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Abstract
Individual or singly-housing laboratory rats is common in many animal facilities, but has an adverse impact on the
welfare of this social species. It has previously been shown that a small proportion of individually-housed mice ( 5%)
engage in pathological overgrooming behaviour, but this has not been assessed in rats. We performed an observational
study to determine the prevalence of overgrooming-related self-injury and whether providing nesting material
enrichment throughout an animal’s life would affect the prevalence or severity of overgrooming-related self-injury. Due
to protocol differences between projects in our behavioural neuroscience lab, unenriched rats received a nylabone and a
shelter (n = 167), while baseline-enriched rats received a nylabone, shelter, and shredded paper nesting material
throughout experiments (n = 238). Unenriched rats received nesting material enrichment after the onset of
overgrooming-related self-injury. Over 18 months, rats were monitored by their experimenters on a daily basis (5-7
days/week over 2-3 months/project) and any cases of overgrooming-related self-injury were recorded. Replicating the
findings of previous studies in mice, we observed 20 cases of overgrooming-related self-injury ( 5%) with no difference
in prevalence between rats on the basis of supplier, cage position, experimental procedure (behavioural only or involving
surgerical procedures), reinforcer (ethanol or sugar), or level of baseline-enrichment. While there was no difference in
onset severity between rats that were unenriched at baseline and baseline-enriched rats, baseline-enriched rats had
lower self-injury severity scores at 1, 2, and 4-week follow-ups. These results suggest that nesting material enrichment
provided throughout an animal’s life may reduce overgrooming-related self-injury.

Key words: Grooming; Nesting; Social Behaviour; Housing; Refinement

Introduction

Laboratory rats have been domesticated for nearly two cen-
turies, but they have retained a highly social nature.[1, 2]
Despite the importance of social interaction for laboratory
rats[1, 3], it is often necessary to individually house rats for
experimental purposes, such as to observe certain behavioural
patterns or to prevent damage to implants. For example, in-
dividual housing is necessary to measure the alcohol intake of
individual animals in their home-cage[4] and is used in ani-
mal models of alcohol addiction because it can promote alco-
hol consumption.[5, 6] In the neuroscience literature, rats are
frequently described as individually housed. For example, we
briefly surveyed the Journal of Neuroscience and found indi-
vidual housing reported in approximately half of the papers

published in 2017 that describe using rats and their housing
conditions (Supplementary Figure S1).[7]

However, individual housing has adverse psychological ef-
fects on rats, promoting depression-like symptoms and neuro-
logical changes.[8] Moreover, stress and anxiety can contribute
towards aberrant self-grooming behaviour in rodents[9] and
we have observed on several occasions that an animal’s over-
grooming has resulted in alopecia or skin lesions. We at-
tribute these occurrences to individual housing because they
are not observed in group-housed rats in our laboratory or in
group-housed rats in our animal facility. Repetitive aberrant
behaviours, or stereotypies, are thought of to be an indicator
of poor welfare.[10] Previous studies that observed individu-
ally and group-housed rats have found that individually housed
rats are less active but engage inmore self-directed behaviours,
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Table 1. Number of rats monitored (and overgrooming-related self-injury cases) according to supplier, reinforcer, experimental procedures,
and baseline enrichment

Supplier* Reinforcer Experimental
Procedures

Baseline Enrichment Number of Rats (Cases)

Charles River Sugar Behaviour Yes 118 (6)
Charles River Sugar Behaviour No 30 (None)
Charles River Sugar Surgery Yes 44 (4)
Charles River Sugar Surgery No 59 (1)
Charles River Ethanol Behaviour No 24 (4)

Harlan Laboratories Ethanol Behaviour No 48 (3)
Breeding Colony Ethanol Behaviour Yes 10 (1)
Breeding Colony Ethanol Surgery Yes 76 (1)
Breeding Colony Ethanol Surgery No 6 (None)

*Information on whether rats were littermates was not obtained from commercial suppliers. Breeding colony rats were maintained on a background of Long Evans
rats from both Charles River and Harlan Laboratories.

such as pawing and tail manipulation.[11, 12] This is consistent
with studies in mice that have found that the prevalence of self-
barbering was 5.7% in individually housed mice and <1% in
group-housed mice.[13]

Self-injury and aberrant or pathological grooming be-
haviour is used as an animal model of various psychological dis-
orders, such as anxiety[14], obsessive-compulsive disorder[13,
15, 16], autism spectrum disorders[17], Tourette syndrome[18],
and trichotillomania[13, 19]. Active self-injury behaviours
such as overgrooming can be induced by administration of psy-
chostimulants, such as caffeine or pemoline, and it is thought
that these experiments model aspects of autism spectrum dis-
orders or anxiety where self-injury or repetitive behaviours
are prevalent.[14, 20, 21] Loss of histamine signaling in the
tuberomammillary nucleus of the hypothalamus, a dysregu-
lation similar to Tourette syndrome, results in pathological
grooming in mice.[18] Similarly, the Shank3 mutant mouse
which is bred to model a genetic autism spectrum disorder
(22q13 deletion syndrome), spontaneously displays patholog-
ical grooming behaviour.[17] The Long-Evans rats used in our
laboratory are an outbred strain, so it seems most likely that
social isolation stress rather than a genetic or physiological
pathology is the cause of the overgrooming-related self-injury
we have observed.

Environmental enrichment has many beneficial effects
for laboratory animals. In disease models, environmental
enrichment can delay or prevent symptoms of Hunt-
ington’s disease[22–24], Alzheimer’s disease[25, 26],
schizophrenia[27], stress-induced anxiety[28], or
depression.[29] In individually housed rats, environmen-
tal enrichment in the form of providing structures, chew
toys, and nesting material has been shown to reduce stress as
measured by adrenal size or the levels of adrenocorticotropic
hormone and corticosterone.[30, 31] Nesting material may
be especially beneficial because rats show a preference for
environments with shredded paper or nesting boxes, but
not for other standard enrichment items like PVC tunnels or
wooden sticks.[32]

We therefore conducted an observational study that aimed
to assess the prevalence of overgrooming-related self-injury
and examine whether environmental enrichment with nest-
ing material could reduce the severity or prevalence of
overgrooming-related self-injury. While all rats that pre-
sented symptoms of overgrooming-related self-injury were
provided with additional nesting material enrichment once ex-
perimenters identified the onset of overgrooming-related self-
injury, differences in experimental protocols between projects
resulted in some rats receiving nesting material as part of
their standard housing throughout their presence in our facil-
ity (baseline-enriched rats), while other rats did not (unen-

riched rats). We hypothesised that rats provided with baseline
enrichment would have lower prevalence and reduced sever-
ity of overgrooming-related self-injury. We also tested sev-
eral alternative explanations including cage location (top, mid-
dle or bottom)[33], experimental procedures (behavioural ex-
periments or experiments involving surgical procedures), re-
inforcer type (ethanol or sugar) and animal supplier (Charles
River, Harlan Laboratories or an internal breeding colony).

Methods

Animals

Animals across multiple projects involving individual housing
of rats were monitored over 18 months. Rats were monitored
for the entirety of their projects, each of which was 2-3 months
in duration. All rats (N = 415) were housed in standard plas-
tic cages (44.5 × 25.8 × 21.7 cm) containing Teklad Sani Chip
bedding (Cat#: 7090, Envigo, QC, Canada). The vivarium was
climate-controlled (21°C ± 2°C) on a 12 h: 12 h light/dark cy-
cle (lights on at 07:00). Male Long-Evans rats were purchased
from Charles River (n = 275) or Harlan Laboratories (Envigo;
n = 48) weighing 220-240g on arrival, or bred in-house (n
= 92) for use in experiments that were approved by the An-
imal Research Ethics Committee at Concordia University and
performed in accordance with guidelines from the Canadian
Council on Animal Care. Hygiene monitoring was performed
by Animal Care Facility staff.

In these experiments, rats were individually housed for the
purpose of measuring home-cage consumption of ethanol (n
= 164) or sugar solutions (n = 251). Rats from Harlan Labo-
ratories were used for ethanol experiments because previous
studies have shown that they drink more ethanol in Pavlo-
vian conditioning experiments (see Table 1 for distribution of
rats across study conditions).[34] Rats were subjected to ei-
ther behavioural experiments involving appetitive condition-
ing (n = 230, ‘behavioural rats’) or experiments that involved
high-impact surgical procedures to perform viral microinjec-
tions or implant guide cannulae or optic fibres prior to be-
havioural procedures (n = 185, ‘surgery rats’).[35–37] Rats that
underwent surgery received isoflurane anaesthesia and anal-
gesia with ketoprofen and buprenorphine.[35–37] Project and
protocol differences meant that some rats were provided with
a minimal level of baseline enrichment (unenriched rats, Fig-
ure 1A), which included a nylabone (Cat#: K3580, Bio-Serv, NJ,
USA) and, in most cases, a shelter (Cat#: K3245 or K3325 or
K3365, Bio-Serv). For example, unenriched rats were primar-
ily rats in ethanol-based experiments due to concerns that en-
richment may reduce ethanol consumption (Table 1).[38, 39]
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Figure 1. Nesting material allowed rats to build more complex environments in their home-cage. (a) Unenriched rats were maintained in standard housing
included a nylabone chew toy, which was normally attached to the cage lid, and a shelter. (b) Baseline-enriched rats were also provided with shredded paper,
which they used to build nests. (c) In some cases, rats used both the shelter and nesting material together. After the onset of symptoms, unenriched rats were
provided with the same level of enrichment as baseline-enriched rats.

Baseline-enriched rats were provided additional nesting en-
richment throughout experiments, including a nylabone, a
shelter, and shredded paper (EnviroDri®, FiberCore, OH, USA
& Shepherd Specialty Papers, TN, USA) that enabled them to
nest and build a more complex environment (Figure 1B-C). Ex-
perimenters (n = 7) were trained to monitor rats for signs of
overgrooming-related self-injury and, where self-injury was
observed, to score the degree of injury on a 7-point scale (see
Table 2 and Figure 2). Experimenters were advised that the aim
of the study was to identify any protocol differences that may
affect overgrooming-related self-injury. Most experimenters
were involved in monitoring rats with and without enrichment
and observations were usually made in pairs due to shared
responsibilities for each project. In all experiments, animals
were handled 5-7 days a week for behavioural experiments,
during which time they were weighed and monitored daily.
Self-injury severity scores were recorded at the onset of symp-
toms and then at 1, 2, and 4 weeks after onset. Unenriched rats
were provided with nesting material enrichment after the on-
set of symptoms. Due to the study’s observational nature, all
comparisons between baseline-enriched and unenriched rats
are between groups.

Data Analysis and Availability

Data were analysed using SPSS 24 (IBM, NY, USA). To deter-
mine if prevalence was associated with particular factors, χ2
tests were performed. Severity scores from onset to the 2-week
follow-up were analysed using mixed-design ANOVA with
week as a within-subjects factor and baseline-enrichment,
cage location, experimental procedures, reinforcer (ethanol or
sugar), or supplier as a between-subjects factor. Because 3 rats
had completed behavioural experiments before week 4, this
week was analysed separately using an independent samples
t-test or one-way ANOVA. All post-hoc tests were Bonferroni-
corrected. Because the factors of experimental procedures,
reinforcer type, and supplier frequently biased whether rats
received baseline-enrichment or not (Table 1), we used a
mixed linear model to statistically control for bias. We used

a scaled identity covariance matrix type and maximum likeli-
hood estimation to model whether the fixed effects of baseline-
enrichment, experimental procedures, reinforcer, and supplier
affected severity scores from onset to week 2 when all cases
were available for analysis.[40] Data are presented as means ±
SEM. Raw data underlying is available on Figshare.[7]

Results

Prevalence of Overgrooming-related Self-injury

We observed a total of 20 cases of overgrooming-related self-
injury ( 5% of monitored rats). Mean ± SEM (SD) weight at on-

Table 2. Scoring criteria for overgrooming-related self-injury

Severity Score Criteria

0 – Not present No sign of overgrooming and skin has
recovered. Hair regrowth is present

1 – Very mild Hair loss to an area representing < 1
cm2, skin intact

2 – Mild Hair loss to an area representing > 1
cm2, skin intact

3 – Moderate Hair loss > 1 cm2 with skin
inflammation or lesions (e.g. red or
raised skin) but no bleeding

4 – Somewhat severe Skin lesion > 1 cm2 with little to no
bleeding

5 – Severe Skin lesion with broken skin and
bleeding

6 – Very severe Warrants immediate euthanasia.
Animals with open wounds were taken
to Animal Care Facility/veterinary
staff for assessment to determine an
appropriate course of action. This
never resulted in a euthanasia
recommendation during the course of
the study.
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Figure 2. Typical presentation of overgrooming-related self-injury was focused on the anterior portion of the body. (a) A mild case of forepaw overgrooming
involving hair loss only (severity score = 2). (b) A moderate case of overgrooming on the animal’s neck with some skin lesioning (severity score = 3). (c) A severe
case affecting both ears (severity score = 5).

set of symptoms was 367 ± 10.4 (46.7) g, ranging from 264 g to
476 g. Overgrooming-related self-injury typically presented as
alopecia (in mild cases) or as skin lesions (in moderate-severe
cases) on the neck or shoulders (45% of cases), forepaws (25%),
around the ears (25%), and more rarely on the snout (10%) or
tail (5%). Percentages sum to more than 100% because two
cases involvedmultiple affected areas (1 case affecting the paws
and shoulders, 1 case affecting the paws and tail).

The prevalence of overgrooming was not associated with
any specific factor. Prevalence did not appear to be associated
with whether rats received a high baseline level of enrichment
(n = 248 rats) or were unenriched (n = 167) at baseline (χ2(1) =
0.001, p = 0.982; Figure 3A). Previous studies suggest that cage
location may affect animal welfare because cages positioned
higher on the racks may receive more light that stresses the
animals,[33] so we also examined cage location. In our vivar-
ium, each wall is fitted with 4 racks and rats are positioned so
that they are distributed equally across racks. We found a dis-
tribution of overgrooming cases among the top (n = 4), middle
two racks (n = 11), and bottom racks (n = 5) that was not asso-
ciated with cage location χ2(2) = 0.344, p = 0.842; Figure 3B).
Rats were subjected to either behavioural experiments with no
surgery (n = 230, 14 cases of overgrooming) or to experiments
involving surgical procedures such as viral microinjections, im-
plantation of chronically indwelling cannulae, or optic fibres (n
= 185, 6 cases of overgrooming), but experimental procedure
was not associated with an increased likelihood of engaging in
overgrooming (χ2(1) = 1.808, p = 0.179; Figure 3C). Rats that
were used in sugar studies (n = 251, 11 cases) were not more
likely to present with overgrooming-related self-injury than
rats in ethanol studies (n = 162, 9 cases; χ2(1) = 0.264, p =
0.607; Figure 3D). All three sources of rats were also affected
(Figure 3E), with 15 cases in Charles River rats, 3 cases in Har-
lan rats and 2 cases in rats bred in-house. There was no asso-
ciation between the supplier of the animals and the prevalence
of overgrooming (χ2(2) = 1.86, p = 0.395).

Severity of Overgrooming-related Self-injury

Rats that received baseline nesting material enrichment as
part of their standard housing (n = 12) experienced less se-
vere self-injury and a more rapid recovery than unenriched
rats (n = 8; Figure 4A) that were only provided nesting mate-
rial enrichment after the onset of overgrooming-related self-
injury. A mixed-design ANOVA with baseline-enrichment as a
between-subjects factor and week as a within-subjects factor
found that baseline-enriched rats had significantly lower self-
injury severity scores (F(1,18) = 15.243, p = 0.001). Although
there was no main effect of week (F(1.481,26.666) = 2.694, p
= 0.099, Greenhouse-Geisser ϵ = 0.741), there was a signifi-

cant week × baseline-enrichment interaction (F(1.481,26.666)
= 5.468, p = 0.017). Bonferroni-corrected post-hoc compar-
isons revealed that while there was no significant difference
between baseline-enriched and unenriched rats at onset (p
= 0.179), baseline-enriched rats had significantly lower self-
injury severity scores at the 1-week follow-up (p < 0.001) and
the 2-week follow-up (p = 0.002), perhaps because the un-
enriched rats increased in severity. At the 4-week follow-up,
11 baseline-enriched rats and 6 unenriched rats were still un-
dergoing experiments. An independent samples t-test showed
that the difference in severity was still statistically significant
(t(15) = 2.278, p = 0.038).

An alternative hypothesis might be that cage position in-
fluences the severity of overgrooming-related self-injury, but
this was not the case. A mixed-design ANOVA with cage
position as a between-subjects factor and week as a within-
subjects factor found no main effect of cage position (F(2,17)
= 0.456, p = 0.641; Figure 4B). Severity scores did not sig-
nificantly change over the two weeks of follow-ups (F(2,34)
= 1.896, p = 0.166) and there was no significant week × posi-
tion interaction (F(4,34) = 1.205, p = 0.327). At week 4, when
there were 17 rats remaining in experiments (top n = 3, middle
n = 10, bottom n = 4), a one-way ANOVA found no significant
effect of position (F(2,14) = 0.663, p = 0.531).

We also found no difference between behavioural experi-
ments and experiments involving surgery (Figure 4C). Amixed-
design ANOVA with experimental procedure as a between-
subjects factor and week as a within-subjects factor found
no main effect of experimental procedure (F(1,18) = 2.992, p
= 0.101), week (F(1.468,26.418) = 1.876, p = 0.18, ϵ = 0.734)
or week × experimental procedure interaction (F(1.468,26.418)
= 1.5, p = 0.24). One reviewer has suggested that the non-
significant main effect of experimental procedure (p = 0.101)
may be indicative of a trend or weak effect. We therefore exam-
ined the Bonferroni-corrected post-hoc comparisons at each
timepoint, which indicated no significant difference between
behavioural and surgery rats at onset (p = 0.481), week 1 (p =
0.056) or week 2 (p = 0.13). At the 4-week follow-up, there
were 11 behavioural rats and 6 surgery rats remaining and an
independent t-test showed no significant difference between
their severity scores (t(15) = 0.873, p = 0.396).

Rats in studies with a sugar reinforcer presentedwith signif-
icantly lower severity scores than rats in ethanol studies (Fig-
ure 4D; F(1,18) = 11.722, p = 0.003). However, mixed-design
ANOVA found no significant effect of week (F(1.52,27.377) =
2.179, p = 0.142, ϵ = 0.76) or week × reinforcer interaction
(F(1.52,27.377) = 2.326, p = 0.128). At week 4, there were 7
rats in ethanol studies and 10 rats in sugar studies and rats in
the sugar studies had significantly lower severity scores (t(15)
= 2.601, p = 0.02).
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Figure 3. Prevalence was not associated with any specific factor. (a) Baseline-enriched rats that received nesting material enrichment throughout experiments had
a similar prevalence to unenriched rats who received nesting material enrichment only after the onset of symptoms. (b) Cage location, (c) experimental procedures
(behavioural experiments only or experiments including intracranial surgery), (d) reinforcer type (ethanol or sugar), and (e) supplier were all unassociated with
prevalence. Data are presented as frequencies with proportions of the total and proportion presenting with overgrooming-related self-injury. CR: Charles River;
HL: Harlan Laboratories

Supplier did not have a clear effect on severity (Figure 4E).
Mixed-design ANOVA found no main effect of supplier (F(2,17)
= 0.601, p = 0.559), week (F(1.499,25.475) = 1.755, p = 0.197,
ϵ = 0.749), or week × supplier interaction (F(2.997,25.475) =
0.845, p = 0.482). However, prior to the 4-week follow-up
3 Charles River rats completed their experiments, such that
there were 12 Charles River rats, 3 Harlan, and 2 breeding
colony rats remaining. A one-way ANOVA found a significant

effect of supplier (F(2,14) = 4.941, p = 0.024) and Bonferroni-
corrected post-hoc comparisons found Harlan rats had signifi-
cantly higher severity scores than Charles River rats (p = 0.024),
but there were no other significant pairwise comparisons (p ≥
0.138). However, this result is confounded by the small num-
ber of rats obtained from Harlan laboratories and the breeding
colony and because all of the Harlan rats were in the unenriched
group.
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Figure 4. Provision of nesting material enrichment at baseline was associated with lower severity and improved recovery from overgrooming-related self-injury.
(a) Rats that received baseline enrichment had similar self-injury severity scores at onset to unenriched rats that received nesting material enrichment only after
onset. Baseline-enriched rats had significantly lower severity at one-, two- and four-week follow-ups. (b) The position of the cage did not affect the severity
score at onset or at any point during follow-up. (c) There was also no difference between behavioural experiments and experiments involving surgery. (d) Prior
to statistical control for confounds, rats with ethanol as a reinforcer had higher severity scores than sugar rats throughout the monitoring period. (e) There was
no difference between suppliers at onset or one- or two-week follow-ups. At week 4, rats from Harlan had significantly higher severity scores than rats from
Charles River or from the internal breeding colony. (f) The effect of baseline enrichment was robust when analysing rats from behavioural experiments alone or (g)
Charles River rats alone. Data are mean± SEM and ns are given in legends for onset to week 2 and then for week 4 (if changed). *p<0.05 for Bonferroni-corrected
post-hocs following mixed-design analysis of variance (ANOVA) at weeks 1–2. At week 4, data were analysed using an independent samples t-test or one-way
ANOVA with Bonferroni-corrected post-hocs because not all rats were still undergoing experiments at this point.

Statistical control of confounds

Procedural differences related to experimental procedures (be-
havioural vs surgery), reinforcer type (ethanol vs sugar), and
supplier frequently biased whether rats were in the baseline-
enriched group or unenriched group (Table 1). While experi-
mental control for confounding variables is not possible in an
observational study, we used a mixed linear model to test the
main effects that predicted severity scores from onset to the
2-week follow-up, when all cases were available for analysis.
A mixed linear model using a scaled identity covariance ma-
trix, maximum likelihood estimation, and random intercept
suggested that only baseline-enrichment was a significant pre-
dictor, with unenriched rats having higher severity scores than
rats in the baseline-enriched group (β = 2.09 ± 0.83, t(20) =
2.52, p = 0.02). Experimental procedures was included in the
model because of the potential marginal difference at week 1,
but was not a significant predictor (β = 0.64 ± 0.44, t(20)
= 1.46, p = 0.158). Reinforcer type was included because it
had significant effects when analysed alone, but was also not
a significant predictor (β = -0.31 ± 0.94, t(20) = -0.33, p =
0.746). Supplier was also included because Harlan rats had

significantly higher severity scores at week 4, which also ap-
peared visually (but not statistically) in weeks 1-2. However,
supplier was not a significant predictor because neither being
from Charles River (β = -1.41 ± 1.13, t(20) = -1.25, p = 0.226)
or Harlan (β = -1.96 ± 1.15, t(20) = -1.71, p = 0.102) predicted
severity scores.

To further control for possible confounds of experimen-
tal procedure and supplier, we were also able to analyse be-
havioural rats (i.e. rats whose experimental procedures did not
include surgeries) and Charles River rats separately. Both of
these conditions had a sufficient number of cases that were dis-
tributed across baseline-enriched and unenriched conditions.
This analysis was not possible for reinforcer type because only 1
sugar rat was unenriched and only 2 ethanol rats were baseline-
enriched.

Analysing behavioural rats alone (baseline-enriched n = 7,
unenriched n = 7; Figure 4F) with a mixed-design ANOVA,
demonstrated that baseline-enrichment was significantly as-
sociated with lower severity scores (F(1,12) = 6.536, p = 0.025).
While there was no significant effect of week (F(2,24) = 2.446,
p = 0.108), there was a significant week × baseline-enrichment
interaction (F(2,24) = 4.28, p = 0.026), with Bonferroni post-
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hocs showing that baseline-enriched rats had lower severity
scores at the 1-week (p = 0.012) and 2-week (p = 0.019) follow-
ups. An independent t-test also showed a significant differ-
ence at week 4 (t(9) = 3.747, p = 0.005; baseline-enriched n =
6, unenriched n = 5).

Similarly, analysing Charles River rats alone (baseline-
enriched n = 10, unenriched = 5, Figure 4G), showed there was
statistically significant effect of baseline-enrichment on sever-
ity scores (F(1,13) = 19.414, p = 0.001). There was a signifi-
cant week × baseline-enrichment interaction (F(2,26) = 3.586,
p = 0.042), but no main effect of week (F(2,26) = 1.546, p =
0.232). Bonferroni-corrected post-hoc comparisons showed
baseline-enriched rats had lower severity scores at the 1-week
(p < 0.001) and 2-week (p = 0.003) follow-ups. At the 4-
week follow-up there were only 3 unenriched and 9 baseline-
enriched Charles River rats with no significant difference in
their severity scores (t(10) = 0.62, p = 0.549).

Discussion

The present study found that rats that received nesting
material enrichment at baseline experienced less severe
overgrooming-related self-injury than rats that did not re-
ceive baseline-enrichment. Although there was no difference
in prevalence between rats that received nesting material en-
richment at baseline compared to rats that were unenriched
at baseline, the difference in severity and more rapid recovery
after onset suggests that the simple refinement of providing
shredded paper as nesting material provides a measurable im-
provement in the welfare of individually housed rats.

Numerous studies have shown that environmental enrich-
ment is beneficial for laboratory rats. Our results are con-
sistent with previous reports that environmental enrichment
can reduce stress, anxiety, and depression-like symptoms in
laboratory animals, though we do not claim to have directly
measured these behaviours.[2, 23–28, 30, 31, 41] They further
demonstrate that even a relatively small improvement in the
level of enrichment can reduce the severity of overgrooming-
related self-injury and thus likely increases welfare.[10] Nest-
ing material enrichment may be a particularly important form
of environmental enrichment because instead of being a rela-
tively static structure, it can serve multiple needs. Previous
studies have shown that mice given shredded paper nesting
material are able to build nests that are comparable to their
wild counterparts.[42] While a shelter can provide a good hid-
ing place (note that in Figure 1, all of the rats are in or on
their tunnels), in group-housed mice it can actually promote
aggression.[43] In addition to a hiding place, nesting material
can provide thermal insulation[42] and allows animals to ex-
press more of their natural behaviours, an important ‘five free-
doms’ consideration.[44] In mice, nesting material reduced
aggression between group-housed animals.[43] In rats, us-
ing nesting material is also a learned behaviour, which may
explain why providing additional enrichment at the onset of
overgrooming-related self-injury did not produce an imme-
diate reduction in severity.[45] There is also the possibility
that rats that were unenriched at baseline and given nesting
material after onset experienced some neophobia towards the
novel material, although several studies suggest that labora-
tory rats show low levels of neophobia that last no more than
a day.[1, 46, 47] Moreover, when rats are introduced to a clean
cage with new bedding, physiological effects only last a few
hours while rats in our study were monitored over weeks.[48–
50] It seems more likely that unenriched rats developed habit-
ual stereotypies that persist even after their home-cage condi-
tions were improved.[10] Shredded paper nesting material may
therefore be a particularly effective environmental enrichment

for reducing stress in laboratory rats and should be provided
wherever possible throughout the animal’s life.

Importantly, these effects appeared to be independent of
several other factors, such as whether experimental procedures
were purely behavioural or also included intracranial surgery.
There was no significant effect of experimental procedure on
the prevalence or severity of overgrooming-related self-injury.
At most, there may have been a difference at the 1-week follow-
up, but this is probably due to chance because mixed linear
modelling did not indicate any effect of experimental proce-
dure. Moreover, if this was a real effect it would require a much
larger sample size (at least 34 rats for 80% power according to
G*Power 3.1.9.4)[51] to detect. It would also be highly counter-
intuitive because, despite the putative impact of intracranial
surgeries, it would suggest that intracranial surgeries might
reduce the severity of overgrooming-related self-injury. One
potential explanation for the lack of a difference between be-
havioural and surgery rats is that surgery rats are provided a
higher level of care, handling, and habituation to experimental
procedures that compensate for the stress associated with in-
tracranial surgery experiments. Regardless of whether surgical
experimental procedures affect the severity of overgrooming-
related self-injury, our data suggests that baseline nesting
material enrichment reduces the overgrooming-related self-
injury because even when behavioural rats are analysed sep-
arately, the effect of baseline-enrichment is still statistically
significant.

There also did not appear to be a specific age at which rats
would present with overgrooming-related self-injury because
the weight at onset varied widely between 264g, correspond-
ing to a time shortly after arrival, and 476g corresponding to
several weeks after arrival. Cage location also did not appear to
have an effect since there was no significant different in preva-
lence or severity at any point in time.

Individual housing of laboratory rats remains an impor-
tant welfare concern for scientists and animal welfare spe-
cialists. Baseline environmental enrichment had no effect on
the prevalence or onset severity of overgrooming-related self-
injury. This suggests that individual housing remains a key
stressor for laboratory rats and it is notable that the observed
5% prevalence in our study is almost identical to the previ-
ously observed 5.7% prevalence of self-barbering in individ-
ually housed mice.[13] It also appears that enrichment needs
to be permanent in order for it to have beneficial effects on
the severity of overgrooming-related self-injury over time. In
our study, rats that were observed to overgroom were provided
with additional enrichment, but they still did not recover at
the same rate as rats that had nesting material enrichment at
baseline. Indeed, it appears that their condition initially wors-
ened and at 4 weeks, while nearly half of the baseline-enriched
rats had fully recovered (n = 5), only 1 of the rats that was un-
enriched at baseline had fully recovered. This suggests that
environmental enrichment works by modulating the stress re-
sponse over a long period of time.

One limitation of the present study is that we are unable to
determine the nature of any proximal cause that might trigger
overgrooming-related self-injury. We have observed, consis-
tent with previous reports[13], a relatively low prevalence of
overgrooming-related self-injury. There appears to be no con-
sistent age/weight, experimental procedure, cage location, or
supplier associated with the onset of overgrooming. The low
prevalence of overgrooming limits the forms of study primar-
ily to observational designs because it requires a large num-
ber of animals to accumulate sufficient cases. This also re-
sults in a potential confound because it may be the case that
projects where experimenters provided nesting material en-
richment at baseline were less stressful than experiments with-
out enrichment at baseline. Experiments using a sugar rein-
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forcer tended to involve baseline enrichment while ethanol ex-
periments did not. It is theoretically possible that the mere
exposure to ethanol increased the severity of overgrooming-
related self-injury despite ethanol’s anxiolytic effects, but this
does not seem likely because all ethanol consumption was vol-
untary, and during Pavlovian conditioning, only small amounts
of ethanol are available that are unlikely to have a long-lasting
effect.[37, 52] While mixed linear modelling suggested that
baseline enrichment was the more important factor, this type
of confound invites replication of the present study in other
laboratories.

Another possibility is that our findings were affected by ge-
netic differences between animals. For example, the signifi-
cant difference between Harlan rats and Charles river rats at
the 4-week follow-up is confounded because all 3 Harlan rats
were also unenriched rats, so it is unclear whether they had
higher severity scores because they were Harlan rats or because
they were unenriched until the onset of overgrooming-related
self-injury. Although previous studies have found differences
between Charles River rats and Harlan rats[34, 53], it has not
been shown whether this extends to pathological grooming be-
haviour. Mixed linear modelling did not identify supplier or re-
inforcer as a significant predictors of severity scores. Moreover,
even if Charles River rats are analysed alone, there is still a sta-
tistically significant effect of baseline enrichment, suggesting
that the effect of baseline enrichment is unlikely to be a simple
vendor difference.

Inter-experimenter differences are also a possible confound
because it was not possible to calculate inter-rater reliability
after training, due to the infrequent nature of cases. How-
ever, observations were frequently confirmed by a second ex-
perimenter, because most projects involved multiple experi-
menters. Ideally, the causes and best practices for manage-
ment of overgrooming could be examined by direct experimen-
tal manipulation of self-injury behaviour. While this could be
achieved using pharmacological approaches, such as the pe-
moline model[14, 20, 21], it is unclear whether this would ac-
curately model the overgrooming that results from individual
housing. Therefore, while it is difficult to draw conclusions
that would be as strong as those drawn from an experimen-
tal study, observational studies of overgrooming-related self-
injury and its management are currently the most practical ap-
proach.

Conclusions

Individual housing of laboratory rats presents an important
welfare concern for scientists. While individual housing may
be justifiable in certain experimental models, it appears to re-
sult in approximately 5% of animals engaging in pathological
overgrooming resulting in self-injury. Prevalence and severity
appear to be independent of several other factors, such as the
location of the cage, experimental procedures, and source of the
animals. While reinforcer type biased whether rats were in the
baseline-enrichment group or unenriched until onset of symp-
toms, statistical analysis suggested that baseline enrichment
was the more important factor. Thus, the simple refinement
of providing rats with shredded paper nesting material enrich-
ment throughout their life in the animal facility, in addition to
shelters and chew toys, can reduce the severity of self-injury
and promote recovery.
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