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Abstract

Detecting Fashion Apparels and their Landmarks

Himani Saini

Fashion landmarks are the functional key-points on the apparels that can be used for a

more discriminative visual analysis of the apparel images. Such a framework can facilitate

apparel alignment in displaying apparel images on the websites or help build a system to

ensure dress code in a particular environment. However, challenges such as background

clutter, human poses, scales and apparel variation can render such a task difficult. We

present a conceptually simple, flexible, and general framework for apparels’ landmark

detection that can be simultaneously used for apparel classification and localization. In

addition to the position of the landmarks in the apparels, we also classify the landmarks

as visible or occluded in the same framework. The fashion landmark detection task is

similar to joint localization and detection problems like human pose estimation, hence

our approach extends stacked hourglass architecture, originally proposed to solve human

pose estimation. We perform all these tasks in parallel using multi-task learning. Our pro-

posed convolutional neural network is end-to-end differentiable and simple to train, since

all these tasks are performed on the same architecture without any additional parameters

to learn. Over the past few years, many modifications have been proposed to improve this

architecture. We also compare the performances of some of these different variations of

stacked hourglass architectures. These architectures leverage both global and local fea-

tures captured by the deep convolutional neural networks to better localize the apparel in

the image as well as the landmarks in those apparels. We test and analyze our results on

DeepFashion dataset. We also weigh the trade-offs of the detecting the landmarks in a

category-aware environment, i.e., pre-classified apparels and category-agnostic environ-

ment, i.e., unclassified apparels.
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Chapter 1

Introduction

Fashion is essential to our society. It is an interplay of expressing oneself as well as

presenting oneself appropriate to the formal and informal occasions. In the past few

years, visual analysis of fashion items have received a lot of interest from the research

community because of the gamut of applications ranging from apparel classification [1,

2, 3], retrieval [3, 4, 5, 6, 7], recommendation [8, 9, 10, 11], attribute prediction [1, 12,

13, 14] to style discovery and extraction [15, 16, 17, 18], outfit generation [19], to name

a few. There has also been an attempt to directly measure the abstract social concepts

such as popularity [20], adequacy [21] or fashionability [7, 18, 22]. Since fashion is a

very subjective domain, defining an objective metrics is a very tricky task, hence much

of this work focuses on learning the image similarity [23]. Solutions to such challenging

problems can be applied to build a virtual apparel system for e-commerce or can be a

key component in studying the social-behavioral aspects of fashion. Hence research in

this field brings a lot of value to the fashion e-commerce industry, which is estimated to

be $ 712.9 billion by 2022 [24]. The advent of deep convolutional neural networks and

the availability of powerful computational resources have enabled researchers to draw

meaningful information from the fashion images. This research is further advanced by

the availability of the large-scale fashion datasets like Fashion MNIST [25], DeepFashion

[12], FashionAI [26], DeepFashion2 [27], PaperDoll [28], etc. to tackle different tasks.

Fashion landmark detection is another such task that can bring enormous value to this

domain. These fashion landmarks are the key-points located at the functional regions of

the apparels e.g., neckline, cuff, etc. and much like human key-points in the problem of

human pose estimation [29], they can represent the configuration of an apparel by itself

or on a human body. These functional regions can better distinguish design, pattern or

texture and category of the apparels. They can facilitate tasks like tracking, localized
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auto-editing of apparel images, or by providing better insights into fashion trends, style

analysis, etc. in order to build more customized recommendation systems. One of the

key applications of such landmarks is to create a consistently-aligned inventory to boost

the appeal of the apparel images on the websites. Detecting landmarks can help making

sure that all the apparels displayed on the website are uniform in size and their corners,

contours and angles are carefully aligned with respect to each other as well as to the align-

ment guidelines set for the apparel photography work-flow of the website. Another key

application of these landmarks can be to develop a system to ensure the dress codes as per

the occasion and environment. The relationship of these detected landmarks among each

other can give meaningful insights on the type of apparel a person is wearing which can

be checked against the established dress-code to flag the anomalies. Hence the detecting

landmarks can bring effectiveness in both social and commercial fashion domains.

However, localization of these landmarks is a challenging problem because of the di-

versity of apparels, background clutter, occlusion, scale variation, frequent style changes,

etc. In addition to these variations, the images also differ in their environment e.g., the

images from an e-commerce platform are aesthetically and technically superior [30] to

the images collected from a social media platform. Moreover, these images also exhibit

human body and pose variation since people across different platforms take pictures in

different poses and photos are taken from different camera viewpoints and focal lengths.

On one hand, local details on apparel images like collar and cuff are more important to

localize these landmarks, while on the other hand, global attributes of the apparel itself

are more important in order to solve the spatial relationships among those landmarks, i.e.,

the left and right collar or the left and right sleeve.

In this work, we solve this problem using stacked hourglass architecture [31], which is

a dominant approach forming the back-bone of many leading approaches for MPII dataset

[32], a benchmark for human pose estimation. The key aspect of the stacked hourglass

architecture is that it extracts and consolidates the features across all scales, leveraging

both local and global information present in the images to learn the spatial relationships

among the different locations of the image. It does so using repeated bottom-up and top-

down processing, that constitutes its hourglass shape. Furthermore, this architecture is

extended by stacking multiple hourglasses next to each other, which enables cascaded

inferences along with intermediate supervision. Over years, many modifications have

been made to this architecture. Two such variations are pyramid residual networks [33]

and cascaded pyramid fusion [34]. These architectures were built to employ specific

properties of convolutional neural networks like mutlti-scale features maps, etc. in order

to further improve the predictions.
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Deep convolutional neural networks have significantly improved the image classifica-

tion and detection accuracy owing to the powerful baselines architectures like Fast/Faster

R-CNN [35, 36], Mask R-CNN [37], single shot multibox detector (SSD) [38], you only

look once (YOLO) [39], etc. All these methods are conceptually intuitive and robust

with fast inference and training time and work by detecting the center, height and width

of the bounding box. However, all these approaches use anchor boxes of different sizes

and aspect ratios as the object detection candidates. But as noted in [40], using anchor

boxes is not very computationally efficient because in order to detect a tight bounding

box localizing the object in the image, a number of anchor boxes having sufficient over-

lap with the ground truth box are detected and compared. This large set of anchor boxes

have a huge imbalance between positive and negative anchor boxes, which slows down

the training [40]. Also, a lot of hyper-parameters and heuristic design choices, like size,

aspect ratio are associated with these anchor boxes. In our work, instead of the center,

we localize the top-left and bottom-right corners of the bounding boxes for each category

of the apparel, in a similar way to landmarks on the apparel, without any need of anchor

boxes. This works, because whereas the center of the object depends on the four corners

of the object, the two corners can be estimated using the features from two diagonally

opposite spatial locations of the objects. Mask R-CNN [37] architecture uses multi-task

learning in order to simultaneously perform object detection, classification, segmentation

and pose estimation in one single network. Our approach is motivated by Mask R-CNN

in that sense, but unlike Mask R-CNN, which introduces branches to the base network

and adds more parameters specific to learning specific tasks, our approach uses the same

features to perform all these tasks in parallel.

The contributions of this work are as follow:

• We present a unified framework for fashion landmark detection, apparel classifica-

tion and localization in the apparel images.

• We review the modularized structure of the stacked hourglass architecture with

its variations and compare these architectures to propose the most suitable one to

perform the described fashion analysis.

• Since the landmarks are sparse, i.e., different categories of apparels have differ-

ent number of landmarks, we also explore the trade-off for the learning on pre-

classified apparels, i.e., category-aware learning as well as on unclassified apparels,

i.e., category-agnostic learning of these landmarks. e.g., the type of landmarks

present in a T-shirt will be different from those present in the pants.
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Thesis Outline

The remainder of this work is organized in the following manner. Chapter 2 enlists the

related work in the fashion domain as well as in the related domains that try to solve

similar joint localization and detection problems. We review some recent developments

fashion landmark estimation and in other key-point detection problems. We also discuss

recent developments in object detection. In Chapter 3, we formulate the problem of joint

landmark detection and classification of apparels in apparel images. In Chapter 4, we

explain the modular structure of the stacked hourglass architecture and its variations in

a step by step manner. In Chapter 5, we do an exploratory analysis of DeepFashion

dataset. We review the quantitative and qualitative results of the proposed methodology

in Chapter 6 and 7 respectively. Finally, in Chapter 8, we conclude the results and provide

future scope of this work.
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Chapter 2

Related Work

In this chapter, we will review the previous work in the fashion domain. Fashion analysis

in images has long been a research topic among the computer vision community and over

the years, it has come a long way from preliminary analysis to providing rich information

to identify trends and behaviours.

2.1 Fashion and Computer Vision

Traditional attempts to create powerful representation out of fashion images [8, 14] mostly

relied on handcrafted features like SIFT [41], HOG [42] or color histograms. But the

performance of these methods was limited by representation power of these extracted

features. In order to learn spatial information, the probabilistic methods such as graph

models [43] were used. Early apparel recognition attempts were based on a region-

based interpretation of the apparel image modelled in a graph structure [44]. [43] on

the other hand tackled this problem using a context-sensitive grammatical representations

of apparels using artists’ sketches. On the other hand, [45] combined the body contours

with a low dimensional apparel model to represent apparels as a deformation from the

underlying body contour and learns these deformations from the images using principal

component analysis. Yet another work, [14] classified the apparels as semantic attributes

of a person by extracting low-level features in a pose-adaptive manner and combining

complementary features to learn attribute classifiers. Owing to the availability of the

large-scale datasets [12, 25, 26, 27, 28] and powerful computational resources, there has

been a shift in the research community towards deep learning based models [1, 6, 12].

These models outperform the prior approaches by a huge margin demonstrating the strong
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representation power of neural network. However, the algorithms performing generic

tasks like object detection or classification, [9, 35, 37, 46] do not perform as well in the

fashion domain due to the huge variations in the apparel images as well as the platforms

from which these images are collected.

In Deep Learning, neural networks provide a way to approximate and generalize

on a given dataset. In traditional Computer Vision, image representations were hand

engineered by the computer vision experts and domain experts. e.g., if certain patterns

are to be detected in the cancer cells, the images of cancer cells need to be evaluated by the

medical experts, who can then share that knowledge with the computer vision experts, so

that the specific filters can be created in order to capture those patterns automatically. This

limits the system of detection to the human understanding. Whereas, in convolutional

neural networks, such filters are computed over the time with the data as input and the

prediction as output. The predicted output is compared with the actual output and error

is back-propagated through the network to update the computed filters. As observed in

many experiments, the filters in the initial layers learn the local features like edges and

contours, whereas the filters in later layers learn global shapes of the objects. We will

discuss more about the inner workings of the convolutional neural network in chapter 4.

2.2 Joint Localization and Landmark Detection

Previous methods have studied joint localization and detection in the context of facial

landmark detection and human pose estimation. Both are complex problems with enor-

mous value. While facial landmark detection can be helpful in building powerful facial

detection systems, human pose estimation has its own advantages for tracking, motion

capture etc. In this section, we will briefly discuss the work done in both these domains

and how these problems are different from fashion landmark detection.

2.2.1 Facial Landmark Detection

Facial landmark detection is a similar key-point localization and detection task where,

the goal is to detect some essential key-points in human faces, e.g., the tip of the nose,

the corners of the eyebrows, eyes, mouth, etc. Detecting these landmarks is a prereq-

uisite for a variety of computer vision applications [47]. Some of the methods tried to

tackle this problem using simple regression techniques [48, 49, 50]. These techniques

use convolutional neural networks to learn facial features and then pass these features
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through regressors in an end-to-end fashion [51, 52]. Putting such system in a cascaded

architecture progressively improves the prediction [53, 54]. Another category of facial

landmark detection uses heat-map regression over the same features [55, 56, 57]. These

facial landmark detection methods also focus on the facial shape, e.g., in [53], the extreme

head pose is used in addition to the landmark locations or as in [58] wherein rich facial

deformations are used to aid the training process. But our problem is different from facial

landmark detection since in the faces, the deformations in facial landmarks come from the

expressions and poses, while these expressions and poses are contained within a common

global shape. However, in fashion apparels, the diversity in apparels makes it much more

difficult to localize the landmarks.

2.2.2 Human Pose Estimation

There has been an extensive research in human pose estimation [29, 33, 59, 60], which is

another similar task in terms of localizing key-points of deformable entities. The objective

in human pose estimation is to represent the orientation of a person in a graphical form,

by locating the co-ordinates of some specific joints, called key-points and joining the

valid pairs to form the limbs and hence the skeleton. The methods proposed to solve the

pose-estimation have progressed from simple part detectors and elaborate body models

[61, 62], to tree-structured pictorial models [63, 64], to using deep learning via convolu-

tional neural networks. Convolutional neural networks benefit from spatial generalization

ability, hence, help locating the object of interest irrespective of it’s location in different

images. This property arises from spatially shared parameters of convolutional neural

networks. For key-point localization, the algorithms use heat-map regression, instead of

numerical-coordinate regression because direct numerical-coordinate regression over the

fully connected layers is a highly non-linear problem and lacks the spatial generalization

ability [65]. Hence for heat-map regression is used instead where the heat-maps encode

pixel-wise spatial estimate of the location of the key-points.

The work in this context can be mostly categorized in two different approaches: A top-

down approach, where first a person detector detects bounding boxes for the people in the

image and then a pose estimator estimates the key-points present in the each bounding

box; and a bottom-up approach, where key-point proposals are grouped together into

person instances. Typically, top-down approach depends upon the strength of the person-

detector used, while the bottom-up approach depends upon the strength of the associating

or grouping algorithms. Top-down approaches are less efficient when people are in close

proximity to each other because the bounding box created by the person detector might

contain the body parts of the other people in the image, hence creating false associations.
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DeepPose [66] was proposed using numerical coordinate regression, where the first

stage predicts the numerical coordinates and the later stages refine the predictions by

calculating offsets. [67] was the first to use heat-map regression in a bottom-up fash-

ion, first detecting the body parts using deep convolutional neural networks and then

using Markov random field to find the association among the parts. Similar approach

was followed by convolutional pose machines (CPM) [56], by using heat-map regression

instead of numerical coordinate regression, hence each stage operates on the heat-maps

produced by the previous stage, increasingly refining the co-ordinates of the key-points

locations. The success of both the approaches imply that cascade arrangements are effec-

tive to distinguish the human-pose at a global level. OpenPose [68], was another popular

bottom-up approach that feeds the extracted features of an image to two parallel branches,

first predicting the heat-maps and the second one predicting the part affinity-fields, which

represent the degree of association between the parts. The further processing involves

predicting the bipartite graphs for the key-point pairs and then pruning the weaker links

part affinity-field values. This was also modelled as a cascaded network. While these are

bottom-up approaches and very efficient in the case of multi-person detection, stacked

hourglass [31] was proposed as a top-down approach that leverages the cascaded network

for refining the network predictions by introducing intermediate supervision. This net-

work architecture has a high expression-ability since each stage extracts and combines

features across different scales hence producing rich high resolution features of the im-

ages. This approach has since been the back-bone of many leading approaches on MPII

dataset [33, 34, 59, 60, 69] and is the basis of our proposed methodology.

2.2.3 Fashion Landmark Detection

Initial work on Fashion Landmark detection [3] takes bounding boxes of the apparel

images at the training as well as testing time. But such bounding boxes are hard to

annotate for the real-time data, hence the algorithm should be able to learn from the full

input images. In addition to input images, it takes 8 labels, i.e. upper, lower or full-body

apparel categories, normal, medium or large poses and medium zoom-in or large zoom-

in variations to learn pseudo-labels representing the relationship of one sample image to

another. These pseudo-labels are then used to learn and refine the landmark localization

in a cascaded network and learn the apparel configuration.

The next work [70], takes full images as an input as well as zoom-in or zoom-out labels

to inject high-level human knowledge into the network. It uses Selective Dilated Con-

volution to handle scale discrepancies and Hierarchical-Recurrent Spatial Transformer

network, as an attention mechanism to ignore the background clutter. Selective Dilated
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Convolution use dilated filters instead of the traditional convolutional neural network fil-

ters in order to increase the receptive field of the image, keeping the same number of

parameters. This helped in evaluating images at different scales, using 4 different dilation

values. Hierarchical-Recurrent Spatial Transformer networks on the other hand are the

modification of spatial transformer networks, which are used to encode a mechanism to

handle affine distortions in the image. It learns the geometric transforms on the input im-

age to focus more on the object in the image, ignoring the background. But since fashion

images provide a lot of variations in terms of poses and background clutter, a series of

geometric transformations, progressively for all the landmarks in an hierarchical manner.

In addition to that, so as to not learn the same transforms again, a recurrent state of the

transforms is saved for each landmark. [3, 70] employ direct regression over the fully con-

nected layers, which is a highly non-linear problem and lacks the generalization ability

[65]. When the features obtained after convolutional layers are flattened, there is a huge

loss in the spatial features of those feature maps. Instead, recent approaches for both hu-

man pose estimation [33, 59, 60] and fashion landmark detection [13] predict heat-maps

or confidence maps of positional distribution of each landmark, given the input image.

The recent approach [13] encodes the knowledge over fashion apparels by developing

a domain specific grammar to learn kinematic and symmetric relations between apparel

landmarks. Bidirectional Convolutional Recurrent Neural Network is used for message

passing over the learned grammar. It also uses two attention mechanisms: one that is

landmark-aware and involving domain-knowledge, and another directly focusing on the

category relevant image regions. This attention is learned in a supervised manner and

encodes semantic and textual constraints. While all these approaches work with different

efficiencies, they produce features specific to fashion landmarks only and cannot be used

for other tasks.

During our research, we realized that fashion landmark detection [12] is similar to

human pose estimation in terms of the objective, yet is more challenging because of many

reasons. The human key-points in the images are subject to rigid deformations, whereas

the landmarks in fashion items are subject to non-rigid deformations like stretching and

shrinking. Furthermore, apparels have a much larger scale variation than human poses. A

same category of apparel can have it’s landmarks at different places on human body. e.g.,

A dress can be a full-body dress, a medium-length dress or a short-length dress, making

the localization of the dresses’ landmarks more difficult. Also, local regions of fashion

landmarks have larger appearance variations than those of human key-points. e.g., An

upper-body woman apparel can be a T-shirt, a camisole, a racer back top or a tank top.

Another challenge comes from the uneven number of landmarks in different apparels.

In human pose estimation, the number of key-points are fixed throughout the dataset,
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(fifteen in MPII [29]). Whereas, in fashion landmarks detection, different apparels have

different number of landmarks. e.g., In DeepFashion [12], an upper-body apparel has six

landmarks, a lower-body apparel has four landmarks and a full-body apparel has eight

landmarks. Even if both upper and lower-body apparels are present in an image, the

annotations are provided only for one of these categories. This makes it difficult for

the network to learn the landmarks to predict in an image. In human pose estimation,

the global cues captured by the later stages of convolutional neural network provide the

spatial context for the localization of the key-points with respect to each other. Hence, the

key-points that are difficult to localize and differentiate, e.g., shoulders and elbows, are

learned with respect to the key-points that can be localized with greater confidence e.g.,

head or neck. But in case of fashion landmarks, the position of the sleeve can be anywhere

on the arm with respect to the collars. So, properly learning the contextual information is

more important for localization of fashion landmarks.

2.3 Object Detection and Classification

Convolutional neural networks based object detectors [35, 36, 37, 38, 39] have achieved

advanced results on various benchmark datasets [71, 72]. The key component of these

networks is the candidate boxes around all the objects in the image. These boxes are

called the anchor boxes and for each candidate in the image, they are created in different

sizes and aspect ratios, so as to produce a tighter bounding box localizing the object in

the image. These prior anchor boxes are then used to perform both object classification,

by predicting a class score and object localization, by proposing the bounding box coor-

dinates. Most of the object detectors are divided into two categories: two-stage detectors

and one stage detectors.

Two-stage detectors are called so because in the first stage, a sparse set of regions of

interest are generated (ROIs) and in the second stage, a convolutional neural network is

trained to classify them as a bounding box of the object instance. A post processing step

like non-maximum supression [72] is used in order to select the most accurate bounding

box from the proposed ones. This technique was first introduced by R-CNN [73], which

uses traditional computer vision algorithm like selective search [74] in order to generate

ROIs. These ROIs act as the input for the convolutional neural network. But since the

input image could be of any resolution with only one object instance, this creates a lot

of redundant computations, which are directly proportional to the number of ROIs gen-

erated. This was then improved by spatial pyramid pooling (SPP) [75] and Fast R-CNN

[35] by first generating the feature maps from the image using some convolutional layers
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and then generating ROIs from those feature maps. But since they are using two different

algorithms to propose ROIs and process them, these networks cannot be trained end-to-

end. This was taken care by Faster R-CNN [36] by using a region proposal network

(RPN) to generate proposals from a set of pre-determined anchor boxes. Region-based

fully convolutional networks (R-FCN) [76] improved it further by replacing the fully con-

nected layer of Faster R-CNN with fully convolutional layer, hence preserving the spatial

associations between the features from the last layer. This was further improved by Mask

R-CNN [37] that introduced a mutli-branch network to perform object detection and in-

stance segmentation in an end-to-end fashion. Mask R-CNN uses an ROIAlign layer in

the RPN in order to remove the quantization effect while proposing ROIs. Later on, many

modifications were proposed to improve the accuracy e.g., by generating anchor boxes at

multiple scales preserving both local and contextual information [77], or by introducing

cascades in order to refine the predictions [78].

One stage object detectors remove the ROI proposal step by densely placing the anchor

boxes over an image and generating the final bounding box by scoring those anchor boxes

and refining their coordinates through coordinate regression. This makes them computa-

tionally efficient and also allows the network to be trained end-to-end while maintaining

competitive performance on the challenging benchmarks. Single shot detector (SSD)

[38] densely places anchor boxes of different sizes and aspect ratios over the feature maps

that are generated at multiple scales. This is because the deeper layers of the convolu-

tional neural network have smaller receptive fields that can be used to detect small ob-

jects whereas, the shallower layers have larger receptive fields. These anchor boxes are

then directly classified and refined. You only look once (YOLO) [39], another one-stage

detectors, predicts bounding box coordinates directly from an image using coordinate

regression, but it was later improved in YOLO9000 [79] by using anchor boxes. De-

convolutional single shot detector (DSSD) [80] modifies SSD by changing the network

architecture to that of the hourglass network [31], combining local and global spatial fea-

tures via skip connections. These one-stage object detectors were faster than two-stage

detectors but were not as efficient, until RetinaNet [81]. RetinaNet uses focal loss, to

dynamically adjust the weights of each anchor box.

However, there are drawbacks of using anchor boxes. Firstly, in order to train the

detector to classify whether each anchor box sufficiently overlaps with a ground truth box,

and a large number of anchor boxes is needed to ensure sufficient overlap with the ground

truth boxes e.g., 20,000 in R-CNN, 40,000 in DSSD and 100,000 in RetinaNet. Hence

only a small fraction of these anchor boxes overlap with the ground-truth boxes, creating

a huge imbalance between positive and negative anchor boxes during training, causing

the training to be inefficient and slow. Secondly, the use of anchor boxes introduces many
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ad-hoc heuristics hyper-parameters and design choices in terms of the number of anchor

boxes, their sizes and aspect ratios.

Recently many networks have been proposed for object detection without using an-

chor boxes e.g., DeNet [82] with directed sparse sampling, point linking network (PLN)

[83] and CornerNet [40]. DeNet is a two-stage detector which generates ROIs by selecting

features at manually determined locations relative to a region for classification and then

determining how likely each location belongs to either the top-left, top-right, bottom-left

or bottom-right corner of a bounding box, without identifying if they belong to the same

object. It then uses another network to classify ROIs as the bounding box while reject-

ing poor ROIs. Whereas, PLN is a one-stage detector, which first predicts the locations

of the four corners and the center of a bounding box. Then, similar to DeNet, for each

corner location it predicts how likely each pixel location in the image is the center and for

the center location, it predicts how likely each pixel location is the the top-left, top-right,

bottom-left or bottom-right corner. It then combines the predictions from each corner and

center pair to generate a bounding box. CornerNet is another one stage approach without

anchor boxes that inspired the use of features from stacked hourglass architecture in our

work. It uses a single convolutional neural network similar to an hourglass architecture to

produce heat-maps of the top-left corner of all the instances of the same object, heat-maps

of the bottom-right corner of all the instances of the same object and an embedding vector

for each corner detection. The network is trained to produce similar embedding vectors

for the corners belonging to the same object instance, which are then used to then pair the

top-left and bottom-right for the a particular object instance in the image. This approach

was inspired by [84], wherein similar embedding are used in a bottom-up human pose

estimation to associate different key-points belonging to the same person together. Since

a corner cannot be localized solely on the basis of the local evidence, it also uses corner

pooling to explicitly encode some prior knowledge of corners’ spatial definition and refine

its predicted locations.

Since our network already produces rich feature maps combining the local and global

features to compute the heat-maps for the fashion landmarks, we can leverage those fea-

ture maps to produce heat-maps for top-left and bottom-right corners, similar to Corner-

Net. But we do not use corner embedding and corner pooling. This is because DeepFash-

ion dataset has only one object in an image so the top-left and bottom-right corners are

predicted in pairs to begin with. And since these heat-maps will be predicted in parallel

to the heat-maps for the fashion-landmarks, much richer prior information is explicitly

encoded to spatially localize the corners and produce refined bounding boxes. As noted

in [85], sharing representations between the related tasks enables the model to general-

ize better on the original task, since we are encoding more information from the training
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signals of the related tasks.

In this chapter, we discussed the related work in other joint localization and detection

tasks, such as facial landmark detection and human pose estimation as well in fashion

landmark detection itself. We also discussed various object detection techniques exten-

sively used over the past few year along with their merits and demerits. In the next chapter

we will formulate our problem of fashion analysis to build a single framework for joint

fashion landmark detection and apparel detection.
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Chapter 3

Problem Formulation

Let X be the set of images, where ith image xi ∈ X contains one fashion item to be

annotated with the fashion attributes. Let Z be the set of all the pixel locations (u,v)

in the coordinate space Rm×n×C of xi, where (m×n) and C are the resolution and number

of channels of xi respectively and u ∈ {1, . . . ,m} and v ∈ {1, . . . ,n}. Let Y be the label

set representing the corresponding fashion attributes yi ∈ Y . yi consists of a vector of

all fashion attributes, namely, a class label β ∈ {1, . . . ,τ} describing the type of the

apparel using τ class labels; two opposite corner locations α1,α2 ∈ Z (top-left and the

bottom-right) localizing the apparel item in the image; and an ordered set of P fashion

landmarks (ai
1, . . . ,a

i
P), such that, yi = (β i,α i

1,α
i
2,a

i
1, . . . ,a

i
P). In DeepFashion [12], β ∈

{1,2,3} where the values 1, 2 and 3 represent the upper-body apparels (T-shirt, top, etc.),

lower-body apparels (pants, shorts, etc.) and full-body apparels (dresses, jumpsuits, etc.)

respectively. It has P = 8 landmarks, which are ordered as left collar, right collar, left

sleeve, right sleeve, left waist, right waist, left hem, right hem. Each fashion landmark ai
p

(pth fashion landmark for xi) is a three dimensional vector ai
p = (u,v,γ), where (u,v) ∈ Z

indicates the location of the landmark and γ ∈ {0,1} represents the visibility flag such that

the values 1 and 0 indicate the visible and the occluded landmarks respectively. Figure 1

represent the landmarks on three different categories of the apparels in the DeepFashion.

Let SN = {(x1,y1), . . . ,(xN ,yN)} be the training set containing N apparel images,

where (xi,yi) ∈ (X ,Y ). The objective is to learn a function ϕSN : X → Y , that predicts

the fashion attributes ŷi for given xi. This function ϕSN consists of a convolutional neural

network ψSN explained in Chapter 4, followed by a post processing function specific to

different components of ŷi = (β̂ i, α̂ i
1, α̂

i
2, â

i
1, . . . , â

i
P) as explained in the sections below.
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Figure 1: Images for upper-body apparel, lower-body apparel and full-body apparel with
annotated attributes. Blue dots represent the visible landmarks and the green dots repre-
sent the occluded landmarks on the apparels.

3.1 Landmark’s Localization

For xi, a sequence of ground-truth heat-maps is generated by creating P zero matrices

{hi
1, . . . ,h

i
P} for P landmarks (ai

1, . . . ,a
i
P). Here hi

p ∈Rm′×n′ , with (m′×n′) as the selected

output resolution. We represent this generated ground truth for the image xi as Hi =

{hi
1, . . . ,h

i
P}. For each landmark ai

p ∈ yi, its location (u,v) is mapped to the corresponding

location (u′,v′) in hi
p. Then, with (u′,v′) at the center, a discreet 2D gaussian [86] with

standard deviation σ is calculated for (u′,v′) and its neighbouring locations up to width

κ . Here κ ∈ N. This 2D gaussian is given as a function G : Z→ Rm′×n′ such that,

G(u′,v′|σ ,κ) =
1

2πσ2 e−
(q− κ

2 )2+(r− κ
2 )2

2σ2 ,

∀q ∈ {u′− κ

2
,u′+

κ

2
},

r ∈ {v′− κ

2
,v′+

κ

2
}.

(3.1)

This produces a surface whose contours are concentric circles with a gaussian distribution

from the center point as shown in Figure 2 and Figure 3. In Figure 2, the top row corre-

sponding to each apparel represent the gaussian heat-map for each of the landmarks. The

circular back dot represents the approximate position of the landmark in its corresponding

heat-map. These black dots, when zoomed in, look like the concentric circles in Figure 3.

The pixel at location (u′,v′) receives the highest gaussian value and neighboring pixels

receive smaller gaussian values as their distance from (u′,v′) increases, creating a soft
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Figure 2: Upper, lower and the full-body apparels with landmarks. In the original images,
the image shape is rectangular, owing to the standing poses, but these images are mapped
to the resolution m× n, where m = n. Then, using those images, ground-truth maps
of resolution m′× n′ are created. First row corresponding to each apparel represent the
location heat-maps of P = 8 landmarks, ordered (from left) as left collar, right collar,
left sleeve, right sleeve, left waist, right waist, left hem, right hem; and the second row
represents the visibility-maps for those landmarks.

peak centered at (u′,v′), decreasing symmetrically as the distance from (u′,v′) increases.

It is most common to use σ = 1/κ and κ ∈ {3,5,7} [31, 33, 87].

Figure 3: Zoomed-in 2D gaussian on a heat-map.

A sequence of output heat-maps Ĥi = {ĥi
1, . . . , ĥ

i
P} is computed for xi using ψSN .

These heat-maps are refined using the mean squared loss [88] between the set of output

heat-maps Ĥ and ground-truth heat-maps H for all the images in SN , given as L N
P :

16



Rm′×n′×P→ R:

L N
P (H,Ĥ) =

1
N

1
P

N

∑
i=1

P

∑
p=1

∥∥∥hi
p− ĥi

p

∥∥∥2
, (3.2)

where
∥∥∥hi

p− ĥi
p

∥∥∥2
is the l2 loss [88] between the ground and the predicted pth heat-map

for xi. This process is called heat-map regression. The estimated landmark locations are

determined by computing the location of the first brightest pixel, i.e. the pixel with the

maximum value in the corresponding heat-map. We represent the value of the matrix J at

a given location (u,v) as [J]u,v For any given matrix J, if a function M : Z → R defines

the value of the matrix at the given the pixel location, such that,

M
(
(u,v),J

)
= [J]u,v, (u,v) ∈ Z,J ∈ Rm′×n′, (3.3)

The pixel with the maximum value in the corresponding estimated heat-map is given as:

(ûi
p, v̂

i
p) = argmax

(u,v)∈Z
M
(
(u,v), ĥi

p

)
. (3.4)

This (ûi
p, v̂

i
p) location obtained from ĥi

p is the estimated location of the pth landmark in

(âi
1, . . . , â

i
P) for xi.

3.2 Landmark’s Visibility

For xi, a sequence of ground-truth visibility-maps Gi = {gi
1, . . . ,g

i
P} is generated for P

landmarks (ai
1, . . . ,a

i
P), where gi

p ∈Rm′×n′ is a zero matrix. These visibility maps encode

each landmark’s visibility information as a set of P binary maps. In each gi
p, if the

visibility flag γ in ai
p is 1, the values within a certain width κ around the mapped ground

truth location (u′,v′) are set to 1 and the values for the remaining background are set

to 0, as shown in Figure 2 and Figure 4. In Figure 2, the bottom row corresponding to

each apparel represent the visibility-map for each of the landmarks. The square back dot

represents visibility state of the approximate position of the landmark in its corresponding

heat-map. These black dots, when zoomed in, look like the square in Figure 2. This is

to ensure that each of the approximate position in the corresponding heat-map of the

landmark has the visibility state. Hence for the occluded landmarks gi
p remains a zero-

matrix.
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Figure 4: Zoomed-in part of a visibility-map.

A sequence of output visibility-maps Ĝi = {ĝi
1, . . . , ĝ

i
P} are computed for xi using ψSN .

These computed visibility maps are refined using the pixel-wise binary cross entropy loss

(BCE) [89] between the predicted and output visibility-map as Λ : Rm′×n′→R, such that,

Λ(gi
p, ĝ

i
p) =−

m′

∑
q=1

n′

∑
r=1

(λ i
pq,r

log(1− λ̂
i
pq,r

)). (3.5)

where λ i
pq,r

and λ̂ i
pq,r

respectively represent the probability of landmark’s presence at the

location (q,r) of the ground-truth visibility map gi
p and predicted visibility map ĝi

p. Hence

BCE loss over SN is given as V N
P : Rm′×n′×P→ R, such that,

V N
P (G,Ĝ) =− 1

N
1
P

N

∑
i=1

P

∑
p=1

Λ(gi
p, ĝ

i
p), (3.6)

The final predictions γ = {0,1} of the visibility flag of the landmarks is determined by

computing the first maximum pixel’s value and then deciding the visibility flag as:

γ̂
i
p =

0, if max(ĝi
p)< 0.5

1, otherwise
, p ∈ (1, . . . ,P). (3.7)

This γ̂ i
p value obtained from ĝi

p is the estimated visibility of the pth landmark in (âi
1, . . . , â

i
P)

for xi. Hence the output landmarks are (âi
1, . . . â

i
P), where âi

p = (ûi
p, v̂

i
p, γ̂

i
p).

3.3 Bounding Box Localization

The locations of the top-left and the bottom right corners α i
1,α

i
2 localizing the apparel in

the image xi are estimated in a similar fashion as that of the landmarks, i.e., via heat-map

regression. The heat-maps are created using equation (3.1) as shown in Figure 5. For

xi, a sequence of ground-truth heat-maps Oi = {oi
1,o

i
2} is generated for α i

1,α
i
2 and the

output heat-maps Ôi = {ôi
1, ô

i
2} are computed using ψSN . These output heat-maps are
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also refined using l2 loss as BN
P : Rm′×n′×P→ R, such that,

BN
2 (O,Ô) =

1
N

1
2

N

∑
i=1

2

∑
j=1

∥∥∥oi
j− ôi

j

∥∥∥2
, (3.8)

Similar to landmark locations, the output locations of the corners α̂ i
1, α̂

i
2 are determined

by computing the location of the first brightest pixel. Hence,

α̂
i
j = argmax

(u,v)∈Z
M
(
(u,v), ôi

p

)
. (3.9)

3.4 Apparel Classification

Corresponding to the each of the bounding box locations α i
1,α

i
2 of image xi, a sequence of

binary class-map Ti = {t i
11, t

i
12, t

i
21, t

i
22, . . . , t

i
τ1, t

i
τ2} of each class is created indicating the

class that corner location belongs to. These class-maps are created in the similar manner

as of the visibility maps, i.e., in each class-map, values within a certain radius κ around

the mapped ground truth location are set to 1 and the values for the remaining background

are set to 0. Hence the class-maps to which the corner points do not belong are the zero-

matrices. The class-maps for different apparels in DeepFashion dataset are shown in

Figure 5. These visibility-maps are created so to ensure that each of the approximate

corner location in the corresponding heat-map of the corner belongs to the same class.

The sequence of output class-maps T̂i = {t̂ i
11, t̂

i
12, t̂

i
21, t̂

i
22, . . . , t̂

i
τ1, t̂

i
τ2} are computed using

ψSN and are refined using BCE loss described in equation (3.3) as C N
P : Rm′×n′×P → R,

such that,

C N
τ (T, T̂) =− 1

N
1

τ×2

N

∑
i=1

τ

∑
j=1

2

∑
j′=1

Λ( t i
j j′ , t̂ i

j j′ ), (3.10)

The prediction of the class of each corner α i
1 and α i

2 localizing the apparel in the im-

age is determined by getting the maximum pixel’s value and then assigning the binary

classification flag ζ i
j j′ as follow :

ζ
i
j j′ =

0, if max(t̂ i
j j)< 0.5

1, otherwise
, j = 1 . . .τ and j′ = 1,2. (3.11)

Here, ζ i
j j′ = 1 means that the corner j′ belongs to class j . The final class label β̂ i

is assigned to the image in the apparel, only if both the corners belong to that particular

class.
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α1 α2 t11 t12 t21 t22 t31 t32

Figure 5: Upper, lower and the full-body apparels with bounding box heat-maps and class-
maps. First two columns corresponding to each apparel represent heat-maps for top-left
and bottom-right bounding box corners’ location and the next four columns represents
the class-maps for the apparels. Class maps t11, t12 represent the presence or absence of
upper-body apparel, t21, t22 the lower-body apparel and t31, t32 the full-body apparel.

3.5 Final Objective Function

The total loss is given by LN : R→ R, as:

LN = ν1 L N
P (H,Ĥ)+ν2 V N

P (G,Ĝ)+ν3 BN
2 (O,Ô)+ν4 C N

τ (T, T̂), (3.12)

where ν1,ν2,ν3 and ν4 are the weights to adjust the impact of a particular loss while

learning.

In this chapter, we formulated our problem of fashion analysis to build a single frame-

work for joint fashion landmark detection and apparel detection. We defined different loss

functions in order to tackle each of the tasks as well as the final objective, combining all

the losses. In the next chapter, we will propose the convolutional neural network to solve

this final objective.
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Chapter 4

Methodology

We compute the set of heat-maps and visibility-maps using stacked hourglass network,

which is a deep convolutional neural network architecture designed to solve the joint

localization and detection problems. We define this network architecture as a function

ψSN : X → Rm′×n′×P. In this section, we first review the basic components of ψSN as a

simple convolutional neural network and then modify ψSN as stacked hourglass network

as well its adopted variations.

4.1 Building Block : Convolutional Neural Network

Convolutional neural networks [90] form the building block of the stacked hourglass

architecture. These are special form of neural networks designed specifically for images.

Convolutional Neural Networks consists of convolutional layers and pooling layers.

A typical deep convolutional neural network consists of the set of weights to be

learned Θ and an activation function θ : R → R. In convolutional neural networks,

these parameters Θ are characterized by a set of weight kernels or matrices W and bi-

ases vector B. This Θ is initialized using different initialization schemes [91]. The net-

work is organized in L layers, hence the W and B can be decomposed into a union of

non-empty disjoint subsets. Hence Θ = ∪L
l=0{W (l),B(l)}. Fixing this triplet (L,Θ,θ)

defines the architecture of the convolutional neural network. The first layer, i.e. l = 0

takes the image xi in (xi,yi) ∈ SN as the input, and given D(0) number of weight matrices

W (0) = {w(0)
1 , . . . ,w(0)

D(0)} and bias vectors B(0) = (b(0)1 , . . . ,b(0)
D(0)), it computes D(0) feature

maps F(0) = { f (0)1 , . . . , f (0)
D(0)} using a convolution and activation function.
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Given any weight kernel w(0)
d ∈W (0), such that w(0)

d ∈R
k×k×C, a convolution function

defined as z : Rk×k → R is applied to each element of the input image, such that at each

location, the product between each element of the weight matrix and the input element it

overlaps is computed and the results are summed up to obtain the output in the current

location. Applying this function to the input image produces an intermediate feature

map, represented as f
′(0)
d . Hence, the convolution function, determining the value of each

location in a feature map f
′(0)
d ∈ F(0) after receiving input image xi is given by:

[ f
′(0)
d ]u,v = z(xi,w(0)

d ) =
k−1

∑
q=0

k−1

∑
r=0

C

∑
c=1

[xi]u+q,v+r,c · [w(0)
d ]q,r,c +b(0)d , (u,v) ∈ Z. (4.1)

The element wise addition is performed across different channels. For the purposes of

simplicity we take the input image as gray-scale i.e single channel C = 1. Hence, equation

(4.1) will be transformed to:

[ f
′(0)
d ]u,v = z(xi,w(0)

d ) =
k−1

∑
q=0

k−1

∑
r=0

[xi]u+q,v+r · [w(0)
d ]q,r +b(0)d , (u,v) ∈ Z. (4.2)

An activation function θ : R→ R like sigmoid, hyperbolic tangent (tanh), rectified linear

activation unit (ReLU) [91, 92] is applied to f
′(0)
d to provide the final output feature map

f (0)d as :

f (0)d = θ [ f
′(0)
d ]u,v, (u,v) ∈ Z. (4.3)

The choice of activation function depends upon the problem at hand. In our problem,

we use θ = ReLu for all the hidden layers. For the purpose of learning, the activation

function should be closely linear, so as not to saturate, yet non-linear so as to capture

the complexities of the dataset. Figure 6 (a) shows the non-linearity curve for the ReLU

activation function. With it’s values ranging from [0,∞), ReLU is linear for all the positive

value and non-linear for all the negative values. This helps ReLU provide more sensitivity

to the its inputs and avoids saturation, unlike other activation functions that limit the

activations to a small range, e.g., sigmoid function (Figure 6 (b)) limiting the range to

(0,1).

Here f (0)d ∈ Rm̄×n̄, where (m̄, n̄,D(0)) are determined by the input shape of F(0). For

the first layers, since the input is the image xi, (m̄, n̄) depends upon (m,n), kernel size (k),

zero-padding (zp) and kernel-stride (st) as:

(m̄ = n̄) =
m+2∗ zp− k

st
+1. (4.4)
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Figure 6: Activation functions.

These feature maps F(0) serve as the input for the subsequent layer. We represent

the feature maps of any layer l layers as F(l). We represent the joint convolution and

activation function mapping the feature maps of one layer to its subsequent layer as

Fl : F(l−1)→ F(l) the network builds in a feed-foreword fashion as:

Fl = Fl( F(l−1) | W (l),B(l)). (4.5)

Such multiple non-linear layers can asymptotically approximate any complicated func-

tion. The network also consist of pooling layers that use pool kernels w′ ∈W to bring

down the resolution of the feature maps by a factor of k, which is the size of w′. This

helps encoding a degree of invariance in the convolutional output with respect to transla-

tion and elastic distortions in the feature maps. The pooling operation Pl : F(l−1)→ F(l),

outputs the maximum value of the input at a given position, that falls within the kernel.

Hence each pixel in the resulting feature maps f (l)d ∈ F(l) when the input is the image xi

can be given as :

[ f (l)d ]u,v = max([ f (l−1)
d ]u+q,v+r), ∀q,r ∈ {1, . . . ,k}, (u,v) ∈ Z. (4.6)

The network consists of combination of these convolution and pooing layers. The feature

maps in F(l) are used as the input for the following convolution or pooling layers and the

process is repeated till the input image xi has been down-sampled to a very low resolution

representing its key features. These key features are then used to compute the output

F(O), which can be a classification score, regression score, segmentation map, or like in

our case, set of visibility maps, heat maps and class maps. We represent� as a composite
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function taking input from the sub-function. Hence,

F(O) = FL � FL−1 � PL−2 � . . . � F3 � P2 � F1 � xi. (4.7)

is an example of a convolutional neural network architecture. The initial layers of such

networks capture the local information of the input image xi and the later layers capture

the global information of xi encoding the semantic relationships of different components

of the image.

4.2 Stacked Hourglass Network and its variations

A stacked hourglass architecture consists of a set of ∆ hourglass modules {φ1, . . . ,φ∆}
stacked together, where each module φδ : φδ−1 → {Ĥi

δ
,Ĝi

δ
,Ôi

δ
, Ĉi

δ
} is a function that

captures and consolidates both global and local features in a single feed-forward network

built using convolutional neural network as explained in Section 4.1 and produces a set of

heat-maps, visibility maps and class maps. The hourglass shape comes from the bottom-

up processing by convolutional and pooling layers and the top-down processing by up-

sampling the down-pooled feature layers. The local and the global information captured

by the layers is consolidated using skip layer connections, hence combining information

at each scale. This is essential because a person’s orientation in the image, the arrange-

ment of different landmarks in the apparels and landmarks’ relationship with each other

as well as to the overall location of the apparel in the image encode the semantic infor-

mation necessary for the different components of our analysis. These hourglass modules

further comprise of a set of M residual units, i.e., φδ = {ω1, . . . ,ωM} formed using con-

volutional neural networks, where for each residual unit in bottom-up processing, there

is a corresponding unit in the top down processing, giving it an hourglass shape. We can

perform intermediate supervision by stacking such hourglasses together end-to-end. The

stacked structure refines the final predictions by allowing repeated bottom-up and top-

down processing across different scales. The stacked hourglass architecture constitutes of

the following functional blocks.

Convolutional neural networks explained (CNN) in Section 4.1 form the building

block of the residual units {ω1, . . . ,ωM} [2, 46]. A deep convolutional neural network

built using equation (4.5) suffers from a degradation problem, i.e., the accuracy decreases

with the depth and then saturates after a point. Residual units [2, 46] solve this problem

because instead of asymptotically approximating a complicated function, it is easier to ap-

proximate the same residual function. Hence the added layers are constructed as identity
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mappings. Instead of (4.5), we use the following to build our network in a feed-forward

fashion:

F(l) = Fl( F(l−1) | W (l),B(l))+F(l−1), (4.8)

We build each ωµ using equation (4.8), but we add three more convolutional layers before

adding the identity mappings back to the output feature maps. Hence, ωµ : F(l−1)→ F(l)

consists of three convoutional layers as:

ωµ = F(0)+F3 � F2 � F1( F(0) | W (0),B(0)). (4.9)

Here, F3 is implemented using 1×1 convolutions [46] to map the depth of the output of

layer F2 to the depth of input F(0) in order to perform element-wise addition between the

processed feature maps and the input feature maps. This is also called a bottle-neck layer

and the element-wise addition is called a skip-layer connection. For each residual unit,

we use D = 256 for both input and the output layers. Figure 7 depicts a the residual unit.

Figure 7: Residual-unit used throughout the stacked hourglass architecture. The first layer
has 256 feature maps which are mapped down to 128 using a bottle-neck layer. After
convolution using a 3×3 filter, these features maps are mapped back to 256 and added to
the input feature maps to produce the final feature maps of this unit.

First, each input image xi is processed through two residual units (ωo
1 ,ω

o
2 ) to create

feature maps of the selected output resolution (m′,n′), i.e the same resolution as the

ground-truth and predicted maps. These feature maps will serve as input to the first layer

of the hourglass module. We represent this initial convolutions as I .

I (xi) = ω
o
2 � ω

o
1 � xi, (4.10)
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An hourglass module φδ consists of bottom-up and top-down processing using residual

units. During bottom-up processing, residual units equation (4.9) and max pooling layers

equation (4.6) are used to process features down to a very low resolution. At each max

pooling step, the network branches off and applies one more residual units at the original

pre-pooled resolution. The network reaches the lowest resolution at 4×4, where weight

kernels are applied to learn the spatial features across the entire space of the image. At

the lowest resolution, the network does the top-down processing using nearest neighbor

up-sampling [93]. This up-sampling is followed by element-wise addition of two sets of

features across the respective scales. The first hourglass produces the set of intermediate

maps as below:

{Ĥi
1,Ôi

1,Ĝi
1, Ĉi

1}= φ1(I ) = F0 �
(

ωM � ω1

(
+ · · ·+

(
ω M

2 +2 � ω M
2 −2 +

(
ω M

2 +1 � ω M
2 −1

+(ω M
2
. . . � P2 � ω2 � P1 � ω1(I ))

))
. . .

))
,

(4.11)

Out of these maps, heat-maps {Ĥi
1,Ôi

1} are used as it is, while the visibility-maps Ĝi
1

and class-maps Ĉi
1 are passed through a sigmoid activation in order to restrict their values

between 0 and 1. We do so, because these maps essentially contain the probability scores.

The sigmoid activation is shown in Figure 6 (b). Figure 8 represents the stacked hourglass

architecture in a pictorial form.

The output of the hourglass module is passed through 1×1 convolutions in F0. For

F0, D is set as the total number of output maps to be predicted, which in our case is P

landmarks, P visibility flags of the landmarks, 2 bounding box corners and τ class-maps

for each of the bounding box corners. Hence D = (2P+ 2+ τ ∗ 2). These final feature

maps for hourglass φ1 are the set of ordered maps for the image xi as (Ĥi
1) heat-maps for

the landmarks’ location, (Ĝi
1) for the landmarks’ visibility, (Ôi

1) for the bounding box

corners and (Ĉi
1) for the class of the bounding box corners.

Each hourglass after the first one takes the intermediate maps produced by the previous

hourglass as input. The intermediate maps {Ĥi
δ
,Ĝi

δ
,Ôi

δ
, Ĉi

δ
} are further reevaluated and

refined by multi-stage training by mapping their D = (2P+ 2+ τ ∗ 2) channels to 256

using 1× 1 convolutions. These, when element-wise added to the intermediate features

from the previous hourglass φδ−1, serve as an input to the next hourglass, which generates

another set of predictions. This repeated bottom-up, top-down inference preserves spatial

locations of features, which is important to bring different features together to form a

coherent understanding of the scene.

{Ĥi,Ĝi,Ôi, Ĉi}= ψSN = F∆ � φ∆ � . . .F2 +F3 � φ3 � F1 +F2 � φ2 � F1 � φ1(I ).

(4.12)
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Another key feature of the stacked hourglass architecture is the multi-stage architecture.

In the original network design, δ = 8 hourglass modules are stacked end to end, with-

out sharing the weights, and the loss in equation (3.12) is applied to each intermediate

prediction {Ĥi
δ
,Ĝi

δ
,Ôi

δ
, Ĉi

δ
} using the same ground truth maps {Hi,Gi,Oi,Ci}.

Figure 8: Stacked hourglass architecture. The top figure represents the overall stacked
hourglass and the middle figure represents the internal structure of the hourglass as per
equation (4.11).

All the maps are repeatedly refined by minimizing final loss in equation (3.12) using

an optimization algorithm like RMSProp or Adam [94]. We use Adam in our experiments

because Adam uses adapted learning rate as well as momentum, hence updating the

weight matrices with more appropriate gradients.

Pyramid Residual Networks

Pyramid residual networks modify the stacked hourglass architecture by replacing the

residual units {ω1, . . . ,ωM}with pyramid residual modules (PRM) {ω ′1, . . . ,ω ′M} that learn

features at different resolutions in each layer, hence forming a feature pyramid. These fea-

ture pyramids are similar to Laplacian pyramids [95] obtained for the images by down-
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sampling the image at different sub-sampling ratios. Such functionality is inherent to

convolutional neural networks since every convolutional and pooling layer reduces the

size of the input. Such a modification is motivated by the fact that while stacked hour-

glass architecture captures and consolidates global and local information, it still doesn’t

account for many scale changes due to inter-personal body shape variations, view-point

variations, apparel-variation and foreshortening. This modified architecture tackles such

variations using PRM.

In each ω ′µ The input is first processed through a simple convolutional layer as in

equation (4.5) and then the network branches off to create feature pyramids. A PRM can

be formulated as:

Fl = R (F(l−1) |W (l), B(l))+F(l−1) (4.13)

where R (F(l−1) |W (l), B(l)) can be decomposed as :

R (F(l−1) |W (l), B(l)) = F

 K

∑
j=1

F
(
F(l−1) | w(l)

j , b(l)j

)
| w(l)

j+1, b(l)j+1


+F

(
F(l−1) | w(l)

0 , b(l)0

) (4.14)

where, K denotes the number of pyramid levels. Here W (l) = {w(l)
0 ,w(l)

1 , . . . ,w(l)
j ,w(l)

j+1},
B(l) = {b(l)0 ,b(l)1 , . . . ,b(l)j ,b(l)j+1} are the set of parameters to be learned. Outputs of each

transformation (F(l−1) | w(l)
j , b(l)j ) are up-sampled to original scale of F(l−1), summed

together, and further convolved to give the final output of the PRM unit.

In order to do the sub-sampling, instead of max-pooling in stacked hourglass, frac-

tional pooling [96] is used to build PRMs. This is because max-pooling sub-samples the

image too fast (by ratio k, the kernel width), making it difficult to create smooth pyramids.

Furthermore, the disjoint nature of the pooling regions may limit the generalization ability

of the produced feature maps. In fractional pooling, the original resolution is gradually

reduced by the sub-sampling ratio of jth pyramid as :

s j = 2−T j
K , j = 0, . . . ,K, T ≥ 1 (4.15)

where s j ∈ [2−T ,1], denotes the relative resolution compared to the input features.

Furthermore, two residual units in the initial convolutions block I of the stacked

hourglass architecture are also replaced by two PRM units and the rest of the network
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builds and computes the prediction maps in the similar fashion to the basic stacked hour-

glass architecture as in equation (4.12). Figure 9 represents a PRM unit.

Figure 9: PRM-unit used throughout the stacked hourglass architecture. Input feature
maps are pooled at different rations and then up-sampled to the input resolution, where
they are added together and convolved again to produce the final feature map.

Cascade Prediction Fusion

Cascade prediction fusion (CPF) network leverages the multi-stage architecture of stacked

hourglass network by gradually integrating different semantic information from the ini-

tial stacks to the later stacks. The prediction maps computed at the previous stack are

used to as a prior to guide the prediction of the present stack. The prediction maps

{Ĥi
δ−1,Ĝ

i
δ−1,Ô

i
δ−1, Ĉ

i
δ−1} from stack φδ−1 undergoes a 1× 1 convolution to increase

channels to 256 and are then fused with the original intermediate feature maps for stack

φδ using element-wise addition. {Ĥi
δ
,Ĝi

δ
,Ôi

δ
, Ĉi

δ
} in φδ are computed using this fused

feature map as input. Figure 10 illustrate the resulting architecture.
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Figure 10: Cascade prediction fusion (CPF) modification of stacked hourglass architec-
ture

4.3 Evaluation Metrics

The different tasks in the fashion analysis presented in this work have different evaluation

metrics. These evaluation metrics are based on the evaluation metrics used in previous

works [12, 72]. None of the previous work evaluated the visibility state of the landmarks,

so, we define our own metrics to evaluate that.

Landmark’s Location

We use normalized error (NE) and percentage of detected landmarks (PDL) metrics to

evaluate and compare our results. These metrics are computed between final predicted

and ground-truth location of the landmarks.

NE

The landmark predictions are computed using the argmax function over the predicted

heat-maps respectively using equation (3.4). Normalized errros (NE), defined as NE :

R2×P→ R is the l2 distance
∥∥∥ai

p− âi
p

∥∥∥2
between the predicted and the ground truth land-

marks in the normalized coordinate space (i.e. divided by height/width of the image).

Note that this l2 distance is calculated only between the (u,v) location of the landmarks.

Smaller values of NE mean better results. Also, this normalized error is normalized in the

dimensions of the heat-maps. Hence they give an approximate distance between the pre-

dicted and ground-truth heat-maps with respect to the location of their actual landmarks.

NEN
P (a, â) =

1
N

1
P

N

∑
i=1

P

∑
p=1

∥∥∥ai
p− âi

p

∥∥∥2

m̄
. (4.16)
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PDL

PDL : R2×P→ R is calculated as percentage of detected visible (γ = 1) landmarks with

normalized error under the threshold η . In our experiments, we take η ∈ {0.5,0.7}.

PDLN
P (a, â) =

count
( ∥∥∥ai

p−âi
p

∥∥∥2

m̄ < η

)
N ∗P

×100,

i ∈ {1, . . . ,N}, p ∈ {1, . . . ,P}.

(4.17)

Landmark’s Visibility

For the landmarks’ visibility, we calculate the percentage of visibility states classified

correctly. This metrics is calculated only on the γ values of the landmarks calculated

using equation (3.7). We call this metrics PDLv : RP→ R, given as:

PDLv N
P (a, â) =

count
(

ai
p(γ) = âi

p(γ)

)
N ∗P

×100. (4.18)

Apparel Detection

The apparel’s bounding box localization and the apparel classification tasks are jointly

evaluated using average precision metrics, popularly used in COCO object detection [71]

tasks or PASCAL VOC object [72] detection tasks. Average precision (AP) metrics

involves measuring intersection over union (IOU) of the predicted and the ground truth

bounding box using Jaccard distance [97]. The ground truth corner locations α i
1,α

i
2 and

predicted corner locations α̂ i
1, α̂

i
2 calculated for image xi using equation (3.9) are used to

compute the ground truth bounding box ϒi and predicted bounding box ϒ̂i. This IOU value

is used to determine whether a detection is valid (true positive) or not (false positive).

IOU is calculated as the overlapping area between the predicted bounding box ϒ̂i and the

ground truth bounding box ϒi over their area of union.
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IOU =
area (ϒ̂i∪ϒi)

area (ϒ̂i∩ϒi)
, (4.19)

The boxes having the correct classification label and an (IOU) value greater than a

threshold ι are counted as true positives (TP), and the ones having the value smaller than

ι are counted as false positives (FP). Whereas, the bounding boxes with the incorrect

classification labels but IOU value greater than ι are considered as false negatives (FN).

Since all the images are annotated with the ground truth bounding box, there are no

true negatives. The values of TP, FP and FN are used to calculate precision and recall.

Precision ρ identifies the relevant objects by calculating percentage of correct positive

predictions given as:

ρ =
T P

T P+FP
, (4.20)

whereas recall is the measure of all the relevant cases given as the percentage of true

positives detected among all relevant ground truths. Recall is given as:

r =
T P

T P+FN
, (4.21)

These values are used to compute a precision/recall curve to evaluate any object detector

[98]. The value ι is changed by plotting the curve for each object class. A good object

detector would have high precision as the recall increases, which indicates its ability to

identify only the relevant objects. Whereas, a poor object detector needs to increase the

number of detected objects to maintain a high recall value. That’s why, a precision/recall

graphs starts with high precision values, decreasing as recall increases. AP summarizes

the shape of precision/recall curve, calculated as the mean precision at a set of 11 equally

spaced recall levels r ∈ [0,0.1, . . . ,1], taking maximum precision whose recall value is

greater than r, as in PASCAL VOC challenge [98]. If ρ̂ represents the interpolated

precision, AP is given as:

AP =
1
11 ∑

r∈[0,0.1,...,1]
ρ̂(r), (4.22)

with,

ρ̂(r) = max(ρ(r̃)), r̃ ≥ r. (4.23)

and ρ(r̃) is the measured precision at recall r̃.
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In this chapter, we described the convolutional neural networks and how they are

used to build the stacked hourglass architecture and it’s two other variations in order to

solve this final objective of joint fashion landmark detection and apparel detection. We

also defined the metrics to evaluate each of these tasks in our final objective of joint

fashion landmark detection and apparel detection individually. These metrics can be used

to compare the methods used in previous works as well. In the next chapter, we will do

an exploratory analysis of the DeepFashion dataset.
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Chapter 5

DeepFashion Dataset

DeepFashion[12] is a comprehensively annotated apparels dataset that contains apparel

categories, attributes, landmarks, as well as cross-pose/cross-domain correspondences

of apparel pairs. The landmark annotation itself is comprehensive since in addition to

the landmarks, it also contains the high-level apparel categories, the pose-variations and

the bounding box coordinates localizing the apparel in the images. These landmarks

are apparel-centric, hence can be very different from the joints of human body in the

problem of human pose estimation. Figure 11 shows some of the sample images in the

DeepFashion dataset.

DeepFashion dataset has about 123,000 images, richly annotated to support multiple

tasks like landmark detection and apparel classification and apparel detection for fashion

analysis. These annotations contain eight landmarks, namely left collar, right collar, left

sleeve, right sleeve, left waist, right waist, left hem and right hem; three high-level apparel

categories, i.e., upper (e.g., shirts), lower (e.g., pants) and full-body (e.g., dresses) appar-

els depending upon the body-parts they are designed for; five viewpoint variations, i.e.,

normal, medium or large and medium zoom-in or large zoom-in poses; and two bounding

box coordinates, i.e. top-left and bottom-right corners’ coordinates. Also, since the land-

marks on the apparels are frequently occluded in images, these annotations also contain

the visibility status of the landmarks. Originally the visibility flag γ ∈ {0,1,2,3}, indicat-

ing the occluded, visible, truncated and non-existent landmarks respectively. Truncated

landmarks means that the landmark exists in the apparel but has been cropped in the im-

age and non-existent landmark means that the landmark does not exist for this particular

apparel, e.g., the left and right collar or the left and right sleeve do not exist in a lower-

body apparel like pants. Table 1 represents the existing and non-existing landmarks in

each category. But for the training purposes, we consider all the visibility states other
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than visible as occluded, hence γ ∈ {0,1}, where values 1 and 0 indicate the visible and

the occluded landmarks respectively.

Figure 11: Sample images from DeepFashion dataset. First row : upper-body apparel
images, second row : lower-body apparel images, third row : full-body apparel images.

Table 1: Presence of landmark in each apparel category, i.e., left collar, right collar, left
sleeve, right sleeve, left waist, right waist, left hem, right hem respectively. Here, P
represents the number of landmarks in each apparel category.

Category P l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem

upper 6
√ √ √ √ √ √

× ×

lower 4 × × × ×
√ √ √ √

full 8
√ √ √ √ √ √ √ √

overall 8
√ √ √ √ √ √ √ √

This dataset is divided into train, test and validation set. We train our architectures on

the train dataset, modify the training process on the validation set and then evaluate the

results on the test dataset. Table 2 represents the statistics of images in the DeepFashion

dataset. Figure 12 (a,b) show the detailed statistic of images in train, validation and test

sets as well as their distribution in their respective categories. Figure 12 (c,d,e) show the
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statistics of landmarks distribution for all apparel categories as well as in the test, train

and validation divisions. These statistic are important to analyze the category-aware and

category agnostic learning for the landmarks detection. As we can see, the distribution

of the images in different apparel categories is consistent in the test, train and validation

dataset. Figure 13 shows the distribution of the visibility state’s in each of the subset.

This distribution is also consistent through the train, test and validation set. However,

full-body apparels in the train set have relatively fewer occluded landmarks than the ones

in full-body validation and train set. Similar inconsistency is also there in upper-body

apparel datasets as upper-body train set has more occluded landmarks than the upper-

body apparels test and validation dataset. This might result in a very small bias while

evaluating the accuracy of the visibility states of the landmarks.

DeepFashion mainly contains well-posed shop images, with mostly white background.

The images contain different profile variations of the apparels but they have been mostly

taken at the same camera angle hence very few images with the possibility of foreshort-

ening. Because of the same reasons, there are very few variations in the pose orientation

of people wearing the apparels. The Figure 14 depicts the histogram of average horizon-

tal orientations of the pose vectors of the images in the complete dataset as well as in

the respective apparel categories. Here an average horizontal orientation vector is calcu-

lated as the average of the clockwise angle between the mirroring pairs of annotations in

each image and the X-axis. e.g., right and left collar, right and left sleeve, right and left

waist, etc. And the average vertical orientation vector is calculated as the average of the

clockwise angle between the vertical pairs of annotations in each image and the X-axis.

e.g., right collar and right waist, left collar and left waist, right waist and right hem, and

left waits and left hem. The histograms show the distribution of the poses is consistent

throughout the dataset, except for the full-body apparels. Full body apparels contain more

variations in the poses. Furthermore, as discussed earlier, DeepFashion also has labels for

view-point variations, i.e., normal, medium or large and medium zoom-in or large zoom-

in poses. Figure 15 represents the statics for viewpoint variation of the images. This is

necessary to evaluate our results both quantitatively and qualitatively, since the landmarks

in a certain view-point might be more difficult to localize than the others.

Table 2: Data Distribution in DeepFashion.

Category Total Train Validation Test

upper 42031 28283 6873 6875

lower 30972 20925 5027 5020

full 50013 33825 8092 8096

overall 123016 83033 19992 19991
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Figure 12: DeepFashion statistics.
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Figure 13: Landmark’s visibility and occlusion statistics in DeepFashion dataset.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Distribution of horizontal and vertical orientations of the fashion landmarks.
The orientation values in the x-axis is in radians.
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Figure 15: View-point variation statistics in DeepFashion dataset.
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Chapter 6

Implementation and Analysis

There are a lot of hyper-parameters that determine the performance of the convolutional

neural network architectures in deep learning, e.g., the number of layers, the number of

weight matrices, the input resolution of the image, the optimizer to be used for learning,

the learning rate etc. In the stacked hourglass architecture used in this work, there are

many additional hyper-parameters to be determined like the number of stacks to be used,

the number of residual modules used in both the top-down and bottom-up processing

etc. Many of these choices are based on plain heuristics, but we conducted various

experiments in order to check which configuration of the architecture work the best to

solve this scenario and what is the trade-off between the faster and the better learning. In

this chapter, we will discuss various implementation settings and analyse the qualitative

and quantitative results on the proposed setting.

6.1 Implementation

The input images are re-sized to 256×256 resolution, hence m = n = 256. The average

resolution of the images in DeepFashion dataset is about 340× 400. For the sake of

simplicity, we take square images as input. That’s why we chose m = n = 256. Reducing

the resolution will result in the loss of a lot of features and the resulting feature maps will

be less richer in comparison. The initial block of each architecture I brings the resolution

down to 64× 64, hence m′ = n′ = 64. This is the resolution of the input and the output

of each stack, as well as of the ground truth and predicted maps, i.e., {Ĥi,Ĝi,Ôi, Ĉi} and

{Hi,Gi,Oi,Ci}. At this point, the feature maps are rich enough from the initial block

of convolution as they contain features from the bigger resolution. We chose 64× 64
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as the output resolution of the feature maps so as this gives a good balance between the

richness of the consequent feature maps and the number of further convolutions we can

apply using the residual modules. Each hourglass has M = 15 residual modules, out of

which, there are 5 residual modules in the bottom-up processing, 5 residual modules in the

top-down processing and 5 residual modules that are applied on the residual modules of

the bottom-up processing before adding the via skip-connections to the residual modules

from the top-down processing. After the top-down processing each stacked hourglass

φδ reaches down to the feature maps of resolution 4× 4 in ω M
2

. Shallower architectures

provided some loss in accuracy, while deeper architectures only improve the accuracy by

maximum 0.5%, while increasing the number of parameters to be learnt.

All the architectures are implemented using Torch and optimized with Adam opti-

mizer. The learning rate starts at 0.0007 and decreases by 10 after the validation accuracy

pleatues. We also experimented with 0.0002 and 0.0005 learning rate, but it did not create

any difference in the training accuracy. This is because, no matter what learning rate we

start with, Adam optimizer adjusts it based on the moving mean of the gradients. The

parameters are randomly initialized. We train each architecture for 100 epochs with batch

size 10. The accuracy saturates after about 70-80 epochs. Table 3 lists the number of

parameters to be learned in each architecture. The number of additional parameters to be

learned in pyramid residual networks are 19.63% more than the ones in stacked hourglass

architecture, whereas the additional parameters are only 0.08% more in cascade predic-

tion fusion variation. In the further analysis, we will represent these architectures with

the abbreviations mentioned in Table 3.

Table 3: Number of parameters in each stacked hourglass variation

Network architecture Parameters

Stacked hourglass (SHG) 24,608,038

Stacked hourglass: Pyramid residual network variation (SHGP) 29,440,492

Stacked hourglass: Cascade prediction fusion variation (SHGC) 24,627,030

The initial block I uses 7×7 filters to bring down the resolution of the input image

to the required resolution but in the hourglasses, we use only 3× 3 weight matrices, i.e,

w(l)
d ∈ R3×3. This is because, as noticed in [9], layers with two 3× 3 weight matrices,

cover the same spatial area as one 5×5 matrix but the later has more number of param-

eters to be learned than the former. Hence it is beneficial to use smaller weight matrices

while training. The initial stacked hourglass architecture used ∆ = 8 hourglasses for train-

ing, but as demonstrated in [99], using more that 8 hourglasses causes saturation. So, in

our experiments, we only used 2 hourglasses in all the architectures. Testing is performed
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with PDL thresholds η = {0.5,0.7}. These values are empirically determined from the

validation set. Figure 16 shows the improvement of PDL and PDLv accuracy over the

training period. We observe that multi-task training provides better results in the first

few epochs in comparison to the individual landmark detection training. In multi-task

training, the PDL score saturates after 30 epochs, hence the similar or better results can

be achieved with fewer epochs in comparison to individual landmark detection training.

This though might be counter-intuitive, since in multi-task training, the architecture has

the more information to learn, but it works because it has been noticed in many experi-

ments involving the multi-task training that the adjunct tasks help to train better on the

subsequent task as well. Furthermore, the joint architecture, did not learn anything new

about the landmarks, as we will discuss later in the chapter, but it learnt the landmarks

faster than it’s individual counterpart. For pyramid residual modules, we used K = 5

pyramids in a residual module. The stacked hourglass architecture with pyramid residual

models performs the best for all the categories in category-aware training as well as in

the category-agnostic training, but it takes almost one more day to train than the other

architectures, owing to the increased number of parameters to be learned.

In addition to that, we also perform data augmentation on the training set while train-

ing. We apply data augmentation as a Markov process, in which augmentation is per-

formed via a sequence of random transformations. A weight matrix learned on augmented

data learns the averaged version of transformed features and a data dependent variance

regularization term [100]. Hence it improved generalization by inducing invariance and

reducing model complexity. In our experiments we apply a sequence of transformations

such as scaling, rotation, flipping, and adding color noise, on the images from the training

set, with parameters drawn randomly from hand-tuned ranges. We empirically choose the

interval [−45,45] degrees for rotation, [0.75,1.25] for scaling. This regularization helps

to avoid the over-fitting in the training process.
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(b) Lower-body PDL scores

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

Epoch

PD
L

(c) Full PDL scores

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

Epoch

PD
L

(d) Category-Agnostic PDL scores
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(d) Multi-task training category-agnostic PDL scores
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(d) Multi-task training category-agnostic PDLv scores

StackedHourGlass StackedHourGlass_Pyramid StackedHourGlass_Cascade

Figure 16: PDL accuracy during the training process.
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6.2 Analysis and Discussion

We implemented our architectures using the hyper-parameters discussed in the previous

section. In this section, we will analyze the results of all the experiments performed on

these architectures for all the tasks, both quantitatively and qualitatively.

6.2.1 Landmark’s Localization

For landmark localization, since different categories of apparels have different number

of landmarks, in the initial experiments, we explore the trade-off for the learning on pre-

classified apparels, i.e., category-aware learning as well as on unclassified apparels, i.e.,

category-agnostic learning of these landmarks. In these experiments, we only predict the

fashion landmarks, i.e., these predictions are without the multi-task learning. Table 4 and

Table 5 list the PDL results on the category-aware experiments on the test and validation

set of DeepFashion. Similarly Table 6 and Table 7 list the results on the category-agnostic

experiments on test and validation dataset of DeepFashion respectively.

The results indicate that category-aware learning for fashion landmarks provides only

a small advantage over the category-agnostic learning. But it only increases the number

of parameters to learn on the whole dataset, since the chosen architecture would have

to be trained three times, each time for a particular category. So, even if the landmarks

are sparse, a simple stacked hourglass architecture provides a good generalize-ability to

detect the fashion landmarks on all types of apparel images.

Table 4: Category-aware PDL comparison on DeepFashion validation dataset at η = 0.5.

Method Category l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG upper 81.6 80.8 75.5 76.3 71.0 70.5 × × 75.9

SHGp upper 81.8 81.0 75.7 76.5 71.3 70.7 × × 76.4

SHGc upper 80.7 80.8 74.1 75.5 70.1 69.6 × × 75.0

SHG lower × × × × 87.3 87.3 85.8 86.2 86.7

SHGp lower × × × × 87.6 87.7 86.2 86.7 87.1

SHGc lower × × × × 86.4 86.0 85.0 85.4 85.7

SHG full 93.5 94.0 79.0 78.9 85.9 85.7 84.0 84.4 85.7

SHGp full 93.4 94.1 79.1 79.0 85.9 85.8 84.2 84.3 85.8

SHGc full 92.9 93.4 76.4 77.2 85.0 84.8 83.3 82.7 84.5
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Table 5: Category-aware PDL comparison on DeepFashion test dataset at η = 0.5.

Method Category l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG upper 80.2 79.5 75.3 76.1 70.7 69.9 × × 75.2

SHGp upper 80.9 79.8 75.6 76.5 70.9 70.3 × × 76.0

SHGc upper 80.1 79.5 73.6 75.6 70.7 69.4 × × 74.8

SHG lower × × × × 87.4 87.3 85.6 86.5 86.7

SHGp lower × × × × 87.7 87.7 86 86.9 87.1

SHGc lower × × × × 85.9 85.8 84.5 85.4 85.4

SHG full 93.5 94.0 79.2 78.9 85.7 85.6 84.1 84.2 85.6

SHGp full 93.6 94.1 79.3 80 85.8 85.7 84.2 84.3 85.7

SHGc full 93.1 93.5 76.6 76.9 84.9 84.8 83.0 82.5 84.4

Table 6: Category-agnostic PDL comparison on DeepFashion validation dataset without
multi-task learning at η = 0.5.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 87.3 87.1 77.5 78.1 77.9 77.1 84.5 84.9 81.8

SHGp 88.0 87.5 78.1 78.8 78.5 77.5 84.9 85.2 82.3

SHGc 86.9 86.7 76.4 77.2 76.7 76.2 83.7 83.8 81.1

Table 7: Category-agnostic PDL comparison on DeepFashion test dataset without multi-
task learning at η = 0.5.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 87.3 87.2 77.4 77.9 77.7 77.2 84.5 84.7 81.7

SHGp 88.1 87.5 78.1 78.3 78.5 77.6 84.9 85.2 82.3

SHGc 86.6 86.7 76.4 77.3 76.6 76.3 83.5 83.7 81.1

Table 8: Category-agnostic PDL comparison on DeepFashion validation dataset without
multi-task learning at η = 0.7.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 94.2 94.0 86.1 86.1 86.4 87.7 87.5 91.5 89.2

SHGp 94.7 94.5 86.7 86.6 86.9 87.9 88.3 92.1 89.7

SHGc 91.6 91.4 82.6 83.5 83.6 82.8 87.8 88.0 86.4
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Table 9: Category-agnostic PDL comparison on DeepFashion test dataset without multi-
task learning at η = 0.7.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 92.2 92.0 84.2 84.5 84.6 84.8 87.8 89.0 87.3

SHGp 92.4 92.6 84.5 84.9 85.0 85.4 88.0 89.6 87.7

SHGc 89.6 89.5 80.8 82.1 82.3 81.1 87.5 85.5 84.8

We also observe that among all the types of apparels, the fashion landmarks in the

upper-body apparels are the most difficult to localize. This might be because of the

variability in the designs of the upper-body apparels. e.g., T-shirt, tank-tops, camisoles,

shirts, etc. have a huge variation in the location of the landmarks. Also, among all the

landmarks in the fashion items, the left and the right collar are the most easy to localize,

whereas, the left and right sleeve and the left and right waist are the most difficult to

localize in both the category-aware and category-agnostic learning. But looking at the

results of the category-aware learning, we can conclude that the difficulty in localizing the

left and right waist majorly comes from the upper body apparels. We can also conclude

that among all three architectures, simple stacked hourglass architecture and it’s variation

with PRM provide competitive results. Whereas, replacing residual units with PRMs

increases the number of parameters but doesn’t have a correspondingly significant effect

on the results. However, CPF variation of the stacked hourglass architecture doesn’t

provide better results over the simple hourglass architecture, whereas, it did perform better

for human pose estimation [34]. This might be because human pose estimation consists of

fewer deformations than the apparels and the features computed in the previous hourglass

might be more erroneous in apparels than in the human poses. So, while we expect those

features to strengthen our learning ability, they contribute more towards the error.

But since in the category-agnostic learning, all the eight landmarks are predicted,

irrespective of the category of the apparel, there are also some predictions on the random

locations of the image. This is because of the argmax function used in equation (3.4).

The heat-maps related to the landmarks that are not present in the apparel contain very-

very low confidence values but the argmax function gives the location containing largest

confidence value among those low ones. In the images that contain only one apparel,

these locations do not correspond to anything, hence are random, but in the images that

contain more than one apparel, they correspond to the landmarks of the other apparel.

e.g., If an image contains a person wearing pants and shirt, but is only annotated for the

shirt, the last two landmarks will correspond to the left and right ankles of the pants. This

does not impact the PDL scores since PDL is calculated only using the landmarks for

which annotations are present and visible. Clearly, a simple landmarks based architecture
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cannot handle such randomness. But when coupled with a detection task, the predicted

class can help to ignore the landmarks that do not belong to the predicted class. This way,

the predictions are more refined and accurate.

Table 10 and Table 11 list the results of the landmark detection when the architectures

are trained on multiple-tasks in parallel. The results indicate that the multi-task learning

does not have any impact on the PDL score of the landmark detection when compared as

a stand-alone task. We also plot the PDL vs normalized error for different landmarks as

shown in Figure 17. Here, we average the predictions of the symmetric landmarks like left

and right collars, sleeves, waist and hems respectively. Since these landmarks do not have

an absolute definite position on the apparels, we also compute the PDL score with η = 0.7.

These are listed in Tables 8, 9, 12, 13. Having an absolute position means having only

one pixel location that represents the landmark. e.g., In human pose estimation, location

of wrist or elbows have a very low scope for error, since these occupy small areas in the

image, but in case of fashion landmarks, the functional regions are of larger area, as in, a

collar or waist has a comparatively larger area where a landmark can be predicted. Hence,

we can consider the landmarks closer up-to η = 0.7 threshold as correct.

Figure 17: Normalized Error (NE) vs Percentage Landmark Detection (PDL) for on
standard stacked hourglass network using multi-task learning

Table 10: Category-agnostic PDL comparison on DeepFashion validation dataset with
multi-task learning at η = 0.5.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 86.9 87.1 77.2 77.8 78.4 78.2 85.1 84.1 81.9

SHGp 87.2 87.4 77.5 78.1 78.7 78.5 85.5 84.5 82.2

SHGc 86.5 86.7 76.1 76.9 77.2 77.2 84.3 83.0 81.1
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Table 11: Category-agnostic PDL comparison on DeepFashion test dataset with multi-
task learning at η = 0.5.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 86.9 87.1 77.2 77.8 78.4 78.2 85.1 84.1 81.8

SHGp 87.3 87.3 77.5 78.1 78.7 78.6 85.3 84.4 82.1

SHGc 86.2 86.6 76.2 77.5 77 76.9 84.1 83.1 81

Table 12: Category-agnostic PDL comparison on DeepFashion validation dataset with
multi-task learning at η = 0.7.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 94.1 94.0 86.0 86.1 86.0 87.5 87.5 91.5 89.1

SHGp 94.8 94.4 86.8 86.5 86.9 87.9 88.2 92.2 89.7

SHGc 91.6 91.4 82.6 83.5 83.6 82.8 87.8 88.0 86.4

Table 13: Category-agnostic PDL comparison on DeepFashion test dataset with multi-
task learning at η = 0.7.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 92.2 92.0 84.2 84.5 84.6 84.8 87.8 89.0 87.3

SHGp 92.4 92.6 84.5 84.9 85.0 85.4 88.0 89.6 87.7

SHGc 89.7 89.4 80.8 82.0 82.4 81.1 87.5 85.5 84.8

6.2.2 Landmark’s Visibility

Table 14 and Table 15 list PDLv scores for all the landmarks, when trained in parallel to

the landmark localization in a multi-task learning environment on validation and testing

set respectively. In the front facing images for upper-body and full-body apparels, the

occlusion around the collars usually come from the hair of the person wearing the appar-

els. In the upper-body and the lower-body apparels, the occlusion usually comes from

the overlap between the upper-body and the lower-body apparels. e.g., A person wearing

pants and shirt might have the shirt tucked in, which would cause occlusion if the image

is annotated with the upper-body apparel or an un-tucked shirt, which would cause oc-

clusion if the image is annotated with the lower-body apparels. As the results indicate,

the visibility flag of waist is more difficult to capture than any other landmark. In the

lower-body apparels, the occlusion comes from the kind of shoes the person is wearing.

Apart from that, the occlusion comes from the pose of the person in the image. Side poses

often hide the landmarks on one side of the apparels with other body parts. The stacked
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hourglass architecture is able to capture the visibility state of the landmarks with about

80% accuracy.

Table 14: PDLv comparison on DeepFashion validation dataset.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 83.2 82.1 83.1 81.8 72.3 71.7 84.8 84.9 80.5

SHGp 83.4 82.3 83.4 81.9 72.8 71.9 85.2 85.2 80.8

SHGc 82.2 80.9 81.9 80.5 70.9 70.5 83.8 83.9 79.3

Table 15: PDLv comparison on DeepFashion test dataset.

Method l.collar r.collar l.sleeve r.sleeve l.waist r.waist l.hem r.hem ∑

SHG 81.5 80.1 81.9 80.7 70.6 69.8 85.9 86.0 79.6

SHGp 81.7 80.3 82.2 80.8 70.8 70.2 85.9 86.2 79.4

SHGc 80.4 78.9 80.8 79.4 69.6 69.6 84.8 85.0 78.5

For the final results, we check the predicted class of the landmarks and display the

landmarks associated with that class. Figure 18 represents that ground truth and predicted

analysis on many images from the validation and test datasets. In our experiments, we

observed that the localization of fashion landmarks in the images as well as their visibility

states go hand in hand. As discussed earlier, occlusion of the landmarks is mainly of two

types. One, if the landmarks are in the image but are occluded by something as shown in

Figure 18 (d, e, f). In this case, the ground truth location is available with the visibility flag

set as occluded, which is indicated as green in the images. In the other case, the landmarks

are present for the apparel but are truncated in the image, as shown in Figure 18 (r). In

this case, the ground truth values for the location are unknown and are set to zero. In

the former case, since we deem a landmark prediction as correct if it lies within a certain

threshold within the ground truth location, it is possible to have some offset between the

ground truth and the predicted location, as in the landmarks are not predicted with a pixel

wise accuracy. On qualitative evaluations of these predictions, we noticed that the network

was able to learn subtle patterns in occlusion and set the visibility flag accordingly. e.g.,

While predicting the right and left collars, most of the occlusion in the front facing and the

side facing images come from the hair, and there is often a small offset between the collar

locations covered by the hair and the collar locations not covered by the hair. Images in

Figure 18 (d, g) compare the ground truth and predicted landmarks on some upper-body

apparels and as it turns out, the visibility state is often predicted correctly with respect

to the predicted location of landmarks. We observed similar patterns in the predictions

of the landmarks where occlusion can be caused by some body parts. e.g., Images in

Figure 18 (f, i) have ground truth occlusion on the landmarks on the waist because of the
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back, arms and hands, but when the landmark locations are predicted with an offset, at a

place that doesn’t have such occlusion, the visibility state of the landmarks is predicted

accurately. These would amount to some loss of quantitative accuracy in the visibility

states of the landmarks, while these predictions are qualitatively sound. This indicates

that the network is clearly able to generalize on the common patterns of occlusion and

produce accurate results. In addition to that, at some places, the faulty ground truth

locations of the landmarks were also corrected. e.g., Images in Figure 18 (j, k, l) have

more accurate predicted landmarks than the ground truth landmarks.

On the other hand, some error in the predictions come from the presence of upper-

body apparels and the lower-body apparels in the same image. In category-agnostic learn-

ing, before post processing the landmarks as per the predicted class, the network predicts

all 8 landmarks for all types of apparels. But since in DeepFashion, only one apparel is

annotated in an image, the images that contain both upper-body apparels and lower-body

apparels have predictions for all the landmarks. As shown in Figure 18 (m, p), the image

contains landmarks of the upper-body apparel, but the network treats it like a full-body

apparel and contains correct landmark predictions for the hems as well. Similarly, Fig-

ure 18 (n, q) has a lower-body apparel classified as full and upper-body apparel. While

calculating the accuracy of the predicted landmark locations, we only consider the visible

landmarks, so this does not impact the PDL accuracy for the landmarks, but it does impact

the accuracy of the visibility states of all the landmarks. This also shows the scalability of

this network to a dataset that contains the annotations of the landmarks of all the apparels

in the images.

6.2.3 Apparel Detection

Table 16 represents apparel detection AP score for all the landmarks, when trained in

a multi-task environment on test set. We also compare the results with standard SSD

and R-CNN. We trained these architecture using transfer learning with the weight values

obtained after training on COCO dataset [90]. Our multi-task architecture trained from

scratch does better than the other traditional object detection architectures. This is because

of the rich features obtained via stacked hourglass architecture and more attention owing

to to multi-task learning. We also compare the AP score of the multi-task learning with

respect to different pose variations. As shown in Table 17, the AP scores are pretty good

for normal, medium and large poses but the scores are very low for medium zoom-in and

large zoom-in poses. Hence, the medium-zoom in and the large zoom-in poses are the

most difficult to detect and classify correctly.
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Table 16: The AP score for apparel detection on test set.

Method upper lower full AP

SHG 59.8 61.2 52.7 57.9

SHGp 61.0 63.2 53.2 58.9

SHGc 58.4 60.4 51.9 56.1

SSD 53.2 55.7 50.8 53.0

R-CNN 53.2 55.7 50.9 53.2

Table 17: The AP score for apparel detection on different variations in the test set.

Variation upper lower full AP

Normal 72.3 70.0 79.4 73.9

Medium 80.5 75.1 73.7 76.4

Large 86.2 69.2 70.5 75.4

Medium zoom-in 33.7 27.7 20.0 27.1

Large zoom-in 55.3 63.6 53.3 57.4

As described earlier, the DeepFashion dataset contains annotation of only one apparel

in an image, hence the images that contain both upper-body and lower-body apparels

are subject to faulty detection as in Figure 18 (m, n, o, p, q) because the network has

generalized over all the categories and would provide stronger detection for the more

prominent apparel category in the image. However, the parameters behind decision of

this prominence are unknown, it could depend upon the size the apparels are occupying

in the image or on the texture or the dominant features that it has generalized on. We also

noticed that many upper-body apparels have been miss-classified as full-body apparels.

This could be because these upper-body apparels, when paired with certain lower -body

apparels, might look similar to full-body apparels as in Figure 18 (m). This, on one

side indicates the ability of the network to learn generalized spatial features of the full-

body apparels, but also indicates the difficulty to distinguish between the upper-body

and full-body apparels. But in addition to these miss-classifications, we noticed that the

predicted bounding boxes are more tightly bounded than the ground truth bounding boxes.

Figure 18 (d, f, l, r) indicate some examples where the predicted bounding boxes more

tightly localize the apparel than the ground-truth bounding boxes.
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Figure 18: Sample images from test and validation dataset of DeepFashion. Left images
in the image pair indicate the ground truth and the right images indicate the predicted
apparel analysis.

In this chapter, we discussed the implementation details of the proposed architectures
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and evaluated and compared them for fashion landmark detection, the visibility states of

the landmarks as well as apparel detection in the DeepFashion dataset. We presented both

qualitative and quantitative analysis of the results. The results indicate the applicability

of the proposed methodology in fashion domain. In the next chapter, we will discuss the

future work and the scalability of these approaches.
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Chapter 7

Conclusion and Future Work

We explored three architectures to detect fashion landmarks on apparel images. We also

evaluated the category-aware and category-agnostic training of different apparel cate-

gories. The results conclude that among all three approaches, stacked hourglass is the best

fit to solve this problem. We also conclude that, when compared between category-aware

and category-agnostic learning for the landmarks on the fashion apparels, category-aware

learning only provides a small benefit but introduces thrice the number of parameters to be

learnt. So, even when the landmarks are sparse, all the stacked hourglass architectures can

learn to detect the landmarks with a competent accuracy. We also conclude that stacked

hourglass architecture with pyramid residual modules gives the best accuracy but intro-

duces 19% more parameters to learn. Among all the hyper-parameter choices that we had

to make in this architecture, a stacked-hourglass architecture with 2 stacks and 15 resid-

ual modules, operating at the input image of size 256×256, and producing heat-maps of

size 64× 64 gives a good trade-off between the number of parameters to be learnt, the

training time and the final accuracy on the test set. Of course these settings might change

given a different dataset. This implementation setting gives an approximate position of

the landmark that is offset by a certain value from the ground-truth landmark. Since these

landmarks are on the functional region of clothes, certain magnitude of offsets still pro-

duce the landmarks on the approximate locations. This architecture is able to discern the

subtle patterns in occlusion when it comes to the visibility states of the landmarks. Using

this architecture, we can clearly predict the occlusion when caused by hair or other parts

of the body. In some of the cases, even the occlusion caused by the clothes belonging to

other parts of the body are also clearly distinguished.

Stacked hourglass architecture computes rich features for a variety of tasks. This ar-

chitecture has already been used in solving complex tasks like facial landmark detection
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and human pose estimation. But our successful experiments with apparel detection in-

dicate that these features are rich enough to learn any complex task individually or in

addition to the landmarks or key-points. The computed features can also be used for

segmentation or as a generator network in GAN architectures. Both segmentation and

generators in GANs contain an encoder-decoder structure, for which the output features

are of the same resolution as the input features. This stacked hourglass architecture can

be modified for segmentation by computing the final features maps of the input resolution

for each category of the objects in segmentation task. In GAN networks, the final output

of the generator is a synthetic image. Such modification is also easy to implement by just

changing the depth of the output feature maps to 3, corresponding to the RGB channels.

This indicates the versatility of this architecture to be applied for different tasks.

This fashion analysis using stacked hourglass architecture is limited by the dataset

used in this work. DeepFashion has the annotation of only one apparel per image, whereas

this is not a real-time scenario. DeepFashion2 [27] is a similar recently released dataset

for the similar task. DeepFashion2 has about 800,000 images, richly annotated with 13

categories of apparels. It contains a bounding box as well as a segmentation mask for

each apparel in the image. Whereas, DeepFashion has only eight landmarks, DeepFash-

ion2 dataset has about 54 landmarks on whole, annotated for 13 categories of apparels.

These landmarks provide a lot more discriminative analysis than mere eight landmarks. In

addition to pose, it has variations with respect to scale and occlusion, making this dataset

much more realistic to work with. As explained earlier, this stacked hourglass architec-

ture can also be used to perform segmentation as well. The apparel segmentation can

be done in parallel to apparel detection and apparel’s landmark detection, by simply by

adding another set of 13 feature maps to be learned, corresponding to the 13 categories of

apparels. In addition to that, in order to detect multiple apparels in the image, this stacked

hourglass architecture can also be used to compute the embedding of each corner as per

[84] in order to group the corners that belong to the same apparel. The 54 landmarks can

be learnt in a category-agnostic manner as we did for DeepFashion. Hence there is a lot

of work that can be done in this domain, using this very architecture but a more advanced

dataset.
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