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ABSTRACT In general, the information of multiple biometric modalities is fused at a single level, for
example, score level or feature level. The recognition accuracy of a multimodal biometric system may not
be improved by carrying fusion at a single level, since one matcher may provide a performance lower than
that provided by other matchers. In view of this, we propose a new fusion scheme, referred to as the matcher
performance-based (MPb) fusion scheme, in which the fusion is carried out at two levels, feature level, and
score level, to improve the overall recognition accuracy. First, we consider the performance of the individual
matchers in order to find out which of the modalities should be used for fusion at the feature level. Then,
the selected modalities are fused at this level by utilizing their encoded features. Next, we fuse the score
obtained from the feature-level fusion with that of the modality for which the performance is the highest.
In order to carry out this fusion, a new normalization technique referred to as the overlap extrema-variation-
based anchored min–max (OEVBAMM) normalization technique, is also proposed. By considering three
modalities, namely, fingerprint, palmprint, and earprint, the performance of the proposed fusion scheme as
well as that of the single level fusion scheme, both with various normalization and weighting techniques are
evaluated in terms of a number of metrics. It is shown that the multi-biometric system based on the proposed
fusion scheme provides the best performance when it employs the new normalization technique and the
confidence-based weighting (CBW) method.

INDEX TERMS Biometrics, feature level fusion, multi-biometric system, normalization, score level fusion.

I. INTRODUCTION
Person authentication has become an essential task for pro-
viding security to access restricted resources and systems.
Unimodal and multimodal biometric-based authentication
systems have been used for this purpose [1]. A unimodal
biometric system utilizes single source of information for
identifying a person. A general block diagram of such a sys-
tem is shown in Fig. 1. There are five modules in a unimodal
biometric system as described below. 1) Sensor module: it
acquires biometric data of a person. For example, image of a
person’s palm is acquired by a palmprint sensor as shown in
the figure. 2) Feature extraction module: it extracts features
from a biometric data. For example, the orientations of line
and vein patterns in a palm are extracted as features for the
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palmprint image as shown in the figure. 3)Matching module:
it compares the feature values against those stored in a sys-
tem database as templates, and generates a score value. For
example, the score for the palmprint image is 100 as shown in
the figure. 4) Ranking module: it produces a rank value based
on the score value. For example, the rank value for the score
value of 100 of the palmprint image is 10 as shown in the
figure. 5) Decision module: it makes a decision based on the
rank value for accepting or rejecting a person. It is to be noted
that a decision module can accept or reject a person based
on the score value obtained from a matching module when
the ranking module is not available. Multimodal biometric
systems utilize multiple information that are obtained from
multiple sensor, multiple feature extraction, multiple match-
ing, multiple ranking, and/or multiple decision modules for
identifying a person. In recent years, multimodal biometric
systems have drawn more attention than unimodal systems,
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FIGURE 1. General block diagram of a unimodal biometric system.

FIGURE 2. Block diagram of the proposed matcher performance-based (MPb) fusion scheme using three biometric sources.

since they can increase security level as well as improve the
overall recognition rate by consolidating multiple biometric
sources.
Fusion is an essential task that plays an important role

for improving the recognition accuracy of a multimodal bio-
metric system. In a multimodal biometric system, fusion
can be carried out at five levels: sensor level [2], [3], rank
level [4]–[7], decision level [8]–[10], feature level [11]–[25],
or score level [26]–[42]. In sensor-level fusion, images
obtained from multiple sensors are fused, and this fused
image is passed through the feature extraction, matching
and/or ranking, and decision modules for identifying a per-
son. Very little work has been done in sensor-level fusion,
sincemultisensor datamay be incompatible and high process-
ing time may be required to fuse them. In rank-level fusion,
ranks obtained from multiple ranking modules are fused, and
this fused rank is passed through the decision module for
identifying a person. Very few rank-level fusion techniques
have been developed for multimodal biometric systems,
since they are not applicable for the verification problem
of a person, and thus has not received much attention.
In decision-level fusion, decisions obtained from multiple
decision modules are combined to make the final decision for
the identification of a person. Decision-level fusion has not
drawn much attention, since the information is too abstract
at this level to improve the recognition accuracy of a multi-
modal biometric system. In feature-level fusion, feature sets
obtained from multiple feature extraction modules are fused,

and this fused feature set is passed through the matching
and/or ranking, and decision modules for identifying a per-
son. Feature-level fusion is expected to provide better recog-
nition rate, since features contain richer information about
the biometric data than the matching scores or the decision
of a matcher. Considerable work has been done in feature-
level fusion based on transformation of features [11]–[18],
shapes of features [19]–[22], or encoded features [23], [24].
Limitations of the existing feature-level fusion techniques
are that they require ranking information of feature sets,
transformation function, or iterations in order to improve the
recognition rate. Moreover, the performance of the matchers
has not been considered in the existing techniques of feature-
level fusion that may lead to an improved recognition rate.
In score-level fusion, scores obtained frommultiple matching
modules are fused, and this fused score set is passed through
the ranking and/or decision modules for the identification
of a person. Score-level fusion has drawn much attention,
since the matching scores obtained from multiple matchers
are easy to access and easy to fuse. Many score-level fusion
techniques have been developed based on arithmetic opera-
tions, such as addition, subtraction, maximum, minimum, or
median [26]–[41]. However, scores are required to be
weighted and/or brought to a common scale for improving
the overall recognition rate of a multimodal biometric system.
Moreover, the existing score-level fusion techniques have
not considered the performance of individual matchers for
fusing multiple scores. Our methodology focuses on fusion at
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the feature-level and score-level for a multimodal biometric
system in view of their above mentioned advantages over
fusion at other levels.
Normalization is an essential task for improving the overall

recognition rate of a multimodal biometric system under
score-level fusion, since multiple scores may be on differ-
ent numerical scales, or may not be homogeneous, or may
have different statistical distributions. Many normalization
techniques have appeared in the literature for multimodal
biometric systems to improve the recognition rate [32]–[41],
[43]. Based on the raw matching scores, several normaliza-
tion techniques, such as Min-max (MM), Median and median
absolute deviation (MAD), decimal scaling (DS), z-score
(ZS) [38], and improved anchored min-max (IAMM) [41],
have been developed. Limitations of these techniques are that
they are sensitive to outliers, or require scores to be on a
logarithmic scale, or require repeated score values or can-
not transform scores into a common range. Based on the
genuine score, TanH normalization technique has been devel-
oped to overcome the limitations of raw matching score-
based normalization techniques [38]. However, it requires
Hampel influence function to estimate the parameters for
normalizing the scores. Based on both the genuine and
imposter scores, few normalization techniques, such as
the performance anchored min-max (PAN-MM) [36], over-
lap extrema-based anchored min-max (OEBAMM) [33],
and mean-to-overlap extrema-based anchored min-max
(MOEBAMM) [33], have been developed for improving the
recognition rate of a multimodal biometric system. How-
ever, these techniques require errors of individual match-
ers, or neighboring scores of the overlap region between
the genuine and impostor scores. It should be noted that in
almost all the existing schemes, fusion is carried out using
the information of the multiple modalities at a given level,
for example, score level or feature level.

Unlike the existingmultimodal biometric systems in which
the fusion is carried out at a single level, this paper is con-
cernedwith the problem of fusingmultiple modalities at more
than one level. In particular, the fusion scheme proposed here
is one in which three modalities are fused at two levels, fea-
ture level and score level. We first consider the performance
of the individual matchers in order to find out as to which of
the twomodalities should be used for the feature-level fusion,
and choose those two modalities for which the EER is not
the least. The idea behind choosing such two modalities is
that they need to be improved the most in order to enhance
the recognition capacity through their feature-level fusion.
We fuse the encoded features rather than the raw ones of these
two modalities. The reason behind using encoded values of
features is to reduce the processing time for the matchers to
identify a person as well as to utilize useful information from
each of these two modalities. Next, we fuse at the score-level
the score obtained from the feature-level fusion with that of
the modality for which the EER is the lowest. In order to
carry out this fusion we consider not only the extrema, but
also the amount of variation of the overlap scores between the

FIGURE 3. Genuine and impostor scores of a biometric system with
falsely rejected genuine (FRG(k)) and falsely accepted impostor
(FAI(k)) based on the threshold value Th(k).

genuine and impostor scores for the proposed normalization
technique, since they provide the information on the recog-
nition error of a multimodal biometric system. Finally, these
normalized scores are fused under the weighted-sum (WS)
rule to improve the overall recognition rate of the multimodal
biometric system.

The paper is organized as follows. In Section II, the pro-
posed fusion scheme based on the performance of individual
matchers and the encoded features for amultimodal biometric
system is discussed. A new normalization technique based
on the extrema and the variations of the genuine and impos-
tor scores is proposed in Section III. Experimental results
obtained by a multi-biometric system using the proposed
fusion scheme and the single level fusion scheme with var-
ious normalization and weighting techniques are presented
in Section IV. Finally, conclusions are given in Section V.

II. PROPOSED FUSION SCHEME BASED ON THE
PERFORMANCE OF MATCHERS
In this section, we explain in detail the proposed fusion
scheme, referred to as thematcher performance-based (MPb)
fusion scheme, for a multimodal biometric system.

A block diagram of the proposed fusion scheme is shown
in Fig. 2 using three biometric sources. Let the biometric and
feature images for the modality k (k = 1, 2, 3) be denoted
by X (k), and F(k), respectively. Let the feature value at the
position (x, y) of F(k) be denoted by fxy(k), hxyi(k) being
the encoded form of fxy(k), and i is the bit position. F(k),
fxy(k), and hxyi(k) are obtained using the technique in [44].
Next, the matching, genuine and impostor score sets for the
modality k are obtained using themethod in [30], and denoted
by S(k), G(k) and I (k), respectively.
The proposed MPb fusion scheme consists of two steps,

and is described in detail below.
Step 1: In a multimodal biometric system, equal error rate

(EER) is the value at which the acceptance and rejection
rates are equal. We utilize the genuine score set, G(k) and
the impostor score set, I (k) for the modality k in order to
select the matcher that provides the lowest EER in com-
parison with others in a multimodal biometric system using
the comparator. The region of the genuine and impostor
scores can be divided into four parts [30], as shown in Fig.3.
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In order to compute the threshold value for the modality k ,
two parameters of the genuine and impostor scores, namely,
min(I (k)), and max(G(k)), which are the minimum value
of impostor scores, and maximum value of genuine scores,
respectively, are utilized. The threshold value is computed for
the modality k as follows.

Th(k) = [min(I (k)) : step_size : max(G(k))] (1)

where

step_size =
max(G(k))− min(I (k))

p
(2)

p being an empirical parameter. The parameter p controls the
step size for the variable Th(k) that is utilized to compute
the number of falsely rejected genuine and falsely accepted
impostor. The higher the value of p, the smaller is the step
size for Th(k). In this paper, we have found that p = 103

is the best value for the step size by running several exper-
iments. Next, we count the number of rejected genuine
scores accepted falsely as impostor scores for G(k)<Th(k),
and accepted impostor scores accepted falsely as genuine
scores for I (k)≥Th(k), and refer to them as falsely rejected
genuine (FRG(k)) and falsely accepted impostor (FAI(k))
for the modality k , respectively, as shown in Fig. 3. Now,
false acceptance rate (FAR), false rejection rate (FRR) and
EER for the modality k are computed as follows

FAR(k) =
100 ∗ FRG(k)
length(G(k))

(3)

FRR(k) =
100 ∗ FAI (k)
length(I (k))

(4)

EER(k) =
FAR(k)+ FRR(k)

2
(5)

The EER of the matcher that provides the lowest value is
given by

EERlowest = min(EER(k, k = 1, 2, 3)) (6)

We assume, without loss of generality, that it is
matcher 3 that provides the lowest EER. Based on this
assumption, we propose to perform the first fusion between
the modalities 1 and 2, and refer to this fusion as initial
fusion (see Fig. 2). In other words, the initial fusion is done
between the encoded features obtained from the modalities 1
and 2. It is to be noted that the encoded features hxyi(k) for
the modality k are binary numbers in which ‘1’ provides
more information about the feature than ‘0’ does. Therefore,
the initial fusion can be done using the logical operators,
such as XOR, AND, and OR in order to obtain the fused
encoded feature. We utilize the logical OR operator for the
initial fusion, since it considers encoded feature value of ‘1’
at the position (x, y, i) available from the modality 1 or 2. The
fused encoded feature, hxyi(1, 2) can be computed as [24]

hxyi(1, 2) = hxyi(1)⊕ hxyi(2) (7)

at the position (x, y, i), and the sign ⊕ indicates the logical
OR operation. Next, following the method in [30], the match-
ing score S(4) is obtained from matcher 4 (see Fig. 2).

FIGURE 4. Block diagram of the proposed normalization technique.

Step 2: The matching score S(4) obtained from Step 1 and
the score S(3) from matcher 3 are fused using the weighted-
sum (WS) fusion rule. The fused score FSMPbF , is obtained
as

FSMPbF = w(3) SN (3)+ w(4) SN (4) (8)

where w(j) represents the weight attached to the score from
matcher j and SN (j) denotes the normalized value of S(j).
In [30], the authors have reported that the matching scores

from multiple matchers may be non-homogeneous, or may
be on different numerical scales or may have different sta-
tistical distributions, and therefore, normalization of scores
is an essential task under WS rule for the score-level (SL)
fusion. In view of this, we introduce a new normalization
technique for the proposed multimodal biometric system in
the following section.

III. PROPOSED NORMALIZATION TECHNIQUE
In the existing normalization techniques, the variations of
the genuine and impostor score sets are not taken into
consideration. One can expect to improve the performance
of a multimodal biometric system by including this addi-
tional information in the normalization technique. Hence,
we propose a normalization technique that takes into account
this information and investigate its effect on the perfor-
mance provided by the multimodal biometric system using
the SL fusion and the proposed fusion scheme. The pro-
posed normalization technique does not require Hampel
influence function, EER or repeated score sets, unlike the
TanH [38], performance anchored min-max (PAN-MM) [36]
and anchored min-max (AMM) [40] or improved anchored
min-max (IAMM) [41] normalization methods, respectively.
Also, it does not require the information of neighboring
scores of the overlap region between the genuine and impos-
tor scores as required by the mean-to-overlap extrema-based
anchored min-max (MOEBAMM) [33] method. A block
diagram of the proposed normalization technique is shown
in Fig. 4.

An anchor value, the value that aligns the scores of a
matcher, referred to as the overlap extrema-variation-based
anchor (OEVBA) value, is computed for the proposed nor-
malization technique. In order to obtain this anchor value,
we utilize the genuine and impostor scores obtained from the
matcher j(j = 3, 4) (see Fig. 2) using the method in [30],
and denote them by Ḡ(j) and Ī (j), respectively. Four param-
eters of the genuine and impostor scores, namely, min(Ḡ(j)),
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std(Ḡ(j)), max(Ī (j)) and std(Ī (j)), the former two being the
minimum and standard deviation values of genuine scores,
and the latter two being the maximum and standard deviation
values of the impostor scores, for the score S(j), are utilized
for computing the anchor value for the proposed normaliza-
tion technique.

A. OVERLAP EXTREMA-VARIATION-BASED ANCHOR
(OEVBA)
In this case, the anchor value is computed from the extrema
and the standard deviations of the genuine and impostor
score sets. The lowest correct score values in the genuine
and impostor score sets are represented by the minimum and
maximum values of the corresponding sets [30]. The standard
deviation of the genuine and impostor scores represent the
variations of the scores in their corresponding sets. A high
performance biometric matcher is expected to produce a
small overlap area between the genuine and impostor scores;
further, the value of the standard deviations of these scores
are smaller than the minimum value of the genuine scores.
Based on these two considerations, the ratio of the width
of the overlap area and the difference between the standard
deviations of the impostor and genuine scores would provide
a smaller value than theminimumvalue of the genuine scores.
We consider this ratio as the anchor value for our proposed
normalization technique; more specifically, we compute the
ratio of the difference between the maximum of the impostor
scores and the minimum of the genuine scores, and the dif-
ference between the standard deviations of the impostor and
genuine scores. The overlap extrema-variation-based anchor
(OEVBA) value, A(j), in a multimodal biometric system is
formulated as

A(j) =
max(Ī (j))− min(Ḡ(j))

std(Ī (j))− std(Ḡ(j))
(9)

We utilize the above anchor value as an operating point
in the MM normalization technique; more precisely, it is
an extension of the MM normalization technique based on
the proposed OEVBA anchor value, and we refer to it
as the overlap extrema-variation-based anchored min-max
(OEVBAMM) normalization technique. Since the OEVBA
anchor value is smaller than the minimum value of the
genuine scores for a high performance biometric matcher,
the number of normalized scores with high values would be
more than the number of normalized scores with low values.
In view of this, one can expect to improve the recognition rate
of a multimodal biometric system using the OEVBA anchor
value for the normalization of scores. The normalized scores
for the score set S(j) using A(j) is computed as

SN (j) =


S(j)− min{Ḡ(j), Ī (j)}

2(A(j)− min{Ḡ(j), Ī (j)})
, if S(j) ≤ A(j)

0.5+
S(j)− A(j)

max{Ḡ(j), Ī (j)} − A(j)
, if S(j) > A(j)

(10)

where SN (j) denotes the normalized value of S(j).

FIGURE 5. Sample images of (a) fingerprint, (b) palmprint, and
(c) earprint.

IV. EXPERIMENTAL RESULTS
In order to study the performance of the proposed multimodal
biometric system, we consider three modalities, namely,
fingerprint (FP), palmprint (PP), and earprint (EP).

A. DATABASES
The images for earprint, fingerprint, and palmprint are
obtained from the multi-biometric database [30]. This
database was constructed using three unimodal databases,
namely, FVC2002-DB1-A fingerprint database [45], COEP
palmprint database [46] and AMI earprint database [47],
respectively. This multi-biometric database contains
150 images for each of the modalities, more specifically,
25 subjects and 6 samples per individual from FVC2002-
DB1-A, COEP and AMI databases. Sample images for the
three modalities are shown in Fig. 5.

B. PERFORMANCE RESULTS
Features and matching scores are generated for the three
modalities using the techniques presented in [44], [48]. In a
biometric system, genuine acceptance rate (GAR) and false
rejection rate (FRR) are the ratios of the number of genuine
subjects accepted and false subjects rejected, respectively,
for a predefined threshold to the total number of enrolled
subjects [4]. The lower the value of EER, higher the value of
GAR and lower the value of FRR at a lower FAR, the better is
the biometric system. The performance of a multi-biometric
system is measured in terms of EER, GAR @0.5% FAR
and FRR @0.5% FAR. Receiver operating characteristics
(ROCs) and detection error tradeoff (DET) curves [49] are
generated in terms of the false acceptance rate as a function
of the genuine acceptance rate and the false rejection rate,
respectively.

We now study the performance of the proposedMPb fusion
scheme and compare it with that of the score level (SL) fusion
scheme. For this purpose, we employ the various existing
weighting techniques and various normalization techniques,
including the one proposed in this paper. Table 1 gives EER,
GAR@0.5%FAR and FRR@0.5%FAR provided by the two
fusion schemes. The various weighting techniques employed
are equal error rate weighted (EERW) [34], d-prime weighted
(DPW) [34], fisher discriminant ratio weighted (FDRW) [50],
score reliability based weighted (SRBW) [51], confidence
based weighted (CBW) [33]) techniques, while the various
normalization methods employed are min-max (MM) [38],
z-score [38], performance anchored min-max (PAN-
MM) [36], TanH [38], improved anchored min-max
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TABLE 1. EER(%), GAR @0.5% FAR, and FRR @0.5% FAR provided by the proposed MPb fusion scheme and SL fusion scheme with various weighting and
normalization techniques for the multi-biometric database.

(IAMM) [41], overlap extrema-based anchored min-max
(OEBAMM) [33], mean-to-overlap extrema-based anchored
min-max (MOEBAMM) [33]) aswell as the proposed overlap
extrema-variation based anchored min-max (OEVBAMM)
normalization technique. In this table, the best results corre-
sponding to the lowest EER, the highest GAR @0.5% FAR,
and the lowest FRR @0.5% FAR, for each of the fusion

schemes are indicated by boldfaced fonts. It is seen from
this table that there are 7 combinations of normalization and
weighting techniques that offer the same best performance for
the SL fusion scheme. It is also seen from Table 1 that, for a
given weighting technique (except for the EERW), the MPb
fusion scheme with the proposed OEVBAMM normalization
technique provides a performance superior to that provided
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FIGURE 6. ROC performance of the unimodal (namely, FP, PP, and EP) biometric systems and the proposed MPbF multi-biometric
system.

FIGURE 7. ROC performance of the proposed MPb fusion scheme employing various normalization techniques and the EERW
weighting method.

FIGURE 8. ROC performance of the proposed MPb fusion scheme employing various normalization techniques and the DPW
weighting method.

by the SL fusion scheme using any of the normalization
techniques. Further, the best performance is provided by
the proposed MPb fusion scheme using the OEVBAMM
normalization technique proposed in this paper along with
the CBW weighting technique that was previously proposed

by the authors in [30]. We refer to this system with this
combination as the MPbF multi-biometric system.

We now measure the processing time per image required
by the SL fusion scheme with normalization and weighting
techniques for the 7 cases that provide the lowest EER value
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TABLE 2. Processing time (in seconds) required by the proposed MPb fusion scheme and SL fusion scheme with various weighting and normalization
techniques for the multi-biometric database.

FIGURE 9. ROC performance of the proposed MPb fusion scheme employing various normalization techniques and the FDRW
weighting method.

FIGURE 10. ROC performance of the proposed MPb fusion scheme employing various normalization techniques and the SRBW
weighting method.

of 0.54%, highest GAR value of 99.47% @0.5 FAR, lowest
FRR value of 0.53% @0.5 FAR, as well as for the pro-
posed MPb fusion scheme with the proposed OEVBAMM
normalization technique and various weighting techniques.
These measured processing times are given in Table 2. It is
to be noted that the processing time is measured including
the time taken for feature extraction, feature encoding, match-
ing, normalization and weighting of scores. We have run
the experiment using MATLAB 2014 in the environment of

Windows PC platform with a 2.93 GHz Intel(R) Core(TM)
i7 CPU and 8 GB RAM. It can be seen from Table 2 that
the SL fusion scheme requires the same processing time
of 11.2 (seconds) per image for the 7 cases. In other words,
if SL fusion scheme is used in a multi-biometric system,
then any one of the 7 combinations of normalization and
weighting techniques would offer the best performance with
the same computational load. Table 2 also shows that the
proposedMPb fusion schemewith the proposedOEVBAMM
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FIGURE 11. ROC performance of the proposed MPb fusion scheme employing various normalization techniques and the CBW
weighting method.

FIGURE 12. ROC performance of the SL fusion scheme employing various normalization techniques and the EERW weighting
method.

FIGURE 13. ROC performance of the SL fusion scheme employing various normalization techniques and the DPW weighting
method.

normalization technique and various weighting techniques
requires a processing time of 1.1 (seconds) per image irre-
spective of the weighting method used, which is about one-
tenth of that required by the SL fusion scheme. Therefore,

the proposed MPb fusion scheme is a better choice than the
SL fusion scheme in terms of the processing time per image.
Hence, it can be concluded that the proposed MPbF multi-
biometric system is the best choice in terms of not only EER,
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FIGURE 14. ROC performance of the SL fusion scheme employing various normalization techniques and the FDRW weighting
method.

FIGURE 15. ROC performance of the SL fusion scheme employing various normalization techniques and the SRBW weighting
method.

GAR @0.5% FAR, and FRR @0.5% FAR, but also in terms
of the processing time.

Fig. 6 shows the ROC curves of the unimodal biometric
systems (namely, FP, PP and EP), and for the proposedMPbF
multi-biometric system. It can be seen from this figure that the
proposed MPbF multi-biometric system provides a perfor-
mance superior to that provided by any of the uni-biometric
systems in terms of GAR irrespective of the value of FAR.

Figs. 7-11 show the ROC curves for a multi-biometric
system using the proposed MPb fusion scheme with vari-
ous normalization methods for a given weighting technique.
As seen from these figures, the performance of the pro-
posed MPb fusion scheme using the proposed OEVBAMM
normalization technique is superior to that using the exist-
ing normalization techniques with any of the weighting
techniques.

Figs. 12-16 show the ROC curves for a multi-biometric
system using the SL fusion scheme with various normaliza-
tion methods for a given weighting technique. It can be seen
from Fig. 12 that the SL fusion scheme using the OEBAMM
normalization technique provides a GAR value of 100% at

a lower FAR than that provided at a higher FAR using the
existing normalization techniques with the EERW weighting
technique. Figs. 13 and 14 show that the SL fusion scheme
using the MOEBAMM normalization technique provides a
GAR value, which is higher than that provided using the
existing normalization techniques with the DPW and FDRW
weighting techniques, respectively. Fig. 15 shows that the
SL fusion scheme using the MM normalization technique
provides a GAR value, which is higher than that provided
using the existing normalization techniques with the SRBW
weighting technique. It is seen from Fig. 16 that the SL fusion
scheme using the MOEBAMM normalization technique pro-
vides a GAR value of 100% at a lower FAR than that provided
at a higher FAR using the existing normalization techniques
with the CBW weighting technique.

Fig. 17 shows the best ROC curves for a multi-biometric
system using the proposed MPb fusion scheme with the pro-
posed OEVBAMMnormalization technique and with various
weighting techniques, taken from Figs. 7, 8, 9, 10 and 11. It is
seen from Fig. 17 that the proposed MPbF multi-biometric
system provides a GAR value of 100% at a lower FAR than
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FIGURE 16. ROC performance of the SL fusion scheme employing various normalization techniques and the CBW weighting method.

FIGURE 17. ROC performance of the MPb fusion scheme with OEVBAMM normalization technique and various weighting techniques.

FIGURE 18. ROC performance of the SL fusion scheme using OEVBAMM with EERW, MOEBAMM with DPW, FDRW and CBW, and
MM with SRBW.

that provided at a higher FAR by the MPb fusion scheme
using the proposed normalization technique with the other
weighting techniques.

Fig. 18 shows the best ROC curves for the SL fusion
scheme taken from Figs. 12, 13, 14, 15 and 16. It is seen from

this figure that the SL fusion scheme using the MOEBAMM
normalization technique and the CBW weighting method
provides a GAR value of 100% at a lower FAR than that
provided at a higher FAR using the other normalization and
weighting techniques.
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FIGURE 19. ROC performance of the proposed MPbF multi-biometric system and that of the best SL fusion scheme.

FIGURE 20. DET performance of the proposed MPbF multi-biometric system and that of the best SL fusion scheme.

Fig. 19 shows the ROC curves for the proposed MPbF
multi-biometric system and for the best multi-biometric sys-
tem using the SL fusion scheme, taken from Figs. 17 and 18.
This figure shows that the proposed MPbF multi-biometric
system provides a value of GAR, which is higher than that
provided by the best SL fusion scheme. Hence, the former
provides a performance superior to that provided by the latter.

Fig. 20 shows the DET curves for the proposed MPbF
multi-biometric system and for the multi-biometric system
using the SL fusion scheme with the MOEBAMM normal-
ization technique and CBW weighting method, which has
been shown to have the best ROC performance. It is seen
from this figure that the proposed MPbF multi-biometric
system provides a value of FRR lower than that provided by
the SL fusion scheme with the MOEBAMM normalization
technique and CBW weighting method. Thus, the former
provides a DET performance superior to that provided by the
latter.

V. CONCLUSION
In this paper, we have presented a new scheme for fusion
that is carried out at two levels, feature and score levels.

Three modalities have been fused using the proposed fusion
scheme, referred to as thematcher performance-based (MPb)
fusion scheme. The fusion is carried out in two stages, for
the feature and score level fusions, respectively. The two
of the modalities for which the EER is not the least are
first fused using their encoded features. In the second stage
of fusion, the score obtained from the feature-level fusion
and that from the modality that provides the lowest EER
are fused by employing various normalization and weighting
techniques, including a proposed normalization technique,
referred to as the overlap extrema-variation-based anchored
min-max (OEVBAMM) normalization technique, that utilizes
the extrema and the variations of the genuine and impostor
score sets.

The performance of the proposed MPb fusion scheme
has been evaluated using three traits, fingerprint, palmprint
and earprint. The experimental results have shown that the
proposed MPbF multi-biometric system comprising the MPb
fusion scheme along with the OEVBAMM normalization
technique and the CBWweighting technique provides values
of EER, GAR@0.5%FAR, and FRR@0.5%FAR superior to
that provided by the score level fusion scheme irrespective of
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the normalization method or of the weighting technique used.
Further, it has been shown that the proposed MPbF multi-
biometric system requires a much lower processing time than
that required by the score level fusion scheme. The ROC
curves have shown that the proposed multi-biometric system
provides a value of GAR that is higher than that provided
by the score level fusion scheme, and the DET curves have
shown that the former provides a value of FRR that is lower
than that provided by the latter.
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