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Abstract

Proactive and Dynamic Task Scheduling in Fog-cloud Environment

Hoang Phan

Fog computing was introduced for the first time by Cisco in 2012. Since then, there has

been a great number of studies on fog computing, in which vacant and free-of-charge

computing resources in local networks provide low-latency services to end devices. Even

though traditional architecture with scalable and powerful central servers in cloud can

accommodate those tasks, it is costly to allocate resources in cloud to execute all those

tasks. In addition, it falls short of satisfying Quality of Service (QoS) requirements in

terms of waiting time because of long distance communication between servers and user

end devices.

In this thesis, we discuss dynamic scheduling problem in fog-cloud collaboration en-

vironment for real-time applications when QoS is strict and when an answer is useless

if the corresponding application finishes its execution after a pre-defined deadline. By

taking into account an admission control procedure to grant only requests whose dead-

line requirements are feasible with respect to the available resources in the network,

we study a proactive scenario using different strategies to calculate schedules and to

assign resources, within the admission control procedure to accommodate an incoming

request. Then, we propose our heuristic with four variants corresponding to four dif-

ferent strategies, with the adjustment of a trade-off cost-makespan factor in an utility

function. When evaluating performance with some baseline methods in such proactive

scenario, the numerical results show that our variants can meet deadline requirements

for more applications while exploiting more efficiently the resources in the fog layer and

being charged less for using cloud.

Keywords: fog computing, cloud computing, dynamic scheduling, real-time schedul-

ing, task scheduling, workflow applications, DAG, QoS requirements, heterogeneous sys-

tems.
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Chapter 1

Introduction

1.1 Background

As Internet-of-Things (IoT) has gradually become one of the most important techno-

logical evolutions in the last decade, the number of connected devices has increased

tremendously and it is expected to reach 20 billion in 2020 (Gartner, Inc. 2017). This

trend generates not only a huge volume of data that must be transferred over the network

but also makes the quality of service (QoS) become much more demanding. For example,

augmented reality (AR) and virtual reality (VR) applications require a great amount

of computation work and also highly responsive communication to provide acceptable

experience to users. Even though common devices such as smart phones, laptops, tablets

developed remarkably in the last few decades, they are still limited in battery life, compu-

tation and storage capacities to offer good user-experience when executing computation

intensive or resource-consuming tasks. Thus, there is a need of offloading those high-

demanding tasks to another workstation whose computation and storage capacity are

more powerful and available. Although cloud computing, with its flexibility to scale

on-demand (on both computation and storage), can accommodate fairly the execution

overhead and storage shortage issues, it would be expensive to serve a huge number of

requests using cloud resources. It would also fall short of offering adequate experience to

users due to round-trip communication between end-devices and remote servers in the

cloud. Fog computing (FC) can come into play to overcome those limitations of tradi-

tional central cloud computing architecture as it brings computation and data storage

closer to end devices.
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Figure 1: Traditional Cloud Computing vs. Fog Computing

Fog computing, first introduced by Cisco, is an additional infrastructure layer, which

consists of network devices at the edge, that resides between IoT devices and remote

servers on cloud. As a complementary layer to cloud computing, resources in the fog

are usually not as powerful as those in the cloud but they are more capable than end-

user devices, thus, can be responsible for serving part of the requests that arrive at the

network. This paradigm, hence, eliminates the needs of sending requests and transferring

data all the way long to the core servers on cloud to be served, which helps improve the

responsiveness and ease the burden to handle an enormous number of requests for the

cloud.

In general, each request, representing the application it is constructed from, that is

sent from an end-user device usually consists of a set of tasks that must be executed.

Those tasks can either be independent (bag of tasks) or dependent (workflow) on each

other (Mach et al. 2017). In the case where tasks are independent, they can be offloaded

separately to resources in the network to be executed simultaneously and in parallel.

However, in the case where requests are workflows, most of the time tasks depend on

input from other tasks and they cannot start until all of predecessors finish execution. In

such scenario, we need to consider inter-task data dependencies when scheduling tasks

onto resources in the system and executing tasks in parallel is not always applicable in

this case.
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Requirements/Features Cloud Computing Fog Computing

Latency High Low

Network Access Type Mostly WAN LAN (WAN)

Server Location Anywhere within the network At the edge

Mobility Support Low High

Distribution Centralized Distributed

Task/Application Needs Higher computation power Lower latency

User Device Computers, mobile devices (limited) Mobile-smart-wearable devices

Management Service Providers Local Business

Number of Servers High Low

Table 1: Characteristics of Cloud Computing and Fog Computing Comparison (ex-

tracted from Baktir et al. 2017)

1.2 Motivation Scenario

With all the advantages that fog computing can offer over traditional system infras-

tructures, there are a good number of use cases that can benefit from deploying fog

computing into the network such as the following scenario. A private organization offers

a wide range of internal services that are accessible through mobile devices such as smart

phones, tablets, wearable devices, etc. In particular, the services that the organization

offers are time-critical, in other words, they are sensitive to timing constraints such that

if an application fails to finish the execution within the required time frame, the response

will become useless. Because the services are for internal use, users will not need to pay

anything to use the services and it is the organization who will be charged for anything

occurring while providing the services. Because of such characteristics, the organization

realized that having traditional centralized servers on cloud would not be a good solu-

tion since it would degrade considerably the quality in the service that it offers to users

while having to pay a great sum that is charged for using resources in the cloud. As a

result, the organization decided to exploit computation resource of devices in proximity

with end users such as routers, switches, sensors, etc. available in the local area network

(LAN). Thus, with this intermediate layer of powerful processors, instead of having all

requests from users being sent to cloud servers to be processed, part of them will be

served within the local network which helps to offer the services more responsively to

users and remarkably reduce the cost of using external resources in the cloud. However,
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because those local devices are not specialized to mainly provide high level services,

they are usually not as powerful as servers in cloud. With an ultimate goal to meet

deadline constraints of as many applications as possible for less money, the organization

expects to compromise cloud cost and execution time rather than only aims to minimize

application’s makespan all the time.

1.3 Thesis Contributions

To solve the problem in the example scenario above, in this research, we address the prob-

lem of dynamic task scheduling in a real-time scenario where we will schedule multiple

applications, in which each application is in form of dependent tasks and represented

as a graph, onto a heterogeneous fog-cloud collaboration environment without prior

knowledge of upcoming IoT requests from users. Specifically, we propose a proactive

scenario in which there is a request-admission control procedure to anticipate whether

an application is feasible for the system to meet its pre-defined time constraints or not,

using multiple strategies, before really allocating tasks to computing resources in the

network. Then, we introduce a heuristic that computes application schedules using an

utility function, in which, just by adjusting value of a cost-makespan factor β, we can

obtain a schedule that either favors monetary cost rather than execution time or vice

versa. The main objective of our heuristic is to maximize the guarantee ratio of ac-

cepted applications whose deadline requirements are satisfied while making good use of

resources in the fog layer and minimizing cloud cost. To evaluate how our approach

performs compared to other methods using simulation, we introduce 4 variants whose

values of β are different to represent 4 scheduling strategies. Last but not least, we also

implemented a generator to create data sets of simulated network traffic for evaluation

purpose.

1.4 Plan of the Thesis

The remainder of this paper is organized as follows: Chapter 2 summarizes some related

articles in the literature regarding task scheduling in heterogeneous computing environ-

ments as well as in the domain of fog computing. Later, chapter 3 provides more details

regarding the system infrastructure with the problem models that we take into account.
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Also, in chapter 3, we explain our proposed method as well as our proactive scenario.

Then, we introduce our data generator in chapter 4. Finally, we give description of how

we evaluate the performance of our method compared with others in Chapter 5, followed

by our conclusion in the last chapter.
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Chapter 2

Literature Review

This section discusses various task scheduling methods in heterogeneous systems in gen-

eral and then introduces some popular papers on fog computing.

Overall, task scheduling in heterogeneous systems, which consist of a combination

of machines that have different characteristics or capacities, is a popular research topic

that has been tackled by many researchers. As Ullman 1975 proved that task scheduling

in heterogeneous system is an NP-complete problem, researchers are expected to find

heuristic methods that produce task assignments to processors that are close to exact

solutions. In the context of static scheduling in which information regarding computa-

tion work and data dependencies of tasks are given beforehand, one of the most popular

heuristics is HEFT (Heterogeneous Earliest Finish Time) proposed by Topcuoglu et al.

2002, which consists of 2 phases namely task prioritizing and processor selection. The

general idea of HEFT is to minimize execution time of a single application by trying

to assign each task, starting from the highest prioritized one, to a processor that has

the minimum combined cost of communication time and computation time. HEFT does

not take into account other constraints such as monetary cost of using cloud resources,

deadline requirements, etc. Bittencourt et al. 2008 addressed the task scheduling prob-

lem in a heterogeneous system using a method called PCH (Path Clustering Heuristic).

The authors proposed a clustering strategy in which a path of the workflow, consisting

of a cluster of dependent tasks, will be scheduled for execution on a same processor

to minimize communication cost and improve the performance of executing the whole

workflow.
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Various studies address the task scheduling problem in a dynamic context with mul-

tiple applications. For example, Qin et al. 2005 presented two methods, namely DALAP

and DASAP, that schedule application tasks with earliest deadline first, which leads to

local optimal solutions that likely increase the chance of shortening execution time of the

whole application. The authors applied an admission-control mechanism to see whether

an request arriving at the network is feasible for the system to finish its execution be-

fore the deadline or not before dispatching it, which avoid using resources for executing

infeasible requests. Stavrinides et al. 2011 proposed a list-scheduling approach in which

different bin-packing techniques are used during the processor selection phase to select

potential idle time slots (schedule holes) to execute tasks to achieve the highest ratio

of applications that meet their latency requirements. These methods can be considered

classic task scheduling heuristics in heterogeneous systems, the authors did not take into

account any collaboration of fog or cloud computing, which usually have constraints in

monetary cost.

Even though task scheduling in fog-cloud environment is relatively new compared

to other computing systems, it has been widely investigated in recent years considering

multiple requirement factors (i.e., energy consumption, user-defined budget, etc.) and in

various scenarios of fog computing. One of the first attempts that addresses workflow-

based task scheduling in fog-cloud environment is CMaS (Cost-Makespan aware Schedul-

ing) proposed by Pham et al. 2017. Instead of focusing only on application makespan,

CMaS also takes into consideration the cost that would be charged for using resources

in the cloud for computation and communication. By considering the two constraints

at the same time, the authors of CMaS assemble a balance schedule between monetary

cost and makespan, which is under a user-defined deadline constraint. However, this

approach only intends to schedule tasks in the context of static scheduling with single

application, that is not compatible with the dynamic nature of IoT traffic that fog-cloud

systems usually need to deal with.

In contrast to static scheduling, there are not so many studies considering the dy-

namic context with multiple real-time applications in fog-cloud-like environments. In

Stavrinides et al. 2018, a heuristic called Hybrid-EDF is proposed to address the sce-

nario of dynamic scheduling in fog-cloud system for multiple real-time applications,

where there is no knowledge about future tasks, taking into consideration cloud cost

that is charged for computation and communication and prescribed deadline. In this
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method, the authors allocate computation-intensive tasks with low communication de-

mands to servers in the cloud while scheduling communication-intensive tasks with low

computation requirements to resources in the fog. Hybrid-EDF can utilize possible gaps

in the schedule and exploit idle resources in the network to accommodate multiple ap-

plications. However, even though the paper proposed a scenario whose models are close

to real life fog-cloud environments, Hybrid-EDF does not make use of resources in the

system really efficiently. For all applications that arrive at the network, the heuristic

calculates optimal execution location for each task and then allocates them to resources

for execution immediately without considering whether it is feasible for the system to

satisfy QoS requirements of the applications or not, which could lead to a waste of re-

sources, and also money if those resources are in the cloud. Table 2 summarizes how

task scheduling references in the literature differ from our heuristic.

Reference Environment
Application

type

No. of

applications

Static/

dynamic

Min.

makespan

Min.

monetary

cost

Tradeoff

makespan-

cost

Deadline

constraint

Admission

control

Multiple

attempts

Topcuoglu et al. 2002 Heterogeneous Workflow Single Static Yes No No No No No

Qin et al. 2005 Heterogeneous Workflow Multiple Dynamic Yes No No Yes Yes No

Stavrinides et al. 2011 Heterogeneous Workflow Multiple Dynamic Yes No No Yes No No

Pham et al. 2017 Fog and cloud Workflow Single Static Yes Yes Yes Yes No Yes

Stavrinides et al. 2018 Fog and cloud Workflow Multiple Dynamic Yes Yes No Yes No No

Our heuristic Fog and cloud Workflow Multiple Dynamic Yes Yes Yes Yes Yes Yes

Table 2: References of Task scheduling in the literature and our heuristic
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Chapter 3

Our Heuristic

3.1 Problem Formulation

3.1.1 System infrastructure

Following the scenario mentioned above, the system infrastructure can be divided into

three main layers:

Cloud layer: this is the highest layer in which there is a set of servers with differ-

ent specifications that are hosted remotely by third-party cloud service providers such

as Amazon Web Services (AWS), Microsoft Azure, Google Cloud. Within the system

infrastructure, the servers in the cloud layer usually have the most powerful processors

with the largest storage and memory capacity so they can execute all kinds of requests

from users. Furthermore, each server in the cloud layer has multiple processing cores

and we assume that there is one VM running on each core. It is possible to have multiple

tasks running on a same server in the cloud in that a task will be executed on a separate

VM.

Fog layer: this layer resides in the middle, between the other two layer, consists of

a set of heterogeneous processing nodes that have specialized capability of serving most

of requests in the network. Processing nodes in this layer can be devices within the

local network such as routers, switches, sensors, etc. As they are not made to primar-

ily execute application tasks from users, these complementary resources have limited

computational capacity as well as shortage of storage and memory. To facilitate col-

laboration between resources within the network, we assume that these resources are

connected with servers in the cloud over Internet. In addition, processing nodes in the

9



fog layer are single core which means there will be at most one task to be executed on

a processing node at a time.

End-user devices layer: this is the bottom-most layer representing end-user devices

such as smartphones, wearable devices or tablets. For simplification, each device runs an

application with a set of tasks that need to be offloaded to higher levels to be executed

to meet QoS requirements.

Figure 2: System architecture

As discussed in the literature (Pham et al. 2017, Qin et al. 2005), our infrastructure

has a component that we call resource manager (RM) responsible for managing resources

and scheduling requests arriving at the network. Before being offloaded to resources in

the network, all requests will be submitted to this component with all information about

computation work and storage needed for execution. Moreover, with the ability of col-

lecting frequently status of machines in the network, we assume that RM, in which there

is an admission control that will be explained further in this section, will have enough

information to calculate schedules and anticipate whether deadline requirements of ap-

plications can be met. Only feasible applications, whose deadline can be satisfied, will

be dispatched to designated resources for execution and will be rejected without being

sent to resources. For simplification, we assume that scheduling time and dispatching

10



time are insignificant and these factors will not be accumulated toward application’s

makespan.

Since the fog layer is actually part of the local network (LAN), it is theoretically

more stable and robust compare to the Internet, we assume connections between devices

in the middle layer are much more responsive and stable than those between devices

belong to different layers where communication is done via Internet.

3.1.2 Problem model

In general, the problem of scheduling a task graph that consists of precedence constrained

tasks on a set of given resources in a network is a problem of mapping each task on a

resource such that we can obtain the optimal value of an utility function.

Figure 3: An example of task graphs and processor graph

Processor graph

A processor graph PG, consists of a set of processors in the cloud layer NCLOUD and the

fog layer NFOG, it is a complete graph in which there is always a connection between

any two processors. Each processing node Pi is characterized by:

• Number of cores (or number of VMs) ncorei

• Processing rate proci

• Upload bandwidth bwui

11



• Download bandwidth bwdi

• Cost per time unit costi for using a VM on Pi

In our model, the processing nodes in the cloud layer have at least 2 cores whereas those

in the fog layer have only 1 core. By offloading tasks to the cloud layer, we execute

different tasks simultaneously on different VM, that are running on different cores of

a same processor, which help increasing the overall throughput of the scheduling with-

out affecting execution of other concurrent tasks. Furthermore, all VMs running on all

processing cores on processor Pi will have the same processing rate proci and commu-

nication between different tasks on a same processor, either on a same or different VMs,

is negligible, thus will be counted as zero. We also take into account the considerable

difference in communication time between processors belonging to the same or different

layers by having local bandwidth bwfog=1Gbps and bwcloud=250Mbps which will be

applied for data transfer between any two nodes within the fog layer and the cloud layer,

respectively.

Task graph

Each input application ai ∈ A in our model is represented by a directed acyclic graph

(DAG) G = (V,E) in which each node vi ∈ V represents a task and each edge eij ∈
E between two nodes vi and vj denotes the dependency constraints between them.

Each node vi in the task graph has a non-negative weight ci represents for number of

instructions as computation works of the task. The time that a VM vmj would need to

execute task vi is then given by:

w(vi,vmj) = ci/procj (1)

Each edge eij has a non-negative weight dij denotes the amount of data transferred

from vi to vj before task vj getting executed. Communication cost for transferring data

of dij between vms (where task vi is scheduled on) and vmd (where task vj is scheduled

on) is then defined as:

c(dij,vms,vmd) =

⎧⎨
⎩
0, if s = d

dij/bw(s, d), if s �= d
(2)

12



where bw(s, d) is the bandwidth for the communication from vms to vmd. It is deter-

mined as:

bw(s, d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bwfog = 1Gbps, if {s, d} ∈ NFOG

bwcloud = 250Mbps, if {s, d} ∈ NCLOUD

min(bwus,bwdd), otherwise

(3)

A task that has no predecessors is called entry task, whereas a task without any

successors is called exit task, denoted as ventry and vexit, respectively. A task can only

be executed once all the precedent tasks finish and all data dependency has arrived at

the scheduled processing node for that task.

Regarding QoS requirements, each task itself does not have any particular deadline

but each application ai has a constraint delayi which denotes the maximum delay that

the user who sends ai can wait for the network to process it after arriving at the network

at time arrivali. An application needs to finish execution within a required timeframe

and any response outside the timeframe will be considered useless. We assume that

communication time to send results back to end devices is negligible thus counted as

zero since response data is relatively small. As a result, to have application ai meet its

deadline requirement, finish time of all exit tasks of ai is also finish time of ai and will

be defined as:

deadlinei = arrivali + delayi (4)

In this thesis, the terms of application, request, task graph and DAG are used inter-

changeably.

Monetary cost

We only consider monetary cost that is charged whenever we assign tasks to VMs in the

cloud layer as they are hosted by third-party service providers. For simplification, the

cost of using cloud resources will be calculated based on the time that the VMs on those

resources are occupied for computation. We assume that the monetary cost for using

resources in the fog layer is zero.

13



3.2 Proactive Scenario and Compromised Makespan-

Cost Ratio Heuristic

3.2.1 Proactive Scenario

Unlike the strategy Hybrid-EDF proposed in Stavrinides et al. 2018 and the majority

of heuristics in task scheduling that consider multiple applications scenario, we will

not allocate tasks immediately to selected execution locations before knowing that the

network can finish executing the whole application before its deadline. In our proposed

methods as well as other heuristics that we use to evaluate performance, before allocating

any application that arrives at the network to the resources, we will let them go through

an admission control procedure. This admission control procedure will anticipate if an

application can finish before deadline by calculating makespan of the application when

allocating each task to a VM such that we would obtain the optimal value of an utility

function for each task. As we anticipate how allocate tasks to resources in the network,

we also take into account the state of the network with other tasks that are currently

being executed as well as how those resources would be occupied with tasks of the current

application that are being anticipated to be scheduled. After having calculated all the

tasks of current application on how they would be allocated onto the resources of the

network, if all exit tasks of the application in the anticipated schedule finish before its

pre-defined deadline then the application will be marked as “Accepted”. The application

will be allocated into the network for real execution. Otherwise, the application will be

considered as “Rejected”. Our algorithm will avoid wasting resources of the network

spending on executing requests whose QoS requirements cannot be satisfied.

14



Figure 4: Flowchart of our proactive scenario

As we know beforehand whether QoS requirements of application can be met or not

without really executing any application tasks on resources, users will not wait until

part of their applications (or even the whole applications) get executed to get a response

from the system if their requests are feasible or not. For simplification, we assume that

the machine of RM is well equipped with good capacity such that calculation time that

it will need to compute schedules and forward information of applications from users to

resources is negligible which can be counted as zero. With this assumption, we consider

a proactive scenario in which it is possible to use different strategies in multiple attempts

to accommodate an application when it fails (being marked as “Rejected”) to finish the

execution within the required timeframe in earlier attempts. However, we are also aware
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that the number of attempts must not be impractical, thus, should be limited, as it may

cause severe delay and will degrade overall performance of examined applications. Hence,

we assume that the delay caused by calculation of schedule remain negligible when the

number of maximum attempts allowed in the admission control procedure is not greater

that 3.

After having reached the maximum number of allowed attempts, if none of proposed

schedules that are computed by the scheduler component of RM can make an application

finish execution before its deadline, the application still remains “Rejected”. The process

of how the admission control grants an application is illustrated in the flowchart in Figure

4.

To compromise the outcome schedule with makespan and cloud cost, we proposed a

heuristic with several variants that basically apply a same formula of utility function but

with different values of a makespan-cost factor. By using this compromising factor, we

specify the inclination level on makespan and monetary cost when selecting execution

location of tasks. As we attempt to change strategies in turn in order to fit requests into

the network, we solely adjust the value of makespan-cost factor in the utility function

to favor more execution time.

3.2.2 Admission Control Procedure (Computing Schedule)

In the admission control procedure, different task scheduling strategies can be exam-

ined in turn to anticipate a suitable schedule for a given application into the network

at a specific time using simulation. In general, there are two primary phases namely

task selection and VM/processor selection in our heuristic. In the task selection phase,

scheduling priority of every task will be computed and each task will then be selected by

the scheduler starting from the one with the highest priority. While in the VM/processor

selection phase, the scheduler will determine execution location of a selected task to

achieve the optimal value of our objective function.

Task selection phase

In this phase, each task vi will be given a scheduling priority recursively defined as:

pri(vi) =

⎧⎪⎨
⎪⎩
w(vi) + max

vj∈succ(vi)
(c(eij) + pri(vj)), if vi �= vexit

w(vi), if vi ≡ vexit

(5)
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in which w(vi) is the average time that a processor/VM in the network take to execute

task vi and c(eij) is the average time to transfer eij between two processors/VMs in the

network. These average factors are calculated as:

w(vi) =
ci

proci

(6)

c(eij) =
dij
bw

(7)

where the mean processing rate proci and the mean bandwidth bw of the fog-cloud

environment are defined as follow:

proci =
(
∑

Pi∈PG proci × ncorei)∑
Pi∈PG ncorei

(8)

bw =

∑
Pi∈PG bwui +

∑
Pi∈PG bwdi

2× |PG| (9)

with |PG| is the number of processors in the network.

As the priority, also called upward-rank, of each node in the task graph depends on

its child nodes, the precedence constraints of task graphs will then be preserved when

we sort all the tasks in a non-increasing order of node priority.

VM selection phase

Similarly to the scheduling mechanism of HEFT, we use insertion-based policy that

takes into account available time slots at which resources are idle to allocate tasks to

for execution. A task vi can only start its execution if all of its predecessor tasks finish

their execution and transferring data as input to the selected VM of vi. Let tf (vi,vmn)

be the finish time of task vi on vmn. Ready time tr(vi,vmn) of task vi on vmn, at which

all the required data as input for vi from its predecessors has arrived at vmn, is defined

as:

tr(vi,vmn) = max
vj∈pred(vi)

[tf (vj,vmm) + c(dji,vmm,vmn)] (10)

For entry task ventry, there is no need for it to have any input from other tasks to start

the execution, tr(ventry,vmn) will either be the arrival time of the application arrival

or the earliest idle time slot on vmn that can host ventry.
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Then, the main job in VM selection phase for each task vi is to look for a VM whose

earliest idle time slot can host the execution of vi (an example of an idle time slot that

can host execution of a task is shown in Figure 5) such that our utility function can

achieve the optimal value with that selection. Let EST (vi,vmn) and EFT (vi,vmn) be

the earliest start time and earliest finish time of task vi on vmn, respectively. For an idle

time slot [tA, tB] on vmn to host task vi, there must be no task being executed within

this time slot on vmn and

max {tA, tr(vi,vmn)}+ w(vi,vmn) ≤ tB (11)

EST (vi,vmn) and EFT (vi,vmn) are then defined by:

EST (vi,vmn) = max {tA, tr(vi,vmn)} (12)

EFT (vi,vmn) = EST (vi,vmn) + w(vi,vmn) (13)

Figure 5: An example of an idle time slot [tA, tB] on vmn that can host task vi

Our proposed method also takes into account monetary cost of using cloud resources

when a task is allocated to a VM in the cloud layer. As we assume that the monetary

cost charged for communication to and from cloud resources is much less than that of

the computation, we only consider the cost for the time a selected VM in the cloud layer

will be occupied for execution. The cloud cost of executing task vi allocated to vmn is:

cost(vi,vmn) = costn × w(vi,vmn) (14)

After having computed all earliest finish time of a task on all VMs in the network

as well as monetary cost that would be charged for using those computing resources, we

will choose a VM from which we can obtain the optimal trade-off value for our utility
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function for a specific task vi. The utility function to determine the trade-off value

between monetary cloud cost and execution time of task vi on vmn is defined by:

U(vi,vmn) = β × cost(vi,vmn)

max
vmm∈PG

cost(vi,vmm)

+ (1− β)×
EFT (vi,vmn)− min

vmm∈PG
EFT (vi,vmm)

max
vmm∈PG

EFT (vi,vmm)− min
vmm∈PG

EFT (vi,vmm)

(15)

where β (0 ≤ β ≤ 1) is the makespan-cost factor reflecting the inclination between

monetary cost of using the cloud and execution time when selecting execution location

of a task. Execution location of task vi will then be the VM that has the minimum value

of U(vi,vmn). When β = 0, the heuristic become a dynamic version, in the context of

real-time applications, of HEFT in such all the VMs that will be selected will only favor

execution time to minimize overall application’s makespan. At the other extreme, only

resources in the fog layer will be selected to execute tasks when β = 1 they always

have U(vi,vmn) = 0. The utility function can achieve a balance trade-off value when

monetary cost and execution time have equal weights in the formula, thus the neutral

value of β is 0.5.

After having task vi to be scheduled on vmn, the earliest start time EST (vi,vmn)

and the earliest finish time EFT (vi,vmn) will equal to the actual start time and the

actual finish time of task vi, which are denoted as AST (vi) and AFT (vi), respectively.

Then, after having scheduled all the tasks of a task graph, the makespan of that task

graph is AFT (vexit).

An application will only be marked “Accepted” if its exit task finishes before deadlinei

and then, all the tasks of the application will be scheduled accordingly as computed.

Otherwise, the application will be marked “Rejected” without wasting any resources on

executing the whole task graph. An illustration of output representing how tasks are

assigned to processors is shown in Figure 6.
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Figure 6: An example of task scheduling for applications given in Figure 3

3.2.3 Adjusting the Value of Makespan-Cost Factor β

In this paper, we examine 4 variants of our heuristic and they differ from one and another

on which value of β to start with, how to adjust β in latter attempt(s) and the number

of maximum attempts allowed in the admission control procedure.

Firstly, from the definition of the utility function, we can see that the higher the

value of β is, the more the function will become dependent on monetary cost, which

means if we would want to have requests to be executed within a shorter period of time,

we should decrease the value of β to make selections of VM less sensitive with monetary

cost and vice versa. Generally, the strategy of our heuristic is to always start first with

a higher value of β to aim for less expensive execution locations. If then the application

fails to finish its execution before deadline, a smaller value of β will be chosen which

should help produce a new schedule whose makespan is expected to be smaller in an

effort to meet time constraints. By starting to accommodate each application with a

high value of β first, we expect to obtain more cost-effective schedules before adjusting
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β to a lower value to favor more execution time. In the last attempt, for all the variants

of our heuristic, we use β = 0 as the last resort, which will likely help produce a schedule

whose makespan we consider as the shortest that our heuristic can possibly construct to

accommodate an application.

Regarding how to adjust the value of β if deadline requirements cannot be met in the

first attempt, we examine the possibilities of adjusting either manually or automatically.

In the case where β will be adjusted manually, other values of β in latter attempts

are specifically defined in advance whereas on the other hand, new value of β will be

determined using a formula based on the difference between makespan produced by

previous strategy and application’s deadline. As an attempt to adjust automatically, we

propose a formula to estimate the right value of β as follows:

β =

⎧⎨
⎩
0 , if lateness > 1

(1− lateness)/2 , otherwise
(16)

where lateness is defined as:

lateness =
(AFT (vexit)− arrival)− delay

delay
(17)

Finally, by investigating different numbers of maximum attempts to accommodate

applications, we will evaluate whether the heuristic could grant notably more requests if

more strategies are allowed in the admission control procedure. All the parameters of the

4 variants, namely ProactiveCUHEFT, ProactiveCMKCRHEFT, ProactiveCMKCR-

manual, ProactiveCMKCR-auto, as well as other approaches for evaluation purpose

are specified in Table 5 and will be discussed further in Chapter 5.
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Chapter 4

Data Instances

We now describe a generic generator of data instances for FC. Each data instance has

two key parts: the FC infrastructure and FC traffic.

4.1 Network Infrastructure

The network infrastructure that we use for experimenting and evaluating will be con-

structed by different types of processors with quantity for each type can be found in

Table 3. As being mentioned in problem model section, each core of a processing node

can run a separate VM thus number of cores of a processing node is equal the number of

running VMs on that node. Hence, there are in total 12 VMs in the fog layer while there

are 18 VMs belong to the cloud layer. In addition to different bandwidth constants

(bwfog=1Gbps and bwcloud=250Mbps) in the two layer of processors, upload band-

width and download bandwidth of each processing node will be generated randomly in

the range of [50-100 Mbps]. Those bandwidths will be used to calculate communication

time that processing nodes will need to transfer data between those that are in different

layers as it will be transmitted over the Internet.
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Processing rate Number of cores Cost per time unit Quantity

Fog type 1 1.6 GHz 1 0 3

Fog type 2 1.8 GHz 1 0 3

Fog type 3 2.0 GHz 1 0 3

Fog type 4 2.2 GHz 1 0 3

Cloud type 1 2.6 GHz 2 1.0 1

Cloud type 2 2.6 GHz 4 1.3 1

Cloud type 3 3.0 GHz 2 1.6 1

Cloud type 4 3.0 GHz 4 1.9 1

Cloud type 5 3.4 GHz 2 2.3 1

Cloud type 6 3.4 GHz 4 2.6 1

Table 3: Characteristics of processing nodes in the fog layer and the cloud layer

4.2 FC Traffic

We will define the FC traffic by a set of applications in which each application will be

represented by a task graph, with precedence constraints on some tasks, while other

tasks can be run in parallel.

4.2.1 Characteristics of the FC Traffic

The traffic to evaluate performance of the proposed method will be characterized by

its overall number of applications (napps) to be scheduled as well as the application

arrival gap (γ) which denotes the gap of time between applications that will arrive at

the network, i.e., one application arrives after another after γ seconds. Indeed, we will

evaluate the performance of our algorithm as we change the value of the arrival gap.

The higher the value of the arrival gap is, the fewer applications will reach the system

in a certain period of time, the less busy the network will be and vice versa.

Computation works [0.1-1.5] 109 CPU-cycles

Data dependency [0.5-20] MB

Application deadline [CPL, 2CPL]

Table 4: Characteristics of tasks in the data set
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4.2.2 Generation of Task Graphs

Several authors have proposed algorithms for generating randomly DAG such as Topcuoglu

et al. 2002, Shivle et al. 2004 and Park 2004 with common parameters namely number of

tasks, average degree of a node, communication and computation ratio (CCR). Inspired

by those algorithms, we developed a random graph generator which has the following

parameters:

• Number of tasks in the graph ntasks.

• Shape parameter of the graph α. From this parameter, number of layers (or height

of task graph) is then randomly chosen from a uniform distribution whose mean

equal to α.
√
n. Whereas, number of tasks of each layer (width of each layer) is

generated randomly from a uniform distribution whose mean value equal to

√
n

α
.

Using α, we can choose to generate thin and long graphs by choosing α � 1.0 or

dense and shorter graphs when α 	 1.0.

• Communication to computation ratio CCR. CCR value of an application repre-

sents the relation between the average communication cost between tasks in the

graph over the average computation cost of all tasks. An application can be con-

sidered as computation-intensive if the value of CCRs is low, whereas a high value

of CCR indicates that the application is communication-intensive.

• Maximum delay delay. This parameter represents the maximum delay that the

application can wait, after arriving at the network, for being executed. A schedule

that takes more than delay to finish the execution will be considered as unac-

ceptable, thus get rejected.

After having determined randomly the number of tasks in each layer using shape

parameter α as explained above, we will iterate through each task, from the lowest layer

to the highest layer, to establish random out-link dependencies from current task to a

random subset of tasks which belong to higher layers. Size of the subset will also be

selected randomly in the range of [1, |T higher
i |] in which T higher

i denotes the set of tasks

that belong to higher layers than that of task vi. Once we finish generating links between

tasks only from those in the lower layer to those in the higher layer, we run an additional

process, using deep-first search (DFS) algorithm, to remove transitivity in the graph to

avoid redundant dependencies.
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The computation works ci of task vi is selected randomly within a range as denoted

in Table 4. Using parameter CCR, average weight dij of edge eij, which denotes data

dependency between tasks vi and vj, is then defined by:

dij = CCR× Ccomp(vi)× bw (18)

where bw is the average bandwidth of the network and Ccomp(vi) is the average cost for

a processor to execute task vi defined by:

Ccomp(vi) =
ci

(
∑

Pi∈PG proci × ncorei)/
∑

Pi∈PG ncorei

(19)

From the average weight dij, amount of data dependency of edge eij will then be set

randomly with a value from the following range:

0.9× dij ≤ dij ≤ 1.1× dij (20)

Finally, we add a dummy entry task and a dummy exit task to tasks that have no

predecessors and successors, respectively. Those dummy tasks cause no effects to the

overall schedule length of the whole graph as their constraint values will be 0.

To evaluate further the performance of our approach, for each experiment, we gen-

erate a data set of task graphs where values of the parameters are given below.

• napps = 10000

• SETntasks = {20, 40, 60, 80, 100}

• SETCCR = {0.2, 0.5, 1, 2, 5}

• SETα = {0.5, 1, 1.5, 2}

• SETγ = {0.4, 0.6, 0.8, 1.0, 1.3, 1.5, 1.8}

4.2.3 Generation of Maximum Delay

Length of a path of a task graph is the sum of communication cost (time that is used for

transferring data dependency between nodes) and computation cost (time that is used

for execution of a node) of all the nodes and edges on the path, from start to finish.

Critical path length (CPL) is the length of the longest path in the graph. Maximum
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delay, delay, of an application will then be defined by selecting randomly from a range

that depends on the CPL of the task graph.

CPL ≤ delay ≤ 2CPL (21)
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Chapter 5

Performance Evaluation

5.1 Performance metrics

The goal of our scheduling heuristic is to produce task schedules with good trade-off

between cloud cost and overall completion time of tasks to maximize the number of

accepted requests. In other words, our heuristic aims to allocate tasks to resources in

the network such that to have requests executed within pre-defined deadline but using

as less cloud computing power as possible. We are also interested in investigating to see

if resources in the fog would be exploited efficiently.

• Guarantee ratio (GR), specifies the percentage of requests (or task graphs) that

finish execution before deadline among the set of requests in the data set that are

fed to the network.

• Cloud cost, which is the total cost of using cloud resources for executing tasks that

are offloaded to the cloud layer.

• Fog resource occupancy, signifies the percentage of resources in the fog layer that

are utilized to execute incoming requests.

5.2 Comparison Strategies

Details of all the strategies to be evaluated are as follow:

• Dynamic Heterogeneous Earliest Finish Time (DynamicHEFT): just like the static
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version introduced in Topcuoglu et al. 2002, DynamicHEFT assigns tasks to mini-

mize only the combined cost of communication time and computation time without

taking into account other constraints (i.e., monetary cost of using cloud resources),

thus β = 0. In addition, DynamicHEFT has only one attempt to compute schedule

within the admission control procedure.

• Cloud Unaware (CU): in contrast to DynamicHEFT, CU takes into account only

resources in the fog layer which will certainly have zero cost for using the cloud

(β = 1). CU also has at most one attempt in admission control procedure.

• Compromised Makespan-Cost Ratio (CompromisedMKCR): similar to DynamicHEFT

and CU, instead of having multiple attempts to accommodate a task graph to the

network when it fails to meet the deadline requirements, CompromizedMKCR has

only one chance to compute schedule with the neutral value of cost-makespan

factor β = 0.5.

• Proactive Cloud Unaware - HEFT (ProactiveCUHEFT): the strategy of this ap-

proach is actually straight forward by using two baseline heuristics CU (β = 1)

and HEFT (β = 0). The idea of ProactiveCUHEFT is trying to schedule every

request arrives at the network using CU - which has zero cloud cost. In case the

schedule produced by CU would not finish before the deadline, DynamicHEFT

will be applied in the latter attempt.

• Proactive CompromisedMKCR - HEFT (ProactiveCMKCRHEFT): with also two

attempts allowed in the admission control procedure just as same as in Proactive-

CUHEFT, this variant, however, uses CompromisedMKCR in the first attempt

instead of CU before employing DynamicHEFT in the second attempt.

• Proactive CompromisedMKCR - manual (ProactiveCMKCR-manual): this variant

is just as same as ProactiveCMKCRHEFT with the values of β are fixed at β = 0.5

and β = 0 in the first and last attempt, respectively. However, ProactiveCMKCR-

manual has 3 attempts to compute schedules and uses β = 0.2, to increase the

chance of assigning tasks to resource in the fog, in the second attempt before going

to the extreme where β = 0. This strategy is expected to use less resource in the

cloud than ProactiveCUHEFT and ProactiveCMKCRHEFT.
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• Proactive CompromisedMKCR - auto (ProactiveCMKCR-auto): with the same

idea of having at most 3 attempts in admission control procedure, ProactiveCMKCR-

auto applies formula (16) to determine the value of β in the second attempt without

using a pre-defined value as inProactiveCMKCR-manual.

• HybridEDF (Stavrinides et al. 2018): unlike the other heuristics, there is no ad-

mission control in HybridEDF thus, tasks of any applications arrive at the network

will be scheduled until either all the tasks are allocated or the deadline is reached,

whatever comes first.

Number of attempts First β Second β Third β

DynamicHEFT 1 0 N/A N/A

CU 1 1 N/A N/A

CompromisedMKCR 1 0.5 N/A N/A

ProactiveCUHEFT 2 1 0 N/A

ProactiveCMKCRHEFT 2 0.5 0 N/A

ProactiveCMKCR-manual 3 0.5 0.2 0

ProactiveCMKCR-auto 3 0.5 auto (≥ 0.2) 0

HybridEDF 1 N/A N/A N/A

Table 5: Difference between heuristics to be evaluated
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5.3 Results

Figure 7: Guarantee ratio comparison

Figure 8: Cloud cost comparison
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Figure 9: Fog resource occupancy comparison

In general, that all the heuristics share the same behavior to accommodate more appli-

cations as we increase the arrival gap, which makes the network become less busy and

more resources available for service. However, we can see from the results that when the

network becomes really busy with too many requests arrive at the network in a short

period of time (γ = {0.4, 0.6, 0.8}), even though many applications will be rejected, our

variants stand out with the highest ratio of applications finish before deadline while

making a good use of resources in the fog layer.

Among the strategies that performs well in terms of the guarantee ratio metric, all

the proactive variants offer timely service for very competitive cloud costs compared

with DynamicHEFT and HybridEDF in all examined workload scenarios. Our proac-

tive heuristics always allocate tasks to processors that may produce a more economical

outcome first before going with an extreme approach if applications cannot be finished

before the deadline in the first attempt. This factor also affects how the heuristics take

advantage of resources in the network. For example, we can see that all the heuristics

make really good use of this free-of-charge layer when the network is overloaded as the

resources are occupied more than 85% of the time. However, as we increase the value

of arrival gap of applications that arrive at the network to make the network less busy,

both DynamicHEFT and HybridEDF start to fall short of using resources in the fog

layer well, especially DynamicHEFT. All the proactive approaches still offer competitive

service while exploiting efficiently fog resources.

We can also see that even though HybridEDF can satisfy deadline constraints of a
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decent number of applications that arrive at the network, it is relatively more costly in

terms of monetary cost for the cloud than the proactive strategies. This occurs when

applying HybridEDF because, without an admission control, there are tasks that are

offloaded to cloud resources but later, one or some antecedent tasks end up unsuccess-

fully finishing the execution before the application’s deadline. In HybridEDF, execution

location of a task is determined based on the ratio of its computation work over com-

munication constraints with its successors, this method becomes strict and less flexible

in terms of exploiting resources in the fog. As a consequence, a relatively low occupancy

of resources in the fog layer when using HybridEDF compared to the other heuristics.

In addition, as expected, with the value of β is set at the two extremes, the two

baseline methods CU (β = 1) and DynamicHEFT (β = 0) behave opposite in the exam-

ined cases. It can be seen from Figure 7 that CU always accommodate the least number

of requests since tasks are allocated to only processors in the fog thus less resource are

available in this approach compared to the other methods. However, as tasks are always

offloaded to machines in the fog, CU has zero cost for the cloud as well as a high oc-

cupancy of resources in the fog layer. At the other extreme, DynamicHEFT performs

contrarily with comparatively high ratio of accepted applications among the investigated

methods. Because DynamicHEFT only minimizes the overall makespan of applications,

in most cases, tasks will be scheduled to be executed in powerful processors in the cloud

layer which makes DynamicHEFT, unsurprisingly, become the most expensive approach

with the lowest occupancy of resources in the fog among the examined methods.

Also using the same scheme to grant only feasible applications to the network like

DynamicHEFT and CU by using only one attempt in admission control, Compro-

misedMKCR performs relatively poor as the corresponding result of this method is

only slightly better than the baseline method CU even though it is not limited to only

resources in the fog. This shows that even in the case where we apply a neutral value of

cost-makespan factor (β = 0.5) in our utility function, we will not likely obtain a fairly

balance outcome if we use only one attempt.

Furthermore, the way β is adjusted, either manually or automatically, does not seem

to impact remarkably on the performance as there is no notable difference between the

variants in all the evaluated metrics. With 3 attempts allowed in the admission con-

trol procedure, ProactiveCMKCR-manual and ProactiveCMKCR-auto do not perform

much better than ProactiveCUHEFT and ProactiveCMKCRHEFT, those that have at
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most only 2 attempts. This indicates that more flexibility in terms of number of strate-

gies allowed in the admission control would not likely guarantee much more profitable

outcomes.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We proposed several variants of a proactive strategy that schedule tasks to resources in

a fog-cloud environment in which we assume that an admission control is deployed to

only allocate tasks whose application’s deadline constraint can be met by the resources

in the network. Moreover, unlike most of studies in the literature, we apply multiple

attempts to schedule tasks using different strategies that favor makespan over monetary

cost when choosing execution location on processing nodes to allocate tasks to if the

execution cannot finish before the deadline. Results show that by accepting only feasible

applications and dynamically adjusting makespan-cost factor β, our proposed heuristics

can use resources in the network more efficiently with a noticeably higher rate of accepted

applications with less money charged for using resources in the cloud than the other

evaluated heuristics. In addition, our experiments show that all of our proactive variants

exploit resources in the fog with the highest rate of occupancy in this intermediate layer,

not only when the traffic is light but also when the network is overloaded with many

applications arrive in a short period of time. Lastly, from the results, we see that it

is beneficial to use multiple attempts to assign tasks to processing nodes which helps

not only minimizing cloud cost but also maximizing the number of applications whose

deadline are met. However, there should be a thorough observation to consider and

decide how much flexibility we should have in the admission control procedure as there

are not much difference between those that have a maximum of 2 and 3 attempts to

accommodate requests.
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6.2 Future Work

In the future, we aim to take into account other constraints such as RAM and energy

consumption because these are factors that impact how the resources would be allocated

or where tasks would be offloaded. Likewise, regarding elements that may affect response

time of a request, we would also like to examine further more accurately how much time

the task scheduler needs to calculate schedules and dispatch tasks to resources. Last but

not least, we are interested in investigating how we can choose the right value of cost-

makespan factor β automatically in the second attempt instead of adjusting it manually

or with arbitrary formulas. Ideally, the difference of the values of β between attempts

should be determined based on how far the makespan, produced by the schedule using

the last value of β, is from the deadline.
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