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Montréal, Québec, Canada

November 2019

c© Xiaoyang Zhang, 2019



Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Xiaoyang Zhang

Entitled: Nonlinear Aeroelasticity and Active Control of Airfoils

Subjected to Gusts

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Mechanical Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Tsz Ho Kwok, Chair

Dr. Chunjiang An, External Examiner (BCEE)

Dr. Farjad Shadmehri, Internal Examiner

Dr. Wen-Fang Xie, Supervisor

Dr. Mojtaba Kheiri, Supervisor

Approved by
Dr. Martin Pugh, Chair

Department of Mechanical, Industrial and Aerospace Engineering

2019

Dr. Amir Asif, Dean

Gina Cody School of Engineering and Computer Science



Abstract

Nonlinear Aeroelasticity and Active Control of Airfoils Subjected to Gusts

Xiaoyang Zhang

In this thesis, the coupling effects of structural nonlinearities and a gust input on the aeroe-

lastic behaviour of an airfoil are studied, and an adaptive controller which is effective for

suppressing limit-cycle oscillations (LCOs) is designed. The dynamics of the airfoil are ap-

proximated via two- (pitch and plunge) and three-degree-of-freedom (pitch, plunge and flap)

models. Different types of structural nonlinearities, such as free-play and hysteresis are con-

sidered in the modelling. The nonlinear dynamics is analyzed based on time history, power

spectral density (PSD), phase-plane, and Poincaré section plots, along with the estimation of

the dominant Lyapunov exponent for the chaotic-like motion. It is found that free-play and

hysteresis nonlinearities may considerably reduce the critical flow velocity compared to the

linear system. The dynamic responses of the nonlinear system to sharp-edged and 1-cosine

gust profiles are obtained at different flow velocities and compared to those of the system

with no gust input. In addition, basin of attraction is plotted to show the stability boundary

of the system subjected to a sharp-edged gust with various amplitudes. It is discussed that

as the gust becomes stronger, the likelihood of the occurrence of LCO increases. Based on

the nonlinear model with a control surface, the suppression of LCO is studied. Without

uncertainties, a PD controller together with a partial feedback linearized controller can ef-

fectively alleviate oscillations due to gusts and structural nonlinearities. Considering some

uncertain structural parameters, an adaptive controller with estimation parameter update
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law is further designed to stabilize the system. A Lyapunov function is constructed and

utilized to prove the stability of the system.
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flap DOF, β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Control block diagram without uncertainties. . . . . . . . . . . . . . . . . . . 71

4.2 Open- and closed-loop pitch(left), plunge(centre), and flap(right) responses

to a 1-cosine gust with w∗
0 = 0.29 (w0 = 10 m/s) at U∗ = U∗

L with α0 = 1◦,

and Gd = Gv = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Open- and closed-loop pitch(left), plunge(centre), and flap(right) responses

to a 1-cosine gust with w∗
0 = 0.29 (w0 = 10 m/s) at U∗ = U∗

L with α0 = 1◦,

and Gd = 0.5, Gv = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Open- and closed-loop pitch(left), plunge(centre), and flap(right) responses

to a 1-cosine gust with w∗
0 = 0.29 (w0 = 10 m/s) at U∗ = U∗

L with α0 = 1◦,

and Gd = 0.001, Gv = 0.205. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Control block diagram with structural uncertainties. . . . . . . . . . . . . . . 79

5.2 Pitch (left), plunge (centre), and flap (right) responses of open- and closed-

loop with different initial estimations of stiffness parameters to a 1-cosine gust

with w∗
0 = 0.29 (w0 = 10 m/s) at U∗ = U∗

L with α0 = 1◦ and β0 = ξ0 = α′
0 =

β′
0 = ξ′0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xvii



5.3 Pitch (left), plunge (centre), and flap (right) responses of open- and closed-

loop with different initial estimations of damping parameters to a 1-cosine

gust with w∗
0 = 0.29 (w0 = 10 m/s) at U∗ = U∗

L with α0 = 1◦ and β0 = ξ0 =

α′
0 = β′

0 = ξ′0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Pitch (left), plunge (centre), and flap (right) responses of open- and closed-

loop with combined initial estimations of both stiffness and damping parame-

ters to a 1-cosine gust with w∗
0 = 0.29 (w0 = 10 m/s) at U∗ = U∗

L with α0 = 1◦

and β0 = ξ0 = α′
0 = β′

0 = ξ′0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 81

xviii



List of Tables

2.1 Root mean square (rms) of pitch displacement with a = −0.5, µ = 100,

xα = 0.25, rα = 0.5, ζα = ζξ = 0, ω̄ = 0.2, and free-play nonlinearity in pitch

(δ = 0.5◦,M0 = Mf = 0, αf = 0.25◦) obtained using different time steps,

∆τ , in the time integration. The value in parentheses shows the relative error

between the rms value in a column and that in the next column. . . . . . . . 23

2.2 Dynamical behaviour in different regions of the pitch bifurcation diagram

shown in Fig. 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Dynamical behaviour in different regions of the plunge bifurcation diagram

shown in Fig. 2.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Dynamical behaviour in different regions of the pitch bifurcation diagram

shown in Fig. 2.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Dynamical behaviour in different regions of the plunge bifurcation diagram

shown in Fig. 2.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xix



List of Symbols

a nondimensional distances of the elastic axis from the mid-chord

CLα the lift-curve slope (normally taken as 2π)

cm nondimensional distances of the control surface (flap)

hinge line from the mid-chord

L lift of the lifting surface

M pitching moment of the wing-flap about the elastic axis

M0 preload for freeplay model

Ma aerodynamic pitching moment of the wing-flap system

Mf stiffness in the freeplay zone

m mass per unit span of the entire wing

mtot mass per unit span of the entire wing plus the support blocks1

Nξ, Nα, Nβ the nonlinear plunge, pitch and flap structural stiffness terms

rα radius of gyration of the wing-flap with respect to the semi-chord b

rβ radius of gyration of the flap with respect to the semi-chord b

T pitching moment (or torque) of the flap about its hinge

U∞ air flow velocity

U∗ = U∞/(bωα) dimensionless velocity

xα nondimensional distance of the centre of gravity of the wing-flap

from the elastic axis

xβ nondimensional distance of the reduced centre of gravity of the flap

from the hinge line

1Considering the mass of support blocks would allow for comparison with experimental results.

xx



α pitch displacement about the elastic axis

β aileron (flap) displacement about the hinge line

(relative to the main wing surface)

βc control command input

δ total angular size of the freeplay region

δf freeplay angle offset

ζξ, ζα, ζβ viscous structural damping coefficients for plunge, pitch

and flap degrees-of-freedom

ν modified control input

ξ plunge DOF

ρ∞ air density

τ U∞t/b, the dimensionless time

ωξ, ωα, ωβ uncoupled pitching, plunging and flapping modes natural frequencies

ω̄1 ωξ/ωα

ω̄2 ωβ/ωα

( ˙ ) ∂()/∂t, t being time

(˘) reduced lift (/mb) or moment (/mb2)

(ˆ) estimated parameter

(˜) estimation error

Superscripts

′ ∂()/∂τ

Subscripts

a aerodynamic component

g gust component

xxi



Chapter 1

Introduction

1.1 Motivation

Aeroelasticity is an interdisciplinary field concerning the interactions between aerodynamic,

inertial and elastic forces, and the influence of these interactions on the aircraft design and

performance. There is a growing tendency in the aerospace industry for improving fuel

efficiency of commercial transport aircraft via reducing the airframe weight and increasing

the aerodynamic efficiency (e.g. by increasing the lift-to-drag ratio using higher aspect-ratio

wings) [1]. The potential implication of such modifications is the increase of the structural

flexibility. On the other hand, defence sectors demand more agile, higher-speed combat

aircraft. Increasing structural flexibility and/or expanding the flight envelope of an aircraft

would normally make it more susceptible to larger structural deformations and more prone

to complex aerodynamic phenomena, such as flow separation and wake roll-up.

Classical aeroelastic theories were developed assuming linear aerodynamics and struc-

tures. The problem then reduces to solving a set of linear equations, often described in
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the state-space form, which can be readily solved in either time or frequency domain. Lin-

ear aerodynamic theories usually fail to give accurate results at high subsonic or transonic

airspeeds [2]. On the other hand, linear structural dynamic theories normally become un-

reliable when structural deformations become large – geometric nonlinearities. Structural

nonlinearities also arise from worn hinges of control surfaces, loose control linkages and ma-

terial behaviour (e.g. when the yield stress is exceeded leading to a nonlinear stress-strain

relationship) [1, 2].

Aeroelastic flutter is a potentially catastrophic instability – it can quickly destroy an

aircraft. Classical aeroelastic theories do not take into account structural and aerodynamic

nonlinearities [3]. While different types of structural and aerodynamic nonlinearities are com-

monly encountered in aeronautical engineering [2]. Nonlinearities can make the aeroelastic

stability and dynamical behaviour of system more complex. An aircraft may be disturbed by

a time-dependent external excitation, such as a gust, during its normal operation. The cou-

pling effects of nonlinearities and disturbances are worth investigating. Nevertheless, to the

best of the author’s knowledge, only few studies exist on the nonlinear aeroelastic response of

a lifting surface to a time-dependent external disturbance. Most of the previous studies were

only concerned about the cubic-type nonlinearity and also with incomplete details about

the dynamics of the system in the presence of a gust input. The immediate necessity for

studies such as this thesis may be recognized by the emergence of new applications, such as

Urban Air Mobility where the flying vehicle will normally experience highly-turbulent gusty

airflow. The nonlinear aeroelastic behaviour of an aircraft flying in such conditions is yet to

be investigated.

In the reality, aeroelastic problem, potentially manifested as self-sustained or divergent

oscillations, can be sensitive to many parameters whose values are uncertain [4]. Based

on instability and uncertainty of the nonlinear aeroelastic system, the design of effective
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controllers to suppress flutter is particularly crucial for the new generation of aircraft which

are likely to be lighter, faster, more flexible, and more agile. In this thesis, the coupling

effects of structural nonlinearities and time-dependent gust are investigated and the adaptive

controller to suppress LCO, which may also called as mild flutter [5], is designed considering

structural uncertainties.

1.2 Literature Review

In this section, a literature review on the nonlinear aeroelasticity and active control of

aeroelastic system is presented. In addition, some studies on the gust response, as well

as its suppression are reviewed.

1.2.1 Nonlinear Aeroelasticity

Aeroelasticity is an interdisciplinary field of study dealing with interactions between inertia,

aerodynamic and elastic forces. Classical theories in aeroelasticity assume linear aerody-

namics and structural dynamics resulting in modelling with a set of linear equations. These

equations can be fairly easily solved in time or frequency domain and be used for examining

the aircraft stability and response to external excitation. However, linear aerodynamic the-

ories start to break down at high airspeeds. Flow separation and shock oscillations may also

introduce aerodynamic nonlinearities. Moreover, structural nonlinearities may arise from,

for example, large deformations, material behaviour, worn hinges of control surfaces, and

loose control linkages, as discussed in [2, 5].

Woolston et al. [5] may be the first researchers who investigated the effects of structural

nonlinearities on the flutter of a wing. Two different wing models were studied: (i) a wing

capable of bending and twisting or a two-degree-of-freedom (2-DOF) system, and (ii) a wing
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with a control surface (i.e. 3-DOF system). They considered structural nonlinearities as

concentrated in the torsional stiffness. Three different types of nonlinear springs, namely

flat spot or dead zone, hysteresis, and cubic were examined. The flat spot type nonlinearity

was used to represent free play in the hinge or linkage of a control system.1 They found

that there is a strong connection between the stability of a nonlinear system and the initial

conditions - in many cases the flutter speed was decreased as the initial disturbance was

increased.

Lee et al. [6] studied nonlinear flutter of a two-dimensional (2-D) airfoil undergoing

plunging and pitching motions using a time marching finite difference scheme, considering

a spring with preload and free-play in the pitching DOF. By setting different values of

freeplay, preload, initial conditions and system parameters, they compared and analysed the

time history and flutter boundary diagrams. They observed three types of oscillatory motion,

namely damped, limited amplitude and divergent. They found that with the presence of a

structural nonlinearity of the type considered, the divergent flutter speed is the same as the

linear flutter speed. Also, different values of preload and initial conditions did not appear

to affect the limited amplitude of oscillatory motion for both DOFs. In contrast, changing

the system parameters, such as the ratio of the uncoupled natural frequencies had noticeable

effects on the limited amplitudes.

A comprehensive review of different types of structural and aerodynamic nonlinearities

encountered in aeronautical engineering was conducted by Lee et al. [2]. They discussed

several techniques, such as finite difference and describing function for solving equations with

structural nonlinearities. They found that even a 2-DOF system with a single nonlinearity

in the pitch degree of freedom might show a complex dynamical behavior. For example,

1The phrases ‘flat spot’ and ‘free play’ will be used interchangeably throughout the paper. Similarly are
the phrases ‘torsional stiffness/spring’ and ‘rotational stiffness/spring’.
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they showed that a system with a free-play nonlinearity might undergo period-1, period-

2, and period-4 limit-cycle oscillations (LCO) as well as chaotic motion, depending on the

airspeed.2 Dowell and Tang [7] studied four specific aeroelastic models carrying different

sources of nonlinearity: (i) an airfoil with a control surface that had hinge free play, (ii) a

plate-like wing where the tension-induced bending generated a cubic stiffness, (iii) a very

high-aspect-ratio wing (HARW) where the nonlinearity arose due to coupling among flapwise

bending, chordwise bending and torsion of the wing structure, and (iv) a wing encountering

large shock motions in the transonic flow range, which produced nonlinear aerodynamic

forces. They found that plunge, pitch and flap modes dominated the flutter motion, at

lower, higher and yet higher Mach numbers respectively, which agreed with the remarks in

[8, Section 11.12]. Recently, Afonso et al. [1] conducted a review focusing on the nonlinear

aeroelasticity of HARWs. They drew several conclusions from the reviewed studies. For

example, HARWs were prone to instabilities if encountered by a sufficiently strong external

perturbation such as a gust and turbulence.

The nonlinear aeroelastic behaviour of airfoil sections in incompressible flow was exam-

ined by many investigators. Price et al. [9] considered free-play nonlinearity, Price et al. [10]

assumed bi-linear and cubic nonlinearities, and Alighanbari and Price [11] dealt with a third-

order rational curve to approximate free-play nonlinearity – all assumed the nonlinearity in

the pitch DOF. Liu et al. [12, 13] investigated the dynamic response of a two-dimensional

(2-D) aeroelastic system with free-play and hysteresis stiffness nonlinearities using the point

transformation method. They examined different free-play and hysteresis parameters based

on various initial conditions (i.e. pitching angles) without any external excitation. Liu and

Dowell [14] employed the first-order harmonic balance (HB) method, also known as the

describing function approach, and also developed a higher-order HB method to study the

2As discussed in Section 2.2.1, period-2 and period-4 motions may actually be period-1-h and period-2-h
motions, respectively.
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nonlinear aeroelastic dynamics of an airfoil section that included a control surface with free

play. They showed that the high-order HB method outperformed the first-order HB method,

where the results were in excellent agreement with the time integration results.

Moreover, Chen et al. [15] applied the equivalent linearization method to cubic stiffness

nonlinearies in pitching and plunging degrees-of-freedom. They found that the Hopf bifur-

cation leading to LCO may be subcritical or supercritical, depending on the ratio of cubic

plunging and pitching stiffness coefficients. Cui et al. [16][17] used the precise integration

method (PIM), proposed by Zhong [18] for numerically solving ordinary differential equa-

tions, to solve the aeroelastic equations for an airfoil with free-play and hysteresis stiffness

nonlinearities in the pitching DOF. Through comparing the results, they showed that the

PIM is superior to the widely-used Runge-Kutta method in terms of solution accuracy and

computational time.

Yamasaki and Epureanu [19] proposed a method to ‘forecast’ bifurcations and post-

bifurcations behaviour for nonlinear aeroelastic systems. The method worked based on

observations of the transient response of the system in the pre-bifurcation regime, and hence

it was called ‘model-free’. They applied the method to a 2-DOF typical airfoil section

where pitching and plunging stiffnesses were generally taken as polynomials of degree five.

Recently, Ghadami and Epureanu [20] proposed an improved bifurcation forecasting method

and applied the method to a 3-DOF airfoil. The improved forecasting method might be used

to forecast two- and three-dimensional (i.e. a system parameter and two state variables)

bifurcation diagrams.

Most recently, Zhang and Chen [21] explored the nonlinear aeroelastic behaviour of a

3-DOF airfoil with external store using analytical (i.e. based on the normal form and center-

manifold theories) and numerical (i.e. fourth-order Runge-Kutta technique) approaches.

Cubic stiffness was considered for the pitch, plunge and flap degrees-of-freedom. They showed
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that the system may display a complex dynamics, such as chaotic motion. Tian et al. [22]

investigated nonlinear aeroelastic characteristics of an all-movable fin in hypersonic flow

considering both aerodynamic and free-play nonlinearities. They found that the temperature

elevation might reduce the flutter boundary and extend the region of chaotic motions. Very

complex dynamical behavior was observed due to the existence of free-play nonlinearities

in both pitch and flap DOFs, especially multiple periodic, quasi-periodic LCOs and chaotic

motion in low Mach number range.

In addition, Tang and Dowell [23] considered a 3-DOF typical airfoil section with control

surface free play. The aerodynamic forces were obtained using Peter’s finite state incom-

pressible flow theory [24]. They investigated theoretically and experimentally the correlation

of flutter/LCO behaviour when the initial pitch angle was non-zero. They also studied the

linear and nonlinear aeroelastic responses to a periodic gust load. Berci et al. [25] investi-

gated the aeroelastic behavior and gust response of a flexible airfoil and compared them with

those of a rigid typical airfoil section. The flexible airfoil could bend and twist chordwise and

was supported by linear translational and torsional springs which were used to model the

spanwise elasticity. They found that the flexible airfoil underwent divergence and flutter at

lower flow velocities compared to the rigid airfoil with the same aero-structural parameters.

They also found that the flexible airfoil displayed higher frequency and lower amplitude

oscillations, compared to its rigid counterpart, when it was encountered by a gust.

Conner et al. [26] studied theoretically as well as experimentally the aeroelastic be-

haviour of a three-degree-of-freedom typical airfoil section with control surface free-play. An

interesting discovery of their experiments on the limit-cycle behaviour of the typical section

was that the system parameters could be affected as a result of the fatigue associated with

extended oscillatory motion. Tang et al. [27] analyzed theoretically and experimentally

the nonlinear response of a typical airfoil section with control surface free-play, excited by
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periodic and continuous linear frequency sweep gust loads in low subsonic flow. In their

theoretical approach, they used Peter’s [28] finite state aerodynamic theory.

Several researchers had studied the response of a lifting surface to a time-dependent

external excitation. For example, Poirel and Price [29] investigated the effect of longitudinal

atmospheric turbulence on the dynamics of an airfoil with a hardening, cubic structural

stiffness in pitch. It was found that, in the absence of turbulence, i.e. the non-excited

case, two distinct regions of dynamic response, namely stable equilibrium position and LCO,

existed. However, three different regions of dynamical behaviour were observed when the

airfoil was excited by longitudinal turbulence. For the excited case, within the intermediate

range of flow velocities, a new type of dynamical behaviour was observed, where the airfoil

response was concentrated about the equilibrium position. The existence of this new form

was attributed to the parametric nature of excitation. Marzocca et al. [30] investigated the

aeroelastic response to a time-dependent external excitation of a linear, 2-D rigid-/elastic-

lifting surface in incompressible flow field, featuring plunging-pitching coupled motion. Tang

and Dowell [31] studied theoretically and experimentally the gust response for an HARW.

The wing was modelled structurally based on a nonlinear beam theory, and the structural

dynamic equations were combined with the ONERA aerodynamic stall model.

Haddadpour et al. [32] examined the effects of the sharp-edged gust on the aeroelastic

behaviour of a flexible HARW. In their model, they used a linear, pitching-plunging structural

dynamics and linear quasi-steady aerodynamics. Bifurcation characteristics of an airfoil

section with cubic structural nonlinearity in pitch direction and subjected to turbulent flow

were examined by Poirel and Price [33]. Dessi and Mastroddi [34] examined the nonlinear

dynamics and gust response of a 2-DOF typical airfoil section. The rigid airfoil was supported

by a linear translational and a softening-type cubic rotational spring, and the gust was

assumed to be of the 1-cosine form. They concluded that the excitation due to discrete gust

8



models was equivalent to considering the response of the system to certain initial conditions.

In [35], the integro-differential equations governing arbitrary plunging-pitching motion of

an airfoil were transformed into a set of fourth-order ordinary differential equations. These

equations were then used to find the flutter speed and the dynamic response of an airfoil to a

sharp-edged gust excitation. Recently, Zhang et al. [36, 37] presented some numerical results

on the nonlinear dynamics and time response of a 2-DOF typical airfoil section encountered

with a gust. In [36], strong cubic and free-play stiffness models and in [37] free-play and

hysteresis models were considered. They found that as the sharp-edged or 1-cosine gust

becomes stronger, the probability of the occurrence of LCO in the subcritical flow regime

increased.

1.2.2 Aeroservoelasticity

In addition to the predictive or diagnostic type studies, some of which were reviewed above,

some studies mainly concerned suppression or at least alleviation of undesirable dynamical

behaviour of aeroelastic systems.

To date, extensive research has been conducted to achieve active flutter suppression and

gust alleviation, where one or more control surfaces are actuated according to a control

law which relates the control command to some measurements taken, by sensors, on the

aircraft. Horikawa and Dowell [38] proposed an elementary explanation of wing flutter

suppression problems with active feedback control via a standard root locus technique. Their

proposed feedback loop was a pure gain feedback of wing motion (i.e. bending displacement,

bending acceleration at the center of mass, torsion displacement, or torsion acceleration)

into a trailing-edge flap system. They used a quasi-steady aerodynamic model coupled

with a 2-DOF structural dynamic model. Luton and Mook [39] developed a method for

predicting the unsteady, subsonic, aero-servo-elastic response of a wing. They used a general
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unsteady vortex-lattice method to model the aerodynamics, as well as a relatively simple,

linear feedback control system. The control system consisted of leading- and trailing-edge

ailerons moving in accordance to control laws, as well as a servo law which related the

commanded angle to the actual aileron deflection. The control laws were formed based on

measurements of the lateral velocity and twist angle rate of the wing tip.

Librescu et al. [40] developed the active flap control capability for a 2-D wing-flap sys-

tem to suppress flutter and improved the subcritical aeroelastic response to time-dependent

external pulses. The aerodynamic forces were derived from Theodorsen’s equations using

Wanger’s function. They implemented plunging/pitching velocity feedback control laws and

their combination, as well as linear-quadratic regulator, modified bang-bang, and fuzzy logic

control. It was noted that a few errors, originating from [41], were recently discovered in

[40] and subsequently corrected by Mozaffari-Jovin et al. [42, 43]. In addition, the work

of Ko et al. [44] on the use of the feedback linearization to derive locally asymptotically

stable (nonlinear) feedback controllers should be mentioned. Two more recent studies on

the aeroservoelasticity of 2-D wings were [45, 46].

Building highly accurate aeroelastic and aero-servo-elastic models for real-world aircraft

required considering uncertainties present in the structure (e.g. structural stiffness and

damping), fluid flow (e.g. shock location) as well as in the control mechanism (e.g. sensors

and actuators).

Dai et al. [47] reviewed the methods and advances made in the last few decades for

the study of aeroelasticity with uncertainties. They pointed out that uncertainty modelling

for nonlinearity was the most challenging task when it came to aeroelastic problems. In

addition, quantification of damping was by far the most vexing problem in the structural

dynamic modelling: unlike the inertial and stiffness properties of a structural system, damp-

ing was not referred to a unique physical phenomenon. Kareem and Sun [48] investigated
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the dynamic response of structures with uncertain damping. Their numerical results demon-

strated that the uncertainty in damping had a great influence on the system response. The

effects depended on the mean value and coefficient of variation of the damping ratio. When

there was a 4% difference between the estimation value and the nominal value, the root

mean square (RMS) differences from two cases were quite significant. Also, as the variability

increases, the higher order component response contribution to RMS increased.

Ko et al. [49] applied partial feedback linearization to a 2-DOF aeroelastic system with

uncertain structural stiffness nonlinearities. Local stability was achieved by an adaptive con-

troller. However, in their model, a quasi-steady flow theory was adopted and the dynamics of

the control surface was neglected. Recently, Zhang et al. [37] succeeded in suppressing LCOs

and thus stabilizing a structurally-nonlinear wing encountering a gust. In their theoretical

model, however, all the parameters including nonlinear parameters must be known a priori

to generate the control command.

1.3 Research Objectives and Main Contributions

1.3.1 Research Objectives

The main research objectives of this thesis are: 1) To study the coupling effects of a gust

and structural nonlinearities on the aeroelastic behaviour of an airfoil, and 2) To develop an

adaptive controller to suppress flutter and alleviate gust response of a structurally-nonlinear

airfoil with uncertainties.
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1.3.2 Main Contributions

Actual lifting surfaces, such as aircraft wings may contain various structural nonlinearities,

and they often encountered with atmospheric turbulence during a normal flight. Neverthe-

less, to the best of the author’s knowledge, most studies on the aeroelasticity or aeroser-

voelasticity of a 2-D nonlinear wing had considered structural nonlinearity only for one of

the DOFs, and thus possible nonlinear interactions between vibration modes were neglected.

Only few studies had been dedicated to the nonlinear aeroelastic response of a lifting sur-

face to a time-dependent external disturbance. This thesis aims to systematically study

the effects of sharp-edged and 1-cosine gusts – two standard deterministic gust models – on

the dynamical behaviour of a 2-DOF typical airfoil section having either cubic, free-play or

hysteresis structural nonlinearity. Moreover, very few research work had been carried out on

the controller design to deal with a nonlinear aeroelastic system with uncertain structural

parameters, especially for the uncertain damping coefficients.

In this thesis, the main contributions are reflected in two aspects. Regarding the first

aspect, the coupling effects of a gust and structural nonlinearities (including free-play and

hysteresis) on the aeroelastic behaviour of an airfoil were studied. The airfoil was modelled

as either a two- or a three-degree-of-freedom system, where pitch and plunge were the main

DOFs and flap was the extra DOF. Not only focusing on the pitch DOF like most researches,

the dynamics of plunge DOF were also investigated. The basin of attraction under gust

input was plotted and the effects of gusts on the stability and motion characteristics of

nonlinear system were investigated. These studies are particularly crucial for the design of

new generation of aircraft, manned or unmanned, which are likely to be lighter, faster, more

flexible, and more agile. A good example is in the application of Urban Air Mobility, on

which gusts may have significant effects.

Based on the nonlinear 3-DOF aeroelastic system with a control surface as the control
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actuator, the second aspect of main contribution is about the control system design. Instead

of quasi-steady assumption and neglect of the dynamics of control surface in most studies

on suppression of flutter, the unsteady aerodynamics was utilized for the modelling and

the dynamics of control surface was considered in this thesis. Since it is relatively hard

to measure accurately nonlinear structural stiffness and damping coefficients, they were

considered as uncertainties. The adaptive control technique was employed to stabilize the

wing with uncertain system parameters. The estimation update law was designed, and the

Lyapunov function was used to prove the stability of the designed adaptive control system.

The numerical results show that the adaptive control system designed in this study is quite

effective in suppressing LCOs and has very high robustness. The research results were

summarized in the following publications:

• Xiaoyang Zhang, Mojtaba Kheiri, Wen-Fang Xie, “Nonlinear dynamics and gust re-

sponse of a two-dimensional wing,” submitted to International Journal of Non-Linear

Mechanics.

• Xiaoyang Zhang, Mojtaba Kheiri, Wen-Fang Xie, “Aero-servo-elasticity of a wing with

uncertain system parameters,” to be submitted to AIAA Journal.

• Xiaoyang Zhang, Mojtaba Kheiri, Wen-Fang Xie, “Gust response of a two-dimensional

nonlinear wing,” in Proceedings of the Canadian Society for Mechanical Engineering

International Congress, Toronto, ON, Canada, 2018.[36]

• Xiaoyang Zhang, Mojtaba Kheiri, Wen-Fang Xie, “Active control of a two-dimensional

nonlinear wing encountering a gust,” in Proceedings of the 27th Canadian Congress of

Applied Mechanics, Sherbrooke, QC, Canada, 2019.[37]

• Xiaoyang Zhang, Mojtaba Kheiri, Wen-Fang Xie, “Adaptive control of a two-dimensional
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nonlinear wing with structural stiffness and damping uncertainties,” in Proceedings of

the 27th Canadian Congress of Applied Mechanics, Sherbrooke, QC, Canada, 2019.[50]

• Xiaoyang Zhang, Weixing Yuan, “Development of flutter analysis solver FLUTQ,”

Volume 1, LTR-AL-2019-0047, Ottawa: National Research Council Canada, 2019.[51]

• Weixing Yuan, Xiaoyang Zhang, Dominique Poirel, “Flutter analysis solution stabi-

lization for the PK-method,” Abstract submitted to XI International Conference on

Structural Dynamics (EURODYN 2020).

1.4 Thesis Outline

This thesis has six main chapters, which are organized as follows:

In Chapter 2, the typical dynamics and the gust response of a 2-DOF aeroelastic model

with two different nonlinearities are presented.

Further more, the typical dynamics of a 3-DOF system with free-play nonlinearity in

control surface hinge are discussed in Chapter 3.

In Chapter 4, under the assumption with no uncertainties, feedback linearization and

active controller are introduced to suppress flutter and alleviate gust response.

In Chapter 5, considering uncertainties, an adaptive controller is designed and the ro-

bustness and effectiveness of the controller are assessed.

In Chapter 6, the research work at the stage of studying for Master is summarized and

some possible future works are given.
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Chapter 2

2-DOF Nonlinear Aeroelastic model

In this chapter, aeroelastic equations for an airfoil performing arbitrary pitching-plunging

motion in inviscid, incompressible flow and subjected to a gust are presented. Numerical

solutions to the dynamic model of the systems with two different structural nonlinearities

are discussed. In addition, the gust response of the nonlinear system is presented.

2.1 Aeroelastic Modelling

2.1.1 Governing Equations Including the Gust Input

Fig. 2.1 shows the cross-section of a 2-D rigid wing with degrees of freedom in the plunge

and pitch directions. The plunge displacement is measured from the elastic axis and is

represented by h (positive downward); α is the pitch angle about the elastic axis (positive

nose up). The elastic axis is located at a distance of ab from the mid-chord, while the mass

center is located at a distance of xαb from the elastic axis, b being the semi-chord. The wing

is supported by a translational and a rotational spring, attached to the elastic axis, which

generally have a nonlinear stiffness.
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Figure 2.1: Schematic showing geometry of the wing section. The chord length is denoted by c = 2b;
ab is the distance between the elastic axis and the mid-chord, and xαb is the distance between the
centre of mass and the elastic axis; α is the pitch angle (positive pitch up); also, h denotes the
vertical displacement (positive downward); U∞ is the freestream velocity. The stiffness of the wing
is modelled via a translational and a rotational spring attached at the the elastic axis.

Here, following the formulations presented in [2, 30], the dimensionless aeroelastic equa-

tions featuring coupled plunging-pitching motion of a typical airfoil section subjected to a

gust input are expressed as

ξ′′ + xαα
′′ + 2ζξ

ω̄

U∗
ξ′ + (

ω̄

U∗
)2G(ξ)− la(τ) = lg(τ), (2.1)

xα
rα
ξ′′ + α′′ + 2ζα

1

U∗
α′ +

1

U∗2
M(α)−ma(τ) = mg(τ), (2.2)

where ξ = h/b is the dimensionless plunge displacement, and ζξ and ζα are, respectively, vis-

cous damping ratios in the pitch and plunge directions; U∗ = U∞/(bωα) is the dimensionless

flow velocity, and ω̄ = ωξ/ωα is the frequency ratio, U∞ being the freestream velocity, ωξ and

ωα also being natural frequencies of plunging and pitching motions, respectively; also, la(τ)

and ma(τ) are the aerodynamic lift and pitching moment about the elastic axis, respectively,

while lg(τ) and mg(τ) are the lift and moment about the elastic axis due to the gust; G(ξ)
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Moment M(�)

M0+�-�f

R1 R2 R3

M0+Mf(�-�f)

M0+�-�f+�(Mf-1)

Displacement �

�f �f+�

Figure 2.2: The general free-play stiffness model – the pitching moment M(α) versus the pitch
angle α; M0 represents the preload; Mf is the stiffness in the free-play zone, αf is the pitch angle
offset, and δ is the free-play range.

and M(α) represent the nonlinear plunge and pitch structural stiffness terms, respectively;

moreover, ()′ = ∂()/∂τ denotes the time derivative with respect to dimensionless time τ .

In this thesis, two different stiffness nonlinearities are considered in the pitch DOF. The

effects of free-play will be considered as for small displacements, the spring offers no or small

resistance to the deflection of the structure. The free-play nonlinearity, in its general form,

may be represented by a trilinear stiffness model as [2]

Mα =































M0 + α− αf , for α < αf ,

M0 +Mf (α− αf ), for αf ≤ α ≤ αf + δ,

M0 + α− αf + δ(Mf − 1), for α > αf + δ,

(2.3)

where M0 represents the preload, Mf the stiffness in the free-play zone, αf the pitch angle

offset, and δ the free-play range; see also Fig. 2.2.

On the other hand, the hysteresis nonlinearity may be expressed as the combination of
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Moment M(α)

M0+�-�f

M0+Mf(�-�f)

M0+�-�f+�(Mf-1)

Displacement α

�f �f+�

-�f

-�f-�

	

M0

-M0

-M0+�+�f

-M0+Mf(�+�f)

-M0+�+�f+
(1-Mf)

Figure 2.3: General hysteresis stiffness model; M0 represents the preload; Mf is the stiffness in the
hysteresis zone, αf is the switching point, and δ is the hysteresis range.

two different free-play stiffness models [2]:

Mα =















































































α− αf +M0, for α < αf , α
′ > 0,

Mf (α− αf ) +M0, for αf ≤ α ≤ αf + δ, α′ > 0,

α +M0 − αf + δ(Mf − 1), for α > αf + δ, α′ > 0,

α + αf −M0, for α > −αf , α
′ < 0,

Mf (α + αf )−M0, for − αf − δ ≤ α ≤ −αf , α
′ < 0,

α−M0 + αf − δ(Mf − 1), for α < −αf − δ, α′ < 0,

(2.4)

where M0 represents the preload, Mf the stiffness in the hysteresis zone, αf the switching

point, and δ the hysteresis range; see also Fig. 2.3.
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The aerodynamic lift la(τ) and pitching moment ma(τ) may be expressed as

la(τ) =−
2

µ

∫ ∞

0

φ(τ − σ)(α′ + ξ′′ + (
1

2
− a)α′′)dσ −

1

µ
(α′ + ξ′′ − aα′′), (2.5)

ma(τ) =
2

µ
(
1

2
+ a)

∫ ∞

0

φ(τ − σ)(α′ + ξ′′ + (
1

2
− a)α′′)dσ

+
1

r2αµ
a(ξ′′ − aα′′)−

1

r2αµ
(
1

2
− a)α′ −

1

8

1

r2αµ
α′′, (2.6)

where µ = m/(πρb2) is the mass ratio, and rα = Iα/(mb
2) is the dimensionless radius of

gyration; m, ρ, and Iα being, respectively, mass of the wing per unit span, air flow density,

and mass moment of inertia about the elastic axis per unit span. Also, φ(τ) is called the

Wagner function and is given by

φ(τ) = 1− A1e
−b1τ − A2e

−b2τ (τ > 0), (2.7)

where the constants are A1 = 0.165, A2 = 0.335, b1 = 0.0455, b2 = 0.3.

By considering wg(τ) as the gust velocity and using Duhamel’s integral concept, the lift

and pitching moment about the elastic axis due to the penetration into the gust, lg(τ) and

mg(τ), respectively, may be written as

lg(τ) =
2

µ

∫ τ

0

ψ′(τ − σ)
wg(τ)

U∞

dσ, (2.8)

mg(τ) = (
1

2
+ a)

2

r2αµ

∫ τ

0

ψ′(τ − σ)
wg(τ)

U∞

dσ, (2.9)

where ψ(τ) is called the Küssner function.

A widely-used approximation for Küssner’s function is the following two-term exponential

expression [2]:

ψ(τ) = 1− A3e
−b3τ − A4e

−b4τ (τ > 0), (2.10)
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where the constants are A3 = 0.5, A4 = 0.5, b3 = 0.130 and b4 = 1.

In this chapter, two different gust profiles, each corresponding to a specific variation of

the gust speed as a function of time, will be used. They are: (a) sharp-edged gust, and (b)

1-cosine gust. Their analytical expressions are:

sharp-edged gust: wg(τ) = H(τ)w0, (2.11)

1-cosine gust: wg(τ) =
1

2
H(τ)w0(1− cos

πτ

τg
)−

1

2
H(τ − 2τg)w0(1− cos

πτ

τg
), (2.12)

where w0 is the gust maximum amplitude/speed; H(τ) represents the Heaviside step func-

tion, and τg is half of the loading time of the gust. A dimensionless gust term of w∗
0 = w0/U∞

is introduced for the following numerical results.

2.1.2 State-space Equations

In order to deal with the integral terms in equations (2.5-2.6) and (3.7-3.8), six new variables

or states are introduced as

w1 =

∫ τ

0

e−b1(τ−σ)α(σ)dσ, w2 =

∫ τ

0

e−b2(τ−σ)α(σ)dσ,

w3 =

∫ τ

0

e−b1(τ−σ)ξ(σ)dσ, w4 =

∫ τ

0

e−b2(τ−σ)ξ(σ)dσ,

w5 =

∫ τ

0

e−b3(τ−σ)wg(σ)

U∞

dσ, w6 =

∫ τ

0

e−b4(τ−σ)wg(σ)

U∞

dσ. (2.13)
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Using variables in equation (2.13), the aeroelastic equations (3.3) and (3.1) may be re-

written as

c0ξ
′′ + c1α

′′ + c2ξ
′ + c3α

′ + c4ξ + c5α + c6w1 + c7w2

+ c8w3 + c9w4 + c10w5 + c11w6 + (
ω̄

U∗
)2G(ξ) = f(τ), (2.14)

d0ξ
′′ + d1α

′′ + d2ξ
′ + d3α

′ + d4ξ + d5α + d6w1 + d7w2

+ d8w3 + d9w4 + d10w5 + d11w6 + (
1

U∗
)2M(α) = g(τ), (2.15)

where f(τ) and g(τ) are functions of the initial conditions and terms in the Wagner function,

which are given as

f(τ) =
2

µ
[ξ(0) + (

1

2
− a)α(0)]× (A1b1e

−b1τ + A2b2e
−b2τ ), (2.16)

g(τ) = −
(1 + 2a)

r2αµ
[ξ(0) + (

1

2
− a)α(0)]× (A1b1e

−b1τ + A2b2e
−b2τ ). (2.17)

The coefficients ci (i = 0, ..9) and di (i = 0, ..9) in equations (2.14) and (2.15) were given in

[2] and will not be repeated here for the sake of brevity; however, c10, c11, d10 and d11 are

given as

c10 = −
2

µ
A3b3, c11 = −

2

µ
A4b4,

d10 = −(
1

2
+ a)

2

r2αµ
A3b3, d11 = −(

1

2
+ a)

2

r2αµ
A4b4. (2.18)

By introducing a variable vector X = (x1, ..x10)
T with x1 = α, x2 = α′, x3 = ξ, x4 =

ξ′, x5 = w1, x6 = w2, x7 = w3, x8 = w4, x9 = w5, x10 = w6, a set of 10 first-order ordinary
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differential equations written in the explicit form can be obtained, as follows

X′ = F (X, τ). (2.19)

2.2 Numerical Solution

The dimensionless parameters of the linear system used here for numerical solutions are:

a = −0.5, µ = 100, xα = 0.25, rα = 0.5, ζα = ζξ = 0, ω̄ = 0.2 [2]. The initial conditions

for plunging motion are set as ξ′(0) = ξ(0) = 0 for all the simulations. Using the eigenvalue

solution method with the given parameters, the linear dimensionless flutter speed, that is

U∗
L = 6.28, is obtained, which agrees well with the results given in [2].

Equation (3.18) is solved numerically using the direct time-integration method via the

eight-order Dormand-Prince formula implemented as ‘ode8’ in MATLAB Simulink. After

running several test cases with different values of the dimensionless time step, ∆τ , and the

simulation time range, tf , it was found that ∆τ = 0.01, and tf = 3× 104 would be sufficient

for obtaining reliable numerical results. Examples of convergence studies have been shown

in Fig. 2.4. Figs. 2.4(a,b) show time histories obtained with three different time steps (i.e.

∆τ = 0.1, 0.01, and, 0.001) at U∗/U∗
L = 0.8 and U∗/U∗

L = 0.3, respectively. As seen from

the figures, the time response obtained with ∆τ = 0.01 is reasonably similar to that obtained

with the smaller time step ∆τ = 0.001 although with a phase difference at U∗/U∗
L = 0.3.

Quantitatively speaking, the relative error between the root mean square (rms) of amplitudes

changes from 6.42 × 10−5% to 6.48 × 10−6% for U∗/U∗
L = 0.8 and from 5.07% to 0.18% for

U∗/U∗
L = 0.3 when ∆τ is reduced from 0.1 to 0.001; see Table 2.1. Thus, ∆τ = 0.01 is

sufficiently small to ensure accurate results throughout the present paper.

To investigate the minimum required time range for accurate numerical solutions, power
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Table 2.1: Root mean square (rms) of pitch displacement with a = −0.5, µ = 100, xα = 0.25, rα =
0.5, ζα = ζξ = 0, ω̄ = 0.2, and free-play nonlinearity in pitch (δ = 0.5◦,M0 = Mf = 0, αf = 0.25◦)
obtained using different time steps, ∆τ , in the time integration. The value in parentheses shows
the relative error between the rms value in a column and that in the next column.

∆τ = 0.1 ∆τ = 0.01 ∆τ = 0.001
U∗/U∗

L = 0.8 0.8562 (6.42× 10−5%) 0.8562 (6.48× 10−6%) 0.8562
U∗/U∗

L = 0.3 0.5587 (5.07%) 0.5318 (0.18%) 0.5308

spectral density (PSD) plots obtained with three different time ranges (i.e. tf = 2×104, 3×

104, and 4 × 104) are compared. Figs. 2.4(c,d) show PSD plots at U∗/U∗
L = 0.8 and

U∗/U∗
L = 0.3, respectively. As seen, the PSD plots for the time ranges tested here are in

good agreement with each other in terms of fundamental frequencies and amplitudes. This

suggests that the simulation time range taken in this paper, i.e. tf = 3× 104, is sufficiently

large for obtaining reliable results.

2.2.1 Aeroelastic Behaviour of the System with Free-play Nonlin-

earity

Fig. 2.5 represents a 2-D physical model which is free to oscillate in pitch and plunge

DOFs. The pitch DOF is provided by a bearing-supported shaft. This system, in turn,

is suspended between a pair of leaf springs on either side of the test section, so that the

entire mechanism is free to translate in plunge. In plunge DOF, the system is linear. The

nonlinearity is introduced in the torsional (pitch) DOF as shown in the detail sketch. A leaf

spring is clamped to the end of the torsion axis and its free end extends upward between

two setscrews. The gap between the screws can be closed completely to give a linear torsion

spring, or opened to provide any desired amount of angular free-play, giving the spring

characteristic shown at the right of the Fig. 2.5 [5].

The behaviour investigation begins with comparing some results obtained from the present
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Figure 2.4: Numerical solution convergence study: (a,b) pitching motion amplitude versus dimen-
sionless time obtained with three different time steps (i.e. ∆τ = 0.1, 0.01, and 0.001) at U∗/
U∗
L = 0.8 and U∗/U∗

L = 0.3, respectively; (c,d) PSD plots for the pitching motion obtained with
three different time ranges (i.e. tf = 2×104, 3×104, and 4×104) at U∗/U∗

L = 0.8 and U∗/U∗
L = 0.3,

respectively.
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Figure 2.5: Free-play physical model (from [5]).

model with those available in the literature. The aeroelastic system is considered in [9, Fig.

11] to validate the model in the absence of gust. The system under consideration has a

free-play pitching stiffness, where δ = 0.5◦, M0 = Mf = 0, and αf = 0.25◦; please see

equation (2.3) and Fig. 2.2 for the definition of the parameters. The same initial conditions

as in [9] have been considered: α0 = 7 deg and α′
0 = 0. Fig. 2.6 shows the bifurcation

diagram where values of the pitch angle α when α′ = 0 are recorded and plotted against the

normalized dimensionless airspeed, U∗/U∗
L.

1 The bifurcation diagram agrees exactly with

Fig. 2.7, which is from [9, Fig. 11].

The rest of this section is devoted to the study of the typical dynamics of an aeroelastic

system with free-play pitching stiffness. Although such studies already exist in the literature,

as discussed in the Introduction, this chapter studies the dynamics of the system in more

details, especially for plunge DOF, which is hardly found in the literature. In addition

to bifurcation diagrams, the time history, phase-plane, PSD and Poincaré plots for both

1Please mind the difference in definition of parameters in Ref. [9] and here; U∗ and U∗

L
in this thesis are

equivalent to U and U∗ in Ref. [9], respectively.
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Figure 2.6: Bifurcation diagram for a system with the free-play nonlinearity in pitch (δ = 0.5◦,M0 =
Mf = 0, αf = 0.25◦) for α0 = 7◦ and α′

0 = 0, in which values of the pitch angle α are plotted when
α′ = 0 as a function of the normalized dimensionless airspeed, U∗/U∗

L (cf. [9, Figure 11]).

Figure 2.7: Bifurcation diagram for a system with the free-play nonlinearity in pitch (δ = 0.5◦,M0 =
Mf = 0, αf = 0.25◦) for α0 = 7◦ and α′

0 = 0, in which values of the pitch angle α are plotted when
α′ = 0 as a function of the normalized dimensionless airspeed, U∗/U∗

L (from [9]).
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Figure 2.8: Bifurcation diagram for a system with free-play nonlinearity in pitch (airfoil 1: δ =
0.5◦,M0 = Mf = 0, αf = −0.25◦) for α0 = 1◦ and α′

0 = ξ = ξ′0 = 0, in which values of the pitch
angle α are plotted when α′ = 0 as a function of the normalized dimensionless airspeed, U∗/U∗

L.
Different regions in the bifurcation diagram have been labelled from I to X. The inset to the right
shows a magnified portion of region I. Table 2.2 should be consulted for the interpretation of the
labels.

degrees of freedom are shown for several normalized dimensionless flow velocity. Moreover,

the maximum Lyapunov exponent is calculated in order to actually determine the type of

motion, especially when it is chaotic-like.

The dynamics of two airfoils which have different free-play parameters in the pitch DOF:

δ = 0.5 deg, M0 =Mf = 0, αf = −0.25 deg (airfoil 1), and δ = 2 deg, M0 =Mf = 0, αf =

−1 deg (airfoil 2) are examined. It is recalled that the linear flutter speed for this system is

U∗
L = 6.28. In this section, the pitching initial conditions for bifurcation diagrams and time

history results are set as: α′
0 = α′(0) = 0, α0 = α(0) = 1 deg.

Figs. 2.8 and 2.9 show the bifurcation diagrams for pitching and plunging motion of

airfoil 1, respectively. Note that the inset to the right of the figure shows the enlarged region

I. In the bifurcation diagrams presented in this thesis, a single dot represents a zero or a non-

zero static equilibrium position (region I), and two dots represent period-1 motion (regions
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Figure 2.9: Bifurcation diagram for a system with free-play nonlinearity in pitch (airfoil 1: δ =
0.5◦,M0 = Mf = 0, αf = −0.25◦) for α0 = 1◦ and α′

0 = ξ = ξ′0 = 0, in which values of the plunge ξ
are plotted when ξ′ = 0 as a function of the normalized dimensionless airspeed, U∗/U∗

L. Different
regions in the bifurcation diagram have been labelled from I to X. Table 2.3 should be consulted
for the interpretation of the labels.

II and X). Four dots should normally indicate period-2 motion (like regions IV, VI and VIII

in Fig. 2.9); however, as discussed in the following paragraphs, for pitch DOF of the present

dynamical system, they indicate period-1 with harmonics or in short, ‘period-1-h’ motion

(regions III and IX in Figs. 2.8 and 2.10). Similarly, eight dots represent ‘period-2-h’ motion

instead of standard period-4 motion (regions IV, VI and VIII in Figs. 2.8 and 2.10), and

finally, multiple scattered dots suggest chaotic motion (regions V and VII).

As seen from Fig. 2.8, and especially from the inset, only a single dot is seen at a

given value of U∗/U∗
L in the low flow velocity range. This indicates that the airfoil remains

dynamically stable, where initial disturbances due to initial conditions are damped out after

some time, and the pitch angle reaches either zero or a small non-zero value. Hence, the

static equilibrium position for two consecutive velocity points may be very much different;

such a behaviour have also been observed previously; see, for example, [9]. However, at
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Table 2.2: Dynamical behaviour in different regions of the pitch bifurcation diagram shown in Fig.
2.8.

Region U∗/U∗
L
‡ Type of motion

I (0 0.135) Static Equilibrium
II and X (0.136 0.219) and (0.689 1) Period-1
III and IX (0.220 0.248) and (0.530 0.688) Period-1-h

IV, VI and VIII (0.249 0.252) (0.328 0.466) and (0.485 0.529) Period-2-h
V and VII (0.253 0.327) and (0.467 0.484) Chaos

‡ U∗/U∗
L is the normalized dimensionless airspeed

Table 2.3: Dynamical behaviour in different regions of the plunge bifurcation diagram shown in
Fig. 2.9.

Region U∗/U∗
L Type of motion

I (0 0.135) Static Equilibrium
II and X (0.136 0.248) and (0.530 1) Period-1

IV, VI and VIII (0.249 0.252) (0.328 0.466) and (0.485 0.529) Period-2
V and VII (0.253 0.327) and (0.467 0.484) Chaos

U∗/U∗
L = 0.136 the airfoil loses stability via a Hopf bifurcation leading to period-1 LCO.

Soon after, the system regains stability (as indicated by a single dot) but loses it again at

a slightly higher flow velocity. This switching between stability and instability is observed

until U∗/U∗
L = 0.138 from which the motion remains period-1. At a higher flow velocity,

i.e. U∗/U∗
L = 0.220, period-1 motion becomes period-1-h and soon after, at U∗/U∗

L = 0.249,

it changes to period-2-h motion. At U∗/U∗
L = 0.253, motion becomes chaotic-like, but

by further increasing the flow velocity, motion becomes period-2-h again. Switching from

periodic to chaotic-like motion and from that back to periodic motion occurs between U∗/

U∗
L = 0.467 and U∗/U∗

L = 0.484. Eventually, at U∗/U∗
L = 0.689 motion becomes period-1

once again through several inverse period-doubling bifurcations. Table 2.2 summarizes the

different regions of the dynamical behavior and their boundaries as seen from the bifurcation

diagram.

As also noted from Fig. 2.8, the pitch amplitude generally increases as the flow velocity
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is increased, which is sensible since the aerodynamic loads become stronger as they are

proportional to the flow velocity squared. As seen from the figure, in the region X, the pitch

amplitude increases sharply with U∗/U∗
L and goes to very large values when U∗/U∗

L > 1 (not

shown in the figure). This indicates the occurrence of divergent or violent flutter in that

region; for more details, see Refs. [2, 5].

From Fig. 2.9 and Table 2.3, it is seen that the typical dynamical behavior of plunge DOF

is relatively simpler than the one of pitch DOF, which can also be seen from the following

dynamical figures. Most region boundaries are the same as the ones of pitch DOF. The

main differences include that there is no period-1-h (regions III and IX) and the regions of

period-2-h (regions IV, VI and VIII) for pitch DOF are the ones of period for plunge DOF.

Figs. 2.10 and 2.11 show, respectively, bifurcation diagrams for pitching motion and

plunging motion of airfoil 2. It is noticed that, all the regions, except the region IV also

materialize in the bifurcation diagrams for airfoil 2. Moreover, the same sequence of period-

doubling bifurcations is observed for airfoil 2 although some regions are smaller or larger

compared to those observed for airfoil 1. However, the pitching and plunging motion ampli-

tudes for airfoil 2 are quite larger than those for airfoil 1, which may sound reasonable as δ

and αf for airfoil 2 are several times of those for airfoil 1. Note that the inset to the right

of Fig. 2.11 shows the enlarged region VI, which shows the motion type in this region is

period-2 more clearly. Tables 2.4 and 2.5 give the exact range for the different regions seen

in Figs. 2.10 and 2.11, respectively.

The important message of the bifurcation diagrams shown in Figs. 2.8-2.11 is that the

free-play nonlinearity may cause the system to lose the static equilibrium at a much lower

flow velocity than the linear flutter speed; for example, for airfoil 1, the critical flow velocity

was found to be U∗
NL = 0.85, while that for the linear system is U∗

L = 6.28. This indicates

that the free-play stiffness nonlinearity may considerably reduce the critical flow velocity,
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Figure 2.10: Bifurcation diagram for a system with free-play nonlinearity in pitch (airfoil 2: δ =
2◦,M0 = Mf = 0, αf = −1◦) for α0 = 1◦ and α′

0 = ξ = ξ′0 = 0, in which values of the pitch angle α
are plotted when α′ = 0 as a function of the normalized dimensionless airspeed, U∗/U∗

L. Different
regions in the bifurcation diagram have been labelled from I to X. Table 2.4 should be consulted
for the interpretation of the labels.

Figure 2.11: Bifurcation diagram for a system with free-play nonlinearity in pitch (airfoil 2: δ =
2◦,M0 = Mf = 0, αf = −1◦) for α0 = 1◦ and α′

0 = ξ = ξ′0 = 0, in which values of the plunge ξ
are plotted when ξ′ = 0 as a function of the normalized dimensionless airspeed, U∗/U∗

L. Different
regions in the bifurcation diagram have been labelled from I to X. The inset to the right shows a
magnified portion of region VI. Table 2.5 should be consulted for the interpretation of the labels.
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Table 2.4: Dynamical behaviour in different regions of the pitch bifurcation diagram shown in Fig.
2.10.

Region U∗/U∗
L Type of motion

I (0 0.141) Static Equilibrium
II and X (0.142 0.217) and (0.708 1) Period-1
III and IX (0.218 0.251) and (0.528 0.707) Period-1-h
VI and VIII (0.328 0.465) and (0.478 0.527) Period-2-h
V and VII (0.252 0.327) and (0.466 0.477) Chaos

Table 2.5: Dynamical behaviour in different regions of the plunge bifurcation diagram shown in
Fig. 2.11.

Region U∗/U∗
L Type of motion

I (0 0.141) Static Equilibrium
II and X (0.142 0.251) and (0.528 1) Period-1

VI and VIII (0.328 0.465) and (0.478 0.527) Period-2
V and VII (0.252 0.327) and (0.466 0.477) Chaos

as also observed by others, e.g. [2]. Thus, when such a nonlinearity is known to exist in

the system, a nonlinear aeroelastic analysis has to be performed to actually determine the

stability boundary of the system. In addition, the bifurcation diagrams suggest that for

airfoils with the free-play type nonlinearity in the pitch DOF, the route to chaos is via

period-doubling.

In the rest of this section, the numerical results obtained for airfoil 2 are discussed. Fig.

2.12 shows the time history, PSD, phase-plane, and Poincaré plots for U∗/U∗
L = 0.8 which

lies in the region X in Figs. 2.10 and 2.11. The sinusoidal-like time history (Fig. 2.12(a)), the

existence of a main frequency with its harmonics (Fig. 2.12(b)), the single-loop phase-plane

plot (Fig. 2.12(c)) and one dot in the Poincaré map (Fig. 2.12(d)) all confirm a period-1

LCO for pitch DOF at U∗/U∗
L = 0.8. The motion of plunge has the same dynamical feature,

so plunge DOF behaves period-1 LCO as well. It is noted that the Poincaré section maps

presented here were obtained, similarly to Ref. [52], using an internal clock as the system is

autonomous: α and α′ were recorded at those times when ξ′ = 0 and ξ < ξ̄ (the mean value
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Figure 2.12: The dynamics of the system with free-play nonlinearity in pitch (airfoil 2) at U∗/
U∗
L = 0.8 (region X in Fig. 2.10 and Fig. 2.11) where period-1 motion is observed: (a-d) time

history, PSD, phase-plane, and Poincaré plots, respectively, for the pitch DOF, α, and (e-h) time
history, PSD, phase-plane, and Poincaré plots, respectively, for the plunge DOF, ξ.

of plunge displacement); ξ and ξ′ were recorded at those times when α′ = 0 and α < ᾱ (the

mean value of pitch displacement).

At U∗/U∗
L = 0.56 which lies in the region IX in Fig. 2.10 and region X in Fig. 2.11, as

discussed previously, for pitch DOF, period-2 motion is expected, and the appearance of a

double-loop in the phase-plane plot in Fig. 2.13(c) may also be viewed as a confirmation

of that. Nevertheless, no sub-harmonic of the main frequency, f , is seen in the PSD plot

shown in Fig. 2.13(b); instead, harmonics of f , i.e. nf (n = 2, 3, · · · ), are observed. Also,

there is only one dot in the corresponding Poincaré map shown in Fig. 2.13(d). This motion

of pitch DOF may thus be labelled as period-1-h or period-1 with harmonics, following the

terminology adopted in [12]. Nevertheless, the motion of plunge is still period 1, as the

dynamical features are similar with the ones at U∗/U∗
L = 0.8.
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Figure 2.13: The dynamics of the system with free-play nonlinearity in pitch (airfoil 2) at U∗/
U∗
L = 0.56 (region IX in Fig. 2.10 and region X in Fig. 2.11): (a-d) time history, PSD, phase-plane,

and Poincaré plots, respectively, showing period-1-h motion for the pitch DOF, α, and (e-h) time
history, PSD, phase-plane, and Poincaré plots, respectively, showing period-1 motion for the plunge
DOF, ξ.
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Figure 2.14: The dynamics of the system with free-play nonlinearity in pitch (airfoil 2) at U∗/
U∗
L = 0.45 (region VI in Fig. 2.10 and Fig. 2.11): (a-d) time history, PSD, phase-plane, and

Poincaré plots, respectively, showing period-2-h motion for the pitch DOF, α, and (e-h) time history,
PSD, phase-plane, and Poincaré plots, respectively, showing period-2 motion for the plunge DOF,
ξ.

At U∗/U∗
L = 0.45, period-4 motion in pitch DOF may be expected according to Fig.

2.14(c) which shows four closed loops. According to Fig. 2.14(d), however, there are only

two dots in the Poincaré plot. Also, as seen from the PSD diagram in Fig. 2.14(b), there

is only one subharmonic at 1
2
f , and the rest of the spectrum is dominated by harmonics of

f as well as odd harmonics of 1
2
f . These suggest ‘period-2-h’ or period-2 with harmonics

motion. While in plunge DOF, two closed loops in Fig. 2.14(g) and two dots in Fig. 2.14(h)

both confirm a classical period-2 motion.

Finally, for pitch DOF, the erratic time history (Fig. 2.15(a)), relatively wide-banded

frequency content in the PSD plot (Fig. 2.15(b)), the appearance of a ‘two-well potential’

in the phase-plane plot (Fig. 2.15(c)) and the distinct structure in the Poincaré map (Fig.

2.15(d)) all lend some evidence to existence of chaotic motion at U∗/U∗
L = 0.3 which lies
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Figure 2.15: The dynamics of the system with free-play nonlinearity in pitch (airfoil 2) at U∗/
U∗
L = 0.3 (region V in Fig. 2.10 in Fig. 2.11) where chaotic-like motion is observed: (a-d) time

history, PSD, phase-plane, and Poincaré plots, respectively, for the pitch DOF, α, and (e-h) time
history, PSD, phase-plane, and Poincaré plots, respectively, for the plunge DOF, ξ.

in the region V. To determine the type of motion at this flow velocity more definitely, a

measure such as Lyapunov exponents should be sought. The dominant Lyapunov exponent

is estimated from time series following the method of time delay reconstruction implemented

by Wolf et al. [53]. The dominant Lyapunov exponent at several points lying in regions

V and VII (e.g. U∗/U∗
L=0.27, 0.30, 0.32 and 0.47) was found to be between 0.01 to 0.02

bits/sec indicating that the system is ‘mildly/weakly’ chaotic. It should be noted that the

dominant Lyapunov exponent was also calculated for multiple points in other regions in

order to validate the bifurcation diagram predictions. For example, for U∗/U∗
L = 0.45 and

U∗/U∗
L = 0.56 where period-2-h and period-1-h motions were predicted, respectively, the

dominant Lyapunov exponent was found to be zero. For plunge DOF, the motion in regions

V and VII is also determined by positive dominant Lyapunov exponent as chaotic.
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2.2.2 Gust Response of the System with Free-play Nonlinearity

To validate the model that includes gust effects, the our numerical results are compared to

those presented in Ref. [35]. Fig. 2.16 shows time history diagrams for an aeroelastic system

(U∗ = 1, a = 0, xα = 0, rα = 0.5, ζα = ζξ = 0) with two different combinations of mass

ratio (µ) and frequency ratio (ω̄). Figs. 2.16(a,b) show, respectively, the variation of the

normalized pitching and plunging amplitudes as a function of time for µ = 14, ω̄ = 0.29. On

the other hand, Figs. 2.16(c,d) show the same quantities but for µ = 21, ω̄ = 0.58 (cf. [35,

Figure 5]). It is noted that pitching and plunging amplitudes are normalized with respect to

their steady-state values. These plots are exactly the same as Fig. 2.17, which is from [35].

Considering that the dynamical behavior of plunge DOF is simpler than that of pitch

DOF when the nonlinearity is in pitch, as shown in Section 2.2.1, only the gust response

of pitch DOF is shown in the rest of this section. The combined effects of a sharp-edged

gust and pitching initial conditions on the response of airfoil 2 are given in Fig. 2.18.

The figure shows the basin of attraction for different gust amplitudes at U∗/U∗
L = 0.136.

A circle in the figure indicates the occurrence of a LCO, whereas a dot indicates static

equilibrium. The probability of the occurrence of LCO may be obtained by calculating the

density of circles in each plot, that is 100 × number of circles divided by the total number

of grid points. The probability values are 76.5%, 78.6%, 81.7%, 86.2%, 91.9% and 95.5% for

w∗
0 = 0, 0.018, 0.037, 0.055, 0.073, and 0.092 (i.e. w0 = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 m/s),

respectively. These results show that a stronger gust increases the probability of occurrence

of LCO at a flow velocity close to the onset of the Hopf bifurcation.

As seen from Fig. 2.18(a), in the absence of the gust (i.e. w0 = 0), the distribution

of dots and circles is point symmetric. The dynamical behaviour of the system appears to

be complex and sometimes unpredictable. Regions or ‘islands’ of static equilibrium or zero

motion are observed for large values of α0 and α′
0, while a small initial pitch angle and a
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Figure 2.16: Time history plots for an aeroelastic system with U∗ = 1 with a = 0, xα = 0, rα = 0.5,
and ζα = ζξ = 0 under a sharp-edged gust input (w0 = 0.305m/s): (a,b): µ = 14, ω̄ = 0.29 (cf.
[35, Figure 4]), and (c,d): µ = 21, ω̄ = 0.58 (cf. [35, Figure 5]). Figures (a,c) show the variation of
the pitch angle normalized with respect to the steady-sate value as a function of time, while figures
(b,d) show the variation of normalized plunging amplitude as a function of time.
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(a) (b)

(c) (d)

Figure 2.17: Time history plots (from [35]) for an aeroelastic system with U∗ = 1 with a = 0,
xα = 0, rα = 0.5, and ζα = ζξ = 0 under a sharp-edged gust input (w0 = 0.305m/s): (a,b): µ = 14,
ω̄ = 0.29 (from [35, Figure 4]), and (c,d): µ = 21, ω̄ = 0.58 (from [35, Figure 5]). Figures (a,c)
show the variation of the pitch angle normalized with respect to the steady-sate value as a function
of time, while figures (b,d) show the variation of normalized heaving (plunging) amplitude as a
function of time.
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Figure 2.18: Basin of attraction at U∗/U∗
L = 0.136 for different amplitudes of sharp-edged gust

(circle: LCO, dot: static equilibrium): (a) w∗
0 = 0 (P = 76.5%), (b) w∗

0 = 0.018 (P = 78.6%),
(c) w∗

0 = 0.037 (P = 81.7%), (d) w∗
0 = 0.055 (P = 86.2%), (e) w∗

0 = 0.073 (P = 91.9%), and (f)
w∗
0 = 0.092 (P = 95.5%), where P is the probability of the occurrence of LCO.

small pitch velocity may be sufficient to excite an LCO.

As seen from Figs. 2.18(b)-(f), the dynamical behaviour for systems excited by a sharp-

edged gust becomes less complex compared to that with no gust. Regions of stability are

more confined to large positive values of α0, and this becomes more and more pronounced

as the gust becomes stronger. It is also interesting to see from Figs. 2.18(b)-(f) that for a

positive gust amplitude, which induces a positive angle of attack, the airfoil has a higher

chance of becoming stable when α0 > 0. Conversely, as seen from Fig. 2.19, for a negative

gust amplitude – a downward gust – the airfoil has a higher probability of stability when

α0 < 0.

Fig. 2.20 shows the pitching response of the system to (a) a sharp-edged, and (b) a
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Figure 2.19: Basin of attraction at U∗/U∗
L = 0.136 for different amplitudes of sharp-edged gust

(circle: LCO, dot: static equilibrium): w∗
0 = −0.055, (b) w∗

0 = −0.092.

1-cosine gust at U∗/U∗
L = 0.136. Note that except for the plots of basin of attraction which

are used to investigate the effects of different gust amplitudes, all the left gust amplitudes

in this thesis are set as w0 = 10 m/s. For comparison purposes, the time response in the

presence of the gust is plotted on top of the time response in the absence of the gust. As

seen, the system undergoes LCO under the gust input, while in the absence of the gust it

regains static stability. In other words, a gust input causes the system to get ‘attracted’ to

LCO at a lower airspeed – at U∗/U∗
L = 0.136 instead of 0.142.

Fig. 2.21 shows the time response at U∗/U∗
L = 0.2 which is a point in the region II in the

bifurcation diagram shown in Fig. 2.10. As discussed, within this region, the airfoil section

undergoes period-1 LCO in the absence of a gust. However, this changes to period-1-h LCO

when the airfoil encounters a sharp-edged or a 1-cosine gust. Thus, the gust input may alter

the type of response. In addition, it increases the amplitude of oscillation, especially in the

transient part of the response.

Fig. 2.22 shows the time response at U∗/U∗
L = 0.3, where the motion is chaotic in the

absence of a gust, lying in the region IV in Fig. 2.10. As seen, with the gust input, the

pitching motion remains chaotic-like. Fig. 2.23 shows the time response at U∗/U∗
L = 0.71.

Here also, the period-1 motion, which occurs in the gust absence, changes to a period-1-h
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Figure 2.20: Gust response of airfoil 2 (heavy line; blue online) at U∗/U∗
L = 0.136, and w∗

0 = 1.83
(w0 = 10 m/s): (a) sharp-edged gust, and (b) 1-cosine gust. Light lines (red online) show the time
response in the absence of gust.
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Figure 2.21: Gust response of airfoil 2 (heavy line; blue online) at U∗/U∗
L = 0.2, and w∗

0 = 1.24
(w0 = 10 m/s): (a, c) sharp-edged gust, and (b, d) 1-cosine gust. Light lines (red online) show the
time response in the absence of gust.
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Figure 2.22: Gust response of airfoil 2 (heavy line; blue online) at U∗/U∗
L = 0.3, and w∗

0 = 0.83
(w0 = 10 m/s): sharp-edged (a, b), and 1-cosine (c, d). Light lines (red online) show the time
response in the absence of gust.

motion due to the gust input. The increase of the amplitude of oscillation is also observed.

These are more evident from Fig. 2.24 which shows the phase-plane plots for responses

shown in Figs. 2.21(a) and 2.23(a).

Fig. 2.25 shows the time response at U∗/U∗
L = 0.8. Except for very large amplitudes

due to gust effects in the transient part of the response, the responses with and without the

gust input looks the same. Finally, as seen from Fig. 2.26, when U∗ approaches U∗
L, the

only difference between the time responses is that with the gust input the amplitude of LCO

increases faster to very large values of the order of 23 deg. Such large pitch angles are beyond

the stall angle of attack of most airfoils, where the linearity assumption of aerodynamic lift

is violated, and thus the results for large values of U∗/U∗
L should be ‘taken with a grain of
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Figure 2.23: Gust response of airfoil 2 (heavy line; blue online) at U∗/U∗
L = 0.71, and w∗

0 = 0.35
(w0 = 10 m/s): (a) sharp-edged gust, and (b) 1-cosine gust. Light lines (red online) show the time
response in the absence of gust.
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Figure 2.24: Phase-plane plots of airfoil 2 with (heavy line; blue online) and without (light line;
red online) a sharp-edged gust at: (a) U∗/U∗

L = 0.2 and w∗
0 = 1.24 (w0 = 10 m/s), and (b) U∗/

U∗
L = 0.71 and w∗

0 = 0.35 (w0 = 10 m/s).
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Figure 2.25: Gust response of airfoil 2 (heavy line; blue online) at U∗/U∗
L = 0.8, and w∗

0 = 0.31
(w0 = 10 m/s): (a) sharp-edged gust, and (b) 1-cosine gust. Light lines (red online) show the time
response in the absence of gust.

salt.’

2.2.3 Aeroelastic Behaviour of the System with Hysteresis Non-

linearity

When friction and backlash occur simultaneously, the nonlinearity usually exhibits a hys-

teresis feature. As force (or moment) is increased, displacement (or rotation angle) varies

linearly until a certain point is reached at which a jump occurs, beyond which the system

behaves linearly again. On the return path, a jump occurs at another value of the force,

featuring a hysteresis loop. In the case of a wing, this type of nonlinearity may represent

the effect of rivet slip [5].

In this section, we examine the dynamics of a system with hysteresis stiffness in the pitch

DOF. The parameters are: M0 = 0.5, δ = 1 deg, αf = 0, andMf = 0 (airfoil 3). Similarly to

airfoils 1 and 2, the linear flutter speed for airfoil 3 is U∗
L = 6.28. Here, the initial conditions,

except for basin of attraction plots, are set to be: α0 = 1 deg, and α′
0 = 0.5 deg/dimensionless

time.
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Figure 2.26: Gust response of airfoil 2 (heavy line; blue online) at U∗/U∗
L = 0.97, and w∗

0 = 0.26
(w0 = 10 m/s): (a) sharp-edged gust, and (b) 1-cosine gust. Light lines (red online) show the time
response in the absence of gust.

Figs. 2.27 and 2.28 show the bifurcation diagrams for free vibration (i.e. no gust input)

of a typical airfoil section with hysteresis-type nonlinearity in the pitch and plunge DOFs,

respectively. Compared to the dynamical behaviour shown in Figs. 2.8 to 2.11 for the system

with free-play nonlinearity, the dynamics of the system with hysteresis nonlinearity seems

much simpler. As seen, the system remains stable up to high flow velocities; however, it

becomes unstable at U∗/U∗
L = 0.799 via a Hopf bifurcation leading to period-1 LCO for both

pitch and plunge DOFs. No secondary bifurcations are observed at higher flow velocities.

The amplitude of LCO increases sharply as the flow velocity is increased, which signifies

the occurrence of divergent flutter – a similar behaviour was observed for the airfoil with

free-play nonlinearity; see Section 2.2.1. Fig. 2.29 shows the time history, PSD, phase-plane,

and Poincaré plots for both DOFs at U∗/U∗
L = 0.85, which all indicate period-1 motion.

2.2.4 Gust Response of the System with Hysteresis Nonlinearity

Fig. 2.30 shows the basin of attraction at U∗/U∗
L = 0.85 for different sharp-edged gust ampli-

tudes. We consider stronger gusts, compared to those taken in Section 2.2.2, as here the flow
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Figure 2.27: Bifurcation diagram for a system with the hysteresis nonlinearity in pitch (airfoil 3:
M0 = 0.5, δ = 1◦, αf = 0,Mf = 0) for α0 = 1◦ and α′

0 = 0.5◦/dimensionless time, in which the
pitch angle α are plotted when α′ = 0 as a function of the normalized dimensionless airspeed,
U∗/U∗

L.
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Figure 2.28: Bifurcation diagram for a system with the hysteresis nonlinearity in pitch (airfoil 3:
M0 = 0.5, δ = 1◦, αf = 0,Mf = 0) for α0 = 1◦ and α′
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Figure 2.29: The dynamics of the system with hysteresis nonlinearity in pitch (airfoil 3) at U∗/
U∗
L = 0.85 past the critical flow velocity where period-1 motion is observed: (a-d) time history,

PSD, phase-plane, and Poincaré plots, respectively, for the pitch DOF, α, and (e-h) time history,
PSD, phase-plane, and Poincaré plots, respectively, for the plunge DOF, ξ.
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velocity at which the numerical results are obtained is much higher than that for the airfoil

with free-play nonlinearity. As one can visually see from the sub-figures, the probability of the

occurrence of LCO increases as the gust becomes stronger – the probability values are 39.6%,

41.0%, 43.6%, 51.5%, 62.3% and 64.1% for w∗
0 = 0, 0.031, 0.062, 0.093, 0.124, and 0.156

(i.e. w0 = 0, 1, 2, 3, 4, and 5 m/s), respectively. It is interesting to see from the plots that

there are two finite bands (corresponding to the positive and negative values of α′) between

LCO regions, within which the system remains stable regardless of the value of α0. From

Fig. 2.30(a), it is also interesting to note that with no gust input, the distribution of dots

and circles is point symmetric. Moreover, from Fig. 2.30(a)-(f), it is implied that the type

of behaviour (i.e. stable or LCO) is more sensitive to the initial velocity (α′
0) than the initial

displacement (α0).

Fig. 2.31 shows the time response of the airfoil to sharp-edged and 1-cosine gusts as

well as that in the absence of the gust input at U∗/U∗
L = 0.714. In the absence of a gust,

the system regains stability shortly after it is disturbed through the initial conditions, while

with the gust input, the system is attracted to a period-1 LCO. When increasing U∗/U∗
L to

0.799, the time responses with and without the gust input becomes periodic with comparable

amplitudes past the transition, as shown in Fig. 2.32. At U∗/U∗
L = 0.85, the time responses

in the absence and presence of the gust becomes almost identical past the transition, as seen

from Fig. 2.33. According to Figs. 2.32 and 2.33 and other results not shown here, past the

Hopf bifurcation point, the disturbance due to the gust may only cause a phase difference in

the response of the system, and except in the transient part, no obvious difference is observed

between amplitudes in the time responses with and without the gust.
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Figure 2.30: Basin of attraction at U∗/U∗
L = 0.8 for different amplitudes of sharp-edged gust

(circle: LCO, dot: static equilibrium): (a) w∗
0 = 0 (P = 39.6%), (b) w∗

0 = 0.031 (P = 41.0%),
(c) w∗

0 = 0.062 (P = 43.6%), (d) w∗
0 = 0.093 (P = 51.5%), (e) w∗

0 = 0.124 (P = 62.3%), and (f)
w∗
0 = 0.156 (P = 64.1%), where P is the probability of the occurrence of LCO.
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Figure 2.31: Gust response of airfoil 3 (heavy line; blue online) at U∗/U∗
L = 0.714, and w∗

0 = 0.35
(w0 = 10 m/s): (a) sharp-edged gust, and (b) 1-cosine gust. Light lines (red online) show the time
response in the absence of gust.
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Figure 2.32: Gust response of airfoil 3 (heavy line; blue online) at U∗/U∗
L = 0.799, and w∗

0 = 0.31
(w0 = 10 m/s): (a) sharp-edged gust, and (b) 1-cosine gust. Light lines (red online) show the time
response in the absence of gust.
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Figure 2.33: Gust response of airfoil 3 (heavy line; blue online) at U∗/U∗
L = 0.85, and w∗

0 = 0.29
(w0 = 10 m/s): (a) sharp-edged gust, and (b) 1-cosine gust. Light lines (red online) show the time
response in the absence of gust.
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2.3 Summary

In this chapter, the typical dynamics characteristics for an airfoil with either a free-play or a

hysteresis type of nonlinearity in the pitch DOF were presented. In addition, the responses

of these systems to sharp-edged and 1-cosine gust profiles were examined. For the airfoil

with the free-play nonlinearity, it was found that the stability may be lost through a Hopf

bifurcation at a critical flow velocity significantly lower than that for the linear system.

The post-critical dynamics of the system was found to be very complex, where motion

may become chaotic through period-doubling bifurcations. Classical period-1 and period-

2 motions were observed in plunge, while period-1 and period-2 with harmonics motions

were observed in pitch. When there was no gust input, a complex but point-symmetric

basin of attraction was found. However, when the airfoil was excited by the gust, the basin

of attraction became relatively deterministic, where the region of stability became more

confined to one side of the plot (α0 > 0 when the gust was in the positive direction and vice

versa). It was also found that the probability of the occurrence of LCO increased as the gust

became stronger.

For the airfoil with the hysteresis nonlinearity, the dynamics was found to be relatively

simple, either in pitch or plunge DOF. The airfoil remained stable for a wide range of flow

velocities but lost the stability via a Hopf bifurcation at a critical flow velocity comparable

to the linear flutter speed. No secondary bifurcations were observed, and the amplitude of

the LCO emanating from the Hopf bifurcation increased sharply with the flow velocity. It

was found from the basin of attraction plots that there were two finite bands between regions

of LCO, in which the stability was guaranteed independently from the value of the initial

pitch angle.

From the results presented in this chapter, it may be concluded that studying the effects

of time-dependent excitation due to atmospheric turbulence on the dynamics of nonlinear
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lifting surfaces and designing control methods to mitigate those effects are essential for the

design and operation of aircraft. These studies are particularly crucial for the design of new

generation of aircraft, manned or unmanned, which are likely to be lighter, faster, more

flexible, and more agile. In the next chapter, the control surface will be introduced to the

wing model and there will be an extra DOF, which is flap.
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Chapter 3

3-DOF Nonlinear Aeroelastic Model

By adding a control surface to the aeroelastic model mentioned in Chapter 2, an extra DOF

(i.e. flap) is considered. This chapter is dedicated to the study of the typical dynamical

behavior of a 3-DOF aeroelastic system with structural nonlinearities. Mode tracking method

is employed to get the right trends of damping, and frequency as a function of flow velocity.

For given system parameters, bifurcation diagrams are presented, and time-history, PSD,

phase-plane and Poincaré diagrams are shown at different flow velocities.
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Figure 3.1: Schematic showing geometry of the wing section with three DOFs, i.e. pitch (α), plunge
(h), and flap (β); b is the semi-chord.

3.1 Aeroelastic Modelling

Following the derivation in [14], the dimensionless aeroelastic equations for a two-dimensional

wing with DOFs in plunge (ξ), pitch (α) and flap (β) may be written as [14] 1

r2αα̈ + [r2β + (c− a)xβ]β̈ + xαξ̈ + 2ζαωαα̇ + r2αω
2
αNα = M̆, (3.1)

[r2β + (c− a)xβ]α̈ + r2ββ̈ + xβ ξ̈ + 2ζβωββ̇ + r2βω
2
βNβ = T̆ , (3.2)

xαα̈ + xββ̈ + (mtot/m)ξ̈ + 2ζξωξ ξ̇ + ω2
ξNξ = L̆. (3.3)

For a 3-DOF system, the structural stiffness for the pitch and plunge DOFs are typically of

the cubic form, where the force exerted depends on the usual linear power of the displacement

and, in addition, on a term containing the cube of the displacement. This can be considered

either as a hard spring, which becomes stiffer as displacement increases, or as a soft spring,

which becomes weaker as displacement increases. In the case of a structure, a hardening

effect is found when a thin wing, or perhaps a propeller, is subjected to increasing amplitudes

of torsion. A soft-spring effect may be associated with panel buckling [5]. Here, hard cubic

1It should be noted that in [14, equation(3)], h should be replaced by ξ.
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stiffnesses are considered as:

Nα = k1αα + k3αα
3, (3.4)

Nξ = k1ξξ + k3ξξ
3. (3.5)

While in power-operated control systems and spring-tab systems, like the control surface

hinge, the most common cause for nonlinear behavior is backlash. This produces a flat spot

(free-play) nonlinearity which possesses a force-displacement characteristic in Fig. 2.2. For

small displacements (free-play gap δ in Fig. 3.1), the spring offers no or small resistance

to the movement of the control surface [2]. So the structural stiffness for the flap DOF is

considered to be

Nβ =































M0 + β − βf , for β < βf ,

M0 +Mf (β − βf ), for βf ≤ β ≤ βf + δ,

M0 + β − βf + δ(Mf − 1), for β > βf + δ,

(3.6)

whereM0 represents the preload,Mf is the stiffness in the free-play zone, βf is the flap angle

offset, and δ is the free-play range.

Expressions for the unsteady aerodynamic lift, La, pitching moment of the wing-flap

system, Ma, and the pitching moment (torque) of the flap, Ta, are not repeated here for the

sake of brevity; instead, they can be found in [14, 45]. Assuming wg(τ) as the gust variable

velocity and using Duhamel’s integral, the lift, the pitching moment about the elastic axis,

and the pitching moment about the flap hinge, in incompressible flow, due to penetration
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into the gust, Lg(τ), Mg(τ), Tg(τ), respectively, may be written as [30, 45]:

Lg(τ) = CLαbρ∞U∞

∫ τ

0

wg(τ0)
∂ψ(τ − τ0)

∂τ
dτ0, (3.7)

Mg(τ) = (1/2 + a)Lg(τ), (3.8)

Tg(τ) = 0, (3.9)

where ψ(τ) is the so-called Küssner function (for details, see Chapter 2).

To eliminate the integral terms in the expressions for aerodynamic and gust loading, the

following eight new variables are introduced:

w1 =

∫ τ

0

e−b1(τ−σ)α(σ)dσ, w2 =

∫ τ

0

e−b2(τ−σ)α(σ)dσ,

w3 =

∫ τ

0

e−b1(τ−σ)β(σ)dσ, w4 =

∫ τ

0

e−b2(τ−σ)β(σ)dσ,

w5 =

∫ τ

0

e−b1(τ−σ)ξ(σ)dσ, w6 =

∫ τ

0

e−b2(τ−σ)ξ(σ)dσ,

w7 =

∫ τ

0

e−b3(τ−σ)wg(σ)

U∞

dσ, w8 =

∫ τ

0

e−b4(τ−σ)wg(σ)

U∞

dσ, (3.10)

in which constants b1 and b2 are from the well-known approximation for the Wagner function.

Using the new variables defined in Eq. (3.10) and the fact that ∂( )/∂t = (U∞/b)∂( )/∂τ ,
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Eqs. (3.1) to (3.3) may fully be rendered dimensionless:

A1α
′′ + A2β

′′ + A3ξ
′′ + A4α

′ + A5β
′ + A6ξ

′ + A7α + A8β + A9ξ + A10Nα + A11w1

+ A12w2 + A13w3 + A14w4 + A15w5 + A16w6 + A17w7 + A18w8 = f(τ), (3.11)

B1α
′′ + B2β

′′ + B3ξ
′′ + B4α

′ + B5β
′ + B6ξ

′ + B7α + B8β + B9ξ + B10Nβ +B11w1

+ B12w2 + B13w3 + B14w4 + B15w5 + B16w6 + B17w7 + B18w8 = g(τ), (3.12)

C1α
′′ + C2β

′′ + C3ξ
′′ + C4α

′ + C5β
′ + C6ξ

′ + C7α + C8β + C9ξ + C10Nξ + C11w1

+ C12w2 + C13w3 + C14w4 + C15w5 + C16w6 + C17w7 + C18w8 = h(τ). (3.13)

The coefficients Ai, Bi, and Ci, i = 1, 2, . . . , 18 are functions of the airfoil parameters, and

their expressions can be found in [14, Appendix C], except for a few which are given as

below:

A10 = (
r2α
U∗

)2, A17 = −(
1

2
+ a)

2

µ
s3b3, A18 = −(

1

2
+ a)

2

µ
s4b4,

B17 = 0, B18 = 0,

C10 = (
ωξ

ωαU∗
)2, C17 = −

2

µ
s3b3, C18 = −

2

µ
s4b4, (3.14)

in which U∗ = U∞/(bωα) is the dimensionless flow velocity, and µ = m/(πρb2) being the

mass ratio; also, f(τ), g(τ), and h(τ) may be written as

f(τ) =
−2(a+ 1

2
)

µ
[ξ(0) + (

1

2
− a)α(0) +

T11
2π

β(0)]× (s1b1e
−b1τ + s2b2e

−b2τ ), (3.15)

g(τ) =
T12
πµ

[ξ(0) + (
1

2
− a)α(0) +

T11
2π

β(0)]× (s1b1e
−b1τ + s2b2e

−b2τ ), (3.16)

h(τ) =
2

µ
[ξ(0) + (

1

2
− a)α(0) +

T11
2π

β(0)]× (s1b1e
−b1τ + s2b2e

−b2τ ). (3.17)
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Finally, by introducing a variable vector X = (x1, x2, · · · , x14)
T with x1 = α, x2 = α′, x3 =

β, x4 = β′, x5 = ξ, x6 = ξ′, x7 = w1, x8 = w2, x9 = w3, x10 = w4, x11 = w5, x12 =

w6, x13 = w7, x14 = w8, a set of 14 first-order ordinary differential equations written in the

vector form can be obtained, as follows:

X′ = F (X, τ). (3.18)

3.2 Typical Aeroelastic Behaviour

In this section, some numerical results are presented to illustrate the typical aeroelastic

behaviour of the nonlinear system. Two different systems are studied, where they differ only

in the pitching-plunging structural stiffness modelling. Both systems have free-play (δ = 2◦)

about the flap hinge (refer to Fig. 3.1), where the parameters are: M0 =Mf = 0, βf = −1◦.

The first set is for a system (airfoil 4) with a linear pitching and a linear plunging stiffness

(k1α = 1, k1ξ = 1); the second set for a system (airfoil 5) with a linear plunging and a cubic

pitching stiffness (k1α = 1, k3α = 10, k1ξ = 1). The rest of system parameters are: µ = 26.47,

a = −0.5, c = 0.5, xα = 0.33, xβ = 0.01789, rα = 0.814, rβ = 0.0947, mtot = 3.625 kg/m,

m = 1.73 kg/m, ωξ = 4.39 Hz, ωα = 8.012 Hz, and ωβ = 16.187 Hz, ζξ = ζα = ζβ = 0.001

[14]. The initial conditions are: ξ0 = 0, α0 = 1◦, β0 = 0, with their time derivatives equal to

zero.

An aeroelastic stability analysis of aircraft structures can involve a large number of vibra-

tion modes, and mode crossing can occur during the analysis, complicating the interpretation

of the results. The failure to track and correlate these mode crossings can cause misiden-

tification of aeroelastic phenomena. The factors leading to flutter and divergence may be

improperly understood and, therefore, attempts to make engineering decisions to improve
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performance will be misguided and likely unsuccessful. Mode tracking methodologies estab-

lish correspondence among the set of point solutions generated at each discrete parameter

increment of the aeroelastic analysis [54]. Fig. 3.2 shows damping and frequency diagrams

with the application of the mode tracking technology, which shows the post-processing mod-

ule succeeds in alleviating the severity of the mode switching [51]. The flutter speed is

determined by these figures as U∗
L = 5.455, where U∗

L denotes the dimensionless flutter speed

for the linear system, which agrees well with the experimental results in [14].

Fig. 3.3 shows the bifurcation diagram where maximum and minimum values (local and

global) of the plunge, ξ, pitch angle, α, and flap angle, β, are plotted against the normalized

dimensionless airspeed, (U∗/U∗
L). In the bifurcation diagrams, a single dot/point represents

a static equilibrium position; two dots represent period-1 motion, four dots show period-2

motion or period-1-h and so on, and finally, multiple scattered dots may either indicate

quasi-periodic or chaotic motion (for details, see Chapter 2). Fig. 3.4 shows the bifurcation

diagram of a system with a linear plunging and a cubic pitching stiffness.

As seen from Fig. 3.3, the airfoil is stable for (U∗/U∗
L) < 0.1, and any disturbance is

decayed to zero with time. However, the system loses its stable position, and it undergoes a

Hopf bifurcation at (U∗/U∗
L) ≃ 0.1 leading to a period-1 LCO. The period-1 motion, however,

quickly becomes period-1-h for the pitch and flap DOFs, while it remains period-1 for the

plunge DOF. This behaviour lasts until (U∗/U∗
L) ≃ 0.3, where the motion becomes chaotic-

like for a short range of flow velocity. It is then transformed into period-1 motion which

remains dominant up to the maximum flow velocity investigated. For (U∗/U∗
L) > 1 (not

shown here), the amplitudes for all DOFs increase sharply to very large values, indicating the

occurrence of divergent or violent flutter. This phenomenon has been reported previously by

several researchers, e.g., in [2, 36]. As seen from Fig. 3.4, the dynamical behaviour of airfoil 5

is very similar to that of airfoil 5. A few exceptions, however, exist. For example, for airfoil 5,
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Figure 3.2: Damping (left) and frequency (right) diagrams with the application of the mode tracking
technology.
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beyond (U∗/U∗
L) = 1.0, the amplitudes gradually tend to increase to large values, most likely

because of the self-limiting characteristic of the additional stiffness nonlinearity. It is also

interesting to observe a period-3 flapping motion of the airfoil 5 airfoil for (U∗/U∗
L) > 1.05

(see Fig. 3.4, right). This phenomenon is, in fact, worthy of a further investigation in a

future study.

Since the nonlinearities considered in this chapter are in the pitch and flap DOFs, so

the dynamic results in this section are focused on these two DOFs as well. Fig. 3.5 shows

the time-history, PSD, phase-plane, and Poincaré plots of airfoil 4 for the pitch and flap

DOFs, respectively at (U∗/U∗
L) = 0.17. These plots confirm a period-1-h pitching and

flapping motions (for details, see Chapter 2). Moreover, Fig. 3.6 shows the time-history,

PSD, phase-plane, and Poncaré plots of airfoil 4 for the pitch and flap DOFs, respectively at

(U∗/U∗
L) = 0.30. The appearance of a closed curve in the Poincaré maps as well as harmonics

of two incommensurate frequencies in the PSD plots lend some evidence to the existence of

quasi-periodic motion at this flow velocity.

3.3 Summary

The numerical results presented in this chapter show that structural nonlinearities may have

significant effects on the dynamical behavior of the system. In particular, free-play about

the flap hinge may cause the system to become unstable at a flow velocity well below the

flutter speed of the linear system, U∗
L. The airfoil loses stability via a Hopf bifurcation for

all three DOFs and the dynamics of the 3-DOF system with the free-play nonlinearity in

flap may exhibit the phenomenon of quasi-periodic motion through period-doubling bifur-

cations, similar with the 2-DOF system mentioned in Chapter 2. The hard cubic stiffness

has negligible effect effects on the dynamics of system within the linear flutter speed, but
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(a)

(b)

(c)

Figure 3.3: Bifurcation diagrams for (a) plunge, (b) pitch, and (c) flap DOFs, for a system with
flap free-play and linear pitching and plunging stiffnesses (airfoil 4).
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(a)

(b)

(c)

Figure 3.4: Bifurcation diagrams for (a) plunge, (b) pitch, and (c) flap DOFs, for a system with
flap free-play and cubic pitching and linear plunging stiffnesses (airfoil 5).

64



1.99 1.992 1.994 1.996 1.998 2

Dimensionless time 104

-0.05

0

0.05

0.1

 (
d

e
g

re
e
)

0 0.2 0.4 0.6 0.8 1

Dimensionless frequency

-100

-80

-60

-40

-20

0

20

P
it

c
h

 P
S

D
, 
d

B
/c

y
c
le

-2 -1 0 1 2

(degree)

-2

-1

0

1

2

1.99 1.992 1.994 1.996 1.998 2

Dimensionless time 104

-1.5

-1

-0.5

0

0.5

1

1.5

 (
d

e
g

re
e
)

0 0.2 0.4 0.6 0.8 1

Dimensionless frequency

-80

-60

-40

-20

0

20

40

F
la

p
 P

S
D

, 
d

B
/c

y
c
le

-1.5 -1 -0.5 0 0.5 1 1.5

(degree)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
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it is capable of avoiding the system from divergence beyond the flutter speed. However,

long-time oscillation may lead to fatigue even structural failure. Therefore, the suppression

of LCO will be the main objective of the next chapter.
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Chapter 4

Active Control without Parametric

Uncertainty

Starting from this chapter, the design of a control system for the nonlinear aeroelastic system

introduced in Chapter 3 will be discussed. Here, the active controller based on feedback

linearized system is designed. The effectiveness of the controller is assessed through some

numerical results.

4.1 Feedback Linearization

To suppress flutter and to alleviate undesirable phenomena, such as atmospheric disturbances

that may occur to an aircraft, a control system may be coupled to the original aeroelastic

system. There are mainly two kinds of control techniques for the suppression of flutter. One

technique is to passively control structural deformation by altering the structure to improve

its aeroelastic performance, like improving the directional stiffness, or aeroelastic tailoring

[55]. But the cost of this technique is very high as the aircraft structure should be redesigned

and the control effect can not be guaranteed when the aircraft encounters disturbances during
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the operation of flight. Thus in this thesis, active control system design is studied. The active

control of aeroelastic systems, sometimes known as aero-servo-elasticity, has as its objective

the modification of the aeroelastic behavior of the system by the introduction of deliberate

control forces [56]. In aero-servo-elastic model, aerodynamic, inertia and dynamic loads, as

well as control commands are balanced. Extensive research has been conducted in the past

to achieve active flutter suppression and gust alleviation, where one or more control surfaces

are actuated according to a control law which generates the control command based on the

measurements taken, by sensors, on the aircraft.

Adding the control command βc to the 3-DOF system in Chapter 3, the state-space

equation (3.18) with the control input may be modified as:

X′ = F (X, τ) +Gβc, (4.1)

where G = (0, g2, 0, g4, 0, g6, 0, 0, 0, 0, 0, 0, 0, 0)
T ; g2, g4 and g6 are control input coefficients

which are non-zero.

Define the following output variable: y = H(x) = x1, meaning that the primary control

objective is to stabilize the pitch output α. The relative degree of the above output is

calculated as follows:

y = H(x) = x1, y′ = LFH + LGH = x2,

y′′ = L2
FH + LGLFH = F2 + g2βc, (4.2)

where F2 is the second row of F (X), and Lfy(x) is a Lie derivative of y in the direction of
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f defined as [57]

Lfy(x) =
∑

i=1

∂y

∂xi
· fi, LfLgy(x) = Lg[Lfy(x)]. (4.3)

Due to the fact that g2 6= 0, we can say that the relative degree of the system is r = 2,

meaning that 2 DOFs of the system can be linearized. To accomplish the partial feedback

linearization, the state transformation X → Φ is considered, as follows:

X → Φ

φ1 = y = x1

φ2 = y′ = x2

φ3 = x3

φ4 = g2x4 − g4x2

φ5 = x5

φ6 = g6x4 − g4x6

φi = xi, i = 7, 8, 9...14. (4.4)

Note that the transformation for φ3, φ4, φ5, φ6 should satisfy Lgφi = 0, i = 3, 4, 5, 6. Thus,

the new state-space equations are obtained as below,

Φ′ = F (Φ) +
{

0 g2 0 . . . 0
}T

βc, (4.5)

where Fi(Φ), i = 2, 4, 6 are converted by Fi(X). Now, the partial feedback linearization can
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be achieved by setting the control input βc as

βc = (−F2(Φ) + υ)/g2, (4.6)

where υ is a new yet to be defined control input. The second row in equation (4.5) will then

be

φ′
2 = υ. (4.7)

By choosing a suitable υ based on any linear control design technique, we can make the

linear subsystem {φ1, φ2}
′ stable. Then, the question is whether the internal dynamics will

also behave well, i.e. whether the internal states will remain bounded, which may not be

easy to investigate. However, the output y is maintained at identically zero, i.e. all its time

derivatives are zero. So the zero-dynamics of the nonlinear system can be analyzed.

4.2 Active Controller Design and Numerical Results

Airfoil 5 in Section 3.2 is considered for the aero-servo-elastic analyses. In order to test the

closed-loop control system, the system is excited by a 1-cosine gust input with w∗
0 = 0.29

(i.e. w0 = 10 m/s) at U∗ = U∗
L. The same initial conditions as those in Section 3.2 are

also used here. A PD controller is utilized to design the closed-loop control system for the

linearized system as below:

υ = Gd(0− α) +Gv(0− α′), (4.8)

where Gd and Gv are the control gains about the generalized displacement error and velocity

error, respectively. Combining equations 4.7 and 4.8 along with the assuming α = α0e
λt, the
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Figure 4.1: Control block diagram without uncertainties.

eigenvalue equation can be obtained as

λ2 +Gvλ+Gd = 0, (4.9)

where λi = Re(λi)+jIm(λi), (i = 1, 2) being the complex eigenvalues of the linear subsystem.

Fig. 4.1 shows the control block diagram with the PD controller and the feedback lin-

earization controller. By analysing the eigenvalues of the linear subsystem {φ1, φ2}
′, multi-

ple sets of gains are tested. All the gains tested lead the poles of subsystem located at the

negative semi-plane of the complex coordinate. Through the zero dynamics analysis, the

nonlinear systems are all stable at trans-flutter speed. But it should be emphasized that

the zero dynamics stability only guarantees the local stability of the internal dynamics; for

details, refer to [57].

Three sets of time responses for the three DOFs are shown in Figs. 4.2 to 4.4. As the

convergence of all DOFs should be considered for the stability problem, the responses for

three DOFs are all presented in Chapters 4 and 5. It is found that if the imaginary parts of

the eigenvalues are non-zero, the pitching response overshoots, which also results in greater

amplitude in the other DOFs as shown in Fig. 4.2. When Gd = Gv = 0.01, the eigenvalues

are calculated as λ1 = −0.005+j0.2, λ2 = −0.005−j0.2. Although the convergence of three

DOFs is achieved, but the transient time is quite long and overshoots of pitching response are

observed. Also the control surface deflection of closed-loop is greater than that of open-loop
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with gust.

Therefore, the imaginary parts of the eigenvalues are removed. For the first set, we have

taken λ1 = −1, λ2 = −0.5, then the gains are obtained as Gd = 0.5, Gv = 1.5 in the control

law. While for the second set, λ1 = −0.2, λ2 = −0.005 (Gd = 0.001, Gv = 0.205) have

been considered. As seen from the figures, the control system via either set of gains could

effectively suppress LCOs and stabilize the system at the linear flutter speed. It is noted that

since a pitch primary control has been implemented here, the closed-loop pitching response

decays rapidly with time (compared with the other two DOFs), and its peak value may be

much smaller than that for the open-loop system under the gust load. From Fig. 4.3, it is

evident that large absolute values of real parts would result in short convergence time while

also demanding large flap deflections. As seen from Fig. 4.4, the system behaves reasonably

well: closed-loop pitching and plunging amplitudes do not exceed those for the open-loop

system under the gust load, and the control surface just overshoots a little bit to execute

control of the system.
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Figure 4.2: Open- and closed-loop pitch(left), plunge(centre), and flap(right) responses to a 1-cosine
gust with w∗

0 = 0.29 (w0 = 10 m/s) at U∗ = U∗
L with α0 = 1◦, and Gd = Gv = 0.01.
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Figure 4.3: Open- and closed-loop pitch(left), plunge(centre), and flap(right) responses to a 1-cosine
gust with w∗

0 = 0.29 (w0 = 10 m/s) at U∗ = U∗
L with α0 = 1◦, and Gd = 0.5, Gv = 1.5.
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Figure 4.4: Open- and closed-loop pitch(left), plunge(centre), and flap(right) responses to a 1-cosine
gust with w∗

0 = 0.29 (w0 = 10 m/s) at U∗ = U∗
L with α0 = 1◦, and Gd = 0.001, Gv = 0.205.

4.3 Summary

In this chapter, the partial feedback linearization was used in order to allow for the ap-

plication of a viable control system to suppress flutter and to stabilize the system. A PD

controller was designed with some reasonable choice of control parameters, and it was shown

to be quite effective. Note that this only guarantees a local asymptotic stabilization due to

the zero-dynamics and the controller is designed without considering the uncertainties of the

system. In the next chapter, an adaptive controller is designed considering some structural

uncertainties.
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Chapter 5

Adaptive Control with Parametric

Uncertainties

Considering structural uncertainties including uncertain structural stiffness and damping

coefficients, an adaptive controller is designed based on the similar design thought with that

in Chapter 4.

In this chapter, a Lyapunov function is employed to prove the stability of the system, and

the robustness of the controller is demonstrated through some numerical results considering

both stiffness and damping uncertainties.

5.1 Adaptive Controller Design

In Chapter 4, the nonlinearity in pitching was considered as a cubic form and the parameters

of nonlinearity were assumed to be known. While in real situations, it is quite difficult to

estimate the stiffness nonlinearity. Adaptive control is a approach to the control of the

system with uncertainties. The basic idea in adaptive control is to estimate the uncertain

plant parameters (or, equivalently, the corresponding controller parameters) on-line based
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on the measured system signals, and use the estimated parameters in the control input

computation. An adaptive control system can thus be regarded as a control system with

on-line parameter estimation [57]. According to [58], the continuous nonlinear stiffness of

the pitching DOF can be identified using a polynomial fit of the measured response. Thus,

in this chapter, the uncertain stiffness in pitching is estimated. The torsional spring stiffness

for the pitch DOF is modelled as a polynomial:

Nα = θ1α + θ2α
2 + θ3α

3 + · · ·+ θNα
N =

N
∑

i=1

θiα
i. (5.1)

The structural damping is also considered as uncertainties. equation (3.13) can be rewritten

as

A1α
′′ + A2β

′′ + A3ξ
′′ + A4α

′ + A5β
′ + A6ξ

′ + A7α + A8β + A9ξ + A10Nα + A11w1

+ A12w2 + A13w3 + A14w4 + A15w5 + A16w6 + A17w7 + A18w8 + A19α
′ = f(τ), (5.2)

B1α
′′ + B2β

′′ + B3ξ
′′ + B4α

′ +B5β
′ + B6ξ

′ + B7α + B8β + B9ξ +B10Nβ + B11w1

+ B12w2 + B13w3 + B14w4 + B15w5 +B16w6 +B17w7 +B18w8 +B19β
′ = g(τ), (5.3)

C1α
′′ + C2β

′′ + C3ξ
′′ + C4α

′ + C5β
′ + C6ξ

′ + C7α + C8β + C9ξ + C10Nξ + C11w1

+ C12w2 + C13w3 + C14w4 + C15w5 + C16w6 + C17w7 + C18w8 + C19ξ
′ = h(τ), (5.4)

where A19, B19 and C19 are some coefficients including uncertain damping ratios.

In Chapter 4, we show that the nonlinear aeroelastic system can be stabilized (at least
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locally) using the partial feedback linearization based on the pitching DOF. Including un-

certainty terms, equation (4.2) is rewritten as follows:

y = H(x) = x1, y′ = LFH + LGH = x2,

y′′ = L2
FH + LGLFH = F2 +

n
∑

i=1

θiRi +
3

∑

j=1

δjQj + g2βc, (5.5)

where

F2 =
14
∑

i=1

hixi, Ri = p1(
rα
U∗

)2αi, δ1 = ζα, δ2 = ζβ, δ3 = ζξ,

Q1 =
2p1(rα)

2α′

U∗
, Q2 =

2p2ω̄2(rβ)
2β′

U∗
, Q3 =

2p3ω̄1ξ
′

U∗
, (5.6)

where hi (i = 1, . . . , 14) are the coefficients of states; pj (j = 1, 2, 3) are the system parame-

ters derived from [37, equation (2)].

To achieve the partial feedback linearization, the control command βc is obtained as

βc =
1

g2
(−F2(Φ)−

N
∑

i=1

θiRi −
3

∑

j=1

δjQj + υ), (5.7)

where υ is the modified control input for the adaptive controller.

Provided that θi and δi are uncertain, and if their estimations are available, denoted by

θ̂i and δ̂j, respectively, then equation (5.7) may be rewritten using the ‘certainty equivalent’

control law as below

βc =
1

g2
(−F2(Φ)−

N
∑

i=1

θ̂iRi −
3

∑

j=1

δ̂jQj + υ), (5.8)
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and thus, the linearized sub-system will be:

φ′
1 = φ2,

φ′
2 =

N
∑

i=1

(θi − θ̂i)Ri +
3

∑

j=1

(δj − δ̂j)Qj + υ

≡ (Θ− Θ̂)TR+ (∆− ∆̂)TQ+ υ, (5.9)

in which

Θ = {θi}, Θ̂ = {θ̂i},R = {Ri(φ)},

∆ = {δj}, ∆̂ = {δ̂j},Q = {Qj(φ)}. (5.10)

A modified control input υ = −Ḡdφ1− Ḡvφ2 (Ḡd, Ḡv > 0) is utilized to make the linear sub-

system {φ1, φ2} stable. By substituting the control input υ, equation (5.9) may be rewritten

as











φ′
1

φ′
2











=







0 1

−Ḡd −Ḡv

















φ1

φ2











+











0

Θ̃TR











+











0

∆̃TQ











, (5.11)

where Θ̃ = Θ− Θ̂, ∆̃ = ∆− ∆̂ are the estimation errors.

5.2 Estimation Update Law Design

The stability and convergence of the adaptive control system can be analyzed using the

Lyapunov theory. The basic philosophy of Lyapunov’s direct method is the mathematical

extension of a fundamental physical observation: if the total energy of a mechanical (or

electrical) system is continuously dissipated, the system, whether linear or nonlinear, must
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eventually settle down to an equilibrium point. Thus, the stability of a system can be deter-

mined by examining the variation of a single scalar function, which is called the Lyapunov

function [57]. For the closed-loop dynamics equation (5.11), with {φ1, φ2}
T , Θ and ∆ as

states, the following Lyapunov function candidate is chosen

V =
1

2











φ1

φ2











T 









φ1

φ2











+
1

2
Θ̃T Θ̃ +

1

2
∆̃T ∆̃. (5.12)

The time derivative of equation (5.12) is obtained as

V ′ =











φ1

φ2











T 





0 1

−Ḡd −Ḡv

















φ1

φ2











+ φ2Θ̃
TR+ Θ̃T Θ̃′ + φ2∆̃

TQ+ ∆̃T ∆̃′. (5.13)

If the estimation parameter update laws are chosen to be as

Θ̃′ = (−Θ̂′) = −φ2R, ∆̃
′ = (−∆̂′) = −φ2Q, (5.14)

then V ′ ≤ 0, and thus, the stability of the sub-system equation (5.11) is guaranteed. Fig.

5.1 shows the control block diagram with structural uncertainties. Compared with Fig.

4.1, there is an extra module which is employed to update the estimation parameters. It

should be emphasized that the above adaptive law does not guarantee the convergence of the

estimation parameters, which are largely dependent on the richness of the excitation signal

[59].
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Figure 5.1: Control block diagram with structural uncertainties.

5.3 Closed-loop Numerical Results

It is assumed that the 2-D rigid wing is supported by a nonlinear rotational and a linear

translational spring and has a linear spring about the flap hinge (refer to Fig. 3.1). The

rest of system parameters (including the nominal values of δi) are taken from [14, Table 1].

The initial conditions are: ξ0 = 0, α0 = 1◦, β0 = 0, with their time derivatives equal to

zero. Same as Section 4.2, the system is excited by a 1-cosine gust input with w∗
0 = 0.29 (i.e.

w0 = 10 m/s) at U∗ = U∗
L. Here, the control parameters are set as Ḡd = 0.001, Ḡv = 0.205,

which behave well in Chapter 4, in the control law (eigenvalues of subsystem λ1 = −0.2, λ2 =

−0.005) for the PD controller after the application of partial feedback linearization. The true

values of {Θ} used in the simulation are taken as {Θ}T = {1 1.459 97.715 3.889 −744.612}

[60].

The adaptive controllers are developed for three different scenarios of system parameters

uncertainty: (i) stiffness coefficients are uncertain, (ii) damping coefficients are uncertain,

and (iii) both stiffness and damping coefficients are uncertain. The results are shown, re-

spectively, in Figs. 5.2 to 5.4. These figures confirm that the adaptive control system

could effectively suppress LCOs and stabilize the system at the linear flutter speed for all

three scenarios. It is noted that since a pitch primary control has been implemented here,

the closed-loop pitching response decays rapidly with time (compared with the other two
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Figure 5.2: Pitch (left), plunge (centre), and flap (right) responses of open- and closed-loop with
different initial estimations of stiffness parameters to a 1-cosine gust with w∗

0 = 0.29 (w0 = 10 m/s)
at U∗ = U∗

L with α0 = 1◦ and β0 = ξ0 = α′
0 = β′

0 = ξ′0 = 0.

DOFs), and its peak value may be much smaller than that for the open-loop system under

the gust load.

Fig. 5.2 shows the open-loop results (i.e. time responses) along with closed-loop results

for the first scenario of system parameters uncertainty. Three sets of initial estimation of

parameters are examined, where as seen from the figure, with either set, the control system

is capable of suppressing the LCO at the linear flutter speed. Since here the pitching DOF

is taken as the primary control output, the controller performs very well in damping pitch-

ing motion, where virtually no overshoot is observed. Surprisingly, when using an initial

estimation with smaller deviation from the true values (used for open-loop solutions), the

convergence time for all DOFs increases. This, however, may not be always true, as can be

verified, for example, from Fig. 5.3 which shows the results for the second uncertainty sce-

nario – damping uncertainty. As seen from the figure, with the initial estimation parameters

∆̂T = {0.05 0.05 0.05}, which is closer to the true values, the controller shows superiority in

stabilizing LCOs.

Fig. 5.4 shows the results for the third scenario where both stiffness and damping param-

eters are considered as uncertain. Here, Θ̂T = {0.1 0.1 0.1 0.1 0.1} and ∆̂T = {0.25 0.25 0.25}

are taken as the initial estimation parameters. As seen from the figure, LCO suppression

is achieved after the airfoil undergoes a few cycles of oscillation. The dimensionless time

required for the response to reach the desired value (zero, here) is about 400 (≈ 1.46 sec).
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Figure 5.3: Pitch (left), plunge (centre), and flap (right) responses of open- and closed-loop with
different initial estimations of damping parameters to a 1-cosine gust with w∗

0 = 0.29 (w0 = 10
m/s) at U∗ = U∗

L with α0 = 1◦ and β0 = ξ0 = α′
0 = β′

0 = ξ′0 = 0.
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Figure 5.4: Pitch (left), plunge (centre), and flap (right) responses of open- and closed-loop with
combined initial estimations of both stiffness and damping parameters to a 1-cosine gust with
w∗
0 = 0.29 (w0 = 10 m/s) at U∗ = U∗

L with α0 = 1◦ and β0 = ξ0 = α′
0 = β′

0 = ξ′0 = 0.

Considering the fact that the dimensionless loading time of the 1-cosine gust is 100, the

adaptive control system designed in this chapter is quite effective.

5.4 Summary

In this chapter, after introducing structural uncertainties, an adaptive control system was

designed for the 2-D wing. The parameter update law was proposed to estimate the unknown

parameters and a Lyapunov function was constructed and utilized to prove the stability

of the subsystem. Numerical results show that the adaptive control system is effective

in suppressing limited-cycle oscillations for different scenarios of structural stiffness and

damping uncertainties. The controller was demonstrated to be quite robust when considering
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different initial estimation parameters for the simulations. Even with both uncertainties, the

adaptive controller was capable of stabilizing the system from LCO effectively.
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Chapter 6

Conclusions and Future Works

In this chapter, the key findings of the present thesis are summarized, and then, some possible

extensions and future works are mentioned.

6.1 Conclusions

In this thesis, the typical dynamics of a structurally-nonlinear airfoil in incompressible flow

and the coupling effects of a gust input with structural nonlinearities were presented. The

suppression of LCO was investigated considering some structural uncertainties.

For the 2-DOF model, two types of nonlinearities including free-play and hysteresis in

the pitch DOF were studied. In addition, the response of these systems to sharp-edged and

1-cosine gust profiles were examined. The numerical results presented in this thesis showed

that structural nonlinearities may have significant effects on the dynamical behavior of the

system. In particular, for the airfoil with the free-play nonlinearity, it was found that the

stability may be lost through a Hopf bifurcation at a critical flow velocity significantly lower

than that for the linear system. The post-critical dynamics of the system was found to

be very complex, where motion may become chaotic through period-doubling bifurcations.

Classical period-1 and period-2 motions were observed in plunge DOF, while period-1 and
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period-2 with harmonics motions were observed in pitch DOF, which was more complicated.

When there was no gust input, a complex but point-symmetric basin of attraction was found.

However, when the airfoil was excited by the gust, the basin of attraction became relatively

deterministic, where the region of stability became more confined to one side of the plot

(α0 > 0 when the gust was in the positive direction and vice versa). The probability of the

occurrence of LCO was also found to increase as the gust became stronger.

For the airfoil with the hysteresis nonlinearity, the dynamics was found to be relatively

simple. The airfoil remained stable for a wide range of flow velocities but lost the stability

via a Hopf bifurcation at a critical flow velocity comparable to the linear flutter speed. No

secondary bifurcations were observed, and the amplitude of the LCO emanating from the

Hopf bifurcation increased sharply with the flow velocity. It was found from the basin of

attraction plots that there were two finite bands between regions of LCO, in which the

stability was guaranteed independently from the value of the initial pitch angle.

From the results presented in the modelling part, it is concluded that studying the effects

of time-dependent excitation due to atmospheric turbulence on the dynamics of nonlinear

lifting surfaces and devising methods to mitigate those effects are essential for the design and

operation of aircraft. These studies are particularly crucial for the design of new generation

of aircraft, manned or unmanned, which are likely to be lighter, faster, more flexible, and

more agile. A good example is in the application of Urban Air Mobility (UAM). In the

complex urban environment, the flying vehicles may encounter gusts or turbulences from

different directions. Besides, the effects of these disturbances are likely to be significant as

the airflow velocity around the vehicles change obviously compared to the situation where

vehicles fly at a high speed in the stratosphere. For both safety of the flight and comfort

level of passengers, the coupling effects of structural nonlinearities and gusts demonstrated

in this thesis should be considered.
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For an airfoil with a control surface, free-play about the flap hinge may cause the system

to become unstable at a flow velocity well below the flutter speed of the linear system,

U∗
L. The flat spot nonlinearity about the flap hinge, in addition to LCOs, may also lead to

complex motion of airfoil, such as quasi-periodic and chaotic-like. Moreover, it was found

that the partial feedback linearization may be used in order to allow for application of

a viable control system to suppress flutter and to decrease the amplitude of LCO. This,

however, guaranteed only a local asymptotic stabilization due to the zero-dynamics. After

introducing structural uncertainties, an adaptive control system was designed for the wing.

The estimate law was updated and a Lyapunov function was constructed and utilized to

prove the stability of the subsystem. Numerical results showed that the adaptive control

system was effective in suppressing LCOs for different scenarios of structural stiffness and

damping uncertainties. The robustness of controller was examined when considering different

initial estimation parameters. Considering both uncertainties, the controller was capable of

suppressing LCO with initial estimation of great deviation. Also, it was found that the

convergence of the estimation parameters was not necessary for the stability of the system.

From the results presented in the control part, it is concluded that the effective active

controller may expand the flight envelope and suppress the oscillation quickly. On the

premise that some structural parameters are uncertain, the control of oscillation is still

achieved effectively, which makes the control system designed in this thesis feasible in the

reality. Due to the suppression of oscillation, the control system may prevent the airfoil from

fatigue, which is pretty common in the aircraft structure.

6.2 Future Works

• In this study, the indicial aerodynamic model based on Wagner’s function and gust

model based on Küssner function are employed to make up for the whole aeroelastic
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system in time domain. Two deterministic gust models are explored in this study;

however, in reality atmospheric turbulence may be highly stochastic. If, instead, high-

fidelity CFD models are utilized to generate aerodynamic forces and moments, includ-

ing those due to the stochastic gust excitation, the numerical results on the interactions

between the structure and air flow are expected to be more accurate. This is left as a

future extension of the present work.

• The local stability of the nonlinear system has been achieved based on the assumption

of zero-dynamics. For the next step, the achievement of global stability will be pursued.

Furthermore, an effective adaptive controller of a system with uncertain structural

stiffness and damping coefficients has been designed. How to achieve the adaptive

control of a system with more uncertainties, even the whole system being a ‘black

box’, will also be a future task.
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