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Abstract

A Study on Routing and Scheduling of Hazardous Materials in Railway
Transportation

Omar Abuobidalla, Ph.D.

Concordia University, 2019

Railway transportation of hazardous materials including Toxic Inhalation Hazard, is

crucial to North American economy. Although railway companies have favorable safety

records in moving hazardous materials shipments, the possibility of spectacular events re-

sulting from multicars incidents, however low, does exist, and the consequence can be poten-

tially catastrophic in multiple fatalities. The rail disaster in Lac-Mégantic, Quebec, resulted

in 47 fatalities and around $1.5 billion damages in 2013, is an example of low-probability

high-consequence event. In this dissertation we aim at the development of analytical ap-

proaches considering the risk associated with hazardous materials in railway transportation.

We study three versions of trip plan problems in the presence of hazardous materials, de-

noted as hazardous materials trip plan problems. In the first part of this dissertation we

incorporate the blocking and train makeup decisions into the hazardous materials trip plan

generation process, while limiting the total population exposures and environmental dam-

ages below the given thresholds. In evaluating the risk, we use aggregate measures, i.e.,

population exposures and environmental damages. We propose a non-linear mixed integer

programming formulation for the considered problem. The solution of the model is NP-

hard. In order to solve realistic size problem instances, a heuristic method is proposed by

decomposing the problem into freight-to-block and block-to-train assignment problems. We

then investigate more realistic hazardous materials trip plan problems by relaxing some

of the assumptions. In the second part of this dissertation we incorporate risk-spreading
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functions into trip plan generation process and train scheduling decisions. For each risk-

spreading function, we present a mathematical formulation and then we design a heuristic

method to solve realistic size problem instances. We continue this study by introducing

joint hazardous material trip plan and pricing problems. We also relax the assumption of

the information of the customer requests are known in advance. Accordingly, we introduce

different categories of customers with the definition of specific treatment for each of them

including accept/reject basis and particular delivery and price regulations. In particular,

we grouped customer requests into two classes as follows: (a) traditional customers, who

sign long term contracts with the carrier, must be fulfilled by the carrier’s own services,

and their delivery and price quotations are set in advance and not subject to change; and

(b) irregular customers, who make request for a carload moves less frequently and on an

irregular basis, maybe outsourced/rejected because of (1) lack of train capacities, (2) addi-

tional risk exceeds the given risk thresholds, or (3) service level requirements. We propose

two-phase heuristic to solve the considered problem. In the first phase, we solve a deter-

ministic transportation planning and train timetabling problem for the known demands in

advance. In the second phase, an optimization-based problem is built and solved at the

arrival of the new request. Eventually, the dissertation ends with conclusion and further

research recommendations.
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Chapter 1

Introduction

1.1 Overview

Railway transportation of hazardous materials (hazmat) including Toxic Inhalation Haz-

ard, is crucial to North American economy supporting the national supply chain. Railway

carriers transport a large quantity of hazardous materials in addition to transporting non-

hazmat freights. According to recent statistics in 2012, railway companies transported

around 111 million tons of hazmats in the United States (DOT, 2017b) and 26 million tons

of hazmats in Canada (Searag et al., 2015). The impact potentially harmful to human

health and environment, in the event of derailment or accident causing hazmat releases, is

quite large. According to the U.S. department of transportation, the annual cost of haz-

amts release incidents in the Federal Railroad Administration (FRA) railway is about $19.6

million as shown in Figure 1.1. In North American, the two most frequently shipped haz-

ardous materials that become airborne in the event of an accidental release are chlorine and

ammonia. Chlorine is mainly used for purifying potable and wastewater and also used in as

chemical intermediary in different industries for goods ranging from PV pipes to shampoo.

Ammonia is a commercial fertilizer and mainly used in agricultural farms. Some of the haz-

mat trains are regularly routed near the urban areas. Train accidents or derailments pose

a significant security threat (Branscomb et al., 2010). The rail disaster in Lac-Mégantic,

Quebec, resulted in 47 fatalities in 2013, is an example of low-probability high-consequence

1
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Figure 1.1: Accident/Derailment damages per mode.

event.

Railway operation processes in North America and European railway freight transporta-

tion differ from each other. In North America, carload service segment continues to be one

of the rapidly growing railway business of the transportation industry (Van Dyke and Meke-

ton, 2015). One of the prominent features of North America’s railway industries is to use

double consolidation, railcars are moved together to make the blocks and then blocks are

grouped to make the trains. At the tactical level of planning, railway operators often de-

velop blocking plans based on the expected demands. A large number of freight cars are

grouped into blocks for economic and operational reasons (Barnhart et al., 2000). A block

is a group of railcars that are assembled and move together from a common origin to des-

tination. At the block destination yard, the block is separated and the freights are either

delivered to their end customers or regrouped to build a new block. In many cases, blocks

are pulled from its origin to destination yard by a single train service. However, some blocks

may require to change train service through intermediate terminals. Solving train routing
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and scheduling problem must determine train routes, timetables, and train frequencies de-

cisions (Khaled et al., 2015) as well as consolidate the blocks into services known as a train

makeup plan (Jha et al., 2008). In classical trip plan problem, a set of commodities must

be picked up at their origins, classified at their release times and delivered at their desti-

nations with required time periods by a sequence of train services. Railcars in a block may

pass some intermediate yards but will not be reclassified until the block has been delivered

to its destination. The block destination might represent the end point of the journey of

some railcars or an intermediate stop in the path of others that will be sorted again and

regrouped to subsequent blocks. Customers usually require different service requirements

in term of transit time and reliability (Kwon et al., 1998). In most cases, price and delivery

quotations are set by contract between the customer and the carrier and are not announced.

These quotations, specified based on the amount of supply and demand and relationship

between negotiation parties, are not subject of change. However, if a customer requires an

addition service, the carrier negotiates the price and delivery quotations and other terms

of transportation including any special handling or operational requirements for hazmat.

In some cases, a scheduled shipment may be also postponed to release train capacity for

other shipments requiring higher service levels or to reduce the transport risk associated

with hazmat transportations (if any). Trip plan can be classified into static and dynamic

trip plans. In static trip planning problem, a blocking path and the sequence of blocks to

which a commodity is assigned, are defined based on the class, the origin and destination of

the commodity. A shipment is assigned to the earliest available train service at the terminal

if the capacity of train is satisfied. If a train has reached its capacity limit, it may cause

delays until the next train service is available. In dynamic planning, the railway operator

may generate the trip plan of the commodities considering train capacities and may be

frequently revised the schedule of the already existing scheduled demands when new infor-

mation revealed, i.e., new customer request arrives. Optimized solutions of train planning

problems based on integrated mathematical models are typically preferred to those based

on a sequential solution approach (Zhu et al., 2014). A summary of the process of designing

operation plan in North America railway industries is given in Figure 1.2.
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Figure 1.2: Process of designing operation plan.
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The risk associated with an accidental or incident releases of hazmats is the main dif-

ference in transportation of hazmats from the regular shipment. The prevailing studies are

assessment of the transport risk associated with a shipment and then obtaining the set of

routes that minimizes the risk. The resulting minimum risk route is typically compared

with the minimum cost route, assuming that carrier taking into account the risk. Vari-

ous risk assessment functions have been proposed in Erkut and Verter (1998). The most

popular risk assessment function used is the traditional risk model, which is defined as the

product of two quantities: (a) the probability of an incident that cause hazmat releases;

and (b) the consequences of the incident. Saccomanno and Chan (1985) and Abkowitz

et al. (1992) consider the probability of having a hazmat incident along its itinerary. This

risk assessment is more suitable for hazmats with relatively small consequences. Batta and

Chiu (1988) define the transport risk as the number of people living within a threshold

distance from the route. This model does not include the probability of an incident and it

is more suitable for hazmats with relatively low probability of high consequences such as

TIH materials. In this dissertation, we focus on hazardous materials that become airborne

in the event of an accidental release. We use the consequence to measure the transport risk

associated with hazardous material transportations. In particular, we use the air dispersion

models, Gaussian Plume Model and Box Model, for population and environmental risk cal-

culation. The former quantity is the number of inhabitants involved in the consequential

effect of a release from a hazmat transport derailment, whereas the latter measure is the
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total environmental damages due to hazmat leak. The consequences depend on a number

of factors including number of hazardous materials cars (Verma and Verter, 2007), train

speed (Fang et al., 2017), train length (Bagheri et al., 2012), and placement of hazardous

materials cars (Cheng et al., 2017). The dispersion of pollutants with the incident area is

a function of weather parameters such as the wind direction, wind speed, and atmospheric

stability. The immediate dangerous life and health level (IDLH), defined as the exposure

to airborne contaminants that is likely cause death or immediate or long term health effect,

depends on the chemical characteristics of hazmat and the volume of the hazmat in train

(Verma and Verter, 2007). According to the National Institute for Occupational Safety

and Health (NIOSH), the IDLH for propane exposure are 4,200,000 ppm for fatality and

600,000 ppm for injuries. At certain IDLH, the operator needs to identify a safety distance

threshold.

Optimizing mathematically the train operational planning process will be more benefi-

cial when the trip plan problem considers the risk associated with hazmat freights trans-

portation. In such cases, the operator also needs to decide (a) frequency of train services and

trip plan of freights, (b) positions of hazmat freights in the blocks, (c) sequence of blocks on

the train services, and (d) speed of each train service and schedule of each freight in order

to reduce the transport risks associated with hazmat transportation while satisfying oper-

ational constraints. Hazmat shipment schedule may also need to be frequently revised due

to changes of population sizes and/or atmospheric conditions along the routes. Following

a well defined freight operation plan may not only helpful in reducing the operation costs

but also may diminish the transport risk associated with hazmat transportation (Bersani

et al., 2016).

In many countries, hazmat transportation is typically regulated by the governments

due to the associated population and environmental risks with their transportations. It

is common to assume that there is a regulator that manages the hazmat transportation

on the network under its jurisdiction. The regulator, in contrast with the single carrier,

usually considers a hazmat transportation problem that involves multi-commodities, mul-

tiple origin-destination demands, and multiple carriers route selection decisions. The main
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Figure 1.3: Hazmat network design vs Toll setting.

concern for a regulator is to limit the risk induced by the hazmat transportation over the

population and the environment. In addition to the minimization of the total population ex-

posure, the regulator may also promote risk spreading over the population and environment.

As the regulator often does not have the right to impose specific itinerary to carriers, it can

only mitigate transportation risk by means of strategies regulate the use of train segments

for hazmat shipments. Two possible strategies are used. In the first strategy (illustrated

in the left side of Figure 1.3), the regulator has the right to close certain train segments to

hazmat trains or to limit the amount of hazmat freights to a given risk thresholds (road

transportation (Esfandeh et al., 2017; Kara and Verter, 2004); rail industry (Chin et al.,

2009)). In the second strategy (illustrated in the right side of Figure 1.3), the regulator

uses itineraries or links tolls to deter the carriers from using certain train segments and

consequently motivates them to route their shipments on less risky links (road transporta-

tion (Marcotte et al., 2009); rail industry (Assadipour et al., 2016)). In this approach, the

regulator motivates the carrier from using less risky train services and the carrier avoid any

increase in the transportation costs. In this dissertation we study three versions of the haz-

ardous materials trip plan problems from a single railway operator perspective. A railway

6



operator, a central decision maker, is in charge to manage various customer requests for a

carload moves within a railway network. The operator receives a sequence of future requests

for carload moves both hazmat commodities as well as regular commodities. In compliance

with the railway policy and government regulation, the operator assesses the risk associated

with hazmat transportation when generating trip plans in addition to the costs for serv-

ing customer requests. Details of the three hazardous material trip plan problems will be

discussed in subsections 1.2.1-1.2.2.

1.2 A study of hazardous materials trip plan problems

The purpose of this thesis is to provide analytical approaches for planning railway

freights including regular and hazmat commodities. In this dissertation, we study three

versions of Hazardous Materials Trip plan Problems (HTPs). Each version of HTPs in-

volves different features, risk functions, assumptions and decision variables. In the classical

HTPs, a set of commodities must be picked up at their origins, sorted at their release times

and delivered at their destinations with required time periods while the transporting risks

associated with hazardous materials below the given risk thresholds. The three versions of

HTPs are sufficiently distinct in required inputs, outputs, solution time, and planning level.

It is important to understand both, the similarities and differences between the three rail

freight transportation planning problems.

1.2.1 A study of HTPs with blocking decisions

Rerouting of hazmat commodities is one of the main issues in hazmat transportation

literature (Glickman et al., 2007). Traditional problem solving approaches without con-

sidering the blocking and train makeup decisions may have limited capabilities to adapt

operation plans. Existing literature revealed that blocking, train makeup, and rail freight

transportation decisions in freight railway operations are interrelated. However, research

on hazardous materials trip plan models incorporating explicit blocking and train makeup

plans is limited (Erkut et al., 2007; List et al., 1991). Chapter 2 aims to answer the
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research questions: (a) how to determine simultaneously the blocking, train makeup and

freight transportation plans such that the total costs from serving the demands is minimized

while the population and environmental risks below the given thresholds and (b) what is

the effect of incorporating the hazardous materials demands into trip plan generation pro-

cess. To find answer to these questions, in the first part of this dissertation we propose a

compact mathematical model to integrate the blocking and train makeup decisions into trip

plan generation process denoted as HTPs with blocking decisions. Solving the HTP with

blocking decisions is to make simultaneously the blocking, train makeup, and freight trans-

portation decisions to provide the required services to customers and to minimize total cost

including the costs of earliness, tardiness, classification, and holding cost associated with

fulfilling all the demands. The risks associated with transporting hazmats are considered

by imposing risk threshold constraints. We make of use of aggregate measures of risk, i.e.,

population exposure and environmental impacts. The Gaussian Plume Model (GPM) and

Box Model (BM) for air dispersion are used for population exposure and environmental

risk calculation. For efficient computation, we use piecewise linear functions to substitute

the nonlinear hazmat risk functions in GPM and BM. The solution of the problem is to

determine for each customer request (a) the itinerary that must follow from its origin to

destination (if served), (b) the sequence of trains that it will be assigned to along the route,

and (c) the blocks used to transport it for each train leg along its route (known as the

blocking path). This makes the HTPs with blocking decisions more challenging than clas-

sical HTPs as the routing and scheduling decisions of the demands must be simultaneously

determined with blocking and train makeup plans. Hence, HTPs with blocking decisions

generalize the HTPs as they incorporate the blocking decisions to the trip plan generation

process. In presenting the model, a multi-layer approach is followed similar to that in Zhu

et al. (2014). The model presented is formulated considering three layers corresponding

to services, blocks and railcars, respectively. An itinerary of a demand is a path in the

three-layer network. We design two matheuristic methods to solve the considered problem

by decomposing the problem into freight-to-block and block-to-train assignment problems,

which can be solved efficiently. While Chapter 2 aims to find a comprehensive operational
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plan for serving regular and hazmat commodities such as the total risks below the given

thresholds, the distributing of the transport risk over population is the subject of Chap-

ter 3. We also aim to answer the following research questions: (a) what is the effect of

incorporating risk distribution function into trip planning process, (b) what is the best

risk distribution function to equitable spread the risk over the population, and (c) how the

railway carriers can reach high level of risk spreading while the total population exposure

within a given threshold.

1.2.2 A study of HTPs with train scheduling decisions

The classical HTPs suffers from some limitations. The trip plans generated by the

operator are typically made without taking into account risk spreading function. It may

happen that certain population of the transportation network tend to be overloaded with

hazmat transportations, even if the total transport risk is below the given thresholds. This

may result in a significant increase of the incident probability. Risk spreading might be

interpreted as a further objective to be attained, without overloading any train service

or part of the network. Another limitation is that the classical HTPs assume the train

scheduling decisions are given. As mention earlier, the population density and atmospheric

stability parameters typically vary over time. When the freight car routing and scheduling

problems are solved separately, it may be challenging to find a timetable that satisfies a

set of operation constraints and risk thresholds constraints. A chance to overcome those

limitations is to consider risk spreading function and train scheduling decisions into trip plan

generation process. Taking proper train scheduling plan is not only important to reduce

the operation costs for serving demands (Ireland et al., 2004) but also may decrease the

transport risk associated with hazmat transportation (Fang et al., 2017).

In the second part of this dissertation we investigate the integration of train scheduling

decisions into trip plan generation process considering risk spreading function, refereed to

as HTPs with train scheduling decisions. In this version of HTPs, we relax the assumption

of the schedule of the train services is given. We also introduce the risk-spreading functions

to distribute the risk over the population. The main concern for the operator is controlling
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the risk exposed to the populations. We consider the problem of minimizing the weighted

sum of the cost of serving the commodities plus risk distribution function using well-defined

measures, either the maximum population exposure, the difference between the maximum

and minimum risk, or the mean absolute deviation of the risk while limiting the population

exposure below the given risk thresholds. The solution of the problem is to determine

for each demand (a) the itinerary that must follow from its origin to destination yard (if

not outsource) including the blocking path, (b) the sequence of trains that it must assign

along the route so that the trains capacities constraints, and risk thresholds are satisfied,

and also determines the timetable of planned train services. We propose non-linear mixed

integer programming models and a heuristic method for preparing the shipment plans and

determining the schedule of train services. The heuristic generates itineraries associated

with much higher levels of risk-spreading quantity than those dispatching strategies without

considering risk-spreading function. Numerical examples are provided to study and analyze

different risk distribution functions.

1.2.3 A study of HTPs with pricing decisions

The above versions of HTPs made some important assumptions. The list of demands

information is assumed given in advance and deterministic. In fact, transportation requests

fluctuate during the actual planning. For example, some demand requests revealed at midst

of the operation. The operator may revise the itineraries for the already existing scheduled

demands to reduce the train capacities for certain train services or the risks associated

with hazmat transportation (if any). Another limitation is that the classical HTPs ignore

the revenues generated from serving the requests and focus on costs resulting from routing

and scheduling the demands. In general, this assumption expresses the implicit hypothesis

that the total costs from rerouting of hazmat demands will be compensated by the total

revenue generated. Such an assumption does not necessarily hold, and incorporating pricing

decisions have important implications in the total net profit obtained (Crevier et al., 2012)

and population exposure as well (Bianco et al., 2012; Marcotte et al., 2009).

10



In the last part of this dissertation, we study a freight car scheduling and train dispatch-

ing problem involving hazmat transportation. In many railway companies, rail shipment

prices are set by contract between the customer and the carrier and are not announced.

The price quotations are not subject to change. However, if the customer requires to ship

extra commodities, the carrier may increase the shipping rates to compensate the addi-

tional loads and risk associated with hazmat transportation (if any). Chapter 4 aims to

answer the following research questions: (a) what are the impact of accepting additional

hazardous materials commodities after preliminarily schedules have been developed for the

already existing scheduled demands, (b) what is the best strategy to deal with dynamic

planning of operations in response to changing demands after preliminary schedules have

been developed for hazardous materials demands and (c) what are the economic benefits

from adopting dynamic planning of operations in response to changing demands. To an-

swer these questions, we consider different categories of customers with the definition of

specific treatment for each of them, including accept/reject basis and particular delivery

and price regulations. In the considered problem, customer requests known in advance will

be scheduled first. Additional requests, after the preliminary schedule is generated, may be

accepted from new customers. Depending on available capacities, the generated schedule,

and the additional transport risk, new customers may be quoted with different prices and

time to deliver. We propose two-phase heuristic solution method to solve a real-size problem

instances. In the first phase, we solve the integrated train timetabling and deterministic

freight transportation problem for the known requests in advance. The solution determines

the timetables of the train services and best demand-itinerary assignment decisions. In the

second phase, a real-time optimization problem is built and solved at the arrivals of new

freight requests, denoted as HTPs with pricing decisions. Numerical examples are provided

and managerial insights are drawn to compare four pricing strategies. A summary of the

freight car scheduling and train dispatching problems and their main features is given in

Table 1.1.
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Table 1.1: A summary of the considered HTPs.
Main features HTPs with HTPs with HTPs with

blocking decisions2 train scheduling decisions3 pricing decisions4

Tactical decisions
train scheduling plan X X

blocking plan X
train makeup plan X

Operational decisions
freight-to-block decisions X
freight-to-train decisions X X X

Pricing decisions
part of the decision process X

Objective
pure cost-oriented X X X
pure profit-oriented X

risk spreading function X
Constraints
train capacity X X X
block capacity X
track capacity X X

population exposure threshold X X X
environment damage threshold X

service commitment X X
Risk reduction strategy
rerouting of hazmat risk X X X

partner service X X X
hazmat network design(blocking) X

scheduling decisions X X X
pricing decisions X

Solution method Xa Xb Xc
aMatheuristic method; bheuristic method, cPhase 1: a matheuristic method and Phase 2: heuristic method.

1.3 Scope and objectives

In this dissertation we aim at the development of analytical approaches considering the

risk associated with hazardous materials transportation from a single carrier perspective.

In particular, we aim to introduce and study: (a) HTPs with blocking decisions, (b) HTPs

with train scheduling decisions, and (c) HTPs with pricing decisions. The specific objectives

of this research are summarized as follows:

• To study the HTPs with blocking decisions. The problem integrates the blocking,

train makeup, and freight routing and scheduling decisions. We present a nonlinear

mixed-integer programming (NMIP) and propose two matheuristic methods to solve

the HTPs with blocking decisions.

• To study the HTPs with train scheduling decisions. We present a nonlinear mixed-

integer programming model and propose heuristic method to solve HTPs with train

scheduling decisions.
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• To study the HTPs with pricing decisions. We present a nonlinear mixed-integer

programming and propose two-phase heuristic to solve the consider problem.

1.4 Co-authorship statement

I, Omar Awni Abuobidalla, hold a principal author for all the manuscripts chapters

in this dissertation. However, each of the manuscripts is co-authored by my supervisors,

Prof. Mingyuan Chen and Prof. Satyaveer S. Chauhan, whose contributions have greatly

facilitated the development of the ideas in the manuscripts, the development of solution

methods, the managerial insights of the computational experiments and the manuscripts

writing.

Bibliographical note. Chapter 2 contains results from Abuobidalla et al. (2019c).

Also, the results was presented at (a) 2017 OPTIMIZATION DAYS Conference, (b) 2018

OPTIMIZATION DAYS Conference and accepted at 2017 International Conference on Op-

erations Research (ICOR). Chapter 3 contains results from Abuobidalla et al. (2019b) and

to be presented at 2020 OPTIMIZATION DAYS Conference and the 22nd Conference of

the International Federation of Operational Research Societies (IFORS 2020). Chapter 4

contains results from Abuobidalla et al. (2019a) and to be presented at 2020 Canadian

Operational Research Society (CORS) Conference.

Newspaper interviews myself with Dr. Mingyuan Chen and Dr. Satyaveer S.

Chauhan. (a) Danger rerouted: A Concordia engineering project could limit the impact of

rail accidents available at (Concordia website) http://www.concordia.ca/cunews/main/stories

/2016/04/18/new-jmsb-research-could-limit-impact-of-rail-disasters.html

(b) Concordia University engineers are hoping mathematical model will help rail operators

avoid potential problems available at (CBC website) https://www.cbc.ca/news/canada/montreal/lac-

megantic-four-years-researchers-prevention-1.4191819

(c) Predicting rail disasters with math which has been picked up by several news media

http://www.concordia.ca/cunews/main/items/2017/7/10/newsmaker.html

(d) Record amount of Canadian oil exported by rail raises safety concerns (Global News)
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https://globalnews.ca/news/4824795/canadian-oil-exports-rail-safety/

Appreciation letter (August 2017) from president and vice-chancellor of Con-

cordia university (Prof. Alan Shepard).

1.5 Contributions of this thesis

This thesis presents a number of main contributions in modeling and methodology that

differentiate our work from the existing literature. First, we consider simultaneous decisions

regarding blocking, train makeup, and freight transportation plans in the presence of haz-

mats commodities to reduce hazmat transport risk. We proposed a compact mathematical

formulation to integrate the blocking and train makeup plans into trip plan generation pro-

cess. The problem captures most features of the operational planning problem in real-world

railway industries operating on double consolidations. On the other hand, the problem is

still a simple version of real-world railway planning problem in that it also need to integrate

issues such as empty rail car distribution plan, the sequence of hazmat in a block and the

sequence of blocks in train, and locomotive assignment problem. A heuristic method is

developed to solve a real-size problem instances by decomposing the original problem into

freight-to-block and block-to-train assignment problem in reasonable computation times.

Secondly, we introduce a risk spreading function based on variability to avoid overloading

of the transport risk on a certain population zone. The carrier’s objective function incor-

porates both the cost of serving the commodities and risk spreading function. For each risk

spreading function, we propose a nonlinear mathematical model and then design a heuristic

method to solve a real-size problem instances. We also assess the tradeoffs between the

total cost of serving the demands and the risk spreading. Thirdly, we introduce hazardous

material trip plan problem and pricing decisions for new incoming requests. We develop

a methodology for joint capacity allocation and dynamic pricing problems considering the

transport risk associated with hamzat transportation and design a heuristic to solve real-

size problem instances. Different pricing strategies are compared considering the transport

risk associated with hazardous material transportation.
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The title of the manuscripts resulted from this dissertation and potential contributions

are given below:

A Matheuristic Method for Planning Railway Freight Transportation with

Hazardous Materials

(This manuscript has been published in Journal of Rail Transport Planning & Management, Vol.10,

2019, pp. 46-61. https://doi.org/10.1016/j.jrtpm.2019.06.001.)

• Introduce hazardous materials trip plan models incorporating explicit blocking deci-

sions which captures most features of the operational planning problem in real-world

rail companies operating on double consolidations and design a heuristic to solve HTPs

with blocking decisions.

• Develop a methodology to determine a comprehensive operational plan including the

(a) blocking, (b) train makeup and (c) rail freight transportation planning problems

in the presence of hazmat commodities.

• Provide railway operators with analytical approach to plan regular and hazmat freights

while considering the risk associated with hazmat transportation.

• Integrate environmental damage and population exposure into trip plan generation

process as research on this area is limited.

• Use piecewise linear functions to substitute the nonlinear hazmat risk functions in

Gaussian Plume Model and Box Model for efficient computations.

An Integrated Train Scheduling and Hazardous Materials Trip Planning

Problem

(This manuscript is under review in International Journal of Rail Transportation (September 2019))

• Develop a methodology to determine an operational/tactical plan including the (a)

schedule of train services and (b) trip plan of the commodities while spreading the

transport risk over population, which in turn could be a very valuable tool for railway

operators.
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• Develop a risk spreading function based on variability of population exposure to dis-

tribute the risk more equitably in railway network and design a heuristic to solve

HTPs with train scheduling decisions. We compared the results from different risk

spreading functions.

• Integrate different risk reduction strategies into trip plan generation process such as

rerouting of hazmat and using the partner services which in turn could be a very

useful tool for practitioners for cases where they face scarce resources and/or lim-

ited risk thresholds. Each strategies has its beneficial in reducing transport risk and

corresponding cost of implementation.

An Integrated Hazardous Materials Trip Plan Problem and Pricing Decisions

for Railway Supply Chain System

(This manuscript is under review in Research in Transportation Business & Management (August

2019))

• Support the development of a risk-based approach for the rail operators to decide

the price and delivery quotations for new customer requests which facilitates the

negotiation process between the operator and customers.

• Develop a methodology for joint capacity allocation and dynamic pricing problems

considering the transport risk associated with hamzat transportation and compare

different pricing strategies.

• Develop a scheduling tool to help railway operators optimize the routing and schedul-

ing of regular and hazmat commodities and dynamically allocate the shipment to train

sequences as information of demands are revealed.

• Assess the savings by comparing the schedules developed using FIFO with the schedule

produced by the proposed procedure.
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1.6 Organization of the thesis

This thesis is organized as follows (illustrated in Figure 1.4). Chapter 2 presents haz-

ardous materials trip plan problem with blocking decisions and introduce two matheuristic

methods and present several numerical examples. Section 2.3.1 gives the formal definition

of the problem. Section 2.3.2 presents the modeling assumptions and developed a mathe-

matical model with detailed explanations. The developed solution procedure, including a

preprocessing phase and a heuristic method, is presented in Section 2.4. Numerical example

problems are presented with results analyzed in Section 2.5 to illustrate the proposed model

and the solution procedure. Conclusions of this work are drawn in Section 2.6. Chapter 3

gives the definition of the hazardous materials trip plan problem with train scheduling de-

cisions and proposes a heuristic method to solve the considered problem and presents some

numerical examples. The considered problem is defined and the different versions of risk

spreading considerations are presented in section 3.3. The proposed solution is described

in section 3.4. We present our experimentation results in section 3.5. Conclusions of this

work are given in section 3.6. Chapter 4 introduces hazardous materials trip plan problem

with pricing decisions and describes a two-phase heuristic method and presents numerical

examples. The considered problem is defined in section 4.3. The real-time methodology is

described in section 4.4. Numerical examples are provided in section 4.5 to illustrate the
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considered problem. We conclude our research in section 4.6. The manuscript ends with

summarizes the contents, reemphasizes the findings and also recommendations for future

research direction are highlighted in Chapter 5.
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Chapter 2

Modeling and solution method for

HTPs with blocking decisions

AMatheuristic Method for Planning Railway Freight Trans-
portation with Hazardous Materials
Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan

This paper has been published in Journal of Rail Transport Planning & Management, Vol.10,

2019, pp. 46-61. https://doi.org/10.1016/j.jrtpm.2019.06.001.

Railway freight transportation planning problem aims at determining trip plans of trans-

porting various commodity demands within given time periods. Since freight transportation

is typically performed for a group of train cars or blocks, decisions must be made on proper

or optimized blocking. Integrating blocking decisions into trip planning generation process

is an interesting challenge problem that we address in this chapter. An optimization model

is proposed to determine the route for a demand car to travel from its origin to destination,

the blocks to be transported with and the sequence of trains to be assigned to, given the

schedule of train services as well as train and yard capacities. The proposed model, similar

to multicommodity network design model, has non-linear functions to represent hazardous

material risks to be minimized. A preprocessing procedure is developed to reformulate the

proposed model for more efficient computing and a heuristic solution method is designed
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for solving realistic freight transportation problem in practice. Numerical examples are

presented to illustrate the developed mathematical model and the solution procedure.

2.1 Introduction

Railway transportation of hazardous materials (hazmat) including Toxic/Poison Inhala-

tion Hazard (TIH/PIH), is crucial to North American economy supporting the national

supply chain. According to recent statistics in 2012, rail carriers shipped almost 111 million

tons of hazmat in the United States (DOT, 2017b) and 26 million tons of hazmat in Canada

(Searag et al., 2015). The real danger and potential catastrophic consequences associated

with railway hazmat transportation cannot be overlooked (Chin et al., 2009). The disaster

caused by derailment of freight train carrying crude oil at Lac-Mégantic, Quebec in 2013, is

an example of such low-probability high-consequence (LPHC) event. In addition, the grow-

ing volume of hazmat carried by trains and several train accidents causing crude oil spills

have raised grave public and government concerns (Margolis, 2015). In Canada, carload ser-

vice segment continues to be one of the rapidly growing railway business of transportation

industry that shares from 20% to 50% of the overall traffic (Van Dyke and Meketon, 2015),

in separated intermodal and dedicated unit train services. One of the key features of North

America’s railway supply chain systems is to use double consolidation. At the tactical level

of planning, railway operators often develop blocking plans based on demand forecasts. A

large number of freight cars are aggregated into blocks for economic and operational reasons

(Ahuja et al., 2007b; Barnhart et al., 2000), to reduce handling costs and waiting times at

terminals. At the block destination yard, the block is dismantled and the freights are either

delivered to their end customers or regrouped to build a new block. Usually, blocks are

pulled from its origin yard to destination by single train service. However, some blocks may

require to change train service through intermediate terminals along their journeys (Xiao

et al., 2018), known as block-swapping. Since block-swapping incurs block handling cost

and delays, railway operators attempt to avoid them if possible. Solving a train journey

design problem must consider train routes, timetables, and train frequencies (Khaled et al.,
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2015) as well as consolidate the blocks into services known as a train makeup (Jha et al.,

2008; Nozick et al., 1997b). In shipment scheduling, a set of commodities must be picked up

at their origins, categorized at their release times and delivered at their destinations with

required time periods. Customers may require different service levels with respect to tran-

sit time and reliability (Kwon et al., 1998). In certain cases, a scheduled shipment may be

delayed in order to release train capacity for other shipments requiring higher service levels.

A trip plan typically defines the itinerary of shipments from their origins to destinations,

including freight-to-block and block-to-train assignment decisions. According to Van Dyke

and Meketon (2015), there are two types of trip planning approach used by most North

America railway companies: static trip plan and dynamic trip plan. In static planning, a

blocking path and the sequence of blocks to which a commodity is assigned, are defined

based on the class, the origin and destination of the commodity. A shipment is assigned

to the earliest available train service at the terminal if the capacity of the train is satisfied.

If a train has reached its capacity limit, it may cause delays until the next train service

is available. The trip planning can be decomposed into routing and scheduling problems.

When those problems are solved separately, it may be challenging to find a timetable that

satisfies a set of operation constraints (Cordeau et al., 1998). Major railway operators in

North America use MultiModal systems to generate the blocking path for each commod-

ity. In dynamic planning, the railway operator may determine the route and schedule of

the commodities using Automatic Blocking and Classification (ABC) algorithm considering

train capacities. This is similar to the one used in CP Canada. If the initial schedule is

disrupted due to, for example, a new shipment arrives, a new trip plan is generated. In

practice, a hierarchical approach is often followed to solve the train scheduling and planning

problem due to its complexity and large size of real-world problems. The original problem

is decomposed into a series of subproblems to be iteratively solved in five steps (Ireland

et al., 2004): (a) generate a traffic forecast, (b) solve the blocking problem, (c) design

train plan on the blocking policy, (d) analyze yard and train workloads using a simulation

model, and (e) develop the crew and locomotive plans. Since freight transportation business

faces significant uncertainties and demand fluctuations (Crainic, 2000), traditional problem
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solving approaches may have limited capabilities to adapt operation plans (Kwon et al.,

1998). Optimized solutions of train planning problems based on integrated mathematical

models are preferred to those based on a sequential solution approach (Crainic et al., 1984;

Haghani, 1989; Keaton, 1989; Zhu et al., 2014). Mathematically optimized solutions will

be more useful when the considered problem involves hazmat freights transportation. In

such cases, management also needs to decide (a) positions of hazmat freights in the blocks

(Bagheri et al., 2011; Verma, 2011), (b) sequence of blocks on the train services (Cheng

et al., 2017; Verma and Verter, 2010), and (c) speed of each train service and schedule of

each freight (Fang et al., 2017) in order to reduce hazmat transportation risks while sat-

isfying operational constraints. Hazmat shipment schedule may also need to be frequently

revised due to changes of population sizes or atmospheric conditions along the routes in

different time periods. Following a well defined freight operation plan may reduce not only

operation costs (Ireland et al., 2004) but also risks associated with hazmat transportation.

In this chapter, a non-linear integer programming model is proposed for planning hazmat

transportation in a railway-based supply chain system. The solution of the model is to de-

termine the blocking, train makeup, and freight-to-block assignment decisions. The results

of several numerical example problems indicate that solutions obtained from the integrated

model are closer to optimality than those based on sequential approaches.

2.2 Related literature

A considerable amount of research focusing on road transportation of hazmat is available

as can be found, for example, in Erkut and Alp (2007a); Erkut and Ingolfsson (2000); Verter

and Kara (2008); Zografos and Androutsopoulos (2004), among others, while research in

railway transportation of hazmat is comparably less (Erkut, 1995; Erkut et al., 2007; List

et al., 1991). Several researchers have investigated hazmat rerouting problems in railway

supply chain systems (Bersani et al., 2016; Glickman et al., 2007; Verma and Verter, 2010;

Verma et al., 2011). Two versions of the problem have been studied: the local routing and

global routing. In local routing, risk management is restricted to a single OD shipment
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rather than the whole OD map. Glickman (1983) and Glickman et al. (2007) stated that

population risk can be reduced by 25-50% when rerouting approaches are implemented at

the cost of 15-30% increase in traffic intercity. The cost-risk-time trade-offs in rail-truck

intermodal transportation systems were discussed in Verma and Verter (2008). Erkut et al.

(2007) noticed that the local routing models fail to consider the nature of transport risk, i.e.,

population density and weather conditions. In global routing, the decision maker, a central

authority that manages all customer requests for transportation within a railway network,

evaluates the network risks by considering all OD shipments together using a mathematical

model. The problem is usually formulated as a version of multi-commodity network design

model aiming at minimizing total cost and risk. In solving most of the routing models

as in Assadipour et al. (2015); Verma et al. (2011), the blocking plan and train makeup

decisions are assumed known in advance. It has been shown that global routing problems

are NP-hard and it is difficult to solve real-size problem instances using exact optimization

(Marin and Salmeron, 1996). Also, there are additional complexities due to non-linearity

functions to account for risk particularities in railway system. An approximation function

was developed in Verma and Verter (2007) by extending the standard Gaussian Plume

Model (GPM) to model risks caused by airborne hazmat freights such as chlorine, propane,

and ammonia. Various heuristic and meta-heuristic methods were developed as presented

in Verma and Verter (2010), Verma et al. (2012), Sarhadi et al. (2017), Assadipour et al.

(2015), among others. Verma et al. (2011) pointed out that population exposure to hazmat

can be reduced without scarifying cost advantage by initiating hazmat unit-train or running

a mix of regular and priority trains. An extension of standard shortest path algorithm to

incorporate population risk, transfer delays and time-dependence was presented in Chang

et al. (2007). Chin et al. (2009) discussed rerouting of hazmats around the Washington DC

in the US with shipment ban in that area. It can be noted that the above routing models

are not intended to determine train departure times. Since these planning models do not

take scheduling decisions into account, it may be challenging to determine a timetable for

all planned trains satisfying terminal capacity and/or risk threshold conditions. Fang et al.

(2017) studied hazmat routing and scheduling problems with shipment due dates and risk
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equity consideration. A lower bound scheme and heuristic method were developed to solve

a large size problem. Sun et al. (2016) studied the problem of hazmat freight scheduling

for truck-rail intermodal transportation with fixed scheduled services. The proposed model

has a set of capacity constraints for each train service to minimize population exposure to

hazmats and environment risk. A case study was conducted based on freight railway network

in Bejing-Tianjin-Habei area in China. Saccomanno and El-Hage (1989) stated that the

positions of hazmat freight cars in a train may affect the chances of hazmat releases in

train derailment. Bagheri et al. (2012) argued that the current marshaling policy, known

as location-based approach, to position hazmat freights to the blocks in most Class I rail

transportation should be improved to reduce risk. Verma (2011) claimed that the front

of a train service is unsafe and the 7th to 9th train deciles are the best positions for

hazmat cars. Cheng et al. (2017) studied an integrated train makeup and hazmat rail car

placement problem. The problem was modeled as an assignment problem with two main

nested assignment decisions, the assignment of blocks to train slots and the assignment

of commodities to positions in the blocks. The authors emphasized that there is a need

for more studies on commodity-based blocking in comparison with those on location-based

blocking. In some cases, selecting the best position of hazmat on trains may be part of

a train makeup strategy (Verma and Verter, 2010). Rail transportation trip planning and

scheduling problems have also been studied extensively by researchers. As discussed in

Van Dyke and Meketon (2015), many North American railway operators use well developed

algorithms to solve car scheduling problems in capacitated trip planning. For example,

Fukasawa et al. (2002) studied railway planning problems for scheduling loaded and empty

rail cars within given train schedules. Chang (2008) formulated an international inter-

modal routing problem as a multi-objective multi-modal commodity flow problem with

time windows. The problem was solved using decomposition method. Moccia et al. (2008)

studied multi-modal routing problems with timetables and time windows. As can be seen

from those rail freight routing and scheduling problems in the literature, blocking, train

makeup, and freight transportation decisions in freight railway operations are interrelated.

In this chapter, a mathematical model is developed to decide simultaneously blocking,
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train makeup, and freight transportation decisions in the presence of hazmat freights. The

considered problem captures most of features of the operational planning level of real-

world railway companies operating on double consolidation. The proposed work has the

following contributions. First, a non-linear mixed integer programming model is proposed

for determining simultaneously the blocking, train makeup and freight transportation plans

such as customer requests are fulfilled while the risks associated with hazmat shipments

below the given thresholds. Second, different risk reduction strategies are incorporated for

routing and scheduling hazmat freights, i.e., rerouting of the hazmat materials and using

partner services. Finally, we develop heuristic-based method to solve several realistic-size

problem instances.

The remainder of the chapter is organized as follows. Section 2.3.1 gives the formal

definition of the problem. Section 2.3.2 presents the modeling assumptions and developed a

mathematical model with detailed explanations. The developed solution procedure, includ-

ing a preprocessing phase and a heuristic method, is presented in Section 2.4. Numerical

example problems are presented with results analyzed in Section 2.5 to illustrate the pro-

posed model and the solution procedure. Conclusions of this work are drawn in Section

2.6.

2.3 Problem assumptions and modeling

In this section, a hazmat trip planning problem (HTP) with blocking decisions is pre-

sented and a nonlinear mathematical programming model is introduced for solving the

considered problem.

2.3.1 Problem statement

We consider a railway carrier that operates a set of scheduled services S. The origin,

destination, capacity, service route, intermediate-stop, and the schedule of each service s ∈ S

have been predetermined by the service provider. The capacity of the service s, denoted

by Us, determines the maximum number of railcars can be hauled by a train. A fixed cost,
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the cost of locomotives and crews, is incurred to run the planned services. The operator

faces a sequence of requests for carload moves, hereafter called demands, within a railway

network. The demand is defined with a class of traffic k = {1, . . . ,K}. Each demand is

composed of the origin yard ok, destination yard dk, type of commodity (i.e., hazmat or non-

hazmat), quantity Dk including hazmat commodities Hk, expected time when the shipment

is available at the origin τAk , and a time window to arrive at the destination τWk ∈ [τEk , τLk ].

At time τAk , a demand will first be sorted and tentatively placed on a classification track.

In order to fulfill a demand and avoid to re-classified the shipments, the carrier constructs a

set of blocks b ∈ B, select one available path and decide the sequence of trains to use along

the route. θb is the cost associated with constructing (or block-swapping) block b at its

origin yard to occupy a track for τHb time periods. The block-swapping cost incurred when

a block is detached from a service and attached to another one. If the arrival time window

of a demand is not satisfied, a penalty cost may occur. The penalty cost is proportional to

both the demand’s quantity and the delayed time. Out of the K commodities, a subset F

of these commodities is assumed to be served by the carrier’s own train services. In case

a demand cannot be delivered by its own train service, the carrier may use the service of

a partner (outsource the request) and be charged with a cost of ψk. Over the progression

of serving the demands, the carrier incurs into certain operation costs including shipping

cost, re-sorting cost, and commodity holding cost during the journey. The latter cost arises

when the railcars are in idle without being sorted or transferred. In addition, the operator

evaluates the risks associated with hazmat transportation when generating trip plans aiming

to limit the total public risk and environment impact below given risk thresholds.

2.3.2 Assumptions

In developing the mathematical model, we make the following assumptions:

• The timetable of each service s ∈ S is fixed at the tactical level and is not a decision

variable. That is, for each service s we are aware of its origin, destination, route,

en-route stops, capacity and timetable for each leg. Thus, the total cost of selecting
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and operating services is not incorporated in the model.

• Each demand will be shipped following one of the available itineraries. The demand

will not split during transportation.

• All demands and the number of railway cars to be shipped per week are known based

on contracts or customers requests. The railway operator has sufficient yard, track

and train capacities to satisfy all given demands.

In modeling the risk of hazmat transportation, we mainly considered airborne hazardous

materials released to atmosphere in accidents from chlorine, propane, ammonia and other

chemical or petroleum products. The effects of airborne hazmats may be measured in

terms of exposed population and the size of the total volume of the airborne dispersion

with certain threshold of airborne density. As an example, the immediate danger to life

and health (IDLH) for propane exposure are 4,200,000 ppm for fatality and 600,000 ppm

for injuries. In the developed model, the widely accepted Gaussian Plume Model (GPM)

and Box Model (BM) in Arya et al. (1999); Mohan et al. (1995) for air dispersion are used

for population and environmental risk calculations. To model airborne dispersion in a rail

yard (a terminal), the BM model is used to generate a hemisphere region. The BM model is

used to generate a semi-cylinder region if the accident occurs on a track. For the population

exposure, it is assumed a rectangular and circle dangerous for track and terminal source,

respectively.

LetQ be the release rate (mg/s,m3/s ); u the average downwind speed (m/s); a, b, c, and

d be dispersion parameters based on atmospheric stability and C̄ the aggregate concentrate

level at wind distance point (mg/L,mg/m3). Frank Pasquill (1983) and Arya et al. (1999)

provide the values of dispersion parameters for atmospheric stability class, i.e., A-F. For

simplicity, let ne(ni) denotes the number of hazmat freights in a train (terminal) along (at

the end) direct train-movement link e ∈ ESM of a certain service. Table 2.1 summarizes

the quantitative risk assessment formulas used in the hazmat transportation risk analysis.

At certain IDLH level, the operator need to identify a safety distance threshold, and the

potential impact volume of the hazmats being transported or in-transit at terminals.
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Table 2.1: A summary of GPM and BM for terminal and route.

Public/Environment
Risks

Parameter Approximation function

PRnodei = πΦi(ni)ρ̂i Threshold area Φi(ni) =
[

bi+di

√
niQ

π ui ai ci C̄

]2
: i ∈ de

PRedgee = 2Θe(ne)ρeqe Threshold distance Θe(ne) =
[

be+de

√
neQ

π ue ae ce C̄

]
: e ∈ ESM

ERnodei = 1
2

4
3πχi(ni)µi Impact volume χi(ni) =

[
bi+di

√
niQ

π ui ai ci C̄

]3
: i ∈ de

ERedgee = 1
2πηe(ne)ζeqe Impact area ηe(ne) =

[
be+de

√
neQ

π ue ae ce C̄

]2
: e ∈ ESM

P Rnode
i (P Redge

e ): Population exposure at terminal i (along edge e); ERnode
i (ERedge

e ): Environment
damage at terminal i (along edge e). The parameters is function of the hazmat volume being shipped

(stored) on the moving edge (terminal).

2.3.3 Mathematical formulation

Solving the multi-time period rail planning problem is to make blocking, train makeup,

and railcar freight transportation plans to provide the required services to customers and to

minimize total cost including the costs of earliness, tardiness, classification, and holding cost

associated with fulfilling all the demands. The risks associated with transporting hazmats

are considered by imposing risk threshold constraints. The solution of the problem is to

determine for each demand (a) the itinerary that must follow from its origin to destination

(b) the sequence of trains that it will be assigned to along the route, and (c) the blocks

used to transport it for each train leg along its route (illustrated in Figure 2.1).

In presenting the model, a multi-layer network is followed similar to that in Zhu et al.

(2014). The model presented below is formulated considering three layers corresponding

to services, blocks and railcars, respectively. An itinerary of a demand is a path in the

three-layer network between two IN nodes in the car layer. A block is made of multiple

cars. Once it is constructed, it will spend τHb periods on the transfer-delay links at the block

origin node, then it will follow a series of attach-block, service section, detach-block, and

transfer-delay links. At the block destination node, the block is dismantled at the IN node

in the block layer and the shipment will be detached from the block at the corresponding

IN node in the car layer. If the node is the destination of a demand, the shipment of the

demand is complete. Otherwise, the shipment will continue following the above steps until
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Figure 2.1: Schematic diagram of the HTPs with blocking decisions.

its destination is reached. To route a demand in the car layer, a chain of supporting links

in the block layer will be selected with the given train services. For more details of the

three-layer network we refer the reader to Zhu et al. (2014).

In the HTPs with blocking decisions, a three multi-layer approach is adapted similar to

that in Zhu et al. (2014). However, the main differences between the HTPs with blocking

decisions and the freight rail transportation problem studied in Zhu et al. (2014) are the

following aspects:

• In the HTPs with blocking decisions, the train services have been decided at tactical

level and not subject of change based on the average demands between terminals of

the network;

• We explicitly taking into account the risk associated with hazmat transportations by

imposing the transport risk thresholds limitations, i.e., population and environmental

impact considerations, and, more importantly;

• We explicitly consider the heterogeneous in the customer demands where each request

is differentiated by (a) origin and destination (a) available time at their origin, (b)

29



time window to deliver the commodities at their destination and (c) service time

requirements;

Given the above considerations, the sets and parameters are given below.

Sets and Indices
V Set of railway terminals, index by υ ∈ V .
S Set of available train services, index by s ∈ S.
Ls Set of sections for service s (a service between two consecutive terminals, but not

necessarily adjacent), index by l ∈ Ls.
N Set of nodes in all layers (terminal at certain time), i.e., service, block, and car layers,

index by i, n ∈ N .
NS Set of nodes in the service layer, index by n ∈ NS .
NB Set of nodes in the block layer, index by n ∈ NB .
NC Set of nodes in the car layer, index by n ∈ NC .
E Set of all links in the virtual network (link set in each layer plus all virtual links),

index by e ∈ E.
ESM Set of links stands for direct train movement from its origin yard at time OUT node

to its end yard at time IN node, index by e ∈ ESM .
ESR Set of links for train stop from yard at time IN node to same yard at time OUT node

along its itinerary, index by e ∈ ESR.
B Set of potential blocks of cars among which the selection should be performed, index

by b ∈ B.
B(v, t) Set of potential blocks of cars being constructed at terminal v and time t, index by

b ∈ B(v, t).
Lb Set of sections for block b (block movement on sections in the service layer), index

by l ∈ Lb.
EBT Set of block transfer links (block-swapping operation) from IN node to OUT node of

the transfer yard, index by e ∈ EBT .
EBH Set of block transfer-delay links at IN nodes (stands for the time the blocking yard

assigned at the origin yard), index by e ∈ EBH .
ECW Set of waiting links (for a demand to avoid congestion) between two consecutive IN

nodes, index by e ∈ ECW .
ECC Set of classification links from IN node to OUT node in the car layer, index by

e ∈ ECC .
ECH Set of holding links between two consecutive OUT nodes in the car layer (waiting for

a train service), index by e ∈ ECH .
EV BC Set of virtual links from IN node of block layer to IN node of car layer (detaching

freights from blocks) and from OUT node of car layer to OUT node of block layer
(attaching freights to blocks), index by e ∈ EV BC .

E+
n Set of links starting from node n, n ∈ N .

E−n Set of links ending at node n, n ∈ N .
K Set of demands for carload moves, index by k ∈ K.
F Subset of demands to be served by the carrier’s own train services, F ⊂ K.
Parameters
os Origin node of service s in the service layer, os ∈ NS .
ds Destination node of service s in the service layer, ds ∈ NS .
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τCs,e Schedule cutoff time of service s at edge e, s ∈ S, e ∈ ESM .
τAs,e Schedule arrival time of service s at edge e, s ∈ S, e ∈ ESM .
Us Maximum number of railcars can be hauled by a train service s, s ∈ S.
ok Origin node of demand k, ok ∈ V .
dk Destination node of demand k, dk ∈ V .
τAk Time when a demand k is available at terminal ok, k ∈ K.
τEk /τ

L
k Earliness/Lateness time demand k should be delivered at terminal dk, k ∈ K.

Dk Number of railcars for demand k to be shipped, k ∈ K.
Hk Number of hazmat railcars in demand k to be shipped, k ∈ K.
ψk A charge to outsource demand k by a partner (sufficient large number), k ∈ K.
ξ Service level provided by the carrier given by percentage, ξ ∈ [0, 1].
ob Origin node of block b in the block layer, ob ∈ NB .
db End node of block b in the block layer, db ∈ NB .
θb Cost to construct block b and perform block-swapping operation, b ∈ B.
Ub Maximum number of cars to be assigned to block b at ob, b ∈ B.
Uv Maximum number of blocks to be build at terminal v, v ∈ V .
oe Starting node of link e, e ∈ E.
de Ending node of link e, e ∈ E.
qe Distance of link e, e ∈ ESM .
τHb Time window for block b to be constructed at origin ob, b ∈ B.
ol Starting node of section l, ol ∈ N .
dl Ending node of section l, dl ∈ N .
τk,e Lateness of demand k shipped along edge e, e ∈ EV BC , k ∈ K.
Ce,k Total cost to transport one unit of demand k along link e, e ∈ E.
ρe Average population concentration along link e, e ∈ ESM .
ρ̂i Average population concentration at the end of link e, e ∈ ESM and i ∈ de.
ζe Percentage of environmental sensitive area per distance along link e, e∈ESM , ζe ∈

[0, 1].
µi Percentage of environmental sensitive area at the end of link e, e ∈ ESM and i ∈ de,

µe ∈ [0, 1].
RP /RE Population exposure/Environment impact threshold.
λs,b
e,l

= 1 if edge e of service s belongs to section l of block b, 0 otherwise, s ∈ S, e ∈ ESM , b ∈
B & l ∈ Lb.

Variables
xe,k =1 if demand k is moved along link e; 0 otherwise.
xb,k =1 if demand k is assigned to block b; 0 otherwise.
zk =1 if demand k is outsourced; 0 otherwise.
wb =1 if block b is constructed; 0 otherwise.
xe,s,k =1 if demand k is moved on link e of service s, xe,s,k =

∑
b∈B

∑
l∈Lb

λs,b
e,l
xb,k.

xs,k Workload of service s with total number of railcars hauled on links it passes, xs,k =∑
e∈ESM Dkxe,s,k.
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Using the defined parameters and variables presented above, the mathematical program-

ming model for railway hazmat transportation planning problem (HTPs) with blocking

decisions is presented below.

(P1) Z = Min

Blocking costs︷ ︸︸ ︷∑
b∈B

θbwb +
∑
k∈K

Dk

[ Serving costs︷ ︸︸ ︷∑
e∈E

Ce,kxe,k +
Partner costs︷ ︸︸ ︷
ψkzk

]
s.t.

∑
e∈E+

n

xe,k −
∑
e∈E−n

xe,k =



1− zk ∀k, n : n ∈ ok

zk − 1 ∀k, n : n ∈ dk

0 ∀k, n : n /∈ ok nor dk

(1)

τe,kxe,k ≤ (1− ξ)
[
τLk − τEk

]
∀k, e : e ∈ EV BCand de ∈ dk (2)∑

k∈K
Dkxb,k ≤ Ubwb ∀b : b ∈ B (3)

∑
b∈B(v,t)

wb ≤ Uv ∀v, t : v ∈ V, t ∈ {t, .., T} (4)

∑
k∈K

Dkxe,s,k ≤ Us ∀e, s : e ∈ ESM , s ∈ S (5)

∑
s∈S

∑
e∈ESM

[
2Θe

( ∑
k∈K

Hkxe,s,k

)
ρeqe +

∑
i∈de

πΦi

( ∑
k∈K

Hkxe,s,k

)
ρ̂i

]
≤ RP (6)

∑
s∈S

∑
e∈ESM

[1
2πηe

( ∑
k∈K

Hkxe,s,k

)
ζeqe +

∑
i∈de

2
3πχi

( ∑
k∈K

Hkxe,s,k

)
µi

]
≤ RE (7)

xe,k, xe,s,k, xb,k, wb ∈ {0, 1} ∀e ∈ E, k ∈ K, s ∈ S, b ∈ B (8)

The objective function Z in the above model (P1) is to minimize the total costs including

the cost of constructing blocks, cost of waiting for classification and connections, penalty

cost for early and late deliveries, and the cost of using outsource services. Constraints (1) are

commodity flow conservation constraints for the set of demands fulfilled by the operator.

Constraints (2) guarantee the level of service provided by the operator. Constraints (3)

link the flow of the demands with the block capacities, if the corresponding blocks have

been selected. Constraints (4) are the yard capacities for building blocks at each period,

where each block occupies a track for τHb periods at its origin. Constraints (5) are train
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capacity constraints for the planned services. Constraints (6) and (7) ensure that the total

population exposure and environmental risks is lower than given thresholds. The first term

in Constraints (6) is the sum of population exposure along the routes, and the second term is

that at the yards. Similarly, the first term in Constraints (7) is the sum of the environment

damage along the routes and the second term is that at the yards. Constraints (8) are

integer variable requirements.

Problem P1 is a version of Capacitated Multicommodity Network Design (CMND) prob-

lems which are NP-hard problems (Magnanti and Wong, 1984; Minoux, 1989). It can be

noticed that P1 can be decomposed to two subproblems. If Constraints (3) are removed

or relaxed, the solution of P1 can be found by solving a block-to-train assignment prob-

lem (BAP) and then a freight transportation problem (FTP). Based on this observation, a

heuristic algorithm is developed to solve the P1 model with details of the solution method

given in the next section.

2.4 Solution method

In this section, a heuristic solution method to solve the considered train scheduling

problem is presented with detail. The solution procedure has two general phases. The

first phase has a pre-processing procedure to generate potential car blocks by a blocking

generation process. It will also fix certain variables of the model before starting a search

process. The non-linear programming model will then be reformulated as an MIP model

and solved using a commercial solver. The second phase is a heuristic search procedure,

which involves calling a mixed integer programming solution subroutine to solve MIP sub-

models iteratively to improve the incumbent solution by prohibiting either the set of blocks

or shipments itineraries. The solution of the MIP sub-model should correspond to improved

train makeup plans or the shipment itineraries. The search will stop when no significant

improvement is found or the total computational time has reached a given limit. More

details are presented below.
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2.4.1 Preprocessing subroutines

The aim of this subroutines is to reformulate the model and reduce the size of the model

in order to be fed and solved using a MIP solver more efficiently. The following blocking

generation process is applied in the heuristic given the information of a rail network, the

timetables of train services, and the demand requirements.

Blocking generation process

A block is constructed by a set of train cars and a path from the block’s origin yard

to its destination yard in the rail network. The blocks of train cars are first created and

assigned to an available train covering the origin and destination of the block. A block will

be assigned to a path if (a) it is feasible to move the block on time considering the entire

travel path and (b) the designated train has sufficient capacity to carry the block. The

blocking algorithm is to identifies a set of possible paths for all blocks in a timed network

with constraints on the network edges reflecting yard capacities. To generate the paths

for a block, an extended version of the k-shortest path algorithm is applied to identify

several shortest paths to their destination yards. In this work, five short time paths are

generated for selection by the local-search based optimization solution method. In addition,

the total travel time of a block should be within a certain amount of time as it is a typical

practice in railway operations. This procedure is similar to some of those discussed in Ahuja

et al. (2007b); Barnhart et al. (2000); Jha et al. (2008); Zhu et al. (2014), with necessary

modifications to fit in the optimization method developed in this research.

Variable fixing

The second part of the preprocessing procedure is to fix certain variables before the

model is solved by calling optimization subroutines. The variable fixing is based on the

following general considerations:

• If the earliest available time of demand at its origin yard is later than the cutoff time

for train service, then that demand cannot be assigned to that train. That is, if,
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Ok = {s ∈ S, e ∈ ESM |τAk > τCs,e}, xe,s,k for all shipments and service legs in Ok will

be fixed at xe,s,k = 0.

• If the capacity of a block is less than the quantity of demand, then this demand cannot

be assigned to that block. That is, if, Ck = {b ∈ B|Dk > Ub}, xb,k for all shipments

and blocks in Ck will be set to 0.

• If a demand cannot arrive before its due date when it is assigned to certain train

services, the corresponding variables xe,s,k will be set to 0. Let Dk = {s ∈ S, e ∈

ESM |τAs,e > τLk + (1− ξ)[τLk − τEk ]} be a set of services that a commodity k cannot be

assigned in a solution due to violation of service level constraints.

The above preprocessing subroutines may reduce the size of the model by two to three

orders of magnitude.

Function linearization

To simplify computation, in the third part of the preprocessing, piecewise linear func-

tions were used to substitute the nonlinear hazmat risk functions in GPM and BM models.

The resulting optimization model can be then solved using popular MIP commercial soft-

ware without invoking the search for local or global optimal solutions of a nonlinear problem.

The details of the linearization process is presented below.

Let ns,e be the number of hazmat freights along the direct train-moving link e ∈ ESM

of train service s. Three intervals are used in the piecewise linearization method to balance

between quality of solution and computation time. Let also p ∈ {1, 2, 3} be the set of

intervals in the piecewise linear function. For each interval p, let M+
p and M−p be the lower

and upper bounds of ns,e, respectively. For modeling purpose, the following parameters and

auxiliary variables are introduced:
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Parameters
ϑs,e,p Slope of the severe distance along the direct train-moving link e ∈ ESM

of service s given that the number of hazmat within the interval p; ns,e ∈
(M−p ,M+

p ].
γs,e,p Y-intercept of the severe distance along the direct train-moving link e∈ESM

of service s given that the number of hazmat within the interval p; ns,e ∈
(M−p ,M+

p ].
εs,e,i,p Slope of the severe area through terminal i ∈ de at the end of the direct train-

moving link e∈ESM of service s given that the number of hazmat within the
interval p; ns,e ∈ (M−p ,M+

p ].
Υs,e,p Slope of the impact area along the direct train-moving link e∈ESM of service

s given that ns,e ∈ (M−p ,M+
p ].

νs,e,i,p Slope of the impact volume through terminal i ∈ de at the end of the direct
train-moving link e ∈ ESM of service s given that the number of hazmat
within the intervals p; ns,e ∈ (M−p ,M+

p ].
Auxiliary variables

Ws,e,p Binary variable =1 if the volume of hazmat freights along the direct train-
moving link e ∈ ESM of service s is within interval p, 0 otherwise.

Vs,e,p Integer variable = total number of hazmat freights along direct train-moving
link e ∈ ESM of service s and the value within range p.

Therefore, Constraints (6),(7) can be re-written as follows:

∑
s∈S

∑
e∈ESM

∑
p∈P

[
2
[
ϑs,e,pVs,e,p + γs,e,pWs,e,p

]
ρeqe +

∑
i∈de

πεs,e,i,pVs,e,pρ̂i

]
≤ RP (9)

∑
s∈S

∑
e∈ESM

∑
p∈P

Ve,p

[1
2πΥs,e,pζede +

∑
i∈de

2
3πνs,e,i,pµi

]
≤ RE (10)

Additional constraints are presented below:

∑
p∈P

Ws,e,p = 1 ∀s ∈ S, e ∈ ESM (11)

∑
p∈P

M−p Ws,e,p ≤
∑
p∈P

Vs,e,p ≤
∑
p∈P

M+
p Ws,e,p ∀s ∈ S, e ∈ ESM (12)

∑
p∈P

Vs,e,p =
∑
k∈K

∑
b∈B

∑
l∈Lb

λs,be,lHkxb,k ∀s ∈ S, e ∈ ESM (13)

Ws,e,p ∈ {0, 1} ∀s, e, p (14)

Vs,e,p ∈ R+ ∀s, e, p (15)

Figure 2.2 shows a piecewise linear function to approximate the severe distance along
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Figure 2.2: Piecewise linearization for threshold distance.

a railway track if there is a train derailment and a hazmat spill, a train service sa with

atmospheric stability class B (top) and sb with atmospheric stability class C (bottom).

Analogously, Figure 2.3 depicts a piecewise linear function to approximate the severe zone

if there is a hazmat spill in a rail yard, through terminal ia with atmospheric stability

class B (top) and ib with atmospheric stability class C (bottom). It could be used by a

railway operator to conduct a judicious assessment of the operation costs and population

exposure to hazmat transportation. As mentioned earlier, different customers have different

service requirements. Some customers require service with fixed due dates, whereas other

customers are more flexible. It may be feasible to delay a previously scheduled hazmat

shipment from a train service sa to sb in a favor of other shipments to take advantage of

time varying-nature of population density and/or weather conditions. For instance, if the

railway operator delay (or shipped earlier) a single hazmat commodity from a train service

sa with hazmat volume within range p3 to train service sb within range p3, the severe zone

can be reduced by 0.0655 kilometer.

Similarly, Figure 2.3 could be also used by the decision maker to reroute the hazmat

freights from terminals with high population density or those terminals with atmospheric
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class A or B. For instance, the operator may decide to release a demand from yard through

the earliest available train if the population exposure from holding the demand at that

terminal exceeding a given threshold. That is, the heterogeneity of traffic has to be the

main criteria to build trip plans. However, it is relatively challenged when the differentiate

occurred among different shipments that are consolidated within the same block (Kwon

et al., 1998).
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Figure 2.3: Piecewise linearization for threshold area.

After applying the block generation algorithm, variable fixing, and piecewise lineariza-

tion process as discussed above, the original optimization model P1 is reduced to the fol-

lowing linear integer programming (IP) model, P2:

(P2) Z = Min
∑
b∈B

θbwb +
∑
k∈K

Dk

[∑
e∈E

Ce,kxe,k + ψkzk

]
s.t.

∑
e∈E+

n

xe,k −
∑
e∈E−n

xe,k =



1− zk ∀k, n : n ∈ ok

zk − 1 ∀k, n : n ∈ dk

0 ∀k, n : n /∈ ok nor dk

38



τe,kxe,k ≤ (1− ξ)
[
τLk − τEk

]
∀k, e : e ∈ EV BCand de ∈ dk∑

k∈K
Dkxb,k ≤ Ubwb ∀b : b ∈ B

∑
b∈B(v,t)

wb ≤ Uv ∀v, t : v ∈ V, t ∈ {t, .., T}

∑
k∈K

Dkxe,s,k ≤ Us ∀e, s : e ∈ ESM , s ∈ S

∑
s∈S

∑
e∈ESM

∑
p∈P

[
2
[
ϑs,e,pVs,e,p + γs,e,pWs,e,p

]
ρeqe +

∑
i∈de

πεs,e,i,pVs,e,pρ̂i

]
≤ RP

∑
s∈S

∑
e∈ESM

∑
p∈P

Ve,p

[1
2πΥs,e,pζeqe +

∑
i∈de

2
3πνs,e,i,pµi

]
≤ RE

∑
p∈P

Ws,e,p = 1 ∀s, e : s ∈ S, e ∈ ESM

∑
p∈P

M−p Ws,e,p ≤
∑
p∈P

Vs,e,p ≤
∑
p∈P

M+
p Ws,e,p ∀s, e : s ∈ S, e ∈ ESM

∑
p∈P

Vs,e,p =
∑
k∈K

∑
b∈B

∑
l∈Lb

λs,be,lHkxb,k ∀s, e : s ∈ S, e ∈ ESM

Ws,e,p ∈ {0, 1} ∀s, e, p

Vs,e,p ∈ Z+ ∀s, e, p

xe,k, xe,s,k, xb,k, wb ∈ {0, 1} ∀e ∈ E, k ∈ K, s ∈ S, b ∈ B

2.4.2 Heuristic search

During the last decade, the concept of combining mathematical programming and meta-

heuristic methods has gained attention within the academic literature. In this chapter, a

matheuristic method is presented that combines mathematical programming with flexibility

of local search heuristics. A simple tabu search was adopted to improve the performance

of local search by prohibiting previously-visited solutions. A non-tabu move is accepted

only if the new solution is better than the best solution obtained so far. One can find

matheuristic attempting to solve railway planning and scheduling problems in Anghinolfi

et al. (2011); Zhu et al. (2014), and vehicle routing and transportation logistics in Doerner

and Schmid (2010), among others. Surveys on matheuristics can be found in Archetti and

Speranza (2014); Boschetti et al. (2009). Matheuristics have been demonstrated to be a

promising solution method to solve a large scale combinatorial problem in order to explore
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the solution space more efficiently.

Problem (P2) is a generalized assignment problem which involves two main nested as-

signment decisions; the assignment of blocks to train services, through wb variables, and the

assignment of commodities to blocks according to the selected blocking paths, through xb,k.

The MIP heuristic is designed to account the hierarchy nature of the considered problem,

railcars are accumulated to build blocks and blocks grouped to form trains, through the

destroy operators at either the block or shipment layer. The first heuristic focuses on the

train makeup problem by fixing the subset of the blocking plans and then the restricted

train makeup and freight transportation problems are solved. The other heuristic attempts

to fix the subset of the freight itineraries and then train makeup and restricted freight

transportation problems are tackled. It has two main subroutines: constructing the initial

feasible solution and then reoptimizing the blocking plans and shipment itineraries.

A feasible solution of Problem (P1) is obtained by giving a fixed time limit to the MIP

solver to solve the linearized model of P1. Then, the current solution is iteratively improved

by prohibiting either a set of blocking plans or shipment itineraries. This has been done

to discourage the search from coming back to previously visited solutions. The forbidden

moves are stored in a tabu list and the best non-tabu move is chosen to obtain the best

local minimum. A non-tabu move is accepted only if the new solution is better than the

best solution obtained so far. The above step is repeated until a given amount of CPU time

is reached or a pre-defined number of non-improved local searches is achieved. A detail

approach is given below:

The block MIP heuristic

The block MIP heuristic (BH) focuses on the wb binary variables, as they determine

the highest level of assignment decisions and the dimension of solution space. It consists of

obtaining the best routing and scheduling for freight of cars when a subset of the blocking

plans is fixed. Let Rr(b) be a set of all blocking plans that is banned in an iteration r, that

is wb = 0 for all blocking plans in set Rr at iteration r. The heuristic iteratively solves a

sequence of the MIP sub-problems of the (P2) model with the subset of wb binary variables

40



fixed as explained earlier.

The method then identifies the q worse blocks with some randomness to be removed

from a solution at an iteration. The randomness has been introduced in the previous step

to avoid situations where the same block paths are entering and leaving the set of forbidden

solutions too frequently. The BH method starts with an empty set in Rr(b). Then, at any

iteration r, the subset of wb\Rr−1(b) to be investigated is determined, for each block, as

follows:

• By inserting in Rr(b∗) (i.e., fixing the lower and upper bound to 0) the variable wb∗

\Rr−1(b) such that wb∗ = 1 at iteration r − 1 and b∗ = yc|L|, where |L| denotes a

set of blocks sorted (descending) based on their value in the objective function, y is

a random number from interval [0, 1), and c is a deterministic parameter (≥1) that

introduces some randomness.

The shipment MIP heuristic

The shipment MIP heuristic (SH) focuses on the xe,s,k binary variables, as they deter-

mine the lowest level assignment decisions. It consists of obtaining the best routing and

scheduling for freight of cars when a set of commodities itineraries are fixed. Note that the

number of lower level assignment decisions is much larger than the highest level assignment

variables. The method identifies q worse shipments to be removed from a solution at an

iteration. In this way, it supposes to guide the solver on the most convenient assignment

decisions to be reset into 1 by limiting the solution space. The heuristic iteratively solves

a sequence of the MIP sub-problems of the (P2) model with the subset of xe,s,k binary

variables fixed as explained earlier. The SH method starts with an empty set in Rr(e, s, k).

Then, at any iteration r, the subset of xe,s,k\Rr−1(e, s, k) to be investigated is determined,

for each shipment, as follows:

• By inserting in Rr(e, s, k∗) (i.e., fixing the lower and upper bound to 0) the variable

xe,s,k∗ \Rr−1(e, s, k) such that xe,s,k∗ = 1 at iteration r − 1 and k∗ = yc|L|, where |L|

denotes a set of shipments sorted (descending) based on their values in the objective
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function.

Summary of the solution method

In both methods, the partially fixed MIP sub-problems (P2) are solved by limiting

both the computation time and number of nodes in the MIP solver at each iteration. The

procedure continues until a given amount of CPU time is reached or a predefined number

of non-improved local searches is achieved, which come first. The whole solution procedure

was tested using a number of numerical examples of the HTPs discussed in the next section.

In summary, the steps of the solution procedure are given in Algorithm 1.

Algorithm 1 Blocking/Shipment MIP heuristic.
1: Read data: the network information, list of request requirements, and list of planned

train services;
2: Phase 1: Preprocessing subroutines (Section 2.4.1)
3: Step 1.1: Blocking generation process (Subsection 2.4.1);
4: Generate all possible blocking plans by applying k-shortest paths for each candidate

block b;
5: Determine the services for block along its section(s) λs,be,l ;
6: Obtain the subset of services/blocks for each request k;
7: Fix a subset of decision variables (Subsection 2.4.1);
8: Step 1.2: Reformulate the model from NIP into IP (linearized version of P1) (Subsection

2.4.1);
9: Phase 2: Heuristic phase (Section 2.4.2)

10: Step 2.1: Find a feasible solution by solving the linearized model of P1;
11: Step 2.2: Apply local search procedure by destroying a subset of blocking plans (Sub-

section 2.4.2) or shipment itineraries (Subsection 2.4.2) with some randomness;
12: Obtain the best blocking plan and freight transportation decisions

We also propose alternative mathematical formulation model and heuristic method to

solve real-size problem instances in Appendix A.

2.5 Computational experiments

A series of computational experiments were conducted to analyze the performance of

the MIP heuristics given in section 2.5.3. Both the pre-analysis procedure and the solution

approaches were implemented under the same programming language and computational

environment, in particular, the MIP optimization problem was solved using Cplex v.12.7.1
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and the ILOG concert technology for constructing the model in C++. All instances were

run on a DELL laptop with an Intel(R) Core(TM) i7-6700HQ CPU 2.60GHz and 16.0 GB

under Window 10 environment.

2.5.1 Random instances

Four set of scenarios were designed, detailed in Table 2.2, based on different dimensions

of railway network and number of train leg services. Set S includes small instances with

only 7 nodes, 13 edges, and 27 train legs. Set M is the medium set, and the instances have

11 nodes, 21 edges, and 32 train legs. Set L1 and L2 are the large sets with 15 nodes, and

33 edges. In the set L2 has 40 additional train leg services than set L1, which are large

and difficult to be solved. The consider rail network for set S (L1) and M (L2) is shown in

Figure 2.4 (Figure 2.6) and Figure 2.5 (Figure 2.7), respectively.

Table 2.2: Dimensions of the four scenarios.
Scenario Number of nodes Number of edges Number of train legs

S 7 13 27
M 11 21 32
L1 15 33 57
L2 15 33 97
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Figure 2.4: A railway network in set S.
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For each scenario, six groups of instances were generated, denoted by A-F . Group A

includes the base instances, default parameters. Group B contains instances with lowest

demand quantities, whereas the instances in group C have the highest demand quantities.

Instances in groupD have loose train capacities, whereas the compact services are generated

in group E. Group F consists of instances with the highest risk parameters, atmospheric

class range from A to D. For each combination of railway network dimension and group,

two instances are generated with increasing number of requests to roughly partition the car

flow density. Table 2.3 and Table 2.4 report specific parameters of the group of instances

in S/M and L1/L2 set including the demand quantity, train capacity, atmospheric class,

number O-Ds and number of blocking plans, respectively.

Table 2.3: Characteristics of the groups of S/M instances.
Group Demand rate Train capacity Atmospheric class Number of O-Ds Number of block paths

A U[5,15] U[60,110] U[1,6] 42/80 175/242
B U[3,10] U[60,110] U[1,6] 42/94 201/495
C U[10,15] U[60,110] U[1,6] 42/71 175/418
D U[5,15] U[80,180] U[1,6] 42/84 175/370
E U[5,15] U[50,80] U[1,6] 42/80 175/242
F U[5,15] U[60,110] U[1,4] 42/80 175/242
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Figure 2.6: A railway network in set L1.
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Figure 2.7: A railway network in set L2.

Table 2.4: Characteristics of the groups of L1/L2 instances.
Group Demand rate Train capacity Atmospheric class Number of O-Ds Number of block paths

A U[5,15] U[150,180] U[1,6] 184/199 1912/2470
B U[3,10] U[150,180] U[1,6] 172/199 1212/1905
C U[10,15] U[150,180] U[1,6] 176/171 1365/1754
D U[5,15] U[160,190] U[1,6] 181/198 2285/2197
E U[5,15] U[120,160] U[1,6] 181/197 1359/1842
F U[5,15] U[150,180] U[1,4] 184/199 1912/2470
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All experimental tests have been randomly generated problem instances taking into ac-

count some realistic data, deriving from the North American rail system when available,

relevant to the railway network and train timetable, risk parameters, and randomly gener-

ating the requests. Some of the parameters are adapted based on the RAS 2011 Problem

Solving Competition and Verma et al. (2011). The train routes and timetables were de-

signed to satisfy each O-D request in the instance. The train journeys are supposed to

be the same on each day, the available paths for each block range between 1 and 22 and

each train covers between 1 and 4 railway edges. It is assumed that the shipments must

be shipped to their destination from their origin in 4-11 days. The origin and destination

terminals of each request were generated from the discrete uniform distribution U [1, n],

where n is the number of the terminals in the instance; the available time was chosen as

τAk ∼ U [0, 2.5] (expressed in days), the earliest due time as τEk ∼ τAk + U [4, 7] and the due

date as τLk ∼ U [4.5, 11]. A $0.875 was estimated to move a regular railcar one mile, whereas

a hazmat railcar was assumed to be $1.163. The classification cost (dollar per railcar) was

obtained from a U [50, 70]. The capacity of each block was obtained from a discrete uniform

distribution U [30, 65]; the block swap cost in dollar per block was selected from a U [30, 70];

the block constructing cost was chosen from a U [3.5k, 4.5k]. The maximum number of

block-swaps was assumed to be 3 swaps per block. Finally, the atmospheric, population

concentration parameters and environmental sensitive factors are generated randomly for

each train service and terminal in the instance.

For the solution provided by Cplex and proposed heuristics, 1 hour time limit was given

for instances in group L2, whereas instances in groups S, M , and L1 were limited to half-

hour to be solved. The node limit for the branch-and-cut investigation was fixed to 1000

nodes with variable less than 30000 and single node for instances in group L1 and L2.

Cplex Solver stops when an optimal solution is proven or the maximum computational time

is reached, whereas as the MIP heuristics terminate at 4 non-improved local searches or

when the time allocated is exceeded.
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2.5.2 Small instances

In the this section we solved a small instance, railway network consists of 7 nodes and

27 service legs, in details. Table 2.5 gives the characteristics of each request with regards

to origin-destination, quantity of commodities including hazmat freight, time when request

available at its origin and delivery time windows. We design 10 train services where each

service consists of 2-3 train legs.

Table 2.5: Characteristics of the shipments.
K ok−dk Dk(Hk) τAk [τEk , τLk ]
k1 5−7 9(2) 2.82 [3.27, 3.61]
k2 1−2 10(3) 0.20 [4.40, 4.86]
k3 7−1 9(3) 1.08 [5.66, 6.26]
k4 7−4 9(2) 1.08 [2.90, 3.20]
k5 4−2 8(1) 3.05 [4.40, 4.86]
k6 6−5 10(3) 1.82 [5.44, 6.02]
k7 5−7 9(3) 2.82 [3.59, 3.97]
k8 5−6 8(1) 2.82 [4.28, 4.74]
k9 2−7 7(1) 1.27 [3.27, 3.61]
k10 7−6 8(2) 1.08 [1.63, 1.81]
k11 3−7 9(2) 1.37 [3.27, 3.61]
k12 2−3 8(2) 1.27 [1.74, 1.92]
k13 6−3 8(2) 1.82 [4.95, 5.47]
k14 3−7 8(1) 1.37 [3.59, 3.97]
k15 1−2 9(2) 0.20 [0.85, 0.93]
k16 4−5 8(2) 3.05 [5.44, 6.02]
k17 2−6 9(3) 1.27 [2.04, 2.26]
k18 2−1 8(2) 1.27 [5.66, 6.26]
k19 7−4 9(2) 1.08 [2.38, 2.63]
k20 4−2 10(3) 3.05 [4.40, 4.86]
k21 1−5 7(1) 0.20 [2.01, 2.23]

K ok−dk Dk(Hk) τAk [τEk , τLk ]
k22 5−4 9(2) 3.28 [3.72, 4.12]
k23 4−2 8(2) 3.05 [4.40, 4.86]
k24 1−5 9(3) 0.20 [2.01, 2.23]
k25 3−2 8(1) 1.37 [4.40, 4.86]
k26 4−1 8(1) 3.05 [5.66, 6.26]
k27 2−6 7(1) 1.27 [2.04, 2.26]
k28 2−5 8(2) 1.27 [2.68, 2.96]
k29 2−4 10(3) 1.27 [6.17, 6.81]
k30 4−6 8(1) 2.93 [4.28, 4.74]
k31 7−3 8(2) 1.08 [4.95, 5.47]
k32 7−6 7(1) 1.08 [1.63, 1.81]
k33 4−6 12(5) 2.93 [5.06, 5.60]
k34 7−6 8(2) 1.08 [1.63, 1.81]
k35 7−7 9(2) 0.17 [3.59, 3.97]
k36 2−5 8(2) 1.27 [5.44, 6.02]
k37 3−1 8(2) 5.31 [5.66, 6.26]
k38 3−5 9(3) 1.37 [2.01, 2.23]
k39 5−2 9(3) 3.28 [4.40, 4.86]
k40 1−4 8(1) 0.20 [2.90, 3.20]
k41 1−6 7(1) 0.20 [5.06, 5.60]
k42 2−5 10(3) 1.27 [5.44, 6.02]

Table 2.6 gives the operational characteristic of each train service with regards to route,

schedule, capacity and atmospheric class. These train services have been designed in ad-

vance such that each request has a least one feasible itinerary with respect to service require-

ments, i.e., available time τAk and delivery time windows τTk ∈ [τEk , τLk ]. Figure 2.8 sketches

the train movement over time across railway network. Each line in Figure 2.8 represents a

unique train service composed of set of train segments. The set of train segments forms the

backbone of the blocking plan and freight transportation problem.

Table 2.7 gives information of the candidate blocks including their origin and capacity.

Note that the destination of blocks are undefined. It is common approach to define the

blocking plan in advance based on the forecast of future demands between major cities.
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Figure 2.8: A timetable of the set of plan services.

Such strategy limits the benefit to adjust the operating plan when the transport demand

fluctuates over time. Since we do not defined the destination of the block in the blocking

plan, we create more flexibility in the way trip plans are generated. Such flexibility increases

in terms of routing and scheduling options, where block of cars can be routed to various

paths through rail network, temporary stored at yards and pulled on different train services.

We fed all information of the considered instance into our algorithm. The problem was

solved in few seconds. The solution of problem gives a complete information of the blocking

policy, train makeup as well as freight transportation plans. Table 2.8 gives information

regrading the blocking plan, whereas Table 2.9 and 2.10 describes the itinerary of each

request including the blocking path it assigned along the path. The algorithm constructs

14 blocks out of 30 candidate blocks. Figure 2.9 shows the block movements over train

segments. Each section of block can be treated as unique service with regards to its route,
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Table 2.6: Timetable for each direct train service and the atmospheric class.
Service Itinerary τOl τCl τDl τAl

- - s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

T1 i1
l1(82)−−−→
E

i2
l2(87)−−−→
D

i4
l3(109)−−−−→
F

i7 2.00 2.89 3.71 2.29 3.09 3.91 2.40 3.19 4.01 2.99 3.81 4.62

T2 i1
l4(79)−−−→
D

i2
l5(74)−−−→
C

i6
l6(67)−−−→
B

i4 0.00 1.24 2.04 0.20 1.54 2.25 0.30 1.64 2.35 0.89 2.15 3.05

T3 i6
l7(109)−−−−→
B

i4
l8(106)−−−−→
D

i7
l9(82)−−−→
D

i6 1.70 2.73 3.54 2.00 2.93 3.74 2.12 3.03 3.84 2.83 3.64 4.51

T4 i7
l10(63)−−−−→
C

i6
l11(95)−−−−→
D

i4
l12(67)−−−−→
F

i2 0.78 1.62 2.75 1.08 1.82 3.05 1.18 1.92 3.15 1.72 2.50 3.85

T5 i2
l13(76)−−−−→
E

i3
l14(62)−−−−→
B

i1 4.33 5.11 - 4.63 5.31 - 4.73 5.41 - 5.21 5.96 -

T6 i1
l15(98)−−−−→
D

i3
l16(76)−−−−→
C

i5
l17(101)−−−−−→

D
i7 0.00 1.07 2.52 0.20 1.37 2.82 0.30 1.67 2.92 0.77 2.12 3.44

T7 i1
l18(106)−−−−−→

C
i3

l19(81)−−−−→
E

i5
l20(108)−−−−−→

D
i4 1.50 2.39 3.08 1.80 2.59 3.28 1.90 2.69 3.38 2.49 3.18 3.92

T8 i4
l21(95)−−−−→
E

i2
l22(66)−−−−→
B

i6 3.62 4.53 - 3.92 4.73 - 4.01 4.83 - 4.63 5.33 -

T9 i2
l23(68)−−−−→
D

i3
l24(80)−−−−→
C

i5
l25(74)−−−−→
D

i7 0.97 1.88 2.88 1.27 2.18 3.18 1.37 2.27 3.28 1.83 2.82 3.78

T10 i3
l26(103)−−−−−→

C
i5

l27(69)−−−−→
C

i4 4.91 5.63 - 5.21 5.83 - 5.31 5.93 - 5.73 6.49 -

Table 2.7: Characteristics of the blocks.
Block# ob−db Ub Block# ob−db Ub
b1 4−× 44 b2 5−× 47
b3 7−× 52 b4 4−× 46
b5 2−× 45 b6 3−× 40
b7 6−× 45 b8 3−× 57
b9 4−× 41 b10 3−× 54
b11 6−× 43 b12 7−× 45
b13 1−× 60 b14 5−× 58
b15 2−× 58 b16 4−× 55
b17 3−× 48 b18 2−× 52
b19 1−× 58 b20 5−× 58
b21 7−× 57 b22 4−× 56
b23 3−× 44 b24 3−× 43
b25 1−× 44 b26 4−× 43
b27 4−× 40 b28 3−× 55
b29 6−× 43 b30 1−× 43

Table 2.8: Train makeup plan (block-to-train assignment decisions).
Block Itinerary Block Itinerary

b1 i4
l21−→i∗2

l13−→i∗3
l26−→i5 b17 i3

l19−→i5
l20−→i4

b6 i3
l16−→i∗5

l25−→i7 b18 i2
l23−→i3

l24−→i5
b7 i6

l7−→i4
l8−→i7 b19 i1

l4−→i∗2
l23−→i∗3

l19−→i5
b8 i3

l16−→i5
l17−→i∗7

l9−→i6 b21 i7
l10−→i6

l11−→i4
l12−→i2

b12 i7
l10−→i6

l11−→i4
l12−→i2 b25 i1

l4−→i2
l5−→i6

l6−→i4
b13 i1

l15−→i3
l16−→i5 b28 i3

l19−→i5
l20−→i∗4

l21−→i2
l22−→i6

b15 i2
l13−→i3

l14−→i1 b29 i6
l11−→i4

l12−→i∗2
l13−→i3

l14−→i1
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Figure 2.9: Block over time.

schedule and capacity.

2.5.3 Performance of the MIP heuristics

Numerical results of the three set of instances, S, L1, L2, together with the ones solved

by Cplex are reported in Table 2.11, 2.12, and 2.13, respectively. The results for M set are

omitted for sake of brevity as we able to draw conclusion similar to the one in S set. The

first two columns give information regarding the characteristics of each instance; in term of

the number of requests and number of integer variables. The next three columns are the

Cplex solutions, including the best solution, the computation time (in seconds), and the

optimal gap. The next three columns are the BH solutions. The last three columns are the

SH solutions. The OptGap in the MIP heuristics is measured relative to the lower bound

of Cplex after time limit has been exhausted or Cplex proves the optimality, whichever

occurred first. The last two rows in Table 2.12 and 2.13 give the average and average

50



Table 2.9: Solution of FTB for k1 − k21.
Req.# Itinerary Req.# Itinerary

k1 i5
l17−→
b8
i7 k12 i2

l23−−→
b19

i3

k2 i1
l4−−→
b19

i2 k13 i6
l11−−→
b12

i4
l12−−→
b12

i∗2
l13−→
b1
i3

k3 i7
l10−−→
b12

i6
l11−−→
b12

i4
l12−−→
b12

i∗2
l13−→
b1
i3

l14−−→
b15

i1 k14 i3
l24−−→
b18

i5
l25−→
b6
i7

k4 i7
l10−−→
b12

i6
l11−−→
b12

i4 k15 i1
l4−−→
b19

i2

k5 i4
l21−−→
b18

i2 k16 i4
l12−−→
b12

i∗2
l13−−→
bb1

i∗3
l26−→
b1
i5

k6 i6
l11−−→
b12

i4
l12−−→
b12

i∗2
l13−→
b1
i∗3

l26−→
b1
i5 k17 i2

l5−−→
b25

i6

k7 i5
l25−→
b6
i7 k18 i2

l13−→
b1
i3

l14−−→
b15

i1

k8 i5
l17−→
b8
i∗7

l9−→
b8
i6 k19 i7

l10−−→
b12

i6
l11−−→
b12

i4

k9 i2
l23−−→
b19

i3
l24−−→
b18

i5
l25−→
b6
i7 k20 i4

l21−−→
b28

i2

k10 i7
l10−−→
b12

i6 k21 i1
l15−−→
b13

i3
l16−−→
b13

i5

k11 i3
l16−−→
b13

i5
l17−→
b8
i7

Table 2.10: Solution of FTB for k22 − k42.
Req.# Itinerary Req.# Itinerary

k22 i5
l20−−→
b17

i4 k33 i4
l21−−→
b28

i2
l22−−→
b28

i6

k23 i4
l21−−→
b28

i2 k34 i7
l10−−→
b12

i6

k24 i1
l15−−→
b13

i3
l16−−→
b13

i5 k35 i7
l10−−→
b21

i6

k25 i3
l19−−→
b19

i5
l20−−→
b17

i∗4
l21−−→
b28

i2 k36 i2
l23−−→
b19

i3
l24−−→
b18

i5

k26 i4
l12−−→
b12

i∗2
l13−−→
b29

i3
l14−−→
b15

i1 k37 i3
l14−−→
b15

i1

k27 i2
l5−−→
b25

i6 k38 i3
l16−−→
b13

i5

k28 i2
l23−−→
b19

i3
l24−−→
b18

i5 k39 i5
l20−−→
b17

i∗4
l21−−→
b28

i2

k29 i2
l5−−→
b25

i6
l6−−→
b25

i4 k40 i1
l4−−→
b19

i2
l5−−→
b25

i6
l6−−→
b25

i4

k30 i4
l8−→
b7
i7

l9−→
b8
i6 k41 i1

l4−−→
b19

i2
l5−−→
b25

i6

k31 i7
l10−−→
b12

i6
l11−−→
b21

i4
l12−−→
b21

i∗2
l13−−→
b29

i3 k42 i2
l23−−→
b19

i3
l24−−→
b18

i5

k32 i7
l10−−→
b21

i6
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percent deviation relative to Cplex solution for computation time and objective (negative

values indicate performance improvement).

Table 2.11: Performance results on instance set Small
Instance ID NV CPLEX BH SH
Name-K - Objective Timea OptGapb Objective Timea OptGapb Objective Timea OptGapb
A1-K42 17394 436750 32.59 0.00 436836 17.72 0.02 436836 17.72 0.02
A2-K100 31830 1533000 55.57 0.00 1533950 30.94 0.06 1538060 26.47 0.33
B1-K120 32701 5625510 133.76 0.00 5797190 41.06 3.05 5627430 42.53 0.03
B2-K220 67249 1407330 >1800 0.05 1526680 178.31 8.48 1531460 206.45 8.82
C1-K42 16162 773349 40.05 0.00 773652 18.34 0.04 773349 21.83 0.00
C2-K100 33318 1728890 >1800 8.73 1805290 110.05 13.15 1778830 152.22 11.62
D1-K41 13095 78663 16.86 0.00 79146 8.93 0.61 78795 8.99 0.17
D2-K100 34759 387728 139.72 0.00 388165 33.91 0.11 388167 31.90 0.11
E1-K42 16216 277825 45.08 0.00 277948 32.04 0.04 282827 21.89 1.80
E2-K100 45298 1498190 >1800 0.00 1499860 36.96 0.11 1504470 42.32 0.42
F1-K42 13512 208144 30.12 0.00 208266 15.077 0.06 208144 30.12 0.00
F2-K100 30848 953166 87.77 0.00 958226 32.55 0.53 958875 26.42 0.60

a in seconds, b (Objective- Cplex lower bound(after half-hour)/Cplex lower bound(after half-hour))x100.

The proposed MIP heuristics are proven to be efficient to find an optimal or near optimal

solution within a short time for instances in set S andM . Compared with Cplex, in 9 out of

12 instances the BH finds solution near optimal solution with maximal optimal gap reported

is 0.61%, whereas the SH obtains the optimal solution in 2 out of 12 instances. One may

also note that Cplex stops at the maximum time for three instances in group B, C, and

E, whereas the proposed heuristics can obtain near optimal solution with much shorter

computational effort.

The results displayed in Table 2.12 indicate that the proposed heuristics can obtain

good performance on large instances. Where Cplex fails to prove optimality, the proposed

heuristics find good solutions which are better than the best solution yield by Cplex, in

45.01% and 42.94% less time than the time allocated for the BH and SH, respectively. In

addition, the average percentage deviations are -72.32% and -62.42% for BH and SH in L1

instances. With the size of instance increases, the performance of Cplex drops quickly and

the proposed heuristics have a high chance to outperform Cplex.

Table 2.13 summarizes the performance on large instance with dense train leg services.

As expected the optimality Gap for Cplex is considerably increased when the number of

integer variables exceeds 250000. Under the same time limit, the proposed heuristics always

find a better solution than Cplex with an average percent deviation of−72.32% and−62.42%
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Table 2.12: Performance results on instance set Large 1 (L1)
Instance ID NV Cplex BH SH

- - Objective Timea OptGapb Objective Timea OptGapb Objective Timea OptGapb
A3-K200 186939 1601750 >1800 26.79 1567880 802.37 24.68 1497250 1168.92 20.27
A4-K250 232531 4599950 >1800 47.32 3198190 1017.39 16.85 3535370 1173.95 24.18
B3-K200 170435 742516 >1800 25.62 570027 1208.83 2.39 623781 >1800 9.63
B4-K250 222380 1308150 >1800 18.06 1159580 850.16 6.70 1219650 612.01 11.29
C3-K200 174173 3567630 >1800 11.74 3343080 903.18 5.45 3449280 >1800 8.42
C4-K250 218506 6295510 >1800 33.32 6016410 976.00 28.89 5997180 1219.44 28.58
D3-K200 176893 2620720 >1800 36.79 2086300 >1800 16.40 2233670 1015.77 22.02
D4-K250 234301 5982020 >1800 59.34 3159990 1137.04 12.16 3106940 800.53 17.29
E3-K200 175957 3677930 >1800 68.82 1775390 960.138 17.09 1552390 797.02 11.03
E4-K250 218587 4415940 >1800 41.96 2961390 832.998 9.02 2904480 >1800 7.73
F3-K200 197869 2338630 >1800 15.82 2369930 1049.59 17.16 2136980 1045.91 7.20
F4-K250 240379 5259680 >1800 52.29 3946820 1149.63 27.32 3080450 1410.19 10.85
Average 1800 36.49 989.76 15.34 1027.08 15.24

%Deviation −45.01 −40.44 −42.94 −58.23
a in seconds, b (Objective- Cplex lower bound(after half-hour)/Cplex lower bound(after half-hour))x100.

for BH and SH, respectively.

If the two MIP heuristics are compared for instances larger than 250000 integer variables,

one may notice the results generated by BH dominates SH in most of the instances (9 out of

12 instances in L2 set). The reason of better performance of BH over SH could be justified

as follows. The former heuristic fixed a subset of the upper level assignment variables wb

(design variables) which accounts only less than 5% of the assignments variables. Once the

BH fixes a subset of design variables at an iteration, it also fixes some of the flow variables,

i.e., xb,k. Therefore, the number of iterations conducted by BH is greater than SH given the

time limit. Analogously, the latter heuristics fixed most of the assignment decisions (flow

variables) and that supposed to guide the solver to a better solution. However, the changes

in the lower level assignments variables from one iteration to another are relatively limited.

Hence, the solution space for the BH is less than SH. On the other hand, the BH ability to

explore the solution space seems to be extended. BH outperforms SH with regards to the

quality of solution and computing times in 9 out of 13 instances in set L1 and L2.

The tested instances could represent real medium railway systems with 15 terminals,

33 edges, 97 train services, and an average of 250 requests with about 1500 commodities

to be shipped. It is also possible to be applied for sub-network of a large railway system

to identify detailed territory solution or aggregated national solution with rough knowledge

of train schedules. For example, we apply the proposed heuristic to a sub-network of the
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Table 2.13: Performance results on instance set Large 2 (L2)
Instance ID NV Cplex BH SH

- - Objective Timea OptGapb Objective Timea OptGapb Objective Timea OptGapb
A5-K200 267955 1974740 >3600 44.80 1498470 1067.68 20.68 1608740 1820.68 26.27
A6-K250 360654 6330700 >3600 71.33 2598400 1712.43 12.37 3044110 1824.14 19.41
B5-K200 222236 3543650 >3600 80.73 1051060 1032.53 10.39 1020600 1840.22 9.53
B6-K250 295243 3362640 >3600 64.33 2188590 1977.69 29.42 2695470 1823.29 44.49
C5-K200 256254 4733840 >3600 64.74 2698770 1439.68 21.75 2780570 1811.81 23.48
C6-K250 328333 9360120 >3600 70.29 3675530 1604.87 9.56 4250680 1812.01 15.70
D5-K200 290711 3405130 >3600 63.90 1563830 1260.20 9.83 1785680 1818.02 16.34
D6-K250 352780 4026250 >3600 60.89 2237110 1237.46 16.45 2391250 2191.31 20.28
E5-K200 280433 1849920 >3600 22.08 1759060 1038.18 17.17 1706900 1817.22 14.35
E6-K250 348167 3420810 >3600 55.46 2170880 2067.84 18.92 2980010 >3600 42.57
F5-K200 292189 5355390 >3600 77.70 2348990 2402.36 21.56 2545850 1412.03 25.24
F6-K250 348104 8245660 >3600 71.78 3887800 2063.64 18.93 3629810 >3600 15.80
Average 3600 62.34 1575.38 17.25 1817.07 23.42

%Deviation −56.24 −72.32 −49.53 −62.42
a in seconds, b (Objective- Cplex lower bound(after half-hour)/Cplex lower bound(after half-hour))x100.

Canadian Pacific (CP) Railway consists of 23 terminals, 63 edges, 147 train services, and an

average of 288 requests with about 3000 commodities to be shipped (details in Appendix B).

The proposed MIP heuristics are suitable for an off-line planning for which half-hour is

reasonable.

2.6 Conclusion

This chapter explores the routing and scheduling of rail shipments of hazardous materials

with blocking decisions. A transportation system where different customers make their

requests for railcar moves, i.e., both hazmat and non-hazmat freight, between different

origins and destinations, with specific requirements on delivery times was considered. The

mathematical model minimizes total cost, i.e., the earliness, tardiness, classification and

holding costs acquired to fulfill all the demands, while imposing risk thresholds constraints

associated with hazmat transportation. The problem is to determine for each demand (a)

the itinerary that must follow from its origin yard to destination yard (if not outsourced),

(b) the sequence of trains that it must assign along the route so that the request time, and

train capacities constraints are satisfied, and (c) the blocks used to transport it for each train

leg along its route. A non-linear mixed-integer programming and two MIP heuristic-based

solutions are proposed for generating the trip plans. Through computational experiments, it

may be concluded that the MIP heuristics provide good solutions for medium size instances
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while solving the mixed integer programming formulation can be computationally expensive.

Comparing the two proposed MIP heuristics, the BH outperforms the SH solutions for large

instances with a large number of train services, on average percent deviations of 26.35%

and average of 13.29% less computational time.
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Chapter 3

Modeling and solution method for

HTPs with train scheduling

decisions

An Integrated Train Scheduling and Hazardous Materials
Trip Planning Problem
Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan

This manuscript is under review in International Journal of Rail Transportation (September

2019)

This chapter investigates the routing and scheduling of rail freight of hazardous ma-

terials problem with train scheduling decisions considering risk distribution function. We

consider the problem of minimizing the weighted sum of the cost of serving the commodities

plus risk distribution function using well-defined measures, either the maximum population

exposure, the difference between the maximum and minimum transport risk, or the mean

absolute deviation of the transport risk while limiting the population exposure below the

given risk threshold. Non-linear mixed integer programming models and heuristic method

are proposed for preparing the shipment plans and determining the schedule of train ser-

vices. Numerical examples are provided to study and analyze different risk distribution
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considerations.

3.1 Introduction

The safety of hazardous materials (hazmat) transportation has become an important

national and international issue (Ingolfsson and Erkut, 2000). Hazardous materials are rou-

tinely shipped through and temporarily stored near the population centers in vast volumes.

Although railway companies have favorable safety records in moving hazmat shipments

(Oggero et al., 2006), the possibility of spectacular events resulting from multicars inci-

dents, however low, does exist, and the consequence can be significant. These incidents

may happen while a train is stationary or moving including loading and unloading process

at station. The risk of low-probability of high-consequence (LPHC) accidents resulting from

transporting Toxic Inhalation Hazmat (TIH) materials can be potentially catastrophic in

multiple fatalities (Sherali et al., 1997). The rail disaster in Lac-Mégantic, Quebec, re-

sulted in 47 fatalities in 2013, is an example of LPHC event. Generally speaking, shippers

prefer to ship in bulk and long-distance hazmat transportation by railway services as the

volume of one railcar carries almost four trucks. According to the most conducted statis-

tics in 2012, railway companies shipped almost 111 million tons of hazmats in the United

States (DOT, 2017c) and 26 million tons of hazmats in Canada (DOT, 2017b). Among the

different modes used to ship hazmats, the railway transportation of hazmats becomes an

increasingly pressing issue due to safety and security concerns related to rail transportation

of hazmat.

It is evident from accident records that hazmat train accidents or derailments would

impact populations that are not receiving a proportional share of the benefits from hazmat

transportations or fair compensation for the risk exposures (Romero et al., 2016). The

population living along a major rail track connection is likely exposed to the risks regardless

of whether or not they benefit from hazmat transportation. This raises the question of how

to spread the risks over the considered population. Risk equity or equilibration can be

defined as the fair distributing of risk through population (Fontaine et al., 2016). An
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example of equity-based public opposition is the shipment spent nuclear fuel rods from

nuclear power plants to the proposed repository at Yucca Mountain in Nevada (USA) (Erkut

et al., 2007). It is well recognized that equity can be improved by spreading a shipment into

multiple routes (Gopalan et al., 1990). However, rail rerouting is different from highway

rerouting of hazards in that railroad network does not offer many routing options as highway

network (McClure et al., 1988). In order to spread risk in railway transportation, the rail

carriers have to consider risk spreading function in solving train scheduling (Fang et al.,

2017) and/or train makeup (Hosseini and Verma, 2018) problems.

Different than hazmat transport by road, hazmat transport by rail is subject to well-

defined schedule, including its path, en-route stops, and related timetable (Bersani et al.,

2016). One approach to enhance the safety in transporting hazmats is to determine op-

timized train schedules with some information of the demand characteristics, population

density, and atmospheric condition, while an alternative routing does not always exist

(Glickman et al., 2007). The train scheduling problem is hard problem on its own even

when the risk associated with hazardous material shipments are not taken into consider-

ation (Zhu et al., 2014), due to its complexity regarding interacting planning processes.

Although trip plan generation process and train scheduling problem are crucial to freight

train operations (Cordeau et al., 1998; Huntley et al., 1995), hazmat related engagements

are rather few (Fang et al., 2017).

In this chapter, we integrate the train scheduling decisions into trip plan generation

process of hazmat. The main problem is that of finding minimum risk trip plans and

determining trains schedules while limiting the transport risk to given thresholds and dis-

tributing the risk associated with hazmats transportation. We use different quantities to

measure the consequence in distributing the risk, either the maximum population exposure,

the difference between the maximum and minimum risk, or the mean absolute deviation of

the population exposure. A heuristic method is proposed to solve the rail freight routing

and scheduling problem. The heuristic generates itineraries associated with much higher

levels of equity in distributing risk than those dispatching strategies without considering

risk spreading function. Numerical examples are provided to study and analyze different
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risk spreading functions.

3.2 Related literature

As the proposed investigation related to multiple sub-areas within hazmat transporta-

tion domain, we organize the literature review into three groups: routing and scheduling of

hazmat problem; equity in distributing risk; and train scheduling and trip plan problem.

Routing and scheduling: Rerouting of hazmat is one of the main issues in hazmat trans-

portation (Erkut and Ingolfsson, 2000; Glickman et al., 2007; Kara and Verter, 2004). It

deals with the selection of a set of alternative itineraries from the comprehensive list of

itineraries for all origin-destination pairs on a given network to minimize the total risk. Dif-

ferent aspects of rerouting of hazmat problem were studied in hazmat logistics literature.

Verma et al. (2011) integrate the frequency of trains decisions into the trip plan generation

process. Romero et al. (2016) studied location-routing problem while considering equity

in distributing risk. Integration of routing and scheduling decisions becomes crucial as the

population exposure and probability of an accident vary over time (Cox and Turnquist,

1986; Miller-Hooks and Mahmassani, 2000; Nozick et al., 1997a; Szeto et al., 2017). In

addition to the selection of the set of itineraries for the customer requests, one must deter-

mine the best times to dispatch the vehicles and determine the waiting times along routes.

Nozick et al. (1997a) observed that the en-route stops of vehicles can be used as dispatching

strategy to take advantage of the time-varying nature of the accident probabilities and pop-

ulation exposure in reducing the risk associated with hazmat transportation. Erkut and Alp

(2007b) concluded that the en-routes stops allow the carrier to generate routes with much

lower level of risk than those policies where no waiting is allowed. Inequity in distributing

risk is often stemmed from the operator’s routing and scheduling decisions (Bianco et al.,

2009). The aim of equity in risk is to maximize the distributing of risk while limiting risk

in any population zone to given risk threshold.

Equity in distributing risk: Equity spatial distribution of risk has considerably received

attention from hazmat researchers over the past decade (Bell, 2006; Gopalan et al., 1990;
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Zografos and Androutsopoulos, 2008; Zografos and Davis, 1989) as the community opposi-

tion to the routing of vehicles carrying hazmat close to population center in vast volumes,

and the overloading of certain segments with hazmat flows may increase in the incident

probability. Zografos and Davis (1989) proposed a multi-objective model that takes into

account equity considerations by limiting risk on links to certain thresholds. The objective

of the model is to minimize the total risk, the risk level imposed on certain population

groups, the travel time and property damage. The authors concluded that imposing equity

into routing and scheduling decisions increases the total risk by 35%. Bell (2006) and Bell

(2007) separately proposed a min-max model to minimize the maximum risk on the links

in which the transportation network is embedded. The traditional method to consider risk

equity is that based on the generation of different paths that share few links (Akgün et al.,

2000). Carotenuto et al. (2007) designed two heuristics based on Yen’s algorithm consider-

ing the risk resulting from selecting similar paths and equity in spreading risk. Two phases

procedure was designed to tackle the considered problem. In the first phase, the set of possi-

ble paths for each request is determined and then the commodities are routed and scheduled

by assigning one of the available routes and a starting time to each vehicle to avoid any

pair of vehicles that scheduled too close. Zografos and Androutsopoulos (2008) proposed a

heuristic method to obtain the set of alternative non-dominated hazardous material paths

with considerations of cost and risk minimization. The planning of the emergency response

team decisions was explicitly considered into minimum path selection process. Kang et al.

(2014) extend the Value-at-Risk (VaR) into multi-trip multi hazmat context. The model

determines the minimum global VaR while constraining risk on the links to given thresh-

olds. Recent methods motivated by game theory have been proposed to ensure a more

equitable hazmat transport network (Bianco et al., 2012). One may notice that most of the

risk equity works have been done in road transportation and few engagements in railroad

transportation (Bersani et al., 2016; Chin et al., 2009; Fang et al., 2017).

Transportation of hazmat materials in railway context differentiates from road trans-

portation in the number of factors. A train typically carries multiple types of materials,

i.e., hazmat and non-hazmat. Another important characteristic of railway context, from an
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equity assessment perspective, is that it involves multiple hazmat shipments with different

service requirements, in which must be consolidated, routed and scheduled by a set of train

services. In this case, the operator may not only aims to limit the risks to certain thresholds

but also must also consider risk spreading over all the links of the railway network. One

approach to spread the transport risks is to generate different routing alternatives with a

slight variation of one another (Hosseini and Verma, 2017,1; Kuby et al., 1997). Unlike road

transportation, railway vehicles bound for various yard consolidate together and move at

the same speed along their itinerary.

Train scheduling and trip plan: Hazmat routing and train scheduling problem often di-

vided into two nested subproblems: trip plan and train scheduling problem. One approach

to tackle the routing and train scheduling of hazmat problem deals with train scheduling

problem given the trip plans of the considered requests. That is, a routing problem is first

solved and then train scheduling decisions determined given the trip plans of the requests.

In non-hazmat transportation, Cacchiani et al. (2008) modeled and designed a heuristic

method to solve a non-periodic train timetabling problem. The model aims to maximize

the profit of the schedule trains subject to track capacity constraints and prevent too close

departure/arrival of trains at terminals. Caprara et al. (2002) studied the periodic version

of train timetabling problem. If hazmats involve in planning, the routing and scheduling

decisions become important to maximize the equity in distributing risk in addition to mini-

mize total transport risk. Bersani et al. (2016) proposed a binary linear programming model

to reschedule a set of hazmat trains to minimize the average and maximum population ex-

posure. The authors demonstrated that variations of the timetable decrease the average

and maximum exposure through a case study in Liguria and Piedmont regions in Italy.

Another comprehensive method is to combine the routing and train scheduling decisions by

a single optimization model. Fang et al. (2017) integrate routing and scheduling of hazmat

freight with due dates while considering equity by constraining risk on links to the given

thresholds. A mixed-integer programming model and a heuristic procedure are proposed to

determine the timetable of the trains including their speeds and trip plans of the customer

requests. The authors observed that the performance of the heuristic closely depends on the
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given risk thresholds. A considerable improvement in safety can be achieved by integrating

routing and train scheduling decisions and also more equitable hazmat transport network

(Bianco et al., 2009).

It is clear from the hazmat literature that the problem of distributing the risk equitably

over the population zones in the railway industry is still need further attention (Erkut et al.,

2007). In this chapter, in addition to our main objective of finding a set of trip plans of the

considered requests while limiting risk on train services to certain risk thresholds, we also

attempt to maximize the risk spreading using well-defined quantities, either by minimiz-

ing the maximum population risk or the difference between the maximum and minimum

population risk or the mean absolute deviation of the risk sustained by the population liv-

ing along links. A request typically involves multiple train services scheduled together to

fulfill various customer requirements. As the risk evaluation pertains to each alternative

itinerary, i.e., population exposure and/or atmospheric class may differ over time, the trip

planning and train scheduling decisions are intertwined. Therefore, we propose a mixed

integer mathematical formulation for the consider train scheduling and trip plan problem.

The linear version of the Gaussian Plume Model (GPM) in Abuobidalla et al. (2019c) was

borrowed to measure the risk from hazmat transportation, and a heuristic was designed to

solve the train scheduling and trip plan problems. Hereafter, we refer to this problem as

hazardous material trip plan problem with train scheduling decisions (HTPTD).

The chapter is organized as follows. The considered problem is defined and the differ-

ent versions of risk spreading considerations are presented in section 3.3. The proposed

solution is described in section 3.4. We present our experimentation results in section 3.5.

Conclusions of this work are given in section 3.6.

3.3 Problem statement

We consider a railway company that operates |S| train services within a railway network

G(V, S), where V and S are the set of terminals and train services, respectively. The set

S is predefined in advance including its route and capacity at the tactical level, given the
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information on the expected demand between each pair of terminals in the network. Its

schedule, however, is a decision to be made. Each direct train service s∈S, a train moves

nonstop between two yards, starts at yard os, terminates at yard ds and must be defined by

a set of operational characteristics, i.e., the operation start time τ os , cutoff time τ cs , schedule

departure τds at origin yard, schedule arrival τas at destination yard, and maximum number

of cars Us can be hauled by a train service. The cutoff time specifies the minimum time in

which the operator guarantees that the inbound freight will be classified to be pulled along

with the planned train service. A railway operator, a central decision maker, is in charge to

manage various customer requests, denoted by k ∈ K, for a carload moves within a railway

network. In response to these planned train services, the operator receives a sequence future

requests for carload moves, hereafter called request. For each request k in K, the operator is

given the pickup yard ok, delivery yard dk, and earliest available time τALk at the origin yard.

The operator can either accept or serve the demand by a partner, if the capacity of train

services are fully utilized and/or risks associated with hazard shipment exceed the given

thresholds. In the case demand k ∈ K is accepted, the operator will assign the demand to a

sequence of train services including the blocking path along the route. At the beginning of

the request’s itinerary, a shipment will be pulled on the receiving tracks to be classified at

ok. After a demand is sorted, it will be delivered to its yard by a sequence of train services.

In case a demand k ∈ K cannot be delivered by its train service, the operator may use the

service of a partner (outsource the request) and be charged with a cost of φk, sufficient large

number. We assume the service of the partner is always available for shipment albeit at a

higher cost, i.e., marine, or road service. We use different risk reduction strategies aiming

at reducing the transport risk, i.e., rerouting of hazmat commodities and transferring the

hazmat to the transport network of a partner. Each of these risk reduction strategy has

its safety benefit and corresponding cost for implementation. In most cases, transferring

the hazmat risks to the transport network of the third party could be useful in reducing

the total risk (see Azad et al., 2016; Jabbarzadeh et al., 2019) and might be also help in

maximizing the risk spreading.

Over the progression of serving the demands, the operator incurs certain operating costs
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including shipping cost, re-sorting cost, and commodity holding cost during the journey.

The latter cost arises when the railcars idle without being in (re)sorting or transfer process.

In addition to the costs for serving the requests, the operator evaluates the risk associated

with hazmat transportation.

In compliance with the railway policy and government regulation, the operator assesses

the risk associated with hazmat transportation when generating trip plans. The operator

also attempts to distribute the risks associated with hazardous materials shipments. The

objective is to limit the public risk at given risk thresholds, and maximizing the equity in

distributing the transport risk along with the planned services either by minimizing the

maximum population risk, the difference between the maximum and minimum risk, or the

mean absolute deviation of risk, based on the interest of the decision maker. In measuring

the risk, we adopt a worse-case approach using consequence as the measure of transport

risk.

Solving the rail operation planning and scheduling problem is to determine the train

scheduling and car distributing decisions to provide the required services to customers and

to minimize the total cost including the cost of shipping and sorting commodities. We

also consider the equity in distributing the risk associated with transporting hazmats by

imposing risk thresholds constraints and minimizing the maximum population exposure for

the planned services for one of the proposed model. Risk spreading might be interpreted

as a further objective to be attained, without overloading any train service or part of the

network. The solution of the problem is to determine for each demand (a) the itinerary that

must follow from its origin to its destination yard (if not outsource) including the blocking

path, (b) the sequence of trains that it must assign along the route so that the trains

capacities constraints, and risk thresholds are satisfied, and also determines the timetable

of planned services (illustrated in Figure 3.1).

3.3.1 Risk assessment model

In this research, we focus on hazardous materials that are airborne at an accidental

release into the environment, i.e., chlorine and ammonia, as TIH/PIH materials present
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Figure 3.1: Schematic diagram of the HTPs with train scheduling decisions.

the greatest risks. Chlorine is mainly used for purifying potable and wastewater and also

used in as chemical intermediary in different industries, for goods ranging from PV pipes

to shampoo. Ammonia is a commercial fertilizer and mainly used in the agricultural farms.

Such hazardous materials belong to TIH/PIH materials. Because most carriers tend to

exhibit risk-averse when transporting TIH/PIH materials and the lack of information to

estimate precisely the probability of low probability of high consequence, we focus on the

consequence in evaluating the risk. In particular, we use the most popular air dispersion

models in Arya et al. (1999); Zhang et al. (2000), namely the Gaussian Plume Model (GPM),

to assess the public risk. The effects of an accident involving airborne hazmats might be

quantified in term of the exposed population, the total number of people exposed to the

possibility of an undesirable consequence due to the hazardous materials releases (Batta and

Chiu, 1988). For instance, the immediately dangerous life and health (IDLH) for propane

exposure are 4,200,000 ppm for fatality and 600,000 ppm for injuries. At certain IDLH

level, we need to identify a safety distance threshold. The number of people residing at

the intersection of the polygons is corresponding to the population zones. The overlaid of

the safety distance thresholds is the population exposure. Both the terminals and routes
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consider the sources of hazmats releases. Following Kara et al. (2003), we assumed a

rectangular and circle dangerous zone for both edge and terminal source, respectively.

A summary of the quantitative risk assessment is given in Table 3.1 and illustrated in

Figure 3.2. We refer to Verma and Verter (2007) and Abuobidalla et al. (2019c) for the

technical details of the GPM and piecewise linearization for the transport risk, respectively.
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Table 3.1: A summary of GPM for terminal and route.

Public Riska Parameterb Approximation function

PRnodej = πΦj(nj)ρ̂j Threshold area Φj(nj) =
[

bj +dj

√
njQ

π uj aj cj C̄

]2
: j ∈ ds

PRedges = 2Θs(ns)ρsqs Threshold distance Θs(ns) =
[

bs+ds

√
nsQ

π us as cs C̄

]
: s ∈ S

aPRnodej (PRedges ): Population exposure at terminal i (along service s).
bParameters is function of chemical characteristics and volume of hazmat.

3.3.2 Problem assumptions

In developing the mathematical model, we make the following assumptions:

• The route of each train t ∈ T consists of a set of consecutive direct train legs defined

by St, is given by the service provider and is not a decision variable. That is, for each
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train service we are aware of its origin ft, destination lt, service legs, en-route stops,

and capacity.

• Each demand will be shipped following one of the available itinerary (i.e., Li et al.,

2017). It leads to that the demand will not split during transportation. Such an

approach is a common practice in North America railway companies, operating on

double consolidation process, loaded and empty car grouped to construct blocks, and

blocks grouped to makeup trains. In some cases, transporting dangerous goods should

be routed using a single path to reduce the transport risk (Erkut and Gzara, 2008).

• All demands, in terms of the number of cars to be shipped per week, are known in

advance and static based on historical data or negotiated contracts with customers.

For the given and known demands, the railway operator has sufficient capacities for

yard and train operations to satisfy the demand.

• The proposed model aims to find a comprehensive rail freight distributing and train

scheduling decisions from single rail carrier perspective while explicitly take into con-

siderations the equitable distribution of risk. In the case of multiple carriers manage

by a regulator, one may extend one of the available models in hazmat network design

literature (Erkut and Gzara, 2008; Kara and Verter, 2004) or in toll settings of hazmat

transportation literature (Bianco et al., 2012; Marcotte et al., 2009).

• The hazmat transported on train possess similar chemical characteristics. Consistent

with the prevailing literature on hazmat logistic, the undesirable consequences of their

interactions can be neglected.

3.3.3 Mathematical model

We developed three versions of HTPs with train scheduling problem, with various consid-

erations of risk spreading function. The first two models focus on the maximum population

exposure among the train services while the last one minimizes the mean absolute deviation

of risk subject to risk thresholds constraints. To improve the readability of this chapter,
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sets, parameters, and variables of the proposed models are given in Table 3.2-3.3.
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Table 3.2: Set, indices, parameters, and variables (Part 1 of 2).
Sets and indices
T Set of train services, index by t ∈ T .
K Set of requests, index by k or k′ ∈ K.
I Set of terminals in G, index by i or j ∈ I.
S Set of direct services provided by the carrier, index by s or s′ ∈ S.
St Order set of direct services covered by train t, St = {lt, ..., ft} ⊆ S.
Sk Subset of services that a request k can pulled along, index by s ∈ S.
S+
i Emanating services from node i, index by s ∈ S.
S−i Ending services at node i, index by s ∈ S.
Parameters
ft First departure terminal of train t, ft∈I.
lt Last arrival terminal of train t, lt∈I.
v Average train speed.
qs Integer corresponds to train number for direct train service s belong to, qs ∈ T .
ok Origin yard of request k, ok∈I.
dk Destination yard of request k, dk∈I.
os Origin yard of direct train service s, os∈I.
ds Destination yard of direct train service s, ds∈I.
λs,s′ Indicator = 1 if service s′ is immediately scheduled after service s; 0 otherwise,

λs,s′ = {1 ∀ s, s′ ∈ S : os′ = ds & qs = qs′}.
θs,s′ Indicator = 1 if service s and s′ travel on the same train leg; 0 otherwise, θs,s′ =

{1 ∀ s, s′ ∈ S : os′ = os & ds = ds′}.
ρs Average population concentration along the direct train service s, s ∈ S.
qs Distance of the direct train service s, s∈S.
ρ̂j Average population concentration at yard j, j ∈ I.
Us Maximum number of railcars can be hauled by a train service s, s ∈ S.
ns(nj) Number of dangerous goods shipped along direct train service s (through terminal

j).
ψ Conversion factor for risk spreading.
cTs Cost to ship a request on service s, s ∈ S.
cHs Cost to hold a request at terminal os per unit time, s ∈ S.
φk Cost to outsource request k by a partner, k ∈ K.
Dk Number of regular railcars in request k to be shipped, k ∈ K.
Hk Number of hazmat railcars in request k to be shipped, k ∈ K.
Θ(nj) Threshold area to ship nj hazmat freights through terminal j, j ∈ I.
Φ(ns) Threshold distance to ship ns hazmat freight along train service s, s ∈ S.
d Maximum inventory time a commodity can be hold at terminal without any additional

charges.
a(b) Minimum (Maximum) time between the departure and arrival of two consecutive

direct train services, i.e., λs,s′ = 1.
c Minimum safety interval between two services travel on the same leg, i.e., θs,s′ = 1.
V ariables
Integer
xk,s = 1 if commodity k is shipped by service s; 0 otherwise.
ys,s′ = 1 if service s′ departures before service s on the train leg; 0 otherwise.
zk = 1 if request k served by a partner; 0 otherwise.
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Table 3.3: Set, indices, parameters, and variables (Part 2 of 2).
Continuous
τos Schedule operation start time of the direct train service s at yard os∈I.
τcs Schedule cutoff time of the direct train service s at yard os∈I.
τds Schedule departure time of the direct train service s at yard os∈I.
τas Schedule arrival time of the direct train service s at yard ds∈I.
ps Population exposure due to ship ns hazmats along service s, s ∈ S.
pmax Maximum population exposure among the planned services, pmax = max

∀s∈S
ps.

pmin Minimum population exposure among the planned services, pmin = min
∀s∈S

ps.

pmads Absolute deviation of the population exposure from average population exposure for
service s.

ak,j Arrival time of request k at yard j∈I.
hk,s Amount inventory for request k to be hauled on service s∈S.

HTPTD with risk spreading 1

We propose a min-max model, referred to as HTPTD with risk spreading 1, in which

the model minimizes the total cost from serving the requests and maximum population

exposure for the planned services. Hence, we aim at the spatial distribution of risks by

balancing the risk through the services of the railway network in addition to limiting the

total population exposure along with the planned services to given risk thresholds. The

mathematical formulation is given in (P3).

(P3) Min Z1 =
∑
k∈K

Dk

[ Serving costs︷ ︸︸ ︷∑
j∈J :
j=dk

ak,j+
∑
s∈Sk

[
cTs xk,s + cHs hk,s

]
+

Partner cost︷ ︸︸ ︷
φkzk

]
+

Risk spreading︷ ︸︸ ︷
ψpmax

s.t.

∑
s∈Sk∩S+

i

xk,s −
∑

s∈Sk∩S−i

xk,s =



1− zk ∀k, i : i ∈ ok

zk − 1 ∀k, i : i ∈ dk

0 ∀k, i : i /∈ ok nor dk

(16)

∑
k∈K

Dkxk,s ≤ Us ∀s : s ∈ S (17)

∑
s∈Sk:ds=ok

xk,s < 1 ∀k : k ∈ K (18)

ak,j − τ cs +M(xk,s − 1) ≤ 0 ∀k, s, j : j = os, s ∈ Sk (19)

τas ≥ τds + qs/v ∀s : s ∈ S (20)

ak,j − τas +M(1− xk,s) ≥ 0 ∀k, s, j : j = ds, s ∈ Sk (21)
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hk,s − τ os +M(1− xk,s) + ak,j + d ≥ 0 ∀k, s, j : j = os, s ∈ Sk (22)

b ≥ τ os′ − τas ≥ a ∀s, s′ : λs,s′ = 1 (23)

τds − τds′ +Mys,s′ ≥ c ∀s, s′ : θs,s′ = 1 (24)

ys,s′ + ys′,s = 1 ∀s, s′ : θs,s′ = 1 (25)

2Θs

( ∑
k∈K

Hkxk,s

)
ρsqs + πΦj

( ∑
k∈K

Hkxk,s

)
ρ̂j ≤ Rs ∀s, j : j = ds (26)

2Θs

( ∑
k∈K

Hkxk,s

)
ρsqs + πΦj

( ∑
k∈K

Hkxk,s

)
ρ̂j ≤ pmax ∀s, j : j = ds (27)

hk,s ≥ 0 ∀k, s; ys,s′ , xk,s ∈ {0, 1} ∀k, s, s′ (28)

τ os , τ
c
s , τ

d
s , τ

a
s ≥ 0 ∀s (29)

pmax ≥ 0 (30)

The objective function Z1 in the above-presented model (P3) is to minimize the cost

from serving the railway requests, and the maximum population exposure over the planned

services. The first term in Z1 aims at delivering railway requests at their destination yards

as early as possible, while the second term minimizes the costs of transporting and holding

the commodities. The cost of using partner services (if any) is given in the third term in Z1

and the last term minimizes the maximum population exposure. The conversion factor ψ

in Z1 is introduced to perform tradeoff analysis between the total costs and maximum risk.

That is, if spreading risk more important to the operator then higher conversion factor might

be assigned to ψ, and vice versa if the total cost is more important. Constraints (16) are

commodity flow conservation constraints. Constraints (17) are train capacity constraints

for the planned services. Constraints (18) are tour elimination constraints. Constraints

(19) ensure that requests arrive before the cutoff time of the train services along their

itineraries. Constraints (20) determine the arrival times of the train services. Constraints

(21) determine the time of arrival for the requests at en-route stops along the routes.

Constraints (22) define the holding times for the requests at terminals along the shipment’s

itinerary, i.e., hk,s = τ os −ak,j−d. Constraints (23) guarantee that minimum and maximum

separation time intervals between any pair of consecutive services. Constraints (24)-(25)
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ensure one service dispatches along the same service leg for safety reasons, not less than c

interval time between the departure of those services. Constraints (26) ensure that the total

population exposure is no greater than the given thresholds, the first term in Constraints

(26) is the sum of population exposure along the routes and the second term is that at

yards. This risk thresholds could be mandated by a regulatory body external to the railway

company or could correspond to a decision made internally by management to adhere to

specific limits on population exposure. The capacity and risk thresholds constraints may

cause infeasibility, however, artificial linked are added to ensure the delivery of all requests.

This has been done by introducing zk variables, some shipments can reach their destination

yards via partner services with high costs. Constraints (27) define the maximum population

exposure. Constraints (28) are integer variable requirements. Constraints (29)-(30) are non

negativity restrictions.

HTPTD with risk spreading 2

We also propose another version of the min-max model aiming at minimizing the total

cost from serving the requests and difference between the maximum risk from the minimum

population exposure for the planned services, referred to asHTPTD with risk spreading 2.

Risk spreading can be achieved by limiting the population exposure of the planned services

and minimizing the difference between the maximum and minimum population risk. Detail

of the model is given below.

(P4) Min Z2 =
∑
k∈K

Dk

[ Serving costs︷ ︸︸ ︷∑
j∈J

:j=dk

ak,j+
∑
s∈Sk

[
cTsxk,s+cHs hk,s

]
+

Partner costs︷ ︸︸ ︷
φkzk

]
+

Risk spreading︷ ︸︸ ︷
ψ

[
pmax − pmin

]

s.t.

(16)−(29)

2Θs

( ∑
k∈K

Hkxk,s

)
ρsqs+πΦj

( ∑
k∈K

Hkxk,s

)
ρ̂j≥pmin ∀s, j : j ∈ ds (31)

pmax, pmin ≥ 0 (32)

Objective function Z2 in the above presented model (P4) is similar to the objective
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function Z1 except for the last term. The last term in Z2 computes the difference between

the maximum and minimum population exposure. Constraints (31) compute the mini-

mum population exposure among the train services. Constraints (32) are non-negatively

constraints.

HTPTD with risk spreading 3

The third model, referred to as HTPTD with risk sperading 3, minimizes the mean

absolute deviation of the population exposure in addition to the total cost from serving the

requests.

(P5) Min Z3 =
∑
k∈K

Dk

[ Serving costs︷ ︸︸ ︷∑
j∈J :
j=dk

ak,j +
∑
s∈Sk

[
cTs xk,s + cHs hk,s

]
+

Partner︷ ︸︸ ︷
φkzk

]
+

Risk spreading︷ ︸︸ ︷
ψ

[∑
s∈S p

mad
s

|S|

]

s.t.

(16)−(26), (28)−(29)

2Θs

( ∑
k∈K

Hkxk,s

)
ρsqs + πΦj

( ∑
k∈K

Hkxk,s

)
ρ̂j ≤ ps ∀s, j : j = ds (33)

∣∣∣∣ps − ∑s′∈S ps′

|S|

∣∣∣∣ ≤ pmads ∀s : s ∈ S (34)

ps ≥ 0 s : s ∈ S (35)

pmads ≥ 0 s : s ∈ S (36)

Objective function Z3 in the above presented model (P5) is similar to the objective func-

tion Z1 except for the last part. The last term in Z3 minimizes the mean absolute deviation

of the population exposure. Constraints (33) compute the population exposure for each

train service, while constraints (34) compute the absolute deviation of the risk from the

average risk. The inner terms in (34) determines the deviation of the population exposures

resulting from transporting hazmat railcars using different service legs. Constraints (34)

measure the variation across different train services. Note that smaller values of variability

in risk indicate the higher distributing in risk. Clearly higher values of pmads indicate large

variation in transport risk as a result of operator routing and scheduling decisions, which
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may raise concern for the communities and government agencies. Model (P5) ensures that

solutions with low average risk and high variability across different train legs are minimized.

Note that we are interested in the variability of the risk, above or below the average pop-

ulation exposure, and hence the equation in using the absolute bracket. In other words,

the presence of the risk variability term in the objective function provides a high level of

spreading of the risk. Constraints (35) are non-negatively constraints.

Problems Pf , f = 3, 4, 5 is a version of Multicommodity Minimum Cost Network Flow

Problem (MCNFP) with train scheduling decisions, which is known to be NP-hard (Cacchi-

ani et al., 2008; D’Ariano and Pranzo, 2009; Magnanti and Wong, 1984; Minoux, 1989), with

nonlinear constraints to consider the public risk and equity in distributing risk. Although

the special structures of the MCNFP can be solved in polynomial time, some other variants

of the MCNFP are intractable. An integer flow for the minimum cost multicommodity flow

is proved to be NP-complete (Even et al., 1976b; Li et al., 2017). Furthermore, the flow

over time MCNFP is known to be NP-hard (Cai et al., 2001). The train scheduling problem

is a version of the train timetabling problem (TTP), which proven to be NP-hard. Caprara

et al. (2002) showed that the TTP is NP-hard as a generalized of the maximum stable set

problem. In this chapter, we design a heuristic method to solve the considered problem.

3.4 Solution method

In this section, a heuristic solution method is presented to solve the considered HTPTD

with risk spreading function. The non-linear programming model will be first reformulated

as an MIP model and solved using a commercial solver. Then, a heuristic search procedure

is performed, which involves calling a mixed integer programming solution subroutine to

solve MIP sub-models iteratively to improve the incumbent solution by optimizing a single

train service at a time. The solution of the MIP sub-model should correspond to improve

train schedules and followed by solving the rail freight planning problem. The search will

stop when the number of local searches is achieved or the total computational time has

reached a given limit.
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3.4.1 Function linearization

To simplify computation, piecewise linear functions were used to substitute the nonlin-

ear hazmat risk function in GPM model defined in Constraints (26)-(27), (31), and (33).

In particular, three intervals were used in the piecewise linearization method to balance

between quality of solution and computation time. The resulting optimization model can

be then solved using popular MIP commercial software without invoking the search for local

or global optimal solutions of a nonlinear problem. For expositional reasons, and for sake

of brevity, we do not repeat the methodology details, and we invite the reader to refer to

Abuobidalla et al. (2019c).

In addition to the linear functions to account risk particularly in rail transport, Con-

straints (34) in the model (P3) is non-linear of the presence of the absolute term. However,

we use the linearized technique available in the literature to generate an equivalent linear

form. Constraints (34) can be replaced by Constraints (37)-(38) as shown below:

[
ps −

∑
s′∈S ps′

|S|

]
≤ pmads ∀s : s ∈ S (37)[∑

s′∈S ps′

|S|
− ps

]
≤ pmads ∀s : s ∈ S (38)

It should be evident that the linear inequality (37)-(38) is equivalent to Constraints (34),

because if ps −
∑
s′∈S ps′/|S| < 0 then Constraints (38) ensure that pmads =

∑
s′∈S ps′/|S| −

ps > 0. Also, if
∑
s′∈S ps′/|S| − ps < 0 then Constraints (37) ensure that pmads = ps −∑

s′∈S ps′/|S| > 0. Hence, in both cases, the solution from linear inequality (37)-(38) will

be equivalent to that from Constraints (34).

After applying the piecewise linearization process, the original optimization model Pq, q =

1, 2 is reduced to the mixed linear integer programming (MIP) model P ′q, q = 3, 4. For model

(P5), we also replace Constraints (34) by linear form as discussed above then the original

optimization model is also reduced to the MIP model P ′5.
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3.4.2 Heuristic search

Problem P
′
f , f = 3, 4, 5 is a version of train scheduling problem with rail freight routing

decisions which involves two main nested decisions; the timetable of train services, through

τ os , τ
c
s , τ

d
s , τ

a
s variables, and the assignment of commodities to train sequences according to

the timetable of train services, through xk,s variables. The MIP heuristic is designed to

account the hierarchical nature of the considered problem. Once we decide the schedule

of the candidate trains, one must extract the possible itineraries for the shipments and

solve restricted multicommodity flow problem. The heuristic focuses on train schedule

problem, as they influence the dimension of the solution space, by fixing a subset of the

train services and then restricted car routing and scheduling problem is heuristically solved

given the schedule of the train services. The procedure has two main subroutines: obtaining

a feasible solution and then re-optimizing one train at a time. Detail of the heuristic is given

below.

A feasible solution of the Problem P ′q, q = 3, 4, 5 is obtained by giving a fixed time

limit to the MIP solver. Then, the current solution is iteratively improved by reoptimizing,

with some randomness, one train at a time, we define a MIP model for the problem in

which all the schedule of other trains in the solution is fixed and all the variables associated

with commodities assignment of that train are present. The heuristic iteratively solves a

sequence of the MIP sub-problems of the model with the subset of xk,s and ys,s′ binary

variables fixed. Let Rr(s, s′) (R′r(k, s)) be the set of train services (shipment assignment)

to be fixed at iteration r. The heuristic starts with an empty set in Rr(s, s′). Then, at any

iteration r, the subset of ys,s′ \Rr−1(s, s′) to be investigated is determined, for each train,

as follows:

• By inserting in Rr(s∗, s′) (i.e., fixing the lower and upper bound to 0) the variable

ys∗,s′ or ys′,s∗ \Rr−1(s∗, s′) such that ys′,s∗ = 1 or ys∗,s′ = 1 at iteration r − 1 and

t∗ = yc|T |, where |T | denotes a set of trains randomly sorted, y is a random number

from interval [0, 1), and c is a deterministic parameter (≥1) that introduces some

randomness.
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• By inserting in R′r(k, s∗) (i.e., fixing the lower and upper bound to 0) the variable

xk,s∗ .

The MIP is solved heuristically by limiting both the computation time and the number

of nodes in the MIP solver, and the best solution is taken. Once all train services have been

evaluated, the trains are reconsidered and randomly order. That is, we perform another

local search by optimizing one train service at a time and solve the restricted car routing

problem again. The procedure is iteratively repeated until a given amount of CPU time is

exhausted or a pre-defined number of local search is achieved, whichever come first.

An extension of the above procedure is to optimize, rather than a single train, m trains

in the solution and heuristically solve the MIP in which the schedule of all other trains are

fixed. We consider the cases m = 2 and m = 3 to limit the computational times, m = 1

being explored by the procedure above. Our experimental results show that the proposed

algorithm performs very well when we consider a single train at a time. Therefore, we omit

the solution details when m > 1. The whole solution procedure was tested using several

numerical examples of the HTPTDs discussed in the next section. In summary, the steps

of the solution procedure are given in Algorithm 2.

Algorithm 2 HTPTD with risk spreading heuristic

1: Read data: the network information, list of request requirements, and list of candidate
train services

2: Step 0: Reformulate the model (Section 3.4.1)
3: Step 1: Find a feasible solution for P ′q and update the best solution
4: Step 2: Randomly order the train services in T
5: Step 3: Apply a local search procedure by optimizing one train service at a time with

some randomness and fixing all schedule of the other trains (Section 3.4.2)
6: Step 4: Solve restricted car routing problem given the timetable of the trains
7: Step 5: Update the best solution if better solution found
8: Go to Step 2 while the computation time is not exhausted and the number of local

searches is not achieved yet
9: Export the best train timetabling and car routing decisions
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3.5 Computational results

3.5.1 Problem setting

The algorithm procedure was implemented in C++, in particular, the MIP linear opti-

mization was solved using Cplex v.12.7.1 and the ILOC Concert technology for building the

model from the C++ language. The purpose of our computational experiment is two-fold:

to demonstrate the validity of the proposed method and to compare the solution obtained

for the different versions of risk spreading functions. We use two hypothetical railway

networks, one in subsection 3.5.2 and the other in subsection 3.5.4. The former network,

referred to as small network, consists of 7 terminals and 13 links. We designed 10 train

journeys where each train service consists of one to three train legs. A total of 27 direct

train services has been created to satisfy any request in K. The other network referred to

as large network, composed of 15 terminals and 34 links, given in Figure 3.9. We created

25 train journeys. Each train service consists of one to four train legs. A total of 97 direct

train services are available. We randomly generate demands between any pair of terminals

in the network, where each node can be origin and destination for demands. For each rail

routing and scheduling problem, we generate 10 independence instances and then we report

the average of the performance indicators. In the small network, we generate 82 requests,

while the larger network we produce 210 requests. Each customer request consists of spe-

cific characteristics including origin, destination yards, the amount of regular and hazmat

materials and the available time. In the small network, a total of 800 railcars including

250 with hazmat railcars have to be routed and scheduled, wherein the request ranges from

6 to 16 railcars including 2−5 with hazmat railcars. In the larger network, a total of 2534

railcars including 954 with hazmat railcars has been generated, wherein the request ranges

from 8 to 16 railcars including 3−6 with hazard railcars. Moreover, the cost terms were

adopted from Fang et al. (2017); Verma et al. (2011). In particular, the transportation cost

for regular and hazmat freight was assumed to be $0.875 and $1.630 per mile, respectively.

The classification cost per regular freight was assumed to be $150, whereas hazmat freight

was estimated to be a 20% additional cost than the regular freight to provide safety and
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security requirements. The inventory cost per freight was assumed to be $50 per day.

The computational experiments were conducted on a 2.6 GHz Pentium 4 on DELL

laptop with 16 GB of RAM. For the Cplex and heuristic method, we solve the problem

giving a 1-hour time limit to the solver. For the HTPTD heuristic, we also imposed a

time limit of 300 seconds for obtaining a feasible solution and 60 seconds given for the solver

to solve the sub-MIP problem.

As we describe earlier, the proposed algorithm performs number of local searches over

the train network; at each local search, it optimizes a single train and then we solve the

restricted railcar freight routing problem. Figure 3.3 with Table 3.4 illustrates improvements

in the objective function versus numbers of local searches for a rail planning problem. It

show results that are fairly dramatic in the three to five moves and almost negligible after six

moves. Note that move 1 represents the value of the initial solution and move 10 represents

the value of final solution. Although we show the the graph for a single instance, we notice

the proposed algorithm exhibit the same behavior for all instances we applied. Thus, we

limit the algorithm to a maximum of 10 local searches.

Table 3.4: Number of local search vs. best objective.
Move # 1 1− 4 4 4 4 5 5 5− 6 6− 8 10
Iteration 1 2 3 4 5 6− 17 18 19 20 21 22− 23 24− 29 30− 47 48− 50
Objective 638038000 450077000 258200000 97412400 464393 357191 337203 330127 324585 302396 260576 252577 246686 243775
Improv. − −29.46 −42.63 −62.27 −99.52 −23.08 −5.60 −2.10 −1.68 −6.84 −13.83 −3.07 −2.33 −1.18
GAP 265749.17 187432.08 107483.33 40488.50 93.50 48.83 40.50 37.55 35.24 26.00 8.57 5.24 2.79 1.57

Time(sec.) 1.60 1.99 2.49 10.16 12.56 14.45 30.05 31.23 33.54 34.27 35.59 38.04 43.23 61.70

3.5.2 Impact of commodity type

To study the impact of the type of commodity on the final trains schedules and risk

indicators, we generated four groups of instance, one consists of regular railcars (referred

to as R), one contains hazmat railcars (referred to as H) and two composed of different

combination of regular and hazmat railcars in request. In the R/H group of instances,

more regular railcars are generated than hazmat railcars. In contrast, the H/R group of

instances contains higher hazmat railcars in a request.

We report the results for the proposed heuristic in Table 3.5 together with schedule of

train services in Figure 3.4-3.7. The train schedule shows how the train will move over time,
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Figure 3.3: Number of local search.

Table 3.5: Type of commodity in customer request.

PI/I Regular(R) Hazmat(H) Regular/Hazmat(R/H) Hazmat/Regular(H/R)
Load(%) 49.83 49.75 46.19 46.33
N.Partner 6/84 5/84 5/84 5/84
T.Holding 68.03 104.84 35.87 133.19
T.Distance 140479 140400 138086 135753

R/H 800/(−) (−)/800 562/238 239/561
xIDLH − 1.33 1.19 1.11
pmax − 176014 79637 227533
ptotal − 2317868 733484 1818107

Obj.Init. 80011.9 58196.7 90110.9 203191
Obj.fin. 58011.1 58188.2 58089.5 58169.6
P.D.(%) −27.50% −0.01% −35.54% −71.37%
∗The computational time for running different instances ranged from just a few seconds

to 1 minute for an average model runtime of 40 second.
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where the x-axis gives the time horizon (expressed in days) and the y-axis gives the terminal

number in the network. The results for the four groups of instance are reported with respect

to the average train utilization obtained from Load(%) =
∑
k∈K

∑
s∈Sk

(
Dkxk,s/Us

)
100; the

number of requests served by a partner obtained from T.Partner =
∑
k∈K zk; the total

holding times obtained from T.Holding =
∑
k∈K

∑
s∈Sk hk,s; the total distance covered by

commodities in kilometre (T.Distance); total regular/hazmat freights (R/H); the average

IDLH from 1 (least risky) to 3 (most risky) xIDLH , the maximum population exposure

obtained from pmax = max
∀s∈S

ps; the total population exposure obtained from ptotal =
∑
s∈S ps;

the initial (final) objective (Obj.Init.(Obj.fin.)); and the percent deviation obtained from

P.D. =
(
Obj.fin.−Obj.Init./Obj.Init.

)
100.

From the trains schedule shown in Figure 3.4-3.7, it is evident that the portion of

hazards in a request impacts the final schedule of train services in addition to the trip plans

produced for demands. For instance, the schedule of train services produced in the H/R and

H instances is planned to avoid any pair of trains that schedules too close (see Figure 3.5

and Figure 3.7) to distribute the risk. The train services in the H instance relatively spread

over the planning horizon compared to one in R and in R/H instances. One may also

observe that the total holding times for the solution produced in H and H/R instances is

much higher than in those R and R/H instances, with an average percent deviation from

R instance of 54.11% and 95.78%, respectively. When the volume of hazmats increases in

a request, the heuristic attempts to hold some hazard railcars at some terminals to balance

the risk by avoiding high risk train services. This could be achieved by adding some slack

times between different train services.

Integrating train scheduling problem with the trip plan generation of hazmats process

could distribute risk while constraining the risk along with the planned services to given

risk thresholds. A total of 800 hazmat railcars in H instance exposes around 2317868

people (2897 people per railcar), whereas only 561 hazmat railcars in H/R instance exposes

1818107 people (3241 people per railcar). Such increases in the population exposure per

railcar for H/R instance with respect to H instance (around 11.87% per hazmat) could

be explained by the fact that few routing and scheduling options are available for H/R
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Figure 3.4: Schedule of train services (R instance).
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Figure 3.5: Schedule of train services (H instance).
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instance given the train capacities as regular and hazard commodities shipped on the same

route. One may also notice that the maximum population exposure for the H instance

is around −22.64% average percent deviation from the maximum population exposure for

H/R instance. This observation is consistent with previous studies on hazmat rerouting.

For instance, Verma and Verter (2010) concluded that it is possible to reduce population

exposure, without a significant increase in the total cost by scheduling hazmat unit-trains.

Initiating hazmat unit-train not only can reduce the total population exposure but also may

help in distributing risk more uniformly along with the planned services, see Bell (2006,0);

Bersani et al. (2016); Hosseini and Verma (2017,1).
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Figure 3.6: Schedule of train services (R/H instance).

3.5.3 Risk Spreading-Cost tradeoff

We generate a partial Pareto frontier for HTPTD with risk spreading 3 that con-

tains the non-dominated solutions of five problem instances generated by varying the risk

spreading factor ψ from 1 (point E) to 5 (point A) constituting the two extremes, given
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Figure 3.7: Schedule of train services (H/R instance).

in Figure 3.8. One can see the Min Cost solution (point E) entails a cost of $93456 and

produces 82318 population exposure as mean absolute deviation of the risk associated with

hazmat transportation, whereas the Max Risk spreading solution (point A) will cost $483626

and produce 14766 population exposure. The additional $390170 could potentially improve

risk spreading by 67552 (more than 82%). Perhaps a more important observation is the

few improvement in risk spreading when just a significant consideration is given to risk

spreading, i.e., moving from Min Cost to Max risk spreading in Figure 3.8. More specifi-

cally, an additional cost 130% (i.e., 121295) for rerouting can result in a 55% improvement

in risk spreading (i.e., reduce risk spreading value from 82317 to 37251), which implies for

every additional one dollar spent in rerouting hazmat freights risk spreading improve by

0.37 population exposure. It is clear from Figure 3.8 that the tradeoff along the frontier

will vary in term of additional cost from rerouting the commodities against improvement

in risk spreading. The benefit for improving risk spreading deceases from 0.37 (point E) to

0.01 (point A) per person.
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3.5.4 Various considerations of risk spreading

Various risk spreading functions will most likely produce different train schedules and

trip plan solutions. Table 3.6 summarizes the solutions for larger network using the pro-

posed risk spreading strategies together with the solution obtained from the solver by lim-

iting computation time into one hour. We divided the solutions into four parts. The first

part in Table 3.6 presents the solutions regarding the total train loads, the number of com-

modities fulfilled by a partner, the total amount of inventory (expressed in days), the total

distance traveled by commodities and the total number of commodities shipped including

hazmat freights. The second part gives information on the risk with regard to the level of

the immediate life and health from 1 (least risky) to 3 (most risky), the maximum popu-

lation exposure (in people), the total population exposure (in people), the sum of absolute

deviation and the average population exposure pavg. =
∑
s ps/|S|. The third part gives

the average (standard deviation) of the number of services per train sequence, the average

85



holding times per request and the average number of train changes, and the number of

trains that deviate from their initial schedule. The last part in Table 3.6 presents the initial

and final value of the objective function of the proposed method with the percent deviation

from the initial solution as described earlier.
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Figure 3.9: Hypothetical railway network.

To analysis the trip plan produced by the heuristic, we proposed an extension of the

standard k-shortest path algorithm to generate a comprehensive list of alternative itineraries

for each solution produced by the risk spreading strategy. Table 3.7 gives the total number

of train sequences and average (standard deviation) number of services per train sequence

for each risk spreading strategy. One may note a total of 9995 alternative itineraries are

produced in the HTPTD with risk spreading 3, with average increases of 60.92% from the

one in HTPTD without considering risk spreading function (6211 possible train sequences).

For each demand, we create two lists of alternative itineraries, one ranked with respect to

arrival time at destination and the other one with regard to distance (increasing order). We

also notice that there are more than 150 alternative itineraries for some requests when risk

spreading function is incorporated into the trip plan generation process.

It is obvious from Table 3.6 that integrating risk spreading functions into trip plan
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Table 3.6: Performance of the proposed heuristic vs. Cplex solution.

PI/S Cplex∗
HTPTD∗∗ HTPTD∗∗ HTPTD∗∗ HTPTD∗∗

GAP1(%) GAP2(%) GAP3(%) GAP4(%)with risk without risk with risk with risk
spreading 1 spreading spreading 2 spreading 3

Load(%) 37.90 43.63 42.78 43.37 59.65 15.12 11.19 12.79 57.38
N.Partner 27/210 14/210 14/210 15/210 14/210 − − −
T.Holding 98.07 96.55 56.18 137.03 235.84 −1.55 −42.71 39.73 140.48
T.Distance 461509 536715 519751 528331 728536 16.30 10.85 12.86 257.85

R/H 1375/824 1469/882 1453/885 1474/876 1483/890 6.91 5.91 6.46 7.91
xIDLH 1.00 1.01 1.15 0.85 0.95 0.96 15.31 −13.39 −5.00
pmax 141262 187076 192096 157516 243651 22.43 22.17 8.46 72.48
ptotal 3320537 4641570 4294673 4265204 4505899 39.78 20.99 22.00 35.69
pmad 2542720 3889454 3461033 3334916 3000377 52.95 36.11 31.15 17.99
pavg. 34232 47851 44275 43971 46452 39.78 29.34 28.45 35.69
N.S. − 2.96(1.42) 2.90(1.36) 2.94(1.47) 3.76(2.08) − − − −
I. − 0.49(0.87) 0.29(0.60) 0.70(1.03) 1.20(1.77) − − − −
S.C. − 1.27(1.13) 1.15(1.04) 1.41(1.14) 1.72(1.32) − − − −
T.C. − 14/25 14/25 14/25 18/25 − − − −

Obj.Init. − 2356050 1772020 2367030 2521000 − − − −
Obj.fin. 270004 183233 183044 196210 175721 −32.14 −32.21 −27.33 −34.91
P.D.(%) − −92.22% −89.67% −91.71% −93.03 − − − −

∗The computational time for running different instances exceed 1 hour.
∗∗The computational time for running different instances ranged from just a few minutes to 15 minute for an average model runtime of 10 minutes.

Table 3.7: Characteristics of the trains sequences.
PI/S

HTPTD HTPTD HTPTD HTPTD
with risk without risk with risk with risk
spreading 1 spreading spreading 2 sperading 3

#T.S. 7118 6211 8446 9995
#N.S. 4.75(1.70) 5.29(1.86) 5.75(2.11) 5.25(1.78)
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Figure 3.10: Cplex solution within 1 hour.
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Figure 3.11: Proposed heuristic.
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Figure 3.12: HTPTD with risk spreading 1.
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Figure 3.13: HTPTD without risk spreading.
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Table 3.8: Characteristics of the trip plans.
PI/S

HTPTD HTPTD HTPTD HTPTD
with risk without risk with risk with risk
spreading 1 spreading spreading 2 spreading 3

Rank(time) 2.34(3.71) 1.73(3.32) 4.19(6.45) 15.73(25.91)
Rank(distance) 4.84(0.13) 2.20(0.10) 10.03(0.27) 50.65(0.85)
Req.(time) 62/196 30/196 95/195 167/196

Req.(distance) 37/196 14/196 43/195 98/196
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Figure 3.14: HTPTD with risk spreading 2.
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Figure 3.15: HTPTD with risk spreading 3.

generation and train scheduling decision-making process may not only increase the oper-

ational costs to the carrier but also may increase the total risks. The amount of hold-

ing times increases for the commodities in the risk spreading strategies over the HTPTD

without risk sperading by 71.85-180.38%. To a analysis the solutions produced, we divide

the requests into four groups for each proposed strategies regarding the amount of waiting

times given by Figure 3.17. We can observe that 14-29% of the requests in risk spreading

strategies spends more than 1.5 days in holding status. Figure 3.18 depicts the percent

of each operation, either moving, sorting, waiting or holding, for a commodity along its

itinerary, where we can see that a commodity being on holding status not less than 19%

of the time. This increase could result from the fact that some commodities deviated from

the shortest itinerary to balance the risk, causing delays for some non-hazmat demands to

accompany the hazards on the same train services. Allowing the hazmat shipments to be

temporary stored at some terminals along their itineraries can be an effective strategy to

spread the risk, assuming there is zero risk from holding hazmat at terminals.
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Figure 3.16: Population exposure per train leg.

Table 3.8 gives the characteristic of the generated trip plans for each proposed strategy.

In the first part of Table 3.8 presents the average (standard deviation) gaps, whereas the

second part gives the number of commodities deviated from the shortest itinerary with

respect to time and distance, respectively. For instance, without considering risk spreading

most commodities follow the 2nd or shortest itinerary (time) and the average increases in

distance is not more than 2.20% from the shortest itinerary (distance). In the case when the

decision maker incorporate risk spreading into trip plan generation, some requests shipped

along the 3rd-16th shortest itinerary (time) and the average increases in distance varies from

4.84 to 50.65% from the shortest itinerary (distance). In most cases, hazmat shipments likely

affect rail operations. Rerouting of hazardous materials train to distribute the transport

risk may increase mileage and in-transit time for non-hazmat commodities on the same

train.

It is also evident that the percent deviation from the shortest path varies from one risk

spreading strategy to another. For example, HTPTD with risk spreading 3 strategy causes

91



138

162

116

107

25

6

23

17

6

14

19

15

27

14

36

57

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HTPTD with  risk
spreading1

HTPTD without  risk
spreading

HTPTD with  risk
spreading2

HTPTD with  risk
spreading3

Percent of requests

0-0.5 0.5-1.0 1.0-1.50 >1.5

Figure 3.17: Holding time vs. HTPTD strategies.

the largest mean deviation from the shortest itinerary compared to the other risk spreading

strategies. HTPTD with risk spreading 3 strategy attempts at balancing the risk among

train services rather than minimizing the maximum or difference between the maximum and

minimum population exposure. To study the impact of various risk spreading quantities on

the trip plan generation process, we classified the train services into four groups based on the

total population exposure, (a) most risky level1 = {s ∈ S : ps > 100, 000}; (b) moderate risk

level2 = {s ∈ S : 50, 000 < ps ≤ 100, 000}; (c) low risk level3 = {s ∈ S : 0 < ps ≤ 50, 000};

and (d) zero risk. Figure 3.19 together with Figure 3.12-3.15 depicts the percentage of expo-

sure levels for each risk spreading strategy and without risk spreading considerations. It is

obvious that the number of services in level1 and level4 for HTPTD with risk spreading 3,

5 out of 97, is the least among the other risk spreading strategies. Whereas the other two

risk spreading strategies reduce the maximum and difference between the maximum and

minimum population exposure by shifting hazmat railcars between services in level1. This

shows that the maximum or the difference between the maximum and the minimum trans-

port risk may not lead to balance risk distribution among the population, not less than 18%

92



of train services with zero risk (see Figure 3.16). When some train services supports the

transport of a high volume of hazmat, the maximum risk in the network will be defined by

these train services and the other train services become unimportant in spreading the risk

(see Figure 3.12 and Figure 3.14). It is simply shift the transport risk from one train leg

to other train legs. Thus, the maximum population exposure or the different between the

maximum and the minimum population exposure may not lead to fairly distribute the risk

over the population.
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Figure 3.18: Percent of operations.

Different than minimizing the maximum or difference between the maximum and mini-

mum population exposure, HTPTD with risk sperading 3 calculates a global measure to

distribute risk more equitable, by avoiding overloading any railway service or part of the

network. As a result, some shipments shipped along longer itineraries to balance the risk

among the train services (3.76 vs. 2.90 train services). Since some requests considerably

deviates from the shortest itinerary from rerouting the hazardous materials, the total risk

increases by 39.78%. The population area with a low risk will be penalized from the risk

spreading, i.e., 5 out of 97 for HTPTD with risk sperading 3. This new definition of
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risk spreading allow us to generate similar routes that do not share common train services.

Considering risk spreading function into trip plan generation may not only have to incur an

unbearable financial cost to the carrier but also may increase the total risk, which could be

undesirable from a carrier’s perspective. Following Fontaine et al. (2016), one may incorpo-

rate the total transport risk to the carrier’s objective function to avoid significant increase

in the total population exposure while spreading the transport risk over the population.
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Figure 3.19: Risk class.

Distributing risk over the railway network is a feature attractive to railway operators

for balancing risk and planning emergency response teams. Integrating risk spreading func-

tion into the trip plan generation process helps in mitigating the adverse impacts of ac-

cidents/derailments when they happen. To comply with risk spreading requirements, re-

sources allocation of the hazardous materials response teams must be allocated with spatial

equity to avoid zone with an abnormally low possibility of derailment with high consequence

(Garrido, 2010). The additional operational costs can be added to the shipping charges by

quantifying most cost factors from incorporating risk spreading function into trip plan gen-

eration process. Of course, the operator must be very cautious in estimating the additional
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shipping costs to avoid causing a substantial shift in hazardous materials shipments from

railway to truck, which might increase overall transport risks as trucks are more prone to

accidents than are railcars (Bagheri et al., 2014).

3.6 Conclusion

In this chapter, we model the planning and scheduling of hazmat freight problem with

train scheduling decisions while taking into accounts risk distribution function. A heuristic

method has been designed to solve a realistic size problem instances. The experiment results

revealed that considering risk distribution function into trip plan generation may not only

have to incur unbearable financial costs to the carrier but also increases the total risk,

which it could be undesirable from a carrier’s perspective. In particular, some requests

considerably deviated from the shortest path with an average of 16.29%, causing increases

in the total risks by 39.78%. We also show that the carrier can achieve a high level of

risk distribution by integrating train scheduling decisions into trip plan generation process.

More precisely, the waiting of commodities at some terminals represent the opportunity

of demands flows to be temporarily stored at some terminals along their itinerary, to be

picked up by less risky train services passing by at later times to meet safety regulations.

This could be achieved by adding some slack times between different train services. The

additional operational costs can be added to the shipping charges by quantifying most cost

factors from incorporating risk spreading function into trip plan generation process.
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Chapter 4

Modeling and solution method for

HTPs with pricing decisions

Integrated Hazardous Materials Trip Plan Problem and Pric-
ing Decisions for Railway Supply Chain System
Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan

This manuscript is under review in Research in Transportation Business & Management (August

2019)

In this chapter, a rail freight transportation planning problem to ship regular and haz-

ardous materials is studied. An optimization-based approach is used to assign the incoming

railway requests to the best available itineraries while satisfying the capacities and risk

thresholds of the planned services. The planning procedure consists of two phases. In the

first phase, a deterministic freight transportation problem with train scheduling decisions

is modeled and solved for shipping freight commodities known in advance. The solution

determines the schedules of train services and the best demand-itinerary assignment deci-

sions. In the second phase, real-time planning of hazmat problem is built and solved at the

arrival of the new requests. Numerical examples are provided to illustrate the considered

problem and the proposed solution method.
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4.1 Introduction

Making the best allocation of limited resources, while meeting customers commitment

times and price quotations, is a common challenge in many industries including railway

transportation providers. To address this challenge, rail carriers are continuously under

pressure to develop an optimization-based tool to answer their customer’s requests in real-

time (Törnquist, 2006) while taking into account the current status of the railway network.

In practice, customer requests for a railway move are not known in advance (Crainic, 2000).

A subset of the request’s information is gradually revealed over time. The operator may

adapt the assignment of the specific commodity to another train sequences as new informa-

tion is revealed, aiming at releasing some loads for specific train services to accommodate

future in demands (Cao et al., 2012). There is no doubt that the advances in informa-

tion and communication technologies, such as advanced train control system, have provided

railway operators an opportunity to automate their operation process (Kraay and Harker,

1995) while considering the risk from transporting hazmats (Verma et al., 2011) and the

revenue generated from serving demands (Crevier et al., 2012).

Railway carriers transport a large volume of hazardous materials in addition to trans-

porting regular freights. According to recent statistics in 2012, rail companies shipped

almost 111 million tons of hazmats in the United States (DOT, 2017b) and 26 million tons

of hazmats in Canada (Searag et al., 2015). In North America, chlorine and ammonia are

frequently shipped in railway services that become airborne in the event of an accidental

release (Branscomb et al., 2010). Chlorine is mainly used for purifying potable and wastew-

ater and also used in as chemical intermediary in different industries, for goods ranging

from PV pipes to shampoo. Ammonia is a commercial fertilizer and mainly used in agri-

cultural farms. The impact potentially harmful to human health and environment, in case

of derailment or accident causing hazmat releases, is quite large. Since some of the haz-

mat trains are routinely routed near the urban areas, train accidents or derailments pose

a significant security threat. The rail disaster in Lac-Mégantic, Quebec, resulted in 47 fa-

talities in 2013, is an example of low-probability high-consequence (LPHC) event. Railway
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transportation of hazmats, including Toxic Inhalation Hazard (TIH), is crucial to economy

supporting the national supply chain despite the safety and security concerns associated

with transportation of hazardous materials.

Traditional hazmat trip plan problems ignore the revenues generated from serving the

requests and focus on costs resulting from routing and scheduling the demands. Following

the Common Carrier Obligation in North America, the carriers are prohibited from refusing

shipment of dangerous cargo (Roberts, 1978). In general, this requirement expresses the

implicit hypothesis that the total costs from rerouting hazmat commodities will be compen-

sated by the total revenue generated. Such an assumption does not necessarily hold, and

incorporating pricing decisions have important implications in the total net profits obtained

(Crevier et al., 2012) and population exposure as well (Bianco et al., 2012). In most cases,

hazmat shipments likely affect rail operations. Rerouting of hazardous materials train to

avoid populated areas may increase mileage and in-transit time for non-hazmat commodities

shipped on the same train. Accordingly, the carrier may modify their pricing strategies to

compensate the increases in the operating cost and transport risks (Marcotte et al., 2009).

4.2 Related literature

Since the proposed study related to multiple sub-areas within the transportation domain,

we organized the literature review into three groups: Routing and scheduling of hazmat;

Real-time routing and scheduling; and Revenue management and pricing decisions.

Routing and scheduling of hazmat: A majority of the literature on hazmat routing and

scheduling problems is devoted to road transportations (Bianco et al., 2009; Erkut and

Alp, 2007b; Nozick et al., 1997a; Verter and Kara, 2008) as transportation by trucking

companies account for a large percentage of hazmat shipments, while research in railway

transportation of hazmat is comparably less (Erkut, 1995; Erkut et al., 2007; List et al.,

1991). Over the past three decades, many mathematical models and solution methods have

been proposed to tackle various aspects of railway transportation of hazmat problems such

as: (a) Risk assessment (Verma and Verter, 2007); (b) Network design (Reilly et al., 2012);
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(c) Routing (Glickman et al., 2007; Verma et al., 2011); (d) Routing and scheduling (Fang

et al., 2017); (e) Train makeup (Bagheri et al., 2011; Cheng et al., 2017); (f) Routing and

location (Romero et al., 2016); (g) Blocking, train makeup, and rail freight transportation

(Abuobidalla et al., 2019c), (h) Toll setting (Assadipour et al., 2016), among others. Since

all the input data of the hazmat routing problems are considered known in advance before

the routes are built, most models in the hazmat transportation literature are developed

to solve static routing problems. In a dynamic routing problem, some of the demands are

gradually revealed over time, and the operator may modify commodity-itinerary assignment

decisions. The prevailing studies on hazmat transportation literature can be classified into

three groups. The first group known as a priori optimization, the optimized routes (and

schedules) are determined before the travel starts. An update on the routing (and schedul-

ing) decisions en-route will not be performed. In the second group known as adaptive route

selection, the decision-maker frequently collects new information that may be used in im-

proving routing decisions. The optimized route depends on the intermediate information

concerning past travel times and/or weather conditions. In the last group known as adap-

tive routing and real-time updates, the optimized routes might be changed en-route due to

real-time updates of the information and followed by re-optimization procedure (Beroggi,

1994; Koutsopoulos and Xu, 1993). Erkut et al. (2007) observed that most literature on

hazmat transportation focuses on the static version and few studies dedicated to adaptive

routing decision.

Real-time routing and scheduling: A commonly used strategy for solving a dynamic

routing problem is to adopt an algorithm that repetitively solves the static version of the

problem. Each time new information is revealed, for instance a new request arrives, a static

model is built and solved. The algorithm may need to modify some inputs to ensure the

solution is feasible concerning past decisions. A drawback of such an approach is that one

must perform re-optimization when new information is revealed and may be time-consuming

to be solved in real-time. To work around that one may restrict the number of requests at

each re-optimization problem (Goel, 2010; Yang et al., 2004) and/or explicitly consider the

time when a decision must be fixed, referred to as response time (Tjokroamidjojo et al.,
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2006; Zolfagharinia and Haughton, 2014,1). In railway transportation, the response time

can be interpreted as the time in which the operator gives his/her best and final offer

regarding delivery and price quotations for their customers. The operational planning

literature can be grouped into two groups: Resources planning and Itinerary replanning.

Resources planning problems focus on the allocation of all resources throughout the network

including positioning, repositioning, holding, and assigning them to customers (SteadieSeifi

et al., 2014). Itinerary replanning problems deal with real-time optimization of schedules

and routing decisions. Resource planning and itinerary replanning are often interrelated

and could be solved together under a comprehensive operational planning problem (Bock,

2010; Özdamar et al., 2004).

Revenue management: Integrating revenue management issues into daily planning de-

cisions becomes more and more important in intermodal industry (Li and Tayur, 2005),

railway companies (You, 2008), maritime transportation (Maragos, 1994), trucking com-

panies (Powell et al., 1988) and airline transportation (Côté et al., 2003). Armstrong and

Meissner (2010) provide an overview of railroad revenue management for passenger and

rail freight transportation, and Gorman (2015) discusses revenue management in U.S. rail-

way systems. Various pricing strategies have been tailored to address revenue management

in railway transport. In using Service-Based Pricing strategy, different service levels are

created to satisfy various customer requirements. Segmenting customers and charging dif-

ferent tariffs for different segments, may be better utilized the capacity of the train services

(Kwon et al., 1998) and also may help in reducing the risk associated with hazmat ship-

ments (Bianco et al., 2012; Marcotte et al., 2009). These segments can be identified based

on differentiating the service levels (premium or regular deliveries), types in terms of or-

der placement (advance or late booking) and types of commodities to be shipped (hazmat

and non-hazmat). Kraft (2002) showed that differentiating service level while satisfying

customer requirements may be less costly than adding more capacity and considered as a

routing and scheduling problem. The problem was decomposed into a static trip planning

problem with accepted known requests and a dynamic trip planning problem with unknown

requests. In practice, railway companies accept customer requests as long as free capacity
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exists (Campbell, 1996), and the pricing decisions are often decided according to the ac-

tual cost to fulfill the demand plus profit margin (Jarocka, 2016; Tretheway and Waters,

1993), i.e., the intermediate activities for serving the demand. When railway services face

scarce resources, premium demands may be denied due to infeasibility (Bilegan et al., 2015).

Crevier et al. (2012) proposed a bi-level mathematical formulation integrated pricing and

rail freight transportation decisions considering the blocking, routing, train makeup, and

scheduling plans. They studied two pricing strategies: disjoint pricing and common pricing.

Another possible revenue management strategy, known as dynamic capacity allocation, is

to hold the capacities of some vehicles for late customers call in, provided the freight is

sufficiently profitable (Pak and Dekker, 2004). In most cases, those strategies are modeled

as probabilistic mixed-integer programming on a space-time network of the transportation

services with some probabilistic knowledge of the future requests (Bilegan et al., 2015; van

Riessen et al., 2017; Wang et al., 2016). For many years, consolidated-services industries rec-

ognized that revenue management tools can optimize service operations by tailoring service

level and prices to a certain group of customers.

As can be seen from the literature, the study on integrated pricing decisions and haz-

mat trip plan problem in railway transportation is limited. As noted by Branscomb et al.

(2012), the railway carriers tariff is not adequately reflected the risks associated with hazmat

transportation. In this chapter, we consider a freight car scheduling and train dispatching

problem involving hazmat transportation. In the considered problem, customer requests

known in advance will be scheduled first. Additional requests, after the preliminary sched-

ule is generated, may be accepted from new customers. Depending on available capacities,

the increases in transport risk and the generated schedule, new customers may be quoted

with different prices and time to deliver. A two-phase heuristic solution method is developed

to solve the considered problem. In the first phase, we solve integrated train timetabling

and deterministic freight transportation problem for the known requests in advance. The

solution determines the timetables of the train services and best demand-itinerary assign-

ment decisions. In the second phase, a real-time optimization problem is built and solved at

the arrivals of new freight requests. In this work, flexibility was introduced by re-optimizing

101



the freight-to-itinerary decisions several times in sequential request arrival. In some cases,

adding the demand to the current train services is feasible and profitable as only additional

fuel and equipment are needed. In other cases, the existing itineraries may need to be re-

vised causing the increased cost of transporting the already existing scheduled freights. Or,

some of the new requests must be rejected as it becomes infeasible. Numerical examples

are provided and managerial insights are drawn. The analytical analysis allows railway

managers to gain insight into the risk-revenue tradeoff in routing hazmat and also helps the

management to decide delivery and price quotations for the additional demands consider-

ing risks associated with hazardous materials. Details of the considered problem and the

proposed solution methodology will be presented next.

The chapter is organized as follows. The considered problem is defined in section 4.3.

The real-time methodology is described in section 4.4. Numerical examples are provided

in section 4.5 to illustrate the considered problem. Finally, we conclude our research and

provide possible research directions in section 4.6.

4.3 Problem Statement

The general problem of hazardous materials trip planning with train scheduling decisions

is described first and then the problem of allocating the incoming requests to train sequences

with pricing decisions is discussed. The associated notation is identified as well. Hereafter,

we refer to the first problem as hazardous materials trip plan problem with train scheduling

decisions (HTPTD) and the second problem as hazardous materials trip plan problem with

pricing decisions (HTPP).

4.3.1 Problem characterization

Discussions for both problems will be presented here since they are closely related to

one another, as well as to previously published in literature (Cao et al., 2012; Kraft, 2002;

Wang et al., 2016) among others, and it is important to understand both the similarities

and differences between the two rail freight transportation planning problems. Although
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the solution procedure for HTPTD will not be discussed here in details, computational

experiments result will be presented later.

A railway operator is in charge to manage various customer requests for carload moves

within a railway network. Although the operator knows some information about customer

demands currently processed or previously scheduled, there exists a great deal of uncertainty

in future demands as new requests may arise in midst of operation. The operator may revise

the schedule of already scheduled demands in order to reduce the capacities on a certain train

services or transport risks associated with hazardous materials. Existing literature suggests

that the railroad shipment routing and scheduling problems might be decomposed into

two nested subproblems, a deterministic HTPTD process for demands known in advance

(traditional customers) and a real-time HTPP process for future and unknown demands

(irregular customers) in which delivery and price quotations have not yet been decided.

The two problems are interrelated since if train services are fully reserved or delivery

quotations are very tight, then the HTPP process will not able to accommodate irregular

demands. To avoid such situation, the two problems must be linked through either joined

capacity (i.e. Cao et al., 2012; Liu and Yang, 2015) and risk thresholds constraints or

optimized by a single model (i.e. Wang et al., 2016). The advantage of the former method

is that it requires less memory to record decision parameters, and also computational efforts

are usually not expensive. The advantage of the latter method is that it obtains optimum

solution, and their weakness is that it imposes a limitation on solving large railway planning

problem. To deal with the railcar routing and scheduling problems face in practice, we

adopt the former method to solve the considered problem. The solution of the HTPTD

determines, for each train service, arrival and departure times in the terminals of the railway

and freight-to-train decisions. The solution for the HTPP gives, for each irregular request,

the delivery and price quotations and the sequence of train services that demand will follow

(if served) while creating the minimum rescheduling for the already existing scheduled

demands without breaking their delivery and price quotations. Indeed, the HTPTD model

is a general formulation of the HTPP model. These two problems are sufficiently distinct

in required inputs, outputs, and solution time to justify different solution methods, even
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through formulations are very close to another.

Accordingly, we introduce different categories of customers with the definition of specific

treatment for each of them, including accept/reject basis and particular delivery and price

regulations. In particular, we grouped customer requests into two classes as follows: (a)

traditional customers, who sign long term contracts with the carrier, must be fulfilled by

the carrier’s own services, and their delivery and price quotations are set in advance and

not subject to change; and (b) irregular customers, who make request for a carload moves

less frequently and on an irregular basis, maybe outsourced/rejected because of (1) lack of

train capacities, (2) additional risk exceeds the given risk thresholds, or (3) service level

requirements. Their delivery and price quotations are determined according to number of

factors including the remaining train capacities and risk thresholds at the time of decision.

Table 4.1 gives the main characteristics of traditional and irregular demands (illustrated in

Figure 4.1).
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Figure 4.1: Schematic diagram of the HTPs with pricing decisions.

Railway companies often provided their clients with service and price quotations accord-

ing to the transportation plan with some additional surcharges and slack time are added to

handle daily operational variability (DOT, 2017a). Pricing quotations developed by many
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Table 4.1: Characteristics of traditional and irregular request.
Charac./Request Traditional Irregular

Information at t=0 known unknown
Tariff/Price fixed dynamic∗

Reject no yes
Initial trip plan yes −

Request− Itinerary dynamic dynamic
Deviation in delivery not allowed not allowed

*determines based on the additional train loads and risk.

railroad companies are most often established by adding a profit margin to the actual cost

(Li et al., 2015). For example, Canadian National (CN) Railway Company developed pric-

ing and service quotation’s guideline for their customers (CN, 2019) give the customers with

general expectation about level of service and estimation of shipping costs to serve their

demands, as they are not established on a customer-by-customer basis and do not consider

the real-time status of the railway into consideration.
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Figure 4.2: Danger rectangular and circle.

In compliance with the railway policy and government regulation, the operator evaluates

the risk associated with hazmat transportation when generating trip plans aiming at limiting

the public risk below the given risk thresholds. While there is no universal expression on how

the hazmat transport risk might be stated, almost all researchers adopted either the accident
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probabilities or an estimate of the consequences, or both (Erkut and Verter, 1998). As

most railway operators exhibit risk-averse when transporting hazmats that may cause high

consequence (Bell, 2007), most researchers focus on the consequence in evaluating the risk

(Verma et al., 2011; Zhao and Verter, 2015). In this work, the most popular air dispersion

model was adopted from Arya et al. (1999), namely the Gaussian Plume Model (GPM),

to assess the public risk. The effects of an accident involving airborne hazmats might be

quantified as exposed population, the total number of people exposed to the possibility

of an undesirable consequence due to the hazardous materials releases. For instance, the

immediate dangerous life and health (IDLH) for propane exposure are 4,200,000 ppm for

fatality and 600,000 ppm for injuries. At certain IDLH level, the operator identifies a safety

distance threshold. Both terminals and routes consider the sources of hazmats releases. It

was assumed a rectangular and circle dangerous zone for both edge and terminal source,

respectively (given in Table 4.2 and illustrated in Figure 4.2). Technical details of the

approximation function for the GPM and piecewise linearization for the transport risk can

be found in Verma and Verter (2007) and Abuobidalla et al. (2019c), respectively.

Table 4.2: A summary of GPM for terminal and route.

Public Risksa Parameterb Approximation function

PRnodej = πΦj(nj)ρ̂j Threshold area Φj(nj) =
[

bj +dj

√
njQ

π uj aj cj C̄

]2
: j ∈ dl

PRedge
l

= 2Θl(nl)ρlql Threshold distance Θl(nl) =
[

bl+dl

√
nlQ

π ul al cl C̄

]
: l ∈ L

aPRnodej (PRedge
l

): Population exposure at terminal j (along train leg l).
bThe parameters is function of the hazmat volume being shipped (stored) along train service (terminal).

al, bl, cl, dl(aj , bj , cj , dj): Atmospheric parameters along train service l (terminal j)

Hazardous Materials Trip Plan Problem with Train Dispatching decisions

The considered routing and scheduling problem integrates train timetabling and rail

freight transportation problem, respectively. The problem can be decomposed into train

timetabling and rail freight transportation problem, respectively. The former problem can

be defined as set of trains must be assigned to a set of possible timetables such as the

track capacity constraints are satisfied and the overtaking between train services occurred
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at terminals. The latter problem determines the best itinerary for each demand to minimize

the costs of serving the demands while satisfying the train capacities and risk thresholds

constraints. The mathematical formulation of the HTPTD is given in Appendix C.

Hazardous Materials Trip Plan Problem with pricing decisions

Given the solution for HTPTD, we consider a railway company that operates |L| direct

train services within a railway network. Each direct train service l∈L, a train moves nonstop

between two yards, starts at yard ol, terminates at yard dl and defined by a set of operational

characteristics, i.e., the operation start time τ ol , cutoff time τ cl , schedule departure τdl at

origin yard, the schedule arrival τal at destination yard and the maximum number of cars

Ul can be hauled by a train. In response to planned train services, the operator receives

a sequence of future requests at the mids of the operation k ∈ K2, referred to as irregular

requests, in addition to the already existing scheduled requests k ∈ K1 for carload moves,

hereafter called request. At the arrival of irregular demand k∈K2, the operator is given the

pickup and delivery yard, the quantity of demand, the response time, the earliest pickup

time and the latest delivery time of the demand. Then, the management decides the delivery

and price quotations according to the current status of the railway network, service level

required, type of demand, and available itineraries.

It was assumed that customers have full knowledge of the available train services pro-

vided by the carrier with regards to the services routes, en-route stops, and schedules. That

is, all customers have full prediction information regarding the current and future network

status and choose a service level that minimizes generalized cost function while meeting

their needs. For example, some customers have more concerns about the transit time of

their commodities than others and may pay premium service to deliver their demand. The

revenue generated from serving a request is equal to the actual operating costs to ship de-

mand: sorting, classification, shipping, and storing costs (if any), along the itinerary plus

the profit margin for the carrier. The operator can either accept or reject the demand

within a given amount of time called responding time TRESk , a similar strategy to the one

studied in Yang et al. (2004); Zolfagharinia and Haughton (2014,1), among others. In the
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case demand k ∈K2 is accepted, it will be assigned to a sequence of train services by the

operator.

As information of the railway requests is revealed, the operator might change the previ-

ous decisions to enhance the overall performance of the railway system. The operator may

determine alternative itinerary of demand at any terminal along its route to release some

spaces for a new request and/or to reduce the population exposure from hazamt transporta-

tion. Replanning of the already existing scheduled demands should be performed without

breaking the delivery quotations. The selection of the alternative itineraries for the already

scheduled demands involves several factors such as the time when the demand reveal, the

position of the train services, the available capacity and remaining risk thresholds, and the

itinerary compatibility among the itineraries. More specifically, the proposed heuristic al-

gorithm allows insertion of both the current pending request and already existing scheduled

requests in the way that the reinsertion of the already scheduled requests at some more

globally beneficial. Of course, the new itinerary of demand is only constructed from its

origin yard that the demand is currently holding or any terminal along the route without

breaking the pricing and delivery quotations. One approach to accommodate future de-

mands is to allocate dynamically the capacity on the train services as information of the

new demands revealed similar to the one in Cao et al. (2012); Liu and Yang (2015) and

may also reduce the population exposure associated with hazmat transportation (if any).

4.3.2 Formal notation for HTPP

To give full information of the railway status at any time t, we introduced sets and

variables, including the position and location of the train services and schedule demands

and the remaining capacities and risk thresholds for train services as follows:

(A) Train services: Initially, at time t = 0, all train services are idle at their origin’s

terminals. Each direct train service l∈L will follow the train timetabling plan by solving

HTPTD, assuming no deviation in the initial train plan. That is, train services arrive

punctually following the initial timetables. Each train service l, 1 ≤ l ≤ L, is at any time t,

either idle, in-transit, in-motion or out of service. Let Sl(t) be an integer with four possible
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values: -1 (idle) if 0 ≤ t < τ ol ; 0 (in-transit) τ ol ≤ t < τ cl ; 1 (in-motion) τ cl ≤ t < τal ; and -2

(out of service) τal ≤ t. Let also Ul(t) and Rl(t) be the capacity and risk threshold of train

service l at time t, respectively. We use continues variables to present the location of train

at time t obtained from equation (39), where Ll(t) denote the l′s train’s position at time t

with four possible cases:

Ll(t) =



−∞ t > τal

ol 0 ≤ t < τdl

ol + t−τdl
τa
l
−τd

l

(dl − ol) τdl ≤ t < τal

dl t = τal

(39)

A railway operator may plot a string-line diagram, a time-location graph of where train

services are and when (using equation 39). The vertical axis of the string-line diagram

corresponds the terminals names and the horizontal axis represents time (illustrated in

Figure 4.3 for a train starts at j2 and ends at j3 with two train legs). The train route

and schedule are displayed diagonal, where the slope of the string-line determines the speed

of the train. During its journey a train is stopped at a terminal, the string-line would be

horizontal. A string-line graph depicts how train services are planned to operate in the

future.

(B) Scheduled requests: We assumed that there are |N(t)| known railway requests by

time t, N(t) = {k : t > τARk }. Out of the N(t) request, a subset of φ(t) requests has to be

served by the carrier own services. In case a request has been accepted become elements of

the set φ(t). The other requests could be rejected if it is infeasible to fulfill the demands.

Let M(t) be subset of requests in N(t) whose final acceptance or rejection decisions fixed

at time t, M(t) = {k : t > τARk +TRESk }. Under the proposed procedure, let Hk(t) be either

the itinerary which request k is currently followed, idle or the planned journey to be hauled.

Let also Qk(t) be the position of request at time t under the last announced plan. Together

with the fact that trains move at an average speed, it should be clear that Sl(t), Ll(t), Ul(t),
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Figure 4.3: An example of string-line diagram.

Rl(t), 1 ≤ l ≤ L and Hk(t), Qk(t), k ∈ N(t) give a full information of the railway status at

time t.

At the arrival time of the irregular request τARk , K1 + 1 ≤ k ≤ K2, its characteristics

are revealed through 5 parameters with the following definitions (some of those parameters

are illustrated in Figure 4.4):

• ok and dk denote the pickup and delivery yard for demand k, respectively.

• Dk and Hk denote the quantity of regular and hazmat freights in request k, respec-

tively.

• TAk defines the time between the arrival of request k and its earliest pickup time at ok.

The ready time is then obtained from the following expression: τALk = τARk +TAk , where

τALk and τARk denote the available time and arrival time of request k, respectively.

• TSLKk denote the slack time between the earliest and latest allowed delivery time

and reflect the tightness of demand’s completion deadline. The operator can then
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estimate the final delivery time a demand can be delivered without penalty as follows:

τLDk =τALk + tk + TSLKk , where tk is the minimum in-transit time for request k.

• Finally, TRESk is the time within which the operator must respond to the customer with

final acceptance or rejection decision, usually specified through negotiation between

the customer and carrier. Accordingly, the latest time for the railway operator to

decide whether to accept or reject demand k ∈ K2 is by τALk + TRESk . Together with

the current status of the railway network, the management decides the price to provide

service:

◦ bk is the price in which the company charges the customer to provide train

service or stated in contract and agreement between the customer and carrier.

Accordingly, one may compute the shortest distance (minimum in-transit time)

between the origin and destination of the demand, obtained from the set of

admissible itineraries and the charge rate per commodity bk, denoted as dk (tk).

Also, the operator may calculate the maximum distance (maximum in-transit

time) demand can be travel without exceeding the actual cost from serving that

request, concerning the price quoted and set of available train services, denoted as

dk (tk). The last feasible time, total costs equal revenue, to deliver the demand

is derivable from the available itineraries for that request using the following

equation: τLFk = τALk + tk, where τLFk is the latest time a request k can be

delivered without exceeding the revenue generated from serving request k.

Before describing the proposed procedure, it is important to introduce the following the

formulation for HTPP: given the information of trains with their position, train schedule,

remaining capacity and risk threshold and already existing scheduled requests with their

locations, obtain an optimal plan to serve these requests, assuming no future demands. The

formulation is introduced as a problem being called repetitively at each request’s arrival

by the proposed procedure. The new dynamic model defines a sequence of temporary

optimization problems being generated at the request’s arrival. These problem instances

are obtained from particular snapshots of the current executed trip plan. At any time
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Figure 4.4: Request information.

that is not a request arrival, there is a previously published trip plan being executed and

interrupted at each request’s arrival τAR. Detail of the formulation for HTPP is given next.

The formulation for HTTP

Following Moccia et al. (2011), we outline the considered problem on a special graph. Let

G(V,A) be directed space-time multigraph in which a node represents either source, sink, or

service. A source (sink) node represents the start (end) node for a request k, whereas service

node describes a train service in set L. An arc in G represents either starting, ending, train

connection or demand rejection edge. A definition of the graph components is illustrated

in Figure 4.5. Arc set is partitioned into four sets:

• Set of starting arcs (σk, L) ∈ A1 for each service in LACT (t) and railway request

in N(t) \M(t) including the current pending request k′ given that the request is

available at its origin not more than the cutoff time of that train service, τALk ≤ τ cl

and ok = ol. The cost on those arcs represents the cost of shipping, inventory (if any),

and classification,

• Set of ending arcs (L, ηk) ∈ A2 for each service node in LACT (t) and railway request

in N(t)\M(t) including the current pending request k without exceeding the revenue
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generated for that request, τLFk ≤ τal and dk = dl. The cost on those arcs represents

the revenue generated plus penalty cost (if any),

• Set of service connection arcs (l, l′) ∈ A3 for each pair of service nodes in LACT (t)

that form a complete path from ol to dl′ , τal ≤ τ cl′ , dl = ol′ , and l 6= l′. The cost on

the service connection represents shipping and train swap (if any) cost, and

• Set of rejection arcs (σk, ηk) ∈ A4 for each railway request in N(t)\M(t).
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Figure 4.5: Space-time multigraph.

The offline problem is solved at each request arrival in the online strategy. Paths in

G represent feasible itineraries for railway request k in N(t) that starts at σk, transports

along with one or several services in L and ends at ηk. A direct path from σk to ηk indicates

that request k is rejected, i.e., served by a partner. At any time that is not a request

arrival, there is a previously published plan being executed. At request arrival τAR, the

published plans are interrupted and some new trip plans are generated for the shipments

under consideration. We also require that the new trip plans decided by the procedure do

not change the previous (fixed) decisions associated with requests by introducing set (σk, L).
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Set (σk, L) in G is obtained from the last executed plan, where the location of a demand k

either the current location of demand k if it is at origin terminal or the location at which

demand k will finish its current train segment. That is, any decisions made at time τAR

must only depend on the information known up to time t. To improve the readability of

this chapter, sets, parameters and decision variables of the path-based formulation given

Table 4.3-4.4.

Table 4.3: Sets, parameters, and decision variables (part 1 of 2).
Sets
T Planning horizon, index by t ∈ T .
K Set of requests, index by k or k′ ∈ {K1 ∪K2}.
K1 Set of traditional requests, index by k or k′ ∈ K1.
K2 Set of irregular requests, index by k or k′ ∈ K2.
J Set of terminals in G, index by j ∈ J .
L Set of train services, index by l or i ∈ L.
LACT (t) Set of feasible train services at time t, index by l or i ∈ L, LACT (t) = {l ∈ L : t < τcl }.
N(t) Set of railway requests revealed by time t, index by k, N(t) = {k ∈ K : t > τARk }.
M(t) Set of requests in N(t) whose final acceptance or rejection decisions are fixed at time

t, M(t) = {k ∈ N(t) : t > τALk + τRESk }.
IΦ(t) Set of railway requests under consideration at time t, index by k, IΦ(t) = {k ∈

N(t)\M(t)}.
φ(t) Set of railway requests accepted at time t, index by k, φ(t) = {k ∈M(t) : Hk 6= ∅}.
V Node set is partitioned into: (a) Source nodes σ for each request in N(t)\M(t) (index

by σk), (b) Service nodes L for each service offered by the carrier (index by l), and
(c) Sink nodes η for each request in N(t)\M(t) (index by ηk).

A Arc set is partitioned into four sets: (a) Set of starting arcs (σk, L) ∈ A1, (b) Set of
ending arcs (L, ηk) ∈ A2, (c) Set of service connection arcs (L,L′) ∈ A3, and (d)
Set of rejection arcs (σk, ηk) ∈ A4.

Ak Subset of A such as commodity k can be shipped through, index by a.
A+
i (A−i ) Set of emanating (ending) arc from node i, index by a.

Ik Set of all feasible itineraries on G for request k, index by v ∈ Ik.
I Set of all itineraries I =

⋃
k
Ik, index by v or v′ ∈ I.

Il Subset of itinerary in I that use train service l.
Ij Subset of itinerary in I that shipped through terminal j, j ∈ J .
Parameters
oa Origin node of arc a, oa ∈ J .
da Destination of arc a, da ∈ J .
ok Origin yard of request k, ok∈J .
dk Destination yard of request k, dk∈J .
ol Origin yard of train service l, ol∈J .
dl Destination yard of train service l, dl∈J .
γv,l Indicator =1 if itinerary v uses train service l; 0 otherwise.
τol Schedule operation start time of the train service l at yard ol∈J .
τcl Schedule cutoff time of the train service l at yard ol∈J .
τdl Schedule departure time of the train service l at yard ol∈J .
τal Schedule arrival time of the train service l at yard dl∈J .
ck,v Per unit net profit to transport request k along itinerary v : v ∈ Iv .
Ωv,v′,j Indicator =1 if it is feasible to reschedule demand’s itinerary from v to v′ at terminal

j considering the time along the route; 0 otherwise.

114



Table 4.4: Sets, parameters, and decision variables (part 2 of 2).
∆cv,v′,j Per unit difference in the net profit if a demand reschedule from itinerary v to v′ at

terminal j, ∆cv,v′,j = ck,v′ − ck,v .
γA
v,v′,j,l Indicator =1 if the load on train service l increases when a demand rescheduled from

itinerary v to v′ at terminal j; 0 otherwise.
γR
v,v′,j,l Indicator =1 if the load on train service l decreases when a demand rescheduled from

itinerary v to v′ at terminal j; 0 otherwise.
ρl Average population concentration along the train service l : l ∈ L.
ql Distance of the train service l : l∈L.
ρ̂j Average population concentration at yard j, j ∈ J .
Ul(t) Remaining number of railcars can be hauled by a train service l at time t (Residual

capacity).
nl(nj) Number of dangerous goods (auxiliary variable) along train service l (through termi-

nal j).
Dk Number of regular railcars in request k to be shipped, k ∈ K.
Hk Number of hazmat railcars in request k to be shipped, k ∈ K.
Θl(nl) Threshold distance (auxiliary variable) to ship nl hazmat freights along train service

l, l ∈ L.
Φj(nj) Threshold area (auxiliary variable) to ship nj hazmat freight through terminal j,

j ∈ J .
Rl(t) Remaining population exposure threshold along train service l at time t.
Ll(t) l′s train’s position at time t.
Hk(t) Sequence of train services (if any) followed by a request k at time t.
Qk(t) Location of request k is either currently holding or the en-route stop heading to given

by the last published plan.
V ariables
bk Per unit price to serve request k by the carrier’s own services.
xk,v,v′,j =1 if request k changes its latest published itinerary v to v′ at terminal j; 0 otherwise.
zk,v =1 if current pending request k shipped through itinerary v; 0 otherwise.
nl,j Change in number of hazmat shipped along with train service l passing through yard

j.
n′l Change in number of freight shipped along with train service l.
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We developed two equivalent formulations of the considered problem. The first formula-

tion is a multi-commodity network flow type with the flow on arcs, and the second model is

a path-base formulation with the flow on paths. Empirically, the first formulation is not as

competitive as the second one, thus we omit its details here. At request’s arrival (t=τAR),

the path formulation for the HTPP is given below:

(P8) Max Z =

Net profit (pending request)︷ ︸︸ ︷∑
k′:

t=τAR
k′

∑
v∈Ik′

ck′,vDkzk′,v +

Change in net profit (already scheduled requests)︷ ︸︸ ︷∑
k∈IΦ(t)

∑
v:

v=Hk(t)

∑
v′∈Ik

∑
j:

Ωv,v′,j=1

∆cv,v′,jDkxk,v,v′,j

s.t. ∑
v∈Ik′

zk′,v ≤ 1 k′ : t = τARk′ (40)

∑
v:

v=Hk(t)

∑
v′∈Ik

∑
j:

Ωv,v′,j=1

xk,v,v′,j ≤ 1 k : k ∈ IΦ(t) (41)

n′l ≤ Ul(t) ∀l : l ∈ LACT(t) (42)

2Θl

(
nl,j

)
ρlql + πΦj

(
nl,j

)
ρ̂j ≤ Rl(t) ∀l, j :j ∈ dl (43)

n′l=
∑
k′:

t=τAR
k′

∑
v∈Ik′∩Il

Dkzk′,v+
∑
k∈I(t)

∑
v:

v=Hk(t)

∑
v′∈Ik

∑
j∈J

(γAv,v′,j,l−γRv,v′,j,l)Dkxk,v,v′,j∀l (44)

nl,j =
∑
k′:

t=τAR
k′

∑
v∈Ik′∩Il

Hkzk′,v+
∑
k∈I(t)

∑
v:

v=Hk(t)

∑
v′∈Ik

∑
j∈J

(γAv,v′,j,l−γRv,v′,j,l)Hkxk,v,v′,j∀l, j (45)

zk′,v ∈ {0, 1} ∀k′, v : τARk′ = t, v ∈ Ik′ (46)

xk,v,v′,j ∈ {0, 1} ∀k, v, v′, j : k ∈ IΦ(t), v, v′ ∈ Ik,Ωv,v′,j = 1 (47)

n′l,j ≥ 0;nl,j ≥ 0 and R+ ∀l, j : j ∈ dl (48)

Objective function Z in the above presented model (P8) is to maximize the net profit

from serving the railway requests. That is, total revenues from serving commodities minus

the total costs including the cost of waiting for classification and connections, and the

cost of using partner services (if any). Note that if a railway request served by a partner

then the net profit of that request is zero by setting the cost on the set of rejection arcs

to the partner cost. This cost reflects the gross revenue in which railway carrier would
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have otherwise obtained had it accepted the request. The first term in Z is the net profit

from serving the current pending request, whereas the second term calculates the changes

in the net profit from rescheduling the already existing scheduled requests. Constraints

(40) and (41) are commodity flow conservation constraints for the current pending request

and already existing scheduled requests. Constraints (42) are train capacity constraints

for the planned services. Constraints (43) ensure that the total population exposure is not

greater than the given thresholds, the first term in Constraints (43) is the sum of population

exposure along the routes and the second term is that at yards. This risk thresholds could

be mandated by a regulatory body external to the railway company or could correspond

to a decision made internally by management to adhere to specific limits on population

exposure. The risk thresholds constraints are to avoid over usage of certain train services.

The total change in quantity of freights shipped along with train service l is defined by

Constraints (44), whereas the change in the total change in quantity of hazmat freights

shipped along with train service l is expressed by Constraints (45). Constraints (46)-(48)

are binary and integer variable requirements.

The considered problem is a version of the Multicommodity Minimum Cost Network

Flow Problem (MCNFP) with nonlinear constraints to account the risks associated with

hazmat transportations. Although the special versions of the MCNFP can be efficiently

solved in polynomial time, some generalizations of the MCNFP are intractable. An integer

flow for the minimum cost multicommodity flow such as when routing nonbifurcated units

of traffic is computationally expensive. Even et al. (1976a) proved that the unsplittable

version of MCNFP to be NP-complete. Furthermore, the flow over time MCNFP is known

to be NP-hard (Cai et al., 2001). The complexity of the considered problem causes a heavy

computational burden from its solution. In this research, two-phase heuristic procedure is

proposed to solve the considered problem. In the first phase, the algorithm is solve freight

transportation and train scheduling problem for demands known in advance. In the second

phase, an optimization model is build and solved at request arrival. Technical details of the

solution method will be presented next.
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4.4 Solution method

A two-phase heuristic solution method is proposed. In the first phase, we solve the

HTTDP by a heuristic method. The solution of the HTTDP determines the schedule of

the train services and the best demand-itinerary assignment decisions for the traditional

demands. A preprocessing procedure is then applied to generate all compatible itineraries

for the already existing scheduled demands (in Subsection 4.4.1). In the second phase, a

sequence of subproblems are solved at arrival time of request τAR. The phase consists of two

main steps. The pricing decision is determined first, considering the status of railway with

and without the pending request. An optimization-based model is then built and solved

considering the position of train services and already existing scheduled demands (in Sub-

section 4.4.2). The overall goal of this procedure is to generate itineraries or (sub)itineraries

for the already existing scheduled demands. More specifically, the proposed heuristic algo-

rithm allows insertion of both the current pending request and already existing scheduled

requests in the way that the reinsertion of the existing scheduled demands at some more

globally beneficial by solving the linear version of P9. Technical details of the preprocess-

ing procedure and the second phase is discussed and followed by a summary of the whole

solution method in Subsection 4.4.3.

4.4.1 Pre-processing procedure

The aim of these subroutines is to generate all alternative itineraries of the demand and

reformulate the model in order to be fed and solved using a MIP solver more efficiently. The

following alternative (sub)itinerary enumeration and route generation procedure is applied

once in the heuristic, given the information of a rail network and the timetables of train

services.

Alternative itinerary generation process

Relying on exhaustive alternative (sub)itinerary enumeration and route generation heuris-

tic for the already existing scheduled requests are often computationally expensive (Szeto
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et al., 2017). To work around that, we design a preprocessing procedure to enumerate

all alternative plans for each available itinerary. This is achieved by constructing one or

more alternative itineraries for demands. The alternative itinerary generation process is

applied to one itinerary at a time without taking into account capacity constraints but only

considering feasibility in terms of time delivery and train connection. The procedure is at-

tractive for medium or large networks to avoid exhaustive and time consuming to generate

a complete alternative itinerary set when a new shipment arrives.

Function linearization

To simplify computation, in the second part of the preprocessing, piecewise linear func-

tions were used to substitute the nonlinear hazmat risk functions in GPM model (in Con-

straints (43)). The resulting optimization model can be solved using popular MIP commer-

cial software, without invoking the search for local or global optimal solutions of a nonlinear

problem. For expositional reasons and for sake of brevity, we do not repeat the methodology

details, and we invite the reader to refer to Abuobidalla et al. (2019c).

4.4.2 Pricing problem and HTTP

In deciding the price of pending request, we adopt a simple pricing strategy called

Cost-Plus Profit similar to the one discussed in Li et al. (2015) with some modifications to

the considered problem. The pricing of train services is often setup based on a Cost-Plus

basis, in which the operator calculates the actual costs incurred from serving the demand

and then applies a markup percentage to the costs (Calvo and De Oña, 2012; Jarocka,

2016; Littlechild, 1970). The markup is stipulated by the customer, as often the case with

government contracts, or it can be estimated by the carrier. Before we introduce the pricing

strategies, some important assumptions are made and listed below:

• For railway freight transport service offered by the operator, there is always a market

price and often this price known to both operator and customers. The operator price

quotations are not more expensive than the corresponding market price.
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• The railway freight transport operator has different target profit margin for different

types of train services.

• The railway freight transport service price is determined and quoted when the operator

responses to their customer with final offer and will not change even if the actual

execution of the delivery deviates later.

In all the proposed pricing strategies, we evaluate each request with respect to two

conditions, called feasibility and profitability. For the feasibility criteria, we make sure that

at least one itinerary is available to serve the new request at the time of arrival, whereas the

other condition guarantees that at least one of the available itineraries is profitable. If the

two conditions are satisfied, then the operator prepares the price and delivery quotations of

that pending request. Otherwise, the operator may refuse the demand by offering a price

more than the market price.

In the first pricing policy, called base pricing, the operator determines the best and

final price regardless of the status of the railway network. The price is equivalent to the

actual costs for serving the request plus profit margin of the carrier. The actual cost of

particular freight is estimated by identifying the amount of various intermediate activities

needed to transport the demand from its origin to destination, i.e., shipping, resorting,

holding and etc. In the other pricing strategies, the operator collects some performance

indicators (I) before deciding the price of the pending request. The basic idea of those

pricing strategies is to evaluate the current performance of railway with and without the

current pending request. The operator then decides the charge to provide such service

to compensate the additional loads on train services and increases in population exposure

associated with hazardous materials transportation (if any). A simple pricing scheme is

given below (illustrated in Figure 4.6):
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bk =



b̄ok,dk a ≤ I < b

f1b̄ok,dk b ≤ I < c

f2b̄ok,dk c ≤ I ≤ d

where b̄ok,dk denotes base price for a commodity originates at ok and must be delivered

to dk, and a, b, c, d, f1, f2 are pricing parameters (a < b < c < d and f2 > f1) that can

be calibrated by the operator. I is a parameter to measure the impact from serving the

current pending request with respect to additional train load and risk (if any). The propose

pricing mechanism is simple: the sooner the customer make the order, the lower the price.

Table 4.5: Characteristics of pricing strategies.
Charac./strategy F ixed/Dynamic Criteria I1 I2
base pricing∗ Fixed − − −

OD pricing Dynamic itineraries for OD
∑
v∈Ik

(∑
l∈Lv

( ∑
k′∈N(t):γv′,l=1
v′=Hk′ (t)

Dk′/U
INI
l

))/
n̄v|Iv|

∑
v∈Ik

(∑
l∈Lv

(
δl

))/
n̄v|Iv|

path pricing Dynamic itineraries for all ODs
∑
v∈I

(∑
l∈Lv

( ∑
k′∈N(t):γv′,l=1
v′=Hk′ (t)

Dk′/U
INI
l

))/
n̄v|Iv|

∑
v∈I

(∑
l∈Lv

(
δl

)/
n̄v|Iv|

train pricing Dynamic remaining capacities
∑
l∈L

∑
k′∈N(t):γv′,l=1
v′=Hk′ (t)

Dk′/U
INI
l |L|

∑
l∈L

δl/|L|

∗The base pricing for an OD shipment obtained from: b̄ok,dk =
∑
v∈Ik ck,v/|Iv|

∗∗δl =
[
2Θl

(
nl,j

)
ρlql + πΦj

(
nl,j

)
ρ̂j
]
/Rl(t)

∗∗Performance indicator I=[α∆I1 + (1− α)∆I2]/2, where α ∈ {0, 1} indicates the importance of train capacity compare to risk threshold
∆I1, ∆I2 are the average change in train capacity and population exposure indicator when request k′ is served.

TheOD and path pricing strategies use both the average utilization of the train sequences

and the ratio of the total population exposure to the given risk threshold to determine the

price of pending request. The difference between OD and path pricing strategies is that

the former focuses on train sequences for an OD rather than all OD shipments. The last

pricing strategy, called train pricing, determines the price quotation based on the average

train utilization and average ratio of population exposure to the risk threshold. In all the

proposed pricing strategies, we differentiate the hazmat and regular freights by charging

the hazmat freight additional fees for extra safety requirements. A summary of the four

pricing policies proposed is given in Table 4.5.

Giving the pricing decision, an optimization-based model is built and solved considering
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Figure 4.6: Cost Plus Profit.

the position of train services and already existing scheduled demands. The overall goal of

this procedure is to generate an itinerary or (sub)itinerary for the already existing scheduled

demands and pending request while minimizing the additional costs to accommodate the

current pending request as if no future new request would ever be revealed.
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4.4.3 A summary of the solution procedure

The main steps of the heuristic is given in Algorithm 3 (depicted in Figure D.1).

Algorithm 3 Main steps of the heuristic.
1: Phase 1: Solving the HTPTD and pre-processing subroutines:
2: Step 1.1 Read data: network information, traditional requests, list of candidate train

services, risk parameters.
3: Step 1.2 Solve hazardous materials trip plan problem with train scheduling decisions by

a heuristic method (Appendix C).
4: Initial trip plan (traditional requests) and timetables of train services.
5: Step 1.3 Pre-processing subroutines (Subsection 4.4.1):
6: Find initial train capacity (Ul(0)) and initial risk threshold (Rl(0)).
7: Determine all alternative itineraries: γv,l,Ωv,v′,j ,∆cv,v′,j ,γAv,v′,j,l,γRv,v′,j,l.
8: Function linearization for Constraints (43).
9: Phase 2: Solving the HTTP:

10: Step 2.1 If t is request arrival t = τAR:
11: Record information of the request: Demand volume, pickup and delivery yard, earliest

pickup time, slack time and response time.
12: Compute base pricing b̄ok,dk , change in train capacity ∆I1 and population exposure ∆I2.
13: Determine price to fulfill the demand: base pricing, OD pricing, path pricing, train

pricing (Subsection 4.4.2).
14: Populate and solve the linear version of P4 to optimality.
15: Update the trip plans, train capacities, and risk thresholds.
16: Step 2.2 If t is not request arrival t 6= τAR:
17: Update current location of train services Ll(t) and position for already existing scheduled

demand under investigation Qk(t).
18: Update set of feasible train services LACT (t), remaining capacity Ul(t), risk threshold

Rl(t) and set of request under investigation IΦ(t) Go to 2.1 if t = τAR or Go to 2.2 if
t 6= τAR.

19: Export the best train timetabling and rail freight transportation decisions

4.5 Computational results

4.5.1 Computational setting

The algorithm procedure was implemented in C++, in particular, the MIP linear op-

timization was solved using Cplex v.12.7.1 and the ILOC Concert technology for building

the model from the C++ language. The purpose of our computational experiments is to

compare the proposed pricing strategies under the same parameters. Throughout our ex-

periments, we assume that (1) request arrival rate λ to be 1/T INT , where T INT is average
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of request interarrival in unit time; (2) origin and destination yards of the requests and

demand rate are independently identified; and (3) TAk , TSLKk and TRESk are all generated

independently from uniform distribution with mean TAi,j , TSLKi,j , TRESi,j , and ranges [0, 2TAi,j ],

[0, 2TSLKi,j ], and [0, 2TRESi,j ]: i = ok and i = dk. Moreover, the cost term was adopted from

Fang et al. (2017); Verma et al. (2011). In particular, the transportation cost for regu-

lar and hazmat freight was assumed to be $0.875 and $1.630 per mile, respectively. The

classification cost per regular freight was assumed to be $150, whereas hazmat freight was

estimated to be a 20% additional charge than the cost of regular freight, i.e., insurance,

security and safety costs. The inventory cost per freight was assumed to be $50 per day.

4.5.2 Hypothetical network

The proposed solution method is applied to a hypothetical railway network, given in

Figure 4.7, to evaluate various pricing strategies in the presence of hazmat freights. The

network consists of 11 terminals and 21 links. We designed 12 train journeys given in

Table 4.6. Each train service consists of one to four train legs with different atmospheric

class, i.e. A-F. A total of 32 train legs has been created to satisfy any request in K and

resulting in a total of 232 possible itineraries. The study uses two sets of freight flow data,

one for the known requests in advance, whereas the other for the additional requests revealed

during the planning horizon. Table 4.7 gives the schedule and utilization with respect to

the initial plan produced by solving HTPTD.

At the beginning of planning t=0, there were 131 customer requests routed and sched-

uled to be shipped along with specific train sequences by a heuristic method solution. A

total net profit of $108615 was obtained from the traditional requests (518 regular and 265

hazmat freights), with a total of 1.8 million people exposed to risk. The 131 requests utilized

almost 43% of the capacity of planned train services and about 40% of the capacity of the

available train sequences. The remaining capacities are available to accommodate some fu-

ture demands. The proposed procedure is then applied using the base pricing strategy. On

average of 90 extra requests, 589 carloads with 182 hazard shipments, have been accepted

and scheduled into the current planned train services and increased the total net profit to
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Figure 4.7: Hypothetical railway network.
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Figure 4.8: Timetable vs. total number of revised itineraries.
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$208377. The extra 182 hazardous materials increases the total population exposure to 2.9

million people (on an average increase of 61.11%), for the additional dangerous goods.

Together with Table 4.7, Figure 4.8 depicts how train services are planned to operate

in the future and the total number of requests that will be rescheduled as a function of

time. The x-axis in Figure 4.8 gives the time expressed in days where the first y-axis

(left) is the terminal number and the second y-axis (right) is the total number of requests

rescheduled. It is clear from Figure 4.8 that the number of requests that deviated from their

last published plan decreases as a function of time. The decrease in the flexibility results

from the fact that many requests reach their corresponding response times, in which the

operator must fix their itineraries and the price and delivery quotations. Also, there are few

routing and scheduling alternatives exists as some train services reach their corresponding

cutoff times. This reveals that the railway operators should adapt their pricing strategy at

least to compensate for the additional loads on train services and increases in transport risk

(if any). From an operator’s perspective, request contract often considered independently

and a pricing decision needs to made for each request.

We report the net profit values as a function of time rather than one value for all the

requests at end of the planning horizon. To show the impact of accepting additional requests

after the traditional requests are scheduled, we draw the number of itineraries that deviated

from the last published train sequence and net profit over the planning horizon, given in

Figure 4.9. As the operator accepts more commodities, the total net profit increase through

the planning horizon. However, the rate of increase in net profit varies from one period to

another. One may divide the planning horizon into three ranges (or more), very dramatic

increases from t = 0 to t = 1.4, gradual between t = 1.4 to t = 5.2, and very little after

t = 5.2. In the first period, the increase in the net profit is almost linear as a function of

time compared to the other ranges, i.e., from t = 0 to t = 1.4 at a rate of $2046 per hour

($49119 per day/24 hour per day). At the first period, adding the demand to the current

train services is feasible and profitable as only additional fuel and equipment are needed.

In other cases, the existing itineraries may need to be revised causing the increased cost of

transporting the already existing scheduled freights and significant increases in population
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exposure.

Table 4.6: Information of the train services.
T Journey

t1 i8
l1−→ i1

l2−→ i2
l3−→ i5

l4−→ i7

t2 i3
l5−→ i4

l6−→ i7
l7−→ i6

t3 i1
l8−→ i5

l9−→ i3

t4 i3
l10−→ i1

t5 i11
l11−→ i6

l12−→ i4

t6 i9
l13−→ i11

l14−→ i4

t7 i11
l15−→ i10

l16−→ i9

t8 i9
l17−→ i7

l18−→ i2
l19−→ i8

t9 i8
l20−→ i9

l21−→ i11
l22−→ i6

t10 i1
l23−→ i5

l24−→ i4
l25−→ i7

t11 i1
l26−→ i2

l27−→ i5
l28−→ i7

t12 i6
l29−→ i4

l30−→ i7
l31−→ i2

l32−→ i8

The variation in profit increase may happen for two reasons. First, the number of

requests that can be rescheduled at the beginning of planning as information of the irregular

demands are revealed is more than the case when requests show up at the end of the planning

period, i.e., t > 2.5. For instance, the number of commodities revised from the last recent

itinerary declined from 9.93 changes per day at the first range to 2.08 changes per day at

the second range. Similarly, the total number of (hazmat) freights accepted decreases at the

end of the planning horizon, see Figure 4.12 (Figure 4.13). The second reason is that the

number of routing and scheduling options decreases as a function of time. Train services

reaches their corresponding cutoff times as time moves. Figure 4.11 depicts the number of

train services that reached their cutoff times (left y-axis) and the total number of available

train sequences (right y-axis) as a function of time. A total of 242 train sequences are

available to be assigned to the incoming requests at the beginning of the planning horizon.

As time moves, the total number of train sequences declined. For example, 11 train service

reach their cutoff times by t= 2.06 and thus the number of train sequences declined from

232 to 100 (over 56%). As a result of decreasing the number of available train sequences,

the requests reveal after the first quarter of the planning will most likely follow longer paths,
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Table 4.7: Timetable of the available train service.
L τ ol τ cl τdl τal U∗1 U∗∗2 L τ ol τ cl τdl τal U∗1 U∗∗2
l1 1.65 1.95 2.25 2.73 20.93 3.45 l15 1.55 1.85 1.95 2.65 23.19 3.45
l2 3.13 3.43 3.73 4.21 72.22 6.47 l16 2.54 2.75 2.85 3.27 59.59 6.90
l3 4.61 4.91 5.01 5.52 62.39 25.43 l17 2.97 3.27 3.37 3.89 61.54 8.19
l4 5.42 5.62 5.72 6.13 15.94 5.17 l18 3.83 4.13 4.23 4.91 70.59 31.03
l5 0.00 0.25 0.51 1.10 4.32 9.48 l19 4.80 5.01 5.11 5.83 66.94 14.66
l6 1.50 1.80 2.10 2.64 9.93 8.62 l20 1.57 1.87 2.12 2.57 27.19 3.88
l7 3.04 3.34 3.44 4.00 22.97 5.17 l21 2.97 3.27 3.37 3.95 70.71 5.17
l8 3.72 4.01 4.32 4.82 61.17 3.45 l22 3.85 4.05 4.25 4.87 60.33 2.16
l9 5.22 5.52 5.62 6.09 62.18 12.93 l23 1.63 1.93 2.02 2.52 36.84 6.47
l10 2.19 2.49 2.59 3.12 38.68 3.45 l24 2.43 2.67 2.77 3.31 22.95 5.17
l11 3.65 3.95 4.05 4.63 44.44 4.31 l25 3.21 3.41 3.51 4.13 61.32 13.79
l12 4.53 4.73 4.83 5.47 68.38 4.74 l26 0.18 0.48 0.78 1.36 0.00 6.03
l13 0.72 1.02 1.12 1.85 7.03 9.05 l27 1.76 2.06 2.16 2.67 24.77 6.90
l14 1.75 1.95 2.04 2.66 43.09 13.79 l28 2.57 2.77 2.87 3.34 67.21 6.03
l29 1.65 1.95 2.04 2.68 19.69 6.90 l30 2.58 2.78 2.88 3.53 36.60 20.69
l31 3.43 3.63 3.73 4.26 64.71 18.97 l32 4.17 4.37 4.47 5.13 64.91 6.03

∗Utilization of train service (U1 =
∑
k∈K1

∑
v∈Ik∩Il Dkxk,v/Ul);

∗∗Utilization of train sequence (U2 =
∑
v∈Il

∑
k∈K1

∑
v′∈Ik∩Il Dkxk,v′/Ul);
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Figure 4.12: Net profit vs. # of carloads.

probably more expensive, and may considerably revise the currently scheduled demands.

We also record the average utilization of train services (see Figure 4.14) and train sequences

(see Figure 4.15). It also indicates that fewer routing and scheduling alternatives exist for

the new coming requests as time moves. Due to the lack of routing and scheduling options

at the end of planning, the operator may face difficulty in revising the already scheduled

requests that may not only cause less profit margin but also may cause significant increase

in risk associated with hazardous materials transportations.

4.5.3 Pricing policies

In an effort to evaluate different pricing policies on the total net profit, we record some

performance indicators during the planning horizon before determining the price for the

new incoming request. Figure 4.16 together with Table 4.8 shows various pricing policies

as a function of time. Figure 4.18 depicts the increases in shipping prices as a function

of time together with the total hazardous materials for Train pricing policy. Similarity,
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Figure 4.19 and Figure 4.20 show the increases in shipping rates as a function of time

together with the total hazardous materials for OD and Path pricing policies. Figure 4.21

depict the average increases in shipping rates as a function of time for all pricing policies. It

is clear from Figure 4.21 that the maximum revenue efforts may be pursued as the operator

may divide the planning horizon time T into t periods accounting for price increases as

the cutoff times approaches. One may divide the planning horizon into three ranges (or

more), gradual increases in shipping cost from t = 0 to t = 1.4, dramatic increases between

t = 1.4 to t = 5.2, and very little after t = 5.2. At the first period, adding the demand to

the current train services is feasible and profitable as only additional fuel and equipment

are needed as the operator has more options in revising the routing and schedule of the

already scheduled demand. In the second period, the existing itineraries may need to be

revised causing the increased cost of transporting the already existing scheduled freights

and significant increases in population exposure.

As we can see both OD and Path pricing strategies generate the maximum net profit
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compared to other pricing strategies. The reason for the better performance of OD and

path pricing policies compared to Train pricing policy could be explained by analyzing

the performance indicators for determining the pricing decisions. Train pricing policy

determines the pricing of the new incoming request based on the remaining capacity on the

train services and the additional risks exposed from hazard shipments. Once the average

utilization of the train services exceeds a particular threshold, the operator will increase the

price to their customers. This principle was supposed to guide the management on the best

time to start their negotiation process with their customers. However, the simplification

from using the average train utilization was not enough to give the operator the status of

the railway network. Rail operation process is more complex than other transportation,

i.e., road or airline transport. Train services are high interrelated, adding or removing some

loads from a particular train service will impact the whole capacity of the railway and risks

exposed to population from hazard shipments. With analogous considerations, both OD

and Path pricing strategies measures the interaction between the remaining capacity of train

services and risk threshold associated with hazardous materials to determine the price of

the incoming requests. This provides OD and Path pricing strategies with a good indicator

to start rising the shipping price for the new incoming demands. Increasing the shipping

rates and the introduction of surcharge may reduce the operational burden associated with

the transportation of hazardous materials commodities. That is, the additional costs from

rerouting the commodities can be compensated by the increasing the shipping rates. The

development of an optimization tool to give the decision-maker guidance regarding the

delivery and price quotations is a challenging task but an important step in a negotiation

process.

Table 4.8: Different pricing strategies.
P.I./Strategy Base pricing OD pricing Path pricing Train pricing

Range r1 r2 r3 r r1 r2 r3 r r1 r2 r3 r r1 r2 r3 r

T.P. 0−1.4 1.4−5.2 5.2−7 0−3 3−5.4 5.4−7 0−3 3−5.4 5.4−7 0−1.4 1.4−5.2 5.2−7
N.P. 49.12 9.23 0.48 14.93 43.38 10.86 0.06 18.64 42.81 12.43 0.04 18.39 63.90 18.40 0.86 14.99
P.E. 474.80 120.90 78.94 95.63 292.66 87.99 0.59 129.49 306.40 96.84 0.59 135.79 449.10 272.16 9.26 239.95
I.D. 9.93 2.08 0.00 3.11 4.76 0.00 0.00 2.04 5.24 0.00 0.00 2.25 12.54 1.19 0.00 2.51
T.H. 66.07 23.04 1.71 26.10 48.47 20.19 0.14 20.99 45.44 19.18 0.07 19.58 71.51 25.07 2.21 22.04
T.C. 216.50 73.90 4.92 84.48 145.59 60.21 0.28 63.72 148.32 63.02 0.21 64.60 209.13 75.48 6.51 110.42
T.U. 15.00 2.00 0.00 4.04 8.41 1.61 0.00 3.60 8.71 1.64 0.00 3.73 14.20 2.39 0.15 2.89
P.U. 19.88 2.07 0.08 5.11 10.54 1.22 0.00 4.52 10.93 1.24 0.00 4.68 19.45 1.96 0.11 3.92

P.I.: Performance indicator; T.P.: Turning points; N.P.: Net profit (in 1000’s $); P.E.: Population exposure (in 1000’s people);
I.D.: # of shipment’s itinerary; T.H.: Total additional hazmat freights (carloads);

T.C.: Total additional freights (carloads); T.U.: Train utilization (%); P.U. Train sequences utilization(%).
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Figure 4.16: Different pricing strategies.

4.5.4 Capacity allocation strategies

One strategy of particular interest is the degree of flexibility in allocation the incoming

requests. As mention earlier, the operator may adopt the itinerary of the demands as

information revealed to enhance the overall performance. To study the impact of degree of

flexibility on the net profit, we study three capacity allocation strategies, refer to as Origin,

Enroute, and Full capacity allocation strategy, respectively. The main idea of those capacity

allocation strategies is to reallocate some demands from train services facing imminent

shortage to another train services with abundant capacity in the favor of the new coming

requests. Those strategies are different in the way the itinerary replanning problem is solved.

The Origin capacity allocation strategy allows the demand to be rescheduled by assigning

the demand to another alternative itinerary at it’s origin terminal before the classification

process starts, whereas the Enroute capacity allocation policy allows the itinerary replanning

at any terminal along it’s last published itinerary. The integration of the two kind of

itinerary re-planning is investigated in Full capacity allocation strategy.
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Figure 4.17 depicts the net profit for various capacity allocation strategies. It is clear

that the profit generated from Origin, and Full capacity allocation strategy are higher

than the one produced by Enroute capacity allocation strategy. The reason of the better

performance of Origin and Full with respect to Enroute capacity allocation strategy could

be justified by the number of alternative itineraries in each strategy. The Enroute capacity

allocation strategy is only limited the replanning process at any terminal along the route.

This was supposed to generate an efficient number of feasible itineraries. However, the

number of alternative itinerary was insufficient for performing local searches. For example,

there is only 738 possible moves for the given train sequences. The ability to explore

the neighborhood seem not be very extend. With analogues considerations, the Origin

capacity allocation strategy contains of 1681 additional itineraries, whereas the Full capacity

allocation allows the two type of moves. We report the result of those capacity allocation

strategies in Table 4.9 together with results when all the information of the requests are

given at beginning of the planning. It is clear that increasing the ability of the operator to
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allocate the incoming requests to the limited capacity may generate up to 5.03% increases

in the net profit with only 2.3% increases on the average train utilization. Such increases

in the net profit is significant when dealing with major railway company generates benefits

from serving demands of the order of several million dollars. The decision-making process

with capacity allocation strategy yields high performances. More importantly, the increases

in the net profit generated from adopting those strategies cause insignificant increases on

the transport risk (up to 0.35%).

Table 4.9: Different capacity allocation strategies.
Information Perfect Imperfect I/P ∗

P.I./Strategy Enroute Origin Full Enroute Origin Full I1/P1 I2/P2 I3/P3
Net profit 292312 303487 306076 232457 244116 244143 0.75 0.79 0.79

std 4010.85 5018.48 7359.49 4496.83 6702.85 6846.61 0.61 0.91 0.93
Risk 3746810 3815800 3846587 3195543 3207087 3185557 0.83 0.83 0.82
std 97206.89 54204.14 85524.16 70607.51 85653.85 96526.38 0.82 1.00 1.12
R 704.80 702.93 717.45 489.43 515.71 513.11 0.68 0.72 0.72
std 33.86 31.71 31.91 29.09 28.17 27.57 0.91 0.88 0.86
H 353.2 354.53 357.09 244.29 157.91 258.74 0.68 0.44 0.72
std 12.96 16.11 15.57 13.26 60.91 15.94 0.85 3.9 1.02

Iti. deviate − − − 20.57 261.47 147.91 − − −
std 9.44 34.12 50.66 7.09 17.62 49.56 0.14 0.35 0.97
U1 0.911 0.922 0.926 0.7593 0.7768 0.7694 0.82 0.84 0.83
std 0.009 0.012 0.012 0.0135 0.0138 0.0182 1.12 1.15 1.52
U2 0.945 0.952 0.9548 0.8099 0.8263 0.8214 0.84 0.87 0.86
std 0.006 0.008 0.008 0.0126 0.0118 0.0164 1.58 1.48 2.05

∗Percent between perfect to imperfect information.

We also evaluate one of the capacity allocation strategy with the most commonly used

strategies in North American’s railway industry, i.e., First come first served (FCFS). In

the FCFS strategy, a request is being assigned to the earliest available train as long as

the capacity is available, whereas the second strategy, refereed to as FCFS2, is similar

to Full policy except that the strategy is not allowed to reschedule the demands during

the planning horizon. It is obvious from Table 4.10 that adopting Full capacity allocation

strategy will increase the net profit by 12.05% than FCFS with average increases in the

population exposure by 3.18%. Such strategy give the carrier full flexibility to reallocate low

priority loads to another train sequences to make space for highly priority request, without

breaking their delivery quotations.
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Table 4.10: Capacity allocation vs. FCFS strategy.
P.I./Strategy Full FCFC FCFC2 Full/FCFC FCFC2/FCFC
Net profit 309526 276248 290494 1.12 1.05

std 13876.64 14316.32 11504.33 0.97 0.80
Risk 3219595 3120219 3127119 1.03 1.00
std 104429.45 84053.81 86888.49 0.03 1.03
R 509.40 477.10 486.30 1.07 1.00
std 46.74 25.64 25.70 1.82 0.55
H 255.7 240.2 241.8 6.45 0.66
std 19.01 9.39 18.05 1.06 0.95

Iti. deviate 117.8 − − − −
std 34.32 − − − −
U1 0.776 0.745 0.753 1.04 1.01
std 0.015 0.013 0.014 1.15 1.08
U2 0.828 0.798 0.803 1.03 1.01
std 0.012 0.012 0.011 1.00 0.91

4.6 Conclusion

In this chapter, we introduce hazardous material trip plan problem with pricing deci-

sions. The planning procedure was divided into two phases. In the first phase, we solve a

deterministic rail freight transportation and train timetabling problem. The solution de-

termines the best request-itinerary assignment decisions in addition to the schedules of the

train services. In the second phase, an optimization-based problem is built and solved at

the arrival of the new request. The procedure was used to study four pricing strategies

in the presence of hazardous materials. The experiment results revealed pricing strategies

based on the capacities of train services and population exposure perform very well. The

OD and path pricing strategies will provide an average of 8.33% additional profit than train

pricing strategy. Increasing the shipping rates and the introduction of surcharge reduce the

operational burden associated with the transportation of hazardous materials commodities.

That is, the additional costs from rerouting the commodities can be compensated by the

increasing the shipping rates.
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Figure 4.18: Train pricing (Rate of charge).
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Figure 4.20: Path pricing (Rate of charge).

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

C
u

m
u

la
ti

ve
 a

ve
ra

ge
 in

cr
ea

se
 in

 s
h

ip
p

in
g 

ra
te

s

Time horizon (expressed in days)

Train pricing

Path pricing

OD pricing

1.4 5.2

Figure 4.21: Average shipping rate.

139



Chapter 5

Conclusions and future research

recommendations

5.1 Summary of the contents

In this dissertation we studied three versions of Hazardous Materials Trip plan Prob-

lems (HTPs). In the first part of this dissertation we proposed a compact mathematical

model to integrate the blocking and train makeup decisions into trip plan generation pro-

cess. Solving the HTPs with blocking decisions determines a comprehensive operational

plan to provide the required services to customers and to minimize total cost from serving

the demands while the transport risk below the given thresholds. We used of aggregate

measures of risk, i.e., population exposure and environmental impacts. The solution of the

problem specifies for each request (a) the route that must follow from its origin to des-

tination (if the shipment served) (b) the sequence of trains that it will be shipped along

the route, and (c) the blocks used to transport it for each train leg along its route. Two

matheuristic methods were proposed to solve the considered problem. We also proposed an

alternative formulation for the considered problem and a heuristic method by decomposing

the problem into freight-to-block and block-to-train assignment problems to solve real size

problem instances. Through computational experiments, it may be concluded that the MIP

heuristics provide good solutions for realistic size instances while solving the mixed integer
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programming formulation can be computationally expensive. Comparing the two proposed

MIP heuristics, the results demonstrated that BH outperforms the SH solutions for large

instances with a large number of train services, on average percent deviations of 26.35%

and average of 13.29% less computational time.

The second part of this dissertation proposed a mathematical model that integrates train

scheduling decisions into trip plan generation process considering different risk spreading

functions. We studied the problem of minimizing the weighted sum of the cost of serving the

commodities plus risk distribution function using well-defined measures while constraining

the population exposure below the given risk thresholds. The solution of the problem is to

determine for each demand (a) the route that must be followed (if not outsourced) including

the blocking path, (b) the sequence of trains that it must assign along the route so that

the trains capacities constraints, and risk thresholds are satisfied, and also determines the

timetable of planned services. Non-linear mixed integer programming models and a heuristic

method were proposed for preparing the shipment plans and determining the schedule of

train services. The experiment results indicated that considering risk distribution function

into trip plan generation may not only have to incur additional financial costs for the carrier

but also increases the total risk. To be specific, some requests considerably deviated from

the shortest path with an average of 16.29%, causing increases in the total transport risk

by 39.78%. Experiment results also revealed that the carrier can achieve a high level of risk

distribution by integrating train scheduling decisions into trip plan generation process. More

precisely, holding commodities at some terminals represents the opportunity of demands

flows to be temporarily stored at terminals along their itinerary to be picked up by less

risky train services passing by at later times. This could be achieved by adding some slack

times between different train services.

In the last part of this dissertation we studied a freight car scheduling and train dis-

patching problem involving hazmat transportation. In the considered problem, customer

requests known in advance will be scheduled first. Additional requests, after the preliminary

schedule is generated, may be scheduled from new customers. Depending on available ca-

pacities, the total transport risk and customer requirements, new customers may be quoted
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with different prices and time to deliver. A two-phase heuristic solution method was de-

veloped to solve the considered problem. In some cases, adding the demand to the current

train services is feasible and profitable as only additional fuel and equipment are needed,

i.e. in the first quarter of the planning. In other cases, the existing itineraries may need to

be frequently revised causing the increased cost of transporting the already existing sched-

uled freights. Or, some of the new requests must be rejected as it becomes infeasible. The

procedure was used to study four pricing strategies in the presence of hazardous materials.

The experiment results indicated that pricing strategies based on the capacities of train

services and population exposure perform very well with other strategies. In particular,

the OD and path pricing strategies will provide an average of 8.33% additional profit than

train pricing strategy. Increasing the shipping rates and the introduction of additional

charges may reduce the operational burden associated with the transportation of hazardous

materials commodities.

5.2 Recommendations for future research

Naturally, there exist several aspects related to this research to be further explored that

are unfortunately out of the scope of this dissertation. We briefly describe some research

avenues for each variant of HTPs studied in this dissertation. First, the research in HTPs

with blocking could be enhanced in various ways:

• One enhancement is to investigate the position of hazmat freights in a block and

sequence of blocks in train service. In particular, there is a need to develop more

sophisticated analytical approaches that generate the routing plans that explicitly

consider blocking, and the location of hazmat freights in a block.

• Another enhancement would be to incorporate the risk that arises when a shipment

changes a service at a terminal. Such a risk may trade-off against other costs, i.e.,

tardiness, earliness, etc.

Second, the study in HTPs with train scheduling could be also improved in various ways.
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• One improvement is to design a heuristic based on the extension of the standard k-

shortest path algorithm to solve the freight transportation problem with risk spreading

considerations.

• Another interesting investigation is to incorporate the risk from holding commodities

at terminals along their itinerary. Such risk may reduce the benefits from holding

commodities at terminals to distribute the risk. We assumed that probability for a

shipment releases during storage be zero in our approach. This may not true, there is

still a chance of releases of its materials due to crashing or insecure facility conditions.

Finally, the research in HTPs with pricing decision could be enhanced in many ways.

• One enhancement is to investigate other pricing strategies. For instance, the pricing

strategy with some probabilistic knowledge of the future and unknown demands is

expected to perform very well similar to that in Wang et al. (2016).

• Another possible extension is introduce another group of customers in which partial

of their demands could be satisfied.

• We are currently working on more sophisticated extensions of HTPP in which we

consider the price of the competitors and the reaction of the customers. The problem

could be model as bi-level mathematical formulation, where the first level is a rail

carrier and the second level is a group of customers. The leader determines the toll

settings for the transit of commodities while considering the reaction of all customers

aiming at reducing the total population exposure and risk spreading. Differently than

HTPs with pricing decisions, the customers choose their itineraries and the carrier

impose tolls on the available itineraries. The regulator identifies a toll policy that

minimizes the total population exposure and maximizing the risk spreading, taking

into account that the customers follow least-cost route decisions.
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Appendix A

Alternative mathematical model

and solution method

Sets and parameters

Before we present the alternative mathematical model and for expositional reasons, we

next present a simple example for the HTP with blocking decisions. Figure A.1 depicts a

small rail network G(I, L), where I = {i1, i2, i3, i4} and L= {l1, l2, ..., l9}. The operational

characteristics of train services are given in Table A.1, i.e., train 2 consists of two service

legs l4 and l5. Given the definition of an itinerary, the origin and destination pair of block

of cars can be met by one of the itineraries given in Table A.2. Information regarding the

potential blocks are given in Table A.3. Note that we do not specify the destination of

block of cars for flexibility reason. Let Pb be subset of blocking paths that a block b can

follow in a solution. For instance, block b1 can be assigned to any path in the set Pb1 , i.e.,

Pb1 ={p1, ..., p14}. Let also Pl be subset of paths that traverse along the direct train service

l, i.e., Pl5 = {p5, p6, p12, p13, p16, p20}. Given the set of itineraries in Table A.2, the pair of

direct train service (l, l′) is called compatible services if they form a complete path for block

of cars from ol to dl′ . Let σ̄p be the set of sections for blocking path p. Each section of

a blocking path p, s ∈ σ̄p, represents block movement on a service, that is block-to-train

assignment. We also introduce parameter ᾱsp to indicate the sth service of the blocking
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path p. For instance, the blocking path p11 consists of three sections, starts by service

ᾱ1
p11 = 4 and ends by service ᾱ3

p11 = 3. Let λ′ be the set of compatible pair of services,

i.e., λ′={(l1, l2), (l1, l5), ..., (l5, l3), (l8, l9)}. Let also λ be subset of λ′ that required a train

transfer at terminal i= dl, i.e., λ= {(l1, l5), ..., (l5, l3)}. The process to generate the set of

blocking paths is done once and for all in our algorithm, and needs only a few seconds of

computation time.
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Figure A.1: A simple time schedule network.

We also introduce several sets to reduce the size of the problem by three or four orders

of magnitude. Let Lb be the subset of direct services in which a block b can be assigned to,

i.e., Lb3 = {l2, l3, l5, l6, l7}. Analogously, let Lk denotes the subset of train services in which

a demand k can be shipped through. For instance k1(i1, i4), an OD demand pair that is

ready at 0.7 time unit and must be shipped no later than 2.8 time unit, can be shipped

along any combination of the services in Lk1 which form a complete path from i1 to i4,

Lk1 = {l2, l3, l4, l5, l7, l9}. Furthermore, let Bl be the subset of potential blocks that could

be assigned to the direct train service l, i.e., Bl9 = {b1, b2, b5}, whereas Bk be the subset of

potential blocks that a commodity k could be part of block of cars, i.e., Bk1 = {b1, b2, b3, b4}.

To consider the blocking limitation at terminal, we introduce set B(i, t) to be the potential

blocks of cars being constructed at terminal i at time t. Note that each section of block can

be treated as a unique service with certain OD, schedule and capacity.

Figure A.2 (Figure A.3) depicts the p1−p14 (p15−p23) blocking paths over the planning

time T . For instance, a blocking path p11 occupies a track at i1 from 0.3 to 0.9 unit time,

travels along direct train service l4, holds a track at i2 from 1.2 to 1.4 unit time, hauls along

direct train service l2, holds a track at i3 from 1.9 to 2.2 unit time, and pulls along direct
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train service l3.

It is obvious that once a rail network, shipment requirements and candidate blocks are

given, the definition of Pb, Pl, λ, λ
′ , Lb, Lk1 and Bk are fixed.

Table A.1: Timetable of the train services with the atmospheric class.
Train # Itinerary τOl τCl τDl τAl

- - s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

train 1 i1
l1−→
C
i2

l2−→
E
i3

l3−→
B
i4 0.0 0.8 1.6 0.5 1.3 2.1 0.6 1.4 2.2 0.9 1.9 2.5

train 2 i1
l4−→
D
i2

l5−→
F
i3 0.3 1.0 - 0.8 1.5 - 0.9 1.6 - 1.2 2.1 -

train 3 i2
l6−→
B
i4 0.5 - - 1.0 - - 1.1 - - 1.6 - -

train 4 i2
l7−→
F
i4 0.7 - - 1.3 - - 1.4 - - 1.8 - -

train 5 i3
l8−→
C
i1

l9−→
D
i4 1.3 1.9 - 1.8 2.4 - 1.9 2.5 - 2.4 2.8 -

Table A.2: All possible OD paths.
i1 → i2 i1 → i3 i1 → i4 i2 → i3 i2 → i4 i3 → i1 i3 → i4

p1 : i1
l1−→ i2 p3 : i1

l1−→ i2
l2−→ i3 p7 : i1

l1−→ i∗2
l6−→ i4 p15 : i2

l2−→ i3 p17 : i2
l6−→ i4 p21 : i3

l8−→ i1 p22 : i3
l3−→ i4

p2 : i1
l4−→ i2 p4 : i1

l4−→ i∗2
l2−→ i3 p8 : i1

l1−→ i∗2
l7−→ i4 p16 : i2

l5−→ i3 p18 : i2
l7−→ i4 p23 : i3

l8−→ i1
l9−→ i4

p5 : i1
l1−→ i∗2

l5−→ i3 p9 : i1
l4−→ i∗2

l7−→ i4 p19 : i2
l2−→ i3

l3−→ i4

p6 : i1
l4−→ i2

l5−→ i3 p10 : i1
l1−→ i2

l2−→ i3
l3−→ i4 p20 : i2

l5−→ i∗3
l3−→ i4

p11 : i1
l4−→ i∗2

l2−→ i3
l3−→ i4

p12 : i1
l1−→ i∗2

l5−→ i∗3
l3−→ i4

p13 : i1
l4−→ i2

l5−→ i∗3
l3−→ i4

p14 : i1
l9−→ i4

i∗ required a train change at terminal i

Table A.3: Characteristics of blocks.
B b1 b2 b3 b4 b5
ob i1 i1 i2 i2 i3

With the subsequent model declarations, the following abbreviations are used: [−],

i.e., without any base unit; [MU ], i.e., monetary units; [TU ], i.e., time units; [PU ], i.e.,

population density units; [V U ], i.e., volume units; [QU ], i.e., quantity units; [DU ], i.e.,

distance units; [AU ], i.e., area units.
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I Set of railway terminals, index by i or j ∈I.[−]
L Set of direct train services, index by l or l′∈L.[−]
K Set of requests, index by k∈K.[−]
F Subset of requests that must be served by the carrier F⊂K.[−]
B Set of potential blocks of cars, index by b∈B.[−]
Lb Subset of train services in which a block b can be assigned to, index by l∈Lb.[−]
Lk Subset of train services in which a demand k can be shipped through, index by l∈Lk.[−]
L+
j Subset of emanating direct train services from yard j, i.e., L+

j ={l∈L|ol=j}.[−]
L−j Subset of train services terminates at yard j, i.e., L−j ={l∈L|dl=j}.[−]
Bl Subset of potential blocks that could be assigned to train service l, index by b∈Bl.[−]
Bk Subset of potential blocks in which a request k can be assigned to, index by b∈Bk.[−]
T Set of time instants during the planning horizon |T |, index by t ∈T .[−]
B(i, t) Set of potential blocks of cars being constructed at terminal i at time t, index by b∈B(i, t).[−]
Pb Set of all possible paths to route block b including the train services it is assigned along that path,

index by p∈Pb.[−]
P Set of all paths to route all potential blocks in set B, i.e., P =

⋃
b∈B Pb.[−]

σ̄p Set of sections for the blocking path p, index by s∈ σ̄p. [−]
ᾱsp Integer represents sth train service of the blocking path p, 1 ≤ ᾱsp ≤ L. [−]
Pl Subset of paths that traverse along train service l∈L.[−]
ol Origin yard of train service l, ol∈I.[−]
dl Destination yard of train service l, dl∈I.[−]
τOl Schedule operation start time of the train service l at yard ol∈I.[TU ]
τCl Schedule cutoff time of the train service l at yard ol∈I.[TU ]
τDl Schedule departure time of the train service l at yard ol∈I.[TU ]
τAl Schedule arrival time of the train service l at yard dl∈I.[TU ]
Ul Maximum number of railcars can be hauled by train service l∈L.[QU ]
ok Origin yard of request k, ok∈I.[−]
dk Destination yard of request k, dk∈I.[−]
τAk Time when a request k is available at terminal ok.[TU ]
τEk /τ

L
k Early/Latest time a request k should be delivered at terminal dk.[TU ]

σk/ωk Earliness/Tardiness cost (per unit) if request k delivers earlier/later than τEk /τLk .[MU ]
Dk Number of railcars in request k to be shipped.[QU ]
Hk Number of hazmat railcars in request k to be shipped.[QU ]
ψk A charge to outsource a request k by a partner (sufficient large number).[MU ]
ξ A service level provided by the carrier, i.e., 100% means zero delay, ξ∈ [0, 1].[−]
ob Origin yard of block b, ob ∈ I.[−]
db Set of possible end yards of block b, db={i ∈ I|i 6= ob}.[−]
τHb Time windows a block b is assigned to a track at the origin terminal ob to be constructed.[TU ]
θb Cost to construct a block b at ob and to perform the block-swapping process during its journey (if

any).[MU ]
Ub Maximum number of cars can be assigned to block b which determined by the length of blocking

track assigned to at ob, b∈B.[QU ]
Ui Maximum number of blocks can be build at terminal i at any period t∈T (the number of tracks),

v∈V .[QU ]
φl Unit transportation and classification costs to ship a single commodity along direct train service

l∈L.[MU ]
qi Unit handling cost to transfer commodity from a train service to another at terminal i.[MU ]
πi Free time a shipment can be stored at terminal i∈I without any additional charges.[TU ]
dl Distance along train service l∈L.[DU ]
λ
′ Set of pair of train services that can form a complete or sub path, i.e. (l, l′ ) ∈ λ′ such that dl =

o
l
′ and τAl ≤ τ

C
l′ ∀l, l

′ ∈L.[−]
λ Subset of λ′ such that a train transfer occurred.[−]
ρ̄l Unit inventory cost to store a commodity at yard ol∈I.[MU ]
ρl Average population concentration along the train service l.[PU ]
ζl Percentage of sensitive environment area per distance along direct train service l.[1/DU ]
ρ̂i Average population concentration at yard i.[PU ]
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µi Percentage of sensitive environment area at yard i.[−]
nl(ni) Number of dangerous goods along train service l(through terminal i).
Θl(nl) Threshold distance due to transport nl dangerous goods along train service l.[DU ]
Φi(ni) Threshold zone due to transport ni dangerous goods through terminal i.[DU ]
ηl(nl) Impact area due to transport nl dangerous goods along train service l.[AU ]
χi(ni) Impact volume due to transport ni dangerous goods through terminal i.[V U ]
RPl /R

E
l Population exposure/Environment impact threshold at train service l ∈ L in which

the service provider can reach during the planning horizon.[PU ]/[V U ]
Binary
yb,p =1 if block b follows path p∈Pb; 0 otherwise.[−]
xk,b,l =1 if request k is assigned to block b along train service l; 0 otherwise.[−]
zk =1 if request k is outsourced; 0 otherwise.[−]
sk,i =1 if request k change a train at terminal i; 0 otherwise.[−]
Continuous
ak,j Arrival time of request k at yard j.[TU ]
hk,l Inventory time to ship commodity k on the train service l at yard ol, i.e., hk,l =

max{0, τOl −ak,j−πj} : j ∈ol.[TU ]
ek Earliness time of request k, i.e., ek= max{0, τEk −ak,j} : j ∈dk.[TU ]
tk Tardiness time of request k, i.e., tk= max{0, ak,j−τLk } : j ∈dk.[TU ]
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Figure A.2: Blocking paths P1−P14.
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Figure A.3: Blocking paths P15−P23.
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Let M be a sufficient large number, then the HTPs with blocking decisions can be

modeled as follows:

(P ′) min
∑
k

Dk

{
Per unit cost︷ ︸︸ ︷

Shipping+sorting︷ ︸︸ ︷∑
b∈Bk

∑
l∈Lk∩Lb

φlxk,b,l +

Holding︷ ︸︸ ︷∑
l∈Lk

ρ̄lhk,l +

Transferring︷ ︸︸ ︷∑
i∈I
qisk,i +

Earliness︷ ︸︸ ︷
σkek +

Tardiness︷ ︸︸ ︷
ωktk +

Partner cost︷ ︸︸ ︷
ψkzk

}
+

Blocking costs︷ ︸︸ ︷∑
b

∑
p∈Pb

θb,pyb,p

s.t ∑
p∈Pb

yb,p ≤ 1 ∀ b : b ∈ B (49)

∑
b∈Bk

∑
l∈L+

i ∩Lk

xk,b,l −
∑
b∈Bk

∑
l∈L−i ∩Lk

xk,b,l =



1− zk ∀ k, i : i ∈ok

zk − 1 ∀ k, i : i∈dk

0 ∀ k, i : i 6∈ok nor dk

(50)

∑
b∈B(i,t)

∑
p∈Pb

yb,p ≤ Ui ∀i ∈ I, t ∈ {t, .., T} (51)

∑
k

Dkxk,b,l ≤
∑

p∈Pl∩Pb

Ubyb,p ∀ b, l : l ∈Lb (52)

Dkxk,b,l ≤
∑

p∈Pl∩Pb

Ubyb,p ∀ k, b, l : l ∈Lb ∩ Lk (53)

∑
k

∑
b∈Bk∩Bl

Dkxk,b,l ≤ Ul ∀ l : l ∈ L (54)

sk,i >
∑

b∈Bk∩Bl

xk,b,l +
∑

b∈Bk∩Bl′
xk,b,l′ − 2 ∀ k, l, l′, i : l, l′ ∈ Lk and (l, l′) ∈ λ (55)

tk ≥ max{0, ak,j − τLk } ∀ k, j :j ∈dk (56)

ek ≥ max{0, τEk − ak,j} ∀ k, j :j ∈dk (57)

ak,j =τAk ∀ k, j :j∈ok (58){
τAl − ak,j

} ∑
b∈Bl∩Bk

xk,b,l=0 ∀ k, l, j : l∈L−j and j∈dl (59)

{
max{0, τOl − ak,j− πj}−hk,l

} ∑
b∈Bl∩Bk

xk,b,l = 0 ∀ k, l, j : l ∈L+
j ∩ Lk and j∈ol (60)
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ak,j ≤τCl +M

1−
∑

b∈Bl∩Bk

xk,b,l

 ∀ k, l, j : l ∈L+
j ∩ Lk and j∈ol (61)

2Θl

(∑
k

∑
b∈Bl∩Bk

Hkxk,b,l

)
ρlql+

∑
i∈I:i=dl

πΦi

(∑
k

∑
b∈Bl∩Bk

Hkxk,b,l

)
ρ̂i ≤ RPl ∀ l (62)

1
2πηl

(∑
k

∑
b∈Bl∩Bk

Hkxk,b,l

)
ζlql+

∑
i∈I:i=dl

2
3πχi

(∑
k

∑
b∈Bl∩Bk

Hkxk,b,s

)
µi ≤ REl ∀ l (63)

ak,j , hk,l, ek, tk > 0 ∀ k, j, l (64)

yb,p, xk,b,l, zk ∈ {0, 1} ∀ k, b, p, l (65)

1 ≥ sk,i ≥ 0 ∀ k, i (66)

Objective function in the above presented model is to minimize the total costs including,

respectively, the cost of shipping and classification, inventory, transfer, earliness, tardiness,

and partner cost to fulfill the requests, and the cost of constructing blocks and performing

block-swapping operations. Constraints (49) and (50) are commodity flow conservation

constraints for set of requests being fulfilled by the carrier services, i.e., zk = 1 and block,

respectively. Constraints (51)-(54) are capacity limitations for yards, blocks, and total

workload of services. Constraints (51) are the yard capacities for building blocks at each

period. Constraints (52) link the flow of commodities with the block capacities, given

that the corresponding blocks have been selected, whereas constraints (54) link flow of

commodities with train with their capacities. Constraints (52) also impose that no shipment

can be routed on a link unless a block routed along that link. The strong linking constraints

(53) impose that no flow of any shipment can be shipped on a close block, i.e., yb,p = 0.

Although these inequalities are redundant for the MINP formulation, our experiments show

that they improve the computation time. Similar inequalities have been introduced in the

literature on network design problems to improve the lower bounds (i.e. Kazemzadeh et al.,

2018). Constraints (55)-(60) define the set of variables. Constraints (55) impose variable

sk,i = 1 if a commodity k is assigned to a pair of compatible train services that required

a train transfer at yard, i.e.,
∑
b∈Bk∩Bl xk,b,l +

∑
b∈Bk∩Bl′ xk,b,l

′ = 2|(l, l′) ∈ λ. Constraints

(56) and (57) define tardiness and earliness variables, respectively. Constraints (58) and

(59) define the arrival time of commodities at yards along their itineraries. In particular,
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constraints (58) impose the arrival time at origin terminal for demand k to τAk , whereas

constraints (59) define the arrival time at each terminal along its itinerary, i.e., ak,i =

τAl |
∑
b∈Bl∩Bkxk,b,l = 1, and i = dl. Constraints (60) determine the holding times for

demands along their itineraries, i.e., hk,i = max{0, τOl − ak,j− πj}|xk,b,l = 1 and i = ol.

Constraints (61) are train connection constraints, that is any commodity cannot be hauled

on a train service l until it arrives at most τCl periods at terminal ol, i.e., ak,i ≤ τC . To

distribute the risk in an equitable way over the population and the environment, constraints

(62)/(63) impose the population exposure/risk of damage to the environment is no greater

than a given threshold along that service. The first term in Constraints (62) is the sum of

population exposure along the route, and the second term is that at the yard. Similarly, the

first term in Constraints (63) is the sum of the damage along the route, and the second term

is that at the yard. Constraints (64) and (65) are non-negativity and integrity constraints,

respectively. Constraints (66) and (55) satisfy the integrity property for sk,i variables.

A.1 NMIP to MIP

In this section, we linearized the model to be solved by available MIP solvers. The

nonlinearity of the model is caused by Constraints (59), (60), (62), and (63). Constraints

(59) can be replaced by Constraints (67) and (68). Note that Constraints (67) and (68)

are imposed only when a shipment is assigned to a direct train service l∈L−j at terminal

j ∈ dl along its itinerary, i.e., ak,j = τAl |
∑
b∈Bl∩Bk xk,b,l = 1, k, l ∈L−j and j = dl. On the

other hand, Constraints (67) and (68) are redundant if a shipment not assigned to that

train service, i.e., ak,j = 0|
∑
b∈Bl∩Bk xk,b,l = 0, k, l ∈L−j and j = dl.

ak,j ≥ τAl +M

{ ∑
b∈Bl∩Bk

xk,b,l − 1
}

∀ k, l, j : l ∈L−j and j ∈ dl (67)

ak,j ≤ τAl +M

{
1−

∑
b∈Bl∩Bk

xk,b,l

}
∀ k, l, j : l ∈L−j and j ∈ dl (68)

Constraints (69) are also introduced to replace Constraints (60). At any terminal visited
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by a shipment k, Constraints (69) compute the amount holding times to route the shipment

along the direct train service l, i.e., hk,j = {max{0, τOl −ak,j−πj}|xk,b,l = 1, k, l ∈ L+
j and i =

ol}.

hk,l ≥M
{ ∑
b∈Bl∩Bk

xk,b,l − 1
}

+ τOl − ak,j − πj ∀ k, l, j : l ∈L+
j and j ∈ ol (69)

The nonlinear expressions in Constraints (62) and (63) to measure the risks can be

linearized by a piecewise method. The technical details of the approximation function in

the Gaussian Plume Model and Box Model are given in subsection 2.4.1. The resulting

linear programming model, denoted as P ′′, can be solved by available MIP solvers.

A.2 Alternative solution method

In this section, we describe an iterative heuristic algorithm belongs to Very Large-

Scaled Neighborhood Search Algorithm (VLNS) with two main subroutines of initialization

(section A.2.1) and local search algorithm (section A.2.2). In the VLNS algorithms, there

are two distinct methods being pursued in the literature. The first approach implicitly

search large neighborhoods by solving an auxiliary optimization problem, whereas the other

approach partially explore the neighborhood heuristically (Altner et al., 2014). We can find

VLNS attempting to solve railway blocking problem in Ahuja et al. (2007b), Multi-resource

generalized assignment problem in Yagiura et al. (2004), among others. Survey on VLNS

can be found in Ahuja et al. (2007a).

A good blocking policy and train-makeup plan forms the backbone of freight transporta-

tion problem (Barnhart et al., 2000) and may also reduce the risks associated with hazmat

freights. The propose heuristic starts with an initial solution and iteratively improve the

current blocking plans by replacing it with its neighbor solution until the solution can no

longer be improved. In our model, decisions can be grouped into design decisions yb,p (wher-

ever to active or not a block between a pair of terminals of the railway network including

the train services along that path) and routing decisions xk,b,l. In our algorithm, we deal
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with the two types of decision in a hierarchical manner, that is, we first fix the value of

design decision variables and then we solve the rail freight transportation problem using the

active blocks. The algorithm has two main steps: Constructing an initial feasible solution

and Re-optimizing the blocking plan.

We decompose the routing and scheduling of hazmat freights problem into two nested

problems: the block-to-train assignment problem (BTA) and freight-to-block assignment

problem (FBA). The first problem consists of finding the best train makeup plans given the

routing of commodities. Let xw be the FBA solution at iteration w. The formulation of

block-to-train assignment model giving the trip plan decisions is the following:

(BTA) min

Blocking costs︷ ︸︸ ︷∑
b

∑
p∈Pb

θb,pyb,p

s.t.

(49), (51) (70)∑
k

Dkx
w
k,b,l≤

∑
p∈Pl∩Pb

Ubyb,p ∀ b, l : l ∈Lb (71)

Dkx
w
k,b,l≤

∑
p∈Pl∩Pb

Ubyb,p ∀ k, b, l : l ∈Lb ∩ Lk (72)

yb,p∈{0, 1} ∀ b, p : p ∈ Pb (73)

The second problem obtains the optimum itineraries for the freight cars when the train-

makeup plan is given. An itinerary of a commodity includes not only the direct train services

it is assigned along the path, but also the blocking-path it traverses along the route. Let yw

be the BTA solution at iteration w. Given a fixed train makeup on the services at iteration

w, yw, the formulation of the freight-to-block assignment model is the following:

(FBA) min
∑
k

Dk

{ Serving costs︷ ︸︸ ︷∑
b

∑
l∈Lk∩Lb

φlxk,b,l +
∑
l∈Lk

ρ̄lhk,l +
∑
i∈I
qisk,i + σkek + ωktk +

Partner cost︷ ︸︸ ︷
ψkzk

}
s.t.
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(50), (54)−(64), (66)∑
k

Dkxk,b,l≤
∑

p∈Pl∩Pb

Uby
w
b,p ∀ b, l : l ∈Lb (74)

Dkxk,b,l≤
∑

p∈Pl∩Pb

Uby
w
b,p ∀ k, b, l : l ∈Lb ∩ Lk (75)

xk,b,l, zk∈{0, 1} ∀ k, b, l, i (76)

To solve FBA, we design an algorithm that solve the rail freight transportation prob-

lem given the blocking plans and order of requests with their characteristics. The set of

itineraries for each shipment is given by the set of paths on restricted graph defined through

yb,p variables. At an iteration w, the algorithm finds the cheapest itinerary for a given num-

ber of freight cars, Dk, for request k. In generating the trip plan, we imposed the capacity

constraints (52) and (54) at services and yards as well as the risk thresholds in Constraints

(62)-(63). Briefly, the main steps of the algorithm are the following:

Step 1 Select a request k∗∈K still not assign to an itinerary. If none exists: STOP.
Let xw be the FBA solution at iteration w;

Step 2 Determine the cheapest itinerary considering the capacities of blocks and
trains and risk thresholds by extension of the k-shortest path algorithm;

Step 3 Step 3.0 If at least one itinerary exists: Go 3.1 otherwise Go to 3.4
Step 3.1 Assign the request to that itinerary, xwk,b∗,l∗ = 1 ∀b∗, l∗ along
the cheapest itinerary, where (b∗, l∗) is a block segment along the cheapest
itinerary.
Step 3.2 Compute ∆fwk , where ∆fwk denotes the change in the objective value
incurred by assigning shipment k to the cheapest itinerary at iteration w.
Step 3.3 Update the capacity on the blocks and yards as well as the risk
thresholds along that itinerary.
Step 3.4 If no itinerary exist, then foreword the request to a partner to fulfill
the demand, i.e., zk=1 and compute ∆fwk . Go to Step 1 if k < |K|; Otherwise
stops;

A.2.1 Constructing an initial feasible solution

We design a constructive algorithm to find an initial solution by solving BTA then the

restricted FBA is solved. The following procedures produce a complete train and freight

plans. First, we assign the blocks in B, one by one following their order in the list, to the

best blocking paths in p ∈ Pb that maximize the number of blocking sections with respect

to the yard limitations. Next, we update train and terminal capacities along blocking path
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after assigning a block to one of its feasible blocking paths. The process continues until all

candidate blocks are assigned to a train path or it is not possible to insert additional block

in a solution. After we solve the BTA, we assign each shipment to the cheapest itinerary (if

exist). The algorithm performs at most K iterations as it serves one shipment at a time in

each iteration. If there no feasible itineraries for a shipment, we set fwk = ψk. This process

continues until all shipments have been served or no more shipments can be inserted in the

solution. At the end of this phase, an initial solution is stored as the best (xB, yB) solution

obtained so far. The objective function then calculated and the best objective function ZB

is updated.

We also developed several other routines to find an initial solution. However, our com-

putational results indicate that the algorithm can explore the solution space extensively

regardless the quality of initial solution.

A.2.2 Local search

Problem P is a generalized assignment which involves two main related assignment de-

cisions: the assignment of blocks to train paths, through yb,p variables, and the assignment

of freights to itineraries, through xk,b,l variables, according to the selected blocking plans.

The method focuses on the yb,p binary variables, as they specified the highest level assign-

ment decision, so mainly influence the dimension of the solution space. In our approach,

we optimize a block at a time until additional improvement is not possible, while fixing the

other blocking plans in a solution. The heuristic iteratively performs a predefined number

of local search procedures. In each local search, we destroy a blocking path, one at a time,

and replace it by one of its neighbor (if exist). Then we calculate the change in the objective

value on the freight routing. Once all blocking paths have been considered, the blocking

paths that are destroyed are considered, again in increasing order of blocking path, and the

best path while the other blocking paths fixed is found. We adopt a simulated annealing

approach to avoid local optima. A formal statement of the solution method is provided

below.
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Initi.: Set w= 0, zC =∞, zB =∞, where zC and zB denote the current and best objective value,
respectively. Let mwb (fwk ) be the cost of block b (shipment k) to be constructed (served) at
iteration w;

Step 1: Construct an initial solution for P ′:
Step 1.a: Solve BTA: for each potential block b in B determine the best blocking path that

maximize the number of segments to be constructed: p∗ ← argmaxp∈Pb
{|σ̄p| :

Constraints(51) are satisfied}. If at least one blocking path exists, then assign the block
to that path, yb,p∗=1, update the current objective by adding the cost of construction block
and performing the block-swapping operations (if any), zC ← zC + mwb , and Update the
blocking limitation along that path p∗. Otherwise set yb,p = 0. Go to Step 1.a if b < |B|
Otherwise Go to Step 1.b;

Step 1.b: Solve FTB on the restricted graph defined by yb,p variables: Determine the cheapest itinerary
considering the capacities of blocks and trains, and the risk thresholds by calling an extension
of shortest path algorithm. Go to step 2;

Step 2: Update the current objective: zC←zC+
∑

k
fwk . Update the best solution found: if zC<zB

then zB=zC .
Step 3: Local search:

for each pass in bypass and b in B:
set w ← w + 1:

Step 3.1: If b is constructed, destroy the block, i.e., ywb,p∗=0|yw−1
b,p∗ =1. Update the blocking limitations

along train sequence p∗. Go to Step 3.1;
Step 3.2: for each p in Pb, where p 6= p∗:

Assign b to p if Constraints (51) are satisfied. If ywb,p=1 Calculate ∆mwb = θb,p − θb,p∗ and
then Go to step 3.3. Otherwise Go to Step 3.2 if p < |Pb|;

Step 3.3: Resolve FTB on the new restricted graph and then update zC ← zC +
∑

b
∆mwb +

∑
k

∆fwk .
Calculate the objective difference ∆ = z(xC , yC) − z(xB , yB). Then, (xC , yC) re-
places (xB , yB) whenever ∆ < 0. Otherwise, xC could be accepted with a probability
p((xC , yC), (xB , yB)) = e−∆/T . The acceptance probability is compared to a number r ∈
[0, 1] is generated randomly and (xC , yC) is accepted if and only if p((xC , yC), (xB , yB))>r.
Terminate and return the best solution found so far if number of bypass reached and b= |B|.
Otherwise Go to Step 3;
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Appendix B

Case study

The proposed solution method is also applied to a sub-network of Class-I railroad derived

from Canadian Pacific (CP) Railway, given in Figure B.1. CP’s network has numerous

routing alternative across Canada and the U.S. and further extended its network with other

major Class I railways in North America. The study uses two groups of data: network

and commodity flow data. The network characteristics include mileages between terminals,

tracks between major cities and list of train services.

 

𝑖1 

𝑖4 

𝑖2 𝑖3 

𝑖10 𝑖7 

𝑖8 

𝑖9 

𝑖18 

𝑖20 

𝑖21 

𝑖12 

𝑖23 

𝑖17 

𝑖19 

𝑖16 

𝑖15 

𝑖13 

𝑖11 

𝑖14 

𝑖12 

𝑖5 
𝑖6 

Figure B.1: Sub-network of Canadian Pacific (CP) railway.

The sub-network consists of 23 terminals and 63 links. We create 60 (hypothetical) train

services that consists of 1-3 train legs, a total of 147 service legs were created connecting
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Table B.1: Network data for CP railroad network.
Terminal Notation Number of

trains Dep.(Arr.)
V ancouver i1 10(6)
Kingsgate i2 10(8)
Coutts i3 8(9)
Calgary i4 19(19)
Edmonton i5 3(3)

Lloydminster i6 2(2)
Saskatoon i7 7(5)
Regina i8 11(16)
Winnipeg i9 13(17)

ThunderBay i10 2(2)
Duluh i11 1(1)
Tracy i12 4(4)

Minneapolis/ST.Paul i13 15(15)
Kanas City i14 4(3)
Chicago i15 6(7)
Detroit i16 3(3)
Buffalo i17 6(6)
Sudbury i18 2(2)
Toronto i19 4(4)
Montreal i20 2(2)
Albany i21 6(5)

New Y ork i22 4(3)
Philadelphia i23 4(6)

any two of the 23 yards in the network. Table B.1 gives the name and number of train

services departure from/terminate at each terminal. The available network data which

aided the process were obtained from the CP railroad’s website. Freight flow data were

generated randomly with a total of 288 origin-destination pairs. Given the network data,

the number of available paths for each original-destination pair ranges from 1 to 67, and

the total number of itineraries for all 288 origin-destination pairs is 5380.

We introduced two indicators, called shortest distance indicators, to measure the percent

deviation from shortest distance, the first indicator called Average Distance Gap (ADG) and

the second quantity called Shortest Distance Gap (SDG), that we computed after solving

the problem. For each request k, we compute dk and dk as the shortest and average distance

for serving request k, respectively. Let ADG be the average deviation of the actual distance

travel from average distance of the available itineraries for the commodity, obtained from:

ADG=
∑
k ADGk∑
k(1− zk)

× 100 =
∑
k

{∑
b

∑
l dlxk,b,l − dk

}
∑
k dk(

∑
k(1− zk))

× 100
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The denominator in ADG is the difference between the actual distance travel by the

commodities from the average distance of the available itineraries for the requests. The

average distance of the available itineraries dk is a priori computed as the ratio between the

sum of distance travel by each of the possible itineraries and the total number of itineraries

for request k. Let Qk be the set of possible itineraries for request k, indexed by q. Also,

let ηq,l be indicator equal to 1 if direct train service l ∈ L belongs to itinerary q ∈ Qk

and otherwise 0. Then, the average distance of the available itineraries for shipment k is

calculated from:

dk=
∑
q

∑
l ηq,ldl

|Qk|

Given the network and commodity flow data, Table B.2 and Table B.3 gives the total

number of possible itineraries to transport a shipment from terminal i∈ok to terminal j∈dk

and the average distance travel by shipment k, respectively.

The SDG is an estimate of the average deviation from the shortest distance which

defined as:

SDG=
∑
k {
∑
l

∑
b dlxk,b,l − argminq∈Qk{

∑
l dlηq,l}}∑

k argminq∈Qk{
∑
l dlηq,l}(

∑
k(1− zk))

× 100

The denominator in SDG is the sum of deviations from the shortest distances of the

considered requests, whereas the numerator calculates the average sum of the shortest dis-

tances. Note that the higher values of these two indicators mean the additional operational

costs that carrier incurred due to imposing risks threshold and/or capacities constraints.

We conducted various experiments characterized by different parameters of the problem

to create a comprehensive image of freight movement among major cities. We generated

six groups of instances, two for the demand rate, two for the train capacity, two for block

capacity, two for population threshold, two for environment impact and two for terminal
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Table B.2: Number of itineraries from terminal i to j.
From/To i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 i23

i1 - 14 23 25 16 21 62 12 20 10 24 59 37 61 25 10 10 10 10 10 20 10 20
i2 38 - 18 37 21 26 82 17 28 14 30 80 50 85 39 14 14 14 14 14 28 14 28
i3 30 20 - 20 19 22 79 13 23 14 34 88 47 93 39 14 14 14 14 14 28 14 28
i4 42 18 19 - 1 25 55 13 24 15 26 69 43 75 38 15 15 15 15 15 30 15 30
i5 18 10 15 4 - 11 26 6 11 6 14 36 20 38 16 6 6 6 6 6 12 6 12
i6 18 10 15 4 2 - 24 6 11 6 13 36 18 37 16 6 6 6 6 6 12 6 12
i7 37 24 32 37 17 2 - 9 26 13 25 67 40 74 37 13 13 13 13 13 26 13 26
i8 9 7 10 15 7 6 19 - 5 3 6 16 10 18 9 3 3 3 3 3 6 3 6
i9 10 8 10 13 5 3 12 5 - 1 4 11 6 12 5 1 1 1 1 1 2 1 2
i10 1 1 2 3 1 1 4 1 1 - 2 5 4 5 2 1 1 1 1 1 2 1 2
i11 16 11 16 25 10 12 25 4 10 3 - 8 1 9 5 3 4 3 3 7 12 7 10
i12 14 9 13 24 10 10 24 2 8 2 4 - 7 6 5 2 3 2 2 6 10 6 8
i13 16 11 16 25 11 12 24 4 10 3 1 9 - 10 5 3 3 3 3 7 13 5 10
i14 14 9 13 24 10 10 24 2 8 2 4 6 5 - 5 2 3 2 2 6 10 6 8
i15 14 5 13 24 10 10 21 2 8 2 3 4 5 5 - 1 3 2 2 6 10 6 8
i16 1 1 2 3 1 1 4 1 1 1 2 5 4 5 2 - 2 1 1 5 8 5 6
i17 1 1 2 3 1 1 4 1 1 1 2 5 7 5 3 2 - 1 1 3 5 3 4
i18 1 1 2 3 1 1 4 1 1 1 2 5 4 5 2 1 1 - 1 1 2 1 2
i19 1 1 2 3 1 1 4 1 1 1 2 5 4 5 2 1 1 1 - 2 3 2 3
i20 1 1 2 3 1 1 4 1 1 1 2 5 4 5 2 1 1 1 1 - 3 2 3
i21 2 2 3 7 2 2 8 2 2 2 4 10 14 9 6 4 4 2 2 3 - 4 7
i22 1 1 2 3 1 1 4 1 1 1 2 5 7 5 3 2 4 1 1 6 12 - 7
i23 1 1 2 3 1 1 4 1 1 1 2 5 7 5 3 2 2 1 1 3 5 4 -

capacity. Table B.4 gives various values of the parameters used in our experiments. Ta-

ble B.5 shows the computational results of the proposed solution method for each scenario.

Note that the linearized MIP model of P1 model cannot be solved for large scale instances.

The first column (with Table B.4) gives information of the instance and second column

presents the objective function of the proposed algorithm. The next two columns give the

unit population exposure and environment impact per hazmat freight for all planned ser-

vices. In particular, unit population exposure and environment impact are obtained from

the following expressions:

Pop. risk=
∑
l

(
2Θl

(∑
k

∑
bHkxk,b,l

)
ρlql+

∑
i∈I πΦi

(∑
k

∑
bHkxk,b,l

)
ρ̂i

)/∑
kHk(1−

zk)

Env. impact=
∑
l

(
1
2πηl

(∑
k

∑
bHkxk,b,l

)
ζlql+

∑
i∈I

2
3πχi

(∑
k

∑
bHkxk,b,s

)
µi

)/∑
kHk(1−

zk)

Column 5 and 6 gives the value of ADG and SDG indicators, respectively. Note that

negative value for ADG indicates that the total actual kilometers covered by commodities

174



Table B.3: Average distance between terminals (in kilometers).
From/To i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 i23

i1 - 4108 4861 4377 4839 4918 6084 3849 3930 4584 5796 6380 6870 6936 5754 6273 6039 5382 5804 6907 6685 6321 6509
i2 4703 - 3602 4947 4404 4213 5279 3086 3314 3927 4658 5304 5852 5848 4963 5616 5382 4725 5147 6250 6027 5664 5851
i3 4468 3406 - 4090 4030 3886 5224 2722 2851 3596 4708 5213 5415 5729 4613 5285 5051 4394 4816 5919 5696 5333 5520
i4 4640 3075 3025 - 329 3988 4931 2770 2946 3751 4354 4976 5644 5476 4753 5440 5206 4549 4971 6074 5852 5488 5676
i5 4268 2999 3536 3232 - 3521 4749 2269 2701 3215 4389 4873 5052 5406 4309 4904 4670 4013 4435 5538 5316 4952 5140
i6 4643 3337 3845 3021 1725 - 4957 2550 3046 3497 4459 5178 5285 5633 4626 5186 4952 4295 4717 5820 5597 5234 5421
i7 4241 3473 3708 4144 3499 587 - 2075 3027 3224 3847 4536 4866 5042 4344 4913 4679 4022 4444 5547 5325 4961 5149
i8 3303 2642 3088 3723 2816 2519 3516 - 1596 2026 2852 3530 3945 4033 3329 3715 3481 2824 3246 4349 4127 3763 3951
i9 3414 2672 2962 3175 2239 2151 3276 1854 - 751 2834 3714 3461 4216 3079 2440 2206 1549 1971 3074 2852 2488 2676
i10 3660 3003 3543 3590 2839 1901 3549 1736 774 - 2476 3083 3338 3707 2265 1689 1455 798 1220 2323 2101 1737 1925
i11 4306 3539 4158 4566 3583 4301 4125 3719 3473 3340 - 3279 94 3611 2971 3903 3391 3606 3747 3755 3665 3410 3612
i12 4466 3561 4012 4970 3895 4390 4329 3273 3578 2558 2446 - 2383 2514 1943 2558 2456 2558 2558 3285 3095 2980 2889
i13 4212 3445 4064 4472 3398 4207 3878 3625 3379 3246 235 3775 - 3999 2877 3809 3810 3512 3653 3661 3500 3872 3518
i14 5571 4641 5065 6041 4982 5477 5373 4106 4649 3391 3280 4380 2619 - 2469 3391 3184 3391 3391 3907 3739 3603 3565
i15 4807 3886 4231 5231 4193 4688 4429 2980 3839 2265 2018 1877 2055 2515 - 4247 1917 2265 2265 2499 2359 2195 2227
i16 5349 4692 5232 5279 4528 3590 4394 3425 2463 1689 2476 3421 2493 4045 2265 - 587 891 469 1741 1502 1492 1193
i17 5115 4458 4998 5045 4294 3356 4336 3191 2229 1455 2594 3468 2833 4092 1917 587 - 657 235 1095 1000 1072 792
i18 4458 3801 4341 4388 3637 2699 3948 2534 1572 798 2476 3243 2939 3867 2265 891 657 - 422 1525 1303 939 1127
i19 4880 4223 4763 4810 4059 3121 4159 2956 1994 1220 2476 3327 2728 3951 2265 469 235 422 - 845 939 916 900
i20 5467 4810 5350 5397 4646 3708 4746 3543 2581 1807 3063 3914 3315 4538 2852 1056 822 1009 587 - 1135 916 1096
i21 5749 5092 5507 5793 4928 3990 4970 3825 2863 2089 3228 4102 3467 4467 2551 1221 869 1291 869 1127 - 652 818
i22 5702 5045 5585 5632 4881 3943 4923 3778 2816 2042 3181 4055 3420 4679 2504 1174 957 1244 822 1572 1176 - 748
i23 5819 5162 5702 5749 4998 4060 5040 3895 2933 2159 3298 4172 3537 4796 2621 1291 669 1361 939 1533 1028 1209 -

is less than the average distance of the available itineraries. Column 7 gives the average

train utilization, whereas column 8 presents the average block utilization. These indicators

are obtained from the following expressions:

Avg. Train utilization=

∑
l

(∑
k

∑
b∈Bl∩Bk

Dkxk,b,l

/
Ul

)
|L| × 100

Avg. Block utilization=

∑
b

∑
l∈Lb

(∑
k

∑
p∈Pl∩Pb

Dkxk,b,lyb,p

/
Ub

)
∑
b

∑
l∈Lb

∑
p∈Pb∩Pl

yb,p
× 100

The last two columns display the total number of freights (including hamzat) being

served and total number of freights to be reclassified, respectively.

Table B.4: Parameters of the case study.
Scenario/Para. Demand Train Block Pop. Env. Terminal

rate capacity capacity threshold threshold capacity

Default U(5, 8)/U(2, 5) U(80, 220) U(50, 60) 60000 7000 6
S1 U(2, 5)/U(3, 6) U(80, 220) U(50, 60) 60000 7000 6
S2 U(6, 10)/U(1, 3) U(80, 220) U(50, 60) 60000 7000 6
S3 U(5, 8)/U(2, 5) U(80, 150) U(50, 60) 60000 7000 6
S4 U(5, 8)/U(2, 5) U(120, 320) U(50, 60) 60000 7000 6
S5 U(5, 8)/U(2, 5) U(80, 220) U(40, 50) 60000 7000 6
S6 U(5, 8)/U(2, 5) U(80, 220) U(60, 90) 60000 7000 6
S7 U(5, 8)/U(2, 5) U(80, 220) U(50, 60) 40000 7000 6
S8 U(5, 8)/U(2, 5) U(80, 220) U(50, 60) 100000 7000 6
S9 U(5, 8)/U(2, 5) U(80, 220) U(50, 60) 60000 4000 6
S10 U(5, 8)/U(2, 5) U(80, 220) U(50, 60) 60000 6500 6
S11 U(5, 8)/U(2, 5) U(80, 220) U(50, 60) 60000 7000 4
S12 U(5, 8)/U(2, 5) U(80, 220) U(50, 60) 60000 7000 8
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One may notice decreases in the number of freights being served, by an average of

12.4%, when the number of hazmat freights increases per request (S2). The reason of this

decreases could be explained by analyzing the value of the shortest distance indicator. As we

expect, the average shortest distance gap increased by 11.24% as most of the commodities

followed longer paths to avoid some risky train services. This decrease in the number of

shipments served also shows the benefits of using the partner services in reducing the risks

associated with hazmat transportation. As the number of hazmat freights increases, the

algorithm transfers the hazmat risk to the transport network of the partner as the population

exposure and/or environment damages exceed the given thresholds. Of course, we assume

the transport risk incurred on the partner network is less what would be exposed on the

railroad network, i.e., pipelines or marine. Also, one may observe increases in the population

exposure and environment impact per unit, on average by 5.07% and 5.25%, respectively.

Such increases could be explained by the fact that many requests with high number hazmat

freights follow longer itineraries, with an average deviation from shortest distance of 21.55%

(compared to the one in S2), to satisfy either the population exposure and environment

impact thresholds or capacities limitations. In contrast, when the proportion of regular

freights is higher than hazmat freights in request (S2), the shortest distance gap decreases

by an average of 10.81%.

Train capacity is another factor that has remarkable impact on the routing and schedul-

ing of the hamzat freights. We generated two instances of the considered problem by varying

the train capacity: one with compact train services (S3) and another with loose train ser-

vices (S4). Among all instances we conducted, we noticed that train capacity has the most

significant increases on the shortest distance indicators and risks per unit as capacity de-

creases. In fact, increasing train capacities would increase the dimension of solution space.

Hence, more routing options to schedule the active blocks when the capacity of train in-

creases. Therefore, the chance to obtain a high quality solution is relatively high in the

case of loose train services. For instance, the average shortest distance gap decreases by

−30.64% when the capacity of the trains increases. Increasing the capacities of train ser-

vices with atmospheric class E or F could decrease the additional operational costs from
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serving hazmat freights. In contrary, the block capacity (S5 and S6) has less influence on

the shortest distance indicators and risks per unit compare to train capacity.

We also studied the effect of risk thresholds by changing the given population exposure

(S7 and S8) and environment damages (S9 and S10) thresholds. In contrast to population

exposure threshold, we observed the total cost decreases when the environment impact

threshold increases. The reason behind this observation could be explained by the fact that

as the environment impact threshold increases, more routing and scheduling alternatives

are available for the considered requests.
Table B.5: Computational results for CP network.

Scenario/ Obj. Pop. Env. Avg. Min. Avg. Train Avg. Block
∑
kDk(

∑
kHk) Total

Perf. risk impact distance gap distance gap utilization utilization Sorting

Default 764800 724.60 60.16 −35.90 19.34 49.94 51.23 2958(1020) 961
S1 729200 762.65 63.21 −34.48 21.55 45.24 43.91 2590(1466) 919
S2 773800 712.51 56.50 −36.80 17.25 52.91 49.66 2982(568) 1129
S3 708500 690.90 55.57 −35.83 20.27 56.20 44.84 2771(955) 942
S4 929100 759.60 58.24 −38.54 13.41 41.59 58.47 3380(1170) 1359
S5 770200 716.83 60.32 −37.86 15.81 49.48 57.12 2937(1012) 1078
S6 761700 716.42 56.60 −36.27 19.13 52.26 37.69 2958(1021) 968
S7 758400 704.82 58.81 −37.24 16.13 50.08 49.72 2958(1021) 962
S8 773700 743.22 63.98 −36.21 19.32 50.31 48.02 2963(1014) 1058
S9 780000 681.02 50.72 −36.59 17.48 48.65 48.76 2953(1015) 1087
S10 754500 730.94 63.33 −36.43 18.62 49.63 49.60 2955(1020) 961
S11 801400 704.80 56.23 −34.06 24.64 50.47 48.97 2955(1021) 1114
S12 712900 761.67 71.05 −36.31 20.63 51.80 38.45 2805(962) 887

The last two scenarios investigate the number of blocking track at each railway terminal

of the considered study. One may note the total cost decreases when the number of tracks

at the terminal increase by an average of −6.79% as the number of tracks change to 8. The

reason behind this situation could be that the additional design costs to build more blocks

(toward less risky train services) is less than the increase in operation costs of rerouting the

demands.

In the last part of this section, we analyzed the criticality of the CP network links by

determining the set services that commodities compete over the remaining capacity. At each

scenario conducted in Table B.5, we listed the train service legs that have been utilized more

than 90% of the train service. As expected (i15, i13); (i15, i16); (i18, i19); (i19, i18); (i7, i9);

(i9, i10) railway links are among the top critical links on CP’s network. The reasons for such

observation are the unbalance of supply and demand and the network design of the CP’s

sub-network. Given that fact that the supply and demand locations are always different, the
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flow of demands between Western and Eastern Canada as well as the U.S. are unbalanced.

In addition, those railway links connect western Canada with the U.S. and Eastern Canada.

The railway manager must pay attention by increasing the safety requirements on those links

to enhance the overall safety of the railway network.
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Appendix C

Modeling and solution method for

HTPTD

The HTPTD determines the train and freight transportation plan such as the track

capacities, train capacities, and risk thresholds constraints are satisfied. For each train

service t ∈ T , the operator selects one of its possible timetable such as the track capac-

ity constraints are satisfied and the overtaking between train services happens only within

terminals. Such restrictions ensure that train services never occupy simultaneously incom-

patible tracks. Furthermore, for each terminal in the network, there is a minimum time

interval between two consecutive departures (arrivals). The last restrictions prevent con-

gestion at terminals and guarantee connection with trains on different services for some

demands. The train service could be canceled if it is economically to do so. For each of

request k in K1, it will be assigned to a sequence of train services, referred to as itinerary,

to minimize the total costs for serving the requests while satisfying train capacities and risk

thresholds constraints. Details of two rail planning problems are given below:

Train timetabling problem: We consider |T | train services to be scheduled, their route,

en-route stops, and capacity are defined in advance, and are not decisions to be made. Let

T = {t1, .., t|T |} be the set of candidate train services. It was assumed that there is a fixed

number of train departures between any terminals in the network. For simplicity, train
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departure times are discretized (i.e. Caprara et al., 2002; Gorman, 1998), and expressed as

integers from 1 to 42, each four hours in a week. One may use a finer discretization, for

example, each 1/2 hour or less, without modifying the proposed model, however the time

and space complexity of the algorithm will increase considerably. Let S be the set of train

departure times. For each train departure s ∈ S, let os be the origin yard, ds the destination

yard, and τ os ,τ cs ,τds , and τas be the the operation start time, cutoff time, schedule departure,

and schedule arrival of train departure s, respectively. For each train service t ∈ T , it was

assumed the first terminal ft, the final terminal lt, and the sequence of direct train services

traverses by train t are given. A timetable specifies, for each train service t, the departure

time from first terminal ft, the arrival at final terminal lt, and the waiting times at the

intermediate terminals along its journey.

Rail freight transportation problem: A railway operator, a central decision maker, is in

charge to manage customer requests, denoted by k ∈ K1, for a carload moves within a

railway network in addition to the train timetabling problem. In response to these planned

train services, the operator receives a set of requests for carload moves hereafter called

requests. For each request k in K1, the operator is given the pickup ok and delivery yard

dk, and the earliest available time τALk . It was also assumed that the operator has sufficient

capacity to serve all the traditional requests. For each request k in K1, it will be assigned

to a sequence of train services, referred to as itinerary, by the operator.

For modeling purpose, the following sets, parameters, decision variables, and auxiliary

variables are introduced:
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Sets
J Set of railway terminals, index by j ∈ J .
K1 Set of traditional demands, index by k ∈ K1.
S Set of train departures in time and space, index by s ∈ S.
Pt Collection of possible timetables for train t, index by p ∈ Pt.
P Overall (multi-)collection of the timetables for all candidate trains, index by p ∈ P .
Ps Subcollection of paths that uses train departure s, index by p ∈ Ps.
Ik Collection of possible itineraries for request k, index by v ∈ Ik.
I Overall (multi-)collection of itineraries for the consider requests, index by v ∈ I.
Il Subcollection of itineraries that travel along train service l, index by v ∈ Il.
Parameters
ok Origin yard of request k, ok∈J .
dk Destination yard of request k, dk∈J .
os Origin yard of train departure s, os∈J .
ds Destination yard of train departure s, ds∈J .
a(b) Minimum time interval between two consecutive departures (arrivals).
Dk Quantity of regular freights in request k, k ∈ K1.
Hk Quantity of hazmat freights in request k, k ∈ K1.
τALk Available time for request k, k ∈ K1.
UINIl Initial capacity of train service l, l ∈ L.
RINIl Initial population exposure threshold along train service l, l ∈ L.
τos Schedule operation start time of the train departure s at yard os∈J , s ∈ S.
τcs Schedule cutoff time of the train departure s at yard os∈J , s ∈ S.
τds Schedule departure time of the train departure s at yard os∈J , s ∈ S.
τas Schedule arrival time of the train departure s at yard ds∈J , s ∈ S.
ζl Percent of train capacities that is booked for irregular demands along train service l,

l ∈ L.
1−θl Percent of risk thresholds that is being on hold to accommodate irregular demands

(hazmat) along train service l, l ∈ L.
∆(s, s′) Time difference between the schedule departure of train departure s′ from s,

∆(s, s′) = τd
s′ − τ

d
s , s, s′ ∈ S.

cTv Cost to transport a request along itinerary v, v ∈ I.
cH
l,l′ Cost to hold a demand at dl(ol′ ) yard per time l, l′ ∈ L.
cH Average cost to hold a demand at yard per unit time.
cDt,p Cost to assign train t to path p, i.e, locomotive requirements and waiting times costs,

t ∈ T , p ∈ Pt.
ψp,s Indicator = 1 if train path p uses sth train departure; 0 otherwise.
ωv,l Indicator = 1 if itinerary v uses train leg l; 0 otherwise.
np Number of train departures on path p, 1 ≤ r ≤ np.
nt Number of train legs (segment) on train t, 1 ≤ r ≤ nt.
n̄v Number of train legs (segment) on itinerary v, 1 ≤ r ≤ n̄v .
αs,r,p Indicator =1 if train departure s is the rth departure on train path p; 0 otherwise,

1 ≤ r ≤ np.
ᾱl,r,v Indicator =1 if train leg l is the rth train leg on itinerary v; 0 otherwise, 1 ≤ r ≤ n̄v .
λ
′
l,r,t Indicator =1 if train leg l is the rth train leg on train t; 0 otherwise, 1 ≤ r ≤ nt.
V ariables
Integer
yt,p =1 if train t is assigned to path (or timetable) p; 0 otherwise.
xk,v =1 if demand k follows itinerary v; 0 otherwise.
wv =1 if itinerary v is available; 0 otherwise.
ul,l′ =1 if the train sequences l′ scheduled after train service l; 0 otherwise, i.e., ul,l′ = 1

if τc
l′ ≥ τ

a
l .

Continuous
τol Actual schedule operation start time of the direct train service l.
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τcl Actual schedule cutoff time of the direct train service l.
τdl Actual schedule departure time of the direct train service l.
τal Actual schedule arrival time of the direct train service l.
hl,l′ Holding time to shipped a demand along the pair of services l and l′, i.e., hl,l′ =

max{0, τo
l′ − τ

a
l }.

Iv Holding times to shipped a demand along itinerary v.

Then the HTPTD formulation can be stated as follows:

(P6) Min Z4 =

Train costs︷ ︸︸ ︷∑
t∈T

∑
p∈Pt

cDt,pxt,p +
∑
l∈L

∑
l′:l 6=l′
dl=ol′

cHl,l′hl,l′ +

Serving costs︷ ︸︸ ︷∑
k∈K1

Dk

∑
v∈Ik

[
cTv + cHIv

]
xk,v

s.t. ∑
t∈T

∑
p∈Pt

yt,p ≤ 1 ∀t : t ∈ T (77)

hl,l′ ≥ τ ol′ − τal ∀l, l′ : ol′ = dl (78)∑
s′:τd

s′≥τ
d
s

∆(s,s′)<min(a,b)

∑
t∈T

∑
p∈Pt∩Ps′

yt,p ≤ 1 ∀s : s ∈ S (79)

τ ol =
∑
p∈Pt

∑
s:αs,r,p=1

τ os yt,p ∀t, r, l : λ′l,r,t = 1 (80)

τ cl =
∑
p∈Pt

∑
s:αs,r,p=1

τ csyt,p ∀t, r, l : λ′l,r,t = 1 (81)

τdl =
∑
p∈Pt

∑
s:αs,r,p=1

τds yt,p ∀t, r, l : λ′l,r,t = 1 (82)

τal =
∑
p∈Pt

∑
s:αs,r,p=1

τas yt,p ∀t, r, l : λ′l,r,t = 1 (83)

∑
v∈Ik

xk,v = 1 ∀k : k ∈ K1 (84)

∑
k∈K1

∑
v∈Ik∩Il

Dkxk,v ≤
∑
p∈Pt

(1− ζl)U INIl yt,p ∀t, r, l : λ′l,r,t = 1 (85)

τALk xk,v ≤ τ cl ∀k, v, l, r : v ∈ Iv, ᾱl,r,v = 1, r = 1 (86)∑
k∈K1

xk,v ≤ |K1|wv ∀v : v ∈ I (87)

wv ≤
n̄v−1∑
r=1

∑
l:ᾱl,r,v=1

∑
l′:l 6=l′

ᾱl′,r+1,v=1

ul,l′ − n̄v + 1 ∀v : v ∈ I (88)

τ cl′ − τal +M(1− ul,l′) ≥ 0 ∀l, l′ : l 6= l′, dl = ol′ (89)
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Iv ≥
n̄v−1∑
r=1

∑
l:ᾱl,r,v=1

∑
l′:l 6=l′

ᾱl′,r+1,v=1

hl,l′ ∀v : v ∈ I (90)

2Θl

( ∑
k∈K1

∑
v∈Ik∩Il

Hkxk,v

)
ρlql+πΦj

( ∑
k∈K1

∑
v∈Ik∩Il

Hkxk,v

)
ρ̂j ≤ θlRINIl ∀l, j :j=dl(91)

hl,l′ ≥ 0 ∀l, l′ ∈ L, l 6= l′, dl = o′l; Iv ≥ 0 ∀v ∈ I, τ ol , τ cl , τdl , τal ≥ 0 ∀l ∈ L (92)

xk,v ∈ {0, 1} ∀k ∈ K1, v ∈ I; yt,p ∈ {0, 1}∀t ∈ T , p ∈ Pt (93)

wv ∈ {0, 1} ∀v ∈ I;hl,l′ ∈ {0, 1};ul,l′ ∈ {0, 1} ∀l, l′ ∈ L, l 6= l′, dl = o′l (94)

Objective function Z4 in the above model P6 is to minimize the train design cost and the

cost from serving the railway requests. The first two terms in Z4 aims at minimizing trains

design cost and the cost of waiting between different services at terminals. The third and

fourth terms minimize the cost of transporting and holding cost for serving the commodities.

Constraints (77) guarantee a single path (or timetable) is assigned for each train service.

Constraints (78) define the waiting times between consecutive train services. Constraints

(79) prevent two consecutive arrivals and departures of train services at terminals to be too

close for safety reasons. Constraints (80)-(83) define the actual operation start times, cutoff

times, schedule departure, and schedule arrival for train services, respectively. Constraints

(84) commodity flow conservation constraints. Constraints (85) link the flow of commodities

with the train capacity for the candidate trains. Constraints (86) ensure that requests arrive

not later than the cutoff time of the train services along routes, whereas constraints (87)

identify the available itinerary considering the travel times along the itinerary. Constraints

(88)-(89) state that the itinerary cannot be used if any of its pair of train services along

that itinerary is not available. Constraints (90) compute the amount of inventory times

along the itinerary. Constraints (91) limit the risk associated with hazmat freights into the

given thresholds. Note that, the operator reserves some spaces on train services and holds

a percentage of the population risk thresholds to accommodate some irregular requests.

Constraints (92)-(94) are non-negativity and integrity requirements.

Problem P6 is a version of Capacitated Multicommodity Network Design (CMND) prob-

lem, which is known to be NP-hard (Magnanti and Wong, 1984; Minoux, 1989). In fact,
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problem P6 can be decomposed into two subproblems, train timetabling problem (TTP)

and freight transportation problem (FTP) by relaxing Constraints (85). Caprara et al.

(2002) prove the TTP is NP-hard. The latter problem is a version of the Multicommod-

ity Minimum Cost Network Flow Problem (MCNFP). Although the special versions of the

MCNFP can be efficiently solved in polynomial time, some generalizations of the MCNFP

are intractable. An integer flow for the minimum cost multicommodity flow such as when

routing nonbifurcated units of traffic is computationally difficult. Even et al. (1976a) proved

that the unsplittable version of MCNFP is NP-complete. Furthermore, the flow over time

MCNFP is known to be NP-hard (Cai et al., 2001).

The routing and scheduling of hazmat freights problem was decomposed into two nested

subproblems: the TTP and FTP. The first problem consists of finding the best timetables

of the trains given the itineraries of demands. Let Xw be the TTP solutions at iteration w.

The formulation of TTP model giving the trip plan decisions (P7) is the following:

(P7) Min Z5 =

Trains costs︷ ︸︸ ︷∑
t∈T

∑
p∈Pt

cDt,pxt,p +
∑
l∈L

∑
l′:l 6=l′
dl=ol′

cHl,l′hl,l′

s.t.

(77)−(83); (89)∑
k∈K1

∑
v∈Ik∩Il

Dkx
w
k,v ≤

∑
p∈Pt

(1− ζl)U INIl yt,p ∀t, r, l : λ′l,r,t = 1 (95)

wwv ≤
n̄v−1∑
r=1

∑
l:ᾱl,r,v=1

∑
l′:l 6=l′

ᾱl′,r+1,v=1

ul,l′ − n̄v + 1 ∀v : v ∈ I (96)

τ ol , τ
c
l , τ

d
l , τ

a
l ≥ 0 ∀l : l ∈ L (97)

yt,p ∈ {0, 1} ∀t, p : t ∈ T , p ∈ Pt; (98)

ul,l′ ∈ {0, 1} ∀l, l′ : l, l′ ∈ L, l 6= l′, dl = o′l (99)

The second problem is to obtain the optimum itineraries for the freight cars when the

schedules of the trains are given. An itinerary of a commodity includes not only the direct
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train services it is assigned along the path, but also the blocking path it traverses along the

route. Given the solution of the TTP:

• Let Y w be the timetables of the trains t at iteration w;

• Let Uw be the trains sequences at iteration w;

• Let Hw be the waiting times between train services at iteration w

Then, the formulation of the rail freight transportation problem, P8, is the following:

(P8) Min Z6 =

Serving costs︷ ︸︸ ︷∑
k∈K1

Dk

[ ∑
v∈Ik

[
cTv + cHIv

]
xk,v

]
s.t. ∑

v∈Ik

xk,v = 1 ∀k : k ∈ K1 (100)

∑
k∈K1

∑
v∈Ik∩Il

Dkxk,v ≤
∑
p∈Pt

(1− ζl)U INIl ywt,p ∀t, r, l : λ′l,r,t = 1 (101)

τALk xk,v ≤ τ c
∗
l ∀k, v, l, r : ᾱl,r,v = 1, r = 1 (102)∑

k∈K1

xk,v ≤ |K1|wv ∀v : v ∈ I (103)

wv ≤
n̄v−1∑
r=1

∑
l:ᾱl,r,v=1

∑
l′:l 6=l′

ᾱl′,r+1,v=1

u∗l,l′ − n̄v + 1 ∀v : v ∈ I (104)

Iv ≥
n̄v−1∑
r=1

∑
l:ᾱl,r,v=1

∑
l′:l 6=l′

ᾱl′,r+1,v=1

h∗l,l′ ∀v : v ∈ I (105)

2Θl

( ∑
k∈K1

∑
v∈Ik∩Il

Hkxk,v

)
ρlql+πΦj

( ∑
k∈K1

∑
v∈Ik∩Il

Hkxk,v

)
ρ̂j ≤ θlRINIl ∀l, j :j=dl(106)

Iv ≥ 0 ∀v (107)

wv ∈ {0, 1} ∀v ∈ I;xk,v ∈ {0, 1} ∀k ∈ K1, v ∈ I (108)

We designed heuristic method to solve the HTTP. One may also design one of available

(meta)heuristic in the literature (Caprara et al., 2002,0; Gorman, 1998; Huntley et al., 1995;
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Kwon et al., 1998; Lulli et al., 2011; Marin and Salmeron, 1996), with specific modifications

to the considered problem.
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Appendix D

Main steps of the two-phase

heuristic
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Figure D.1: Two-phase heuristic.
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