
Automatic Detection of Emotions
and Distress in Textual Data

Elham Mohammadi

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University

Montréal, Québec, Canada

October 2019

© Elham Mohammadi, 2019

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Elham Mohammadi

Entitled: Automatic Detection of Emotions and Distress in Textual Data

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Aiman Hanna

Examiner
Dr. Tristan Glatard

Examiner
Dr. Olga Ormandjieva

Supervisor
Dr. Leila Kosseim

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2019
Dr. Amir Asif, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Automatic Detection of Emotions
and Distress in Textual Data

Elham Mohammadi

Online data can be analyzed for many purposes, including the prediction of stock market,

business, and political planning. Online data can also be used to develop systems for the automatic

emotion detection and mental health assessment of users. These systems can be used as comple-

mentary measures in monitoring online forums by detecting users who are in need of attention.

In this thesis, we first present a new approach for contextual emotion detection, i.e. emotion

detection in short conversations. The approach is based on a neural feature extractor, composed of

a recurrent neural network with an attention mechanism, followed by a final classifier, that can be

neural or SVM-based. The results from our experiments showed that, by providing a higher and

more robust performance, SVM can act as a better final classifier in comparison to a feed-forward

neural network.

We then extended our model for emotion detection, and created an ensemble approach for the

task of distress detection from online data. This extended approach utilizes several attention-based

neural sub-models to extract features and predict class probabilities, which are later used as input

features to a Support Vector Machine (SVM) making the final classification. Our experiments show

that using an ensemble approach which makes use different sub-models accessing diverse sources

of information can improve classification in the absence of a large annotated dataset.

The extended model was evaluated on two shared tasks, CLPsych and eRisk 2019, which aim at

suicide risk assessment, and early risk detection of anorexia, respectively. The model ranked first in

tasks A and C of CLPsych 2019 (with macro-average F1 scores of 0.481 and 0.268, respectively),

and ranked first in the first task of eRisk 2019 in terms of F1 and latency-weighted F1 scores (0.71

and 0.69, respectively).

iii

Acknowledgments

I would first like to express my deepest gratitude to Dr. Leila Kosseim. Three years ago, she

gave me a wonderful chance to be part of her research team at CLaC lab, Concordia, and that has so

far been my greatest life-changing event. Working under the supervision of Dr. Kosseim, I had the

privilege to benefit from her knowledge, constant guidance, and most important of all, her passion

for natural language processing, without which this thesis would not have been possible.

I would like to thank all my past and present colleagues at CLaC, who taught me many things

and also made the past two years lots of fun.

I would also like to take this opportunity to thank my amazing parents, who have always sup-

ported me no matter the cost, even when I decided to move ten thousand kilometers away.

Lastly, I dedicate this thesis to my greatest inspiration: my spouse, Hessam Amini. He relent-

lessly supported me in making the big shift from linguistics to computer science and made me fall

in love with natural language processing. Being Hessam’s colleague and classmate was the best

experience of my life. I will cherish every minute we spent attending different courses, studying for

final exams, and working on our papers together. Our fascinating discussions regarding different

technical topics have shaped a great part of my master’s journey for which I will be forever grateful.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Goal of the Thesis . 2

1.3 Contributions . 3

1.4 Thesis Structure . 4

2 Background 5

2.1 Classical Machine Learning Approaches . 5

2.2 Deep Learning Approaches . 7

2.2.1 Neural Network Architectures . 7

2.2.2 Word Embeddings . 14

2.3 Evaluation Metrics . 16

2.3.1 Accuracy . 17

2.3.2 Precision . 17

2.3.3 Recall . 17

2.3.4 F-Measure . 18

2.3.5 Pearson Correlation . 18

2.3.6 Macro-average versus Weighted-average versus Micro-average 19

v

2.4 Emotion Classification and Mental Health Assessment 20

2.4.1 Emotion Detection . 20

2.4.2 Mental Health Assessment . 21

3 Contextual Emotion Detection 24

3.1 EmoContext . 24

3.2 Dataset and Task . 25

3.3 The Model . 27

3.3.1 The Neural Feature Extractor . 27

3.3.2 The Classifier . 30

3.4 Experimental Setup . 30

3.4.1 Word Embeddings . 30

3.4.2 POS Tags . 31

3.4.3 Recurrent Units . 31

3.4.4 Neural Network Optimization . 31

3.4.5 SVM Hyperparameters . 31

3.4.6 Overall Training Process . 32

3.5 Results . 32

3.6 Discussion . 36

3.6.1 Effect of Input Features . 36

3.6.2 Effect of the Recurrent Units . 36

3.6.3 Effect of the Classifiers . 37

3.6.4 A Closer Look at the Emotion Classes . 37

3.6.5 Quality of the Extracted Neural Features . 38

3.7 Further Analysis . 39

4 Suicide Risk Assessment 43

4.1 Dataset and Task . 44

4.2 System Overview . 45

4.2.1 Sub-models . 45

vi

4.2.2 Ensemble Model . 49

4.2.3 Final Submitted Models . 50

4.3 Results and Discussion . 53

5 Early Risk Detection of Anorexia 58

5.1 Task and Dataset . 59

5.2 Evaluation Metrics . 60

5.2.1 ERDE . 60

5.2.2 Latency-Weighted F1 Score . 62

5.3 The Model . 63

5.4 Experimental Setup . 63

5.4.1 Sub-models Implementation . 63

5.4.2 Ensemble Classifiers . 64

5.4.3 Submitted Runs . 65

5.5 Results and Discussion . 65

6 Conclusion and Future Work 68

6.1 Summary . 68

6.2 Contributions . 69

6.3 Future Work . 70

Bibliography 72

vii

List of Figures

Figure 2.1 General mechanism of SVM . 6

Figure 2.2 Example of kernel use in SVM . 7

Figure 2.3 Architecture of a fully-connected layer in a neural network 8

Figure 2.4 Convolution on textual data . 9

Figure 2.5 RNN unrolled through time . 10

Figure 2.6 Architecture of an RNN . 11

Figure 2.7 Architecture of an LSTM . 12

Figure 2.8 Architecture of a GRU . 13

Figure 2.9 Classic neural language model . 15

Figure 2.10 Confusion matrix for binary classification. 16

Figure 3.1 Architecture of the model for EmoContext 2019 28

Figure 3.2 Performance of the model with the neural classifier at EmoContext 2019 . . 33

Figure 3.3 Performance of the model with the SVM classifier at EmoContext 2019 . . . 33

Figure 3.4 Mutual information between each dialogue turn and the classes 38

Figure 4.1 Architecture of the ensemble model for CLPsych 2019 46

Figure 4.2 Confusion matrix of results for CLPsych 2019 task A 55

Figure 4.3 Confusion matrix of results for CLPsych 2019 task B 55

Figure 4.4 Confusion matrix of results for CLPsych 2019 task C 56

Figure 5.1 Latency cost functions . 61

viii

List of Tables

Table 3.1 Sample dialogues from the EmoContext 2019 dataset 25

Table 3.2 Statistics of the EmoContext 2019 dataset . 26

Table 3.3 Performance of the models at EmoContext 2019 35

Table 3.4 Performance statistics of all participants at EmoContext 2019 40

Table 4.1 Label distribution in the CLPsych 2019 dataset for different sub-tasks 44

Table 4.2 Hyperparameters used for each sub-model at CLPsych 2019 52

Table 4.3 Hyperparameters used in the submitted runs at CLPsych 2019 52

Table 4.4 Test results for tasks A, B, and C of CLPsych 2019 54

Table 4.5 Breakdown of the results of CLPsych 2019 for each class 54

Table 5.1 Distribution of user labels in the eRisk 2019 datasets 59

Table 5.2 Hyperparameter values used in the sub-models at eRisk 2019 64

Table 5.3 Official results on eRisk 2019 task 1 . 66

ix

Chapter 1

Introduction

1.1 Motivation

In the past few years, social media has been commonly used as a means to express ideas,

thoughts, and emotions. The availability of human-written online diaries, blog posts, and com-

ments has lead to an increase in research on the automatic detection of sentiment and emotion from

textual data.

Online data can be analyzed for many purposes, including marketing and business (Jacobs et al.,

2018; Mansar and Ferradans, 2018), stock market prediction, and political strategy planning (Gi-

atsoglou et al., 2017). Extracting public opinion on products and services posted online can help

businesses move towards what people want, leading to more profits.

Sentiment analysis and opinion mining can range from coarse-grained binary classification of

texts into positive or negative classes to finer-grained classification into a variety of emotion cat-

egories, such as happy, sad, angry, and scared. Such a classification is useful in business and

marketing (Medhat et al., 2014), and a variety of downstream Natural Language Processing (NLP)

applications, such as text-to-speech, to maintain the emotion present in a text, and human-computer

interaction in order to take into account the emotional state of users and make responses more

human-like (Hirat and Mittal, 2015).

While most of the literature has focused on the detection and assessment of emotions in online

textual data, few researchers have investigated emotion detection in textual conversations. We argue

1

that the detection of emotions from dialogues poses new challenges compared to emotion detec-

tion from monologues, as the utterances made by different interlocutors can influence differently

the emotional state of a speaker. In this thesis, we investigate the effectiveness of neural feature

extraction for the task of emotion detection in short dialogues.

The analysis of online data can also lead to an enhanced awareness of emergencies (Yin et al.,

2015). Through the detection of toxicity, aggressive behavior, hate speech, and cyber bullying in

online platforms, timely interventions in violent situations can be facilitated (Davidson et al., 2017;

Thompson et al., 2017).

In healthcare applications, online posts have been used for detecting disease outbreaks (Ofoghi

et al., 2016), finding smoking patterns (Struik and Baskerville, 2014), and the identification of

adverse drug reactions (Yang et al., 2012). Another useful application is the automatic detection of

mental health issues, a relatively recent field which has attracted the attention of many researchers

in NLP. Corpora from Twitter, Facebook, blogs and online forums, and Reddit are used as resources

to detect various mental health problems, such as anxiety, depression, suicide ideation, and eating

disorders (Calvo et al., 2017).

Although automatically monitoring online forums to detect cases of mental health issues is

beneficial, the elapsed time between the first signs of a mental issue and the actual detection of a

potential victim can play a crucial role. Earlier detection of a harmful behavior can help moderators

better handle the situation. However, to the best of our knowledge, not much research has specifi-

cally addressed the task of early detection of mental health issues. As a result, part of this thesis is

dedicated to addressing the timing of risk detection as well as the detection itself.

1.2 Goal of the Thesis

The focus of this thesis is to develop an automatic approach that can be used for the detec-

tion of emotions and different types of distress in textual data. We focus on 3 aspects: contextual

emotion detection, suicide risk assessment, and early detection of anorexia.

Deep learning approaches have significantly improved the state-of-the-art in many tasks. How-

ever, in order to achieve such results, they often rely on large annotated datasets which are in many

2

cases difficult to obtain. This thesis explores the use of an ensemble architecture that uses diverse

sources of information, as a substitute to the use of a large body of annotated samples.

For the purpose of model generalizability, the use of handcrafted features is minimized. On

the other hand, deep neural architectures are an essential part of our experiments as they can auto-

matically extract features. We investigated the effectiveness of our model by participating to and

analyzing our results in 3 international shared tasks: EmoContext 2019 (Chatterjee et al., 2019b),

CLPsych 2019 (Zirikly et al., 2019), and the first task of eRisk 2019 (Losada et al., 2019).

This thesis aims to investigate the use of developments in the field of deep learning and benefit

from the strengths of these methods by applying them to a use case in natural language processing

in emotion detection and clinical psychology. As automatic assessment tools can be helpful as

complementary measures to monitor the emotional state and mental health of online users and as

this field is attracting more and more interest from the research community, this thesis can serve as

a stepping stone for much more research in this area.

1.3 Contributions

This thesis makes the following contributions:

• The implementation of different deep learning models for the task of contextual emotion

detection, its evaluation through the participation to the EmoContext shared task at SemEval

2019 (Mohammadi et al., 2019a), and a performance analysis of the emotion detection models

and the different components used (Mohammadi et al., 2019d) (see Chapter 3).

• The implementation of an ensemble model including several attention-based deep models for

the task of suicide risk assessment and achieving state-of-the-art results in tasks A and C of

the CLPsych 2019 shared task (Mohammadi et al., 2019b) (see Chapter 4).

• The evaluation of the ensemble model for the task of early risk detection of anorexia and

achieving state-of-the-art results in the first task of eRisk 2019 (Mohammadi et al., 2019c)

(see Chapter 5).

3

1.4 Thesis Structure

This chapter served as an introduction to emotion detection and mental health assessment in

textual data, and our motivation to apply natural language processing techniques to address these

tasks. Chapter 2 presents an overview of recent approaches in natural language classification prob-

lems and common evaluation metrics. Chapter 3 gives an account of our initial classification system

which is developed for the task of contextual emotion detection. Chapter 4 presents the development

and evaluation of a more refined ensemble approach, aimed at suicide risk assessment. Chapter 5

discusses the results of using the ensemble approach developed in Chapter 4 to perform the task

of early risk detection. Finally, Chapter 6 concludes this thesis by presenting a summary of our

findings and discussing possible future directions.

4

Chapter 2

Background

Text classification, whose goal is to assign a piece of text to one or multiple classes, is an

essential part of many Natural Language Processing (NLP) applications. In this chapter, we present

previous work on textual classification for emotion detection and for mental health assessment.

Over the years, a variety of techniques have been used in text classification systems. With the

availability of relatively larger corpora of annotated data, and thanks to recent advances in the field

of deep learning for natural language processing, neural network architectures have gained much

interest for the task of text classification (Amini et al., 2019).

Section 2.2 describes different neural network architectures that are commonly used for text

classification. In Section 2.3, common metrics used to evaluate classification systems are presented.

Sections 2.2 and 2.3 contain the necessary background in order to better appreciate Section 2.4,

which reviews previous work that has been done in the area of emotion detection and mental health

assessment in textual data.

2.1 Classical Machine Learning Approaches

Classical machine learning approaches such as Naı̈ve Bayes classifier (Kim et al., 2006; Frank

and Bouckaert, 2006), Logistic Regression (Cox, 2018; Genkin et al., 2007), K-nearest Neighbors

(Jiang et al., 2012), Decision Trees (Apté et al., 1994), Random Forests (Breiman, 2001; Xu et al.,

2012), and Support Vector Machines (SVMs) (Cortes and Vapnik, 1995; Manevitz and Yousef,

5

2001) have been commonly used in the literature for text classification. Although these methods

can extract classification rules automatically, they still require manually determined discriminative

linguistic features as their input (Amini et al., 2019).

Among the methods mentioned above, we will briefly explain SVMs due to the fact that they

have been used and repeatedly referred to, in this thesis.

Support Vector Machine (SVM) classifiers aim to find a separative hyperplane between two

classes. During the training, an SVM tries to find the separative hyperplane (a.k.a. decision bound-

ary) that is the furthest from the support vectors. In each class, the support vectors are made up of

samples that are closest to their counterparts in the other class. By using the support vectors to find

the decision boundary, a new concept called decision margin is introduced as the distance between

the decision boundary and the support vectors closest to it.

Figure 2.1: General mechanism of an SVM.

Figure 2.1 shows the support vectors, the decision boundary, and the decision margins in a

classification where classes are linearly separable. As the classes are not always linearly separable,

SVMs use different kernels (e.g. polynomial or sigmoid) to map the features to higher dimensions

where the two classes can be separated by a hyperplane. Figure 2.2 shows an example of kernel

used in an SVM.

6

Figure 2.2: An example of kernel use in an SVM, including the mapping of features to higher
dimensions, and the final decision boundary in the original problem space.

2.2 Deep Learning Approaches

Deep learning algorithms have gained much popularity in the past 10 years, due to their success

in improving the state-of-the-art in many fields including NLP (LeCun et al., 2015). They have

been shown capable of modeling complex patterns in large datasets by using the backpropagation

algorithm which lets the system automatically find both rules and features needed for classification.

In the next section, some of the most popular neural network architectures for classification are

presented.

2.2.1 Neural Network Architectures

Feed-forward Neural Networks

Feedforward neural networks are composed of one or multiple fully-connected layers, with each

node in a fully-connected layer having a one-way connection to all neurons in the previous layer.

Figure 2.3 shows the architecture of a fully-connected layer and how it is connected to the

previous layer.

7

Figure 2.3: Architecture of a fully-connected layer in a neural network1.

Assuming that a fully-connected layer of m nodes is followed by another layer of size n, the

values of the fully-connected layer is calculated using Equation 1. In Equation 1, f represents a

vector of the m output values of the fully-connected layer, p represents the output vector from the

previous layer, and W is the matrix representing the connecting weights between the two layers,

which has the size m × n.

f = pW (1)

Feed-forward architectures have two main drawbacks, making them undesirable to be used alone

in text classification tasks. Firstly, they require fixed input sizes. This leads to problems in handling

textual samples which often have different lengths. Secondly, with longer samples, the number of

parameters in the network increases and this can cause overfitting.

As a result of these disadvantages, the use of fully-connected architectures is often limited to the
1The figure was taken from https://machinethink.net/blog/mps-matrix-multiplication/.

8

https://machinethink.net/blog/mps-matrix-multiplication/

last layers of the neural networks that are used for text classification. To avoid the problems men-

tioned above, two other architectures are often used: convolutional and recurrent neural networks.

Convolutional Neural Networks

Convolutional neural networks (CNN) (LeCun et al., 1999) have been commonly used in image

processing, as they take advantage of the spatial structure of images. Working under the assumption

that pixels in close proximity to each other are related, CNNs use feature maps to connect patches

of input to one neuron, an operation called convolution that allows for a smaller number of weights

that are shared between the input patches and allowing for a better capturing of patterns.

But image processing is not the only field that can benefit from this architecture. CNNs have also

become popular in natural language processing, due to their computational efficiency and capacity

to capture generalizations. Applying the convolution concept to natural language, we can assume

that the patches of input in texts are in fact N-grams (i.e. N consecutive words or characters).

Figure 2.4 shows the convolution operation on textual data.

Figure 2.4: The visualization of a convolution operation in text2.

2The figure was taken from http://ruder.io/text-classification-tensorflow-estimators/.

9

http://ruder.io/text-classification-tensorflow-estimators/

CNNs handle both problems of fully-connected feedforward networks (see Section 2.2.1) that

are overfitting and handling different input sizes. However, they are unable to capture sequential

information which is usually of importance in NLP tasks. That brings us to another architecture:

recurrent neural networks.

Recurrent Neural Networks

A recurrent neural network (RNN) is composed of recurrent layers, that include intra-layer

connections in addition to being connected to their previous and next layers.

In general, RNNs are capable of processing time-series data, to which natural language texts

belong to. RNNs can be used in forward and backward passes. A forward pass is when a time-

series data is fed to the RNN from the first to the last element, while in a backward pass, the data

is fed from the last to the first. Figure 2.5 visualizes the unrolling of an RNN through time in a

forward pass.

Figure 2.5: The visualization of an RNN when unrolled through time3.

A vanilla RNN is one of the simplest RNN architectures that have been proposed. Figure 2.6

shows the architecture of a vanilla RNN, and its connection to the previous and next time-steps when

used in a forward pass. The output of a vanilla RNN at time-step t (referred to as ht in Figures 2.5

and 2.6) is calculated by Equation 2, where xt represents the input at time-step t, ht±1 refers to the

output of the vanilla RNN at the previous/next time-steps (based on being in the forward/backward

pass), and U represents the weights connecting the input to the RNN unit, and W stands for the

weights that connect the RNN unit to itself.
3The figure was taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

10

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ht = tanh(xtU + ht±1W) (2)

Figure 2.6: Architecture of a vanilla RNN4.

During training, vanilla RNNs suffer from the so-called vanishing and exploding gradient prob-

lems (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997), which prevents the network from

learning, as the sequence of words increases. To avoid these problems, two alternate models have

been proposed: 1) Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), and 2)

Gated Recurrent Unit (GRU) (Cho et al., 2014).

Long Short-term Memory

Hochreiter and Schmidhuber (1997) introduced a gated recurrent architecture called the Long

Short-Term Memory (LSTM), by adding input, forget, and output gates to the vanilla RNN. Fig-

ure 2.7 shows the architecture of an LSTM, when being used in a forward pass.
4The figure was taken from https://github.com/roomylee/rnn-text-classification-tf.

11

https://github.com/roomylee/rnn-text-classification-tf

Figure 2.7: Architecture of an LSTM5.

In an LSTM, the values of the input, forget, and output gates at a specific time-step t (referred

to as it, ft, and ot) are calculated using Equations 3, 4, and 5, respectively:

it = σ(xtU i + ht±1W i) (3)

ft = σ(xtUf + ht±1W f) (4)

ot = σ(xtUo + ht±1W o) (5)

where it, ft, and ot refer to the values of the input, forget, and output gates at time-step t,

respectively, xt represents the input at time-step t, ht±1 represent the output of the LSTM unit at

time-step t, the Us refer to the weights connecting the input to the gates, the W s represent the

connecting weights between the output of LSTM to its gates, and σ refers to the sigmoid activation

function.

An LSTM includes a cell state (the memory), whose value is calculated using Equations 6 and 7.

C̃t = tanh(xtUg + ht±1W g) (6)

Ct = σ(ft ∗Ct±1 + it ∗ C̃t) (7)

Finally, Equation 8 shows how the output of an LSTM unit is calculated.
5The figure has been taken from https://github.com/roomylee/rnn-text-classification-tf.

12

https://github.com/roomylee/rnn-text-classification-tf

ht = tanh(Ct) ∗ ot (8)

LSTMs’ main strength lies in handling longer sequences of input. Having the addition of input,

forget, and output gates has made them less prone to the vanishing and exploding gradient problems.

However, the high number of parameters (that are weights) makes them more prone to overfitting,

in comparison to vanilla RNNs.

Gated Recurrent Units

More recently, a new recurrent architecture, called Gated Recurrent Unit (GRU), was presented

by Cho et al. (2014). This new architecture introduced two new types of gates to the vanilla RNN,

the update and reset gates. In comparison to LSTM, GRU has a relatively smaller number of param-

eters which makes it less prone to overfitting (Chung et al., 2014). Figure 2.8 shows the architecture

of a GRU when used in a forward pass.

Figure 2.8: Architecture of a GRU6.

In a GRU, the values of the update and reset gates at a specific time-step t (referred to as zt and

rt, respectively) are calculated using Equations 9 and 10.
6The figure was taken from https://github.com/roomylee/rnn-text-classification-tf.

13

https://github.com/roomylee/rnn-text-classification-tf

zt = σ(xtU z + ht±1W z) (9)

rt = σ(xtU r + ht±1W r) (10)

Equations 11 shows how the internal memory h̃t is updated.

h̃t = tanh(xtUh + (rt ∗ ht±1W h)) (11)

And finally, Equation 12 shows how the output of a GRU is calculated.

ht = (1 − zt) ∗ ht±1 + zt ∗ h̃t (12)

GRUs have a significantly smaller number of parameters in comparison to LSTMs and as a

result, they are less prone to overfitting (Chung et al., 2014). However, they are not as powerful

as LSTMs in modelling long sequences. This makes them a more suitable candidate when data is

comprised of short sequences such as short conversational turns.

2.2.2 Word Embeddings

Traditionally, when feeding words to a neural network, they were represented by one-hot vectors

(i.e. a vector of all zeros, except for an element having the value 1), which indicate the index of a

word in a vocabulary. Embeddings are considered as matrices that are used to map these one-hot

representations to a dense space with the aim of capturing semantic information about the word and

also reducing sparsity (Amini et al., 2019).

The concept of word embeddings was introduced first by Bengio et al. (2003) who jointly trained

word embeddings with the neural model itself in order to perform the task of language modeling

which is predicting a word given its previous words.

Figure 2.9 shows the architecture of the neural word embedder of Bengio et al. (2003), where C

is considered as the embedding matrix.

14

Figure 2.9: Classic neural language model (Bengio et al., 2003).

Throughout the years, different methods for training word embeddings have been developed.

One of the most popular methods, known as the Word2Vec model, was introdued by Mikolov et al.

(2013). The Word2Vec model uses one of the following two approaches for training the embed-

dings: Continuous Bag of words (CBOW), and Skip-gram. In the CBOW model, the embedding

is created by using the words surrounding a target word as input and the target word itself as the

output. In the Skip-gram model, however, an opposite approach is used to create and extract an em-

bedding vector with the target word being fed as input, and the surrounding words as output. Both

CBOW and Skip-gram architectures have an input, projection, and output layers. After the training

is complete, the weights that connect the input layer to the projection layer will be considered as the

embedding matrix.

GloVe is another method for training word embeddings, developed by Pennington et al. (2014).

As opposed to the Word2Vec model which directly utilizes instances of word co-occurrences, GloVe

uses statistics of word co-occurrances, making semantic relationships between words more explicit.

15

A more recent word embedding model, ELMo, was developed by Peters et al. (2018). Trained

using a task of bidirectional language modeling (i.e. language modeling in both forward and back-

ward fashions), ELMo is different from the previous embeddings in two major ways. Firstly, ELMo

is contextual, meaning that the embedding for a given word might vary based on the different con-

texts in which the word occurs. Secondly, ELMo is character-based, which means that the model

does not have a pre-defined vocabulary of words used for training, but it rather extracts the word

embeddings from the constituent characters of the words. These differences can make the word

embedder more robust and generalizable to downstream tasks.

In our work, the use of GloVe and ELMo embeddings has been experimented with.

2.3 Evaluation Metrics

An essential part of developing a classification system is evaluating how it performs when ex-

posed to new samples. As a result, appropriate evaluation metrics that provide a reliable measure

of the system’s performance are needed. In this section, a brief summary of the most common

evaluation metrics used for classification is presented.

Most evaluation metrics are based on a confusion matrix that gives information about the sys-

tem’s prediction for the samples and also the true label for the samples in question. Figure 2.10

shows a typical confusion matrix for a binary classification problem.

Figure 2.10: The visualization of a confusion matrix for binary classification.

16

2.3.1 Accuracy

The accuracy measure takes into account the number of correctly classified samples out of all

predictions made by the system, irrespective of the samples’ class. It is calculated using Equa-

tion 13.

accuracy = TP + TN
TP + TN + FP + FN (13)

In the case of a classification system aimed at detecting health issues, accuracy is not a reliable

measure, since there is often the necessity to give more weight to positive labels (i.e. at-risk users).

As a result, more informative measures, such as precision, recall, and F-measure are preferred.

2.3.2 Precision

Precision measures the ratio of correctly classified positive samples (true positives) out of all

the samples classified as positive and is calculated using Equation 14.

precision = TP

TP + FP (14)

2.3.3 Recall

The recall measure is used to calculate the ratio of correctly detected positive samples out of all

the positive samples, both detected and undetected by the system, in the data set. Equation 15 is

used to measure recall.

recall = TP

TP + FN (15)

In health applications, recall is a very important metric that measures the capacity of a system

to emit alerts when needed.

17

2.3.4 F-Measure

There is a trade-off between precision and recall, causing one to decrease as the other increases.

A system that has a tendency to predict more negative labels can have a good precision but a low

recall, while a system that outputs too many positive labels has a good recall, but a low precision.

The F-measure was developed in an attempt to combine both precision and recall into a single

measure, making it possible to do model optimization and selection based on a single evaluation

metric.

Fβ = (1 + β2) ×
precision × recall

(β2 × precision) + recall (16)

In Equation 16, the β parameter is used to control the importance of precision over recall and

give more weight to one instead of the other. In this thesis, F1 score is used for evaluation purposes

(i.e. β=1), placing equal emphasis on precision and recall. This leads to Equation 17.

F1 = 2 × precision × recall
precision + recall (17)

2.3.5 Pearson Correlation

The Pearson correlation coefficient (Spearman, 1987) can act as a measure for both regression

and classification problems and is calculated using Equation 18.

r = ∑ni=1(Ti − T̄)(Yi − Ȳ)√
∑ni=1(Ti − T̄)2∑ni=1(Yi − Ȳ)2

(18)

Assuming a binary classification task, in Equation 18, Ti and Yi stand for the true and predicted

values (which can be either 0 or 1) for the i-th sample. T̄ and Ȳ represent the average of all true

and all predicted labels, respectively. Finally, n is the number of samples for which this measure is

calculated.

18

2.3.6 Macro-average versus Weighted-average versus Micro-average

When classification is performed on data with more than two classes, evaluation metrics can

be calculated using two different methods, either of which can be chosen based on the use case.

The first method is macro-averaging, which calculates a certain metric (e.g. precision, recall, or F-

measure) for each individual class versus the other classes separately, and then reports the average

over all classes. Therefore, all classes contribute equally to a macro-average score, regardless of the

number of samples in each class. Equation 19 shows how the macro-average score for a specific

metric is calculated, where Si represents to the score on the specific class i, and Nc represents the

number of classes.

Macro-average S = 1

Nc

Nc

∑
i=1
Si (19)

The second method, weighted-averaging, takes into account the number of samples in each

class when calculating the average score for all classes. Weighted-averaging leads to different con-

tributions from different classes based on the class distribution in the data. Equation 20 is used

to compute a weighted-average score, where Si represents the score on the specific class i, Nc

represents the number of classes, and n(ci) represents the number of samples in class i.

Weighted-average S = ∑
Nc
i=1 n(ci)Si
∑Nc
i=1 n(ci)

(20)

Finally, micro-averaging is done by first summing up the number of true positives, false pos-

itives, true negatives, and false negatives over the set of different classes, and using the original

formula to calculate a score, hence calculating one single global score for all classes. If calcu-

lated on all classes, the micro-average F1 score is mathematically equal to micro-average precision,

micro-average recall, and accuracy.

In this thesis, macro and micro-averaging will be used.

19

2.4 Emotion Classification and Mental Health Assessment

2.4.1 Emotion Detection

Textual emotion detection has typically been addressed as a multi-class classification task,

where a text is classified into different emotional categories, ranging from basic emotions to finer-

grained emotional classes. Studies focusing on emotion detection have made use of different corpora

and different evaluation metrics.

Dini and Bittar (2016) broke down the task of emotion detection from tweets into a cascade

of decisions: classifying tweets into emotional and non-emotional categories, and then tagging the

emotional tweets with the appropriate emotion label. For the latter, they compared a symbolic

system using gazetteers, regular expressions, and graph transformation, with a machine learning

system using a linear classifier with words, lemmas, noun phrases, and dependencies as features.

Using their collected corpus of emotional tweets, the rule-based approach achieved an F1 score of

0.41, while the machine learning approach yielded an F1 score of 0.58 on 6 emotion classes.

Mohammad and Bravo-Marquez (2017) made use of an SVM regression model to determine the

intensity of 4 emotions: anger, fear, joy, and sadness in a dataset of tweets that they had previously

collected and annotated. As features, they used word and character n-grams, word embeddings

trained using the Word2Vec skip-gram model (Mikolov et al., 2013), and affect-related lexical fea-

tures. Using the Pearson correlation coefficient as evaluation metric, they demonstrated that word

embeddings yield better results than n-gram features. They achieved their best average result of

0.66, using a combination of word embeddings and lexical features.

Abdul-Mageed and Ungar (2017) also collected their own dataset of emotional tweets using

emotion hashtags. They trained word embeddings on the training data, employed a gated recurrent

neural network (Cho et al., 2014) (see Section 2.2.1) as a classifier and achieved an average F1 score

of 0.87 over 3 emotion datasets, labelled with 8 emotions.

Abdullah and Shaikh (2018) proposed an approach to detect the intensity of affect in tweets.

Their features included feature vectors extracted using the AffectiveTweets package of Weka (Holmes

et al., 1994), as well as Word2Vec and doc2vec (Le and Mikolov, 2014) embeddings. They devel-

oped three models using different subsets of the feature set as input to either a dense feed-forward

20

network or an LSTM (Hochreiter and Schmidhuber, 1997) (see Section 2.2.1). Using the dataset of

SemEval 2018 task 1 (Affect in Tweets) (Mohammad et al., 2018), they achieved their best Pearson

correlation score of 0.69 over 4 emotions by averaging over the outputs of the three models.

More recently, Khanpour and Caragea (2018) focused on domain-specific emotion detection.

They created a dataset of 2107 sentences taken from online forums on the Cancer Survivors Network

website7. In order to combine the strengths of lexicon-based and machine learning approaches, they

proposed a model that uses Word2Vec embeddings as input to a CNN (LeCun et al., 1999) (see

Section 2.2.1). The CNN generates feature vectors which are then augmented with domain-specific

lexical features. The combined features are then used as input to an LSTM network which classifies

the texts into 6 different emotion categories.

2.4.2 Mental Health Assessment

Many researchers have used corpora from Twitter, Facebook, Reddit, blogs and online forums

as resources to experiment with classification tasks pertaining to mental health issues (Calvo et al.,

2017).

Pestian et al. (2010) experimented with different machine learning methods for suicide note

classification. The features used in the study included words, part of speech tags, readability scores,

and emotions. The best accuracy of 74% was achieved by a logistic regression model.

DeVault et al. (2013) studied the symptoms of psychological distress in dialogues with a virtual

agent. The use of a Naı̈ve Bayes classifier for the detection of post-traumatic stress disorder (PTSD)

and distress yielded a 20% improvement over the baseline accuracy of 53.5%, and showed that the

automatic assessment of psychological distress is indeed possible.

More recently, Jackson et al. (2017) used clinical texts obtained through the Clinical Record In-

teractive Search8 to extract symptoms of severe mental illness. The authors made use of TextHunter

(Ball et al., 2014) (a natural language processing information extraction tool) and an SVM classifier,

and were able to classify 38 symptoms with an F1-score of 85%.

Shen and Rudzicz (2017) used different feature sets including Word2Vec embedding, latent
7https://csn.cancer.org/
8https://crisnetwork.co

21

https://csn.cancer.org/
https://crisnetwork.co

Dirichlet allocation topic modelling, lexico-syntactic features, and N-grams (unigrams and bigrams)

to detect anxiety in Reddit posts. Initially, the authors compared the results achieved by an SVM

and a 2-layer neural network. Though both classifiers performed well, the SVM yielded marginally

better results. However, they achieved their best result of 98% accuracy using the neural network

with n-gram probabilities and word embeddings combined with Linguistic Inquiry and Word Count

(LIWC) features (Pennebaker et al., 2007).

Coppersmith et al. (2014) explored the automatic detection of post-traumatic stress disorder

(PTSD), depression, bipolar disorder, and seasonal affective disorder (SAD) in Twitter data, using

LIWC features and character and word N-grams, and found the latter resulting in superior perfor-

mance.

Benton et al. (2017) used multi-task learning to predict suicide risk and a variety of mental

health conditions from Twitter data, including anxiety, depression, PTSD, and schizophrenia. It

was found that a multi-task framework can be effectively used in cases with limited data.

Apart from individual efforts, shared tasks (e.g. (Coppersmith et al., 2015; Milne et al., 2016;

Lynn et al., 2018; Zirikly et al., 2019)) have also been organized to encourage the development of

common benchmarks (datasets and metrics) and the comparison of approaches for the detection of

distress in online textual data.

All of the previous work described above used a classic classification approach that does not

measure how early the detection is performed. The eRisk shared task (Losada et al., 2017) was

created with the goal of addressing issues related to early risk detection of mental health problems.

Early detection can be used in many applications where intervention is needed and the timing of the

intervention is important. Examples of such applications are identifying potential sexual offenders

or people with suicidal inclinations (Losada et al., 2017). According to Losada et al. (2017), risk

assessment approaches are currently focused at detection after the fact, i.e. ringing an alarm after

the harmful behavior has occurred, while the timing of the detection can be of utter importance.

Therefore, it is important to try to minimize the time between seeing the first sign of a harmful

behavior and triggering an alarm. Having that in mind, the eRisk organizers have created this

shared task in order to encourage the development of risk detection approaches that can model the

risk process. The eRisk shared task has also introduced evaluation metrics specifically designed to

22

take into account the delay in risk detection.

The first eRisk shared task (Losada et al., 2017) was held with the aim of the early detection

of depression, using a dataset of chronologically recorded online posts from depressed and non-

depressed users. For the first time, Early Risk Detection Error (ERDE) was used as an evaluation

metric that takes into account the delay in detection by awarding early decisions and penalizing

late ones (Losada and Crestani, 2016). Since it was the first time that such an evaluation metric

was used, most of the teams that took part in the shared task focused on making accurate, albeit

delayed detection, with the highest F1-score being 64% and the lowest ERDE50 score9 being

9.68% (Losada et al., 2017).

The second eRisk shared task (Losada et al., 2018) included two tasks: Early risk detection of

depression and early risk detection of anorexia. Like the year before, the ERDE evaluation metric

was used as the main metric alongside F1, precision, and recall (Losada et al., 2018). Trotzek et al.

(2018) designed the best performing models for both tasks. In the depression task, their system

which utilized a logistic regression classifier with bag of words as input features, achieved an F1-

score of 64% and an ERDE50 of 6.44%. Using a convolutional neural network (CNN) (LeCun

et al., 1999) model with fasttext word embeddings (Joulin et al., 2017; Bojanowski et al., 2017;

Mikolov et al., 2018) as input features, they achieved an F1-score of 85% and an ERDE50 of

5.96% in the anorexia task. Their interesting approach and promising results inspired the ensemble

model presented in this thesis and motivated us to take part in the CLPsych and eRisk shared tasks,

the results of which will be presented in Chapters 4 and 5.

9A detailed description of ERDEo, where o is either 5 or 50, can be found in Chapter 5.

23

Chapter 3

Contextual Emotion Detection

Our first text classification model was developed within the framework of the EmoContext 2019

international shared task (Chatterjee et al., 2019b), which is focused on the detection of emotions in

context.

In this chapter, we present the task of contextual emotion detection, the dataset used for the

task, and the architecture of our model. Based on the official results, the effects of different model

components and their effectiveness in the classification task are analyzed.

3.1 EmoContext

Emotion detection based solely on text is a challenging task. As only linguistic cues are avail-

able, facial expressions and voice features, which are known to be discriminating (Poria et al., 2016),

cannot be used. In addition, several emotions can be expressed textually by the same linguistic cues,

such as emotion keywords, interjections, and emojis (Liew and Turtle, 2016). Finally, many pieces

of text, especially online comments, posts, and tweets are too short to allow for correct classifica-

tion. These challenges highlight the importance of using contextual information in order to detect

the emotion conveyed in a piece of text.

It is worth mentioning that, in many cases, context plays an irreplaceable role in the identifica-

tion of the emotion present in a piece of text. As an example, consider the sentence I have tears in

my eyes. If taken out of context, the emotion in this sentence will most likely be classified as sad.

24

However, if the same sentence is part of the following conversation:

Speaker 1: We did it! We finally won the championship!

Speaker 2: Finally!

Speaker 1: I have tears in my eyes.

taking context into account, the last sentence uttered by speaker 1 has happy as its main emotion

class.

Although much research has focused on the detection of emotions in tweets and blog posts

(e.g. Mohammad, 2012; Desmet and Hoste, 2013; Liew and Turtle, 2016), emotion detection in

dialogues, as well as in single utterances has received very little attention. This topic can have

significant impact for the development of social chatbots, with the aim of creating an emotional

connection between a user and a chatbot (Banchs, 2017).

Task 3 of SemEval 2019 (EmoContext) has focused on contextual emotion detection over 4

classes: happy, sad, angry, and others (Chatterjee et al., 2019b). We participated in this shared task

under the name CLaC Lab and used a combination of artificial neural networks (see Section 2.2)

with recurrent units and attention mechanism, and SVM (see Section 2.1) to address this multi-class

classification task.

3.2 Dataset and Task

The dataset is taken from Chatterjee et al. (2019b). It consists of short 3-turn dialogues between

two speakers (turn 1 uttered by speaker 1, turn 2 uttered by speaker 2, and turn 3 uttered by speaker

1 again). Table 3.1 shows two samples of the dataset1.

ID Turn1 (Speaker1) Turn2 (Speaker2) Turn3 (Speaker1) Label (of Turn3)

156 You are funny LOL I know that. :p , happy

187 Yeah exactly Like you said, like brother like sister ;) Not in the least others

Table 3.1: Two sample dialogues from the EmoContext 2019 dataset.

The goal is to detect the emotion of speaker 1 in turn 3, taking into account the previous turns.
1Samples are taken from https://competitions.codalab.org/competitions/19790.

25

https://competitions.codalab.org/competitions/19790

The data is annotated with 4 emotions: happy, angry, sad, and others. In order to simulate a real-

life task, the distribution of the labels in the dataset is highly imbalanced: 50% of the training data

belongs to the others class, while 14%, 18%, and 18% of the training data is dedicated to classes

happy, angry, and sad, respectively. The test and development sets are even more imbalanced, with

85% of the samples labelled as others. Table 3.2 summarizes some statistics of the dataset.

Dataset Label # of Samples Percentage
Average # of Tokens

Turn 1 Turn 2 Turn 3

Train

happy 4243 14% 4.873 7.195 3.825

angry 5506 18% 5.107 6.859 5.457

sad 5463 18% 4.608 6.450 4.829

others 14948 50% 4.232 6.493 4.153

All 30160 100% 4.550 6.650 4.467

Development

happy 142 5% 4.761 7.444 3.690

angry 150 5% 4.647 7.347 4.867

sad 125 5% 4.624 6.200 5.192

others 2338 85% 4.245 6.546 4.143

All 2755 100% 4.311 6.620 4.207

Test

happy 284 5% 5.063 6.845 3.493

angry 298 5% 4.470 6.456 4.856

sad 250 5% 5.000 6.632 4.936

others 4677 85% 4.279 6.601 4.143

All 5509 100% 4.362 6.607 4.184

All

happy 4669 12% 4.881 7.181 3.801

angry 5954 16% 5.063 6.851 5.412

sad 5838 15% 4.626 6.452 4.842

others 21963 57% 4.243 6.521 4.150

All 38424 100% 4.506 6.642 4.408

Table 3.2: Statistics of the EmoContext 2019 dataset.

26

3.3 The Model

Figure 3.1 shows the architecture of our model for the task of contextual emotion detection. The

model is composed of two main components: 1) the neural feature extractor and 2) the classifier.

3.3.1 The Neural Feature Extractor

As shown in Figure 3.1, the neural feature extractor is a recurrent neural network (see Sec-

tion 2.2.1) with an attention mechanism. The feature extractor is responsible for creating dense

vector representations for each dialogue turn. As a result, the model uses 3 feature extractors, one

for each dialogue turn.

Each neural feature extractor is composed of an input layer, a recurrent layer, and an attention

layer, explained below.

The Input Layer takes as input the vector representations of each word in the corresponding

dialogue turn. Each dialogue turn is a sequence of tokens, represented as a vector [xi,1, xi,2, . . . , xi,t,

. . . , xi,n], where xi,t is the corresponding vector for the t-th word in the i-th dialogue turn, and

n is the length of the i-th turn. The vector representation for each token (xi,t) is composed of

the word embedding (see Section 2.2.2) corresponding to the token, concatenated with a one-hot

representation of the token’s part-of-speech (POS) tag.

The Recurrent Layer takes as input the token vectors ([xi,1, xi,2, . . . , xi,t, . . . , xi,n]), and pro-

cesses them in a forward and a backward passes. In the forward pass, the content value of the

hidden layer at a specific time-step is calculated using the value of the input at the current time-step,

and the content value of the hidden layer in the previous time-step.

Equation 21 shows how the content value of the hidden layer is calculated at a specific time-

step t, where xt represents the input value in the current time-step, and ht and ht±1 represent the

content value of the hidden node in the current and previous/next time-steps (in the forward or

backward pass), respectively, and fh is the function that calculates the value of ht using xt and

ht±1. Subsequently, the output of the hidden layer is calculated using Equation 22, where yt is the

27

Fi
gu

re
3.

1:
A

rc
hi

te
ct

ur
e

of
th

e
m

od
el

fo
rE

m
oC

on
te

xt
20

19
.

28

output of the hidden layer at time-step t, and fy is the function that calculates the output value based

on ht.

ht = fh(xt, ht±1) (21)

yt = fy(ht) (22)

The Attention Layer is a function that automatically assigns weights to the output of the recurrent

layer at each time-step, and calculates the weighted sum of the outputs using their corresponding

weights (Vaswani et al., 2017). Following several works that have shown significant improvement

in text classification with the use of attention (e.g. Yang et al., 2016; Zhou et al., 2016; Wang et al.,

2016; Cianflone et al., 2018), we incorporated an attention mechanism in our contextual emotion

detection framework. Equation 23 shows the overall mechanism of our attention layer, where ωt′

represents the corresponding weight for the output of the recurrent layer at time-step t′ in, and n is

the number of time-steps (i.e. the length of the dialogue turn).

Attention =
n

∑
t′=1

yt′ωt′ (23)

In our proposed model, the weights are calculated by applying a single N -to-1 feed-forward

layer on the output of the recurrent layer at each time-step (where N is the size of the output of

the recurrent layer), concatenating the results, and applying a softmax over them. Equations 24

and 25 show the mechanisms used to calculate the weights, where w corresponds to the weights in

the single-layer neural network, and νt is the single value, which is the result of feeding yt to the

fully-connected layer.

νt = yt ×w (24)

ω = Softmax([ν1, ν2, ν3, . . . , νn]) (25)

29

3.3.2 The Classifier

As shown in Figure 3.1, we experimented with two types of classifiers at the output layer: A

fully-connected neural network (see Section 2.2.1), followed by a softmax activation function, and

an SVM (see Section 2.1), which takes as input the neural representations generated by the 3 latent

feature extractors for each dialogue turn.

The neural classifier is trained jointly with the neural feature extractors, while the SVM classifier

is completely trained after each training epoch of the neural network, using the features extracted

by the 3 neural feature extractors.

3.4 Experimental Setup

The neural network components of our model were developed using PyTorch (Paszke et al.,

2017) and the SVM was developed using the Scikit-learn library (Pedregosa et al., 2011). In this

section, we will explain the different setups that we experimented with for the task of contextual

emotion detection.

3.4.1 Word Embeddings

In order to test our model, we experimented with two different pretrained word embeddings

(see Section 2.2.2). As the first word embedder, we chose GloVe (Pennington et al., 2014), which

is pretrained on 840B tokens of web data from Common Crawl, and provides 300d vectors as word

embeddings. As our second word embedder, we experimented with ELMo (Peters et al., 2018),

which produces word embeddings of size 1024, and is pretrained on the 1 Billion Word Language

Model Benchmark2 (Chelba et al., 2014).

The main reason for choosing these two word embedders was to evaluate the effect of their

embedding mechanisms for our task. As opposed to GloVe which assigns a word embedding to

each token, the ELMo word embedder calculates the embedding for each token from its constituent

characters by also taking into account its textual context. We suspected that this approach would
2The selected versions of GloVe and ELMo lead to the best results in our task. We also experimented with other

versions of the two, but their performances were inferior.

30

lead to better results in our task (see Section 3.5).

3.4.2 POS Tags

The spaCy library3 was used for tokenization and POS tagging, and the Penn Treebank tagset

standard (Marcus et al., 1993) was followed for assigning POS tags to tokens. This lead to one-hot

vectors for POS information of size 51.

3.4.3 Recurrent Units

Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent

Units (GRU) (Cho et al., 2014) were both experimented with as the building blocks of the recurrent

layer. For both LSTM and GRU, 2 layers of 25 bidirectional recurrent units were stacked.

3.4.4 Neural Network Optimization

The Adam optimizer (Kingma and Ba, 2015) with a learning rate of 10−4 was used to train

the neural network. Cross-entropy with class weights was used as the loss function. In order to

handle the imbalanced class distribution in the dataset (see Table 3.2), the corresponding weight for

each class was calculated proportional to the inverse of the number of samples for that class in the

training data. This way, more penalty was applied to the network when an error was made on a

sample from a minority class rather than a more frequent one.

Minibatches of size 32 were used during training and testing, and zero-padding was applied in

order to handle different input sequence lengths. In order to minimize padding, samples with similar

average lengths of tokens over the three turns were put in the same batch.

Finally, in order to avoid the exploding gradient problem (Pascanu et al., 2012), gradient clipping

with a norm of 0.5 was applied.

3.4.5 SVM Hyperparameters

The SVM utilizes a polynomial kernel with degree of 4. To set the parameter γ, the svm.SVC

model in Scikit-learn was initiated with its parameter gamma set to auto, which automatically sets
3https://spacy.io/

31

https://spacy.io/

γ to the inverse of the number of features extracted by the neural feature extractor. In our model,

this value was set to 1/150, since each of the three neural feature extractors extracts 50 features from

the dialogue turn that it handles.

3.4.6 Overall Training Process

As indicated in Section 3.3.2, the neural classifier was trained jointly with the neural feature

extractors, while the SVM was trained separately after each epoch, using the extracted features on

the training data.

The models with either neural or SVM classifier were trained for 50 epochs, and the model’s

parameters were saved after each training epoch. The optimal parameters were then picked as the

ones that led to the highest micro-average F1 score on the three main emotion classes (all except

class other) on the development dataset. This final model with the optimal trained parameters was

then evaluated on the test set.

3.5 Results

The official evaluation metric used at the EmoContext shared task is the micro-average F1 score

(see Section 2.3.4) over the three main emotion classes, i.e. happy, angry, and sad (ignoring the 4th

class, others).

Figures 3.2 and 3.3 show the performance of each model on the development dataset, throughout

the training process. As Figures 3.2 and 3.3 show, using both the neural classifier and the SVM

classifier, the models with GRU as the recurrent units and ELMo embeddings as input features were

generally superior to the others.

32

Figure 3.2: Performance of the model at EmoContext 2019 (in micro-average F1 score over the
three main emotion classes) on the development dataset, as a function of the number of training
epochs with the neural classifier.

Figure 3.3: Performance of the model at EmoContext 2019 (in micro-average F1 score over the
three main emotion classes) on the development dataset, as a function of the number of training
epochs with the SVM classifier.

33

The notation <type-of-recurrent-unit>+<type-of-classifier> with <type-of-input-features> is

used in the rest of this chapter, to refer to each model; for example, LSTM+NN with GloVe refers

to the model that uses LSTM units in the recurrent layer, fully-connected neural layer as classifier,

and GloVe embeddings as input; whereas GRU+SVM with ELMo+POS denotes the version of our

model with GRU units in the recurrent layer, SVM as the classifier, and ELMo embeddings and

one-hot encoded POS tags as input.

As indicated in Section 3.4.6, the final versions of the models were chosen based on their per-

formance on the development dataset, i.e. for each model, the final set of trained parameters were

the one that yielded the maximum micro-average F1 score on the three emotion classes on the

development dataset.

The results achieved from our models are also compared with the baseline system, provided by

the EmoContext 2019 shared task (Chatterjee et al., 2019a). The baseline system is composed of a

neural network with 128 LSTM units in the hidden layer, and as input features, uses the GloVe word

embeddings, pretrained on 6 billion tokens from Wikipedia 2014 and the Gigaword 5 corpus4.

Table 3.3 shows the performance of each model5, where the best micro-average F1 scores are

highlighted in bold. The results show that the model GRU+SVM with ELMo yields the best perfor-

mance of 73.03% on the development data, while the model GRU+SVM with ELMo+POS outper-

forms all the other models on the test dataset with a micro-average F1 score of 69.93%, by being

marginally better than GRU+SVM with ELMo.

The results also show that, with the exception of the two models LSTM+NN with GloVe and

GRU+NN with GloVe which have inferior performance compared to the baseline system on the test

dataset, all the other models significantly outperform the baseline model on both development and

test data.
4https://catalog.ldc.upenn.edu/LDC2011T07
5At the time of writing this chapter, the F1 score of the baseline model had not been released for each emotion class.

34

https://catalog.ldc.upenn.edu/LDC2011T07

Model Input Feature
F1 Score on Development Data F1 Score on Test Data

happy angry sad Micro happy angry sad Micro

BASELINE – – – 58.61 – – – 58.68

LSTM+NN

GloVe 53.45 67.37 59.39 60.40 52.05 67.02 52.89 57.60

Glove+POS 58.33 68.28 62.54 63.15 58.03 68.68 59.77 62.35

ELMo 63.88 67.61 69.14 66.74 62.07 65.14 67.37 64.74

ELMo+POS 59.03 65.92 68.42 64.13 63.95 62.06 68.56 64.54

GRU+NN

GloVe 47.79 65.67 66.19 59.36 51.34 65.80 58.04 58.26

Glove+POS 57.94 68.39 64.74 63.77 61.24 69.27 57.82 62.99

ELMo 64.26 67.58 74.71 68.34 63.32 66.21 69.73 66.33

ELMo+POS 65.48 65.15 73.12 67.46 62.20 66.40 71.64 66.53

LSTM+SVM

GloVe 54.85 67.06 66.91 65.83 53.00 68.05 57.30 62.84

Glove+POS 61.30 68.95 66.20 66.46 60.30 67.32 60.84 63.26

ELMo 65.64 65.91 73.44 68.94 63.78 65.25 70.10 66.45

ELMo+POS 62.31 68.44 68.73 67.25 63.37 64.09 68.86 67.28

GRU+SVM

GloVe 50.21 68.31 71.00 65.08 50.22 70.26 60.13 62.02

Glove+POS 52.77 68.73 66.67 65.42 56.00 69.68 57.96 63.11

ELMo 67.33 67.83 75.40 73.03 65.08 68.83 73.07 69.39

ELMo+POS 68.21 66.26 74.46 70.03 64.71 69.13 71.05 69.93

AVERAGE 59.55 67.34 68.82 65.96 59.42 67.07 64.07 64.22

Table 3.3: The performance of each model on the EmoContext 2019 development and test datasets,
in terms of F1 score on each emotion class, and micro-average F1 over the three main emotion
classes. The AVERAGE is computed over the proposed models and does not include the baseline.

35

3.6 Discussion

To better understand the results, we analyzed the effect of different components of the model.

3.6.1 Effect of Input Features

The results in Table 3.3 demonstrate that the models that use ELMo as word embeddings have a

significantly higher performance than the ones with GloVe. We believe that this is due to two main

reasons: 1) The ELMo word embedder is character-based, which allows it to better handle out-of-

vocabulary words, and 2) ELMo takes into account the textual context of the token when extracting

the word embedding.

Table 3.3 also shows that the use of POS tags leads to a significant improvement with the models

that utilize GloVe word embeddings. On the other hand, for the models that use ELMo embeddings

as input, this is not the case. As Table 3.3 shows, in several occasions, the use of POS tags has even

reduced the performance of ELMo-based models. We believe that, in the case of GloVe, where the

word embeddings are context-independent, POS tags can improve token representations to also take

into account the textual context in which the tokens have occurred. However, since ELMo already

takes into account the textual context when extracting the token representations, POS tags do not

help much and can even be redundant in some cases.

3.6.2 Effect of the Recurrent Units

The results in Table 3.3 show that for the models that incorporate ELMo embeddings, the ones

that use GRU in their recurrent layer significantly outperform the ones with LSTM; however, this

behavior cannot be observed in GloVe-based models, as we can see several cases, where the LSTM-

based models are slightly better.

It could be concluded that, for the current task, since GloVe word embeddings are context-

independent, a stronger recurrent unit is required to capture the context, while in the case of ELMo,

where context is already taken into account, a simpler recurrent unit such as GRU is enough while

being less prone to overfitting.

36

3.6.3 Effect of the Classifiers

Table 3.3 shows that, in almost all cases, the models with the SVM classifier significantly out-

perform the ones with the neural classifier. We believe that, although the neural network may have

been able to reach similar results as the SVM, the latter reached this performance using less fine-

tuning due to its explicit design to optimize the margin size between classes.

On another note, Figures 3.2 and 3.3 show that the models with the SVM classifier were signif-

icantly more robust and demonstrated much less performance fluctuation during training than the

ones with the neural classifier. We believe that this is due to the more deterministic nature of SVM

in comparison to the neural networks.

However, the most important drawback of the SVM was the training time: since the SVM

classifier was trained separately from feature extractors, training it entailed additional training time

to the model. All being said, we believe that, if training time is not a concern, the SVM classifier is

a better option than the neural one.

An interesting finding regarding the SVM classifier is that, in contrast to the neural network

where applying class-weights to the loss function helped improve the performance of the models,

applying class-weights to the SVM decreased its performance.

3.6.4 A Closer Look at the Emotion Classes

The row labelled AVERAGE in Table 3.3 provide information regarding the difficulty of detect-

ing each class. Table 3.3 shows that, among the three main classes, happy, angry, and sad, the class

happy was the most difficult to detect.

Table 3.2 shows that the low average F1 score for class happy is probably due to the significantly

smaller number of samples with this class in the training data (14%) in comparison to the samples

from the other two emotion classes (18% and 18%). Although the weighted loss functions (see

Section 3.4.4) somehow managed to handle the imbalanced class distribution in the data, the optimal

weights are not necessarily proportional to the inverse of the frequency of classes.

37

3.6.5 Quality of the Extracted Neural Features

To better understand the contribution of the extracted neural features from the feature extractors,

we calculated the mutual information between the values of each neural feature and the classes.

Figure 3.4 shows the average and the standard deviation of the mutual information between the

features extracted from each neural feature extractor in each model and the classes in the training

data. Since both the neural and the SVM classifiers use the same set of neural features, we did not

differentiate between models with similar neural feature extractors and different classifiers.

Figure 3.4: The average mutual information between the features of each dialogue turn, extracted
by each neural feature extractor, and the classes.

As Figure 3.4 shows, in all cases, the features extracted from the third turn of the conversation

have the highest mutual information with the classes, and the ones from the second turn have the

lowest. This agrees with the nature of the dataset, where the label is assigned to the emotion of

speaker 1 (who uttered dialogue turns 1 and 3) after the third turn is uttered. This also indicates that

the nature of emotion detection in the context of dialogues is different from that in monologues in

two ways: not only do the utterances by different speakers contribute differently to the emotional

state of a speaker, but also the timing of the utterances by the same speaker has an impact on the

contribution of that utterance to the emotion classification.

38

Figure 3.4 shows that the difference in average mutual information between the extracted fea-

tures and the emotional classes are higher for features from the third (i.e. the most recent) dialogue

turn. As expected, the features from the ELMo-based models have significantly higher mutual in-

formation with the classes than the ones from the GloVe-based models. The features from the third

dialogue turn in models with GRU have slightly higher mutual information than the ones from the

models with LSTM. However, the standard deviation between the features extracted by the GRU-

based models are significantly smaller than the ones with LSTM, showing that between the models

with LSTM and the ones with GRU, the features extracted from the models with GRU had more

similar amount of contribution to the classification task than the ones from the LSTM. This has led

to the GRU-and-ELMo-based models outperforming the others.

A surprising finding is that the neural features extracted by the GRU-based models from the sec-

ond dialogue turn have the least mutual information with the classes in comparison to the ones from

the other models. Observing this, we experimented with our classifiers by disregarding the neural

features from the second turn; however, this lead to a slight performance drop. We hypothesize that,

although the neural features from the second dialogue turns bring only a small contribution to the

classification, the GRU-based models tend to focus more on the features from the other two turns.

This leads to the second feature extractor being less focused upon, and as a result, being less trained

than the ones from other models.

3.7 Further Analysis

Since 311 teams submitted their results to EmoContext 2019, all of which cannot be presented

in this chapter, we only describe overall statistics of the results and present some popular approaches

utilized by the top performing teams.

As shown in Table 3.4, our best model performed approximately 3% above average. However,

some of the submitted models by other teams that have achieved good results can be analyzed to

improve our classification system.

39

Micro-average F1

Max 79.59%

3rd Quartile 73.17%

CLaC 70.72%6

Median 69.40%

Mean 65.99%

1st Quartile 63.70%

Min 1.43%

Table 3.4: Performance statistics of all participants (taken from Chatterjee et al. (2019b)).

Looking at the models developed by the top performing teams in the EmoContext shared task,

it can be concluded that ensemble models have been found useful for text classification.

Similar to our approach, Basile et al. (2019) experiment with an LSTM-based model that feeds

the 3 turns of conversation into 3 different branches. The model uses attention at the end of each

branch to take into account the most interesting parts of each conversation turn before combining

them. As input features, they pretrain their own embeddings on the English Wikipedia. In an attempt

to deal with unbalanced data, they develop a second model which does a two-stage classification:

first classifying a sample as emotional or other, after which if the sample is recognized as emotional,

there is a second classification that labels the sample as happy, angry, or sad. They also experiment

with two other models using transfer learning: The 3rd model uses a universal sentence encoder

(Cer et al., 2018) and the 4th model utilizes Bert (Devlin et al., 2019). In order to combine the

strengths of different approaches, the output softmax probabilities of all 4 models are concatenated

and fed to a final classifier. Their best F1 score of 0.77 on the test set is achieved by an ensemble

model with an SVM classifier at the end.

Huang et al. (2019) create an ensemble model which is made up of two deep learning sub-

models. The first model is a hierarchical recurrent model which has two recurrent components,
6The result that we submitted to the EmoContext shared task was slightly higher than the results reported in Table 3.3,

which was achieved by also using the development dataset to train the SVM classifier.

40

called encoder RNN and context RNN. Using a combination of pretrained GloVe and ELMo embed-

dings, the encoder RNN is responsible for mapping conversations turns to vectors and the context

RNN processes those vectors, thus being able to represent the multi-turn structure of the conversa-

tions. The hierarchical recurrent model alongside a pretrained Bert model constitute the ensemble

model which achieves an optimal performance with an F1 score of 0.77.

Liang et al. (2019) experiment with pretrained word embeddings by Baziotis et al. (2017) as

well as Google’s pretrained Word2Vec embeddings as input features to a CNN with max pooling

that processes conversation turns in a parallel but separate fashion. This architecture is used to

train classifiers for 3 different sub-tasks. The first classifier is trained to distinguish between the

four different classes. The second classifier is aimed at classifying only the three emotional classes

happy, angry, and sad, while the last classifier is trained to do a binary others-or-not classification.

The final class is decided by using voting to comibine the labels output by the three classifiers. Their

experiments show that the ensemble model performs better than the individual classifiers, achieving

an F1 score of 0.76.

An interesting finding by Basile et al. (2019) is that the contextual emotion detection task can

be challenging even for humans. To measure the difficulty of the task, two fluent English speakers

were asked to manually annotate 300 samples taken from the development set and measured their

F1-scores against the gold labels. Their F1 scores were calculated to be 0.73 and 0.72, showing

challenges in classifying others versus the emotional classes and also in distinguishing between sad

and angry classes. Therefore, it can be concluded that it is possible to take advantage of the strengths

and the information provided by different models by using them in an ensemble architecture, as well

as leveraging the extra information provided by transfer learning through using different types of

pretrained embeddings.

In this chapter, we proposed a model for the task of contextual emotion detection. We evaluated

our model with the EmoContext 2019 shared task dataset which consists of 3 turn conversations

tagged with one of the labels: happy, sad, angry, and others, based on the emotion present in the

41

last dialogue turn.

The proposed model utilizes an attention-based recurrent neural network. We experimented with

GloVe and ELMo embeddings, alongside POS tags as input, LSTM and GRU as recurrent units, and

a neural or an SVM classifier. The best result on the test dataset was achieved with ELMo and POS

tags as input, GRU as recurrent units, and SVM as the final classifier. Using this setup, we reached

a performance of 69.93% in terms of micro-average F1 score which is a significant improvement

over the baseline of 58.68%.

The main takeaway from the experiments reported in this chapter is that neural networks can

act as great feature extractors (something that SVMs are not capable of handling on their own)

while SVMs proved to be better final classifiers than neural networks. We used this finding in our

subsequent experiments that are reported in Chapters 4 and 5.

42

Chapter 4

Suicide Risk Assessment

In the previous chapter, we developed a model for the task of contextual emotion detection in

short conversations. The model consisted of a gated recurrent neural network with attention that

took as input ELMo embeddings alongside one-hot POS tags and acted as a deep neural feature

extractor and an SVM as the final classifier. Combining the power of deep neural networks in

extracting relevant features and the power of SVMs in classification proved useful in improving the

results of a non-hybrid architecture. We also observed from the results of other teams that training

multiple models and combining their outputs can be helpful in final classification, since different

models can contribute to classification by extracting different features.

In this chapter, we extended our model from Chapter 3 and developed an ensemble text clas-

sification model in the framework of the CLPsych 2019 shared task (Zirikly et al., 2019) and test

it using the test data and the evaluation metrics provided by the organizers. The main reason for

using an ensemble approach is the limited number of annotated samples available for this task in

comparison to the number of training samples available for the model developed in Chapter 3, a

limitation that can lead to overfitting when a single neural model is utilized.

In the following sections, first an overview of the task and the dataset is given. In Section 4.2, the

model’s architecture, the implementation, and the different configurations used for the experiments

are presented in detail. Section 4.3 includes the results achieved in the CLPsych 2019 shared task

and presents an analysis.

43

4.1 Dataset and Task

The CLPsych 2019 shared task (Zirikly et al., 2019) focuses on the prediction of a person’s

degree of suicide risk based on a collection of their Reddit posts (Shing et al., 2018). It is a multi-

class classification task where a subject can be assigned to one of the four categories of no (class a),

low (class b), moderate (class c), or severe risk (class d), and consists of three different tasks:

Task A aims at suicide risk prediction based solely on the posts written on the Suicide Watch

subreddit1.

Task B focuses on making the same prediction by taking into account a person’s posts on Suicide

Watch, as well as their posts on other subreddits.

Task C has the goal of estimating suicide risk by looking at a subject’s posts on different subred-

dits, but excluding Suicide Watch.

type of dataset sub-task
of users

average # of posts per user
class a class b class c class d

Train

Task A
127

(26%)

50

(10%)

113

(23%)

206

(41%)
1.85

Task B
127

(26%)

50

(10%)

113

(23%)

206

(41%)
115

Task C
624

(63%)

50

(5%)

113

(11%)

206

(21%)
56.4

Test

Task A 125 1.49

Task B 125 76.9

Task C 248 57.4

Table 4.1: Distribution of labels in the CLPsych 2019 dataset for different sub-tasks.

1https://www.reddit.com/r/SuicideWatch

44

https://www.reddit.com/r/SuicideWatch

The first two tasks are dedicated to assessing risk; while Task C aims at screening. We partici-

pated in all 3 tasks2 under the team name CLaC and ranked first in tasks A and C.

Table 4.1 shows some statistics of the dataset. As shown in the table, in tasks A and B, most of

the samples belong to class d, while class b has a significantly smaller number of samples. In task

C, the bulk of the data belongs to class a, leading to a bias towards this class. As a result, the official

evaluation metric defined for this task excludes class a (see Section 4.3).

4.2 System Overview

Our system is composed of 8 neural network sub-models, each with a specific type of input

word embedding and hidden layer. The extracted neural features and softmax probabilities from all

8 neural networks are combined by a fusion component and the resulting features are used in the

final SVM classifier. Figure 4.1 illustrates the overall architecture of the system. Each component

is explained in the following sections.

4.2.1 Sub-models

As shown in Figure. 4.1, each sub-model includes an input layer that receives as input the posts

by a user, and vectorizes its tokens using an embedding layer. The output of the input layer is

then fed to a hidden layer, which is followed by a post-level attention/pooling layer that creates a

representation of the post from its constituent tokens. The user-level attention layer is responsible

to calculate the vector representation of the user, using her/his online posts. Finally, the output

(classification) layer predicts the probability distribution of the four classes.

Our main focus during the development of the sub-models was to include diversity of infor-

mation sources, so that the final ensemble model can incorporate different points of views when

performing the final classification.
2This research was recognized as an IRB exempt by Concordia University’s research ethics board.

45

Fi
gu

re
4.

1:
A

rc
hi

te
ct

ur
e

of
th

e
m

od
el

fo
rC

L
Ps

yc
h

20
19

.T
he

nu
m

be
ro

fa
rr

ow
s

be
tw

ee
n

co
m

po
ne

nt
s

co
rr

es
po

nd
s

to
th

e
nu

m
be

ro
fs

ub
-m

od
el

s
th

at
m

ov
e

in
th

at
flo

w
.

T
he

ro
un

de
d-

co
rn

er
bo

xe
s

re
pr

es
en

tt
he

co
m

po
ne

nt
s

th
at

w
or

k
at

th
e

po
st

le
ve

l,
w

hi
le

th
e

sh
ar

p-
co

rn
er

bo
xe

s
ar

e
us

er
-

le
ve

lc
om

po
ne

nt
s.

T
he

so
lid

lin
es

re
pr

es
en

tn
eu

ra
lc

on
ne

ct
io

ns
;

w
hi

le
th

e
do

tte
d

lin
es

sh
ow

th
e

flo
w

of
da

ta
w

ith
ou

tt
he

ex
is

te
nc

e
of

a
ne

ur
al

co
nn

ec
tio

n.
T

he
bo

ld
ar

ro
w

be
tw

ee
n

th
e

Fu
si

on
an

d
SV

M
co

rr
es

po
nd

s
to

th
e

flo
w

of
da

ta
th

at
ex

is
ts

on
ly

in
th

e
fin

al
m

od
el

.

46

Input Layer

The inputs to the model are the online posts of each user. Each post is first tokenized, and the

tokens are sent to the word embedder, in order to be converted into dense vectors. As shown in

Figure 4.1, these token vectors are then fed to the hidden layer.

As we did in Chapter 3, two different pretrained word embeddings were experimented with. The

first word embedder was the 300d version of GloVe (Pennington et al., 2014) that was pretrained on

840B tokens of web data from Common Crawl. The second word embedder was the original 1024d

version of ELMo (Peters et al., 2018), which was pretrained on the 1 Billion Word Language Model

Benchmark (Chelba et al., 2014). These two word embeddings were used in order to provide our

ensemble model with sub-models that utilize both contextual (ELMo) and non-contextual (GloVe)

word embedders in their input layer.

Hidden Layer

The hidden layer is responsible for processing the token vectors, generated by the input layer.

As shown in Figure 4.1, we have experimented with four hidden architectures in our sub-models:

a CNN (LeCun et al., 1999) that processes token n-grams separately, and a Bidirectional Vanilla

RNN (BiRNN), a Bidirectional Long Short-Term Memory (BiLSTM) (Hochreiter and Schmidhu-

ber, 1997) and a Bidirectional Gated Recurrent Unit (BiGRU) (Cho et al., 2014), all of which pro-

cess token vectors sequentially, from first to last and vice-versa, by taking into account the preceding

and following tokens, respectively.

Post-level Attention/Pooling Layer

In order to create a vector representation for each post, three different types of pooling were

applied to the output of the hidden layer. In the rest of this chapter, these will be referred to as AVG,

MAX, and ATTN.

AVG pooling simply averages the output vectors of the hidden layers. MAX pooling is applied

on the resulting vectors after applying Concatenated Rectified Linear Unit (CReLU) on the output

vectors of the hidden layers (i.e. ReLU applied on the concatenation of each output vector and its

47

negative). ATTN is an attention mechanism (Bahdanau et al., 2015) applied to the output vectors

of the hidden layers. While ATTN may not be considered a pooling method, we do so in order to

differentiate between ATTN and the attention mechanism presented in Section 4.2.1. Since ATTN’s

functioning is similar to the attention mechanism used to calculate the weighted average of the

representations for a user’s posts, its mechanism will be explained in detail in Section 4.2.1.

User-level Attention Mechanism

It was hypothesized that all posts by a user do not contribute equally to signal her/his mental

state. In order to take into account the posts of each user based on their importance in detecting

suicide risk, an attention mechanism was used. This mechanism automatically assigns weights to

each post from a user, then calculates the weighted average of the representations of all the posts,

and uses this average as a representation of the user. Equation 26 shows how the output of the

attention mechanism is computed.

U =
N

∑
i′=1

pi′ωi′ (26)

where pi′ stands for the representation of the i′-th post by a user, ωi′ refers to the weight assigned

to the post, and U corresponds to the vector representation for that specific user.

In order to calculate the corresponding weights for the posts, a single n-to-1 fully connected

layer is first applied to the representation of each post, where n corresponds to the size of the doc-

ument representation. The final weights are calculated by applying a softmax to the concatenation

of the results of applying the fully-connected layer on the representations of all posts from a user.

Equations 27 and 28 show how the weights are calculated:

νi = pi ×w (27)

ω = Softmax([ν1, ν2, ν3, . . . , νN]) (28)

where w corresponds to the weights in the neural layer, and νi refers to the resulting scalar, after

feeding pi (the representation of the i-th post) to the fully-connected layer.

As stated in Section 4.2.1, the overall mechanism of ATTN is similar to the attention mechanism

48

applied to a user’s posts. The only difference resides in the level of their functioning: the attention

mechanism is applied to the post representations, whereas ATTN is applied to the outputs of the

hidden layer, at (multiple-)token-level.

Output (Classification) Layer

The final layer in the sub-models is a feed-forward fully-connected layer that maps the output

of the user-level attention to a vector with size 4 (corresponding to the four classes). At the end of

this layer, a softmax activation function gives as the output, the predicted probability distribution

over the classes negative and positive.

The Sub-models’ Optimization Technique

Similarly to Chapter 3, PyTorch (Paszke et al., 2017) was used to develop and train the neural

sub-models. Each sub-model was trained separately on the training data and optimized using the

validation data.

The Adam optimizer (Kingma and Ba, 2015) with a learning rate of 5 × 10−4 was used as the

optimization technique. Cross-entropy was used as the loss function, and in order to handle the

imbalanced class distribution, weights were assigned to each class proportional to the inverse of the

number of samples in that class. Due to limitation in computational resources, mini-batches with a

maximum size of 32 were applied at the post level for each user.

4.2.2 Ensemble Model

As shown in Figure 4.1, the ensemble model is composed of several neural sub-models, a fusion

component, and a final SVM classifier.

The Fusion Component

The fusion component is responsible for creating a final vector representation for each user from

the neural features and the predicted probability distributions over classes.

The neural features of the user representations are the result of each sub-model’s attention com-

ponent. In the fusion components, these user representations are first concatenated, and later, the

49

mutual information between each neural feature and the final classes is calculated (using the Scikit-

learn library (Pedregosa et al., 2011)). A subset of these features that have the highest mutual

information with the final classes are then selected as the final neural features.

The fusion component also uses the predicted probability distributions of the classes for each

user from the softmax output of all sub-models. The final user representations are generated by

concatenating the neural features and the predicted probability distributions from all sub-models, to

be fed to the SVM (see Figure 4.1).

The Support Vector Classifier

As shown in Figure 4.1, the final classifier is an SVM, which uses as input the final user rep-

resentations generated by the fusion component. The SVM was trained on the samples from the

training data, and the validation dataset was used to find the best set of hyperparameters. We used

the Scikit-learn library (Pedregosa et al., 2011) for developing and training the SVM model. The

final hyperparameters of the SVM classifiers are presented in Section 4.2.3.

4.2.3 Final Submitted Models

Before training the model and its sub-models, we randomly sampled posts from 33% of the

users in the training dataset in a stratified fashion, in order to be used for validation.

When feeding the posts to the sub-models, only the first 200 or 400 tokens were used3, depend-

ing on which limit yielded a better performance at validation time, and the rest were disregarded.

The training process of each sub-model was stopped when the performance on the validation

data was at its maximum (for each task, we used the main evaluation metric for that specific task;

see Section 4.3). The validation data was also used in order to find the best set of hyperparameters

of the models for each task.

The full model utilizes 8 different sub-models, each one with a unique input word embedding

(GloVe or ELMo) and hidden layer type (CNN, Bi-RNN, Bi-LSTM or Bi-GRU). Table 4.2 shows

the hyperparameters of the sub-models for each task, where each sub-model is named by its type of

hidden layer and input word embedding.
3The average size of posts across all tasks is ∼78 tokens.

50

For each task, we submitted three different runs:

Run 1 where the SVM classifier only uses the neural features.

Run 2 where the SVM classifier only uses the predicted probability of classes.

Run 3 where both the neural features and predicted probabilities are used by the SVM classifier.

Table 4.3 summarizes the hyperparameters used in each run.

51

Ta
sk

A
Ta

sk
B

Ta
sk

C
#H

L
#H

N
Po

ol
in

g
M

ax
Po

st
#H

L
#H

N
Po

ol
in

g
M

ax
Po

st
#H

L
#H

N
Po

ol
in

g
M

ax
Po

st
/K

H
/#

K
Ty

pe
L

en
gt

h
/#

K
/K

H
Ty

pe
L

en
gt

h
#K

/K
H

Ty
pe

L
en

gt
h

C
N

N
–G

lo
V

e
2

30
0

M
A

X
40

0
2

20
0

AV
G

40
0

2
10

0
M

A
X

40
0

C
N

N
–E

L
M

o
1

40
0

M
A

X
40

0
2

10
0

M
A

X
40

0
2

10
0

M
A

X
40

0
B

i-
R

N
N

–G
lo

V
e

2
64

M
A

X
40

0
2

32
A

T
T

N
20

0
2

32
A

T
T

N
20

0
B

i-
R

N
N

–E
L

M
o

2
32

M
A

X
40

0
1

64
A

T
T

N
20

0
1

64
A

T
T

N
40

0
B

i-
L

ST
M

–G
lo

V
e

2
32

AV
G

40
0

1
64

A
T

T
N

20
0

2
32

A
T

T
N

20
0

B
i-

L
ST

M
–E

L
M

o
2

32
AV

G
40

0
1

64
A

T
T

N
20

0
1

64
A

T
T

N
20

0
B

i-
G

R
U

–G
lo

V
e

2
64

M
A

X
40

0
2

32
A

T
T

N
20

0
2

32
A

T
T

N
40

0
B

i-
G

R
U

–E
L

M
o

2
64

M
A

X
40

0
1

64
A

T
T

N
20

0
1

64
A

T
T

N
40

0

Ta
bl

e
4.

2:
H

yp
er

pa
ra

m
et

er
s

us
ed

fo
r

ea
ch

su
b-

m
od

el
at

C
L

Ps
yc

h
20

19
.

#H
L:

nu
m

be
r

of
hi

dd
en

la
ye

rs
,#

H
N

:n
um

be
r

of
hi

dd
en

no
de

s
in

ea
ch

la
ye

r,
K

H
:k

er
ne

lh
ei

gh
t(

fo
rt

he
C

N
N

s)
,#

K
:n

um
be

ro
fk

er
ne

ls
(f

or
th

e
C

N
N

s)
.

Ta
sk

A
Ta

sk
B

Ta
sk

C
#

of
N

eu
ra

l
Fe

at
ur

es
17

4
80

92
5

SV
M

’s
H

yp
er

pa
ra

m
et

er
ke

rn
el

de
gr

ee
γ

C
cl

as
s

w
ei

gh
t

ke
rn

el
de

gr
ee

γ
C

cl
as

s
w

ei
gh

t
ke

rn
el

de
gr

ee
γ

C
cl

as
s

w
ei

gh
t

R
un

1
po

ly
1

au
to

3.
0

ye
s

si
gm

oi
d

–
sc

al
e

0.
8

no
po

ly
3

sc
al

e
0.

1
ye

s
R

un
2

po
ly

4
sc

al
e

0.
1

no
po

ly
2

sc
al

e
0.

5
ye

s
si

gm
oi

d
–

sc
al

e
0.

4
ye

s
R

un
3

po
ly

1
au

to
0.

3
ye

s
si

gm
oi

d
–

sc
al

e
0.

2
no

po
ly

2
sc

al
e

0.
2

ye
s

Ta
bl

e
4.

3:
H

yp
er

pa
ra

m
et

er
s

us
ed

in
th

e
su

bm
itt

ed
ru

ns
at

C
L

Ps
yc

h
20

19
.

T
he

co
lu

m
n

de
gr

ee
re

fe
rs

to
th

e
de

gr
ee

of
th

e
po

ly
no

m
ia

lk
er

ne
ls

.
T

he
va

lu
es

of
au

to
an

d
sc

al
e

fo
rγ

re
fe

rt
o

w
he

n
th

e
pa

ra
m

et
er
γ

is
se

tt
o

1/
nu

m
be

r-
of

-f
ea

tu
re

s
an

d
1/

(n
um

be
r-

of
-f

ea
tu

re
s×

va
ri

an
ce

-o
f-

fe
at

ur
es

),
re

sp
ec

tiv
el

y.
T

he
va

lu
e

of
cl

as
s

w
ei

gh
ti

nd
ic

at
es

w
he

th
er

w
ei

gh
ts

pr
op

or
tio

na
lt

o
th

e
in

ve
rs

e
of

th
e

nu
m

be
r

of
sa

m
pl

es
fr

om
cl

as
se

s
ar

e
ap

pl
ie

d
to

th
e

pa
ra

m
et

er
C

.

52

4.3 Results and Discussion

Table 4.4 presents a summary of the results of the three runs in each of the three tasks, based on

three evaluation metrics (see Section 2.3 for more details on these metrics):

Macro-F1: Macro-averaged F1 on classes a, b, c, d for tasks A and B, and macro-averaged F1 on

classes b, c, d for task C. This was the official metric for this shared task, on which we optimized

our systems.

Flagged: Precision, recall and F1 for flagged versus non-flagged, where flagged includes classes

b, c, d, and non-flagged consists of class a.

Urgent: Precision, recall and F1 for urgent versus non-urgent, where urgent includes classes c

and d, and non-urgent consists of classes a and b.

In tasks A and C, the highest macro-averaged F1 was achieved by run 3, and for Task B, the

highest F1 was achieved by run 2. This shows the effectiveness of using both the neural features

and the predicted probabilities for the final SVM classifier.

In all three tasks, the best flagged F1 was achieved by run 1, showing that using only the neural

features leads to better performance when distinguishing between no-risk users (class a) and users

that require attention (classes b, c, d).

Figures 4.2, 4.3, and 4.4 show the confusion matrices for the three primary systems submitted

for tasks A, B, and C, respectively. As evident in the confusion matrices for tasks A and B, there

has been some difficulty in distinguishing between classes c and d, which is to be expected as the

two classes both include samples with higher risk. In task C, however, the most number of mistakes

happen by misclassifying samples belonging to classes d and c as class a. Although this sounds sur-

prising as classes a and d are very different and at two different sides of the continuum, we suspect

that this can be due to the distribution of labels for task C: with 63% of the training data belonging

to class a, the trained model can be more biased towards labeling samples as belonging class a. This

implies that, alongside using weighted loss to deal with the unbalanced dataset, other measures that

take into account the distance between classes can be used to improve the classification.

53

A
cc

ur
ac

y
M

ac
ro

-F
1

fla
gg

ed
ur

ge
nt

P
R

F1
P

R
F1

Ta
sk

A
ru

n
1

0.
50

4
0.

48
1

0.
95

7
0.

89
0

0.
92

2
0.

73
8

0.
81

9
0.

77
6

ru
n

2
0.

51
2

0.
41

6
0.

95
7

0.
88

1
0.

91
8

0.
96

3
0.

76
2

0.
85

1
ru

n
3

0.
56

0
0.

53
3

0.
95

7
0.

89
0

0.
92

2
0.

83
8

0.
83

8
0.

83
8

Ta
sk

B
ru

n
1

0.
40

8
0.

35
9

0.
87

1
0.

84
4

0.
85

7
0.

68
8

0.
74

3
0.

71
4

ru
n

2
0.

45
6

0.
38

1
0.

80
6

0.
82

4
0.

81
5

0.
75

0
0.

71
4

0.
73

2
ru

n
3

0.
41

6
0.

33
9

0.
83

9
0.

84
8

0.
84

3
0.

70
0

0.
73

7
0.

71
8

Ta
sk

C
ru

n
1

0.
66

9
0.

25
0

0.
60

2
0.

76
7

0.
67

5
0.

53
7

0.
70

5
0.

61
0

ru
n

2
0.

66
9

0.
23

9
0.

60
2

0.
74

7
0.

66
7

0.
56

2
0.

68
2

0.
61

6
ru

n
3

0.
67

3
0.

26
8

0.
60

2
0.

75
7

0.
67

1
0.

56
2

0.
70

3
0.

62
5

Ta
bl

e
4.

4:
R

es
ul

ts
of

ea
ch

ru
n

on
fo

rt
as

ks
A

,B
,a

nd
C

on
th

e
C

L
Ps

yc
h

20
19

te
st

da
ta

se
t.

T
he

pr
im

ar
y

ru
ns

(t
he

on
es

co
ns

id
er

ed
in

th
e

ra
nk

in
g)

ar
e

sh
ow

n
in

be
tw

ee
n

as
te

ri
sk

s
an

d
th

e
be

st
re

su
lts

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

cl
as

s
a

cl
as

s
b

cl
as

s
c

cl
as

s
c

P
R

F1
P

R
F1

P
R

F1
P

R
F1

Ta
sk

A
*r

un
1*

0.
65

6
0.

84
0

0.
73

7
0.

38
5

0.
17

9
0.

24
4

0.
42

9
0.

37
5

0.
40

0
0.

48
1

0.
62

5
0.

54
3

ru
n

2
0.

62
5

0.
83

3
0.

71
4

0.
00

0
0.

00
0

0.
00

0
0.

53
6

0.
27

8
0.

36
6

0.
55

8
0.

61
7

0.
58

6
ru

n
3

0.
65

6
0.

84
0

0.
73

7
0.

46
2

0.
30

0
0.

36
4

0.
46

4
0.

37
1

0.
41

3
0.

57
7

0.
66

7
0.

61
9

Ta
sk

B
ru

n
1

0.
53

1
0.

58
6

0.
55

7
0.

23
1

0.
13

6
0.

17
1

0.
17

9
0.

18
5

0.
18

2
0.

50
0

0.
55

3
0.

52
5

ru
n

2
0.

50
0

0.
47

1
0.

48
5

0.
15

4
0.

28
6

0.
20

0
0.

25
0

0.
28

0
0.

26
4

0.
61

5
0.

54
2

0.
57

7
*r

un
3*

0.
56

2
0.

54
5

0.
55

4
0.

07
7

0.
06

2
0.

06
9

0.
17

9
0.

19
2

0.
18

5
0.

53
8

0.
56

0
0.

54
9

Ta
sk

C
ru

n
1

0.
89

0
0.

78
9

0.
83

6
0.

07
7

0.
08

3
0.

08
0

0.
14

3
0.

16
7

0.
15

4
0.

44
2

0.
62

2
0.

51
7

ru
n

2
0.

87
7

0.
78

6
0.

82
9

0.
07

7
0.

11
1

0.
09

1
0.

07
1

0.
11

1
0.

08
7

0.
51

9
0.

56
2

0.
54

0
*r

un
3*

0.
88

4
0.

78
7

0.
83

3
0.

07
7

0.
10

0
0.

08
7

0.
17

9
0.

20
0

0.
18

9
0.

46
2

0.
61

5
0.

52
7

Ta
bl

e
4.

5:
B

re
ak

do
w

n
of

re
su

lts
fr

om
Ta

bl
e

4.
4

fo
r

ea
ch

cl
as

s
se

pa
ra

te
ly

.
T

he
pr

im
ar

y
ru

ns
ar

e
sh

ow
n

in
be

tw
ee

n
as

te
ri

sk
s

an
d

th
e

be
st

re
su

lts
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

54

Figure 4.2: Confusion matrix of results for the primary system of task A of CLPsych 2019.

Figure 4.3: Confusion matrix of results for the primary system of task B of CLPsych 2019.

55

Figure 4.4: Confusion matrix of results for the primary system of task C of CLPsych 2019.

Further Analysis

As mentioned in Section 4.1, tasks A and B are focused on risk assessment while task C is about

screening. The difference between tasks A and B is that in task B, for a given user, in addition to

the user’s Suicide Watch posts, there is extra data available which is taken from other subreddits in

which the user has been active. Although additional information is expected to improve the final

model, results from different teams’ participation to the two tasks show that, in most cases, using

posts from other subreddits leads to a worse performance (Zirikly et al., 2019).

An interesting finding by Matero et al. (2019) is that using a dual-context approach can be

helpful when data is available from both Suicide Watch and other subreddits for a given user. Using

Bert embeddings as input, their developed model consists of two RNNs that process posts taken

from Suicide Watch and Non-Suicide Watch subreddits separately before aggregating them to output

the final label, leading to the best reported result among participating teams in task B. However, it

is important to consider that in a real-life scenario in any social platform, it often happens that

more relevant posts are mixed with less relevant ones. Therefore, the need for a system that can

automatically assign more weight to important posts without using metadata seems inevitable.

56

Another system that was able to obtain interesting results in task B was developed by Ruiz et al.

(2019). In an effort to develop a knowledge-rich approach, they utilize a variety of tools such as the

Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES) (Savova et al., 2010), the

Word-Emotion Association Lexicon (Mohammad and Turney, 2013), and the Stanford CoreNLP

sentiment annotator (Manning et al., 2014) to extract handcrafted features. Topic modeling and

semantic role labeling are also used and a Doc2Vec model is built to extract 300-dimensional vectors

that are representative of the Reddit posts. The extracted features are then used as input to an

ensemble classifier of NB, SVM, and Gradient Boosting (GB). The results of the ensemble model

show the effectiveness of using handcrafted features to identify more important posts for the final

classification.

In this chapter, we extended the model developed in Chapter 3 and proposed a model based on

an ensemble technique that uses a fusion of neural features and predicted probability distributions

over classes from 8 neural sub-models, with an SVM as a final classifier. Our first rank in tasks A

and C of CLPsych 2019 shared task shows that this technique can be useful in the task of suicide

risk assessment. Moreover, it was found that using both neural features and predicted probability

of classes generally led to a better performance. In the next chapter, we use the same ensemble

approach for a similar task, but from a different angle: the early detection of anorexia risk from

social media posts. We evaluate the effectiveness of our model in performing a task which is focused

at making accurate decisions as well as early ones.

57

Chapter 5

Early Risk Detection of Anorexia

In the last chapter, we presented our approach to the task of suicide risk assessment. The model

consisted of 8 neural sub-models which were used to extract neural features and predict class prob-

abilities. The extracted features and predicted probabilities were then used by an SVM classifier

which would label a sample as belonging to one of the 4 risk categories, ranging from no risk to

high risk. The results of our participation to the CLPsych 2019 shared task motivated us to do

further experiments and evaluations of the developed model.

In this chapter, we used the same ensemble approach presented in Chapter 4, for the early

detection of signs of anorexia and evaluate our model in the framework of the eRisk 2019 task 1

(Losada et al., 2019), using the evaluation metrics specifically developed for this shared task to take

into account the timing of the decisions as well as their correctness. For this reason, in this chapter,

we inspect the capabilities of our approach in making decisions having seen as little evidence as

possible, contrary to having seen all of a user’s posts before making a decision for that user.

The rest of the chapter is organized as follows: Section 5.1 provides an overview of the task and

the data set used. In Section 5.2, the evaluation metrics used for early risk detection are presented.

Sections 5.3 and 5.4 are dedicated to a brief overall architecture and a more detailed description of

model variants that were employed for the experiments, respectively. Finally, Section 5.5 includes

a summary and discussion of the results.

58

5.1 Task and Dataset

Following the success of the eRisk 2018 task 2 (Losada et al., 2018), the eRisk 2019 task 1

(Losada et al., 2019) focuses on the early detection of anorexia in online posts. The data used for

the task is a collection of Reddit users labelled as anorexic or non-anorexic (Losada and Crestani,

2016), along with a collection of their Reddit posts, recorded chronologically.

For the training phase, the data from the previous year (eRisk 2018 task 2), including both

training and test sets, was made available. For the testing phase, posts were released on an item-

by-item basis in chronological order for a new collection of Reddit users. The goal was to detect

users suffering from anorexia, having observed as few posts from them as possible, keeping in mind

that emitting a positive label is irreversible. That is to say that once a user is classified as having

anorexia, the system cannot change the predicted label to negative after observing more evidence.

Considering the fact that the timing of producing an alert is also of significance, in addition to

precision, recall, and F1-score, two other metrics were used: Early Detection Error (ERDE) measure

which penalizes late decisions, and latency-weighted F1, a modified version of F1 score that takes

into account the delay of the decision1.

Table 5.1 shows some statistics of the datasets. As shown in the table, the datasets are highly

imbalanced, with about 90% of the users not suffering from anorexia.

Dataset Source Positive Negative All

Training Train 2018 20 (13%) 132 (87%) 152

Validation Test 2018 41 (13%) 279 (87%) 320

Testing – 73 (9%) 742 (91%) 815

Table 5.1: Distribution of user labels in the datasets. The 2018 datasets refer to the eRisk 2018
task 2 data.

1The details of the evaluation metrics for eRisk 2019 task 1 is explained in Losada et al. (2019).

59

5.2 Evaluation Metrics

As standard evaluation metrics of precision, recall, and F-score (see Section 2.3) do not take

into account the delay of a system before making decisions, new measures have been introduced by

the eRisk shared task organizers. These measures have been developed specifically for this shared

task and are designed to take into account the time between making an observation and emitting a

decision. In this section, these new evaluation metrics are presented.

5.2.1 ERDE

ERDE (Losada and Crestani, 2016) is the error measure designed for the task of early risk

detection. It gives a penalty for the delay in making a correct positive decision (correctly classifying

a user as at risk) and as expected, the penalty increases with the delay. This error measure is meant

to minimize the time between observing posts from an at-risk user and producing an alert. The

following equation is used to calculate ERDE (Losada et al., 2017) for a specific binary decision d

(i.e. the final classification of a single sample on the test data):

ERDEo(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cfp if d=positive AND ground truth=negative (FP)

cfn if d=negative AND ground truth=positive (FN)

lco(k).ctp if d=positive AND ground truth=positive (TP)

0 if d=negative AND ground truth=negative (TN)

As shown in the equation, there are different penalties for the 4 different cases in a binary

classification:

• The parameter cfp is the penalty for a false positive is equal to the proportion of positive

labels in the test set (which in case of eRisk 2019 task 2 is approximately 0.089).

• The parameter cfn is the penalty for a false negative is equal to 1, which is much greater than

the previous case, i.e. a false positive, because most of the samples belong to the negative

class. Defining a big penalty for a false negative can help prevent the system from producing

too many negative labels as a result of being trained on too many negative samples.

60

• lco(k).ctp is used to measure the penalty for a true positive based on the number of posts that

were observed before deciding on the class of a user. lco(k) is obtained using Equation 29

and ctp is set to 1.

lco(k) = 1 − 1

1 − ek−o (29)

In Equation 29, k is the number of evidences observed before emitting a correct positive

label and o is the parameter that, when plotted, decides where on the X axis, the cost sharply

increases (see Figure 5.1). The parameter o is set to either 5 or 50, resulting in 2 different

versions of ERDE, referred to as ERDE5 and ERDE50.

• There is no error measure for making a correct but late classification of negative samples. The

reason behind this is that the focus of this error measure is on the early identification of users

at risk.

Figure 5.1: Latency cost functions lc5(k) and lc50(k) (Losada et al., 2017)

Although the ERDE measure has advantages over traditional metrics, some disadvantages of

this measure were identified by Losada et al. (2019), among which the following can be mentioned:

61

• The cost of making a delayed but correct positive classification increases very quickly (see

Figure 5.1), making it difficult to distinguish between different systems.

• A correct positive label that is produced instantly (after having the first chunk of evidence)

still receives some penalty.

• Although it is possible to compare different systems based on ERDE, it is difficult to properly

evaluate and make sense of the performance of a single system by only having its ERDE at

hand.

5.2.2 Latency-Weighted F1 Score

In order to make up for the disadvantages of ERDE, a new measure called latency-weighted F1

score was proposed (Losada et al., 2019). By multiplying the original F1 score by a new metric of

speed, the latency-weighted F1 score is capable of capturing the correctness as well as the delay of

a decision (see Equation 30).

latency-weighted F1 = F1.speed (30)

As shown in Equation 31, the speed parameter is calculated by taking into account the median

of the penalty terms assigned to all true positive decisions:

speed = (1 −median{penalty(ku) ∶ u ∈ U,du = gu = 1}) (31)

In the equation above, du refers to the system’s decision for a user and gu refers to the user’s

golden truth. penalty(ku) stands for the penalty term calculated for a true positive emission by the

system, having observed k evidences from the user.

The penalty for the delay of each true positive decision is calculated using equation 32, where

the p parameter determines the speed with which the penalty goes up.

penalty(ku) = −1 + 2

1 + e−p.(ku−1)
(32)

The latency-weighted F1 score has a number of advantages over the ERDE measure, including

62

more inseparability and a milder penalty increase. Furthermore, a perfect system which identifies all

true positives, having observed only the first round of evidence, receives a perfect latency-weighted

F1 score of 1.

5.3 The Model

The model that is developed and used in this chapter is similar to the one explained in Chapter 4

except for the following differences:

Firstly, for all the CNN-based sub-models, max pooling was used over the CReLU activation

function, while for the sub-models utilizing recurrent components (including BiRNN, BiGRU, BiL-

STM), attention was used.

Secondly, as opposed to the model in Chapter 4 where a subset of the neural features with

the highest mutual information with classes were selected, in the current model, all of the neural

features are utilized.

These two changes were made as a result of experiments on the held-out validation data.

5.4 Experimental Setup

This section describes our experiments with the above model for our participation to the eRisk

2019 shared task (Losada et al., 2019).

5.4.1 Sub-models Implementation

Again, PyTorch (Paszke et al., 2017) was used to implement and train the sub-models. The

Adam optimizer (Kingma and Ba, 2015) was used, and the learning rate was set to 5× 10−4. Cross-

entropy was used as the loss function, in order to handle the imbalanced distribution of the positive

and negative classes in the training set (see Table 5.1), weights proportional to the inverse of the

number of samples of each class were assigned to that class. Due to lack of computational resources,

mini-batches with a maximum size of 128 were used at the post level for each user and only the first

63

100 tokens of the posts were used2. In order to minimize the amount of padding in the batches,

posts with similar number of tokens were assigned to the same batch.

In order to fine-tune the other hyperparameters of the sub-models (including the number and size

of convolutional filters, number of recurrent units, and number of training epochs), each sub-model

was individually trained with the training set and optimized on the validation set (see Table 5.1),

based on the F1 score. The specifics of the 8 different sub-models are shown in Table 5.2. Since

each sub-model is composed of a unique pair of hidden layer and word embedding type, they will

later be referred to as <hidden-type>-<embedding-type> (see the second column of Table 5.2).

Name Hyperparameters

1 CNN-GloVe 100 bigram convolution filters, trained for 10 epochs

2 CNN-ELMo 200 unigram filters and 50 bigram convolution filters, trained for 6 epochs

3 BiRNN-GloVe one layer of 64 vanilla RNN units, trained for 14 epochs

4 BiRNN-ELMo one layer of 50 vanilla RNN units, trained for 13 epochs

5 BiLSTM-GloVe one layer of 32 bidirectional LSTM units, trained for 31 epochs

6 BiLSTM-ELMo one layer of 64 bidirectional LSTM units, trained for 14 epochs

7 BiGRU-GloVe one layer of 64 bidirectional GRUs, trained for 14 epochs

8 BiGRU-ELMo one layer of 64 bidirectional GRUs, trained for 8 epochs

Table 5.2: Hyperparameter values used in the 8 sub-models at eRisk 2019.

5.4.2 Ensemble Classifiers

Scikit-learn (Pedregosa et al., 2011) was used to develop the SVM classifier used in the ensem-

ble model. Three different versions of ensemble classifiers were developed:

(1) Ens-Feat is the version of the ensemble model that only utilizes the neural features. The SVM

classifier in this version uses a sigmoid kernel. The γ and C parameters in the SVM were set

to auto (i.e. 1/<number-of-features>) and 4, respectively.

(2) Ens-Prob uses only the predicted class probabilities from the softmax activation function at
2This limit only truncated a small number of posts, as the average length was ∼37.47 tokens in the eRisk 2018 task 2

data.

64

the end of the neural sub-models. It utilizes a polynomial kernel with the degree of 1. The γ

and C parameters in the SVM were set to scale (i.e. 1/[<number-of-features>×<variance-of-

features>]) and 1, respectively.

(3) Ens-All utilizes both neural features and predicted class probabilities in its SVM classifier,

that uses a sigmoid kernel, and has its values of γ and C set to auto and 2, respectively.

5.4.3 Submitted Runs

Based on the results with the validation set, 5 runs were submitted to the shared task server. For

the 1st and 2nd runs, CNN-GloVe and CNN-ELMo were used, respectively, as stand-alone models3,

and Ens-Feat, Ens-Prob, and Ens-All comprised the 3rd, 4th and 5th runs.

5.5 Results and Discussion

Table 5.3 shows the official results of our submissions, as well as selected runs from other teams

(as reported in Losada et al. (2019)) that achieved the best result with one of the official evaluation

metrics, or achieved competitive results. For the results of our team (CLaC), we indicate in Table 5.3

the specific name of the models used in the five submitted runs.

As shown in Table 5.3, the model Ens-All achieved the highest F1 (0.7073) and latency-weighted

F1 (0.6908) scores of all participants’ runs. This was in line with our intuition that using an ensemble

model that makes use of both neural features and predicted class probabilities from the 8 sub-models

has a higher capability of detecting the correct class after observing a small number of writings. The

results also show that the CNN-ELMo model can achieve F1 and latency-weighted F1 scores that

are competitive to Ens-All, and outperforms Ens-Feat and Ens-Prob in these two metrics. The CNN-

ELMo model also resulted in the best recall, ERDE5 and ERDE50, showing the potential of this

model to be used independently for the task of early risk detection of anorexia.

Table 5.3, also shows that all our models, except CNN-GloVe (run 0) achieved significantly

superior performances in terms of F1 score and latency-weighted F1 (teams lirmm and INAOE-

CIMAT achieved the next best F1 and latency-weighted F1 scores). Run 1 of team lirmm achieved
3These two sub-models achieved the most promising results among all the sub-models, during the training phase.

65

te
am

m
od

el
ru

n
#w

ri
tin

gs
P

R
F1

E
R

D
E

5
E

R
D

E
50

l-w
F1

C
L

aC
C

N
N

-G
lo

V
e

0
10

9
0.

44
63

0.
74

00
0.

55
67

0.
06

72
0.

03
93

0.
54

37
C

L
aC

C
N

N
-E

L
M

o
1

10
9

0.
60

61
0.

82
19

0.
69

77
0.

05
73

0.
03

12
0.

68
95

C
L

aC
E

ns
-F

ea
t

2
10

9
0.

60
20

0.
80

82
0.

69
00

0.
06

02
0.

03
13

0.
67

66
C

L
aC

E
ns

-P
ro

b
3

10
9

0.
62

92
0.

76
71

0.
69

14
0.

06
27

0.
03

55
0.

67
52

C
L

aC
E

ns
-A

ll
4

10
9

0.
63

74
0.

79
45

0.
70

73
0.

06
25

0.
03

43
0.

69
08

lir
m

m
0

20
24

0.
74

0.
63

0.
68

0.
09

0.
05

0.
63

lir
m

m
1

20
24

0.
77

0.
60

0.
68

0.
09

0.
06

0.
62

Fa
zl

2
20

01
0.

09
1.

00
0.

16
0.

17
0.

11
0.

14
U

N
SL

0
20

00
0.

42
0.

78
0.

55
0.

06
0.

04
0.

55
U

N
SL

4
20

00
0.

31
0.

92
0.

47
0.

06
0.

03
0.

46
IN

A
O

E
-C

IM
A

T
3

20
00

0.
67

0.
68

0.
68

0.
09

0.
05

0.
63

T a
bl

e
5.

3:
O

ffi
ci

al
re

su
lts

on
th

e
fir

st
ta

sk
of

th
e

eR
is

k
20

19
sh

ar
ed

ta
sk

.
#w

ri
tin

gs
:

m
ax

im
um

nu
m

be
r

of
w

ri
tin

gs
(R

ed
di

t
po

st
s)

th
at

w
er

e
pr

oc
es

se
d

fo
ra

us
er

,P
:P

re
ci

si
on

,R
:R

ec
al

l,
l-

w
F

1:
L

at
en

cy
-W

ei
gh

te
d

F1
sc

or
e.

66

the highest precision. The best recall was achieved by run 2 of the team Fazl. Runs 0 and 4 of

the team UNSL achieved the highest ERDE5 and ERDE50, respectively, where we could achieve

competitive results using CNN-ELMo.

We believe that one of the most important components in all of our developed sub-models is the

user-level attention mechanism that enables the sub-models to automatically assign weights to user

posts proportional to their relevance, thus contributing to the good results achieved in this task.

The number of writings processed by the models submitted by each team shows that our models

used a significantly lower number of writings in comparison to the other teams4. This shows that

our systems have a great potential of making early and correct decisions. This is supported by an

even larger gap between the latency-weighted F1 scores of our team and the runs submitted by other

teams, in comparison to the gap in F1 score.

Although our systems achieved the best or competitive results according to different evaluation

metrics, we suffered from lack of computational resources when running the models that use the

ELMo embedder for around 2000 iterations. The models had to be run for approximately 2000

times due to the item-by-item release of the test data which was chosen for the eRisk 2019 shared

task (in the previous eRisk shared tasks, the test data was released in 10 chunks, making the number

of iterations equal to 10). Despite this technical drawback, the advantages of using ELMo to extract

context-sensitive embeddings greatly outweigh its disadvantages. This can also be observed by

comparing the results achieved by CNN-GloVe and CNN-ELMo.

In this chapter, we further experimented with the ensemble model which was developed in

Chapter 4. Once again, the effectiveness of this model was evaluated in the context of the eRisk

2019 task 1, whose focus was the early detection of anorexia risk. The results of our submitted

system as well as a comparison between different systems’ results show that our approach can

indeed be useful in making correct as well as early decisions to identify users that are at the risk of

anorexia.

4The average number of writings processed by the participating teams was 1273.

67

Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis explored the development of an automatic approach which can be used in order to

detect emotions and also different types of distress in textual data.

In Chapter 3, we experimented with different deep architectures and embeddings to develop a

model for the task of emotion detection in small 3-turn conversations. Our experiments showed

that using contextual word embeddings such as ELMo as input features instead of non-contextual

ones such as GloVe can significantly improve the model’s performance. In the case of using GloVe

embeddings, we also saw benefits in using POS tags as they help model contextual information

which is absent in the embeddings. It was also observed that, in almost all of our experiments,

the models using SVM as the classifier outperformed the models using neural classifiers by a large

margin. The takeaway from the work presented in this chapter was the shown strength of character-

based embeddings and the potential improvement as a result of using deep neural networks for

feature extraction and an SVM for final classification.

Consequently, we used our findings in emotion detection to develop a model aimed at the as-

sessment of suicide risk in online posts. As mentioned above, in Chapter 3, it was determined that

ELMo embeddings can have an advantage over GloVe embeddings and that replacing a neural clas-

sifier with an SVM on features extracted by a neural network can improve the classification. As a

result, in Chapter 4, we made use of both of these findings in the development of a classification

68

model to assess suicide risk in online data. Since we encountered the usual challenge of having

access to limited labelled data, we hypothesized that using several types of feature extractors can

help capture more information from the data available. This lead to the development of an ensemble

model which utilizes 8 different neural sub-models, each composed of a unique pair of word embed-

dings and deep architecture. These neural sub-model were used to extract neural features and their

own predictions of class probabilities leading to a more rich and diverse set of features which could

in turn be leveraged for a better classification. We used an SVM for the final classification part,

having observed the potential of an SVM classifier when it is fed the features extracted by neural

models. It was also determined that, in general, feeding the SVM both neural features and pre-

dicted class probabilities leads to improved results. Using this ensemble architecture, we achieved

the first rank in tasks A and C of the CLPsych 2019 shared task which motivated us to test this

model in another similar setting with a different focus, the results of which have been documented

in Chapter 5.

Chapter 5 described our experiments and results in applying the developed ensemble model

from Chapter 4 to the task of early risk detection of anorexia. The focus of the task in question was

not only to make a correct detection of at-risk users but also being able to do so having observed as

few posts from a given user as possible. This provided us with the opportunity to evaluate the model

from another interesting and useful perspective. Although the model was not specifically trained to

do early predictions, it performed surprisingly well, ranking first in the first task of eRisk 2019 in

terms of both F1 score and latency-weighted F1, which also takes into account the delay in making

predictions.

The results in Chapters 4 and 5 led us to conclude that such an ensemble architecture which

makes use of diverse sources of information is indeed helpful in the detection of distress. Our

results also show that such a model can be used to make up for the lack of a large annotated dataset,

on which end-to-end deep learning models heavily rely.

6.2 Contributions

This thesis presented a number of contributions:

69

• The implementation of different deep learning models for the task of contextual emotion

detection and participation to the EmoContext shared task in SemEval 2019 (Mohammadi

et al., 2019a), and a performance analysis of the emotion detection models and the different

components used (Mohammadi et al., 2019d) (see Chapter 3).

• The implementation of an ensemble model including several attention-based deep models for

the task of suicide risk assessment and achieving state-of-the-art results in tasks A and C of

the CLPsych 2019 shared task (Mohammadi et al., 2019b) (see Chapter 4).

• The evaluation of the ensemble model for the task of early risk detetcion of anorexia and

achieving state-of-the-art results in the first task of eRisk 2019 (Mohammadi et al., 2019c)

(see Chapter 5).

6.3 Future Work

Possible extensions and improvements to our work include the following:

Contextual Emotion Detection In Chapter 3, we discussed the development and evaluation of a

deep learning model for the task of contextual emotion detection in short dialogues. Three future

directions can be proposed:

The first is to investigate a more effective way of handling the imbalanced distribution of labels

in the data set. As an example, methods for finding the optimal class-weights for training the models

can be investigated.

Secondly, the use of different number of neural features for each dialogue turn can be studied.

As shown in Figure 3.4, features extracted from different dialogue turns had different levels of

contribution to the final classification. In that case, more features could be extracted from turns

3 and 1 (uttered by the same speaker) in comparison to turn 2, which has the least amount of

contribution to the classification.

Lastly, knowing that the SVM classifier is capable of outperforming the neural one, studies can

be performed in order to make the extracted features more suitable for the SVM classifier.

70

Detection of Distress in Online Data In Chapters 4 and 5, we presented an ensemble approach

which can be used to detect distress in the social media posts of a user. The ensemble model

achieved top performances at both CLPsych 2019 (Mohammadi et al., 2019b) and eRisk 2019 (Mo-

hammadi et al., 2019c) shared tasks. We believe that the user-level attention mechanism has played

an important role in the high results achieved on these shared tasks. It would be interesting to

qualitatively analyze the results of the attention mechanism, to see how they correlate with human

perception, i.e. whether the posts to which the attention mechanism assigns more weights are actu-

ally the same posts that seem more informative to a health specialist for detecting anorexia.

Also, during the development phase, it was determined that removing each of the 8 sub-models

(even the sub-models with low individual performances) negatively affected the result of the final

ensemble classifier. It would be interesting to measure quantitatively the contribution of each of the

8 neural sub-models in the result of the final classifier. This could then be leveraged to improve the

performance of the system.

An additional research direction is the use of linguistic features and metadata. The current

model does not explicitly use such features, however Trotzek et al. (2018) showed that they can

significantly improve early detection of anorexia.

Lastly, it would be interesting to experiment with more diverse architectures in the neural sub-

models (e.g. by using other hidden layer architectures, such as recursive neural networks (Goller

and Kuchler, 1996; Socher et al., 2011)) as a way of improving the performance of the current

ensemble classifier.

Overall, the aim of this thesis was to make use of current developments in the field of deep

learning and apply them to one of the many use cases in the area of natural language processing in

clinical psychology. Knowing the benefits of using automatic assessment tools in monitoring the

mental health of online users and the rising interest in this field, there is great research potential and

many developments yet to come.

71

Bibliography

Muhammad Abdul-Mageed and Lyle Ungar. Emonet: Fine-grained emotion detection with gated

recurrent neural networks. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (ACL 2017), pages 718–728, Vancouver, Canada, July 2017.

Malak Abdullah and Samira Shaikh. Teamuncc at SemEval-2018 task 1: Emotion detection in En-

glish and Arabic tweets using deep learning. In Proceedings of the 12th International Workshop

on Semantic Evaluation (SemEval 2018), pages 350–357, New Orleans, Louisiana, USA, June

2018.

Hessam Amini, Farhood Farahnak, and Leila Kosseim. Natural Language Processing: An Overview.

In Frontiers in Pattern Recognition and Artificial Intelligence, volume 5, chapter 3, pages 35–55.

World Scientific, June 2019.

Chidanand Apté, Fred Damerau, and Sholom M. Weiss. Automated learning of decision rules

for text categorization. ACM Transactions on Information Systems (TOIS), 12(3):233–251, July

1994.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. In Proceedings of the 3rd International Conference for Learning

Representations (ICLR 2015), San Diego, California, USA, May 2015.

Michael Ball, Rashmi Patel, Richard D. Hayes, Richard JB. Dobson, and Robert Stewart. Tex-

tHunter – a user friendly tool for extracting generic concepts from free text in clinical research.

In AMIA Annual Symposium Proceedings, volume 2014, page 729. American Medical Informat-

ics Association, 2014.

72

R. E. Banchs. On the construction of more human-like chatbots: Affect and emotion analysis of

movie dialogue data. In 2017 Asia-Pacific Signal and Information Processing Association Annual

Summit and Conference (APSIPA ASC), pages 1364–1367, Kuala Lumpur, Malaysia, December

2017. IEEE.

Angelo Basile, Marc Franco-Salvador, Neha Pawar, Sanja Štajner, Mara Chinea Rios, and Yassine

Benajiba. SymantoResearch at SemEval-2019 task 3: Combined neural models for emotion

classification in human-chatbot conversations. In Proceedings of the 13th International Workshop

on Semantic Evaluation (SemEval 2019), Minneapolis, Minnesota, USA, June 2019.

Christos Baziotis, Nikos Pelekis, and Christos Doulkeridis. DataStories at SemEval-2017 task 4:

Deep LSTM with attention for message-level and topic-based sentiment analysis. In Proceedings

of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 747–754,

Vancouver, Canada, August 2017.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic

language model. Journal of Machine Learning Research, 3(Feb):1137–1155, 2003.

Adrian Benton, Margaret Mitchell, and Dirk Hovy. Multitask learning for mental health conditions

with limited social media data. In Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics (EACL 2017), pages 152–162, Valencia, Spain,

April 2017.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors

with subword information. Transactions of the Association for Computational Linguistics, 5:

135–146, 2017.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.

Rafael A Calvo, David N Milne, M Sazzad Hussain, and Helen Christensen. Natural language

73

processing in mental health applications using non-clinical texts. Natural Language Engineering,

23(5):649–685, 2017.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Con-

stant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray

Kurzweil. Universal sentence encoder. CoRR, abs/1803.11175, 2018.

Ankush Chatterjee, Umang Gupta, Manoj Kumar Chinnakotla, Radhakrishnan Srikanth, Michel

Galley, and Puneet Agrawal. Understanding emotions in text using deep learning and big data.

Computers in Human Behavior, 93:309–317, 2019a.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana Joshi, and Puneet Agrawal. SemEval-2019

task 3: EmoContext: Contextual emotion detection in text. In Proceedings of The 13th Interna-

tional Workshop on Semantic Evaluation (SemEval-2019), Minneapolis, Minnesota, USA, June

2019b.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony

Robinson. One billion word benchmark for measuring progress in statistical language modeling.

In 15th Annual Conference of the International Speech Communication Association (INTER-

SPEECH 2014), Singapore, September 2014.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-

ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder

for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP 2014), pages 1724–1734, Doha, Qatar, October 2014.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation

of Gated Recurrent Neural Networks on sequence modeling. In NIPS 2014 Deep Learning and

Representation Learning Workshop, Montreal, Canada, December 2014.

Andre Cianflone, Yulan Feng, Jad Kabbara, and Jackie Chi Kit Cheung. Let’s do it “again”: A first

computational approach to detecting adverbial presupposition triggers. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (ACL 2018), pages 2747–2755,

Melbourne, Australia, July 2018.

74

Glen Coppersmith, Mark Dredze, and Craig Harman. Quantifying mental health signals in twitter.

In Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From

Linguistic Signal to Clinical Reality (CLPsych 2014), pages 51–60, Baltimore, Maryland, USA,

June 2014.

Glen Coppersmith, Mark Dredze, Craig Harman, Kristy Hollingshead, and Margaret Mitchell.

CLPsych 2015 shared task: Depression and PTSD on twitter. In Proceedings of the 2nd Work-

shop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical

Reality (CLPsych 2015), pages 31–39, Denver, Colorado, 2015.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

September 1995.

David Roxbee Cox. Analysis of binary data. Routledge, London, UK, 2018.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech

detection and the problem of offensive language. In Proceedings of the Eleventh International

Conference on Web and Social Media, pages 512–515, Montréal, Canada, May 2017.

Bart Desmet and Véronique Hoste. Emotion detection in suicide notes. Expert Systems with Appli-

cations, 40(16):6351–6358, 2013.

David DeVault, Kallirroi Georgila, Ron Artstein, Fabrizio Morbini, David Traum, Stefan Scherer,

Albert Skip Rizzo, and Louis-Philippe Morency. Verbal indicators of psychological distress in

interactive dialogue with a virtual human. In Proceedings of the Special Interest Group on Dis-

course and Dialogue Conference (SIGDIAL 2013), pages 193–202, Metz, France, August 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,

June 2019.

75

Luca Dini and André Bittar. Emotion analysis on Twitter: The hidden challenge. In Proceedings of

the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pages

3953–3958, Portorož, Slovenia, May 2016.

Eibe Frank and Remco R. Bouckaert. Naive bayes for text classification with unbalanced classes.

In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Proceedings of the 10th

European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD

2006), pages 503–510, Berlin, Germany, September 2006.

Alexander Genkin, David D. Lewis, and David Madigan. Large-scale bayesian logistic regression

for text categorization. Technometrics, 49(3):291–304, 2007.

Maria Giatsoglou, Manolis G. Vozalis, Konstantinos Diamantaras, Athena Vakali, George Sarigian-

nidis, and Konstantinos Ch. Chatzisavvas. Sentiment analysis leveraging emotions and word

embeddings. Expert Systems with Applications, 69:214–224, 2017.

Christoph Goller and Andreas Kuchler. Learning task-dependent distributed representations by

backpropagation through structure. Neural Networks, 1:347–352, 1996.

Ruchi Hirat and Namita Mittal. A survey on emotion detection techniques using text in blogposts.

International Bulletin of Mathematical Research, 2(1):180–187, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):

1735–1780, 1997.

Geoffrey Holmes, Andrew Donkin, and Ian H. Witten. Weka: a machine learning workbench. In

Proceedings of ANZIIS 1994 - Australian New Zealnd Intelligent Information Systems Confer-

ence, pages 357–361, Brisbane, Australia, November 1994.

Chenyang Huang, Amine Trabelsi, and Osmar Zaı̈ane. ANA at SemEval-2019 task 3: Contextual

emotion detection in conversations through hierarchical LSTMs and BERT. In Proceedings of

the 13th International Workshop on Semantic Evaluation (SemEval 2019), pages 49–53, Min-

neapolis, Minnesota, USA, June 2019.

76

Richard G Jackson, Rashmi Patel, Nishamali Jayatilleke, Anna Kolliakou, Michael Ball, Genevieve

Gorrell, Angus Roberts, Richard J Dobson, and Robert Stewart. Natural language processing to

extract symptoms of severe mental illness from clinical text: the clinical record interactive search

comprehensive data extraction (CRIS-CODE) project. British Medical Journal (BMJ open), 7

(1), 2017.

Gilles Jacobs, Els Lefever, and Véronique Hoste. Economic event detection in company-specific

news text. In Proceedings of the First Workshop on Economics and Natural Language Processing,

pages 1–10, Melbourne, Australia, July 2018. Association for Computational Linguistics.

Shengyi Jiang, Guansong Pang, Meiling Wu, and Limin Kuang. An improved k-nearest-neighbor

algorithm for text categorization. Expert Systems with Applications, 39(1):1503–1509, 2012.

ISSN 0957-4174.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient

text classification. In Proceedings of the 15th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics: Volume 2, Short Papers, pages 427–431, Valencia, Spain,

April 2017. Association for Computational Linguistics.

Hamed Khanpour and Cornelia Caragea. Fine-grained emotion detection in health-related online

posts. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP 2018), pages 1160–1166, Brussels, Belgium, November 2018.

Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung Hyon Myaeng. Some effective

techniques for naive bayes text classification. IEEE Transactions on Knowledge and Data Engi-

neering, 18(11):1457–1466, November 2006.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceed-

ings of the 3rd International Conference for Learning Representations (ICLR 2015), San Diego,

California, USA, May 2015.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceed-

ings of the 31st International Conference on Machine Learning (ICML 2014), pages 1188–1196,

Bejing, China, June 2014.

77

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-

based learning. In Shape, Contour and Grouping in Computer Vision, pages 319–345. 1999.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436, 2015.

Xihao Liang, Ye Ma, and Mingxing Xu. THU-HCSI at SemEval-2019 task 3: Hierarchical ensemble

classification of contextual emotion in conversation. In Proceedings of the 13th International

Workshop on Semantic Evaluation (SemEval 2019), pages 345–349, Minneapolis, Minnesota,

USA, June 2019.

Jasy Suet Yan Liew and Howard R. Turtle. Exploring fine-grained emotion detection in tweets.

In Proceedings of the NAACL Student Research Workshop, pages 73–80, San Diego, California,

USA, June 2016.

David E Losada and Fabio Crestani. A test collection for research on depression and language use.

In International Conference of the Cross-Language Evaluation Forum for European Languages

(CLEF 2016), pages 28–39, Evora, Portugal, September 2016.

David E. Losada, Fabio Crestani, and Javier Parapar. eRisk 2017: CLEF lab on early risk pre-

diction on the internet: experimental foundations. In International Conference of the Cross-

Language Evaluation Forum for European Languages (CLEF 2017), pages 346–360, Dublin,

Ireland, September 2017. Springer.

David E. Losada, Fabio Crestani, and Javier Parapar. Overview of eRisk: Early Risk Prediction on

the Internet. In Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum,

pages 343–361, Avignon, France, September 2018.

David E. Losada, Fabio Crestani, and Javier Parapar. Overview of eRisk 2019: Early Risk Prediction

on the Internet. In Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum,

Lugano, Switzerland, September 2019.

Veronica Lynn, Alissa Goodman, Kate Niederhoffer, Kate Loveys, Philip Resnik, and H. Andrew

Schwartz. CLPsych 2018 shared task: Predicting current and future psychological health from

78

childhood essays. In Proceedings of the Fifth Workshop on Computational Linguistics and Clin-

ical Psychology: From Keyboard to Clinic (CLPsych 2018), pages 37–46, New Orleans, LA,

2018.

Larry M. Manevitz and Malik Yousef. One-class svms for document classification. Journal of

machine Learning research, 2(Dec):139–154, 2001.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David Mc-

Closky. The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd An-

nual Meeting of the Association for Computational Linguistics: System Demonstrations, pages

55–60, Baltimore, Maryland, June 2014.

Youness Mansar and Sira Ferradans. Sentence classification for investment rules detection. In

Proceedings of the First Workshop on Economics and Natural Language Processing, pages 44–

48, Melbourne, Australia, July 2018. Association for Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated

corpus of English: The Penn Treebank. Compututational Linguistics, 19(2):313–330, June 1993.

Matthew Matero, Akash Idnani, Youngseo Son, Sal Giorgi, Huy Vu, Mohammad Zamani, Parth

Limbachiya, Sharath Chandra Guntuku, and H. Andrew Schwartz. Suicide risk assessment with

multi-level dual-context language and BERT. In Proceedings of the Sixth Workshop on Compu-

tational Linguistics and Clinical Psychology (CLPsych 2019), pages 39–44, Minneapolis, Min-

nesota, June 2019.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment analysis algorithms and applications:

A survey. Ain Shams Engineering Journal, 5(4):1093–1113, 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-

tations in vector space. In Workshop Proceedings of the International Conference on Learning

Representations (ICLR 2013), Scottsdale, Arizona, USA, May 2013.

79

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin. Ad-

vances in Pre-Training Distributed Word Representations. In Proceedings of the Eleventh In-

ternational Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan,

May 2018.

David N. Milne, Glen Pink, Ben Hachey, and Rafael A. Calvo. CLPsych 2016 shared task: Triaging

content in online peer-support forums. In Proceedings of the Third Workshop on Computational

Linguistics and Clinical Psychology (CLPsych 2016), pages 118–127, San Diego, CA, USA, June

2016.

Saif Mohammad. #emotional tweets. In *SEM 2012: The First Joint Conference on Lexical and

Computational Semantics – Volume 1: Proceedings of the main conference and the shared task,

and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (Se-

mEval 2012), pages 246–255, Montrèal, Canada, June 2012.

Saif Mohammad and Felipe Bravo-Marquez. Emotion intensities in tweets. In Proceedings of

the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 65–77,

Vancouver, Canada, August 2017.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana Kiritchenko.

SemEval-2018 task 1: Affect in tweets. In Proceedings of The 12th International Workshop

on Semantic Evaluation (SemEval 2018), pages 1–17, New Orleans, Louisiana, June 2018.

Saif M. Mohammad and Peter D. Turney. Crowdsourcing a word–emotion association lexicon.

Computational Intelligence, 29(3):436–465, 2013.

Elham Mohammadi, Hessam Amini, and Leila Kosseim. CLaC lab at SemEval-2019 task 3: Con-

textual emotion detection using a combination of neural networks and SVM. In Proceedings

of the 13th International Workshop on Semantic Evaluation (SemEval 2019), pages 153–158,

Minneapolis, Minnesota, USA, June 2019a.

Elham Mohammadi, Hessam Amini, and Leila Kosseim. CLaC at CLPsych 2019: Fusion of neu-

ral features and predicted class probabilities for suicide risk assessment based on online posts.

80

In Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology

(CLPsych 2019), pages 34–38, Minneapolis, Minnesota, June 2019b.

Elham Mohammadi, Hessam Amini, and Leila Kosseim. Quick and (maybe not so) easy detection

of anorexia in social media posts. In Working Notes of CLEF 2019 - Conference and Labs of the

Evaluation Forum, Lugano, Switzerland, September 2019c.

Elham Mohammadi, Hessam Amini, and Leila Kosseim. Neural feature extraction for contextual

emotion detection. In Proceedings of the 2019 Conference on Recent Advances in Natural Lan-

guage Processing (RANLP 2019), Varna, Bulgaria, September 2019d.

Bahadorreza Ofoghi, Meghan Mann, and Karin Verspoor. Towards early discovery of salient health

threats: A social media emotion classification technique. In Biocomputing 2016: Proceedings of

the Pacific Symposium, pages 504–515, Kohala Coast, Hawaii, January 2016.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient prob-

lem. Computing Research Repository, arXiv:1211.5063v1, 2012.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in

PyTorch. In NIPS 2017 Autodiff Workshop, Long Beach, California, USA, January 2017.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,

Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-

esnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12

(Oct):2825–2830, 2011.

James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count

(LIWC2007). 2007.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word rep-

resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2014), pages 1532–1543, Doha, Qatar, October 2014.

81

John Pestian, Henry Nasrallah, Pawel Matykiewicz, Aurora Bennett, and Antoon Leenaars. Suicide

note classification using natural language processing: A content analysis. Biomedical informatics

insights, 3:BII–S4706, 2010.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and

Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL-HLT 2018), pages 2227–2237, New Orleans, Louisiana, USA,

June 2018.

Soujanya Poria, Erik Cambria, Newton Howard, Guang-Bin Huang, and Amir Hussain. Fusing

audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing,

174(PA):50–59, January 2016. ISSN 0925-2312.

Victor Ruiz, Lingyun Shi, Wei Quan, Neal Ryan, Candice Biernesser, David Brent, and Rich Tsui.

CLPsych2019 shared task: Predicting suicide risk level from Reddit posts on multiple forums.

In Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology

(CLPsych 2019), pages 162–166, Minneapolis, Minnesota, June 2019.

Guergana K. Savova, James J. Masanz, Philip V. Ogren, Jiaping Zheng, Sunghwan Sohn, Karin C.

Kipper-Schuler, and Christopher G. Chute. Mayo clinical text analysis and knowledge extraction

system (ctakes): architecture, component evaluation and applications. Journal of the American

Medical Informatics Association, 17(5):507–513, 2010.

Judy Hanwen Shen and Frank Rudzicz. Detecting anxiety through reddit. In Proceedings of the

Fourth Workshop on Computational Linguistics and Clinical Psychology – From Linguistic Sig-

nal to Clinical Reality (CLPsych 2017), pages 58–65, Vancouver, Canada, 2017.

Han-Chin Shing, Suraj Nair, Ayah Zirikly, Meir Friedenberg, Hal Daumé III, and Philip Resnik. Ex-

pert, crowdsourced, and machine assessment of suicide risk via online postings. In Proceedings

of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to

Clinic (CLPsych 2018), pages 25–36, New Orleans, Louisiana, USA, June 2018.

82

Richard Socher, Cliff Chiung-Yu Lin, Andrew Ng, and Chris Manning. Parsing natural scenes

and natural language with recursive neural networks. In Proceedings of the 28th International

Conference on Machine Learning (ICML 2011), pages 129–136, Bellevue, Washington, USA,

June 2011.

Charles Spearman. The proof and measurement of association between two things. The American

journal of psychology, 100(3/4):441–471, 1987.

Laura Louise Struik and Neill Bruce Baskerville. The role of facebook in crush the crave, a mobile-

and social media-based smoking cessation intervention: qualitative framework analysis of posts.

Journal of medical Internet Research, 16(7), 2014.

Joseph J. Thompson, Betty H. M. Leung, Mark R. Blair, and Maite Taboada. Sentiment analy-

sis of player chat messaging in the video game StarCraft 2: Extending a lexicon-based model.

Knowledge-Based Systems, 137:149–162, December 2017.

Marcel Trotzek, Sven Koitka, and Christoph M Friedrich. Word embeddings and linguistic metadata

at the CLEF 2018 tasks for early detection of depression and anorexia. In Working Notes of CLEF

2018 - Conference and Labs of the Evaluation Forum, Avignon, France, September 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems 30 (NIPS 2017), pages 5998–6008. Long Beach, California,

USA, January 2017.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. Attention-based LSTM for aspect-level

sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2016), pages 606–615, Austin, Texas, USA, November 2016.

Baoxun Xu, Xiufeng Guo, Yunming Ye, and Jiefeng Cheng. An improved random forest classifier

for text categorization. Journal of Computers, 7(12):2913–2920, 2012.

83

Christopher C Yang, Ling Jiang, Haodong Yang, and Xuning Tang. Detecting signals of adverse

drug reactions from health consumer contributed content in social media. In Proceedings of ACM

SIGKDD Workshop on Health Informatics (HI-KDD 2012), Beijing, China, August 2012.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical

attention networks for document classification. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT 2016), pages 1480–1489, San Diego, California, USA, June 2016.

Jie Yin, Sarvnaz Karimi, Andrew Lampert, Mark Cameron, Bella Robinson, and Robert Power. Us-

ing social media to enhance emergency situation awareness. In Proceedings of the Twenty-Fourth

International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina,

July 2015.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu. Attention-

based bidirectional long short-term memory networks for relation classification. In Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016), pages

207–212, Berlin, Germany, August 2016.

Ayah Zirikly, Philip Resnik, Özlem Uzuner, and Kristy Hollingshead. CLPsych 2019 shared task:

Predicting the degree of suicide risk in Reddit posts. In Proceedings of the Sixth Workshop on

Computational Linguistics and Clinical Psychology: From Keyboard to Clinic (CLPsych 2019),

pages 24–33, Minneapolis, Minnesota, USA, June 2019.

84

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal of the Thesis
	Contributions
	Thesis Structure

	Background
	Classical Machine Learning Approaches
	Deep Learning Approaches
	Neural Network Architectures
	Word Embeddings

	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F-Measure
	Pearson Correlation
	Macro-average versus Weighted-average versus Micro-average

	Emotion Classification and Mental Health Assessment
	Emotion Detection
	Mental Health Assessment

	Contextual Emotion Detection
	EmoContext
	Dataset and Task
	The Model
	The Neural Feature Extractor
	The Classifier

	Experimental Setup
	Word Embeddings
	POS Tags
	Recurrent Units
	Neural Network Optimization
	SVM Hyperparameters
	Overall Training Process

	Results
	Discussion
	Effect of Input Features
	Effect of the Recurrent Units
	Effect of the Classifiers
	A Closer Look at the Emotion Classes
	Quality of the Extracted Neural Features

	Further Analysis

	Suicide Risk Assessment
	Dataset and Task
	System Overview
	Sub-models
	Ensemble Model
	Final Submitted Models

	Results and Discussion

	Early Risk Detection of Anorexia
	Task and Dataset
	Evaluation Metrics
	ERDE
	Latency-Weighted F1 Score

	The Model
	Experimental Setup
	Sub-models Implementation
	Ensemble Classifiers
	Submitted Runs

	Results and Discussion

	Conclusion and Future Work
	Summary
	Contributions
	Future Work

	Bibliography

