illustrative Examples .. 26

4.4.1 SECSY signals ... 28

4.4.2 Echo-ELDOR ... 30

4.5 Computing time .. 32

5. Simulation of Electron-electron dipolar interaction .. 32

5.1 Spin Hamiltonian and parameters ... 32

5.2 Relaxation matrix .. 33

5.3 Pulse-propagator superoperator for the dipolar-coupled system... 33

5.4. Illustrative Examples ... 34

6. Relaxation due to fluctuations of SHP .. 37

6.1 Calculation of relaxation due to fluctuation of SHP ... 37

vi

6.1.1 Calculation of element of relaxation matrix ... 38

6.2 Autocorrelation and spectral density functions ... 42

6.3 Relaxation due to fluctuation of SHP for an electron-nuclear spin-coupled system......................... 43

6.3.1 Relaxation matrix R ... 44

6.3.2 Spectral density functions .. 45

6.4 Estimation of correlation time (𝜏𝑐) ... 49

6.5 Simulation of the relaxation as caused by fluctuation of spin-Hamiltonian parameters 50

7. Concluding remarks and future perspectives .. 55

References ... 57

Appendix A. Reprint of the publication: Misra, Sushil K. and Lin Li, a. 2018. "A Rigorous Procedure for

Calculation of Pulsed EPR Signal with Relaxation." J. Apl. Theol 2 (1): 5-16.. .. 61

Appendix B. Vectorization of a Matrix .. 63

Appendix C. Equivalence of different ways of expressing Liouville von Neumann (LVN) equation 64

Appendix D. Eigenvalues and eigenvectors of a four Level Electron Nuclear System 68

1). Eigenvalues .. 69

2). Eigenvectors .. 72

3). Matrix 𝑀 = 𝑇𝛼 † 𝑇𝛽... 75

Appendix E. Flow chart for computing SECSY and echo-ELDOR signals ... 82

Appendix F. The various terms in the spin-fluctuation Hamiltonian 𝐻1 .. 83

Appendix G. Matlab source code .. 85

1. main function .. 85

2. Density_class .. 88

3. FED_class ... 90

4. FluctuationRelaxation_class ... 91

5. Hamiltonian_class ... 101

6. HamiltonianFactor_class ... 103

7. Pathway_class ... 107

8. Plot_class .. 108

9. Pulse_class .. 113

10. Relaxation_class ... 115

11. Signal_class... 118

vii

List of Figures
Figure 4.1 Four-level electron-nuclear spin coupled (S=1/2, I=1/2) system ... 24

Figure 4.2 Relaxation pathways defined in the H0 basis ... 25

Figure 4.3 Relation of the structure of the malonic acid radical R to the principal axes of the 𝑔, 𝐴 matrices

 .. 27

Figure 4.4 Pulse sequence for obtaining SECSY signal. .. 28

Figure 4.5 Simulated time-domain and Fourier transforms of SECSY signals (Figure 8 of Lee et al.

(1993)) .. 29

Figure 4.6 Simulated time-domain and Fourier transforms of SECSY signals (Figure 9 of Lee et al.

(1993)) .. 30

Figure 4.7 Pulse sequence for obtaining Echo- ELDOR signal .. 31

Figure 4.8 Simulated time-domain and Fourier transforms of Echo-ELDOR signals (LPF’s Figure 11,

reproduced here with the permission of the authors.) ... 32

Figure 5.1 Simulated Fourier transform of SECSY signals with and without relaxation for an electron-

electron dipolar-coupled system ... 35

Figure 5.2 Simulated Fourier transform of echo-ELDOR signals with and without relaxation for an

electron-electron dipolar-coupled system ... 36

Figure 6.1 Simulated Fourier transforms of SECSY signals with relaxation due to fluctuation (Figure 8 of

Lee et al. (1993)) ... 51

Figure 6.2 Simulated Fourier transforms of SECSY signals with relaxation due to fluctuation (Figure 9 of

Lee et al. (1993)). .. 52

Figure 6.3 Simulated Fourier transforms of echo-ELDOR signals with relaxation due to fluctuation

(Figure 11 of Lee et al. (1993)). .. 53

viii

List of Abbreviations

Echo-ELDOR - Echo Electron-electron Double Resonance

SECSY - Spin Echo Correlation Spectroscopy

DEER - Double Electron-Electron Resonance

EMR - Electron Magnetic Resonance

ENDOR - Electron Nuclear Double Resonance

EPR - Electron Paramagnetic Resonance

ESEEM - Electron Spin Echo Envelope Modulation

ESR - Electron Spin Resonance

FID - Free Induction Decay

FT - Fourier Transform

HF – Hyperfine

LVN - Liouville von Neumann

NMR - Nuclear Magnetic Resonance

PELDOR - Pulse Electron Double Resonance

SHP - Spin-Hamiltonian Parameters

SLE - Stochastic- Liouville equation

1

1. Introduction

Pulse electron paramagnetic resonance (EPR) is a powerful technique that can be

exploited to reveal unique detailed insights into the electronic and geometric structures of

environments of paramagnetic centers in biological, organic and inorganic systems. It can

distinguish weak interactions between electron spins, as well as those between electron and

nuclear spins, not resolved by continuous wave (CW) EPR. The wealth of information encoded

in a pulse EPR spectrum of a paramagnetic system can be used to characterize the dynamics of

spin probes embedded in diamagnetic systems. This requires suitable theoretical tools for

interpreting the effects of molecular motions on the spectrum. Pulse EPR has a wide range of

applications in biology, chemistry, physics and materials science, as described, e.g. by Schweiger

and Jeschke (2001), Deligiannakis et al, (2000), Prisner et al, (2001), and Van Doorslaer et al,

(2007) .

While excellent numerical simulation techniques for CW EPR have been developed and

applied to experiments, see e.g. Hanson et al, (2004), Stoll et al, (2006), Misra (2011), the

currently available simulation methods for pulse EPR have either limitations, or they are too

general. They work well in some cases, but are usually limited to specific experimental cases,

such as considering a single nucleus, an axial hyperfine-structure tensor, negligible nuclear

quadrupole coupling tensor, an isotropic g-matrix, or an infinitely short pulse, see e.g. Vinck and

Doorslaer (2004) García-Rubio et al, (2007). On the other hand, there are available two open-

source packages, which are very general (Hogben et al, 2011; Pribitzer et al,2016) in that they do

not deal with specific types of relaxation of spin-coupled systems in solids. To this particular

purpose, it is necessary to exploit the Liouville von Neumann (LVN) equation numerically, as

carried out in this thesis.

Hilbert-space formulation cannot be directly used to calculate relaxation effects, because

the matrix elements of the relaxation superoperator require a pair of double indices, based on the

eigenbasis of the Hamiltonian operator, which are not amenable to use in Hilbert space

formulations, see e.g. Stoll (2009). Misra et al, (2009). Misra (2011, 2011a), Schwartz et al,

(1982), Gamliel and Levanon (1995), Håkansson et al, (2013), Franck et al, (2015). Accordingly,

a numerical simulation technique for calculating spin-correlation spectroscopy (SECSY) and

echo electron-electron double resonance (echo-ELDOR) signals in pulse EPR experiments has

been developed, here by treating the LVN equation as a matrix differential equation in Liouville

space in order to take into account the relaxation effects rigorously. The LVN equation is an

exact quantum-mechanical equation of motion for the density matrix. This equation is valid even

for relatively fast random processes, and is therefore especially suitable for EPR, where the

natural time scale is so short that the random processes are not usually fast on this time scale. It

is, in fact, the time-dependent Stochastic Liouville equation, which includes, in addition to a

relaxation term, a time-dependent but not stochastically time-dependent Hamiltonian, e.g. a

Hamiltonian representing the pulses. Misra and Li (2018) carried out a solution of this problem,

using the spin Hamiltonian specified in Lee et al. (1993). (This publication is included here as

Appendix A).

A general theoretical approach is employed in this thesis to exploit the LVN equation

numerically, which treats the evolution of the density matrix both in the presence and in the

2

absence of a pulse, wherein the relaxation matrix can be numerically treated for the cases of (i)

relaxation due to the spin-phonon modulation as carried out by Lee et al. (1993) to test the

algorithm developed here, and (ii) relaxation due to the fluctuation of spin-Hamiltonian

parameters by spin-phonon modulation. As for (ii), a framework for taking into account the

fluctuation of spin-Hamiltonian parameters was outlined by Lee et al. (1993) for an electron-

nuclear spin-coupled system with electron spin S=1/2 and nuclear spin I=1/2; however, they did

not carry out any quantitative numerical calculations, which required evaluation of appropriate

auto-correlation functions. A solution based on this approach is included in this thesis.

The organization of this thesis is as follows. The basic theory of pulse EPR is given in

Chapter 2. The procedure for matrix solution of the LVN equation for pulse EPR experiments is

developed in Chapter 3. Thereafter, the details of the calculation of spin-echo-correlation

spectroscopy (SECSY) and echo electron-electron double-resonance (echo-ELDOR) signals,

including selection of coherent electron pathways, are given in Chapter 4. The simulations of

pulse EPR spectra for SECSY and Echo-ELDOR experiments for the cases discussed by Lee et

al (1993) in a malonic acid single crystal for an electron-nuclear spin-coupled system with

electron spin S=1/2 and nuclear spin I=1/2, and the calculation of echo-ELDOR signal for

dipolar-coupled nitroxide radicals in malonic single crystal, which can be exploited to estimate

distances between two nitroxide radicals, are described in Chapter 5. The relaxation due to the

fluctuation of spin-Hamiltonian parameters by spin-phonon modulation is treated in Chapter 6.

The concluding remarks and future perspectives are included in Chapter 7. The Matlab source

code is included here in Appendix G.

3

2. Pulse electron paramagnetic resonance (EPR)

This chapter introduces a survey of relevant literature, involving the main concepts of

pulse EPR to provide a background for the research work presented in this thesis dealing with the

simulations of spin-echo correlation spectroscopy (SECSY) and echo-electron double resonance

(echo-ELDOR) signals. (The important terms in the context of pulse EPR as described here are

shown in italics to draw attention.) For a detailed description refer to e.g. Schweiger and Jeschke

(2001), Atta-Ur-Rahman et al. (2015), Misra and Li (2018), PulsedEPR_wikipedia (2019).

2.1 Overview

EPR is a technique that can directly detect and quantify unpaired or odd electrons in

atoms or molecules. Materials containing unpaired electrons are called paramagnetic materials.

They exhibit net magnetic moments in an external magnetic field. EPR is also known as electron

spin resonance (ESR). Although both names, EPR and ESR, are used in practice. A third name,

electron magnetic resonance (EMR), has also been introduced, since the magnetic resonance is

caused by the electron magnetic moment. Throughout this thesis, the term EPR is used.

EPR is a spectroscopic technique, which is widely used in biology, chemistry, medicine

and physics to study atom or molecule systems with one or more unpaired electrons, see. e.g.

Prisner et al. (2001), Misra et al. (2015), Åman et al. (2007). EPR and ENDOR provide

information on the structure, dynamics and spatial distribution of paramagnetic materials due to

the special relationship between magnetic parameters, electron wave functions and spin

configurations of surrounding nuclei (Van Doorslaer et al., 2007).

Traditional continuous wave (CW) EPR methods, wherein the applied microwave

frequency is kept fixed and the external magnetic field is swept, are limited in both spectral and

temporal resolution. In Pulse EPR, the spectrum is obtained by applying a variety of pulse

sequences to produce a two-dimensional time-domain spectrum, e.g. spin-echo correlation

spectroscopy (SECSY) and echo-electron double resonance (echo-ELDOR), using pulses of the

same frequency, as simulated in detail in this thesis. (N.B. The use of “double” in echo-ELDOR

does not imply use of two frequencies here.)

Blume (1958) first reported electron spin echo. It was produced in sodium in ammonia

solution at its boiling point -33.8°C using the magnetic field of 62 mT and the frequency 17.4

MHz. In the same year, Gordon and Bowers (1958) reported the detection of microwave electron

spin echoes, using frequencies of 23 GHz to excite dopants in silicon. As early as 1960s, the

Mims (1965) team of Bell Laboratories conducted a large number of pulse EPR studies.

However, in the first ten years, only a few groups were able to do research in this field, because

of the expensive instruments, the lack of microwave components and the slow speed of digital

electronic devices. In 1961, Mims, Nassau and McGee (1961) were the firsts to observe electron

spin echo envelope modulation (ESEEM). Mims (1965) invented pulse electron nuclear double

resonance (ENDOR) in 1965. In this experiment, pulse NMR transitions were detected by pulse

EPR. Pulse ESEEM and pulse ENDOR are still important for studying the coupling between

nuclear and electron spins.

2.2 Pulse EPR

Pulse EPR is an electron resonance technique, which investigates the alignment of the net

magnetization vector of electron spins rotating in a constant external magnetic field, which is

4

disturbed by short oscillating fields (usually microwave pulses). The resulting signal produced

by the sample magnetization can be measured in time domain. The Fourier transform of this

signal generates its EPR spectrum in the frequency domain. By the use of diverse pulse

sequences, it is possible to have a detailed understanding of the structure and kinetic properties

of paramagnetic compounds. Pulse EPR techniques, such as electron spin echo envelope

modulation (ESEEM) or electron nuclear double resonance (ENDOR), can reveal the interaction

between electron spin and its surrounding nuclear spin, as well as with the environment.

The basic principle of pulse EPR is similar to that of pulse nuclear magnetic resonance

(NMR). However, the relative magnitude and relaxation times are remarkably different in EPR

from those in NMR. In EPR, the relaxation rate is faster than that in NMR. Since the

magnetization is measured as a bulk property, its description by classical theory gives a more

intuitive view. In order to better understand the concept of pulse EPR let us consider the

behavior of the magnetization vector both in the laboratory and rotating frames. In the laboratory

frame, for the present discussion, the static magnetic field, B0, is assumed parallel to the z-axis

and the microwave field B1 parallel to the x-axis. When an electron spin is placed in a magnetic

field, it experiences a torque that makes its magnetic moment precess around the magnetic field.

The precession frequency is called Larmor frequency (Schweiger and Jeschke, 2001):

 𝜔𝐿 = −𝛾𝐵0 (2.1)

In Eq. (2.1), γ is the gyromagnetic ratio of the electron. The electron spin has two

quantum mechanical states, one parallel and the other antiparallel to the direction of the magnetic

field B0. The Boltzmann distribution dictates the population to be more in the electron-spin state

parallel to the magnetic field as it is lower in energy. This leads to a net non-zero magnetization.

The effect of the microwave field B1 can be better understood in the rotating frame. In an

EPR experiment usually a microwave resonator is used to generate a linearly polarized

microwave field B1, equivalent to two circularly polarized microwave fields rotating in opposite

directions, perpendicular to the much stronger static magnetic field B0. The rotating frame is

fixed on one of these rotating B1 components. First, it is assumed that the B1 field is in resonance

with the precession of the magnetization vector M0, so that the Larmor frequency is equal to the

frequency of the B1 field:

 𝜔𝐿 = 𝜔0 (2.2)

Therefore, in the rotating frame, the B1 component and the precessing magnetization component

appear to be stationary, leading effectively to the disappearance of B0. Then, one only needs to

consider B1 and M0. The M0 vector is affected by the fixed microwave field B1, which leads to

another precession of M0. This time, it moves around B1 with the frequency ω1:

 𝜔1 = −𝛾𝐵1 (2.3)

This angular frequency ω1 is also known as Rabi frequency. Assuming that B1 is parallel to the x-

axis, the magnetization vector will rotate around the + x-axis in the zy-plane as long as the

microwave field is on. The angle of rotation M0 is called the tip angle theta, expressed as:

 𝜃 = −𝛾|𝐵1|𝑡𝑝 (2.4)

5

Here tp is the duration of the B1 field, which is also known as the pulse length. The pulses are

marked by the rotation angle of M0 that they cause. and by their direction when causing the

rotation. For example, a +y π/2 pulse means that a B1 pulse in the +y direction rotates M0,

originally in the +z direction, by the tip angle of π/2 to be along the -x axis. This implies that the

final direction of the magnetization vector M0 depends on the length, size and direction of the

microwave pulse B1. After this rotation of M0, the sample emits microwaves, which are better

understood in the laboratory frame of reference. For the case of resonance in a rotating frame, the

magnetization appears to be stationary along the x- or y- axis after the pulse. In the laboratory

frame, it rotates at the Larmor frequency in the xy plane. This rotation produces a signal that is

maximum when the magnetization vector is exactly in the xy-plane. The microwave signal

generated by this rotating magnetization vector is called free induction decay (FID) (Schweiger

and Jeschke, 2001).

Non-resonant effects due to the presence of non-resonant frequencies present in the EPR

spectrum lead to three main consequences. (i) The first one is better understood in the rotating

frame. Now, a π/2 pulse leaves magnetization in the xy plane. But, since the frequency of the

microwave field (and thus the rotating frame) is different from that of the precessing

magnetization vector, the latter rotates in the xy-plane faster or slower than the microwave

magnetic field B1. The rotation rate is governed by the frequency difference Δω:

 ∆𝜔 = 𝜔 − 𝜔0 (2.5)

When Δω = 0, the rotation speed of the microwave field is equal to that of the magnetization

vector, then both of them seem to be stationary. If Δω > 0, the magnetization will rotate faster in

the anticlockwise direction than the microwave component, and if Δω < 0, the magnetization will

slow down, rotating in the clockwise fashion. This means that the individual frequency

components of the EPR spectrum will appear as magnetization components rotating in the xy-

plane with the frequency Δω. (ii) The second consequence appears in the laboratory frame, in

which B1 tips the magnetization differently out of the z-axis, because B0 does not disappear

completely when not at resonance due to the precession of the magnetization vector at Δω. This

implies that the magnetization is now tipped by an effective magnetic field Beff, which is the

vector sum of B1 and B0, causing the magnetization to tip around Beff at a faster effective rate ωeff.

 𝜔𝑒𝑓𝑓 = (𝜔1
2 + ∆𝜔2)1 2⁄ (2.6)

(iii) This leads directly to the third consequence that the magnetization cannot be efficiently

tipped into the xy-plane, because unlike B1, Beff is not located in the xy-plane. The motion of the

magnetization vector now defines a cone. That is to say that as Δω becomes larger, the

magnetization is tipped less effectively into the xy-plane, and the FID signal decreases. In broad

EPR spectra where Δω > ω1, it is not possible to tip all the magnetization into the xy-plane to

generate a strong FID signal. This is why it is important to maximize ω1, which is equivalent to

minimizing the length of the π/2 pulse, for broad EPR signals.

The magnetization, tipped into the xy-plane by a π/2 pulse, will decay and eventually

return to the initial orientation and become aligned with the z-axis due to the interaction between

the electron spin and its surroundings. The characteristic time for the magnetization to return to

the z-axis by the relaxation process is described by the spin-lattice relaxation time T1, as well as

by the spin-spin relaxation time T2, which is the time for the magnetization to vanish in the xy-

6

plane. Spin-lattice relaxation is the manner by which the system returns to thermal equilibrium

after being disturbed by the B1 pulse, due to the interaction with the surrounding environment.

The spin-spin relaxation time, also named transverse relaxation time, is related to the uniform

and inhomogeneous broadening of the EPR signal. The inhomogeneous broadening is due to

different spins undergoing inhomogeneous local magnetic fields due to different environments,

resulting in a large number of spin packets, characterized by Δω distributions. Due to the motion

of the net magnetization vector, some spin packets decelerate due to the lower effective magnetic

fields, while others accelerate due to the higher effective magnetic fields. This results in the

fanning out of the magnetization vector, leading to the decay of the EPR signal. The decay of the

transverse magnetization is caused by the homogeneous broadening of the spin packets, so that

all spins in one spin packet will experience the same magnetic field and interact with each other.

This results in mutual and random spin flips. The resulting fluctuations contribute to a faster

fanning out of the magnetization vector.

The motion of the transverse magnetization is encoded with all the information about the

frequency spectrum, which can be reconstructed using the time behavior of the transverse

magnetization made up of y- and x-axis components, conveniently treated as the real (dispersion)

and imaginary (absorption) parts of a complex quantity and use the Fourier theory to transform

the measured time domain signal into the frequency-domain representation. Detection of both the

absorption (imaginary) and dispersion (real) signals makes such an analysis possible.

Hahn echo. The FID signal decays away with time. For very wide EPR spectrum, this

decay is rather fast due to the inhomogeneous broadening. One can use another microwave pulse

to recover the lost signal to produce a Hahn echo (Hahn, 1950). This is accomplished as follows.

After applying a π/2 pulse (90 degrees), the magnetization vector is transferred to the xy-plane

and generates a FID signal. For inhomogeneous broadening different frequencies in the EPR

spectrum cause the signal to "fan out", implying that the slow-spin data packets lag behind the

fast-spin data packets. After a certain time t, a π pulse (180 degrees) is applied to the system to

reverse the magnetization. This now causes the reverse, the fast-spin packets lag behind the

slow-spin packets. When the signal is completely refocused at the time 2t, the exact echo caused

by the second microwave pulse eliminates all the inhomogeneous-broadening effects. After all

the spin packets bunched up into an echo, they dephase again just like a FID. This is equivalent

to the spin echo exhibiting a reversal of FID followed by a normal FID. This can be Fourier-

transformed to obtain the EPR spectrum. The longer the time t between the π/2 and π pulses, the

smaller is the echo amplitude due to the effect of spin relaxation. This relaxation leads to an

exponential attenuation of the echo height for different t times, whose attenuation constant is

called the phase memory time TM, which can have many contributions, such as transverse

relaxation, spectral, spin and instantaneous diffusion. TM can be measured directly by changing

the time t between pulses.

2.3 Coherence pathways

It is helpful to think of pulse experiments in terms of coherence-transfer pathway

diagrams. An electronic spin transition is labeled by the ‘p’ index, which can have the values −1,

0, or +1. In order to perform SECSY and ELDOR experiments, different coherences are

combined in various ways, as described in the following chapters. They always start at p = 0 and

end up at p = -1. The simulations in this thesis take into account these numerically by putting the

relevant elements of the resulting density matrix equal to zero

https://www.sciencedirect.com/topics/medicine-and-dentistry/coherence

7

Coherence may be considered as a generalized description of transverse magnetization; it

corresponds to a transition between two energy levels. The magnitude of coherence in each spin

system is governed by the coherence level. The difference in magnetic quantum number mz of

the two energy levels connected by the same coherence represents the coherence level p. The

path describing the progress of a coherence order in a pulse sequence is called a coherence

transfer pathway. It is possible to change the coherence level by applying a pulse. On the other

hand, during the time interval between the applications of the pulses the coherence level does not

change.

Transverse magnetization represents a particular type of coherence involving a change in

the magnetic quantum numbers by ±1, representing the coherence level p = ±1. Each

coherence level p is equal to the difference in the magnetic quantum numbers of the levels r and

s in an EPR transition, i.e., the coherence level is p = Mr − Ms. Pulses cause transitions to occur

between different coherence levels p. At thermal equilibrium, the change in p is zero, and it is at

this point that the coherence transfer pathway is initiated by the application of a pulse. For

signals to be detected by the receiver, the coherence transfer must end at a single quantum

coherence, usually at p = −1.

2.4 Applications of pulse EPR and simulation software libraries

Electron Spin Echo Envelope Modulation (ESEEM) (Mims et al., 1961; Schweiger and

Jeschke, 2001) and pulse Electron Nuclear Double Resonance (ENDOR) (Mims, 1965;

Schweiger and Jeschke, 2001) are widely used echo experiments. These can monitor the

interaction between electron spin and nucleus in their environment (Deligiannakis et al., 2000).

Furthermore, in quantum computation and spintronics, spin is used to store information, opening

a new research direction in pulse EPR.

Double Electron-Electron Resonance (DEER) is one of the most popular pulse EPR

experiments, also known as Pulse Electron Double Resonance (PELDOR) (Schweiger and

Jeschke, 2001). Two different frequencies are used in DEER to control different spins in order to

exploit their coupling strengths, most importantly the dipolar coupling, which depends on the

inverse cube of the distance between spins. Thus, the distance between them can be inferred

from the dipolar spin coupling strength as measured from the spacing of the Pake doublets in the

Fourier transform of the time-domain DEER signal; for more detail see Misra (2011). Thus,

DEER is most commonly used to measure distances in biological systems, which can be used to

study the structure of large biological molecules.

There are available two very general open-source software libraries for simulating pulse

EPR signals: SPINACH (Hogben et al., 2011) and SPIDYAN (Pribitzer et al., 2016).

https://www.sciencedirect.com/topics/medicine-and-dentistry/coherence
https://www.sciencedirect.com/topics/physics-and-astronomy/magnetization
https://www.sciencedirect.com/topics/medicine-and-dentistry/coherence
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/magnetism
https://www.sciencedirect.com/topics/chemistry/quantum-number

8

3. LVN equation in pulse EPR

3.1 Liouville von Neuman Equation

The evolution of the density matrix, ρ, taking into account relaxation effects is expressed

in Liouville space as described, e.g. by Abragam (1961), Jeener (1982), Redfield (1957), Gamliel

and Levanon (1995), Misra and Li (2018):

𝑑

𝑑𝑡
𝜌(Ω, 𝑡) = −𝑖[𝐻̂, 𝜌(𝑡)] − Γ̂(𝜌(𝑡) − 𝜌0) (3.1)

In Eq.(3.1), 𝐻̂ = 𝐻̂0 + 𝐻̂1 is the Hamiltonian operator, where 𝐻̂0 and 𝐻̂1 are its time-independent

and time-dependent parts, respectively; Γ̂ is the relaxation operator, and assumed to be time

independent here. (Throughout this thesis, the single and double carets “ ̂ ” and “ ̂̂ ” will be

used to denote the operator and the superoperator, respectively.) In Eq. (3.1) 𝜌0 is the initial

thermal equilibrium density matrix, governed by the Boltzmann distribution:

 𝜌0 =
[exp (−ℏ𝐻̂ 𝑘𝑇⁄)]

𝑇𝑟[exp (−ℏ𝐻̂ 𝑘𝑇⁄)]
∝ 𝑆𝑧

(3.2)

Equation (2.1) is an operator equation, which can be expressed as a matrix equation in a

given set of operators |𝑖⟩⟨𝑗|; 𝑖, 𝑗 = 1,2, … . , 𝑛 , where |𝑖⟩ are the eigenvectors of 𝐻̂ . The

coefficients, 𝜌𝑖𝑗 , 𝐻𝑖𝑗 in the expansion of the operators 𝜌 and 𝐻̂ in this basis, respectively, are then

used to write the corresponding matrix equation.

The difference between the time-dependent density matrix and the equilibrium density

matrix 𝜌0 is denoted as 𝜒(𝑡) ≡ 𝜌(𝑡) − 𝜌0. In view of Eq. (3.2) 𝜌0 commutes with 𝐻̂. Then Eq.

(3.1) can be expressed as follows:

𝑑

𝑑𝑡
𝜒(𝑡) = −𝑖[𝐻̂, 𝜒(𝑡)] − Γ̂𝜒(𝑡) (3.3)

LVN is a matrix differential equation.

LVN has problems in Hilbert space, since LVN is a matrix differential equation, where each

of 𝜌̂, 𝜌̂0, 𝐻̂ is a 2-dimensional matrix, but 𝛤̂ , the relaxation operator, is a four-index tensor,

because it is a tensor that connects two elements of the density matrix, which are characterized

by two indices each; see Eq. (3.10) below. Hence it cannot be directly solved in Hilbert space.

Need to formulate it into Liouville space.

One can use a mathematical formalism, i.e. vectorization of a matrix A to transform LVN

equation from Hilbert to Liouville space. Let 𝑎𝑖 ∈ ℂ𝑚, 𝑖 = 1,2,⋯ , 𝑛 , be column vectors of

dimension m, and 𝐴 ∈ ℂ𝑚×𝑛 be a matrix of dimension 𝑚 × 𝑛. The columns of matrix A consist

of the column vectors, i.e. 𝐴 = [𝑎1, 𝑎2, ⋯ , 𝑎𝑛] . The vector operator 𝐶𝑜𝑙(𝐴) is defined by

Magnus and Neudecker (1995).

9

 𝐶𝑜𝑙(𝐴) = [

𝑎1

𝑎2

⋮
𝑎𝑛

] ∈ ℂ𝑚𝑛 (3.4)

Supposing the density operator ρ, the Hamiltonian operator H and the relaxation operator Γ are

matrices of dimension 𝑛 × 𝑛, then by vectorizing the operator equation (3.3) in terms of its

matrix elements in a chosen representation, one obtains

𝑑

𝑑𝑡
𝐶𝑜𝑙(𝜒(𝑡)) = −𝑖𝐶𝑜𝑙([𝐻̂, 𝜒(𝑡)]) − 𝐶𝑜𝑙{Γ̂𝜒(𝑡)} (3.5)

and on the right side

𝐶𝑜𝑙([𝐻̂, 𝜒])

= 𝐶𝑜𝑙(𝐻̂𝜒 − 𝜒𝐻̂)

= (𝐼𝑛 ⊗ 𝐻̂ − 𝐻̂𝑇 ⊗ 𝐼𝑛)𝐶𝑜𝑙(𝜒)

= 𝐻̂̂𝜒̂̂

(3.6)

where 𝐼𝑛 is unit matrix of dimension 𝑛 × 𝑛, and

 𝐻̂̂ = (𝐼𝑛 ⊗ 𝐻̂ − 𝐻̂𝑇 ⊗ 𝐼𝑛) (3.7)

is called the Hamiltonian superoperator in Liouville space with dimension 𝑛2 × 𝑛2. 𝐻̂𝑇 denotes

the matrix transpose.

and 𝜒̂̂ is the column vector of dimension 𝑛2 × 1

𝜒̂̂ = 𝐶𝑜𝑙(𝜒)

For matrix 𝐴 ∈ ℂ𝑚×𝑛 and 𝐵 ∈ ℂ𝑝×𝑞, operator ⊗ is the Kronecker Product defined by:

 𝐶 = 𝐴 ⊗ 𝐵 (3.8)

 𝑐𝑖𝑗,𝑘𝑙 = 𝑎𝑖,𝑘𝑏𝑗,𝑙 (3.9)

Vectorizing the relaxation component on the right side of Eq.(3.5):

 𝐶𝑜𝑙{Γ̂𝜒} = R̂̂𝜒̂̂ (3.10)

R̂̂ is is the matrix representing the relaxation superoperator in Liouville space with dimension

𝑛2 × 𝑛2. Its elements are defined as:

 𝑅̂̂𝛼×𝑛+𝛽,𝛼′×𝑛+𝛽′ = 𝛤̂𝛼𝛽𝛼′𝛽′ (3.11)

In Eq. (3.11), 𝛼, 𝛽, 𝛼′, 𝛽′ = 1,2, … . , 𝑛.

10

Combining all the vectorized density matrix, Hamiltonian and relaxation components, LVN is

transformed into Liouville space as:

𝑑𝜒̂̂

𝑑𝑡
= −𝑖𝐻̂̂𝜒̂̂ − 𝑅̂̂𝜒̂̂

= −𝐿̂̂𝜒̂̂

(3.12)

where the Liouvillian

 𝐿̂̂ = 𝑖𝐻̂̂ + 𝑅̂̂ (3.13)

𝐿̂̂ is called the Liouville superoperator.

Equation (3.12) is the key equation to solve using Liouville space, taking into account relaxation

effects.

If 𝐻̂̂ and 𝑅̂̂ are independent of time, then

 𝜒̂̂(𝑡) = 𝑒−(𝑡−𝑡0)𝐿̂̂ 𝜒̂̂(𝑡0) (3.14)

𝜒̂̂(𝑡0) is the density matrix at the beginning time of the evolution, 𝑡0.

And

 𝜌̂̂(𝑡) = 𝑒−(𝑡−𝑡0)𝐿̂̂(𝜌̂̂(𝑡0) − 𝜌̂̂0) + 𝜌̂̂0 (3.15)

3.2 Rotating frame

 The calculations are carried in the rotating frame during a pulse, wherein the spin is in

resonance, so that the effective magnetic field 𝐵𝑒𝑓𝑓 = (𝐵 −
ℏ𝜔

𝑔𝜇𝐵
) becomes zero.

3.3 Solution of LVN during free evolution

Free evolution occurs during the period following the application of a pulse, and the

density matrix of the spin system is only affected by the Hamiltonian operator 𝐻̂0 and the

relaxation operator Γ̂, both of which are independent of time. The LVN equation can then be

solved using the following procedure.

The Hamiltonian superoperator is from Eq. (3.7)

 𝐻̂̂ = 𝐼𝑛 ⊗ 𝐻̂0 − 𝐻̂0
𝑇 ⊗ 𝐼𝑛 (3.16)

Let

11

 𝝆 = 𝝈 + 𝐿̂̂−1𝑅̂̂𝝆0 (3.17)

Using the expression eq. (3.17) for the LVN equation, one obtains

𝑑

𝑑𝑡
(𝝈 + 𝐿̂̂−1𝑅̂̂𝝆0) = −𝐿̂̂ (𝝈 + 𝐿̂̂−1𝑅̂̂𝝆0) + 𝑅̂̂𝝆0 (3.18)

𝑑𝝈

𝑑𝑡
+

𝑑

𝑑𝑡
(𝐿̂̂−1𝑅̂̂𝝆0) = −𝐿̂̂𝝈 − 𝐿̂̂𝐿̂̂−1𝑅̂̂𝝆0 + 𝑅̂̂𝝆0 (3.19)

Because 𝐿̂̂, 𝑅̂̂ 𝑎𝑛𝑑 𝝆0 are independent of time

𝑑

𝑑𝑡
(𝐿̂̂−1𝑅̂̂𝝆0) = 0 (3.20)

and the last two terms on the right side in Eq. (3.19) cancel.

one obtains

𝑑𝝈

𝑑𝑡
= −𝐿̂̂𝝈 (3.21)

Whose solution is

 𝝈(𝑡) = 𝑒−(𝑡−𝑡0)𝐿̂̂𝝈(𝑡0) (3.22)

Using Eq. (3.17), one obtains

 𝝆(𝑡) = 𝑒−(𝑡−𝑡0)𝐿̂̂ (𝝆(𝑡0) − 𝐿̂̂−1𝑅̂̂𝝆0) + 𝐿̂̂−1𝑅̂̂𝝆0 (3.23)

If the matrix 𝐿̂̂ can be diagonalized, that is,

 𝑃−1𝐿̂̂𝑃 = [

𝜆1 0 0 0
0 𝜆2 0 0
0 0 ⋱ 0
0 0 0 𝜆𝑛

] = 𝐷̂̂ (3.24)

or

 𝐿̂̂ = 𝑃𝐷̂̂𝑃−1 (3.25)

Where P is the matrix whose column vectors are the eigenvectors of 𝐿̂̂. That is, writing P as a

block matrix of its column vectors 𝛼⃗𝑖

 𝑃 = (𝛼⃗1 𝛼⃗2 … 𝛼⃗𝑛) (3.26)

or

12

 𝐿̂̂𝛼⃗𝑖 = 𝜆𝑖𝛼⃗𝑖 (𝑖 = 1,2,⋯ , 𝑛) (3.27)

Or

 𝐿̂̂𝝈 = 𝑃𝐷̂̂𝑃−1𝝈 (3.28)

The Eq. (3.21) can now be expressed as

𝑑𝝈

𝑑𝑡
= −𝑃𝐷̂̂𝑃−1𝝈 (3.29)

Multiplying this from the left by the time independent operator 𝑃−1, where P is defined in Eq.

(3.26), one obtains

𝑑𝑃−1𝝈

𝑑𝑡
= −𝐷̂̂𝑃−1𝝈 (3.30)

Define

 𝝈′ ≡ 𝑃−1𝝈 (3.31)

One obtains for Eq. (3.30)

𝑑𝝈′

𝑑𝑡
= −𝐷̂̂𝝈′ (3.32)

the solution of which is

𝝈′(𝑡) = 𝑒 𝐷̂̂(𝑡−𝑡0)𝝈′(𝑡0)

= [

𝑒−𝜆1𝜏 0 0 0
0 𝑒−𝜆2𝜏 0 0
0 0 ⋱ 0
0 0 0 𝑒−𝜆𝑛𝜏

] 𝝈′(𝑡0)
(3.33)

where 𝜏 = 𝑡 − 𝑡0. Using Eq. (3.31), one obtains

 𝑃−1𝝈(𝑡) = [

𝑒−𝜆1𝜏 0 0 0
0 𝑒−𝜆2𝜏 0 0
0 0 ⋱ 0
0 0 0 𝑒−𝜆𝑛𝜏

] 𝑃−1𝝈(𝑡0) (3.34)

Or multiplying both sides by P, one obtains

 𝝈(𝑡) = 𝑃 [

𝑒−𝜆1𝜏 0 0 0
0 𝑒−𝜆2𝜏 0 0
0 0 ⋱ 0
0 0 0 𝑒−𝜆𝑛𝜏

] 𝑃−1𝝈(𝑡0) (3.35)

13

Using Eqs. (3.17) and (3.35), one obtains

𝝆(𝑡) − 𝐿̂̂−1𝑅̂̂𝝆0

= 𝑃 [

𝑒−𝜆1𝜏 0 0 0
0 𝑒−𝜆2𝜏 0 0
0 0 ⋱ 0
0 0 0 𝑒−𝜆𝑛𝜏

] 𝑃−1 (𝝆(𝑡0) − 𝐿̂̂−1𝑅̂̂𝝆0)
(3.36)

 𝝆(𝑡) = 𝑃 [

𝑒−𝜆1𝜏 0 0 0
0 𝑒−𝜆2𝜏 0 0
0 0 ⋱ 0
0 0 0 𝑒−𝜆𝑛𝜏

] 𝑃−1 (𝝆(𝑡0) − 𝐿̂̂−1𝑅̂̂𝝆0) + 𝐿̂̂−1𝑅̂̂𝝆0 (3.37)

𝝆(𝑡) = 𝑃 [

𝑒−𝜆1𝜏 0 0 0
0 𝑒−𝜆2𝜏 0 0
0 0 ⋱ 0
0 0 0 𝑒−𝜆𝑛𝜏

] 𝑃−1𝝆(𝑡0)

− (𝑃 [

𝑒−𝜆1𝜏 0 0 0
0 𝑒−𝜆2𝜏 0 0
0 0 ⋱ 0
0 0 0 𝑒−𝜆𝑛𝜏

] 𝑃−1 − 𝑰) 𝐿̂̂−1𝑅̂̂𝝆0

(3.38)

Where relaxation effects are contained in Liouville superoperator 𝐿̂̂.

3.4 Solution of LVN during a pulse

During a pulse,

 𝐻̂1 = 𝜀̂(𝑡) (3.39)

where 𝜀̂(𝑡) is the irradiating microwave pulse with the intensity 𝐵1 = 𝜔1 𝛾𝑒⁄ and phase ϕ. This

interaction of the B1 field with the electronic spin is expressed in the rotating frame (see Sec. 3.2

above) as

 𝜀̂(𝑡) = 𝐵1𝛾𝑒(𝑆𝑥𝑐𝑜𝑠𝜙 + 𝑆𝑦𝑠𝑖𝑛𝜙)𝐼𝑛 =
𝜔1

2
(𝑒−𝑖𝜙𝑆+ + 𝑒𝑖𝜙𝑆−)𝐼𝑛 (3.40)

Where 𝐼𝑛 = [
1 0
0 1

] is the identify operator in nuclear space

And here 𝜀̂(𝑡) ≫ 𝐻̂0, Γ̂, as in the rotating frame the effective magnetic field is zero, so that

 𝐻̂ = 𝐻̂0 + Γ̂ + 𝜀̂(𝑡) ≈ 𝜀̂(𝑡) (3.41)

The LVN becomes

𝑑

𝑑𝑡
𝜌 = −𝑖[𝜀̂(𝑡), 𝜌] (3.42)

The solution of Eq. (3.42) is Mims (1965)

14

 𝜌(𝑡0 + 𝑡𝑝) = 𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝)𝜌(𝑡0)𝑒𝑥𝑝(𝑖𝜀̂𝑡𝑝) = 𝑃̂̂(𝑡0 + 𝑡𝑝)𝜌(𝑡0) (3.43)

Where

𝜌(𝑡0 + 𝑡𝑝) is the density matrix after the application of a pulse.

𝑒𝑥𝑝(𝑖𝜀̂𝑡𝑝) is call right propagator and

𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝) is called left propagator.

Using the vectorization of matrix products:

 𝐶𝑜𝑙(𝐴𝐵𝐶) = (𝐶𝑇 ⊗ 𝐴)𝐶𝑜𝑙(𝐵) (3.44)

One obtains

𝐶𝑜𝑙 (𝜌(𝑡0 + 𝑡𝑝))

= 𝐶𝑜𝑙 (𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝)𝜌(𝑡0)𝑒𝑥𝑝(𝑖𝜀̂𝑡𝑝))

= ((𝑒𝑥𝑝(𝑖𝜀̂𝑡𝑝))
𝑇

⊗ 𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝))𝐶𝑜𝑙(𝜌(𝑡0))

(3.45)

So that

 𝝆(𝑡0 + 𝑡𝑝) = 𝑃̂̂𝝆(𝑡𝑝) (3.46)

where

 𝝆(𝑡) = 𝐶𝑜𝑙(𝜌(𝑡)) (3.47)

and

𝑃̂̂ = (𝑒𝑥𝑝(𝑖𝜀̂𝑡𝑝))

𝑇

⊗ 𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝)

= (𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝))
†

⊗ 𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝)
(3.48)

𝑃̂̂ is called pulse superoperator in Liouville space.

The specific example, in the |𝑆𝑧𝐼𝑧⟩ basis of a spin system with 𝑆𝑧 = ±1 2⁄ 𝑎𝑛𝑑 𝐼𝑧 =
±1 2⁄ , and 𝜀̂(𝑡)is given by Eq. (3.40).

Because

 S+𝐼𝑛|+ ±⟩ = 0 (3.49)

 S+𝐼𝑛|− ±⟩ = |+ ±⟩ (3.50)

15

 S−𝐼𝑛|+ ±⟩ = |− ±⟩ (3.51)

 S−𝐼𝑛|− ±⟩ = 0 (3.52)

One obtains

 𝜀̂(𝑡)|+ ±⟩ =
𝜔1

2
(𝑒−𝑖𝜙𝑆+ + 𝑒𝑖𝜙𝑆−)|+ ±⟩ =

𝜔1

2
𝑒𝑖𝜙|− ±⟩ (3.53)

 𝜀̂(𝑡)|− ±⟩ =
𝜔1

2
(𝑒−𝑖𝜙𝑆+ + 𝑒𝑖𝜙𝑆−)|− ±⟩ =

𝜔1

2
𝑒−𝑖𝜙|+ ±⟩ (3.54)

Thus

 [𝜀̂] =

 |1⟩ = | + +⟩ |2⟩ = | + −⟩ |3⟩ = | − +⟩ |4⟩ = | − −⟩

 |1⟩ = | + +⟩

 |2⟩ = | + −⟩

 |3⟩ = | − +⟩

 |4⟩ = | − −⟩ [

 0 0

𝜔1

2
𝑒−𝑖𝜙 0

0 0 0
𝜔1

2
𝑒−𝑖𝜙

𝜔1

2
𝑒𝑖𝜙 0 0 0

0
𝜔1

2
𝑒𝑖𝜙 0 0]

 (3.55)

or

 [𝜀̂] =
𝜔1

2
[

𝟎𝒏 𝑒−𝑖𝜙𝑰𝒏

𝑒𝑖𝜙𝑰𝒏 𝟎𝒏

] =
𝜔1

2
Σ𝑛 (3.56)

where

 Σ𝑧 = [
𝟎𝟐 𝑒−𝑖𝜙𝑰𝒏

𝑒𝑖𝜙𝑰𝒏 𝟎𝒏

] (3.57)

We also have

[𝜀̂][𝜀̂] = (
𝜔1

2
)
2

[
𝟎𝒏 𝑒−𝑖𝜙𝑰𝒏

𝑒𝑖𝜙𝑰𝒏 𝟎𝒏

] [
𝟎𝒏 𝑒−𝑖𝜙𝑰𝒏

𝑒𝑖𝜙𝑰𝒏 𝟎𝒏

]

= (
𝜔1

2
)
2

[
𝑰𝒏 𝟎𝒏

𝟎𝒏 𝑰𝒏
]

= (
𝜔1

2
)
2

𝑰𝟒

(3.58)

The right propagator and left propagator matrix in Hilbert space are expanded as

following:

16

[𝑒𝑥𝑝(𝑖𝜀̂𝑡)] = ∑
1

𝑛!
(𝑖𝜀̂𝑡)𝑛

∞

𝑛=0

= ∑
1

(2𝑛)!
(𝑖𝜀̂𝑡)2𝑛 + ∑

1

(2𝑛 + 1)!
(𝑖𝜀̂𝑡)2𝑛+1

∞

𝑛=0

∞

𝑛=0

= ∑
(−1)𝑛

(2𝑛)
(𝜔1𝑡 2⁄)2𝑛𝑰𝟒 + 𝑖 ∑

(−1)𝑛

(2𝑛 + 1)
(𝜔1𝑡 2⁄)2𝑛+1Σ𝑧

∞

𝑛=0

∞

𝑛=0

= 𝑐𝑜𝑠(𝜔1𝑡 2⁄)𝑰𝟒 + 𝑖𝑠𝑖𝑛(𝜔1𝑡 2⁄)Σ𝑧

= 𝑐𝑜𝑠(𝜔1𝑡 2⁄) [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] + 𝑖𝑠𝑖𝑛(𝜔1𝑡 2⁄) [

0 0 𝑒−𝑖𝜙 0
0 0 0 𝑒−𝑖𝜙

𝑒𝑖𝜙 0 0 0
0 𝑒𝑖𝜙 0 0

]

(3.59)

[𝑒𝑥𝑝(𝑖𝜀̂𝑡)]

=

 |1⟩ = | + +⟩ |2⟩ = | + −⟩ |3⟩ = | − +⟩ |4⟩ = | − −⟩

 |1⟩ = | + +⟩

 |2⟩ = | + −⟩

 |3⟩ = | − +⟩

 |4⟩ = | − −⟩
[

 cos

𝜔1𝑡

2
0 𝑖𝑒−𝑖𝜙 sin

𝜔1𝑡

2
0

0 cos
𝜔1𝑡

2
0 𝑖𝑒−𝑖𝜙 sin

𝜔1𝑡

2

𝑖𝑒𝑖𝜙 sin
𝜔1𝑡

2
0 cos

𝜔1𝑡

2
0

0 𝑖𝑒𝑖𝜙 sin
𝜔1𝑡

2
0 cos

𝜔1𝑡

2]

(3.60)

 =

 |1⟩ = | + +⟩ |2⟩ = | + −⟩ |3⟩ = | − +⟩ |4⟩ = | − −⟩

 |1⟩ = | + +⟩

 |2⟩ = | + −⟩

 |3⟩ = | − +⟩

 |4⟩ = | − −⟩
[

 cos

𝜃

2
0 𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 𝑖𝑒−𝑖𝜙 sin

𝜃

2

𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

 (3.61)

Finally one obtains

 [𝑒𝑥𝑝(𝑖𝜀̂𝑡)] = [
cos

𝜃

2
𝑰𝒏 𝑖𝑒−𝑖𝜙 sin

𝜃

2
𝑰𝒏

𝑖𝑒𝑖𝜙 sin
𝜃

2
𝑰𝒏 cos

𝜃

2
𝑰𝒏

] (3.62)

where

 𝑰𝒏 = [
1 0
0 1

] (3.63)

17

Tip angle: 𝜃 = 𝜔1𝑡, t is pulse duration.

In same way

[𝑒𝑥𝑝(−𝑖𝜀̂𝑡)]

=

 |1⟩ = | + +⟩ |2⟩ = | + −⟩ |3⟩ = | − +⟩ |4⟩ = | − −⟩

 |1⟩ = | + +⟩

 |2⟩ = | + −⟩

 |3⟩ = | − +⟩

 |4⟩ = | − −⟩
[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

(3.64)

[𝑒𝑥𝑝(−𝑖𝜀̂𝑡)] = [
cos

𝜃

2
𝑰𝒏 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
𝑰𝒏

−𝑖𝑒𝑖𝜙 sin
𝜃

2
𝑰𝒏 cos

𝜃

2
𝑰𝒏

] (3.65)

18

𝑃̂̂ = (𝑒𝑥𝑝(𝑖𝜀̂𝑡𝑝))
𝑇

⊗ 𝑒𝑥𝑝(−𝑖𝜀̂𝑡𝑝)

=

[

 cos

𝜃

2
0 𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 𝑖𝑒−𝑖𝜙 sin

𝜃

2

𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝑇

⊗

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

(3.66)

=

[

cos
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝟎𝟒 𝑖𝑒𝑖𝜙 sin
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝟎𝟒

𝟎𝟒 𝟎𝟒

𝑖𝑒−𝑖𝜙 sin
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝟎𝟒 cos
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝟎𝟒

𝟎𝟒 𝟎𝟒]

+

[

𝟎𝟒 𝟎𝟒

𝟎𝟒 cos
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝟎𝟒 𝑖𝑒𝑖𝜙 sin
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝟎𝟒 𝟎𝟒

𝟎𝟒 𝑖𝑒−𝑖𝜙 sin
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

𝟎𝟒 cos
𝜃

2

[

 cos

𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2
0

0 cos
𝜃

2
0 −𝑖𝑒−𝑖𝜙 sin

𝜃

2

−𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2
0

0 −𝑖𝑒𝑖𝜙 sin
𝜃

2
0 cos

𝜃

2]

]

=

19

[

[

 cos2

𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0

0 cos2
𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃

−𝑒𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2
0

0 −𝑒−𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2]

𝟎𝟒

[

 𝑒𝑖𝜙

𝑖

2
sin 𝜃 0 sin2

𝜃

2
0

0 𝑒𝑖𝜙
𝑖

2
sin 𝜃 0 sin2

𝜃

2

𝑒𝑖2𝜙 sin2
𝜃

2
0 𝑒𝑖𝜙

𝑖

2
sin 𝜃 0

0 𝑒𝑖2𝜙 sin2
𝜃

2
0 𝑒𝑖𝜙

𝑖

2
sin 𝜃]

𝟎𝟒

𝟎𝟒 𝟎𝟒

[

 𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0 𝑒−𝑖2𝜙 sin2

𝜃

2
0

0 𝑒−𝑖𝜙
𝑖

2
sin 𝜃 0 𝑒−𝑖2𝜙 sin2

𝜃

2

sin2
𝜃

2
0 𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0

0 sin2
𝜃

2
0 𝑒−𝑖𝜙

𝑖

2
sin 𝜃]

𝟎𝟒

[

 cos2

𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0

0 cos2
𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃

−𝑒𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2
0

0 −𝑒−𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2]

𝟎𝟒

𝟎𝟒 𝟎𝟒]

+

[

𝟎𝟒 𝟎𝟒

𝟎𝟒

[

 cos2

𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0

0 cos2
𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃

−𝑒𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2
0

0 −𝑒−𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2]

𝟎𝟒

[

 𝑒𝑖𝜙

𝑖

2
sin 𝜃 0 sin2

𝜃

2
0

0 𝑒𝑖𝜙
𝑖

2
sin 𝜃 0 sin2

𝜃

2

𝑒𝑖2𝜙 sin2
𝜃

2
0 𝑒𝑖𝜙

𝑖

2
sin 𝜃 0

0 𝑒𝑖2𝜙 sin2
𝜃

2
0 𝑒𝑖𝜙

𝑖

2
sin 𝜃]

𝟎𝟒 𝟎𝟒

𝟎𝟒

[

 𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0 𝑒−𝑖2𝜙 sin2

𝜃

2
0

0 𝑒−𝑖𝜙
𝑖

2
sin 𝜃 0 𝑒−𝑖2𝜙 sin2

𝜃

2

sin2
𝜃

2
0 𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0

0 sin2
𝜃

2
0 𝑒−𝑖𝜙

𝑖

2
sin 𝜃]

𝟎𝟒

[

 cos2

𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃 0

0 cos2
𝜃

2
0 −𝑒−𝑖𝜙

𝑖

2
sin 𝜃

−𝑒𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2
0

0 −𝑒−𝑖𝜙
𝑖

2
sin 𝜃 0 cos2

𝜃

2]

]

Where

 𝟎𝟒 = [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] (3.67)

3.5 Phenomenological relaxation matrix elements

In Liouville space spanned by the Ĥ0basis set, the diagonal and the off-diagonal parts of

the relaxation matrix are described by Freed and Fraenkel (1963), and Freed (1965, 1965a,

1968):

 R̂𝛼𝛽,𝛼𝛽 = R̂𝛽𝛼,𝛽𝛼 = −(
1

𝑇2
)
𝛼𝛽

 (3.68)

 R̂𝛼𝛼,𝛽𝛽 = 𝑊𝛼𝛽 (3.69)

20

 R̂𝛼𝛼,𝛼𝛼 = −∑ 𝑊𝛼𝛾
𝛾≠𝛼

 (3.70)

Otherwise

 R̂𝛼𝛽,𝜁𝜂 = 0 (3.71)

where 𝛼, 𝛼′, 𝛽, 𝛽′ designate the eigenstates of the Hamiltonian 𝐻̂0, T2 is the spin-spin

relaxation time,

𝑊𝛼𝛽 is the transition probability from state α to state β, which leads to spin relaxation.

Exchange and dipolar relaxation Freed (1979)

 𝑊𝛼+𝛽+
𝐻𝐸 = −𝑊𝛼−𝛽+

𝐻𝐸 =
𝜔𝐻𝐸

2𝑁
=

𝜔𝐻𝐸

4
 (3.72)

 𝑊𝛼±𝛽−
𝐻𝐸 = 0 (3.73)

 𝑊
𝛼𝑗

±𝛼𝑗
∓

𝐻𝐸 =
𝜔𝐻

2
 (3.74)

 𝑊
𝛼𝑗

+𝛾𝑘
+

𝐻𝐸 =
𝜔𝐻

2
= −𝑊

𝛼𝑗
−𝛾𝑘

+
𝐻𝐸 =

2𝜔𝐻

𝑁
, 𝑎𝑙𝑙 𝛾𝑘

+ (3.75)

 𝑊
𝛼𝑗

±𝛾𝑘
−

𝐻𝐸 = 0, 𝑎𝑙𝑙 𝛾𝑘
− (3.76)

3.6 Coherence pathways

The basic details of coherence pathways have been described earlier in Sec. 2.3,

especially with regard to the transitions between the energy levels corresponding to the various

electronic magnetic quantum numbers. A coherence pathway is the sequence of coherence orders

that the magnetization evolves through during a pulse sequence. All experiments start with zero

order coherence (z-magnetization) and should end with a coherence order of -1, which is by

convention the one that is detected by the quadrature detector. Without quadrature detection the

+1 coherences would be equally detectable, all higher orders are not correlated with observable

magnetization.

The selection of the appropriate coherence pathways can be experimentally achieved by

phase cycling, or by the use of pulse field gradients e.g. Bain (1984), Bodenhausen et al. (1984)

Gemperle et al. (1990). The properties of the RF-pulses, e.g. flip angle, offset effects,

inhomogeneity, require a weighting over the different coherence transfer pathways e.g. Misra et

al. (2009), Håkansson et al. (2013), Franck et al. (2015). The coherence pathways 𝑆𝑐− and 𝑆𝑐+

for obtaining SECSY and echo-ELDOR signals, used commonly, are depicted below in Figs. 4.4

and 4.7, respectively. In this thesis, the signal is calculated over the coherent pathway 𝑆𝑐− in

accordance with that used by Lee et al. (1993).

21

Selection of coherent pathways by appropriate selection of the corresponding elements of

the density matrix. For a single electron-nuclear coupled system with electron spin S=1/2,

nuclear spin I=1/2, the dimension of the coupled spin Hamiltonian is (2𝑆1 + 1) × (2𝐼1 + 1) = 4,

so that the density matrix in the electron-nuclear spin-coupled direct product space the toal

density matrix 𝜌 = 𝜌𝑒 ⊗ 𝜌𝑛 , where 𝜌𝑒 and 𝜌𝑛 are, respectively, the density matrices in the

electronic and nuclear subspaces, In the following, the coherence order is defined as follows;

here p is the coherence order, which represents transverse magnetization, corresponding to spins

rotating in a plane perpendicular to the external field, e.g. Misra and Freed (2011), Stoll and

Kasumaj (2008), Misra and Li (2018).

(i) For the pathway with coherence order 𝑝 = 1, all matrix elements of the density matrix,

𝜌𝑒 , are put equal to zero, except for those corresponding to 𝜌𝑒(1,2).

(ii) For the pathway with coherence order 𝑝 = 0 all matrix elements of the density matrix,

𝜌𝑒, are put equal to zero, except for those corresponding to 𝜌𝑒(1,1) and 𝜌𝑒(2,2).

(iii) For the pathway with coherence order 𝑝 = −1, all matrix elements of the density

matrix, 𝜌𝑒, are put equal to zero, except for those corresponding to 𝜌𝑒(2,1).

3.7 Simulation procedure

The algorithm procedure for calculation of pulse EPR signal is as follows. The time

evolution of the density matrix includes evolution under the action of the static Hamiltonian, 𝐻0 ,

in the absence of pulses, and under the action of pulse 𝐻1, as illustrated in above.

Calculation of the final density matrix, 𝜌𝑓, corresponding to the coherence pathways 𝑆𝑐−

in Figures 4.4 and 4.7 for the evolution of the density matrix in the absence and presence of

pulses, respectively. The Fourier transform (FT) of the two-dimensional (2D) time domain signal

𝑆(𝑡1, 𝑡2), is the corresponding 2D-FT signal, 𝑆(𝜔1, 𝜔2).

The 2D time-domain signal is calculated from 𝜌𝑓 as follows:

 𝑆(𝑡1, 𝑡2) = 𝑇𝑟(𝑆+𝜌𝑓) = 𝑇𝑟 ((𝑆𝑥 + 𝑖𝑆𝑦)𝜌𝑓), (3.77)

22

4. Simulation of SECSY and echo-ELDOR

4.1 Spin Hamiltonian and parameters

For the specific case of a single nucleus (I = ½) interacting with an unpaired electron (S =

½) by the hyperfine (HF) interaction tensor, where the HF has the same principal axes as the g

matrix, the total Hamiltonian can be expressed as the sum of static (𝐻̂0) and pulse (𝐻̂1)

Hamiltonians (Lee et al., 1993):

 𝐻̂ = 𝐻̂0 + 𝐻̂1 (4.1)

where

 𝐻̂0 = 𝐶𝑆𝑧 − 𝜔𝑛𝐼𝑧 + 𝐴𝑆𝑧𝐼𝑧 +
1

2
𝐵𝑆𝑧𝐼+ +

1

2
𝐵∗𝑆𝑧𝐼− (4.2)

where

 𝐶 =
𝛽𝑒 𝐵0

ℎ
[𝑔̅ + 𝐹

1

2
(3 cos2 𝛽 − 1) + 𝐹(2) sin2 𝛽 cos(2𝛾)] (4.3)

 𝐴 = −2𝜋 [𝑎̅ + 𝐷
1

2
(3 cos2 𝛽 − 1) + 𝐷(2) sin2 𝛽 cos(2𝛾)] (4.4)

 𝐵 = −4𝜋 {𝐷
3

4
sin 𝛽 cos𝛽 − 𝐷(2) 1

2
sin 𝛽 [cos 𝛽 cos(2𝛾) − 𝑖 s 𝑖𝑛(2𝛾)]} (4.5)

and

 𝑔̅ =
1

3
(𝑔𝑥𝑥 + 𝑔𝑦𝑦 + 𝑔𝑧𝑧) (4.6)

𝑔̅ – isotropic part of g-tensor

𝑔𝑥𝑥, 𝑔𝑦𝑦, 𝑔𝑧𝑧 are the components of the g-tensor in their principal-axes systems

 𝑎̅ =
1

3
(𝐴𝑥𝑥 + 𝐴𝑦𝑦 + 𝐴𝑧𝑧) (4.7)

𝐴𝑥𝑥, 𝐴𝑦𝑦, 𝐴𝑧𝑧 a are the components of the hyperfine tensor in their principal-axes systems

 𝐹 =
2

3
(𝑔𝑧𝑧 −

1

2
(𝑔𝑥𝑥 + 𝑔𝑦𝑦)) (4.8)

23

 𝐷 =
2

3
(𝐴𝑧𝑧 −

1

2
(𝐴𝑥𝑥 + 𝐴𝑦𝑦)) (4.9)

 𝐹(2) =
1

2
(𝑔𝑥𝑥 − 𝑔𝑦𝑦) (4.10)

 𝐷(2) =
1

2
(𝐴𝑥𝑥 − 𝐴𝑦𝑦) (4.11)

𝜔𝑛 – the nuclear Larmor frequency for the nucleus,

Ω(𝛼, 𝛽, 𝛾) – the Euler angles which describe the orientation of the g tensor with respect to the

static magnetic field,

𝛽 – the angle between the symmetry axis (“z-axis”) of the hyperfine tensor and the z-axis of the

laboratory system.

Spin 𝑆𝑧 = ±1 2⁄ , 𝐼𝑧 = ±1 2⁄

 𝑆𝑥 =
1

2
[
𝟎 𝐼2
𝐼2 𝟎

] =
1

2
[

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

] (4.12)

 𝑆𝑦 =
1

2
[
𝟎 −𝑖𝐼2
𝑖𝐼2 𝟎

] =
𝑖

2
[

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

] (4.13)

 𝑆𝑧 =
1

2
[
𝐼2 𝟎
𝟎 −𝐼2

] =
1

2
[

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

] (4.14)

 (𝑆𝑥 + 𝑖𝑆𝑦) =
1

2
[
𝟎 𝐼2
𝐼2 𝟎

] −
1

2
[
𝟎 −𝐼2
𝐼2 𝟎

] = [
𝟎 𝐼2
𝟎 𝟎

] = [

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

] (4.15)

24

Figure 4.1 Four-level electron-nuclear spin coupled (S=1/2, I=1/2) system

where

𝜔𝛼 = √(𝜔𝑛 −
𝐴

2
)
2

+ (
𝐵

2
)
2

𝜔𝛽 = √(𝜔𝑛 +
𝐴

2
)

2

+ (
𝐵

2
)
2

4.2 Relaxation

The following specific values for the matrix elements, as given by Freed (1979), are used

here:

 R̂̂𝛼𝛽,𝛼𝛽 = R̂̂𝛽𝛼,𝛽𝛼 = −(
1

𝑇2
)

𝛼𝛽

 (4.16)

 R̂̂𝛼𝛼,𝛽𝛽 = 𝑊𝛼𝛽 (4.17)

 R̂̂𝛼𝛼,𝛼𝛼 = −∑ 𝑊𝛼𝛾
𝛾≠𝛼

 (4.18)

Otherwise

25

 R̂̂𝛼𝛽,𝜁𝜂 = 0 (4.19)

The relaxation pathways among the various eigenstates of the two electrons in the lattice,

as defined in the H0 basis and described by Freed (1979), are shown in the Figure below where a

and b indicate the nuclear sublevels of electronic magnetic quantum number 𝑀𝑆 = 1 2⁄ , whereas

c and d indicate the nuclear sublevels of 𝑀𝑆 = −1 2⁄ .

Figure 4.2 Relaxation pathways defined in the H0 basis. [Reproduced by the permission of the

author (Freed, 1979).]

Corresponding to the above diagram, it is assumed that (Lee et al. 1993)

 𝑊𝑎𝑏 = 𝑊𝑏𝑎 = 𝑊𝑐𝑑 = 𝑊𝑑𝑐 = 𝑊𝑛 (4.20)

 𝑊𝑎𝑐 = 𝑊𝑐𝑎 = 𝑊𝑏𝑑 = 𝑊𝑑𝑏 = 𝑊𝑒 (4.21)

 𝑊𝑎𝑑 = 𝑊𝑑𝑎 = 𝑊𝑦 (4.22)

 𝑊𝑏𝑐 = 𝑊𝑐𝑏 = 𝑊𝑥 (4.23)

and

 (𝑇2)𝑎𝑐 = (𝑇2)𝑏𝑑 = (𝑇2)𝑎𝑑 = (𝑇2)𝑏𝑐 = 𝑇2𝑒 (4.24)

 (𝑇2)𝑎𝑏 = (𝑇2)𝑐𝑑 = 𝑇2𝑛 (4.25)

The non-zero elements of the relaxation matrix, corresponding to the above diagram, as obtained

from Eqs.(4.16) -(4.19)) are (Lee et al. 1993):

 R̂̂𝑎𝑏,𝑎𝑏 = R̂̂𝑏𝑎,𝑏𝑎 = R̂̂𝑐𝑑,𝑐𝑑 = R̂̂𝑑𝑐,𝑑𝑐 = −
1

𝑇2𝑛
 (4.26)

R̂̂𝑎𝑐,𝑎𝑐 = R̂̂𝑐𝑎,𝑐𝑎 = R̂̂𝑎𝑑,𝑎𝑑 = R̂̂𝑑𝑎,𝑑𝑎 = R̂̂𝑏𝑐,𝑏𝑐 = R̂̂𝑐𝑏,𝑐𝑏 = R̂̂𝑏𝑑,𝑏𝑑 = R̂̂𝑑𝑏,𝑑𝑏

= −
1

𝑇2𝑒

(4.27)

26

 R̂̂𝑎𝑎,𝑎𝑎 = R̂̂𝑑𝑑,𝑑𝑑 = −𝑊𝑒 − 𝑊𝑛 − 𝑊𝑦 (4.28)

 R̂̂𝑏𝑏,𝑏𝑏 = R̂̂𝑐𝑐,𝑐𝑐 = −𝑊𝑒 − 𝑊𝑛 − 𝑊𝑥 (4.29)

 R̂̂𝑎𝑎,𝑏𝑏 = R̂̂𝑏𝑏,𝑎𝑎 = R̂̂𝑐𝑐,𝑑𝑑 = R̂̂𝑑𝑑,𝑐𝑐 = 𝑊𝑛 +
𝜔𝐻𝐸

4
 (4.30)

 R̂̂𝑎𝑎,𝑐𝑐 = R̂̂𝑏𝑏,𝑑𝑑 = R̂̂𝑐𝑐,𝑎𝑎 = R̂̂𝑑𝑑,𝑏𝑏 = 𝑊𝑒 +
𝜔𝐻𝐸

4
 (4.31)

 R̂̂𝑏𝑏,𝑐𝑐 = R̂̂𝑐𝑐,𝑏𝑏 = 𝑊𝑥 −
𝜔𝐻𝐸

4
 (4.32)

 R̂̂𝑎𝑎,𝑐𝑐 = R̂̂𝑑𝑑,𝑎𝑎 = 𝑊𝑦 −
𝜔𝐻𝐸

4
 (4.33)

 otherwise R̂̂𝛼𝛽,𝜁𝜂 = 0. Here 𝜔𝐻𝐸 = 0 as used by LPF (Lee 1993).

.

4.3 Gaussian inhomogeneous broadening effect

 In accordance with LPF (Lee et al. 1993), the Gaussian inhomogeneous broadening

effect, over and above the relaxation effect, in the frequency-domain along 𝜔2 (= 2𝜋𝜈) ,

corresponding to the step time 𝑡2, as depicted in Figs. 3.1, is taken into account by the following

time-domain dependence:

 𝑓𝑏(𝑡2) = 𝑓(𝑡2)
1

√2𝜋∆
∫ 𝑒𝑥𝑝 (−

𝜈2

2Δ2
)

∞

−∞

𝑒−𝑖2𝜋𝜈𝑡2𝑑𝜈 = 𝑓(𝑡2)𝑒
−2(𝜋∆𝑡2)2 (4.34)

where 𝑓𝑏(𝑡2) is the Gaussian-broadened signal along t2 and ∆ is the Gausssian inhomogeneous

broadening parameter expressed in frequency units.

4.4 Illustrative Examples

The examples considered for illustration here are the same as those considered in (Lee

1993) for the single-crystal case. The sample used is an irradiated malonic-acid crystal

(McConnell 1960), wherein an unpaired electron spin 𝑆 = 1 2⁄ is in interaction with a single

nucleus, 𝐼 = 1 2⁄ , by hyperfine (HF) interaction, with the principal axes of the hyperfine (HF)

tensor 𝐴̃ and those of the 𝑔̃ matrix are assumed to be coincident. The orientations of the

crystalline axes X, Y, Z are shown in Figure 5.3, whose caption describes the angles (𝜃, 𝜙),

which are related to the Euler angles 𝜂 = (𝛼, 𝛽, 𝛾) = (𝜒, 𝜃, 𝜙) used in the transformation of the

static spin Hamiltonian to the laboratory frame.

27

Figure 4.3 Relation of the structure of the malonic acid radical R to the principal axes of the 𝑔̃, 𝐴̃

matrices [(reproduced by the permission of the authors, Lee et al. (1993).]

R = ∙CH(COOH)2, to the principal axes (x, y, z) of the hyperfine tensor. Here, the z axis is along

the C-H bond direction and the x axis is perpendicular to the plane of the three carbon atoms

(McConnell et al., 1960). The direction of the external static field B0 is defined by the angles θ

and ϕ, where θ is the angle between Bo and the z axis, and ϕ is the angle between the x axis and

the projection of B0 on the xy plane.

Electronic Structure of ∙CH(COOH)2 (McConnell et al., 1960).

Hyperfine interactions in ∙CH(COOH)2 indicate that this molecule is a simple π-electron

radical with essentially a unit odd-electron spin density on the central carbon atom. The radical is

a π-electron radical in the sense that the odd electron spin is largely localized in an orbital

antisymmetric to the plane containing three carbon atoms and the hydrogen atom.

Malonic acid crystals were irradiated with 1 Mrad 60Co γ radiation (Lee et al., 1993).

Soon after irradiation the cw-EPR spectrum showed several hf lines due to different kinds of

radicals produced, but in aged samples (a couple of days after irradiation), only two strong lines

persist. The strong doublet is due to the hf coupling of the π electron of the α carbon with the α

proton of the C-H fragment of the ∙CH (COOH)2 radical of malonic acid.

More details of density matrix analysis for nuclear modulation analysis, including the

Hamiltonian and basis vectors, are given in Appendix A of Lee et al.(1993). In this experiment

the various parameters are as follows: the external magnetic field 𝐵0 = 3000.0 𝐺𝑎𝑢𝑠𝑠; the 𝜋 2⁄

pulse is of duration ~5𝑛𝑠; nuclear Zeeman frequency 𝜔𝑛 = 14.5𝑀𝐻𝑧; the spin-Hamiltonian

parameters: 𝑔̃ = (𝑔𝑥𝑥, 𝑔𝑦𝑦, 𝑔𝑧𝑧) = (2.0026, 2.0035,2.0033); 𝐴̃ = (𝐴𝑥𝑥, 𝐴𝑦𝑦, 𝐴𝑧𝑧) =
(−61.0𝑀𝐻𝑧,−91.0𝑀𝐻𝑧,−29.0𝑀𝐻𝑧).

28

The input values used in the simulation of the time-domain signals, as described as

follows (Lee et al., 1993): Gaussian inhomogeneous broadening ∆= 4𝑀𝐻𝑧; electron spin–spin

relaxation time, 𝑇2𝑒 = 0.900𝜇𝑠; nuclear spin–spin relaxation time, 𝑇2𝑛 = 22𝜇𝑠; inverse electron

spin–spin relaxation time, 𝑊𝑒 = 0.0167𝜇𝑠−1; inverse nuclear spin–spin relaxation time, 𝑊𝑛 =
0.00714𝜇𝑠−1; inverse electron nuclear spin–spin relaxation time, 𝑊𝑥 = 0.00617𝜇𝑠−1; inverse

electron-nuclear spin–spin relaxation time 𝑊𝑥 = 𝑊𝑦 ; inverse Heisenberg exchange relaxation

time, 𝜔𝐻𝐸 = 0.0𝜇𝑠−1.

4.4.1 SECSY signals

One measures the transfer of coherence from one EPR allowed transition to another one in a

SECSY experiment. Here the second pulse refocuses hyperfine and resonance offsets. This

allows measurement of the variation of the phase memory time across the EPR spectrum

Figure 4.4 Pulse sequence for obtaining SECSY signal.

The t1 time between the two pulses is stepped and this echo decay is measured as a function of t2.

(Bottom) Coherence pathways used for calculating SECSY signal for an unpaired electron (S =

½) interacting with a single nucleus (I = ½). p is the coherence order, which represents transverse

magnetization, corresponding to spins rotating in a plane perpendicular to the external field (Lee

et al., 1993).

π/2 π/2

t1

t2

SC+

SC- p = +1

p = 0

p = -1

t1

29

The SECSY signals were calculated, corresponding to the experiments of LPF (Lee et al.,

1993) for: (i) as shown in Figure 4.5, for three orientations of the external magnetic field

(𝜃, 𝜙) = (5°, 0°), (30, 0°), (50°, 0°) in the zx-quadrant, so that the corresponding Euler angles are

(𝛼, 𝛽, 𝛾) = (0, −𝜃, 0); (ii) as shown in Figure 4.6, for two orientations (𝜃, 𝜙) = (5°, 90°) and

(45°, 90°) in the zy-quadrant, which correspond to (𝛼, 𝛽, 𝛾) = (0, 𝜃, 90°). [The orientation of the

external static field 𝐵0 is defined by the angles θ and ϕ, where θ is the angle between 𝐵0 and the

z axis, and ϕ is the angle between the x axis and the projection of 𝐵0 on the xy plane.]

Experiment

FT spectra

[Lee et al.

(1993)]

Simulation:

Time-domain

signal (this

work)

Simulation –

Fourier

transform

(this work)

Figure 4.5 Simulated time-domain and Fourier transforms of SECSY signals

The experimental Figures in the top row are reproduced by the permission of the authors from

Figure 8 of Lee et al. (1993) (upper). Simulations (bottom) of SECSY spectra at
(𝜃, 𝜙)orientations of (a) (5°, 0°), (b) (30°, 0°), (c) (50°, 0°) in the zx-quadrant [(𝛼, 𝛽, 𝛾) =
(0,−𝜃, 0)]. The corresponding simulated time-domain Figures are shown in the middle row. The

relaxation constants 𝑇2(𝑛𝑠) used for the various orientations are: (a) 800, (b) 812, (c) 687. A

Gaussian inhomogeneous broadening width Δ=4 MHz, Eq. (4.34), is used in the simulation of

the FT signal for each orientation.

30

Experiment

FT spectra

Simulation

Time-domain

signal (this

work)

Simulation –

Fourier

transform

(this work)

Figure 4.6 Simulated time-domain and Fourier transforms of SECSY signals The experimental

Figure reproduced by permission from Figure 9 of Lee et al. (1993) (upper row). Simulations

(bottom) of SECSY spectra at (𝜃, 𝜙) orientations of (a) (5°, 90°), (b) (45°, 90°) in the zy-

quadrant [(𝛼, 𝛽, 𝛾) = (0,−𝜃, 0)] , in the second and third rows, respectively. The corresponding

simulated time-domain Figures are shown in the middle row. The relaxation constants 𝑇2(𝑛𝑠)

for the various orientations are (a) 1223, (b) 1068. A Gaussian inhomogeneous broadening width

Δ=4 MHz, Eq.(4.34), is used in the simulation of FT signal for each orientation.

4.4.2 Echo-ELDOR

The ELDOR experiment measures the transfer of coherence from one EPR allowed transition to

another. By including a mixing time in this three pulse sequence and transferring coherences to

the z axis, this is sensitive to processes that occur on the T1 time scale.

π/2 π/2π/2

t1

t2

Tm t1

SC+

SC- p = +1

p = 0

p = -1

fixed

31

Figure 4.7 Pulse sequence for obtaining Echo- ELDOR signal

The t1 time between the two pulses is stepped and this echo decay is measured as a function of t2.

Here Tm is the mixing time. (Bottom) Coherence pathways used for calculating echo-ELDOR

signal for an unpaired electron (S = ½) interacting with a single nucleus (I = ½). p is the

coherence order, which represents transverse magnetization, corresponding to spins rotating in a

plane perpendicular to the external field (Lee et al., 1993).

As for the echo-ELDOR signals, they were calculated for the orientation (𝜃, 𝜙) = (30°, 0°) in

the zx-quadrant, so that(𝛼, 𝛽, 𝛾) = (0, −𝜃, 0) (Lee et al., 1993), with four mixing times 𝑇𝑚 (the

fixed time interval between the second and third 𝜋 2⁄ pulses; see Figure 4.8: (a) 5 μs; (b) 20 μs;

(c) 40 μs; (d) 60 μs.

One can compare the experimental signals with the simulated signals. It is found that for

the ELDOR signals simulated here, as shown in Figure 4.8, the positions of the main frequency

peaks, i.e. the nuclear modulation frequencies 𝜔𝛼 ≈ 7.0𝑀𝐻𝑧 and 𝜔𝛽 ≈ 32.0𝑀𝐻𝑧, are the same

as those reported in Lee et al., 1993 in all four cases. As well, the shapes of the simulated spectra

in the frequency domain as calculated here and those calculated by Lee et al., 1993 are found to

be in good agreement with each other.

Experiment FT spectra Simulation Time-

domain signal (this

work)

Simulation – Fourier

transform (this work)

32

Figure 4.8 Simulated time-domain and Fourier transforms of Echo-ELDOR signals (Figure 11 of

Lee et al. (1993) (reproduced here with the permission of the authors.)

The experimental Figures are reproduced by permission from Figure 11 of Lee et al. (1993) (first

column). Simulations (second column) of the echo-ELDOR spectra at (𝜃, 𝜙) orientations of (30°,

0°) in the zx-quadrant [(𝛼, 𝛽, 𝛾) = (0,−𝜃, 0)], with the mixing times Tm: (a) 5 μs; (b) 20 μs; (c)

40 μs; (d) 60 μs. The corresponding FT Figures are shown in the last column. A Gaussian

inhomogeneous broadening width Δ=4 MHz, Eq. (4.34), is used in the simulation.

4.5 Computing time

 The computation work is undertaken on a laptop with an x64-based processor of Intel®

Pentium® CPU B980 @2.4GHz, an installed memory (RAM) 4.00GB, an operation system of

Windows 8.1, and a Matlab version 8.3.0.532 (R2014a). As for computational time, calculation

of echo-ELDOR pulse signal takes ~10.56 seconds.

5. Simulation of Electron-electron dipolar interaction

5.1 Spin Hamiltonian and parameters

For the specific case of the electron-electron dipolar interaction of two nitroxide radicals,

each with electron spin S=1/2, nuclear spin I=1/2, the composite Hamiltonian can be expressed

as e.g. Misra (2011), Misra and Freed (2011):

 𝐻̂0 = 𝐻̂01 + 𝐻̂02 + 𝐻̂12 (5.1)

where

𝐻̂0𝑘 = 𝑆𝑘𝑧𝒈𝑘 ∙ 𝑩0 − 𝛾𝑛𝐼𝑘𝑧𝐵0 + 𝑆𝑘𝑧𝑨𝑘 ∙ 𝑰𝑘; 𝑘 = 1, 2

(5.2)

Ignoring the nuclear interaction, the various terms in Eq. (5.2) are:

 𝐻̂0𝑘 = 𝑆𝑘𝑧𝒈𝑘 ∙ 𝑩0 (5.3)

 𝐻̂12 = 𝐻̂𝐷𝑑𝑖𝑝
+ 𝐻̂𝐽 =

𝐷𝑑𝑖𝑝

2
(3𝑐𝑜𝑠2𝜃 − 1) (𝑆𝑧

2 −
1

3
𝑺2) + 𝐽 (

1

2
− 𝑺1 ∙ 𝑺2) (5.4)

Here, in the direct-product space, 𝑺 = 𝑺1 ⊗ 𝑰2 + 𝑰1 ⊗ 𝑺2; 𝑆𝑧 = 𝑆𝑧1 ⊗ 𝐼2 + 𝐼1 ⊗ 𝑆𝑧2, J is the

exchange-interaction constant between the two electrons, θ is the angle between the dipolar axis

and the static magnetic field 𝑩0 and 𝐷𝑑𝑖𝑝 is the dipolar-coupling constant

33

 𝐷𝑑𝑖𝑝 =
3𝛾𝑒

2ℏ

2𝑟3
=

3

2
𝑑 (5.5)

In the present case, neglecting the nuclear part, the direct-product Hilbert space is 𝑆1 ⊗
𝑆2, with the dimension (2𝑆1 + 1) × (2𝑆2 + 1) = 4. Then the dimensions of the superoperator

𝑯̂̂0 in Liouville space are 16 × 16 . [It is noted that if the nuclear space was taken into

consideration the matrix dimension are (16 × 16) × (16 × 16) = 256 × 256 , which would

have been exorbitant for manipulation on a laptop.]

The results of calculation are shown in Figures. 5.1 and 5.2 for SECSY and echo-ELDOR

cases. More details are given in the captions to these Figures.

5.2 Relaxation matrix

For consideration of relaxation for this illustrative case, only the relaxation of each

electron with the lattice is taken into account. Otherwise, if the nuclear relaxations are taken into

account, the Liouville space becomes of much larger dimension (256 x 256), which becomes

unmanageable as explained above. One can add the nuclear relaxation to this

phenomenologically in the same way as carried out in LPF (Lee et al., 1993). As a consequence,

for each electron the same relaxation matrix applies.

Then, the relaxation matrix for the two electrons, with the subscripts i=1, 2 designating

the two electrons, is:

 [R̂̂𝑖] = [
R̂̂𝑎𝑎,𝑎𝑎 R̂̂𝑎𝑏,𝑎𝑏

R̂̂𝑏𝑎,𝑏𝑎 R̂̂𝑏𝑏,𝑏𝑏

] =

[

 −𝑊𝑒

1

𝑇2

1

𝑇2
−𝑊𝑒]

 (5.6)

The relaxation matrix for the electron-electron spin coupled dipolar system is then expressed as:

 R̂̂ = R̂̂1 ⊗ 𝐼2 + 𝐼1 ⊗ R̂̂2 (5.7)

In Eq.(5.7) I1 and I2 are 2x2 unit matrices for electrons 1 and 2, respectively.

5.3 Pulse-propagator superoperator for the dipolar-coupled system

For the two-electron dipolar-coupled system, the pulse propagator is the same as that

expressed by (3.48).

In the |𝑆𝑧⟩ basis of a dipolar system with electron magnetic quantum numbers 𝑀1 =
±1 2⁄ 𝑎𝑛𝑑 𝑀2 = ±1 2⁄ , the explicit expression for 𝜀̂(𝑡) is as follows:

 [𝜀̂] = [𝜀̂]1 ⊗ 𝐼2 + 𝐼1 ⊗ [𝜀̂]2

34

 =

 |1⟩ = |+1+2⟩ |2⟩ = |+1−2⟩ |3⟩ = |−1+2⟩ |4⟩ = |−1−2⟩

 |1⟩ = |+1+2⟩

 |2⟩ = |+1−2⟩

 |3⟩ = |−1+2⟩

 |4⟩ = |−1−2⟩

𝜔

2
[

0 𝑒−𝑖𝜙 𝑒−𝑖𝜙 0
𝑒𝑖𝜙 0 0 𝑒−𝑖𝜙

𝑒𝑖𝜙 0 0 𝑒−𝑖𝜙

0 𝑒𝑖𝜙 𝑒𝑖𝜙 0

]
 (5.8)

5.4. Illustrative Examples

 For two nitroxide radicals coupled by the dipolar interaction the time-domain SECSY and

echo-ELDOR signals were calculated for the pulse sequences 𝑆𝑐−, neglecting the hyperfine and

exchange interactions, otherwise the size of the matrix would have been prohibitively large in

Liouville space [=(36x36)x(36x36)]. The value of the matrix 𝑔̃ = (𝑔𝑥𝑥, 𝑔𝑦𝑦 , 𝑔𝑧𝑧) =

(2.0026, 2.0035,2.0033) was used for each electron as those used by Misra and Li (2018), and

the value of the dipolar-interaction constant 𝐷𝑑𝑖𝑝 = 10𝑀𝐻𝑧 was used (See Eq. (5.5) for the

expression of 𝐷𝑑𝑖𝑝) (Misra, 2011). Figure 5.1 shows the simulated Fourier transform of SECSY

signals at (𝜃, 𝜙) orientations of (30°, 0°) in the zx-quadrant, the corresponding values for the

Euler angles (𝛼, 𝛽, 𝛾) are (0, −𝜃, 0). The lower row displays the FT of the slice of time domain

along t2 = 0; it clearly shows the dipolar peaks at ±10𝑀𝐻𝑧, which corresponds, as expected, to

the value of ±𝐷𝑑𝑖𝑝 = ±10𝑀𝐻𝑧 used in the present simulation. Figure 5.2 shows the simulated

Fourier transform of echo-ELDOR signals, as calculated for the mixing time 𝑇𝑚 = 20𝜇𝑠; the

lower row displays the Fourier transform of the echo peak (t2=0 slice), which clearly shows the

peaks at ±𝐷𝑑𝑖𝑝 = ±10𝑀𝐻𝑧 as expected.

A Gaussian inhomogeneous broadening width Δ=4 MHz is used in the simulation. It is

noted from Figures 5.1 and 5.2 that inclusion of relaxation has significantly broadened the

dipolar peaks, as expected. However, the spacings of the Pake doublet in both cases, which are

needed to estimate distances, remained unchanged. On the other hand, if constant-time

experiments are to be done, then our calculation results without relaxation as shown in Figures

5.1 and 5.2 will be useful.

 Without Relaxation With Relaxation

Fourier

transform

35

FT of the slice

of time domain

along t2=0

Figure 5.1 Simulated Fourier transform of SECSY signals with and without relaxation for an

electron-electron dipolar-coupled system

Simulations at (𝜃, 𝜙)orientations of (30°, 0°) in the zx-quadrant [(𝛼, 𝛽, 𝛾) = (0,−𝜃, 0)] (Lee et

al., 1993). The lower row is the Fourier transform of the echo peak (t2=0 slice), which clearly

shows the peaks at ±10𝑀𝐻𝑧 , the value of the dipolar coupling constant 𝐷𝑑𝑖𝑝 used in the

simulation, as expected. It is noted that inclusion of relaxation significantly broadens the Fourier

peaks, as expected. A Gaussian inhomogeneous broadening width Δ=4 MHz, is used in the

simulation.

36

 Without Relaxation With Relaxation

Fourier transform

FT of the slice of

time domain signal

along t2=0

Figure 5.2 Fourier transform of simulated echo-ELDOR signals with and without relaxation for

an electron-electron dipolar-coupled system.

Simulations at (𝜃, 𝜙) orientations of (30°, 0°) in the zx-quadrant, so that (𝛼, 𝛽, 𝛾) = (0,−𝜃, 0)

(Lee et al., 1993), with the mixing times Tm = 20 μs. The lower row is the Fourier transform of

the echo peak (t2=0 slice), which clearly shows the dipolar peaks at ±10𝑀𝐻𝑧, the value of the

dipolar coupling constant 𝐷𝑑𝑖𝑝 used in the simulation. It is noted that inclusion of relaxation

significantly broadens the Fourier peaks as expected. A Gaussian inhomogeneous broadening

width Δ=4 MHz is used in the simulation.

37

6. Relaxation due to fluctuations of SHP

The time-dependent Hamiltonian 𝐻̂1(𝑡) causing relaxation can be written in general form

as follows (Abragam, 1961):

 𝐻̂1(𝑡) = ∑ 𝐹𝛼𝛽
𝑝 (𝑡)𝐴𝛼𝛽

𝑝

𝑝,𝛼𝛽

 (6.1)

where the 𝐴𝛼𝛽
𝑝

 are the spin operators in the laboratory frame that appear in the spin Hamiltonian

and their coefficients 𝐹𝛼𝛽
𝑝

are functions of spatial variables, which are, in fact, the time-

dependent fluctuating parts of SHPs, as given explicitly in Table IV of Lee et al. (1993). The

various terms 𝐹𝛼𝛽
𝑝 (𝑡) = (𝛿𝑔, 𝛿𝑎, 𝛿𝐹, 𝛿𝐹(2), 𝛿𝐷, 𝛿𝐷(2)) in 𝐻1 are the time-dependent fluctuations

from the average values, e.g. 𝛿𝑔 = 𝑔(𝑡) − 𝑔̅,; they are given in Appendix F below. These, in

turn, bring about relaxation as discussed below.

6.1 Calculation of relaxation due to fluctuation of SHP

The matrix elements of R̂̂ in can be extracted from the Redfield relaxation matrix

(Redfield, 1957), as described by Freed and Fraenkel (1963). Let R̂̂𝛼𝛼′𝛽𝛽′ be the matrix elements

of R̂̂:

R̂̂𝛼𝛼′𝛽𝛽′ = 2 𝐽𝛼𝛽𝛼′𝛽′(𝜔𝛼′𝛽′) − 𝛿𝛼′𝛽′ ∑ 𝐽𝛾𝛽𝛾𝛼
𝛾

(𝜔𝛾𝛽)

− 𝛿𝛼𝛽 ∑ 𝐽𝛾𝛼′𝛾𝛽′(𝜔𝛾𝛽′)
𝛾

(6.2)

where the 𝐽𝛼𝛽𝛼′𝛽′(𝜔) are the spectral density functions in the frequency domain, related to the

autocorrelation function through the Fourier transformation:

 𝐽𝛼𝛽𝛼′𝛽′(𝜔) =
1

2
∫ 𝑒𝑖𝜔𝜏𝑃𝛼𝛽𝛼′𝛽′(𝜏)𝑑𝜏

∞

−∞

 (6.3)

In Eq. (6.3) the autocorrelation matrix of 𝐻1 is:

 𝑃𝛼𝛽𝛼′𝛽′(𝜏) = 〈𝐻1𝛼𝛽(𝑡)𝐻1𝛼′𝛽′
∗ (𝑡 − 𝜏)〉 (6.4)

where 〈 〉 denotes the time average over the ensemble. It is noted that 𝑃𝛼𝛽𝛼′𝛽′(𝜏) is

independent of time, 𝑃(𝜏) = 𝑃(−𝜏) and 𝑃(∞) = 0 (Redfield, 1957) and the correlation time 𝜏𝑐

is governed by the condition that 𝑃(𝜏) ≪ 𝑃(0) if 𝜏 ≫ 𝜏𝑐.

38

The following properties of 𝐽𝛼𝛽𝛼′𝛽′(𝜔𝛼𝛽) appearing in Eq.(6.2) (Freed and Fraenkel, 1963)

are found to be useful:

 𝐽𝛼𝛽𝛼′𝛽′(𝜔𝛼𝛽) = 𝐽𝛼𝛽𝛼′𝛽′(−𝜔𝛼𝛽) = 𝐽𝛽′𝛼′𝛽𝛼(𝜔𝛼𝛽) = 𝐽𝛽𝛼𝛽′𝛼′
∗ (𝜔𝛼𝛽) (6.5)

Using Eqs. (6.1) and (6.4), one obtains:

𝑃𝛼𝛽𝛼′𝛽′(𝜏) = ∑ 〈𝐹𝛼𝛽
𝑝 (𝑡)𝐴𝛼𝛽

𝑝 (𝐹𝛼𝛽
𝑞 (𝑡 − 𝜏)𝐴𝛼𝛽

𝑞 (𝑡 − 𝜏))
∗
〉

𝑝,𝑞𝛼𝛽,𝛼′𝛽′

= ∑ 𝐴𝛼𝛽
𝑝 (𝐴

𝛼′𝛽′
𝑞

)
∗
〈𝐹𝛼𝛽

𝑞 (𝑡) (𝐹𝛼𝛽
𝑞 (𝑡 − 𝜏))

∗
〉

𝑝,𝑞,𝛼𝛽,𝛼′𝛽′

(6.6)

On the other hand, eqs. (6.3) and (6.6) yield

𝐽𝛼𝛽𝛼′𝛽′(𝜔) =
1

2
∑𝐴𝛼𝛽

𝑝 (𝐴
𝛼′𝛽′
𝑞

)
∗

∫ 𝑒𝑖𝜔𝜏 〈𝐹𝛼𝛽
𝑝 (𝑡) (𝐹𝛼𝛽

𝑞 (𝑡
∞

−∞𝑝,𝑞

− 𝜏))
∗
〉 𝑑𝜏

(6.7)

 𝐽𝛼𝛼𝛽𝛽(0) =
1

2
∑∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

 (6.8)

 𝐽𝛼𝛼𝛼𝛼(0) =
1

2
∑∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛼𝛼
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

 (6.9)

 𝐽𝛽𝛽𝛽𝛽(0) =
1

2
∑∫ 〈𝐴𝛽𝛽

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

 (6.10)

In the 𝐻̂0 basis with a significant magnitude of hf tensor, there result no degenerate

energy levels; as well, there occur no transitions between any of these energy levels, so only the

following specific values for the matrix elements in Eq. (6.2) are required.

6.1.1 Calculation of element of relaxation matrix

We illustrate how to calculate an element of relaxation matrix

𝑅̂̂𝛼𝛽𝛼𝛽 = 2 𝐽𝛼𝛼𝛽𝛽(𝜔𝛽𝛽) − 𝛿𝛽𝛽 ∑ 𝐽𝛾𝛼𝛾𝛼
𝛾

(𝜔𝛾𝛼) − 𝛿𝛼𝛼 ∑ 𝐽𝛾𝛽𝛾𝛽(𝜔𝛾𝛽)
𝛾

= 2 𝐽𝛼𝛼𝛽𝛽(0) − 𝐽𝛼𝛼𝛼𝛼(0) − 𝐽𝛽𝛽𝛽𝛽(0) − ∑ 𝐽𝛾𝛼𝛾𝛼
𝛾≠𝛼

(𝜔𝛾𝛼)

− ∑ 𝐽𝛾𝛽𝛾𝛽(𝜔𝛾𝛽)
𝛾≠𝛼

(6.11)

39

We separate the calculation:

2 𝐽𝛼𝛼𝛽𝛽(0) − 𝐽𝛼𝛼𝛼𝛼(0) − 𝐽𝛽𝛽𝛽𝛽(0)

= 𝐽𝛼𝛼𝛽𝛽(0) − 𝐽𝛼𝛼𝛼𝛼(0) + 𝐽𝛼𝛼𝛽𝛽(0) − 𝐽𝛽𝛽𝛽𝛽(0)

=
1

2
∑ ∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

−
1

2
∑∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛼𝛼
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

+
1

2
∑∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

−
1

2
∑∫ 〈𝐴𝛽𝛽

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

(6.12)

=
1

2
∑∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏) − 𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏))
∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

−
1

2
∑ ∫ 〈(𝐴𝛽𝛽

𝑝 (𝑡)
∞

−∞𝑝,𝑞

− 𝐴𝛼𝛼
𝑝 (𝑡)) (𝐴𝛽𝛽

𝑞 (𝑡 − 𝜏))
∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

(6.13)

The autocorrelation function

 𝑃𝛼𝛽𝛼′𝛽′(𝜏) = 〈𝐻1𝛼𝛽(𝑡)𝐻1𝛼′𝛽′
∗ (𝑡 − 𝜏)〉 (6.14)

has the symmetry property (Redfield, 1957)

 𝑃𝛼𝛽𝛼′𝛽′(𝜏) = 𝑃𝛼𝛽𝛼′𝛽′(−𝜏) (6.15)

thus

=
1

2
∑∫ 〈(𝐴𝛽𝛽

𝑝 (𝑡) − 𝐴𝛼𝛼
𝑝 (𝑡)) (𝐴𝛽𝛽

𝑞 (𝑡 − 𝜏))
∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

=
1

2
∑∫ 〈(𝐴𝛽𝛽

𝑝 (𝑡)
∞

−∞𝑝,𝑞

− 𝐴𝛼𝛼
𝑝 (𝑡)) (𝐴𝛽𝛽

𝑞 (𝑡 + 𝜏))
∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 + 𝜏))
∗
〉 𝑑𝜏

(6.16)

Changing t to 𝑡 − 𝜏, one get

 =
1

2
∑∫ 〈(𝐴𝛽𝛽

𝑝 (𝑡 − 𝜏) − 𝐴𝛼𝛼
𝑝 (𝑡 − 𝜏)) (𝐴𝛽𝛽

𝑞 (𝑡))
∗

𝐹𝑝(𝑡 − 𝜏)(𝐹𝑞(𝑡))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

 (6.17)

rename p, q

40

=
1

2
∑ ∫ 〈(𝐴𝛽𝛽

𝑝 (𝑡))
∗

(𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏) − 𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏)) (𝐹𝑝(𝑡))
∗
𝐹𝑞(𝑡 − 𝜏)〉 𝑑𝜏

∞

−∞𝑝,𝑞

=

=
1

2
∑ ∫ 〈[𝐴𝛽𝛽

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏)

∞

−∞𝑝,𝑞

− 𝐴𝛼𝛼
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
]
∗

〉 𝑑𝜏

(6.18)

and with fact that autocorrelation function are real

1

2
[∑ ∫ 〈𝐴𝛽𝛽

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏) − 𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏))
∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

]

∗

=
1

2
∑∫ 〈𝐴𝛽𝛽

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏)

∞

−∞𝑝,𝑞

− 𝐴𝛼𝛼
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

(6.19)

thus

1

2
∑ ∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏) − 𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏))
∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

∞

−∞𝑝,𝑞

−
1

2
∑∫ 〈(𝐴𝛽𝛽

𝑝 (𝑡)
∞

−∞𝑝,𝑞

− 𝐴𝛼𝛼
𝑝 (𝑡)) (𝐴𝛽𝛽

𝑞 (𝑡 − 𝜏))
∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

=
1

2
∑∫ 〈𝐴𝛼𝛼

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏)

∞

−∞𝑝,𝑞

− 𝐴𝛼𝛼
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

−
1

2
∑∫ 〈𝐴𝛽𝛽

𝑝 (𝑡) (𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏)

∞

−∞𝑝,𝑞

− 𝐴𝛼𝛼
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

(6.20)

=
1

2
∑ ∫ 〈(𝐴𝛼𝛼

𝑝 (𝑡)
∞

−∞𝑝,𝑞

− 𝐴𝛽𝛽
𝑝 (𝑡)) (𝐴𝛽𝛽

𝑞 (𝑡 − 𝜏) − 𝐴𝛼𝛼
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

= −
1

2
∑ ∫ 〈(𝐴𝛼𝛼

𝑝 (𝑡)
∞

−∞𝑝,𝑞

− 𝐴𝛽𝛽
𝑝 (𝑡)) (𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏) − 𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏))

∗

𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

(6.21)

41

= −
1

2
∫ 〈∑ [𝐴𝛼𝛼

𝑝 (𝑡)
𝑝

∞

−∞

− 𝐴𝛽𝛽
𝑝 (𝑡)𝐹𝑝(𝑡)]∑ [𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏) − 𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏)(𝐹𝑞(𝑡 − 𝜏))]

∗

𝑞
〉 𝑑𝜏

= −∫ 〈∑ [𝐴𝛼𝛼
𝑝 (𝑡)

𝑝

∞

0

− 𝐴𝛽𝛽
𝑝 (𝑡)𝐹𝑝(𝑡)]∑ [𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏) − 𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏)(𝐹𝑞(𝑡 − 𝜏))]

∗

𝑞
〉 𝑑𝜏

(6.22)

with

 𝐻̂1(𝑡) = ∑𝐹𝑝(𝑡)𝐴𝑝

𝑝

 (6.23)

one gets

 ∑ [𝐴𝛼𝛼
𝑝 (𝑡) − 𝐴𝛽𝛽

𝑝 (𝑡)𝐹𝑝(𝑡)]
𝑝

= [𝐻̂1𝛼𝛼(𝑡) − 𝐻̂1𝛽𝛽(𝑡)] = 𝜔𝛼𝛽(𝑡) (6.24)

𝑅̂̂𝛼𝛽𝛼𝛽 = −∑ ∫ 〈(𝐴𝛼𝛼
𝑝 (𝑡)

∞

0𝑝,𝑞

− 𝐴𝛽𝛽
𝑝 (𝑡)) 𝐹𝑝(𝑡) (𝐴𝛼𝛼

𝑞 (𝑡 − 𝜏) − 𝐴𝛽𝛽
𝑞 (𝑡 − 𝜏))

∗

(𝐹𝑞(𝑡 − 𝜏))
∗
〉 𝑑𝜏

− ∑ 𝐽𝛾𝛼𝛾𝛼
𝛾≠𝛼

(𝜔𝛾𝛼) − ∑ 𝐽𝛾𝛽𝛾𝛽(𝜔𝛾𝛽)
𝛾≠𝛼

= −∫ 〈𝜔𝛼𝛽(𝑡)𝜔𝛼𝛽
∗ (𝑡 − 𝜏)〉𝑑𝜏

∞

0

− ∑ 𝐽𝛾𝛼𝛾𝛼
𝛾≠𝛼

(𝜔𝛾𝛼)

− ∑ 𝐽𝛾𝛽𝛾𝛽(𝜔𝛾𝛽)
𝛾≠𝛼

(6.25)

because 𝐴𝛼𝛼
𝑝 , 𝐴𝛽𝛽

𝑝 , 𝐴𝛼𝛼
𝑞 , 𝐴𝛽𝛽

𝑞
 are real and time independent:

𝑅̂̂𝛼𝛽𝛼𝛽 = −
1

2
∑(𝐴𝛼𝛼

𝑝
− 𝐴𝛽𝛽

𝑝
)(𝐴𝛼𝛼

𝑞
− 𝐴𝛽𝛽

𝑞
)∫ 〈𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))

∗
〉𝑑𝜏

∞

−∞𝑝,𝑞

− ∑ 𝐽𝛾𝛼𝛾𝛼
𝛾≠𝛼

(𝜔𝛾𝛼) − ∑ 𝐽𝛾𝛽𝛾𝛽(𝜔𝛾𝛽)
𝛾≠𝛼

(6.26)

R̂̂𝛼𝛼𝛽𝛽 = 𝐽𝛼𝛽𝛼𝛽(𝜔𝛼𝛽) + 𝐽𝛼𝛽𝛼𝛽(𝜔𝛼𝛽) − 𝛿𝛼𝛽 ∑ 𝐽𝛾𝛽𝛾𝛼
𝛾

(𝜔𝛾𝛽)

− 𝛿𝛼𝛽 ∑ 𝐽𝛾𝛼𝛾𝛽(𝜔𝛾𝛽)
𝛾

(6.27)

It is seen from Eq.(6.27) that if 𝛼 ≠ 𝛽,

 R̂̂𝛼𝛼𝛽𝛽 = 2𝐽𝛼𝛽𝛼𝛽(𝜔𝛼𝛽) (6.28)

and

42

𝑅̂̂𝛼𝛼𝛽𝛽 = 2𝐽𝛼𝛽𝛼𝛽(𝜔𝛼𝛽)

= ∑ ∫ 𝐴𝛼𝛽
𝑝 (𝑡) (𝐴𝛼𝛽

𝑞 (𝑡 − 𝜏))
∗

𝑒𝑖𝜔𝛼𝛽𝜏〈𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉𝑑𝜏

∞

−∞𝑝,𝑞

= ∑ 𝐴𝛼𝛽
𝑝

𝐴𝛼𝛽
𝑞

∫ 𝑒𝑖𝜔𝛼𝛽𝜏〈𝐹𝑝(𝑡)(𝐹𝑞(𝑡 − 𝜏))
∗
〉𝑑𝜏

∞

−∞𝑝,𝑞

(6.29)

and from Eq. (6.5), one obtains

 R̂̂𝛼𝛼𝛽𝛽 = R̂̂𝛽𝛽𝛼𝛼 (6.30)

Equations (6.27) - (6.30) yield

 R̂̂𝛼𝛼𝛼𝛼 = − ∑ R̂̂𝛼𝛼𝛽𝛽

𝛽(≠𝛼)

 (6.31)

From Eq. (6.2) by relabeling 𝛼′, 𝛽, 𝛽′ as 𝛽, 𝛼, 𝛽, respectively, one obtains

R̂̂𝛼𝛽𝛼𝛽 = 2𝐽𝛼𝛼𝛽𝛽(𝜔𝛽𝛽 = 0) − 𝐽𝛼𝛼𝛼𝛼(0) − 𝐽𝛽𝛽𝛽𝛽(0)

+
1

2
(R̂̂𝛼𝛼𝛼𝛼 + R̂̂𝛽𝛽𝛽𝛽)

(6.32)

Now using Eq. (6.5) after relabeling indices 𝛽′, 𝛼′, 𝛽, as 𝛽, 𝛽, 𝛼, respectively, one obtains

 𝐽𝛼𝛼𝛽𝛽(0) = 𝐽𝛽𝛽𝛼𝛼(0) (6.33)

so that from Eqs. (6.32) and (6.33), it is seen that

 R̂̂𝛼𝛽𝛼𝛽 = R̂̂𝛽𝛼𝛽𝛼 (6.34)

Except for the above, all other elements

 𝑅̂̂𝛼𝛽𝛼′𝛽′(𝜔𝜂𝜉) = 0 (6.35)

Finally, the above evaluations imply that one only has to compute the spectral density

matrix elements 𝐽𝛼𝛽𝛼𝛽(𝜔𝛼𝛽), 𝐽𝛼𝛼𝛼𝛼(0), and 𝐽𝛼𝛼𝛽𝛽(0) to consider the effect of fluctuations

on relaxation.

6.2 Autocorrelation and spectral density functions

Calculation of ensemble average of elements of autocorrelation matrix, 𝑃𝛼𝛼′𝛽𝛽′ , and its

spectral density function, 𝐽𝛼𝛼′𝛽𝛽′, due to the fluctuating perturbation are discussed by Slichter

(2013) , Eq. (5.294), which states

 〈𝐹𝛼𝛽
𝑝 (𝑡) (𝐹𝛼𝛽

𝑝 (𝑡 − 𝜏))
∗
〉 = 𝑓𝛼𝛽

𝑝 𝑒−|𝜏| 𝜏𝑐⁄ (6.36)

where 𝑓𝛼𝛽
𝑝

 is the amplitude of the function 𝐹𝛼𝛽
𝑝 (𝑡).

Noting that if 𝑝 ≠ 𝑞

 〈𝐹𝛼𝛽
𝑝 (𝑡) (𝐹𝛼𝛽

𝑞 (𝑡 − 𝜏))
∗
〉 = 0 (6.37)

43

as shown by Slitcher (2013) (Eq. (5.344)).

From Eqs.(6.7) and (6.36), one obtains

𝐽𝛼𝛽𝛼′𝛽′(𝜔) =
1

2
∑ 𝐴𝛼𝛽

𝑝 (𝐴
𝛼′𝛽′
𝑝

)
∗

∫ 𝑒𝑖𝜔𝜏𝑓𝑝
2𝑒−|𝜏| 𝜏𝑐⁄ 𝑑𝜏

∞

−∞𝑝

=
𝜏𝑐

1 + (𝜔𝜏𝑐)2
∑ 𝐴𝛼𝛽

𝑝 (𝐴
𝛼′𝛽′
𝑝

)
∗

𝑛

𝑝=1

𝑓𝑝
2

(6.38)

From Eqs. (6.7) and (6.36), the non-zero elements of the spectral density function are

calculated to be as follows:

𝐽𝛼𝛽𝛼𝛽(𝜔𝛼𝛽) =
𝜏𝑐

1 + (𝜔𝛼𝛽𝜏𝑐)
2 ∑ |𝐴𝛼𝛽

𝑝 |
2

𝑛

𝑞=1

𝑓𝑝
2

𝐽𝛼𝛼𝛽𝛽(0) = 𝜏𝑐 ∑ 𝐴𝛼𝛼
𝑝 (𝐴𝛽𝛽

𝑝)
∗

𝑛

𝑝=1

𝑓𝑝
2

𝐽𝛼𝛼𝛼𝛼(0) = 𝜏𝑐 ∑|𝐴𝛼𝛼
𝑝 |

2
𝑛

𝑞=1

𝑓𝑝
2

(6.39)

In Eqs. (6.38) and (6.39) each 𝛼, 𝛽, 𝛼′, 𝛽′ corresponding to the eigenvalues of 𝐻0 as

described in Appendix A.

6.3 Relaxation due to fluctuation of SHP for an electron-nuclear spin-coupled system

The effect of the relaxation due to the time-dependent fluctuating perturbation is here taken

into account quantitatively by using the procedure outlined by Lee et al. (1993). The specific role

of the g and hf tensors is itemized in Table IV of Lee et al. (1993) in the 𝐻̂0 basis. Note that not

only are the spin operators 𝐹𝑝 orientation dependent, but their coefficients 𝐴𝛼𝛽
𝑝

 can also have

substantial orientation dependence.

The relaxation superoperator matrix R̂̂ will, in general, display orientation dependence. In

problems which involve orientational motion (Fresch et al., 2006; Libertini and Griffith, 1970),

R̂̂ becomes a rotational diffusion operator and it does not commute with the orientation

dependent terms in 𝐻̂.

For the present calculation in a malonic acid crystal, it is assumed that phonon modulation

of the hf and g tensors leads to spin relaxation that can be described by the Redfield equation

applicable to motional narrowing. Then Eq. (6.1) for 𝐻̂1 is the thermal average over these

fluctuations, and the Redfield relaxation matrix R̂̂ is composed of the small fluctuations in these

terms, which are summarized in Table IV of Lee et al. (1993). It is noted that that in this

approach, the density matrix for each orientation of the molecular magnetic tensors relative to

the lab frame specified by Ω = (0, 𝛽, 𝛾) is taken as uncoupled from all others.

44

This simplification would not be strictly correct if, for example, there were torsional

oscillations, the Redfield relaxation matrix will then depend on the orientation of the single

crystal. Thus a separate value of R̂̂ is considered for each value of Ω in the corresponding 𝐻̂0

basis. (This is a local approach as opposed to the global approach utilized in motional narrowing

problems in which R̂̂ is expressed in the |𝑆𝑧𝐼𝑧⟩ basis.). Finally, the effects of spin relaxation is

taken into account phenomenologically by the Redfield equation (Redfield, 1957) for an

arbitrary orientation Ω.

6.3.1 Relaxation matrix R̂̂

 𝑅̂̂𝑎𝑐𝑎𝑐 = 2 𝐽𝑎𝑎𝑐𝑐(𝜔𝑐𝑐) − 𝛿𝑐𝑐 ∑ 𝐽𝛾𝑎𝛾𝑎
𝛾

(𝜔𝛾𝑎) − 𝛿𝑎𝑎 ∑ 𝐽𝛾𝑐𝛾𝑐(𝜔𝛾𝑏)
𝛾

 (6.40)

and

𝑅̂̂𝑎𝑐𝑎𝑐 = 2𝜏𝑐 ∑ 𝐴𝑎𝑎
𝑝

(𝐴𝑐𝑐
𝑝

)
∗

𝑛

𝑝=1

𝑓𝑝
2 − 𝜏𝑐 ∑|𝐴𝑎𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2 − 𝜏𝑐 ∑|𝐴𝑐𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

−
𝜏𝑐

1 + (𝜔𝑏𝑎𝜏𝑐)
2
∑|𝐴𝑏𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2 −

𝜏𝑐

1 + (𝜔𝑐𝑎𝜏𝑐)
2
∑|𝐴𝑐𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

−
𝜏𝑐

1 + (𝜔𝑑𝑎𝜏𝑐)
2
∑|𝐴𝑑𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2 −

𝜏𝑐

1 + (𝜔𝑎𝑐𝜏𝑐)
2
∑|𝐴𝑎𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

−
𝜏𝑐

1 + (𝜔𝑏𝑐𝜏𝑐)
2
∑|𝐴𝑏𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2 −

𝜏𝑐

1 + (𝜔𝑑𝑐𝜏𝑐)
2
∑|𝐴𝑑𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

(6.41)

If all Spin-Hamiltonian Parameters (SHP) have same average fluctuation rate ∆(𝑆𝐻𝑃), then

 𝑓𝑝 = ∆(𝑆𝐻𝑃)𝑓0𝑝 (6.42)

𝑅̂̂𝑎𝑐𝑎𝑐 = 𝜏𝑐(∆(𝑆𝐻𝑃))
2
[2 ∑ 𝐴𝑎𝑎

𝑝
(𝐴𝑐𝑐

𝑝
)
∗

𝑛

𝑝=1

𝑓0𝑝
2 − ∑|𝐴𝑎𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2 − ∑|𝐴𝑐𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2

−
1

1 + (𝜔𝑏𝑎𝜏𝑐)
2
∑|𝐴𝑏𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2 −

1

1 + (𝜔𝑐𝑎𝜏𝑐)
2
∑|𝐴𝑐𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2

−
1

1 + (𝜔𝑑𝑎𝜏𝑐)
2
∑|𝐴𝑑𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2 −

1

1 + (𝜔𝑎𝑐𝜏𝑐)
2
∑|𝐴𝑎𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2

−
1

1 + (𝜔𝑏𝑐𝜏𝑐)
2
∑|𝐴𝑏𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2 −

1

1 + (𝜔𝑑𝑐𝜏𝑐)
2
∑|𝐴𝑑𝑐

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2]

(6.43)

then

 𝑅̂̂𝑎𝑐𝑎𝑐 ∝ 𝜏𝑐(∆(𝑆𝐻𝑃))
2
 (6.44)

45

with

 𝑅̂̂𝑎𝑏𝑎𝑏 = 2 𝐽𝑎𝑎𝑏𝑏(𝜔𝑏𝑏) − 𝛿𝑏𝑏 ∑ 𝐽𝛾𝑎𝛾𝑎
𝛾

(𝜔𝛾𝑎) − 𝛿𝑎𝑎 ∑ 𝐽𝛾𝑏𝛾𝑏(𝜔𝛾𝑏)
𝛾

 (6.45)

and

𝑅̂̂𝑎𝑏𝑎𝑏 = 2𝜏𝑐 ∑ 𝐴𝑎𝑎
𝑝

(𝐴𝑏𝑏
𝑝

)
∗

𝑛

𝑝=1

𝑓𝑝
2 − 𝜏𝑐 ∑|𝐴𝛼𝛼

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2 − 𝜏𝑐 ∑|𝐴𝑏𝑏

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

−
2𝜏𝑐

1 + (𝜔𝑏𝑎𝜏𝑐)
2
∑|𝐴𝑏𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2 −

𝜏𝑐

1 + (𝜔𝑐𝑎𝜏𝑐)
2
∑|𝐴𝑐𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

−
𝜏𝑐

1 + (𝜔𝑑𝑎𝜏𝑐)
2
∑|𝐴𝑑𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2 −

𝜏𝑐

1 + (𝜔𝑐𝑏𝜏𝑐)
2
∑|𝐴𝑐𝑏

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

−
𝜏𝑐

1 + (𝜔𝑑𝑏𝜏𝑐)
2
∑|𝐴𝑑𝑏

𝑝
|
2

𝑛

𝑝=1

𝑓𝑝
2

(6.46)

If all Spin-Hamiltonian Parameters (SHP) have same average fluctuation rate ∆(𝑆𝐻𝑃), then

𝑅̂̂𝑎𝑏𝑎𝑏 = 𝜏𝑐(∆(𝑆𝐻𝑃))
2
[2 ∑ 𝐴𝑎𝑎

𝑝
(𝐴𝑏𝑏

𝑝
)
∗

𝑛

𝑝=1

𝑓0𝑝
2 − ∑|𝐴𝛼𝛼

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2 − ∑|𝐴𝑏𝑏

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2

−
2

1 + (𝜔𝑎𝑏𝜏𝑐)
2
∑|𝐴𝑎𝑏

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2 −

1

1 + (𝜔𝑐𝑎𝜏𝑐)
2
∑|𝐴𝑐𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2

−
1

1 + (𝜔𝑑𝑎𝜏𝑐)
2
∑|𝐴𝑑𝑎

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2 −

1

1 + (𝜔𝑐𝑏𝜏𝑐)
2
∑|𝐴𝑐𝑏

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2

−
1

1 + (𝜔𝑑𝑏𝜏𝑐)
2
∑|𝐴𝑑𝑏

𝑝
|
2

𝑛

𝑝=1

𝑓0𝑝
2]

(6.47)

and

 𝑅̂̂𝑎𝑏𝑎𝑏 ∝ 𝜏𝑐(∆(𝑆𝐻𝑃))
2
 (6.48)

6.3.2 Spectral density functions

Using Eq. (6.39) and table IV of Lee et al. (1993) as given here in Appendix F, one can

express the various 𝐽𝛼𝛽𝛼′𝛽′ explicitly as follows:

46

𝐽𝑎𝑎𝑏𝑏(𝜔𝑎𝑏) =
𝜏𝑐𝛾𝑒

4ℏ

×
1

1 + (𝜔𝑎𝑏𝜏𝑐)
2
{𝑎2[𝑅𝑒(𝑐1

∗𝑐2)]
2

+ [𝛿𝐷
1

2
(3 cos2 𝛽 − 1)

+ 𝛿𝐷(2) sin2 𝛽 cos(2𝛾)]
2

[𝑅𝑒(𝑐1
∗𝑐2)]

2

+ [𝛿𝐷
3

8
sin(2𝛽) − 𝛿𝐷(2)

1

4
sin(2𝛽) cos(2𝛾)]

2

(|𝑐1|
2

− |𝑐2|
2)2}

(6.49)

𝐽𝑎𝑎𝑐𝑐(𝜔𝑎𝑐) =
𝜏𝑐

1 + (𝜔𝑎𝑐𝜏𝑐)
2
{[𝛿𝐹

3

8
sin(2𝛽) − 𝛿𝐹(2)

1

4
sin(2𝛽) cos(2𝛾)]

2

𝑚1
2

+ (−
𝛾𝑒

ℏ
𝑎)

2 1

4
|𝑐2

∗𝑐3|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

1

2
(3 cos2 𝛽 − 1)

+ 𝛿𝐷(2) sin2 𝛽 cos(2𝛾)]]

2
1

16
|𝑐2

∗𝑐3|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin(2𝛽) − 𝛿𝐷(2)

1

4
sin(2𝛽) cos(2𝛾)]]

2
1

4
|𝑐1

∗𝑐3

− 𝑐2
∗𝑐4|

2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin2

− 𝛿𝐷(2)
1

4
(1 + cos2 𝛽) cos(2𝛾)]]

2

|𝑐1
∗𝑐4|

2}

(6.50)

𝐽𝑏𝑏𝑑𝑑(𝜔𝑏𝑑) =
𝜏𝑐

1 + (𝜔𝑏𝑑𝜏𝑐)
2
{[𝛿𝐹

3

8
sin(2𝛽) − 𝛿𝐹(2)

1

4
sin(2𝛽) cos(2𝛾)]

2

𝑚1
2

+ (−
𝛾𝑒

ℏ
𝑎)

2 1

4
|𝑐1

∗𝑐4|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

1

2
(3 cos2 𝛽 − 1)

+ 𝛿𝐷(2) sin2 𝛽 cos(2𝛾)]]

2
1

16
|𝑐1

∗𝑐4|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin(2𝛽) − 𝛿𝐷(2)

1

4
sin(2𝛽) cos(2𝛾)]]

2
1

4
|𝑐1

∗𝑐3

− 𝑐2
∗𝑐4|

2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin2

− 𝛿𝐷(2)
1

4
(1 + cos2 𝛽) cos(2𝛾)]]

2

|𝑐2
∗𝑐3|

2}

(6.51)

47

𝐽𝑎𝑎𝑑𝑑 =
𝜏𝑐

1 + (𝜔𝑎𝑑𝜏𝑐)
2
{[𝛿𝐹

3

8
sin(2𝛽) − 𝛿𝐹(2)

1

4
sin(2𝛽) cos(2𝛾)]

2

𝑚2
2

+ (−
𝛾𝑒

ℏ
𝑎)

2 1

4
|𝑐2

∗𝑐4|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

1

2
(3 cos2 𝛽 − 1)

+ 𝛿𝐷(2) sin2 𝛽 cos(2𝛾)]]

2
1

16
|𝑐2

∗𝑐4|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin(2𝛽) − 𝛿𝐷(2)

1

4
sin(2𝛽) cos(2𝛾)]]

2
1

4
|𝑐1

∗𝑐4

+ 𝑐2
∗𝑐3|

2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin2

− 𝛿𝐷(2)
1

4
(1 + cos2 𝛽) cos(2𝛾)]]

2

|𝑐1
∗𝑐3|

2}

(6.52)

𝐽𝑏𝑏𝑐𝑐(𝜔𝑏𝑐) =
𝜏𝑐

1 + (𝜔𝑏𝑐𝜏𝑐)
2
{[𝛿𝐹

3

8
sin(2𝛽) − 𝛿𝐹(2)

1

4
sin(2𝛽) cos(2𝛾)]

2

𝑚2
2

+ (−
𝛾𝑒

ℏ
𝑎)

2 1

4
|𝑐1

∗𝑐3|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

1

2
(3 cos2 𝛽 − 1)

+ 𝛿𝐷(2) sin2 𝛽 cos(2𝛾)]]

2
1

16
|𝑐1

∗𝑐3|
2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin(2𝛽) − 𝛿𝐷(2)

1

4
sin(2𝛽) cos(2𝛾)]]

2
1

4
|𝑐1

∗𝑐4

+ 𝑐2
∗𝑐3|

2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin2

− 𝛿𝐷(2)
1

4
(1 + cos2 𝛽) cos(2𝛾)]]

2

|𝑐2
∗𝑐4|

2}

(6.53)

𝐽𝑎𝑎𝑎𝑎(0) = 𝜏0 {(
𝛽𝑒 𝐵0

ℏ
𝛿𝑔)

2 1

4

+ [𝛿𝐹
1

2
(3 cos2 𝛽 − 1) + 𝛿𝐹(2) sin2 𝛽 cos(2𝛾)]

2 1

4

+ (−
𝛾𝑒

ℏ
𝑎)

2 1

16
(|𝑐1|

2 − |𝑐2|
2)2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

1

2
(3 cos2 𝛽 − 1)

+ 𝛿𝐷(2) sin2 𝛽 cos(2𝛾)]]

2
1

16
(|𝑐1|

2 − |𝑐2|
2)2

+ [−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin(2𝛽)

− 𝛿𝐷(2)
1

4
sin(2𝛽) cos(2𝛾)]]

2

[𝑅𝑒(𝑐1
∗𝑐2)]

2}

(6.54)

48

𝐽𝑏𝑏𝑏𝑏(0) = 𝐽𝑎𝑎𝑎𝑎(0), and for all indices other than these

 𝐽𝛼𝛽𝛼′𝛽′(𝜔𝜂𝜉) = 0 (6.55)

Using Eqs. (6.27), (6.49) to (6.55), one can calculate the elements of the relaxation matrix.

One obtains the non-zero elements of the relaxation matrix, R̂̂𝛼𝛼′𝛽𝛽′, corresponding to

the eigenstates |𝑎⟩, |𝑏⟩, |𝑐⟩, |𝑑⟩ of the static Hamiltonian, 𝐻̂0, for the S = I= ½ coupled system

described as follows:

 𝑅̂̂𝑎𝑎𝑏𝑏 = 2 𝐽𝑎𝑏𝑎𝑏(𝜔𝑎𝑏); 𝑅̂̂𝑎𝑎𝑐𝑐 = 2 𝐽𝑎𝑐𝑎𝑐(𝜔𝑎𝑐); 𝑅̂̂𝑎𝑎𝑑𝑑

= 2 𝐽𝑎𝑑𝑎𝑑(𝜔𝑎𝑑)
(6.56)

 𝑅̂̂𝑏𝑏𝑎𝑎 = 𝑅̂̂𝑎𝑎𝑏𝑏; 𝑅̂̂𝑏𝑏𝑐𝑐 = 2 𝐽𝑏𝑐𝑏𝑐(𝜔𝑏𝑐); 𝑅̂̂𝑏𝑏𝑑𝑑 = 2 𝐽𝑏𝑑𝑏𝑑(𝜔𝑏𝑑) (6.57)

 𝑅̂̂𝑐𝑐𝑎𝑎 = 𝑅̂̂𝑎𝑎𝑐𝑐; 𝑅̂̂𝑐𝑐𝑏𝑏 = 𝑅̂̂𝑏𝑏𝑐𝑐; 𝑅̂̂𝑐𝑐𝑑𝑑 = 2 𝐽𝑐𝑑𝑐𝑑(𝜔𝑐𝑑) (6.58)

 𝑅̂̂𝑑𝑑𝑎𝑎 = 𝑅̂̂𝑎𝑎𝑑𝑑; 𝑅̂̂𝑑𝑑𝑏𝑏 = 𝑅̂̂𝑏𝑏𝑑𝑑; 𝑅̂̂𝑑𝑑𝑐𝑐 = 𝑅̂̂𝑐𝑐𝑑𝑑 (6.59)

𝑅̂̂𝑎𝑎𝑎𝑎 = −(𝑅̂̂𝑎𝑎𝑏𝑏 + 𝑅̂̂𝑎𝑎𝑐𝑐 + 𝑅̂̂𝑎𝑎𝑑𝑑) ; 𝑅̂̂𝑏𝑏𝑏𝑏

= −(𝑅̂̂𝑏𝑏𝑎𝑎 + 𝑅̂̂𝑏𝑏𝑐𝑐 + 𝑅̂̂𝑏𝑏𝑑𝑑)

𝑅̂̂𝑐𝑐𝑐𝑐 = −(𝑅̂̂𝑐𝑐𝑎𝑎 + 𝑅̂̂𝑐𝑐𝑏𝑏 + 𝑅̂̂𝑐𝑐𝑑𝑑) ; 𝑅̂̂𝑑𝑑𝑑𝑑

= −(𝑅̂̂𝑑𝑑𝑎𝑎 + 𝑅̂̂𝑑𝑑𝑏𝑏 + 𝑅̂̂𝑑𝑑𝑐𝑐)

(6.60)

𝑅̂̂𝑎𝑏𝑎𝑏 = 2𝐽𝑎𝑎𝑏𝑏(0) − 𝐽𝑎𝑎𝑎𝑎(0) − 𝐽𝑏𝑏𝑏𝑏(0) + (𝑅̂̂𝑎𝑎𝑎𝑎 + 𝑅̂̂𝑏𝑏𝑏𝑏) 2⁄ ;

𝑅̂̂𝑎𝑐𝑎𝑐 = 2𝐽𝑎𝑎𝑐𝑐(0) − 𝐽𝑎𝑎𝑎𝑎(0) − 𝐽𝑐𝑐𝑐𝑐(0) + (𝑅̂̂𝑎𝑎𝑎𝑎 + 𝑅̂̂𝑐𝑐𝑐𝑐) 2⁄ ;

𝑅̂̂𝑎𝑑𝑎𝑑 = 2𝐽𝑎𝑎𝑑𝑑(0) − 𝐽𝑎𝑎𝑎𝑎(0) − 𝐽𝑑𝑑𝑑𝑑(0) + (𝑅̂̂𝑎𝑎𝑎𝑎 + 𝑅̂̂𝑑𝑑𝑑𝑑) 2⁄

(6.61)

𝑅̂̂𝑏𝑎𝑏𝑎 = 𝑅̂̂𝑎𝑏𝑎𝑏

𝑅̂̂𝑏𝑐𝑏𝑐 = 2𝐽𝑏𝑏𝑐𝑐(0) − 𝐽𝑏𝑏𝑏𝑏(0) − 𝐽𝑐𝑐𝑐𝑐(0) + (𝑅̂̂𝑏𝑏𝑏𝑏 + 𝑅̂̂𝑐𝑐𝑐𝑐) 2⁄

𝑅̂̂𝑏𝑑𝑏𝑑 = 2𝐽𝑏𝑏𝑑𝑑(0) − 𝐽𝑏𝑏𝑏𝑏(0) − 𝐽𝑑𝑑𝑑𝑑(0) + (𝑅̂̂𝑏𝑏𝑏𝑏 + 𝑅̂̂𝑑𝑑𝑑𝑑) 2⁄

(6.62)

𝑅̂̂𝑐𝑎𝑐𝑎 = 𝑅̂̂𝑎𝑐𝑎𝑐; 𝑅̂̂𝑐𝑏𝑐𝑏 = 𝑅̂̂𝑏𝑐𝑏𝑐

𝑅̂̂𝑐𝑑𝑐𝑑 = 2𝐽𝑐𝑐𝑑𝑑(0) − 𝐽𝑐𝑐𝑐𝑐(0) − 𝐽𝑑𝑑𝑑𝑑(0) + (𝑅̂̂𝑐𝑐𝑐𝑐 + 𝑅̂̂𝑑𝑑𝑑𝑑) 2⁄
(6.63)

 𝑅̂̂𝑑𝑎𝑑𝑎 = 𝑅̂̂𝑎𝑑𝑎𝑑; 𝑅̂̂𝑑𝑏𝑑𝑏 = 𝑅̂̂𝑏𝑑𝑏𝑑; 𝑅̂̂𝑑𝑐𝑑𝑐 = 𝑅̂̂𝑐𝑑𝑐𝑑 (6.64)

49

In the absence of any experimental values available for fluctuations of the various SHPs

(defined in Eqs. 4.2-4.11) the same percentage, i.e. ∆(𝑆𝐻𝑃)%, of the amplitude of each spin

Hamiltonian parameters, has been used for calculation of the effect of fluctuation, for

simplification. Specifically, the fluctuations of the parameters as defined in Appendix F :

𝛿𝑔 = ∆(𝑆𝐻𝑃)%.𝑔,
𝛿𝑎 = ∆(𝑆𝐻𝑃)%. 𝑎,
𝛿𝐹 = ∆(𝑆𝐻𝑃)%.𝐹,

𝛿𝐹(2) = ∆(𝑆𝐻𝑃)%.𝐹(2),
𝛿𝐷 = ∆(𝑆𝐻𝑃)%.𝐷,

𝛿𝐷(2) = ∆(𝑆𝐻𝑃)%.𝐷(2)

(6.65)

6.4 Estimation of correlation time (𝜏𝑐)

As for the value of the correlation time, 𝜏𝑐, required in Eq. (6.36), it has been estimated here in

two ways

(i) Using Slichter’s Eq. (5.301) (Slichter, 2013):

This formula is:

1

𝑇1
= 2𝛾𝑛

2
𝑓𝑝

2

3

𝜏𝑐

1 + (𝜔0𝜏𝑐)2

(6.66)

𝑇1 =
3𝜔0

𝛾𝑛
2𝑓𝑝2

where 𝑇1 is minimum when 𝜔0𝜏𝑐 = 1, where

 𝜔0 = ℏ−1𝑔̅𝑠𝛽𝑒𝐵0 (6.67)

is the Larmor frequency.

In Eqs. (6.66) and (6.67) the nuclear gyromagnetic ratio 𝛾𝑛 = 42.57 𝑀𝐻𝑧 · 𝑇−1, the Bohr

magneton 𝛽𝑒 = 9.27400968(20) × 10−24 𝐽 · 𝑇−1 , the reduced Planck constant ℏ =
1.054571726(47) × 10−34𝐽 · 𝑠 , 𝐵0 = 3000.0 Gauss is the intensity of the external magnetic

field, 𝑔̅𝑠 is the average g factor of the electron spin (Lee et al. 1993) . Using now the diagonal

matrix 𝑔̃ = (𝑔𝑥𝑥, 𝑔𝑦𝑦, 𝑔𝑧𝑧) = (2.0026, 2.0035,2.0033) [Lee et al. (1993)], so that 𝑔̅𝑠 =
1

3
(𝑔𝑥𝑥 + 𝑔𝑦𝑦 + 𝑔𝑧𝑧) = 2.0031, one calculates the value of 𝜏𝑐 when 𝑇1 is minimum from Eq.

(6.66) to be:

 𝜏𝑐 =
1

ℏ−1𝑔̅𝑠𝛽𝑒𝐵0
= 1.42 × 10−8𝑠 (6.68)

50

 (ii) Use of the relation given by Freed (1965a):

This relation is

0.4 × 106

𝜔0
2𝜏𝑐

2
= 30 × 102𝑠𝑒𝑐−1 (6.69)

where

 𝜔0 = ℏ−1𝑔̅𝑠𝛽𝑒𝐵0 (6.70)

so that using the required values as presented in the preceding section

 𝜏𝑐 =
20

√3𝜔0

= 1.65 × 10−7𝑠 (6.71)

The two values as estimated in (i) and (ii) are only order-of-magnitude estimates, leading to

the values of 𝜏𝑐 anywhere from 10−8𝑠 - 10−6𝑠 based on the assumptions used by Slichter

(2013) and Freed (1965a). Furthermore, these are for guidance only; the actual values of 𝜏𝑐

may be outside of this range as no realistic models, other than the two used here, are

available to estimate them.

6.5 Simulation of the relaxation as caused by fluctuation of spin-Hamiltonian parameters

Fourier transforms of SECSY signals were simulated, corresponding to the experiments

of Lee et al. (1993), at the orientations (𝛼, 𝛽, 𝛾) = (0°,−5°, 0°) and (𝛼, 𝛽, 𝛾) = (0°, 5°, 90°), of

𝐵0 with respect to the crystal axes as shown in Figs. 6.1 and 6.2, respectively. As for echo-

ELDOR signals, its Fourier transforms were simulated at the orientations (𝛼, 𝛽, 𝛾) =
(0°, −30°, 0°) with the mixing times 𝑇𝑚 = 40𝜇𝑠. In particular, for both cases, the simulations

were carried out for several choices of correlation times: 𝜏𝑐 = 10−5, 10−6, 10−7 and fluctuation

percentage ∆(𝑆𝐻𝑃) of SHP: ∆(𝑆𝐻𝑃) = 10 %,1%, 0.1% as required in the calculation of matrix

elements of the relaxation superoperator.

51

Expriment FT

spectra

Fluctuation

amplitude of

𝑆𝐻𝑃 of the

respective SHP

𝜏𝑐

= 1.0
× 10−5𝑠

𝜏𝑐

= 1.0
× 10−6𝑠

𝜏𝑐

= 1.0
× 10−7𝑠

 ∆(𝑆𝐻𝑃) = 10%

 ∆(𝑆𝐻𝑃) = 1%

 ∆(𝑆𝐻𝑃) =
0.1%

Figure 6.1 Simulated Fourier transforms of SECSY signals with relaxation due to fluctuation

signals of Lee et al. (1993) Figure 8 (reproduced here with the permission of the authors).

The experimental Figure reproduced by permission from Figure 8 of Lee et al. (1993) (upper).

Simulation with relaxation due to fluctuation, ∆(𝑆𝐻𝑃), taken into account (lower rows) SECSY

spectra for various values of time (𝜏𝑐 = 1.0 × 10−5𝑠 − 1.0 × 10−7𝑠) at the orientations
(𝛼, 𝛽, 𝛾) = (0°, −5°, 0°) . An inhomogeneous broadening width ∆= 4𝑀𝐻𝑧 is used in the

simulation.

52

Experiment FT

spectrum [Lee et

al. (1993)]

Fluctuation

amplitude of

𝑆𝐻𝑃 of the

respective SHP

𝜏𝑐

= 1.0
× 10−5𝑠

𝜏𝑐

= 1.0
× 10−6𝑠

𝜏𝑐

= 1.0
× 10−7𝑠

 ∆(𝑆𝐻𝑃) = 10%

 ∆(𝑆𝐻𝑃) = 1%

 ∆(𝑆𝐻𝑃) =
0.1%

Figure 6.2 Fourier transforms of simulated SECSY signals with relaxation due to fluctuation and

Figure 9a of Lee et al. (1993) (reproduced here with the permission of the authors.) Simulations

of SECSY spectra with relaxation due to fluctuation, ∆(𝑆𝐻𝑃), taken into account (lower row) for

various values of correlation time (𝜏𝑐 = 1.0 × 10−5𝑠 − 1.0 × 10−7𝑠) at the orientations
(𝛼, 𝛽, 𝛾) = (0°, 5°, 90°). An inhomogeneous broadening width ∆= 4𝑀𝐻𝑧 is used in the

simulation.

53

Expriment FT

spectra

Fluctuation

amplitude of

𝑆𝐻𝑃 of the

respective SHP

𝜏𝑐

= 1.0
× 10−5𝑠

𝜏𝑐

= 1.0
× 10−6𝑠

𝜏𝑐

= 1.0
× 10−7𝑠

 ∆(𝑆𝐻𝑃) = 10%

 ∆(𝑆𝐻𝑃) = 1%

 ∆(𝑆𝐻𝑃) =
0.1%

Figure 6.3 The Fourier transforms of simulated SECSY signals with relaxation due to fluctuation

and Figure 11a of Lee et al. (1993) (reproduced here with the permission of the authors.)

Simulations of SECSY spectra with relaxation due to fluctuation, ∆(𝑆𝐻𝑃), taken into account

(lower row) for various values of correlation time (𝜏𝑐 = 1.0 × 10−5𝑠 − 1.0 × 10−7𝑠) at the

orientations (𝛼, 𝛽, 𝛾) = (0°,−30°, 0°). An inhomogeneous broadening width ∆= 4𝑀𝐻𝑧 is used

in the simulation

It is seen that for the two cases considered (SECSY and echo-ELDOR) the best

agreement is obtained for the following ranges: 𝜏𝑐 = 10−6𝑠 - 10−7𝑠 and ∆(𝑆𝐻𝑃) = 0.1 % -

1.0 %. The value of 𝜏𝑐~10−7𝑠 as calculated by Freed (1965) is found to be in the range of

values found here that provide a good agreement of the calculated spectra with the experimental

ones. It is noted that fluctuation by the same percentage is assumed here for all SHPs, whereas in

reality they may vary individually by different amounts. If the realistic individual fluctuations

were taken into account, along with more realistic 𝜏𝑐 values than considered here, one may

54

obtain a much better agreement of theoretical simulations with the experimental spectra. In the

light of these observations, it appears that the fluctuation model considered here, may indeed

reproduce the experimental relaxation data to a satisfactory agreement.

55

7. Concluding remarks and future perspectives

Concluding remarks. This thesis is devoted to the subject of computations for pulse EPR by

solving the Liouville von Neumann equation in Liouville space in the presence of relaxation,

providing a comprehensive theoretical treatment, including a detailed description of relaxation

processes.

The conclusions of the present work are as follows:

(i) An algorithm for simulation of pulse EPR signals taking into account relaxation

rigorously by the use of LVN equation, based on solving the relevant matrix differential equation

in Liouville space, has been developed. The algorithm is illustrated here to simulate SECSY and

echo-ELDOR signals for an electron-nuclear spin coupled system (electron spin S=1/2; nuclear

spin I=1/2) in an irradiated malonic-acid crystal, taking into account spin-phonon modulation.

The simulated results so obtained are compared with the experimental results of Lee et al. (1993).

The experimental and simulated spectra are found to be in reasonably good agreement.

(ii) The developed algorithm is used in addition to simulate the spectra for a specific case

of the electron-electron dipolar interaction of two nitroxide radicals, each with electron spin

S=1/2, nuclear spin I=1/2, for a proposed experiment, intended for distance measurements. The

Pake doublets in the Fourier transform of both the signals calculated with and without relaxation

correctly indicate the spacing of 10 MHz of dipolar coupling as assumed in the simulation.

Furthermore, inclusion of the relaxation is found to produce a significant broadening of the

signal as seen in the Fourier transform.

(iii) This algorithm is also extended to calculate the effect of relaxation due to fluctuation

of spin-Hamiltonian parameters by phonon modulation (Freed and Fraenkel, 1963; Slichter,

2013). From a comparison of the Figures showing the simulated SECSY and echo-ELDOR

signals for an electron-nuclear spin-coupled system (S = I = ½) in an irradiated malonic acid

crystal as calculated for 𝜏𝑐 = 10−5, 10−6, 10−7 and the fluctuation ∆(𝑆𝐻𝑃) = 10 %,1%, 0.1%

of their static values as fitting parameters with the experimental results of Lee et al. (1993), it is

seen that for the two cases considered (SECSY and echo-ELDOR) the best agreement is obtained

for the following ranges: 𝜏𝑐 = 10−6𝑠 - 10−7𝑠 and ∆(𝑆𝐻𝑃) = 0.1 % - 1.0 %. The value of

𝜏𝑐~10−7𝑠 as calculated by Freed (1965) is found to be in the range of values found here that

provide a good agreement of the calculated spectra with the experimental ones. It is noted that

fluctuation by the same percentage is assumed here for all SHPs, whereas in reality they may

vary individually by different amounts. If the realistic individual fluctuations were taken into

account, along with more realistic 𝜏𝑐 values than considered here, one may obtain a much better

agreement of theoretical simulations with the experimental spectra. In the light of these

observations, it appears that the fluctuation model considered here, may indeed be refined further

to reproduce the simulations to be in satisfactory agreement with the experiment.

56

Future perspectives. The following two problems, which are natural extensions of the

problems investigated in this thesis, are worthy of investigation.

1. Fluctuation of individual parameters in the calculation of relaxation. In this thesis was

investigated relaxation of nitroxide radicals with electron spin S=1/2, nuclear spin I=1/2 in

malonic acid crystal due to fluctuations of SHP caused by spin-phonon interaction. However, all

spin-Hamiltonian parameters (SHP) were assumed to be undergoing fluctuation by the same

percentage of their static values. In reality, different SHPs fluctuate at different rates. Hence, a

more precise calculation should take into account realistic values of fluctuations for different

SHPs. For examples, a model was proposed by Fresch et al. (2006) for such a calculation, which

can be exploited to this end.

2. The calculation of a powder signal for coupled nitroxides taking into account

relaxation using the simulation technique developed in this thesis, extending the calculations of

Misra et al. (2009) (for a pair of dipolar-interaction coupled nitroxide radicals, each with

electron spin S =1/2 and nuclear spin I=1, not including relaxation), should be carried out similar

to the one done here for a pair of coupled nitroxide radicals, each with S=1/2 and I=1/2. This will

require simulations in Liouville space of dimension ((2S+1)x(2I+1)) x ((2S+1)x(2I+1))2 =

(36x36)2, a rather large one! However, sophisticated numerical techniques and faster computers

might achieve this goal in the not-too-distant future.

57

References

Abragam, Anatole. 1961. The principles of nuclear magnetism. Vol. No. 32. Oxford university

press.

Åman, Ken, and Per-Olof Westlund. 2007. "Direct calculation of 1 H 2 OT 1 NMRD profiles

and EPR lineshapes for the electron spin quantum numbers S= 1, 3/2, 2, 5/2, 3, 7/2, based

on the stochastic Liouville equation combined with Brownian dynamics simulation."

Physical Chemistry Chemical Physics 9 (6): 691-700.

Atta-Ur-Rahman, Muhammad Iqbal Choudhary, Atia-tul- Wahab. 2015. "2.5.1 Phase Cycling

and Coherence Transfer Pathways." In Solving Problems with NMR Spectroscopy.

Elsevier Science Publishing Co Inc.

Bain, Alex D. 1984. "Coherence levels and coherence pathways in NMR. A simple way to

design phase cycling procedures." Journal of Magnetic Resonance (1969) 56 (3): 418-

427.

Blume, R. J. 1958. "Electron Spin Relaxation Times in Sodium-Ammonia Solutions." Physical

Review 109: 1867–1873.

Bodenhausen, G., H. Kogler, and RR Ernst. 1984. "Selection of coherence-transfer pathways in

NMR pulse experiments." Journal of Magnetic Resonance (1969) 58 (3): 370-388.

Born, M. 1926. "Quantenmechanik der stoßvorgange." Z. Physik A Hadrons and Nuclei 38(11):

38(11):803–827.

Dan Gamliel, and Jack H. Freed, a. 1990. "Theory of two-dimensional ESR with nuclear

modulation." Journal of Magnetic Resonance (1969) 89 (1): 60-93.

Deligiannakis, Yiannis, Maria Louloudi, and Nick Hadjiliadis. 2000. "Electron spin echo

envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination

environment of metal centers." Coordination Chemistry Reviews 204 (1): 1-112.

Dirac, Paul Adrien Maurice. 1981. The principles of quantum mechanics. Vol. No. 27. Oxford

university press.

EPR_wikipedia. 2019. Pulsed electron paramagnetic resonance. Accessed 2019.

https://en.wikipedia.org/wiki/Pulsed_electron_paramagnetic_resonance.

Franck, John M., Siddarth Chandrasekaran, Boris Dzikovski, Curt R. Dunnam, and Jack H.

Freed. 2015. "Focus: Two-dimensional electron-electron double resonance and molecular

motions: The challenge of higher frequencies." The Journal of chemical physics 142 (21):

212302.

Freed, Jack H. 1965. "Theory of Saturation and Double‐Resonance Effects in ESR Spectra." The

Journal of Chemical Physics 43 (7): 2312-2332.

Freed, Jack H. 1965a. "Quantum Effects of Methyl‐Group Rotations in Magnetic Resonance:

ESR Splittings and Linewidths." The Journal of chemical physics 43 (5): 1710-1720.

58

Freed, Jack H. 1979. "Theory of multiple resonance and ESR saturation in liquids and related

media." In Multiple Electron Resonance Spectroscopy, 73-142. Springer.

Freed, Jack H., and George K. Fraenkel. 1963. "Theory of linewidths in electron spin resonance

spectra." The Journal of Chemical Physics 39 (2): 326-348.

Freed, Jack H.. 1968. "Generalized Cumulant Expansions and Spin-Relaxation Theory." The

Journal of chemical physics 49 (1): 376-391.

Fresch, B., Frezzato, D., Moro, G. J., Kothe, G., & Freed, J. H. 2006. "Collective Fluctuations in

Ordered Fluids Investigated by Two-Dimensional Electron− Electron Double Resonance

Spectroscopy." The Journal of Physical Chemistry B 110 (47): 24238-24254.

G. Bachman, L. Naricci. 1966. Functional Analysis. Academic Press.

Gamliel, Dan, and Haim Levanon. 1995. Stochastic processes in magnetic resonance. World

Scientific.

García-Rubio, Inés, Alexander Angerhofer, and Arthur Schweiger. 2007. "EPR and HYSCORE

investigation of the electronic structure of the model complex Mn (imidazole) 6:

Exploring Mn (II)–imidazole binding using single crystals." J. Magn. Reson. 184 (1): 130.

Gemperle, C., G. Aebli, A. Schweiger, and R. R. Ernst. 1990. "Phase cycling in pulse EPR."

Journal of Magnetic Resonance (1969) 88 (2): 241-256.

Gordon, J. P., and K. D Bowers. 1958. "Microwave Spin Echoes from Donor Electrons in

Silicon." Physical Review Letters 1: 368–370.

Hahn, E.L. 1950. "Spin echoes." Physical Review (80): 580–594.

Håkansson, Pär, ThaoNguyen Nguyen, Prasanth B. Nair, Ruth Edge, and Eugen Stulz. 2013. "Cu

(ii)–porphyrin molecular dynamics as seen in a novel EPR/Stochastic Liouville equation

study." Physical Chemistry Chemical Physics 15 (26): 10930-10941.

Hanson, Graeme R., Kevin E. Gates, Christopher J. Noble, Mark Griffin, Anthony Mitchell, and

Simon Benson. 2004. "XSophe-Sophe-XeprView®. A computer simulation software

suite (v. 1.1. 3) for the analysis of continuous wave EPR spectra." J. Inorg. Biochem. 98

(5): 903-916.

Hogben, H. J., M. Krzystyniak, G. T. P. Charnock, P. J. Hore, and Ilya Kuprov. 2011. "Spinach–

a software library for simulation of spin dynamics in large spin systems." 208 (2): 179-

194.

Jeener, Jean. 1982. "Superoperators in magnetic resonance." Advances in Magnetic and Optical

Resonance. Academic Press. 1-51.

Landau, Lev Davidovich, and Evgenii Mikhailovich Lifshitz. 2013. Quantum mechanics: non-

relativistic theory. Vol. 3. Elsevier.

Lee, Sanghyuk, Baldev R. Patyal, and Jack H. Freed. 1993. "A two-dimensional Fourier

transform electron-spin resonance (ESR) study of nuclear modulation and spin relaxation

in irradiated malonic acid." The Journal of chemical physics 98 (5): 3665-3689.

59

Libertini, Louis J., and O. Hayes Griffith. 1970. "Orientation Dependence of the Electron Spin

Resonance Spectrum of Di‐t‐butyl Nitroxide." The Journal of Chemical Physics 53 (4):

1359-1367.

Magnus, Jan R., and Heinz Neudecker. 1995. Matrix differential calculus with applications in

statistics and econometrics. Wiley & Sons.

McConnell, H. M., C. Heller, T. Cole, and R. W. Fessenden. 1960. "Radiation damage in organic

crystals. I. CH (COOH) 2 in malonic acid1." Journal of the American Chemical Society

82 (4): 766-775.

Merzbacher, Eugen. 1998. Quantum Mechanics. Wiley, John & Sons, Inc.

Mims, W. B. 1965. "Pulsed endor experiments." Proceedings of the Royal Society A. 52–457.

Mims, W. B., K. Nassau, and J. D. McGee. 1961. "Spectral Diffusion in Electron Resonance

Lines." Physical Review 123: 2059–2069.

Misra, Sushil K. 2011. Multifrequency Electron Paramagnetic Resonance: Theory and

Applications. John Wiley & Sons.

Misra, Sushil K. and Jack H. Freed. 2011a. "Distance measurements: continuous-wave (CW)-

and pulsed dipolar EPR." In Multifrequency Electron Paramagnetic Resonance: Theory

& Applications, by S. K. Misra, 545-588. Wiley-VCH, Weinheim.

Misra, Sushil K. and Lin Li. 2015. "Spin-Hamiltonian Parameters (SHP) of a Gd 3+-Doped Y

(BrO 3) 3• 9H 2 O Single Crystal as Studied by Electron Paramagnetic Resonance at 110

and 300 K: a Comparison with SHPs in Other R (BrO 3) 3• 9H 2 O [(R= Pr, Nd, Sm, Eu,

Dy)] Crystals." Applied Magnetic Resonance 46 (10): 1069-1077.

Misra, Sushil K. and Lin Li. 2018. "A Rigorous Procedure for Calculation of Pulsed EPR Signal

with Relaxation." J. Apl. Theol 2 (1): 5-16.

Misra, Sushil K., Lin Li, Sudip Mukherjee, and Goutam Ghosh. 2015. "Anisotropic magnetic

field observed at 300 K in citrate-coated iron oxide nanoparticles: effect of counterions."

Journal of Nanoparticle Research 17 (12): 487.

Misra, Sushil K., Peter P. Borbat, and Jack H. Freed. 2009. "Calculation of double-quantum-

coherence two-dimensional spectra: distance measurements and orientational

correlations." Applied magnetic resonance 36 (2-4): 237-258.

Pribitzer, Stephan, Andrin Doll, and Gunnar Jeschke. 2016. "SPIDYAN, a MATLAB library for

simulating pulse EPR experiments with arbitrary waveform excitation." Journal of

Magnetic Resonance 263: 45-54.

Prisner, Thomas, Martin Rohrer, and Fraser MacMillan. 2001. "Pulsed EPR spectroscopy:

biological applications." Annual review of physical chemistry 52 (1): 279-313.

Redfield, Alfred G. 1957. "On the theory of relaxation processes." IBM Journal of Research and

Development 1 (1): 19-37.

60

Schwartz, Leslie J., Arthur E. Stillman, and Jack H. Freed. 1982. "Analysis of electron spin

echoes by spectral representation of the stochastic Liouville equation." J. Chem. Phys. 77

(11): 5410-5425.

Schweiger, A. & Jeschke. 2001. Principles of pulse electron paramagnetic resonance. New York:

Oxford University Press.

Slichter, Charles P. 2013. Principles of magnetic resonance. Vol. 1. Springer Science &

Business Media.

Stoll, Stefan and R. David Britt. 2009. "General and efficient simulation of pulse EPR spectra."

Phys. Chem. Chem. Phys. 11 (31): 6614-6625.

Stoll, Stefan, and Arthur Schweiger. 2006. "EasySpin, a comprehensive software package for

spectral simulation and analysis in EPR." J. Magn. Reson. 178 (1): 42-55.

Stoll, Stefan, and B. Kasumaj. 2008. "Phase cycling in electron spin echo envelope modulation."

Applied magnetic resonance 35 (1): 15-32.

Van Doorslaer, Sabine, and Evi Vinck. 2007. "The strength of EPR and ENDOR techniques in

revealing structure–function relationships in metalloproteins." Physical Chemistry

Chemical Physics 9 (33): 4620-4638.

Vinck, E., and S. Van Doorslaer. 2004. "Analysing low-spin ferric complexes using pulse EPR

techniques: a structure determination of bis (4-methylimidazole)(tetraphenylporphyrinato) iron

(III)." Phys. Chem. Chem. Phys. 6 (23): 5324-5330

61

Appendix A. Reprint of the publication: Misra, Sushil K. and Lin Li, a. 2018. "A Rigorous

Procedure for Calculation of Pulsed EPR Signal with Relaxation." J. Apl. Theol 2 (1): 5-16. [It is

noted that there were errors in the factors multiplying the square brackets in Eqs. (A.6) and (A.7)

for the coefficients A and B, respectively, in this reprint as they were quoted verbatim from Lee

et al. (1993). The correct expressions are used in this thesis, as seen in Eqs. (4.3) and (4.4),

respectively, for the coefficients A and B.] {N.B. The experimental Figures reproduced in this

paper for comparison have the permission of the authors of Lee et al. (1993)]}

62

63

Appendix B. Vectorization of a Matrix

Definition of Vectorization: Let 𝑎𝑖 ∈ ℂ𝑚, 𝑖 = 1,2,⋯ , 𝑛, denote the columns of 𝐴 =
[𝑎1, 𝑎2, ⋯ , 𝑎𝑛] ∈ ℂ𝑚×𝑛. Then the vector 𝐶𝑜𝑙(𝐴) is defined by Magnus and Neudecker (1995)

 𝐶𝑜𝑙(𝐴) = [

𝑎1

𝑎2

⋮
𝑎𝑛

] ∈ ℂ𝑚𝑛 (B.72)

𝐴 ∈ ℂ𝑚×𝑛, 𝐵 ∈ ℂ𝑛×𝑝, 𝐶 ∈ ℂ𝑝×𝑞

 𝐶𝑜𝑙(𝐴𝐵𝐶) = (𝐶𝑇 ⊗ 𝐴)𝐶𝑜𝑙(𝐵) (B.73)

 𝐶𝑜𝑙(𝐴𝐵) = (𝐼𝑝 ⊗ 𝐴)𝐶𝑜𝑙(𝐵) (B.74)

 𝐶𝑜𝑙(𝐶𝐴𝑇) = (𝐴 ⊗ 𝐼𝑝)𝐶𝑜𝑙(𝐶) (B.75)

Properties of the Kronecker Product

𝐴 ∈ ℂ𝑚×𝑛, 𝐵 ∈ ℂ𝑝×𝑞

 𝐶 = 𝐴 ⊗ 𝐵 (B.76)

 𝑐𝑖𝑗,𝑘𝑙 = 𝑎𝑖,𝑘𝑏𝑗,𝑙 (B.77)

let

 𝛼 ≡ 𝑝(𝑖 − 1) + 𝑗 (B.78)

 𝛽 ≡ 𝑞(𝑘 − 1) + 𝑙 (B.79)

Then

 𝑐𝛼,𝛽 = 𝑎𝑖,𝑘𝑏𝑗,𝑙 (B.80)

Kronecker product has relations to other matrix operations:

𝐴 ∈ ℂ𝑚×𝑛, 𝐵 ∈ ℂ𝑟×𝑠, 𝐶 ∈ ℂ𝑛×𝑝, 𝐷 ∈ ℂ𝑠×𝑡

 (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) (B.81)

𝐴𝑇 denotes the matrix transpose

𝐴∗ denotes the matrix with complex conjugated entries

𝐴† denotes the conjugate transpose or Hermitian transpose of the matrix.

64

Appendix C. Equivalence of different ways of expressing Liouville von Neumann (LVN)

equation

In this appendix it is shown that the vectorized version of LVN equation as used in this

paper is, indeed, equivalent to the matrix form of LVN equation.

(i) The matrix form of Liouville von Neumann equation

LVN equation is described as (Abragam, 1961; Gamliel and Levanon, 1995; Lee et al., 1993):

𝑑

𝑑𝑡
𝜌 = −𝑖[𝐻̂, 𝜌] = −𝑖(𝐻̂𝜌 − 𝜌𝐻̂) (C.1)

Its matrix form can be calculated as follows:

𝑑

𝑑𝑡
𝜌𝑖𝑗 = −𝑖 ∑(𝐻̂𝑖𝑘𝜌𝑘𝑗 − 𝜌𝑖𝑘𝐻̂𝑘𝑗)

𝑘=𝑛

𝑘=1

= −𝑖 ∑ (𝐻̂𝑖𝑘𝛿𝑙𝑗 − 𝛿𝑖𝑘𝐻̂𝑙𝑗)𝜌𝑘𝑙

𝑘=𝑛

𝑘,𝑙=1

≡ −𝑖 ∑ 𝐿̂̂𝑖𝑗,𝑘𝑙𝜌𝑘𝑙; 𝑖, 𝑗 = 1,⋯ , 𝑛

𝑘=𝑛

𝑘,𝑙=1

(C.2)

This equation defines the matrix elements of the Liouville superoperator, or Liouvillian, 𝐿̂̂ as

expressed in the last term.

(ii) The vectorization of LVN equation

𝑑

𝑑𝑡
𝐶𝑜𝑙(𝜌(𝑡)) = 𝐶𝑜𝑙[𝐻̂, 𝜌(𝑡)] (C.3)

where

 𝐿̂̂𝝆̂̂ = (𝐼𝑛 ⊗ 𝐻̂ − 𝐻̂𝑇 ⊗ 𝐼𝑛)𝐶𝑜𝑙(𝜌) (C.4)

and

 𝐿̂̂ ≡ (𝐼𝑛 ⊗ 𝐻̂ − 𝐻̂𝑇 ⊗ 𝐼𝑛) (C.5)

and

65

 𝝆̂̂ ≡ 𝐶𝑜𝑙(𝜌(𝑡)) (C.6)

(ii) Equivalence of vectorization of LVN equation and the matrix form of LVN equation. From

Eqs.(C.3) and (C.4) one can calculate the vectorized form of LVN, Eq. (C.1), as follows:

𝑑

𝑑𝑡
𝐶𝑜𝑙(𝜌) = −𝑖(𝐼𝑛 ⊗ 𝐻̂ − 𝐻̂𝑇 ⊗ 𝐼𝑛)𝐶𝑜𝑙(𝜌) (C.7)

In Eq. (C.7) it is noted that 𝐿̂̂ = (𝐼𝑛 ⊗ 𝐻̂ − 𝐻̂𝑇 ⊗ 𝐼𝑛), the same as that expressed by Eq.(C.5) in

vectorized form.

Let the vectorized form of density matrix 𝜌 be denoted as:

 𝝆̂̂ = 𝐶𝑜𝑙(𝜌) ≡ 𝑐𝜌 (C.8)

The elements of column 𝑐𝜌 are related to the elements of matrix 𝜌 as follows:

 𝜌𝑖𝑗 = 𝑐𝜌𝑖+𝑛(𝑗−1) (C.9)

The matrix elements in of Eq. (C.7) are:

𝑑

𝑑𝑡
𝑐𝜌𝑖+𝑛(𝑗−1) = −𝑖 ∑ [(𝐼𝑛 ⊗ 𝐻̂)

𝑖+𝑛(𝑗−1),𝑞
− (𝐻̂𝑇 ⊗ 𝐼𝑛)

𝑖+𝑛(𝑗−1),𝑞
] 𝑐𝜌𝑞

𝑞=𝑛×𝑛

𝑞=1

 (C.10)

It is noted that on the right side of Eq.(C.10), in the first term the non-zero elements of the row

𝑖 + 𝑛(𝑗 − 1) of the matrix:

 (𝐼𝑛 ⊗ 𝐻̂)
𝑖+𝑛(𝑗−1),𝑞

=

[

𝐻̂ 0 0 ⋯ 0 0
0 𝐻̂ 0 ⋯ 0 0
0 0 ⋱ ⋯ 0 0
⋮ ⋮ ⋮ ⋱ 0 ⋮
0 0 0 ⋯ ⋱ 0
0 0 0 ⋯ 0 𝐻̂]

𝑖+𝑛(𝑗−1),𝑞

 (C.11)

occur in the columns 𝑘 + 𝑛(𝑗 − 1); 𝑘 = 1, 𝑛 in the j -th 𝐻̂ matrix block on the diagonal of

Eq.(C.11). That is, they are

 (𝐼𝑛 ⊗ 𝐻̂)
𝑖+𝑛(𝑗−1),𝑘+𝑛(𝑗−1)

= 𝐻̂𝑖𝑘; 𝑖, 𝑘 = 1,⋯ , 𝑛 (C.12)

Introducing now this fact in the first term in Eq.(C.10), one obtains

66

∑ [(𝐼𝑛 ⊗ 𝐻̂)
𝑖+𝑛(𝑗−1),𝑞

] 𝑐𝜌𝑞

𝑞=𝑛×𝑛

𝑞=1

= ∑ [(𝐼𝑛 ⊗ 𝐻̂)
𝑖+𝑛(𝑗−1),𝑘+𝑛(𝑗−1)

] 𝑐𝜌𝑘+𝑛(𝑗−1)

𝑘=𝑛

𝑘=1

= ∑ 𝐻̂𝑖𝑘𝜌𝑘𝑗

𝑘=𝑛

𝑘=1

(C.13)

 where the final term in Eq.(C.13) is expressed in matrix notation.

As for the second term on the right side of Eq.(C.10), a non-zero element of the matrix:

 (𝐻̂𝑇 ⊗ 𝐼𝑛)
𝑖+𝑛(𝑗−1),𝑞

=

[

𝐻̂11

𝑇 𝐼𝑛 ⋯ 𝐻̂1𝑖
𝑇 𝐼𝑛 ⋯ 𝐻̂1𝑛

𝑇 𝐼𝑛
⋮ ⋱ ⋮ ⋯ ⋮

𝐻̂𝑗1
𝑇 𝐼𝑛 ⋯ 𝐻̂𝑗𝑗

𝑇𝐼𝑛 ⋯ 𝐻̂𝑗𝑛
𝑇 𝐼𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝐻̂𝑛1

𝑇 𝐼𝑛 ⋯ 𝐻̂𝑛1
𝑇 𝐼𝑛 ⋯ 𝐻̂𝑛𝑛

𝑇 𝐼𝑛]

𝑖+𝑛(𝑗−1),𝑞

 (C.14)

occurs in the diagonal element of a 𝐻̂𝑗𝑘
𝑇 𝐼𝑛 block, which is

 (𝐻̂𝑇 ⊗ 𝐼𝑛)
𝑖+𝑛(𝑗−1),𝑖+𝑛(𝑘−1)

= 𝐻̂𝑗𝑘
𝑇 (C.15)

where 𝑖, 𝑗, 𝑘 = 1,⋯ , 𝑛. Thus, in the second term on the right of Eq.(C.10), one finds by retaining

only the non-zero terms

∑ [(𝐻̂𝑇 ⊗ 𝐼𝑛)
𝑖+𝑛(𝑗−1),𝑞

] 𝑐𝜌𝑞

𝑞=𝑛×𝑛

𝑞=1

= ∑ [(𝐻̂𝑇 ⊗ 𝐼𝑛)
𝑖+𝑛(𝑗−1),𝑖+𝑛(𝑘−1)

] 𝑐𝜌𝑖+𝑛(𝑘−1)

𝑘=𝑛

𝑘=1

= ∑ 𝐻̂𝑗𝑘
𝑇 𝜌𝑖𝑘

𝑘=𝑛

𝑘=1

= ∑ 𝜌𝑖𝑘𝐻̂𝑘𝑗

𝑘=𝑛

𝑘=1

(C.16)

 The non-zero terms on the right of Eq. (C.10) can now be summarized in the matrix form

to be as follows:

𝑑

𝑑𝑡
𝑐𝜌𝑖+𝑛(𝑗−1)

= −𝑖 ∑ [(𝐼𝑛 ⊗ 𝐻̂)
𝑖+𝑛(𝑗−1),𝑞

− (𝐻̂𝑇 ⊗ 𝐼𝑛)
𝑖+𝑛(𝑗−1),𝑞

] 𝑐𝜌𝑞

𝑞=𝑛𝑛

𝑞=1

= −𝑖 ∑(𝐻̂𝑖𝑘𝜌𝑘𝑗 − 𝜌𝑖𝑘𝐻̂𝑘𝑗)

𝑘=𝑛

𝑘=1

= −𝑖 ∑ 𝐿̂̂𝑖𝑗,𝑘𝑙𝜌𝑘𝑙

𝑘,𝑙=𝑛

𝑘,𝑙=1

(C.17)

Thus, comparing with Eq. (A.25), it is seen that vectorization of LVN equation is, indeed,

equivalent to its matrix form.

67

(iii) Expansion in terms of the basis states |𝑖⟩⟨𝑗|

Gamliel and Levanon (1995), and Jeener (1982) also obtained the same result as in

Eq.(C.2) by calculating the elements of the Liouvillian as the coefficients in its expansion in

terms of the basis states,|𝑖⟩⟨𝑗|, in Liouville space:

𝐿̂̂𝑖𝑗,𝑘𝑙 = 〈〈(|𝑖⟩⟨𝑗|)|𝐻̂ ⊗ 𝐼𝑛 − 𝐼𝑛 ⊗ 𝐻̂|(|𝑘⟩⟨𝑙|)〉〉

= 𝑇𝑟[(|𝑖⟩⟨𝑗|)†(𝐻̂ ⊗ 𝐼𝑛 − 𝐼𝑛 ⊗ 𝐻̂)(|𝑘⟩⟨𝑙|)] = 𝐻̂𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑘𝐻̂𝑗𝑙
𝑇

(C.18)

This is consistent with Eq.(C.2).

68

Appendix D. Eigenvalues and eigenvectors of a four Level Electron Nuclear System

The four-level Hamiltonian system is shown below, where 𝛼, 𝛽 show the electron Zeeman levels,

and the labels a, b, c, d show the hyperfine levels.

The Hamiltonian which operates between pulses is express in a rotating (on-resonance) frame,

defined by (Lee et al., 1993)

 ℋ0 = 𝐶𝑆𝑧 − 𝜔𝐼𝐼𝑧 + 𝐴𝑆𝑧𝐼𝑧 +
1

2
𝐵𝑆𝑧𝐼+ +

1

2
𝐵∗𝑆𝑧𝐼− (D.1)

The hyperfine interaction for 𝐼𝑧 = ±
1

2
 is

 ℋ0 =

 |1⟩ = | + +⟩ |2⟩ = | + −⟩ |3⟩ = | − +⟩ |4⟩ = | − −⟩

 |1⟩ = | + +⟩

 |2⟩ = | + −⟩

 |3⟩ = | − +⟩

 |4⟩ = | − −⟩
[

𝐶

2
−

𝜔𝑛

2
+

𝐴

4

𝐵

4
0 0

𝐵∗

4

𝐶

2
+

𝜔𝑛

2
−

𝐴

4
0 0

0 0 −
𝐶

2
−

𝜔𝑛

2
−

𝐴

4
−

𝐵

4

0 0 −
𝐵∗

4
−

𝐶

2
+

𝜔𝑛

2
+

𝐴

4]

 (D.2)

Let

 ℋ𝛼,𝛽 = ±
𝐶

2
− 𝜔𝑛𝐼𝑧 ±

𝐴

2
𝐼𝑧 ±

𝐵

4
𝐼+ ±

𝐵∗

4
𝐼− (D.3)

and states

 |1⟩ = | + +⟩, |2⟩ = | + −⟩

 |3⟩ = | − +⟩, |4⟩ = | − −⟩

b

a

c

d

α

β

69

then

 ℋ𝛼 = [

𝐶

2
−

𝜔𝑛

2
+

𝐴

4

𝐵

4
𝐵∗

4

𝐶

2
+

𝜔𝑛

2
−

𝐴

4

] (D.4)

and

 ℋ𝛽 = [
−

𝐶

2
−

𝜔𝑛

2
−

𝐴

4
−

𝐵

4

−
𝐵∗

4
−

𝐶

2
+

𝜔𝑛

2
+

𝐴

4

] (D.5)

where

 ℋ𝛼,𝛽 ≡ [
𝑎 𝑏
𝑏 𝑐

] (D.6)

1). Eigenvalues

The eigenvalues of ℋ𝛼 and ℋ𝛽 are obtained by transformations

 𝑇𝛼
†ℋ𝛼𝑇𝛼 = [

𝜆1 0
0 𝜆2

] (D.7)

and

 𝑇𝛽
†ℋ𝛽𝑇𝛽 = [

𝜆3 0
0 𝜆4

] (D.8)

Or from

 ℋ𝛼,𝛽 − 𝜆 = 0 (D.9)

we get

 [
𝑎 − 𝜆 𝑏

𝑏 𝑐 − 𝜆
] = 0 (D.10)

the solution

 𝜆 =
𝑎 + 𝑐

2
± √(

𝑎 − 𝑐

2
)
2

+ 𝑏2 (D.11)

Define

 𝛾 ≡ √(
𝑎 − 𝑐

2
)
2

+ 𝑏2 (D.12)

70

and

𝑐 − 𝑎

2
≡ 𝛾 cos𝛼 (D.13)

Or may be

𝑎 − 𝑐

2
≡ 𝛾 cos𝛼 (D.14)

because 𝑎 − 𝑐 > 0 for malonic acid.

 𝑏 ≡ 𝛾 sin 𝛼 (D.15)

and

 𝜆 =
𝑎 + 𝑐

2
± 𝛾 (D.16)

For ℋ𝛼

 𝑐 − 𝑎 = 𝜔𝑛 −
𝐴

2
 (D.17)

and let

 𝛾𝛼 ≡ √(
𝑎 − 𝑐

2
)

2

+ 𝑏2 = √
1

4
(𝜔𝑛 −

𝐴

2
)

2

+ (
𝐵

4
)

2

=
1

2
√(𝜔𝑛 −

𝐴

2
)

2

+ (
𝐵

2
)

2

 (D.18)

 𝜔𝛼 ≡ 2𝛾𝛼 = √(𝜔𝑛 −
𝐴

2
)
2

+ (
𝐵

2
)
2

 (D.19)

we get

 cos 𝛼 =
𝑐 − 𝑎

2𝛾
=

𝜔𝑛 −
𝐴
2

√(𝜔𝑛 −
𝐴
2)

2

+ (
𝐵
2)

2
 (D.20)

sin 𝛼 =

𝑏

𝛾
=

𝐵

4√(𝜔𝑛 −
𝐴
2)

2

+ (
𝐵
2)

2

(D.21)

For ℋ𝛽

71

 𝑐 − 𝑎 = 𝜔𝑛 +
𝐴

2
 (D.22)

define

 𝛾𝛽 ≡ √(
𝑎 − 𝑐

2
)

2

+ 𝑏2 = √
1

4
(𝜔𝑛 +

𝐴

2
)

2

+ (
𝐵

4
)

2

=
1

2
√(𝜔𝑛 +

𝐴

2
)

2

+ (
𝐵

2
)

2

 (D.23)

 𝜔𝛽 ≡ 2𝛾𝛽 = √(𝜔𝑛 +
𝐴

2
)
2

+ (
𝐵

2
)
2

 (D.24)

get

 cos 𝛽 =
𝑐 − 𝑎

2𝛾
=

𝜔𝑛 +
𝐴
2

√(𝜔𝑛 +
𝐴
2)

2

+ (
𝐵
2)

2
 (D.25)

sin 𝛽 =

𝑏

𝛾
= −

𝐵

4√(𝜔𝑛 +
𝐴
2)

2

+ (
𝐵
2)

2

(D.26)

from eigenstates

 𝐸 =

 |1⟩ = |𝑎⟩ |2⟩ = |𝑏⟩ |3⟩ = |𝑐⟩ |4⟩ = |𝑑⟩

 |1⟩ = |𝑎⟩

 |2⟩ = |𝑏⟩

 |3⟩ = |𝑐⟩

 |4⟩ = |𝑑⟩
[

𝐶

2
+

1

2
𝜔𝛼 0 0 0

0
𝐶

2
−

1

2
𝜔𝛼 0 0

0 0 −
𝐶

2
+

1

2
𝜔𝛽 0

0 0 0 −
𝐶

2
−

1

2
𝜔𝛽]

 (D.27)

Define :

𝐸1 = 𝐸𝑎 =
𝐶

2
+

1

2
𝜔𝛼

𝐸2 = 𝐸𝑏 =
𝐶

2
−

1

2
𝜔𝛼

 𝐸3 = 𝐸𝑐 = −
𝐶

2
+

1

2
𝜔𝛽

𝐸4 = 𝐸𝑑 = −
𝐶

2
−

1

2
𝜔𝛽

(D.28)

72

 𝜔𝑖𝑗 = 𝐸𝑖 − 𝐸𝑗 (D.29)

 𝜔𝑖𝑗 = −𝜔𝑗𝑖 (D.30)

 𝜔𝑖𝑗 + 𝜔𝑗𝑘 = 𝜔𝑖𝑘 (D.31)

 𝐸 =

 |1⟩ = |𝑎⟩ |2⟩ = |𝑏⟩ |3⟩ = |𝑐⟩ |4⟩ = |𝑑⟩

 |1⟩ = |𝑎⟩

 |2⟩ = |𝑏⟩

 |3⟩ = |𝑐⟩

 |4⟩ = |𝑑⟩

[

𝐸1 0 0 0
0 𝐸2 0 0
0 0 𝐸3 0
0 0 0 𝐸4

]
 (D.32)

2). Eigenvector

 [
𝑎 − 𝜆 𝑏

𝑏 𝑐 − 𝜆
] [

𝑥1

𝑥2
] = [

0
0
] (D.33)

then

 [
𝑥1

𝑥2
]
†

[
𝑥1

𝑥2
] = 𝑥1

2 + 𝑥2
2 = 1 (D.34)

For ℋ𝛼

𝑥2 𝑥1⁄ =

𝜆 − 𝑎

𝑏
=

1

𝑏
(
𝑎 + 𝑐

2
± 𝛾 − 𝑎) =

1

𝑏
(
𝑐 − 𝑎

2
± 𝛾)

=
1

𝛾 sin 𝛼
(𝛾 cos 𝛼 ± 𝛾) ==

1

sin 𝛼
(cos 𝛼 ± 1)

(D.35)

𝑥1
2 + 𝑥2

2 = 𝑥1
2 [1 +

1

(sin 𝛼)2
(cos 𝛼 ± 1)2]

= 𝑥1
2 [

(sin 𝛼)2 + (cos 𝛼)2 ± 2 cos𝛼 + 1

(sin 𝛼)2
] = 2𝑥1

2 [
1 ± cos 𝛼

(sin 𝛼)2
]

(D.36)

By definition

 𝑥1
2 + 𝑥2

2 = 1 (D.37)

we get

 𝑥1
2 =

(sin 𝛼)2

2(1 ± cos 𝛼)
=

(1 + cos𝛼)(1 − cos 𝛼)

2(1 ± cos 𝛼)
=

(1 ∓ cos𝛼)

2
 (D.38)

 𝑥2
2 = 1 − 𝑥1

2 =
(1 ± cos 𝛼)

2
 (D.39)

73

𝑥1 = ±
1

√2
√(1 ∓ cos𝛼) = ±

1

√2
(

 1 ∓
𝜔𝑛 −

𝐴
2

√(𝜔𝑛 −
𝐴
2
)

2

+ (
𝐵
2
)

2

)

1
2

= ±
1

√2
(1 ±

𝐴 2⁄ − 𝜔𝑛

𝜔𝛼

)

1
2

(D.40)

 𝑥2 = ±
1

√2
√(1 ± cos 𝛼) = ±

1

√2
(1 ∓

𝐴 2⁄ − 𝜔𝑛

𝜔𝛼
)

1
2

 (D.41)

 𝑇𝛼 =

 |1⟩ = |𝑎⟩ |2⟩ = |𝑏⟩

 |1⟩ = |𝑎⟩

 |2⟩ = |𝑏⟩
[
𝑥1

(1)
𝑥1

(2)

𝑥2
(1)

𝑥2
(2)

]
 (D.42)

𝑇𝛼𝑇𝛼
† = [

𝑥1
(1)

𝑥1
(2)

𝑥2
(1)

𝑥2
(2)

] [
𝑥1

(1)
𝑥2

(1)

𝑥1
(2)

𝑥2
(2)

]

= [
𝑥1

(1)2 + 𝑥1
(2)2 𝑥1

(1)
𝑥2

(1)
+ 𝑥1

(2)
𝑥2

(2)

𝑥2
(1)

𝑥1
(1)

+ 𝑥2
(2)

𝑥1
(2)

𝑥2
(1)2 + 𝑥2

(2)2
]

(D.43)

Choose

 𝑇𝛼 =

[

1

√2
√1 + cos 𝛼 −

1

√2
√1 − cos 𝛼

1

√2
√1 − cos 𝛼

1

√2
√1 + cos 𝛼

]

 (D.44)

𝑇𝛼𝑇𝛼
† = [

𝑥1
(1)

𝑥1
(2)

𝑥2
(1)

𝑥2
(2)

] [
𝑥1

(1)
𝑥2

(1)

𝑥1
(2)

𝑥2
(2)

]

= [
𝑥1

(1)2 + 𝑥1
(2)2 𝑥1

(1)
𝑥2

(1)
+ 𝑥1

(2)
𝑥2

(2)

𝑥2
(1)

𝑥1
(1)

+ 𝑥2
(2)

𝑥1
(2)

𝑥2
(1)2 + 𝑥2

(2)2
]

(D.45)

 =

[

 1 + cos 𝛼

2
+

1 − cos 𝛼

2

√1 + cos 𝛼 √1 − cos 𝛼

2
−

√1 − cos𝛼 √1 + cos 𝛼

2

√1 − cos𝛼 √1 + cos 𝛼

2
−

√1 + cos 𝛼 √1 − cos 𝛼

2

1 − cos 𝛼

2
+

1 + cos𝛼

2]

 (D.46)

 𝑇𝛼𝑇𝛼
† = [

1 0
0 1

] (D.47)

Similarity for ℋ𝛽

74

𝑥3 = ±
1

√2
√(1 ∓ cos 𝛽) = ±

1

√2
(

 1 ∓
𝜔𝑛 +

𝐴
2

√(𝜔𝑛 +
𝐴
2
)

2

+ (
𝐵
2
)

2

)

1
2

= ±
1

√2
(1 ∓

𝐴 2⁄ + 𝜔𝑛

𝜔𝛽

)

1
2

(D.48)

 𝑥4 = ±
1

√2
√(1 ± cos 𝛽) = ±

1

√2
(1 ±

𝐴 2⁄ + 𝜔𝑛

𝜔𝛽
)

1
2

 (D.49)

 𝑇𝛽 =

 |3⟩ = |𝑐⟩ |4⟩ = |𝑑⟩

 |3⟩ = |𝑐⟩

 |4⟩ = |𝑑⟩
[
𝑥3

(1)
𝑥3

(2)

𝑥4
(1)

𝑥4
(2)

]
 (D.50)

Choose

 𝑇𝛽 =

[

1

√2
√1 + cos 𝛽

1

√2
√1 − cos𝛽

−
1

√2
√1 − cos 𝛽

1

√2
√1 + cos𝛽

]

 (D.51)

 cos 𝛼 =
𝜔𝑛 −

𝐴
2

√(𝜔𝑛 −
𝐴
2)

2

+ (
𝐵
2)

2
 (D.52)

 cos 𝛽 =
𝜔𝑛 +

𝐴
2

√(𝜔𝑛 +
𝐴
2)

2

+ (
𝐵
2)

2
 (D.53)

 𝑇𝛽𝑇𝛽
† = [

1 0
0 1

] (D.54)

75

 𝑃 =

 |1⟩ = |𝑎⟩ |2⟩ = |𝑏⟩ |3⟩ = |𝑐⟩ |4⟩ = |𝑑⟩

[

1

√2
√1 + cos𝛼 −

1

√2
√1 − cos 𝛼 0 0

1

√2
√1 − cos𝛼

1

√2
√1 + cos 𝛼 0 0

0 0
1

√2
√1 + cos 𝛽

1

√2
√1 − cos 𝛽

0 0 −
1

√2
√1 − cos 𝛽

1

√2
√1 + cos 𝛽

]

 (D.55)

 𝑃 =

(|𝑎⟩, |𝑏)(|𝑐⟩, |𝑑)

[
𝑇𝛼 𝟎
𝟎 𝑇𝛽

]
 (D.56)

where

 𝟎 = [
0 0
0 0

] (D.57)

 𝑃𝑃† = [
𝑰 0
0 𝑰

] (D.58)

 𝑰 = [
1 0
0 1

] (D.59)

3). Matrix 𝑀 = 𝑇𝛼
†𝑇𝛽

𝑀 = 𝑇𝛼
†𝑇𝛽 =

[

1

√2
√1 + cos 𝛼

1

√2
√1 − cos𝛼

−
1

√2
√1 − cos 𝛼

1

√2
√1 + cos𝛼

]

[

1

√2
√1 + cos 𝛽

1

√2
√1 − cos 𝛽

−
1

√2
√1 − cos 𝛽

1

√2
√1 + cos 𝛽

]

=
1

2
[√1 + cos𝛼 √1 − cos 𝛼

−√1 − cos𝛼 √1 + cos 𝛼
] [

√1 + cos𝛽 √1 − cos 𝛽

−√1 − cos𝛽 √1 + cos 𝛽
]

(D.60)

 𝑀11 =
1

2
[√(1 + cos𝛼)(1 + cos 𝛽) − √(1 − cos 𝛼)(1 − cos𝛽)] (D.61)

76

4𝑀11
2 = (1 + cos 𝛼)(1 + cos 𝛽) + (1 − cos𝛼)(1 − cos 𝛽)

− 2√(1 + cos 𝛼)(1 + cos 𝛽)(1 − cos 𝛼)(1 − cos 𝛽)

= 2 + 2 cos 𝛼 cos 𝛽 − 2√(sin 𝛼 sin 𝛽)2

= 2 + 2 cos 𝛼 cos 𝛽 − 2|sin 𝛼 sin 𝛽|

(D.62)

because

sin 𝛼 sin 𝛽 =

𝐵

4√(𝜔𝑛 −
𝐴
2)

2

+ (
𝐵
2)

2

−𝐵

4√(𝜔𝑛 +
𝐴
2)

2

+ (
𝐵
2)

2
< 0

(D.63)

thus

 |sin 𝛼 sin 𝛽| = − sin 𝛼 sin 𝛽 (D.64)

 2𝑀11
2 = 1 + cos 𝛼 cos𝛽 + sin 𝛼 sin 𝛽 = 1 + cos(𝛼 − 𝛽) (D.65)

 𝑀1
2 ≡ 𝑀11

2 =
1

2
[1 + cos(𝛼 − 𝛽)] (D.66)

 𝑀12 =
1

2
[√(1 + cos 𝛼)(1 − cos 𝛽) + √(1 − cos 𝛼)(1 + cos 𝛽)] (D.67)

4𝑀12
2 = (1 + cos 𝛼)(1 − cos 𝛽) + (1 − cos 𝛼)(1 + cos 𝛽)

+ 2√(1 + cos 𝛼)(1 − cos 𝛽)(1 − cos 𝛼)(1 + cos 𝛽)

= 2 − 2 cos 𝛼 cos𝛽 + 2√(sin 𝛼 sin 𝛽)2

= 2 − 2 cos 𝛼 cos𝛽 − 2 sin 𝛼 sin 𝛽 = 2(1 − cos(𝛼 − 𝛽))

(D.68)

 𝑀2
2 ≡ 𝑀12

2 =
1

2
[1 − cos(𝛼 − 𝛽)] (D.69)

 𝑀1
2𝑀2

2 =
1

4
[1 + cos(𝛼 − 𝛽)][1 − cos(𝛼 − 𝛽)] =

sin(𝛼 − 𝛽)2

4
 (D.70)

sin(𝛼 − 𝛽) = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽

= (
𝑏

𝛾
)

𝛼

(
𝑐 − 𝑎

2𝛾
)
𝛽

− (
𝑏

𝛾
)
𝛽

(
𝑐 − 𝑎

2𝛾
)

𝛼

=
1

2𝛾𝛼𝛾𝛽

[𝑏𝛼(𝑐𝛽 − 𝑎𝛽) − 𝑏𝛽(𝑐𝛼 − 𝑎𝛼)] =
1

2𝛾𝛼𝛾𝛽

[
𝐵

4
(𝜔𝑛 −

𝐴

2
) −

−𝐵

4
(𝜔𝑛 +

𝐴

2
)]

=
𝐵𝜔𝑛

4𝛾𝛼𝛾𝛽

=
𝐵𝜔𝑛

𝜔𝛼𝜔𝛽

(D.71)

77

 𝑀1
2𝑀2

2 =
1

4
(

𝐵𝜔𝑛

𝜔𝛼𝜔𝛽
)

2

 (D.72)

If 𝜔𝑛 =
𝐴

2
 then

 sin(𝛼 − 𝛽) =
𝐴𝐵

2𝜔𝛼𝜔𝛽
 (D.73)

 |cos(𝛼 − 𝛽)| = √1 − (sin(𝛼 − 𝛽))2 = √1 − (
𝐵𝜔𝑛

𝜔𝛼𝜔𝛽
)

2

 (D.74)

or

cos(𝛼 − 𝛽) = cos 𝛼 cos𝛽 + sin 𝛼 sin 𝛽

= (
𝑐 − 𝑎

2𝛾
)

𝛼

(
𝑐 − 𝑎

2𝛾
)
𝛽

+ (
𝑏

𝛾
)

𝛼

(
𝑏

𝛾
)
𝛽

=
1

𝛾𝛼𝛾𝛽

[
1

2
(𝜔𝑛 −

𝐴

2
)
1

2
(𝜔𝑛 +

𝐴

2
) + (

𝐵

4
) (−

𝐵

4
)]

=
1

4𝛾𝛼𝛾𝛽

[𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]

=
1

𝜔𝛼𝜔𝛽

[𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]

(D.75)

 𝑀1
2 =

1

2
[1 + cos(𝛼 − 𝛽)] =

1

2
[1 +

𝜔𝑛
2 − (

𝐴
2)

2

− (
𝐵
2)

2

𝜔𝛼𝜔𝛽
] (D.76)

 𝑀2
2 =

1

2
[1 − cos(𝛼 − 𝛽)] =

1

2
[1 −

𝜔𝑛
2 − (

𝐴
2)

2

− (
𝐵
2)

2

𝜔𝛼𝜔𝛽
] (D.77)

Or for a symmetry of calculation as in Gamliel and Freed (1990) paper

 𝑀1
2 =

1

2
[1 ∓

𝜔𝑛
2 − (

𝐴
2)

2

− (
𝐵
2)

2

𝜔𝛼𝜔𝛽
] (D.78)

78

 𝑀2
2 =

1

2
[1 ±

𝜔𝑛
2 − (

𝐴
2)

2

− (
𝐵
2)

2

𝜔𝛼𝜔𝛽
] (D.79)

[1 + cos(𝛼 − 𝛽)]2 = [1 +
1

𝜔𝛼𝜔𝛽

[𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

=
1

𝜔𝛼
2𝜔𝛽

2 [𝜔𝛼𝜔𝛽 + [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

(D.80)

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
[(𝜔𝛼 + 𝜔𝛽)

2
− 𝜔𝛼

2 − 𝜔𝛽
2] + [𝜔𝑛

2 − (
𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
−

1

2
[(𝜔𝑛 −

𝐴

2
)

2

+ (
𝐵

2
)

2

+ (𝜔𝑛 +
𝐴

2
)

2

+ (
𝐵

2
)

2

]

+ [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

(D.81)

 =
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
−

1

2
[2𝜔𝑛

2 + 2(
𝐴

2
)

2

+ 2 (
𝐵

2
)

2

] + [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

 (D.82)

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
− [𝜔𝑛

2 + (
𝐴

2
)

2

+ (
𝐵

2
)

2

] + [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
+ [−𝜔𝑛

2 − (
𝐴

2
)

2

− (
𝐵

2
)

2

] + [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

(D.83)

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
+ [−𝜔𝑛

2 + 𝜔𝑛𝐴 − (
𝐴

2
)

2

− (
𝐵

2
)

2

] + 2𝜔𝑛
2

+ [−𝜔𝑛
2 − 𝜔𝑛𝐴 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

(D.84)

79

 =
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
− [(𝜔𝑛 −

𝐴

2
)

2

+ (
𝐵

2
)

2

] + 2𝜔𝑛
2 − [(𝜔𝑛 +

𝐴

2
)

2

+ (
𝐵

2
)

2

]]

2

 (D.85)

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
+ 2𝜔𝑛

2 − 𝜔𝛼
2 − 𝜔𝛽

2]
2

=
1

𝜔𝛼
2𝜔𝛽

2 [2𝜔𝑛
2 −

1

2
(𝜔𝛼 − 𝜔𝛽)

2
]
2

(D.86)

𝑀1
4 =

1

4
[1 + cos(𝛼 − 𝛽)]2 =

1

4

1

𝜔𝛼
2𝜔𝛽

2 [2𝜔𝑛
2 −

1

2
(𝜔𝛼 − 𝜔𝛽)

2
]
2

= [
𝜔𝑛

2 −
1
4

(𝜔𝛼 − 𝜔𝛽)
2

𝜔𝛼𝜔𝛽

]

2

(D.87)

[1 − cos(𝛼 − 𝛽)]2 = [1 −
1

𝜔𝛼𝜔𝛽

[𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

=
1

𝜔𝛼
2𝜔𝛽

2 [𝜔𝛼𝜔𝛽 − [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

(D.88)

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
[(𝜔𝛼 + 𝜔𝛽)

2
− 𝜔𝛼

2 − 𝜔𝛽
2] − [𝜔𝑛

2 − (
𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
−

1

2
[(𝜔𝑛 −

𝐴

2
)

2

+ (
𝐵

2
)

2

+ (𝜔𝑛 +
𝐴

2
)

2

+ (
𝐵

2
)

2

]

− [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)

2

]]

2

(D.89)

=
1

𝜔𝛼
2𝜔𝛽

2
[
1

2
(𝜔𝛼 + 𝜔𝛽)

2
−

1

2
[2𝜔𝑛

2 + 2(
𝐴

2
)
2

+ 2(
𝐵

2
)
2

] − [𝜔𝑛
2 − (

𝐴

2
)
2

− (
𝐵

2
)
2

]]

2

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
− [𝜔𝑛

2 + (
𝐴

2
)

2

+ (
𝐵

2
)
2

] − [𝜔𝑛
2 − (

𝐴

2
)

2

− (
𝐵

2
)
2

]]

2

=
1

𝜔𝛼
2𝜔𝛽

2 [
1

2
(𝜔𝛼 + 𝜔𝛽)

2
− 2𝜔𝑛

2]
2

(D.90)

80

𝑀2
4 =

1

4
[1 − cos(𝛼 − 𝛽)]2 =

1

4

1

𝜔𝛼
2𝜔𝛽

2 [2𝜔𝑛
2 −

1

2
(𝜔𝛼 + 𝜔𝛽)

2
]
2

= [
𝜔𝑛

2 −
1
4 (𝜔𝛼 + 𝜔𝛽)

2

𝜔𝛼𝜔𝛽
]

2

(D.91)

Define

 𝑘 ≡ 4𝑀1
2𝑀2

2 = (
𝐵𝜔𝑛

𝜔𝛼𝜔𝛽
)

2

 (D.92)

Let

 𝑢 = cos(𝛼 − 𝛽) (D.93)

 𝑀1
2 =

1

2
(1 + 𝑢) (D.94)

 𝑀2
2 =

1

2
(1 − 𝑢) (D.95)

1

4
(1 + 𝑢)(1 − 𝑢) =

1

4
𝑘 (D.96)

 𝑢2 = 1 − 𝑘 (D.97)

 𝑢 = √1 − 𝑘 (D.98)

𝑀1

4 =
1

4
[1 + cos(𝛼 − 𝛽)]2 =

1

4
[1 + √1 − 𝑘]

2
=

1

2
(1 −

𝑘

2
+ √1 − 𝑘)

≡ 𝑘+

(D.99)

𝑀2

4 =
1

4
[1 − cos(𝛼 − 𝛽)]2 =

1

4
[1 − √1 − 𝑘]

2

=
1

2
(1 −

𝑘

2
− √1 − 𝑘) ≡ 𝑘−

(D.100)

 𝑀1
2 =

1

2
[1 + cos(𝛼 − 𝛽)] =

1

2
(1 + √1 − 𝑘) (D.101)

81

 𝑀2
2 =

1

2
[1 − cos(𝛼 − 𝛽)] =

1

2
(1 − √1 − 𝑘) (D.102)

 𝑀 = 𝑇𝛼
†𝑇𝛽 = [

cos𝜑 sin𝜑
−sin𝜑 cos𝜑

] (D.103)

 𝑀 ≡ [
𝑚1 𝑚2

−𝑚2 𝑚1
] (D.104)

 𝑚1 = cos𝜑 = (
1 + cos(𝛼 − 𝛽)

2
)

1
2

= (
(1 + √1 − 𝑘)

2
)

1
2

 (D.105)

 𝑚2 = sin𝜑 = (
1 − cos(𝛼 − 𝛽)

2
)

1
2

= (
(1 − √1 − 𝑘)

2
)

1
2

 (D.106)

82

Appendix E. Flow chart for computing SECSY and echo-ELDOR signals

The Figure below describes the various steps in the simulation.

Calculate 𝝆(𝑡) using Eq. 3.23 for free

evolution over time 𝑡1.

Calculate 𝜌(𝑡0 + 𝑡𝑝) using Eq.3.43, after

the application of a pulse

Calculate the time-domain signal

𝑆(𝑡1, 𝑡2) = 𝑇𝑟[(𝑆𝑥 + 𝑖𝑆𝑦)𝜌𝑓(𝑡1, 𝑡2)]

Calculate the initial density matrix 𝜌0(= 𝑆𝑍)

Calculate the 2D Fourier transform 𝑆(𝑓1, 𝑓2) of

𝑆(𝑡1, 𝑡2) taking into account the Gaussian

inhomogeneous broadening effect over 𝑡2 time

as given by Eq. (4.34).

Calculate the time-domain final density matrix 𝜌𝑓(𝑡1, 𝑡2)

as a function of 𝑡1 and 𝑡2 times over the coherence pulse

sequences 𝑆𝑐−, shown in Figs. 4.4 and 4.7, respectively,

for SECSY and echo-ELDOR signals.

Repeat for the next pulse, and

subsequent free evolution, if any.

After the last pulse go to next step

83

Appendix F. The various terms in the spin-fluctuation Hamiltonian 𝐻1 as given by Eq. (4.1) [Lee

et al. (1993)]

 Here the subscripts a, b, c and d correspond to the eigenvalues Ea, Eb, Ec and Ed for the

spin Hamiltonian as given by Eq. (D.28). For the notation for the square of matrix elements e.g.,

|𝐴𝑎𝑐|
2 = |⟨𝑎|𝐴|𝑐⟩|2 . The fluctuations of SHP (𝛿𝑔, 𝛿𝑎, 𝛿𝐹, 𝛿𝐹(2), 𝛿𝐷, 𝛿𝐹(2)) are the time-

dependent deviations from the average values, e.g. 𝛿𝑔 = 𝑔(𝑡) − 𝑔̅ . The relevant coefficients

for the nuclear modulation (row 3 of the table) are: 𝑚1
2 =

1

2
[1 +

𝜔𝑛
2−(

𝐴

2
)
2
−(

𝐵

2
)
2

𝜔𝛼𝜔𝛽
] , 𝑚2

2 =

1

2
[1 −

𝜔𝑛
2−(

𝐴

2
)
2
−(

𝐵

2
)
2

𝜔𝛼𝜔𝛽
]

84

𝐹𝑞 𝐴𝑞 |𝐴𝑎𝑐|
2 |𝐴𝑏𝑑|2 |𝐴𝑎𝑑|

2 |𝐴𝑏𝑐|
2 |𝐴𝑎𝑏|

2 |𝐴𝑐𝑑|2 |𝐴𝑎𝑎|
2 ,

|𝐴𝑏𝑏|
2

|𝐴𝑐𝑐|
2 ,

|𝐴𝑑𝑑|2

Isotropic

g

𝛽𝑒 𝐵0

ℏ
𝛿𝑔

𝑆𝑧 1

4

1

4

Anisotro
pic g

𝛿𝐹
1

2
(3 cos2 𝛽 − 1)

+ 𝛿𝐹(2) sin2 𝛽 cos(2𝛾)

𝑆𝑧 1

4

1

4

𝛿𝐹
3

8
sin(2𝛽)

− 𝛿𝐹(2)
1

4
sin(2𝛽) cos(2𝛾)

𝑆+

+ 𝑆−

𝑚1
2 𝑚1

2 𝑚1
2 𝑚1

2

Isotropic

hf
−

𝛾𝑒

ℏ
𝛿𝑎 𝑆𝑧𝐼𝑧 1

4
[𝑅𝑒(𝑐1

∗𝑐2)]
2

1

4
[𝑅𝑒(𝑐3

∗𝑐4)]
2

1

16
(|𝑐1|

2

− |𝑐2|
2)2

1

16
(|𝑐3|

2

− |𝑐4|
2)2

1

2
(𝑆+𝐼−

+ 𝑆−𝐼+)

1

4
|𝑐2

∗𝑐3|
2

1

4
|𝑐1

∗𝑐4|
2

1

4
|𝑐2

∗𝑐4|
2

1

4
|𝑐1

∗𝑐3|
2

Anisotro
pic hf

−
𝛾𝑒

ℏ
[𝛿𝐷

1

2
(3 cos2 𝛽

− 1)

+ 𝛿𝐷(2) sin2 𝛽 cos(2𝛾)]

𝑆𝑧𝐼𝑧 1

4
[𝑅𝑒(𝑐1

∗𝑐2)]
2

1

4
[𝑅𝑒(𝑐3

∗𝑐4)]
2

1

16
(|𝑐1|

2

− |𝑐2|
2)2

1

16
(|𝑐3|

2

− |𝑐4|
2)2

−
1

4
(𝑆+𝐼−

+ 𝑆−𝐼+)

1

16
|𝑐2

∗𝑐3|
2

1

16
|𝑐1

∗𝑐4|
2

1

16
|𝑐2

∗𝑐4|
2

1

16
|𝑐1

∗𝑐3|
2

−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin(2𝛽)

− 𝛿𝐷(2) 1

4
sin(2𝛽) cos(2𝛾)]

𝑆𝑧𝐼+
+ 𝑆𝑧𝐼−

 1

4
(|𝑐1|

2

− |𝑐2|
2)2

1

4
(|𝑐3|

2

− |𝑐4|
2)2

[𝑅𝑒(𝑐1
∗𝑐2)]

2 [𝑅𝑒(𝑐3
∗𝑐4)]

2

𝑆+𝐼𝑧
+ 𝑆−𝐼𝑧

1

4
|𝑐1

∗𝑐3

− 𝑐2
∗𝑐4|

2

1

4
|𝑐1

∗𝑐3

− 𝑐2
∗𝑐4|

2

1

4
|𝑐1

∗𝑐4

+ 𝑐2
∗𝑐3|

2

1

4
|𝑐1

∗𝑐4

+ 𝑐2
∗𝑐3|

2

−
𝛾𝑒

ℏ
[𝛿𝐷

3

8
sin2

− 𝛿𝐷(2) 1

4
(1

+ cos2 𝛽) cos(2𝛾)]

𝑆+𝐼+
+ 𝑆−𝐼−

|𝑐1
∗𝑐4|

2 |𝑐2
∗𝑐3|

2 |𝑐1
∗𝑐3|

2 |𝑐2
∗𝑐4|

2

85

Appendix G. Matlab source code

1. main function

fclose('all'); % Close all open files

clear % Remove items from MATLAB workspace and reset MuPAD engine

close all hidden % Deletes all Figures including those with hidden handles.

clc % Clears all input and output from the Command Window display

%Sample Radiated Malonic Aci [McConnell, Heller,Cole and Fessenden.

%Journal of the American Chemical Society 82, no. 4 (1960): 766-775.]

B0 = 0; %Rotating frame; 3000.0d0 Gauss, Gambliel 1990

Wn = 2*pi*14.5; % w_n the nuclear Larmor frequency for the nucleus uint: MHz(*rad)

g_tensor = [2.0026d0, 2.0035d0, 2.0033d0];%[2.0026d0, 2.0035d0, 2.0033d0];

hyperfine_tensor = [-61.0d0, -91.0d0, -29.0d0]; % [-61.0d0, -91.0d0, -29.0d0] MHz for ZX plan,

Fig.8 of [2]

T2e = 0.687d0; % T2 Spin–spin relaxation, uint: ms

orientation = 2;

if orientation > 3

 hyperfine_tensor = [-91.0d0, -61.0d0, -29.0d0]; %MHz for ZY plan, exchange Ax and Ay for

ZY plan, Fig.9 of [2]

end

switch orientation

 % Following for ZX plan, Fig.8 of [2]

 case 1 % Fig.8a and Table 1 of [2]

 euler_angles = [0.0d0, -5.0d0 * pi/180.0d0, 0.0d0 * pi/180.0d0]; %rad, Internal angle

(theta=05, ph=0) in zx quadrant.

 T2e = 0.800d0; % T2 Spin–spin relaxation, unit: microsecond

 orientationTitle = ['Orientation(5' char(176) ', 0' char(176) ')'];

 case 2 % Fig.8b and Table 1 of [2]

 euler_angles = [0.0d0, -30.0d0 * pi/180.0d0, 0.0d0 * pi/180.0d0]; %rad, Internal angle

(theta=30, ph=0) in zx quadrant.

 T2e = 0.812d0; % T2 Spin–spin relaxation, unit: microsecond

 orientationTitle = ['Orientation(30' char(176) ', 0' char(176) ')'];

 case 3 % Fig.8c and Table 1 of [2]

 euler_angles = [0.0d0, -50.0d0 * pi/180.0d0, 0.0d0 * pi/180.0d0]; %rad, Internal angle

(theta=50, ph=0) in zx quadrant.

 T2e = 0.687d0; % T2 Spin–spin relaxation, unit: microsecond

 orientationTitle = ['Orientation(50' char(176) ', 0' char(176) ')'];

 % Following for ZY plan, Fig.9 of [2]

 case 4 % Fig.9a of and Table 1 of [2]

 euler_angles = [0.0d0, 5.0d0 * pi/180.0d0, 90.0d0 * pi/180.0d0]; %rad, Internal angle

(theta=05, ph=90) in zy quadrant.

86

 T2e = 1.223d0; % T2 Spin–spin relaxation, unit: microsecond

 orientationTitle = ['Orientation(5' char(176) ', 90' char(176) ')'];

 case 5 % Fig.9b and Table 1 of [2]

 euler_angles = [0.0d0, 45.0d0 * pi/180.0d0, 90.0d0 * pi/180.0d0]; %rad, Internal angle

(theta=45, ph=90) in zy quadrant.

 T2e = 1.068d0; % T2 Spin–spin relaxation, unit: microsecond

 orientationTitle = ['Orientation(45' char(176) ', 90' char(176) ')'];

 otherwise

 error('No such orientation!')

end %switch orientation

disp(['Orientation: ', 'theta= ', num2str(euler_angles(2)*180/pi),char(176) , ' phi= ',

num2str(euler_angles(3)*180/pi), char(176)]); % %degree symbol char(176)

hamiltonianFactor = HamiltonianFactor_class(B0, Wn, g_tensor, hyperfine_tensor, euler_angles);

%hamiltonianFactor.Print();

%Lee, Sanghyuk, Baldev R. Patyal, and Jack H. Freed.

%"A two?dimensional Fourier transform electron?spin resonance (ESR) study of nuclear

modulation and spin relaxation in irradiated malonic acid."

%The Journal of chemical physics 98.5 (1993): 3665-3689]

% Data from Fig.11 of [2]

delta = 4.0d0; % 5 Gaussian inhomogeneous broadening effect, unit: MHz

t2e = 0.9d0; %T2e Off-diagonal electron spin–spin relaxation, unit: microsecond

t2n = 22.0d0; % T2n Off-diagonal spin–nuclear relaxation, unit: microsecond

we = 1.67E-02; % Diagonal Lattice induced electron-spin flip ralaxation rates, unit:

1/microsecond

wn = 7.14E-03; % Diagonal Lattice induced nuclear-spin flip ralaxation rates, unit:

1/microsecond

wx = 6.17E-03; % Diagonal Cross relaxation, unit: 1/microsecond

wy = wx; % Diagonal Diagonal Cross relaxation, unit: 1/microsecond

whe = 0.0d0; % Heisenber spin exchange, unit: 1/microsecond

withRelaxation = true;

% LPF A22

relaxation = Relaxation_class(T2e, t2n, we, wn, wx, wy, whe, withRelaxation, withRelaxation);

fluctuation = 1.0E-3; %0.01E01-01=0.1%; the factor of The fluctuating time-dependent

perturbation

tc = 1.0E-1;% correlation time, unit:microsecond, at page 2322 [Freed, 1965]

disp(['Fluctuation = ', num2str(fluctuation), '; tc = ', num2str(tc)]);

87

fluctuationRelaxation = FluctuationRelaxation_class(hamiltonianFactor, T2e, t2n, we, wn, wx,

wy, whe, fluctuation, tc);

relaxationType = 2; % 1: LPF A22; 2: fluctuation relaxation; 3: LPF A22 and fluctuation

relaxation

hamiltonian = Hamiltonian_class(hamiltonianFactor, relaxation, fluctuationRelaxation,

relaxationType);

density = Density_class(hamiltonian);

pulsetime0 = 5.0E-03; % pi/2 pulse(-5 ns, LPF p3667), unit: Microsecond

pulsetype1 = [0.0d0 * pi/180.0d0, pi/2.0]; % (phase, tipAngle) pair

pulsetype2 = [0.0d0 * pi/180.0d0, pi]; % (phase, tipAngle) pair

pulse_class = Pulse_class(hamiltonian, density, pulsetime0, pulsetype1, pulsetype2);

fED = FED_class(hamiltonian, density);

pathway_class = Pathway_class(density,hamiltonian);

signalFile = 'signal2dm.txt';

fs1 = 200; % Sampling frequency

fs2 = 200; % Sampling frequency

plot_class = Plot_class(fs1, fs2);

signalType = 1; % 1 - Sc-, 2 - Sc+

withGaussian = true; % true, Gaussian inhomogeneous broadening effect

signal = Signal_class(hamiltonian, density, pulse_class, fED, relaxation, pathway_class,

signalType, ...

 plot_class.Tv1, plot_class.Tv2, euler_angles, withGaussian, delta, signalFile);

titleName = 'Welcome to 2D Pulses!';

pulse = 3; % 2 or 3 pulses

switch pulse

 case 2

 titleName = 'SECSY ';% orientationTitle];

 pulses2 = {pulsetype1, pulsetype1};

 spinPathway2 = [1 -1];

 signal.Output2Pulses(pulses2, spinPathway2);

 case 3

 titleName = 'ELDOR ';% orientationTitle];

 % Fig.11, Fig.13 and Fig.14 and Table 1 of [2]

 % case orientation = 2;

88

 t = 5; %5, 20, 40, 60; %unit: microsecond

 tTitle = [' T = ', num2str(t), 'microsecond'];

 titleName = [titleName, tTitle];

 spinPathway3 =[1 0 -1]; %[1 0 -1];

 pulses3 = {pulsetype1, pulsetype1, pulsetype1};

 signal.Output3Pulses(pulses3, t, spinPathway3);

 otherwise

 error('2 or 3 pulses only!')

end %switch pulse

plot_class.SignalToFFT(signalFile);

rotateDegree = 0;%90 rotateDegree: rotate the plot around z-axis, unit:degree, not radian

plotAll = false; %true, false

plot_class.Plot(titleName, rotateDegree, plotAll);

2. Density_class

classdef Density_class < handle

 properties

 Hamiltonian;

 EquilibriumH = zeros(4,4); % Equilibrium density operator in Hilbert space in SzIz basis of

H

 EquilibriumL = zeros(16, 1); % Equilibrium density operator in Liouville space in SzIz

basis of H

 DensityL = zeros(16, 1); % Current density operator in Liouville space in SzIz basis of H

 end %properties

 methods

 function this = Density_class(hamiltonian)

 this.Hamiltonian = hamiltonian;

 end

 %Suppose, at initial state, the spin is in in z-axis

 function Init(this)

 equilibriumH = zeros(4,4);

 % Equilibrium density operator in Hilbert space and |SzIz> basis

 e0 = complex(0.50e0, 0.0e0);

89

 equilibriumH(1,1) = e0;

 equilibriumH(2,2) = e0;

 equilibriumH(3,3) = -e0;

 equilibriumH(4,4) = -e0;

 % Equilibrium density operator in SzIz basis of H

 this.EquilibriumH = equilibriumH;

 this.EquilibriumL = reshape(this.EquilibriumH, [4*4, 1]);

 this.DensityL =this.EquilibriumL;

 end % Density_class constructor

 % Liouville space to Hilbert space

 function[A] = GetDensityMat(this)

 B = this.DensityL;

 n = size(B, 1);

 m = sqrt(real(n));

 A = reshape(B, [m, m]);

 end % function GetDensityMat

 % Hilbert space to Liouville space

 function SetDensityL(this, densityH)

 this.DensityL = densityH(:); %reshape(densityH, [4*4, 1]);

 end % function GetDensityMat

 function L0ToNormalBasis(this)

 B = this.DensityL;

 %this.DensityL = this.Hamiltonian.H0ToNormalBasisDensity(B);

 this.DensityL = ctranspose(this.Hamiltonian.RightEigenvectorL)* B; % round

 end

 function NormalToL0Basis(this)

 B = this.DensityL;

 %this.DensityL = this.Hamiltonian.NormalToH0BasisDensity(B);

 this.DensityL = this.Hamiltonian.RightEigenvectorL* B;

 end

 function HToSzIzBasis(this)

 B = GetDensityMat(this);

 Density = this.Hamiltonian. H0ToSzIzBasisH(B);

 SetDensityL(this, Density);

 end

90

 function SzIzToHbasis(this)

 B=GetDensityMat(this);

 Density = this.Hamiltonian.SzIzToH0BasisH(B);

 SetDensityL(this, Density);

 end

 end % methods

end %classdef Density_class

3. FED_class

%Free Evolution Decay (FED)

% Calculate FEDOperator, and Density evolve under a FEDOperator

classdef FED_class < handle

 properties

 Hamiltonian; % class

 Density; % class

 end %properties

 methods

 % constructor

 function this = FED_class(hamiltonian, density)

 this.Density = density;

 this.Hamiltonian = hamiltonian;

 end % FED_class constructor this

 % Calculate FED superoperator in Liouville space

 function [fEDOperator] = CalFEDOperator(this, t)

 liouville = this.Hamiltonian.LiouvilleDig;

 fEDOperator = expm(t * liouville);

 end % CalFEDOperator

 % Calculate density evolve under a FEDOperator

 function DensityEvolve(this, t)

 % t, time of Free Evolution Decay

 fEDOperator = this.CalFEDOperator(t);

 this.Density.DensityL = fEDOperator * this.Density.DensityL;

 end % DensityEvolve

91

 end %method

end %classdef FED_class

4. FluctuationRelaxation_class

classdef FluctuationRelaxation_class < handle

 properties

 HamiltonianFactor;

 Relaxation = zeros(16, 16); % Spin-lattice and fluctuatin Relaxation operator in Liouville

space and |SzIz> basis

 RelaxationSpin = zeros(16, 16); % Spin-lattice and spin-spin Relaxation operator in

Liouville space and |SzIz> basis

 RelaxationFluctuation = zeros(16, 16); % Fluctuatin Relaxation operator in Liouville space

and |SzIz> basis

 T2e = 1.0; % Off-diagonal electron spin–spin relaxation, unit: microsecond

 T2n = 1.0; % Off-diagonal nuclear spin–spin relaxation, unit: microsecond

 We = -1.0; % Diagonal electron spin–spin relaxation, unit: microsecond

 Wn = -1.0; % Diagonal nuclear spin–spin relaxation, unit: microsecond

 Wx = -1.0; % Diagonal electron nuclear spin–spin relaxation, unit: microsecond

 Wy = -1.0; % Diagonal electron nuclear spin–spin relaxation, unit: microsecond

 Whe = -1.0; % Heisenberg exchange relaxation

 % For calculation of orientation-dependent spin relaxation matrix [LFP Appendix B]

 % The fluctuating time-dependent perturbation leading

 % to the relaxation can be written in general form as follows:

 % HI = Sum(FiAi)

 F = zeros(10,1); % the time-dependent fluctuating parts of the Hamiltonian,

 % which are defined in the molecular frame and transformed

 % into the lab frame.

 AMatrix = zeros(10, 10); % the spin operators in the lab frame

 Fluctuation = 0.01; % the factor of The fluctuating time-dependent perturbation

 Tc = 1.0; %the correlation time, unit:microsecond, at page 2322 [Freed, 1965]

 Jacac = 0.d0;

 Jbdbd = 0.d0;

 Jadad = 0.d0;

 Jbcbc = 0.d0;

 Jabab = 0.d0;

 Jcdcd = 0.d0;

92

 Jaabb = 0.d0;

 Jaacc = 0.d0;

 Jaadd = 0.d0;

 Jbbcc = 0.d0;

 Jbbdd = 0.d0;

 Jccdd = 0.d0;

 Jaaaa = 0.d0;

 Jbbbb = 0.d0;

 Jcccc = 0.d0;

 Jdddd = 0.d0;

 end %properties

 methods

 %Suppose, at initial state, the spin is in in z-axis

 function this = FluctuationRelaxation_class(hamiltonianFactor, t2e, t2n, we, wn, wx, wy,

whe, fluctuation, tc)

 this.HamiltonianFactor = hamiltonianFactor;

 %relaxation = zeros(16, 16); % Relaxation operator in Liouville space and |SzIz> basis

 this.T2e = t2e; % T2 electron spin–spin relaxation, unit: microsecond

 this.T2n = t2n; % T2 nuclear spin–spin relaxation, unit: microsecond

 this.We = we; % Diagonal electron spin–spin relaxation, unit: microsecond

 this.Wn = wn;% Diagonal nuclear spin–spin relaxation, unit: microsecond

 this.Wx = wx;% Diagonal electron nuclear spin–spin relaxation, unit: microsecond

 this.Wy = wy; % Diagonal electron nuclear spin–spin relaxation, unit: microsecond

 this.Whe = whe; % Heisenberg exchange relaxation

 this.Fluctuation = fluctuation;

 this.Tc = tc; % the correlation time, unit:microsecond, at page 2322 [Freed, 1965]

 this.InitFluctuating();

 this.Relaxation = this.RelaxationFluctuation;

 end % Relaxation_class constructor this

 % LPF's table 4

93

 function InitFluctuating(this)

 % tc the correlation time

 fluctuation = this.Fluctuation;

 dg = fluctuation;

 da = fluctuation;

 df = fluctuation;

 df2 = fluctuation;

 dd = fluctuation;

 dd2 = fluctuation;

 this.FluctuatingFactor(dg, da, df, df2, dd, dd2);

 this.SpinMatrix();

 this.FluctuatingMatrix();

 this.FluctuatingRelaxation();

 this.RelaxationFluctuation = -this.RelaxationFluctuation; % compatible with the LPF

A22 and A24

 %this.FluctuatingTime();

 end

 function FluctuatingRelaxation(this)

 raabb = 2*this.Jabab;

 raacc = 2*this.Jacac;

 raadd = 2*this.Jadad;

 rbbaa = raabb;

 rbbcc = 2*this.Jbcbc;

 rbbdd = 2*this.Jbdbd;

 rccaa = raacc;

 rccbb = rbbcc;

 rccdd = 2*this.Jcdcd;

 rddaa = raadd;

 rddbb = rbbdd;

 rddcc = rccdd;

 raaaa = -(raabb + raacc + raadd);

 rbbbb = -(rbbaa + rbbcc + rbbdd);

 rcccc = -(rccaa + rccbb + rccdd);

 rdddd = -(rddaa + rddbb + rddcc);

94

 rabab = 2*this.Jaabb - this.Jaaaa - this.Jbbbb + (raaaa + rbbbb)/2;

 racac = 2*this.Jaacc - this.Jaaaa - this.Jcccc + (raaaa + rcccc)/2;

 radad = 2*this.Jaadd - this.Jaaaa - this.Jdddd + (raaaa + rdddd)/2;

 rbaba = rabab;

 rbcbc = 2*this.Jbbcc - this.Jbbbb - this.Jcccc + (rbbbb + rcccc)/2;

 rbdbd = 2*this.Jbbdd - this.Jbbbb - this.Jdddd + (rbbbb + rdddd)/2;

 rcaca = racac;

 rcbcb = rbcbc;

 rcdcd = 2*this.Jccdd - this.Jcccc - this.Jdddd + (rcccc + rdddd)/2;

 rdada = radad;

 rdbdb = rbdbd;

 rdcdc = rcdcd;

 relaxation = zeros(16, 16); % Relaxation operator in Liouville space and |SzIz> basis

 relaxation(1,1) = raaaa;

 relaxation(2,2) = rabab;

 relaxation(3,3) = racac;

 relaxation(4,4) = radad;

 relaxation(5,5) = rbaba;

 relaxation(6,6) = rbbbb;

 relaxation(7,7) = rbcbc;

 relaxation(8,8) = rbdbd;

 relaxation(9,9) = rcaca;

 relaxation(10,10) = rcbcb;

 relaxation(11,11) = rcccc;

 relaxation(12,12) = rcdcd;

 relaxation(13,13) = rdada;

 relaxation(14,14) = rdbdb;

 relaxation(15,15) = rdcdc;

 relaxation(16,16) = rdddd;

 relaxation(6,1) = rbbaa;

 relaxation(11,1) = rccaa;

 relaxation(16,1) = rddaa;

 relaxation(1,6) = raabb;

 relaxation(11,6) = rccbb;

 relaxation(16,6) = rddbb;

 relaxation(1,11) = raacc;

 relaxation(6,11) = rbbcc;

 relaxation(16,11) = rddcc;

95

 relaxation(1,16) = raadd;

 relaxation(6,16) = rbbdd;

 relaxation(11,16) = rccdd;

 this.RelaxationFluctuation = relaxation;

 end % FluctuatingRelaxation

 % Orientation-dependent spin relaxation matrix

 % From Slitcher Eq. (5.294)

 function FluctuatingMatrix(this)

 tc = this.Tc; % tc correlation time, unit: microsecond.

 ea = this.HamiltonianFactor.Ea;

 eb = this.HamiltonianFactor.Eb;

 ec = this.HamiltonianFactor.Ec;

 ed = this.HamiltonianFactor.Ed;

 wac = ea - ec;

 wbd = eb - ed;

 wad = ea - ed;

 wbc = eb - ec;

 wab = ea - eb;

 wcd = ec - ed;

 jacac = 0.d0;

 jbdbd = 0.d0;

 jadad = 0.d0;

 jbcbc = 0.d0;

 jabab = 0.d0;

 jcdcd = 0.d0;

 jaabb = 0.d0;

 jaacc = 0.d0;

 jaadd = 0.d0;

 jbbcc = 0.d0;

 jbbdd = 0.d0;

 jccdd = 0.d0;

 jaaaa = 0.d0;

 jbbbb = 0.d0;

 jcccc = 0.d0;

 jdddd = 0.d0;

 for i = 1:10

 jacac = jacac + this.F(i)* this.F(i)* this.AMatrix(i,1);

96

 jbdbd = jbdbd + this.F(i)* this.F(i)* this.AMatrix(i,2);

 jadad = jadad + this.F(i)* this.F(i)* this.AMatrix(i,3);

 jbcbc = jbcbc + this.F(i)* this.F(i)* this.AMatrix(i,4);

 jabab = jabab + this.F(i)* this.F(i)* this.AMatrix(i,5);

 jcdcd = jcdcd + this.F(i)* this.F(i)* this.AMatrix(i,6);

 jaabb = jaabb + this.F(i)* this.F(i)* sqrt(this.AMatrix(i,7) * this.AMatrix(i,8));

 jaacc = jaacc + this.F(i)* this.F(i)* sqrt(this.AMatrix(i,7) * this.AMatrix(i,9));

 jaadd = jaadd + this.F(i)* this.F(i)* sqrt(this.AMatrix(i,7) * this.AMatrix(i,10));

 jbbcc = jbbcc + this.F(i)* this.F(i)* sqrt(this.AMatrix(i,8) * this.AMatrix(i,9));

 jbbdd = jbbdd + this.F(i)* this.F(i)* sqrt(this.AMatrix(i,8) * this.AMatrix(i,10));

 jccdd = jccdd + this.F(i)* this.F(i)* sqrt(this.AMatrix(i,9) * this.AMatrix(i,10));

 jaaaa = jaaaa + this.F(i)* this.F(i)* this.AMatrix(i,7);

 jbbbb = jbbbb + this.F(i)* this.F(i)* this.AMatrix(i,8);

 jcccc = jcccc + this.F(i)* this.F(i)* this.AMatrix(i,9);

 jdddd = jdddd + this.F(i)* this.F(i)* this.AMatrix(i,10);

 end

 this.Jacac = tc/(1+(wac*tc)^2)*jacac;

 this.Jbdbd = tc/(1+(wbd*tc)^2)*jbdbd;

 this.Jadad = tc/(1+(wad*tc)^2)*jadad;

 this.Jbcbc = tc/(1+(wbc*tc)^2)*jbcbc;

 this.Jabab = tc/(1+(wab*tc)^2)*jabab;

 this.Jcdcd = tc/(1+(wcd*tc)^2)*jcdcd;

 this.Jaabb = tc*jaabb;

 this.Jaacc = tc*jaacc;

 this.Jaadd = tc*jaadd;

 this.Jbbcc = tc*jbbcc;

 this.Jbbdd = tc*jbbdd;

 this.Jccdd = tc*jccdd;

 this.Jaaaa = tc*jaaaa;

 this.Jbbbb = tc*jbbbb;

 this.Jcccc = tc*jcccc;

 this.Jdddd = tc*jdddd;

 end% FluctuatingMatrix

 % Table 4 of LPF

 function FluctuatingFactor(this, dg, da, df, df2, dd, dd2)

 % dg, da, df, df2, dd, dd2, the interaction constants

 % are the time-dependent deviations from the average values

 % [e.g., dg = g(t)-gAverage.

97

 %bohr = 9.27400968D-28; %Bohr magneton: ß_e,µ_B=9.27400968(20)×10^(-28)

J*Gauss^(-1)

 %planck = 6.62606957D-34; %Planck constant: h=6.62606957(29)×10^(-34) J*S

 gyromagneticRatio = 2.802495266D0; %Electron gyromagnetic ratio: r_e/2pi=2.8024952

66(62)MHz*Gauss^(-1)

 %gyromagneticRatio_h = 42.576D0; %Nuclear gyromagnetic ratio:

r_h/2pi=42.576MHz*Gauss^(-1)

 euler_angles = this.HamiltonianFactor.Euler_angles; % !euler angles of the rotating

frame, unit: rad

 f0 = this.HamiltonianFactor.F0; % uint: MHz

 gAverage = this.HamiltonianFactor.GAverage; % unit: none

 aAverage = this.HamiltonianFactor.AAverage; % unit: Gauss

 f = this.HamiltonianFactor.F; % uint: MHz

 d = this.HamiltonianFactor.D; % unit: Gauss

 f2 = this.HamiltonianFactor.F2; % unit: Gauss

 d2 = this.HamiltonianFactor.D2; % unit: Gauss

 % alpha = euler_angles(1);

 beta = euler_angles(2);

 gamma = euler_angles(3);

 %tcf = 20/(f0*sqrt(3)); % At page 2322 [Freed, 1965]

 %disp(tcf)

 gAverage = dg*gAverage;

 aAverage = da*aAverage;

 f = df*f;

 f2 = df2*f2;

 d = dd*d;

 d2 = dd2*d2;

 iso_g = gAverage*f0; % isotropic g

 this.F(1) = iso_g;

 ani_g1 = (1/2)*f * (3*cos(beta)*cos(beta) - 1) + f2 * sin(beta)*sin(beta) * cos(2*

gamma); %Anisotropic g

 this.F(2) = ani_g1;

 ani_g2 = (3/8)*f*sin(2*beta) - (1/4)*f2*sin(2*beta) * cos(2* gamma);

 this.F(3) = ani_g2;

98

 iso_hf1 = -gyromagneticRatio * aAverage; % Isotropic hf

 this.F(4) = iso_hf1;

 iso_hf2 = iso_hf1;

 this.F(5) = iso_hf2;

 ani_hf1 = (1/2)*d *(3.0*cos(beta)*cos(beta) - 1) - d2 * sin(beta)*sin(beta) * cos(2 *

gamma); % Anisotropic hf

 ani_hf1 = -gyromagneticRatio * ani_hf1;

 this.F(6) = ani_hf1;

 ani_hf2 = ani_hf1;

 this.F(7) = ani_hf2;

 ani_hf3 = (3/8)*d*sin(2*beta) - (1/4)*d2 * sin(2*beta) * cos(2* gamma); % Anisotropic

hf

 ani_hf3 = -gyromagneticRatio * ani_hf3;

 this.F(8) = ani_hf3;

 ani_hf4 = ani_hf3;

 this.F(9) = ani_hf4;

 ani_hf5 = (3/8)*d*sin(beta)*sin(beta) - (1/4)*d2 * (1 + cos(beta)*cos(beta)) * cos(2*

gamma); % Anisotropic hf

 ani_hf5 = -gyromagneticRatio * ani_hf5;

 this.F(10) = ani_hf5;

 end % function FluctuatingFactor

 % the spin operators in the lab frame

 function SpinMatrix(this)

 m1 = this.HamiltonianFactor.M1;

 m2 = this.HamiltonianFactor.M2;

 c1 = this.HamiltonianFactor.C1;

 c2 = this.HamiltonianFactor.C2;

 c3 = this.HamiltonianFactor.C3;

 c4 = this.HamiltonianFactor.C4;

 this.AMatrix(1,7) = 1/4;

 this.AMatrix(1,8) = this.AMatrix(1,7);

 this.AMatrix(1,9) = 1/4;

 this.AMatrix(1,10) = this.AMatrix(1,9);

99

 this.AMatrix(2,7) = 1/4;

 this.AMatrix(2,8) = this.AMatrix(2,7);

 this.AMatrix(2,9) = 1/4;

 this.AMatrix(2,10) = this.AMatrix(2,9);

 this.AMatrix(3,1) = m1*m1;

 this.AMatrix(3,2) = m1*m1;

 this.AMatrix(3,3) = m2*m2;

 this.AMatrix(3,4) = m2*m2;

 this.AMatrix(4,5) = (1/4)*real(conj(c1)*c2)*real(conj(c1)*c2);

 this.AMatrix(4,6) = (1/4)*real(conj(c3)*c4)*real(conj(c3)*c4);

 this.AMatrix(4,7) = (1/16)*(abs(c1)*abs(c1) - abs(c2)*abs(c2));

 this.AMatrix(4,8) = this.AMatrix(4,7);

 this.AMatrix(4,9) = (1/16)*(abs(c3)*abs(c3) - abs(c4)*abs(c4));

 this.AMatrix(4,10) = this.AMatrix(4,9);

 this.AMatrix(5,1) = (1/4)*abs(conj(c2)*c3)*abs(conj(c2)*c3);

 this.AMatrix(5,2) = (1/4)*abs(conj(c1)*c4)*abs(conj(c1)*c4);

 this.AMatrix(5,3) = (1/4)*abs(conj(c2)*c4)*abs(conj(c2)*c4);

 this.AMatrix(5,4) = (1/4)*abs(conj(c1)*c3)*abs(conj(c1)*c3);

 this.AMatrix(6,5) = (1/4)*real(conj(c1)*c2)*real(conj(c1)*c2);

 this.AMatrix(6,6) = (1/4)*real(conj(c3)*c4)*real(conj(c3)*c4);

 this.AMatrix(6,7) = (1/16)*(abs(c1)*abs(c1) - abs(c2)*abs(c2));

 this.AMatrix(6,8) = this.AMatrix(6,7);

 this.AMatrix(6,9) = (1/16)*(abs(c3)*abs(c3) - abs(c4)*abs(c4));

 this.AMatrix(6,10) = this.AMatrix(6,9);

 this.AMatrix(7,1) = (1/16)*abs(conj(c2)*c3)*abs(conj(c2)*c3);

 this.AMatrix(7,2) = (1/16)*abs(conj(c1)*c4)*abs(conj(c1)*c4);

 this.AMatrix(7,3) = (1/16)*abs(conj(c2)*c4)*abs(conj(c2)*c4);

 this.AMatrix(7,4) = (1/16)*abs(conj(c1)*c3)*abs(conj(c1)*c3);

 this.AMatrix(8,5) = (1/4)*(abs(c1)*abs(c1) - abs(c2)*abs(c2))^2;

 this.AMatrix(8,6) = (1/4)*(abs(c3)*abs(c3) - abs(c4)*abs(c4))^2;

 this.AMatrix(8,7) = real(conj(c1)*c2)^2;

 this.AMatrix(8,8) = this.AMatrix(8,7);

 this.AMatrix(8,9) = real(conj(c3)*c4)^2;

 this.AMatrix(8,10) = this.AMatrix(8,9);

 this.AMatrix(9,1) = (1/4)*(abs(conj(c1)*c3-conj(c2)*c4))^2;

 this.AMatrix(9,2) = (1/4)*(abs(conj(c1)*c3-conj(c2)*c4))^2;

 this.AMatrix(9,3) = (1/4)*(abs(conj(c1)*c4+conj(c2)*c3))^2;

100

 this.AMatrix(9,4) = (1/4)*(abs(conj(c1)*c4+conj(c2)*c3))^2;

 this.AMatrix(10,1) = abs(conj(c1)*c4)^2;

 this.AMatrix(10,2) = abs(conj(c2)*c3)^2;

 this.AMatrix(10,3) = abs(conj(c1)*c3)^2;

 this.AMatrix(10,4) = abs(conj(c2)*c4)^2;

 end % function

 function FluctuatingTime(this)

 gyromagneticRatio_h = 42.576D0; %Nuclear gyromagnetic ratio:

r_h/2pi=42.576MHz*Gauss^(-1)

 w0 = this.HamiltonianFactor.W0; % uint: MHz

 tcs = 20/(sqrt(3)*w0);

 fprintf('[Freed 1965] tc = %d microseconds\n',tcs);

 for i = 1:10 % Slitcher Eq. (5.301)

 tcs = (gyromagneticRatio_h*this.F(i)/w0)^2;

 tcs = tcs/(3*this.We);

 fprintf('[Slichter 2013] %uth tc = %d microseconds\n',i, tcs);

 end

 % for i = 1:10 % Slitcher Eq. (5.301)

 % b = (gyromagneticRatio_h*this.F(i))^2;

 % b = b/(3*this.We);

 % tcs = b + sqrt(b*b - 4*w0*w0);

 % tcs = tcs/2;

 % disp(tcs)

 % end

 fprintf('w0 = %d \n', w0);

 fprintf('gramma_n = %d \n', gyromagneticRatio_h);

 for i = 1:10 % Slitcher Eq. (5.301)

 t1 = (gyromagneticRatio_h*this.F(i))^2;

 t1 = 3*w0/t1;

 fprintf('[Slichter 2013] fp^2 = %d, t1 = %d \n', this.F(i)^2, t1);

 end

 end %function FluctuatingTime

 end % methods

end %classdef FluctuationRelaxation_class

101

5. Hamiltonian_class

% Calculate Hamiltonian matrix, LPF Eq. 3

classdef Hamiltonian_class < handle

 properties

 HamiltonianFactor;

 Relaxation; % LPF A22

 FluctuationRelaxation; % fluctuation relaxation

 RelaxationType = 1;

 HamiltonianH = zeros(4,4); % Hamiltonian operator in Hilbert space and |SzIz> basis

 EigenvalueH = zeros(4,1); % Of Hamiltonian operator.

 RightEigenvectorH; % Of Hamiltonian operator. Au = tu, any such column vector u is

called a right eigenvector of A

 RightEigenvectorL;

 LiouvilleDig = zeros(16,16); % diagonal matrix of generalized eigenvalues

 end %properties

 methods

 % constructor

 function this = Hamiltonian_class(hamiltonianFactor, relaxation, fluctuationRelaxation,

relaxationType)

 this.HamiltonianFactor = hamiltonianFactor;

 this.Relaxation = relaxation;

 this.FluctuationRelaxation = fluctuationRelaxation;

 this.RelaxationType = relaxationType;

 end % end constructor

 function Init(this, euler_angles)

 hamiltonianFactor = this.HamiltonianFactor;

 hamiltonianFactor.Init(euler_angles);

 wn = hamiltonianFactor.Wn; % the nuclear Larmor frequency for the nucleus, uint: MHz

 C = hamiltonianFactor.C; %uint: MHz

 A = hamiltonianFactor.A; %uint: MHz

 B1 = hamiltonianFactor.B1; %uint: MHz

 B2 = hamiltonianFactor.B2; %uint: MHz

 % Initialize Hamiltonian operator matrix in Hilbert space

 hamiltonianH = zeros(4,4);

 hamiltonianH(1,1) = 0.5*(C - wn + 0.5*A);

 hamiltonianH(2,2) = 0.5*(C + wn - 0.5*A);

 hamiltonianH(3,3) = 0.5*(-C - wn - 0.5*A);

102

 hamiltonianH(4,4) = 0.5*(-C + wn + 0.5*A);

 hamiltonianH(1,2) = 0.25*B1;

 hamiltonianH(2,1) = 0.25*B2;

 hamiltonianH(3,4) = -0.25*B1;

 hamiltonianH(4,3) = -0.25*B2;

 this.HamiltonianH = hamiltonianH;

 % Diagonalize the Hamiltonian operator matrix in Hilbert space

 %[V,D,W] = eig(A)

 % D: diagonal matrix of generalized eigenvalues

 % V: Right eigenvectors: A*V = V*D, % Au = tu, Any such column vector u is called a

right eigenvector of A

 % W: Left eigenvectors: W'*A = D*W

 [V, D] = eig(hamiltonianH, 'vector');

 % Swap ascending order to descending order

 eigenvalueH = D;

 eigenvalueH([1,3],:) = eigenvalueH([3,1],:);

 %eigenvalueH([1,4],:) = eigenvalueH([4,1],:);

 %eigenvalueH([2,3],:) = eigenvalueH([3,2],:);

 this.EigenvalueH = eigenvalueH;

 rightEigenvectorH = V;

 rightEigenvectorH(:,[1,3]) = rightEigenvectorH(:,[3,1]);

 %rightEigenvectorH(:,[1,4]) = rightEigenvectorH(:,[4,1]);

 %rightEigenvectorH(:,[2,3]) = rightEigenvectorH(:,[3,2]);

 this.RightEigenvectorH = rightEigenvectorH; % It is the change of basis matrix from

hamiltonianH (original) to D (new).

 rndoff = 10e12;

 h0 = diag(this.EigenvalueH);

 relaxationType = this.RelaxationType;

 switch relaxationType

 case 1 % LPF A22

 relaxation0 = this.Relaxation.Relaxation;

 case 2 % fluctuation relaxation

 relaxation0 = this.FluctuationRelaxation.RelaxationFluctuation;

 case 3 % LPF A22 and fluctuation relaxation

 relaxation0 = this.Relaxation.Relaxation + this.FluctuationRelaxation.Relaxation;

 otherwise

103

 error('1, 2 or 3 relaxation type only!')

 end %switch relaxationType

 liouville0 = kron(eye(4),h0) - kron(transpose(h0), eye(4));

 liouville = round(rndoff*(-1i*liouville0 + relaxation0))/rndoff; % compatible with the

LPF A22 and A24

 [V1, D1] = eig(liouville);

 rightEigenvectorL = V1;

 this.RightEigenvectorL = rightEigenvectorL;

 this.LiouvilleDig = round(D1*rndoff)/rndoff;

 end % Hamiltonian_class constructor

 % Wihtout the relaxation part H = H0

 function [A] = SzIzToH0BasisH (this,operatorH)

 A = ctranspose(this.RightEigenvectorH)* operatorH * this.RightEigenvectorH;

 end

 function [A] = H0ToSzIzBasisH (this, operatorH)

 A = this.RightEigenvectorH * operatorH * ctranspose(this.RightEigenvectorH);

 end

 % Wiht the relaxation part H = H0 + R

 function [A] = L0ToNormalBasis (this, operatorL)

 A = ctranspose(this.RightEigenvectorL)* operatorL * this.RightEigenvectorL;

 end

 end % methods

end %classdef Hamiltonian_class

6. HamiltonianFactor_class

% Calculate Hamiltonian parameters, LPF Eqs.2 and 4

classdef HamiltonianFactor_class < handle

 properties

 B0; % static magnetic field, unit: Gauss

 Wn; % the nuclear Larmor frequency for the nucleus, uint: MHz

 G_tensor; % g_tensor(3)

 Hyperfine_tensor; % hyperfine_tensor(3) !hyperfine tensor, unit: Gauss

 Euler_angles = zeros(3);

 C = 0.0d0; %uint: MHz

 A = 0.0d0; %uint: MHz

104

 B1 = 0.0d0; %uint: MHz

 B2 = 0.0d0; %uint: MHz

 W0 = 0.0d0; % the electron Larmor frequency for the nucleus, uint: MHz

 % For calculation of orientation-dependent spin relaxation matrix

 GAverage = 0.0d0; % unit: none

 AAverage = 0.0d0; % unit: Gauss

 F0 = 0.0d0; % uint: MHz

 F = 0.0d0; % uint: MHz

 F2 = 0.0d0; % uint: MHz

 D = 0.0d0; % unit: Gauss

 D2 = 0.0d0; % unit: Gauss

 Wa = 0.0d0; %uint: MHz

 Wb = 0.0d0; %uint: MHz

 C1 = 0.0d0;

 C2 = 0.0d0;

 C3 = 0.0d0;

 C4 = 0.0d0;

 M1 = 0.0d0;

 M2 = 0.0d0;

 Ea = 0.0d0; %uint: MHz

 Eb = 0.0d0; %uint: MHz

 Ec = 0.0d0; %uint: MHz

 Ed = 0.0d0; %uint: MHz

 end %properties

 methods

 function this = HamiltonianFactor_class(B0, wn, g_tensor, hyperfine_tensor, euler_angles)

 % B0 !static magnetic field, unit: Gauss

 % wn !the nuclear Larmor frequency for the nucleus, uint: MHz

 % g_tensor(3)

 % hyperfine_tensor(3) !hyperfine tensor, unit: Gauss

 this.B0 = B0;

 this.Wn = wn;

 this.G_tensor = g_tensor;

 this.Hyperfine_tensor = hyperfine_tensor;

 this.Euler_angles = euler_angles;

105

 this.Init(euler_angles)

 end % HamiltonianFactor_class constructor

 function Init(this, euler_angles)

 % euler_angles(3) !euler angles of the rotating frame, unit: rad

 this.Euler_angles = euler_angles;

 bohr = 9.27400968D-28; %Bohr magneton: ß_e,µ_B=9.27400968(20)×10^(-28)

J*Gauss^(-1)

 planck = 6.62606957D-34; %Planck constant: h=6.62606957(29)×10^(-34) J*S

 %gyromagneticRatio = 2.802495266D0; %Electron gyromagnetic ratio: r_e=2.8024952

66(62)MHz*Gauss^(-1)

 wn = this.Wn;

 g_tensor = this.G_tensor;

 hyperfine_tensor = this.Hyperfine_tensor;

 f0 = (bohr * this.B0 / planck) * 1.0D-6; % uint: MHz*rad

 this.F0 = f0;

 gAverage =(1.0/3.0)*(g_tensor(1) + g_tensor(2) + g_tensor(3)) * f0;

 this.GAverage = gAverage;

 this.W0 = gAverage; % the electron Larmor frequency for the nucleus, uint: MHz

 aAverage = (1.0/3.0)*(hyperfine_tensor(1) + hyperfine_tensor(2) +

hyperfine_tensor(3)); %unit: Gauss

 this.AAverage = aAverage;

 f = sqrt(2.0/3.0)*(g_tensor(3) - 0.5*(g_tensor(1) + g_tensor(2))) * f0;

 this.F = f; % uint: MHz

 d = (2.0/3.0)*(hyperfine_tensor(3) - 0.5*(hyperfine_tensor(1) + hyperfine_tensor(2)));

 this.D = d;

 f2 = 0.5*(g_tensor(1) - g_tensor(2)) * f0;

 this.F2 = f2;

 d2 = 0.5*(hyperfine_tensor(1) - hyperfine_tensor(2));

 this.D2 = d2;

 % alpha = euler_angles(1);

 beta = euler_angles(2);

 gamma = euler_angles(3);

 this.C = gAverage + 0.5*f * (3*cos(beta)*cos(beta) - 1) + f2 * sin(beta)*sin(beta) *

cos(2* gamma);

106

 this.A = -2*pi*(aAverage + (0.5*d *(3.0*cos(beta)*cos(beta) - 1) + d2 *

sin(beta)*sin(beta) * cos(2 * gamma)));

 this.B1 = -4*pi*(+(3.0/4.0)*d * sin(beta) * cos(beta) - 0.5*d2 * sin(beta)...

 * (cos(beta) * cos(2 * gamma) -1i*sin(2*gamma)));

 this.B2 = -4*pi*(+(3.0/4.0)*d * sin(beta) * cos(beta) - 0.5*d2 * sin(beta)...

 * (cos(beta) * cos(2 * gamma) +1i*sin(2*gamma)));

 % For calculation of orientation-dependent spin relaxation matrix

 wa = (this.A/2- wn)^2 + (abs(this.B1/2))^2;

 wa = sqrt(wa);

 this.Wa = wa;

 wb = (this.A/2 + wn)^2 + (abs(this.B1/2))^2;

 wb = sqrt(wb);

 this.Wb = wb;

 this.C1 = 1 + (this.A/2 - wn)/wa;

 this.C1 = sqrt(this.C1/2);

 this.C2 = 1 - (this.A/2 - wn)/wa;

 this.C2 = -sqrt(this.C2/2);

 this.C3 = 1 + (this.A/2 + wn)/wb;

 this.C3 = sqrt(this.C3/2);

 this.C4 = 1 - (this.A/2 + wn)/wb;

 this.C4 = -sqrt(this.C4/2);

 this.M1 = 1 - (wn^2 - (this.A/2)^2 - (abs(this.B1/2)^2))/(wa*wb);

 this.M1 = sqrt(this.M1/2);

 this.M2 = 1 + (wn^2 - (this.A/2)^2 - (abs(this.B1/2)^2))/(wa*wb);

 this.M2 = sqrt(this.M2/2);

 %LPF' Eq.(A3)

 this.Ea = this.C/2 + wa/2;

 this.Eb = this.C/2 - wa/2;

 this.Ec = -this.C/2 - wb/2;

 this.Ed = -this.C/2 + wb/2;

 end % function Init

 end % methods

end %classdef HamiltonianFactor_class

107

7. Pathway_class

% Coherence Pathway of Dr. Misra's DQC

classdef Pathway_class < handle

 properties

 Density; % class

 Hamiltonian;

 P1;

 P0;

 P_1;

 end %properties

 methods

 % constructor

 function this = Pathway_class(density,hamiltonian)

 this.Density = density;

 this.Hamiltonian=hamiltonian;

 splus = zeros(2,2); % s+ of 1/2 spin

 splus(1,2) = 1;

 sminus = zeros(2,2);% s- of 1/2 spin

 sminus(2,1) = 1;

 this.P1 = kron(splus, ones(2));

 this.P0 = kron(eye(2), ones(2));

 this.P_1 = kron(sminus, ones(2));

 end % Pathway_class constructor

 function SelectPath(this, spinPathway)

 % In SzIz basis

 densityH = this.Density.GetDensityMat();

 switch spinPathway

 case 1 % p=1

 densityH = (this.P1).* densityH;

 case 0 % p=0

 densityH = (this.P0).* densityH;

 case -1 % p=-1

 densityH = (this.P_1).* densityH;

 case -11 % p=-1 or 1

 densityH = (this.P1 + this.P_1).* densityH;

 otherwise

 error('Error. \nNo such pathway %d.', spinPathway)

108

 end %switch path

 this.Density.SetDensityL(densityH);

 end % SelectPath

 end % methods

end % Pathway_class < handle

8. Plot_class

% FFT and plot

classdef Plot_class < handle

 properties

 Fs1 = 64; % Sampling frequency

 Dt1; % Sample time, unit: Microsecond

 N1; % Length of signal

 Tv1; % Time vector, unit: Microsecond

 Df1; % Frequency increment, unit: MHz

 Fv1; % Frequency vector, unit: MHz

 Scaling_zfft; % Scaling ratio of intensity after fft

 Fs2 = 64; % Sampling frequency

 Dt2; % Sample time, unit: Microsecond

 N2; % Length of signal

 Tv2; % Time vector, unit: Microsecond

 Df2; % Frequency increment, unit: MHz

 Fv2; % Frequency vector, unit: MHz

 Signal2d; % Sampled data

 Signal2d_fft; % Discrete Fourier transform (DFT)

 end %properties

 methods

 % constructor

 function this = Plot_class(fs1, fs2)

 this.Init(fs1, fs2);

 end % ESEEM_LS_FFT_class constructor this

 function Init(this, fs1, fs2)

109

 %fs1 = 64; % Sampling frequency

 dt1 = 1/fs1; % Sample time, unit: Microsecond

 n1 = 1*fs1; % Length of signal

 tv1 = (0:n1-1)*dt1; % (-n1/2:n1/2-1)*dt1; % Time vector, unit: Microsecond

 df1 = fs1/n1; % Frequency increment, unit: MHz

 fv1 = (-n1/2:n1/2-1)*(df1); % Frequency vector, unit: MHz

 scaling_zfft = dt1; % Scaling ratio of intensity after fft

 %fs2 = 64; % Sampling frequency

 dt2 = 1/fs2; % Sample time, unit: Microsecond

 n2 = 1*fs2; % Length of signal

 tv2 = (0:n2-1)*dt2;%(-n2/2:n2/2-1)*dt2; % Time vector, unit: Microsecond

 df2 = fs2/n2; % Frequency increment, unit: MHz

 fv2 = (-n2/2:n2/2-1)*(df2); % Frequency vector, unit: MHz

 signal2d = zeros(n1,n2); % Sampled data

 this.Fs1 = fs1; % Sampling frequency

 this.Dt1 = dt1; % Sample time, unit: Microsecond

 this.N1 = n1; % Length of signal

 this.Tv1 = tv1; % Time vector, unit: Microsecond

 this.Df1 = df1; % Frequency increment, unit: MHz

 this.Fv1 = fv1; % Frequency vector, unit: MHz

 this.Scaling_zfft = scaling_zfft; % Scaling ratio of intensity after fft

 this.Fs2 = fs2; % Sampling frequency

 this.Dt2 = dt2; % Sample time, unit: Microsecond

 this.N2 = n2; % Length of signal

 this.Tv2 = tv2; % Time vector, unit: Microsecond

 this.Df2 = df2; % Frequency increment, unit: MHz

 this.Fv2 = fv2; % Frequency vector, unit: MHz

 this.Signal2d = signal2d; % Sampled data

 end % Init this

 function SignalToFFT(this, signalFile)

 signal2d = dlmread(signalFile); % Read in data

110

 withFilter = false; %false;

 if withFilter == true

 fst = 0.15; %Fst — frequency at the end of the stop band. Specified in normalized

frequency units. Also called Fstop.

 fp = 0.25; %Fp — frequency at the start of the pass band. Specified in normalized

frequency units. Also called Fpass.

 ast = 60; %Ast — attenuation in the stop band in decibels (the default units). Also

called Astop.

 ap = 1; %Ap — amount of ripple allowed in the pass band in decibels (the default

units). Also called Apass.

 d = fdesign.highpass('Fst,Fp,Ast,Ap',fst,fp,ast,ap);

 Hd = design(d,'equiripple');

 signal2d = filter(Hd,signal2d);

 end %if withFilter == true

 this.Signal2d = signal2d;

 signal2d_fft = fft2(signal2d); % Discrete Fourier transform (DFT)

 signal2d_fft = fftshift(signal2d_fft); % Shift zero-frequency component to center of

spectrum

 %signal2d_fft = this.Scaling_zfft * signal2d_fft; % Scale output intensity after fft

 this.Signal2d_fft = signal2d_fft;

 end% function SignalToFFT

 function Plot(this, titleName, rotateDegree, plotAll)

 % rotateDegree: rotate the plot around z-axis, unit:degree, not radian

 %fs1 = this.Fs1; % Sampling frequency

 %dt1 = this.Dt1; % Sample time, unit: Microsecond

 n1 = this.N1; % Length of signal

 tv1 = this.Tv1; % Time vector, unit: Microsecond

 %df1 = this.Df1; % Frequency increment, unit: MHz

 fv1 = this.Fv1; % Frequency vector, unit: MHz

 %scaling_zfft = this.Scaling_zfft; % Scaling ratio of intensity after fft

 %fs2 = this.Fs2; % Sampling frequency

 %dt2 = this.Dt2; % Sample time, unit: Microsecond

 n2 = this.N2; % Length of signal

 tv2 = this.Tv2; % Time vector, unit: Microsecond

 %df2 = this.Df2; % Frequency increment, unit: MHz

 fv2 = this.Fv2; % Frequency vector, unit: MHz

111

 signal2d = this.Signal2d;

 signal2d = signal2d /(max(max(abs(signal2d)))); % scale to 1

 signal2d = abs(signal2d);

 if (~exist('plotAll', 'var'))

 plotAll = false;

 end

 if plotAll == true

 Figure('Name', strcat('2D-', titleName, '(Time-domain)'), 'Visible', 'On');

 mesh(tv1,tv2, signal2d)

 axis([0 1 0 1 0 1.1])

 axis tight

 xlabel('T1 (\mus)') %Microsecond

 ylabel('T2 (\mus)')

 zlabel('Intensity')

 %title(strcat('{\bf ', '2D-', titleName, ' (Time-domain)', '}'));

 %colormap gray

 row = n1/2;

 col = n2/2;

 y1 = signal2d(1:n1, col);

 y2 = signal2d(row, 1:n2);

 Figure('Name',strcat('1D-', titleName, '(Time-domain)'),'Visible','On');

 plot(tv1,y1)

 title(strcat('{\bf ', '1D-', titleName, ' (Time-domain)', '}'));

 xlabel('T1 (Microsecond)')

 ylabel('Intensity')

 Figure('Name',strcat('1D-', titleName, '(Time-domain)'),'Visible','On');

 plot(tv2,y2)

 title(strcat('{\bf ', '1D-', titleName, ' (Time-domain)', '}'));

 xlabel('T2 (Microsecond)')

 ylabel('Intensity')

 y1_fft = fft(y1,n1);

 y1_fft = fftshift(y1_fft);

 % Plot single-sided amplitude spectrum.

 Figure('Name',strcat('1D-', titleName, '(Frequency-domain)'),'Visible','On');

 plot(fv1,abs(y1_fft))

 title(strcat('{\bf ', '1D-', titleName, ' (Frequency-domain)', '}'));

 xlabel('F1 (MHz)')

 ylabel('Intensity')

 y2_fft = fft(y2,n2);

112

 y2_fft = fftshift(y2_fft);

 % Plot single-sided amplitude spectrum.

 Figure('Name',strcat('1D-', titleName, '(Frequency-domain)'),'Visible','On');

 plot(fv2,abs(y2_fft))

 title(strcat('{\bf ', '1D-', titleName, ' (Frequency-domain)', '}'));

 xlabel('F2 (MHz)')

 ylabel('Intensity')

 end

 signal2d_fft = this.Signal2d_fft;

 signal2d_fft = signal2d_fft /(max(max(signal2d_fft))); %Scale to 1

 signal2d_fft = abs(signal2d_fft); % Amplitude of the DFT. real-dispersion, imag-

absorption, abs-Complex Magnitude

% maximum = max(max(signal2d_fft));

% [row,col]=find(signal2d_fft==maximum)

 signal2d_fft = transpose(signal2d_fft);

 signal2d_fft = this.RotationZ(signal2d_fft, rotateDegree);

 Figure('Name', strcat('2D-', titleName, '(Frequency-domain)'), 'Visible', 'On');

 mesh(fv1, fv2, signal2d_fft)

 xlabel('F1 (MHz)')

 ylabel('F2 (MHz)')

 zlabel('Intensity')

 %title(strcat('{\bf ', '2D-', titleName, ' (Frequency-domain)', '}'));

 set(gca,'XTick',-this.N1/2:50:this.N1/2)

 set(gca,'YTick',-this.N2/2:50:this.N2/2)

 view(45, 22.5);% view(3) sets the default three-dimensional view, az = –37.5, el = 30.

 %signal2d_fft(:,this.N2/2:this.N2/2+2) = 0.0; % remove autopeaks along f1

 %signal2d_fft(this.N1/2:this.N1/2+2,:) = 0.0; % remove autopeaks along f2

 end % function Plot

 function [outmatrix] = RotationZ (~, inmatrix, degree)

 s = sign(degree);

 degree = mod(abs(degree), 360);

 switch degree

 % Special cases

 case 0

 outmatrix = inmatrix;

 case 90

 outmatrix = rot90(inmatrix, s);

 case 180

113

 outmatrix = rot90(inmatrix, s*2);

 case 270

 outmatrix = rot90(inmatrix, s*3);

 % General rotations

 otherwise

 degree = s*degree;

 [nrows, ncols] = size(inmatrix);

 midx=ceil((ncols+1)/2);

 midy=ceil((nrows+1)/2);

 a = degree*pi/180;

 Mr = [cos(a) sin(a); -sin(a) cos(a)]; % degree rotation

 % rotate about center

 [X, Y] = meshgrid(1:ncols,1:nrows);

 XYt = [X(:)-midx Y(:)-midy]*Mr;

 XYt = bsxfun(@plus,XYt,[midx midy]);

 xout = round(XYt(:,1)); yout = round(XYt(:,2)); % nearest neighbor!

 %outbound = yout<1 | yout>nrows | xout<1 | xout>ncols;

 xout(xout<1) = 1; xout(xout>ncols) = ncols;

 yout(yout<1) = 1; yout(yout>nrows) = nrows;

 outmatrix = inmatrix(sub2ind(size(inmatrix),yout,xout)); % lookup

 outmatrix = reshape(outmatrix,size(inmatrix));

 end %switch

 end % function RotationZ

 end %method

end %classdef Plot_class

9. Pulse_class

% Pulse evolve

% Calculate pulseOperator, and Density evolve under a pulseOperator

classdef Pulse_class < handle

 properties

 Hamiltonian; % class

 Density; % class

 Pulsetime0 = 0.0; % (~5 ns for pi/2 pulse, LPF p3669) unit: Microsecond

 Pulsepar1; % [phase, tipAngle] pair, for example: [0, pi/2] pulse

 Pulsepar2; % [phase, tipAngle] pair, for example: [0, pi] pulse

114

 PulseOperator1 = zeros(16,16); % Pulse superoperator in Liouville space, for example: pi/2

pulse

 PulseOperator2 = zeros(16,16); % Pulse superoperator in Liouville space, for example: pi

pulse

 end % properties

 methods

 function this = Pulse_class(hamiltonian, density, pulsetime0, pulsepar1, pulsepar2)

 this.Hamiltonian = hamiltonian;

 this.Density = density; % class

 this.Pulsetime0 = pulsetime0; % (~5 ns for pi/2 pulse, LPF p3667) unit: Microsecond

 this.Pulsepar1 = pulsepar1; % [phase, tipAngle] pair, for example: [0, pi/2] pulse

 this.Pulsepar2 = pulsepar2; % [phase, tipAngle] pair, for example: [0, pi] pulse

 end % Pulse_class constructor

 % pre calculations

 function Init(this)

 this.PulseOperator1 = this.CalPulseOperator(this.Pulsepar1);

 this.PulseOperator2 = this.CalPulseOperator(this.Pulsepar2);

 end

 % Calculate pulse superoperator in Liouville space

 function [pulseOperator] = CalPulseOperator(this, pulsepar)

 phase = pulsepar(1);

 tipAngle = pulsepar(2); % tipAngle = Pulsetime0 * B1* gyromagneticRatio, [LPF A7]

 tp = this.Pulsetime0; % pulse time

 omiga = tipAngle / tp; % angle velocity

 % In |SzIz> basis

 m = 4;

 h1 = zeros(m,m); % (= epsilon) irradiating microwave pulse, in Hilbert space and |SzIz>

basis

 % Following [LPF A7]

 h1(1,3) = 0.5* omiga * exp(-1i*phase);

 h1(2,4) = h1(1,3);

 h1(3,1) = 0.5* omiga * exp(1i*phase);

 h1(4,2) = h1(3,1);

 h1 = tp*h1;

 pulseH = this.Hamiltonian.SzIzToH0BasisH(h1);

 % pulseH in Liouville space

115

 pulseLiouville = kron(eye(4),pulseH) - kron(ctranspose(pulseH), eye(4));

 % Pulse superoperator in L0 basis

 pulseOperator = expm(1i*pulseLiouville);

 %in Liouville normal mode basis

 pulseOperator = this.Hamiltonian.L0ToNormalBasis(pulseOperator);

 end % function CalPulseOperator

 % Calculate density evolve under a pulseOperator

 function DensityEvolve(this, pulsepar)

 %phase = pulsepar(1);

 tipAngle = pulsepar(2);

 switch tipAngle

 case pi/2.0 % pi/2 pulse

 pulseOperator = round(this.PulseOperator1*10e12)/(10e12);

 case pi % pi pulse

 pulseOperator = this.PulseOperator2;

 otherwise

 error('No such pulse type!')

 end %switch path

 this.Density.DensityL = pulseOperator * this.Density.DensityL;

 end %function DensityEvolve

 end % methods

end %classdef Pulse_class

10. Relaxation_class

% LPF Eqs. A20 - A22

classdef Relaxation_class < handle

 properties

 Relaxation = zeros(16, 16); % Relaxation operator in Liouville space and |SzIz> basis

 T2e = 1.0; % Off-diagonal electron spin–spin relaxation, unit: microsecond

 T2n = 1.0; % Off-diagonal nuclear spin–spin relaxation, unit: microsecond

 We = -1.0; % Diagonal electron spin–spin relaxation, unit: microsecond

 Wn = -1.0; % Diagonal nuclear spin–spin relaxation, unit: microsecond

 Wx = -1.0; % Diagonal electron nuclear spin–spin relaxation, unit: microsecond

 Wy = -1.0; % Diagonal electron nuclear spin–spin relaxation, unit: microsecond

116

 Whe = -1.0; % Heisenberg exchange relaxation

 WithRelaxation;

 WithRelaxationMatrix = true;

 end %properties

 methods

 %Suppose, at initial state, the spin is in in z-axis

 function this = Relaxation_class(t2e, t2n, we, wn, wx, wy, whe,

withRelaxation,withRelaxationMatrix)

 relaxation = zeros(16, 16); % Relaxation operator in Liouville space and |SzIz> basis

 this.T2e = t2e; % T2 electron spin–spin relaxation, unit: microsecond

 this.T2n = t2n; % T2 nuclear spin–spin relaxation, unit: microsecond

 this.We = we; % Diagonal electron spin–spin relaxation, unit: microsecond

 this.Wn = wn;% Diagonal nuclear spin–spin relaxation, unit: microsecond

 this.Wx = wx;% Diagonal electron nuclear spin–spin relaxation, unit: microsecond

 this.Wy = wy; % Diagonal electron nuclear spin–spin relaxation, unit: microsecond

 this.Whe = whe; % Heisenberg exchange relaxation

 this.WithRelaxation = withRelaxation;

 this.WithRelaxation=withRelaxationMatrix;

 RT2e = -1.0 / t2e;

 RT2n = -1.0 / t2n;

 rt_ba = RT2n;

 rt_ca = RT2e;

 rt_da = RT2e;

 rt_ab = RT2n;

 rt_cb = RT2e;

 rt_db = RT2e;

 rt_ac = RT2e;

 rt_bc = RT2e;

 rt_dc = RT2n;

 rt_ad = RT2e;

 rt_bd = RT2e;

 rt_cd = RT2n;

117

 w_ab = wn;

 w_ba = wn;

 w_cd = wn;

 w_dc = wn;

 w_ac = we;

 w_ca = we;

 w_bd = we;

 w_db = we;

 w_ad = wy;

 w_da = wy;

 w_bc = wx;

 w_cb = wx;

 w_ab = w_ab + whe;

 w_ac = w_ac + whe;

 w_ad = w_ad - whe;

 w_ba = w_ba + whe;

 w_bc = w_bc - whe;

 w_bd = w_bd + whe;

 w_ca = w_ca + whe;

 w_cb = w_cb - whe;

 w_cd = w_cd + whe;

 w_da = w_da - whe;

 w_db = w_db + whe;

 w_dc = w_dc + whe;

 w_aa = -(w_ab + w_ac + w_ad);

 w_bb = -(w_ba + w_bc + w_bd);

 w_cc = -(w_ca + w_cb + w_cd);

 w_dd = -(w_da + w_db + w_dc);

 relaxation(1,1) = w_aa;

 relaxation(2,2) = rt_ba;

 relaxation(3,3) = rt_ca;

 relaxation(4,4) = rt_da;

 relaxation(5,5) = rt_ab;

 relaxation(6,6) = w_bb;

 relaxation(7,7) = rt_cb;

 relaxation(8,8) = rt_db;

118

 relaxation(9,9) = rt_ac;

 relaxation(10,10) = rt_bc;

 relaxation(11,11) = w_cc;

 relaxation(12,12) = rt_dc;

 relaxation(13,13) = rt_ad;

 relaxation(14,14) = rt_bd;

 relaxation(15,15) = rt_cd;

 relaxation(16,16) = w_dd;

 %relaxation(1,1) = w_aa;

 relaxation(1,6) = w_ab;

 relaxation(1,11) = w_ac;

 relaxation(1,16) = w_ad;

 relaxation(6,1) = w_ba;

 %relaxation(6,6) = w_bb;

 relaxation(6,11) = w_bc;

 relaxation(6,16) = w_bd;

 relaxation(11,1) = w_ca;

 relaxation(11,6) = w_cb;

 %relaxation(11,11) = w_cc;

 relaxation(11,16) = w_cd;

 relaxation(16,1) = w_da;

 relaxation(16,6) = w_db;

 relaxation(16,11) = w_dc;

 %relaxation(16,16) = w_dd;

 this.Relaxation = relaxation;

 end % Relaxation_class constructor this

 end % methods

end %classdef Relaxation_class

11. Signal_class

% Calculate ESEEM signals according to a pathway

classdef Signal_class < handle

 properties

 Hamiltonian; % class

 Density; % class

 Pulse; % class

 Relaxation; % class

 FED; % class

 Pathway; % class

119

 SignalType; % % Sc+ or Sc-

 Tv1; % t1s

 Tv2; % t2s

 Euler_angle;

 SignalFile; % output

 Delta; %Gaussian inhomogeneous broadening effect, unit: MHz

 WithGaussian; % Gaussian inhomogeneous broadening effect

 S_cplus = zeros(4,4); % Measurement matrix Sc+ = (Sx + iSy) in the original basis (|SzIz>)

 S_cminus = zeros(4,4); % Measurement matrix Sc- = (Sx - iSy) in the original basis (|SzIz>)

 end

 methods

 function this = Signal_class(hamiltonian, density, pulse, fED, relaxation, pathway, ...

 signalType, tv1, tv2, euler_angles, withGaussian, delta,signalFile)

 this.Hamiltonian = hamiltonian; % class

 this.Density = density; % class

 this.Pulse = pulse; % class

 this.FED = fED; % class

 this.Relaxation = relaxation; % class

 this.Pathway = pathway; % class

 this.SignalType = signalType; % Sc+ or Sc-

 this.Tv1 = tv1; % t1s

 this.Tv2 = tv2; % t2s

 this.Euler_angle = euler_angles;

 this.WithGaussian = withGaussian; % true or false

 this.Delta = delta; % for Gaussian broadening

 this.SignalFile = signalFile; % output

 end

 function Init(this, euler_angles)

 hamiltonian = this.Hamiltonian;

 hamiltonian.Init(euler_angles);

 this.Density.Init();

 this.Pulse.Init();

 % Sc- = (Sx + iSy) in the original basis (|SzIz>)

120

 this.S_cplus(1,3) = complex(1.0, 0.0);

 this.S_cplus(2,4) = complex(1.0, 0.0);

 % this.S_cplus=this.Hamiltonian.SzIzToH0BasisH(this.S_cplus);

 %Sc+ = (Sx - iSy) in the original basis (|SzIz>)

 this.S_cminus(3,1) = complex(1.0, 0.0);

 this.S_cminus(4,2) = complex(1.0, 0.0);

 % this.S_cminus=this.Hamiltonian.SzIzToH0BasisH(this.S_cminus);

 end % Signal_class constructor

 function Output2Pulses(this, pulses, spinPathway)

 % pulsepar(2): (phase, tipAngle) pairs

 tv1 = this.Tv1;

 tv2 = this.Tv2;

 n1 = length(this.Tv1);

 n2 = length(this.Tv2);

 signals = zeros(n1, n2);

 this.Init(this.Euler_angle);

 this.Density.SzIzToHbasis();

 this.Density.L0ToNormalBasis();

 this.Pulse.DensityEvolve(pulses{1});

 this.Density.NormalToL0Basis();

 this.Pathway.SelectPath(spinPathway(1)); % After pulse

 this.Density.L0ToNormalBasis();

 densityLst1 = this.Density.DensityL; % start point of dimension 1

 for i = 1: n1

 this.Density.DensityL = densityLst1;

 t1 = tv1(i);

 this.FED.DensityEvolve(t1);

 this.Pulse.DensityEvolve(pulses{2});

 this.Density.NormalToL0Basis();

 this.Pathway.SelectPath(spinPathway(2)); % After pulse

 this.Density.L0ToNormalBasis();

121

 this.FED.DensityEvolve(t1);

 densityLst2 = this.Density.DensityL; % start point of dimension 2

 for j = 1: n2

 this.Density.DensityL = densityLst2;

 t2 = tv2(j) ; %SECSY

 this.FED.DensityEvolve(t2);

 this.Density.NormalToL0Basis();

 signal = this.Measure ();

 signal = imag(signal); % real-dispersion, imag-absorption, abs-Complex Magnitude

 if(this.WithGaussian) % Gaussian inhomogeneous broadening effect

 delta = this.Delta;

 g = exp(-2 * (pi * delta * t2)^2); % Gaussian inhomogeneous broadening effect

 signal = g.*signal; % Gaussian inhomogeneous broadening effect

 end

 signals(i,j) = signal;

 end % for j = 1: n2

 end % for i = 1: n1

 dlmwrite(this.SignalFile, signals);

 end %function Output2Pulses

 function Output3Pulses(this, pulses, t, spinPathway)

 % pulsepar(2): (phase, tipAngle) pairs

 tv1 = this.Tv1;

 tv2 = this.Tv2;

 n1 = length(this.Tv1);

 n2 = length(this.Tv2);

 signals = zeros(n1, n2);

 this.Init(this.Euler_angle);

 this.Density.L0ToNormalBasis();

122

 this.Pulse.DensityEvolve(pulses{1});

 this.Density.NormalToL0Basis();

 this.Pathway.SelectPath(spinPathway(1)); % After pulse

 this.Density.L0ToNormalBasis();

 densityLst1 = this.Density.DensityL; % start point of dimension 1

 for i = 1: n1 % i = 1: n1

 this.Density.DensityL = densityLst1;

 t1 = tv1(i);

 this.FED.DensityEvolve(t1);

 %spin = 2;

 this.Pulse.DensityEvolve(pulses{2});

 this.Density.NormalToL0Basis();

 this.Pathway.SelectPath(spinPathway(2)); % After pulse

 this.Density.L0ToNormalBasis();

 this.FED.DensityEvolve(t);

 %spin = 1;

 this.Pulse.DensityEvolve(pulses{3});

 this.Density.NormalToL0Basis();

 this.Pathway.SelectPath(spinPathway(3)); % After pulse

 this.Density.L0ToNormalBasis();

 this.FED.DensityEvolve(t1);

 densityLst2 = this.Density.DensityL; % start point of dimension 2

 for j = 1: n2 %j = 1: n2

 this.Density.DensityL = densityLst2;

 t2 = tv2(j); %SECSY

 this.FED.DensityEvolve(t2);

 this.Density.NormalToL0Basis();

 signal = this.Measure ();

 signal = imag(signal); % real-dispersion, imag-absorption, abs-Complex Magnitude

 if(this.WithGaussian) % Gaussian inhomogeneous broadening effect

 delta = this.Delta;

 g = exp(-2 * (pi * delta * (t2))^2); % Gaussian inhomogeneous broadening effect

 signal = g*signal; % Gaussian inhomogeneous broadening effect

123

 end

 signals(i,j) = signal;

 end % for j = 1: n2

 end % for i = 1: n1

 dlmwrite(this.SignalFile, signals);

 end %function Output3Pulses

 function [signal] = Measure (this)

 this.Density.HToSzIzBasis();

 density = this.Density.GetDensityMat();

 switch this.SignalType

 case 1 %Sc-

 measurementMat = this.S_cplus;

 case 2 %Sc+

 measurementMat = this.S_cminus;

 otherwise

 error('No such Signal Type, thus output default Sc-');

 end %switch SignalType

 temp = measurementMat * (density);

 signal = trace(temp); % the sum of the diagonal elements of the matrix

 end % function Measure

 end % methods

end %classdef Signal_class < handle

