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Abstract 
 

 

Automatic Bug Triaging Techniques Using Machine Learning and Stack Traces  

 

Korosh Koochekian Sabor, Ph.D. 
 

Concordia University, 2019 
 

 

When a software system crashes, users have the option to report the crash using automated bug 

tracking systems. These tools capture software crash and failure data (e.g., stack traces, memory 

dumps, etc.) from end-users. These data are sent in the form of bug (crash) reports to the software 

development teams to uncover the causes of the crash and provide adequate fixes. The reports are 

first assessed (usually in a semi-automatic way) by a group of software analysts, known as triagers. 

Triagers assign priority to the bugs and redirect them to the software development teams in order 

to provide fixes.  

The triaging process, however, is usually very challenging. The problem is that many of these 

reports are caused by similar faults. Studies have shown that one way to improve the bug triaging 

process is to detect automatically duplicate (or similar) reports. This way, triagers would not need 

to spend time on reports caused by faults that have already been handled. Another issue is related 

to the prioritization of bug reports. Triagers often rely on the information provided by the 

customers (the report submitters) to prioritize bug reports. However, this task can be quite tedious 

and requires tool support. Next, triagers route the bug report to the responsible development team 

based on the subsystem, which caused the crash. Since having knowledge of all the subsystems of 

an ever-evolving industrial system is impractical, having a tool to automatically identify defective 

subsystems can significantly reduce the manual bug triaging effort. 
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The main goal of this research is to investigate techniques and tools to help triagers process bug 

reports. We start by studying the effect of the presence of stack traces in analyzing bug reports. 

Next, we present a framework to help triagers in each step of the bug triaging process. We propose 

a new and scalable method to automatically detect duplicate bug reports using stack traces and 

bug report categorical features. We then propose a novel approach for predicting bug severity using 

stack traces and categorical features, and finally, we discuss a new method for predicting faulty 

product and component fields of bug reports. 

We evaluate the effectiveness of our techniques using bug reports from two large open-source 

systems. Our results show that stack traces and machine learning methods can be used to automate 

the bug triaging process, and hence increase the productivity of bug triagers, while reducing costs 

and efforts associated with manual triaging of bug reports. 
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Chapter 1 

 Introduction 

Software systems play a critical role in almost every industry sector, including Telecom, finance, public 

safety, education, etc. Failure of these systems may have important economic impacts. For example, a 

study showed that software failures cost the U.S. economy $59 billion every year [N2], which amounts to 

0.6% of the gross domestic product of the United States [N2].  

The problem is that it is almost impossible to guarantee the absence of bugs in released systems. This is 

due to many factors. First, exhaustive testing is known to be impossible. Second, the pressure to release 

new products on the market as quickly as possible often comes at the price of quality. In addition, 

continuous maintenance activities are prone to the introduction of new bugs in the system. As a result, 

many software systems continue to crash during operation. 

When a system crashes, users have the option to report the crash using automated bug tracking systems 

such as the Windows Error Reporting tool1, the Mozilla  crash  reporting  system2, and Ubuntu’s Apport  

crash  reporting tool3. These tools capture software crash and failure data (e.g., stack traces, memory 

dumps, etc.) from end-users.  

This data is sent in the form of bug (crash) reports to the software development teams to uncover the 

causes of the crash and provide adequate fixes. The reports are first assessed (usually in a semi-automatic 

way) by triagers. Triagers route bug reports to the software development teams in order to provide fixes. 

The manual triaging process, however, is usually very challenging since there are just many bug reports 

that are submitted every day. For example, on April 24, 2002, Eclipse users have submitted over 107 bug 

                                                                 
1http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx 
2http://crash-stats.mozilla.com 
3https://wiki.ubuntu.com/Apport 
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reports. In the Gnome bug tracking system, over 108 bug reports were submitted by users on June 22, 

2000. 

When a bug is reported to the bug tracking system, it goes through a triaging process. First, triagers needs 

to examine if the incoming bug report is duplicate of previous bug reports, i.e., caused by a similar fault. 

Studies have shown that one way to improve the bug triaging process is to automatically detect duplicate 

bug reports [LM13, BPZK08a]. If a bug report is deemed to be a duplicate of an existing one, then triagers 

can mark it as duplicate and stop the process, saving time and effort. 

Next, since the available resources for the development and maintenance of software systems are 

limited, prioritizing bug reports helps triagers identify the bugs that need to be fixed first based on the 

availability of resources. Triagers often rely on the information provided by the users (the report 

submitters) to prioritize the bug reports. However, since users are usually not familiar with the software 

system, the information provided by them could be inaccurate. Studies have shown that the severity of 

the bugs can be predicted automatically [LDGG10, LDSV11], which helps triagers to prioritize the bugs 

and hence speed up the bug handling process. 

Triagers route bug reports that require fixes to the development team. Since each development team is 

usually focused on the development of a specific product and component of the software system, triagers 

use the faulty product and component fields of a bug report to identify the development team that can 

provide the fix.  Because users (bug report submitters) are usually not familiar with the architecture of 

the software system, they may choose incorrect faulty products and components when reporting bugs, 

causing bug reports to be routed to the incorrect development team, which often delays the fixing time 

of the bugs.  Triagers need to adjust the faulty product and component fields of bug reports based on 

other information provided by the user to avoid assignment of bug reports to incorrect teams. Based on 

the adjusted faulty product and component fields, they can then decide which development team has 

the expertise to deal with the bug report. Studies (e.g., [S12]) have shown that automatic prediction of 
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the correct component and product fields of bug reports can improve the bug handling process 

significantly by routing the bug report to the correct development team.  

Figure 1 shows an overview of the bug triaging framework that illustrates the three main activities of the 

triaging teams, namely, detection of duplicate bug reports, determination of bug report severity, and 

routing of bug reports to developers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Bug Handling Process 
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1.1. Terminology 

In this Section, we review the terminologies used to characterize bugs, faults, errors, and crashes.  

Software Fault (Bug, Defect): A software fault is a static defect caused by a human error. A fault can be 

considered as a design or a programming mistake [AO08]. 

Software Error:  A software error is an incorrect internal state of software caused by one or more 

software faults [AO08]. This incorrect internal state might or might not manifest itself as an external 

behaviour. 

Software Failure: Many faults may stay dormant and never manifest themselves. Software failure is 

defined as any incorrect external behaviour of the software system, which is in contrast to the functional 

or non-functional requirements of the software. Failure is an external manifestation of an error caused 

by some faults [AO08]. 

Software Crash: Failure is defined as an unexpected output according to the software requirement. One 

of the unexpected outputs can be that the software stops working because of some faults, which is 

defined as a software crash. 

Bug report: A bug report is a report created by a user when facing a crash in the software system. A bug 

report can also be submitted automatically by a crash reporting tool. We use bug report and crash report 

terms interchangeably in this thesis.  

Duplicate Bug reports: Duplicate bug reports are bug reports that have the same underlying fault 

[RAN07]. 

1.2. Research Hypothesis 

This thesis aims to provide an efficient and accurate automatic bug triaging system, which can be 

implemented as part of a bug tracking framework, to reduce the overhead of manual bug triaging process 

significantly. Our system offers the following capabilities: duplicate bug reports detection, automatic 

prediction of severity of bugs, and automatic prediction of faulty product and component fields of bug 
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reports. To this end, we leverage stack traces and categorical features of bug reports, and machine 

learning algorithms.   

The thesis statement is:  

Stack traces and categorical features of bug reports contain valuable information that can be used to 

automatically detect duplicate bug reports, predict the severity of bugs, and predict faulty product and 

component fields of bug reports. 

 

 

 

 

 

 

 

Figure 2 An overview of the automatic bug triaging using stack traces 

1.3. Thesis Contributions 

An overview of the contributions of this thesis is shown in Figure 2.  

 We study the usefulness of stack traces in the bug triaging process. This study sheds light on how 

the presence of stack traces improves the bug triaging process. 

 We propose an approach for detecting duplicate bug reports. The approach leverages the concept 

of trace abstraction to facilitate the detection of duplicate bug reports. 

 We propose an approach for predicting the severity of bugs using stack traces and the 

combination of stack traces and categorical features. 

 We propose an approach for predicting product and component fields of bug reports using stack 

traces and categorical features. 
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1.3.1. Chapter 2: Background and Related Work 

In Chapter 2, we present background information on the content of bug reports. Next, we focus on related 

studies in the bug triaging.  We group these studies into four pillars: 

 Empirical studies on bug report information. Prior studies in this aspect explore the factors that 

impact the quality of bug reports. These studies quantify the importance of each type of 

information provided in the bug reports by identifying the most important information and 

providing guidelines on how providing those sets of information could facilitate the bug triaging 

process. 

 Detecting duplicate bug reports. Duplicate bug report detection is a very important step in bug 

triaging. Duplicate bug reports, if go undetected, impose huge overhead on the bug triaging 

process. However, if detected properly, duplicate bug reports can provide additional information 

to developers to fix the bugs. Studies on duplicate bug report detection mainly focus on providing 

a set of potential duplicate bug reports for each incoming bug report [LM13]. 

 Predicting the severity of bugs. Users chose a severity for each bug report submitted to the bug 

tracking system. Severity prediction studies aim to automatically predict the severity of bugs to 

minimize misinterpretation of bug report severity labels reported by users and help triagers to 

optimize the bug resolution process by accurate prioritization of bug reports. 

 Predicting faulty product and component fields of bug reports. Users chose the faulty product 

and component when reporting bug reports. Many studies focused on proposing techniques to 

automatically predict the faulty product and component fields of bug reports. These studies use 

the history of past bug reports to predict potential faulty product and component fields of the 

new bug reports. 

1.3.2. Chapter 3: Data Preparation 

In Chapter 3, we present two publicly available datasets that are used to evaluate approaches proposed 

in this thesis. Both datasets were subject of mining challenges in Mining Software Repositories 

conference. 
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1.3.3. Chapter 4: An Empirical Study on the Effectiveness of Stack traces 

Stack traces are shown to be one of the most reliable sources of information used by developers to fix 

bugs [BJSWPZ08]. In chapter 4, we empirically study the effect of the presence of stack traces in the bug 

triaging process. The outcome of the study shows that stack traces improve the bug triaging process. The 

study shows that there is a strong potential to use the content of stack traces to automate the bug triaging 

process. 

1.3.4. Chapter 5: Detecting Duplicate Bug Reports 

In this chapter, we propose a feature reduction technique based on the trace abstraction concept, which 

reduces the processing overhead of detecting duplicate bug reports, while providing good accuracy. 

1.3.5. Chapter 6: Predicting Severity of Bugs 

Various techniques have been introduced to predict the severity of bugs using bug report descriptions. 

Following the promising result of stack traces in the improvement of the bug triaging process, we propose 

an approach, which predicts the severity of bugs using stack traces. We also show that using categorical 

features in addition to stack traces further improves the severity prediction accuracy. 

1.3.6. Chapter 7: Predicting Faulty Product and Component Fields of Bug Reports  

Various methods in the literature have been proposed to predict faulty product and component fields of 

bug reports using bug report descriptions. In Chapter 7, we focus on using stack traces and categorical 

features in predicting faulty product and component fields of bug reports. We show that stack traces and 

categorical features can predict faulty product and component fields with higher accuracy than bug 

report descriptions. 

1.3.7. Chapter 8: Conclusion and future work  

In chapter 8, in the first section, we focus on thesis findings. Next, we present the thesis limitations and 

provide a list of future research opportunities. 
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Chapter 2 

 Background and Related Work 

In this chapter, we elaborate on the information which the bug report provides to the triagers. Next, we 

explain related work on the empirical study of the effectiveness of stack traces in bug triaging, duplicate 

bug report detection, bug severity prediction, and predicting faulty product and component fields of bug 

reports. 

2.1. Background 

2.1.1. Bug Report Description 

Bug report description is mainly used to explain the defective behaviour of the software system. A good 

description should provide enough information to guide developers in understanding what the user or 

tester has observed during the crash. Bug report descriptions are usually verbose. An example of a             

well-written description is "Download fails on Customer Report page when a user clicks on the download 

button” meanwhile, an example of an inefficient description is "Download does not work", as it does not 

provide details about when or how this failure occurs. The quality of a bug report description depends 

on who is writing this description and hence it is subjective.  

2.1.2. Stack Trace 

A stack trace is a sequence of function calls that ideally lists all function calls from the moment a software 

program starts execution to the crash point. In some cases, the stack trace is trimmed to contain a 

window of functions before the crash. An example of a stack trace is shown in Figure 3. The stack trace 

in Figure 3 is taken from the Eclipse bug repository. It represents the stack trace of Bug report 38601. The 

bug was caused by a failure of checking for a null pointer in the search for a method reference. 
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Figure 3 The stack trace for bug report 38601 from Eclipse bug repository 

2.1.3. Categorical Information 

In addition to the description and stack trace, users must choose other categorical fields, which further 

help developers to fix the bug. This categorical information includes the product, component, version, 

operating system, and severity of the bug. Each software application is composed of several products, 

and each product is composed of several components. Users should choose the product and the 

component that they think the bug is related to, when reporting a bug. Version indicates the version of 

the software that the user was using when the crash happened. Operating system shows the name and 

release number of the operating system in which the software was running on when the crash happened. 

Also, severity shows how much a bug affects normal execution of program [LDGG10]. Figure 4 shows the 

information which user needs to provide when reporting a bug. 

 

Figure 4 creating a new bug report in Eclipse Bugzilla 

5- org.eclipse.jdt.internal.corext.util.Strings.convertIntoLines() 

4- org.eclipse.jdt.internal.ui.text.java.hover.JavaSourceHover.getHoverInfo() 

3-  org.eclipse.jdt.internal.ui.text.java.hover.AbstractJavaEditorTextHover.getHoverInfo() 

2- org.eclipse.jdt.internal.ui.text.java.hover.JavaEditorTextHoverProxy.getHoverInfo() 

1- org.eclipse.jface.text.TextViewerHoverManager.run() 
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2.2. Related Work 

2.2.1. Usefulness of Stack Traces 

One of the earliest studies that showed the usefulness of stack traces is conducted by                           

Battenberg et al. [BJSWPZ08].  They studied the quality of bug reports and showed that there is an 

important gap between what users provide as input and what developers need to fix a bug. They argued 

that because users do not usually have technical knowledge about the system, it is very difficult for them 

to provide useful information to developers. The authors observed that developers consider stack traces 

to be one of the most useful information to fix a bug. 

Schroter et al. [SBP10] studied the use of stack traces by developers in Eclipse projects. More precisely, 

they answered four research questions: 1. Are bugs fixed in the methods in stack traces? 2. How far down 

the stack traces are bugs fixed? 3. Are two stack traces better than one? 4. Do stack traces help speeding 

up debugging? They used InfoZilla [SBP10] to extract stack traces from Eclipse bug reports for the period 

of 2001 to 2006. They also mined the Eclipse version repository to extract the relation between bugs and 

the source code fixes. They showed that 60% of bug reports with stack trace were fixed in one of the 

stack trace methods. They concluded that developers favour stack traces since stack traces can help them 

find the fix location easier. They studied the number of methods in stack traces and observed that it 

ranges from 1 to 1024 methods with a median of 25 methods. They showed that 40% of the bugs are 

fixed by a patch in the first method of stack traces, 80% of the bugs are fixed by a patch in one of the first 

six methods of stack traces, and 90% of the bugs are fixed by a patch in one of the first ten methods of 

stack traces. They also showed that in the presence of multiple stack traces, 70% of the bugs are fixed in 

one of the methods in the first stack trace, and 90% of the bugs are fixed using one of the methods in the 

first three stack traces. They also showed that bug reports with stack traces are fixed sooner than bug 

reports without stack traces. They explained that they hope their study emphasizes the importance of 

stack traces and encourages users to provide stack traces in bug reports. They also suggested bug tracking 

tool developers provide more support for capturing stack traces in their tools. 
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Another study was conducted by Krikke [K12], where the author studied the association between the 

severity field of Eclipse bug reports and the presence of stack traces. He also studied the association 

between the time to fix a bug and the presence of stack traces in bug reports. He showed that there is a 

strong statistical association between severity and the presence of stack traces in the bug reports.  He 

showed that Eclipse bug reports, which have stack traces, are fixed sooner [K12]. 

The effectiveness of four quality indicators for predicting the severity of bugs is studied by                               

Yang et al. [YCKY14]. They categorized Blocker, Major and Critical bug severities as severe, and Minor and 

Trivial bug severities as non-severe. They considered stack traces, bug report description length, 

attachment and step to reproduce as four quality indicators of bug reports in their study. They used the 

Eclipse dataset to apply their experiments. In the first round of experiments, they only used the presence 

of those quality indicators, whereas in the second round of experiments, they considered the quantitative 

value of those indicators too. The quantitate value of each quality indicator is calculated differently. For 

stack trace, they used the number of functions. For attachment, they considered the number of 

attachments. For report length, they used the quantitative value of report length, and for step to 

reproduce, they used the number of steps. They concluded that among those four quality indicators, the 

stack trace is the best indicator of bug severity. 

Stack traces have also been  shown to be useful in other bug processing activities. For example,  Nayrolles 

et al. [NHTL15, NHTL16] showed that stack traces can be used to reproduce a bug in Java system, which 

in turn can speed up the bug fixing process. 

2.2.2. Detection of Duplicate Bug Reports 

One of the key tasks of triagers is to determine whether the reported bug has been handled before or 

not. If it is, then it should be marked as duplicate. While some studies such as the one by                                   

Jalbert et al. [JW08] have been conducted on the premise that duplicate bug reports should be ignored 

during bug triaging, other studies such as the one by Bettenburg et al. [BPZK08a] believe that duplicate 
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reports provide additional information that can be used by developers to solve the problem faster. In 

both cases, the detection of duplicate bug reports is useful and needed. 

Techniques for automatic detection of duplicate bug reports (e.g., [LM13, RAN07, JW08]) build a model 

from historical bug reports and detect duplicate bug reports using machine learning techniques. These 

techniques can be grouped into two main categories based on the features they use to characterize bug 

reports [BJSWPZ08]. The first category uses the bug report description provided by the submitter. While 

bug report descriptions can be useful, they remain informal and not quite reliable [RAN07]. The second 

category consists of the techniques that use stack traces (also called crash traces). Stack traces have 

shown to be more reliable than bug report descriptions [LM13]. In addition, as noted by                                   

Adrian et al. [SBP10], bug reports that have stack traces tend to be fixed sooner.  

2.2.2.1. Detection of Duplicate Bug Reports Using Bug Report Description 

Techniques that use descriptions to detect duplicate bug reports use words in the description (called 

terms) as features. They often resort to the use of term frequency and inverse document frequency                    

(TF-IDF) [LM13] to weigh the feature vector constructed by these terms. TF-IDF is a weighting scheme in 

which, given all terms in a corpus of bug descriptions, it weighs each feature or term by its frequency of 

appearance in one bug description normalized by its frequency of appearance in the whole corpus 

[LM13]. 

Runeson et al.  [RAN07] used term frequency applied to the description of bug reports in the bug 

repository of the Sony Ericsson Company. They used each word in the description as a feature and 

represented each bug report as a vector. Before calculating the similarity between bug report 

descriptions, they went through some preprocessing steps. These steps include tokenization, stemming, 

and stop-words removal. To weigh the features, they used the frequency of each word. They defined an 

accuracy metric for detecting duplicate bug reports called recall rate. Recall rate is defined as the 

percentage of duplicate bug reports from the whole duplicate bug reports set in the system for which 
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their duplicate bug reports were found in the suggested list, provided as the result of the approach. If we 

assume that the total number of bug reports is T and that the total number of duplicate bug reports for 

which the duplicates are in the suggested list provided by the approach as D, then the recall rate is 

calculated as: 

Recall Rate =  
𝐷

𝑇
   (1) 

The authors used various similarity metrics and concluded that different similarity metrics do not change 

the recall rate significantly.  Using the bug report descriptions, they reached a recall rate of up to 42% for 

detecting duplicate bug reports. 

Jalbert et al. [JW08] proposed a linear model to eliminate duplicate bug reports that reach developers. 

The authors used textual description, categorical information, and clustering information of bug reports 

as features extracted from the Mozilla project bug repository. They used term frequency to weigh the 

feature vector. They trained the model to obtain a threshold based on triage and miss effort and used 

the threshold to eliminate duplicate bug reports. Using the trained model, 10% of duplicate bug reports 

were eliminated before reaching the developers. They used a leave-one-out approach to show the 

importance of each feature. They concluded that bug reports titles and descriptions are the most 

important features to measure the similarity of bug reports. 

Duplicate bug reports are not always unwanted since they can provide additional insight into the 

underlying fault in the software system [BPZK08a]. Thus, detecting duplicate bug reports is not about 

eliminating them, but to provide additional information about the bugs. Bettenburg et al. [BPZK08a] 

showed that the developer's performance in fixing bugs could increase if duplicate bug reports are 

included.  

In most bug tracking systems, when a bug is reported, in addition to the textual description of the bug 

report, the title or a summary of the bug is usually provided. Considering that the title of the bug report 

usually contains keywords that could have more discriminative power than terms in the description,          
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Sun et al. [SLWJK10] used a combination of features extracted from the title and the description to train 

an SVM model to detect duplicate bug reports. The features are 1-Gram and 2-Grams of terms extracted 

from the summary, the description or both. Then, the inverse document frequency (IDF) is used to weigh 

the features. The authors showed that the combination of features extracted from both the title and the 

description of bug reports improves the recall rate by 17%-31% for OpenOffice, 22%-26% for Firefox and 

35-43% for Eclipse.  

Sun et al. [SLKJ11] showed that having a linear combination of categorical features and textual description 

features can increase the duplicate bug report detection accuracy of the model compared to models that 

use only bug report descriptions. The authors also proposed to use BM25 as opposed to TF-IDF to improve 

the accuracy of the approach. BM25 is a parametrized version of TF-IDF. The parameters in BM25 can be 

optimized using optimization methods such as gradient descent. BM25 is designed for calculating the 

similarity of a query to a corpus of documents. Using the optimized duplicate detection method, the 

authors achieved a recall rate of 45% for OpenOffice, 46% for Mozilla and 53% for Eclipse. 

Sureka et al. [SJ10] used a Character-Gram based model instead of a word-based model to detect 

duplicate bug reports using the description. The advantage of using a character-based N-gram is that it 

can be used as a free-form text duplicate report detector. This means that the proposed approach is 

language independent. In addition, character-based N-Gram uncovers key linguistic features of the bug 

report description. It can handle misspelled words, has the ability to match term variations to a common 

root and the ability to match hyphenated phrases.  

Topic modelling techniques, when applied to a corpus of bug report descriptions, can extract existing 

topics. Each topic in the context of bug report descriptions can reflect a specific functionality of the 

system. Nguyen et al. [NNNLS12] proposed DBTM (Duplicate Bug Report Topic Model) that uses topic 

modelling combined with information retrieval techniques to detect duplicate reports. In DBTM, LDA 

(Latent Dirichlet Allocation) topic modelling technique and BM25 were parameterized and combined. 
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The authors optimized the parameter using linear regression. The result shows a 20% improvement over 

stand-alone informational retrieval techniques.  

Alipour et al. [AHS13] used software architecture knowledge to improve duplicate bug reports detection 

accuracy. They used a word list that is extracted from the software architecture specification as a new 

feature. Using this contextual information, they improved the accuracy of detecting duplicate bug reports 

by 12.11%.  

2.2.2.2. Detection of Duplicate Bug Reports Using Stack Traces 

In addition to bug reports descriptions, stack traces have been used to detect duplicate bug reports. A 

stack trace ideally consists of a history of function calls starting from the bottom of the stack trace having 

the first function executed to the top of the stack trace where the last function is executed when the 

crash happened. This history of function calls gives the triagers and developers clues on which execution 

path the program went through before it crashed.  

Schoter et al. [SBP10] investigated the role of stack traces in helping developers to fix bugs. The authors 

showed that bugs that are reported with stack traces get fixed sooner. Brodie et al. [BMLSM+05] 

conducted studies on duplicate bug report detection using stack traces. The authors used stack trace 

matching algorithms to calculate similarity among stack traces of various bug reports. The authors pruned 

stack traces before applying stack trace matching algorithms. The same concept of stop-word removal 

that is implemented in duplicate bug report detection using bug report descriptions can be used to prune 

stack traces. In stack traces, stop-words are functions that are always called when the software starts 

(entry-level functions), functions that are called when an error happens (programming language error 

handling functions), and recursive functions.  

When comparing two functions from different stack traces, it is important to consider their position in 

the stack trace. The functions that are near to the top of a stack trace are more likely to be the cause of 

failure. Brodie et al. [BMLSM+05] applied the Needleman–Wunsch algorithm (inspired from 
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bioinformatics) to compare the sequence of functions in stack traces. They showed that comparing each 

existing stack trace with all the other ones is not possible due to the high computational overhead. They 

used a B+ tree by hashing top J functions to overcome this problem. They explained that if the top four 

functions are not the same, the probability of two stack traces being related to the same underlying fault 

is small. 

Modani et al. [MGLMM07] pruned functions from stack traces by removing recursive functions using a 

function frequency algorithm. The authors used inverted indexing to overcome the problem of high 

computational overhead when comparing stack traces. They compared three different approaches, 

including their own, which was similar in principle to the one proposed by Brodie et al. [BMLSM+05], and 

an approach based on a prefix matching algorithm. The authors showed that the prefix matching 

algorithm has the best accuracy. They also showed that eliminating uninformative functions increases 

the accuracy of detecting stack traces that are related to the same underlying fault. 

Bugzilla bug tracking system does not have a separate field to store stack traces. Eclipse and Gnome use 

the Bugzilla bug tracking system. In such systems, users copy the content of stack traces into the bug 

report description field. Structural information stored in Eclipse Bugzilla is not limited to stack traces but 

could be patches, source codes or enumerations [BPZK08b]. Bettenburg et al. [BPZK08b] developed a tool 

called InfoZilla to extract structured information from the bug report descriptions of Eclipse. The authors 

showed that the accuracy of extracting structural information is 97% in Bugzilla.  

Kim et al. [KZN11] suggested creating buckets (clusters) of duplicate bug reports. Each bucket was 

generalized using a crash graph, which is based on the function calls of all stack traces in a bucket. Having 

a threshold of 97% similarity, the precision and recall of detecting duplicate bug reports are 68% and 

64%, respectively. However, considering that Lerch et al. [LM13] showed that mostly duplicate bug report 

groups are buckets of size two, the applicability of the proposed approach is expected to be lower for 

Eclipse bug repository. In practice, when a new bug report is reported, it has only one duplicate bug 
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report in the dataset, and no generalization can be made on that bug report alone based on crash graph 

theory. On the other hand, this approach only works when a bucketing system exists in the bug tracking 

system, which is not the case in many bug tracking systems such as Bugzilla. 

Dang et al. [DWZZN12] proposed a method for calculating call stack similarity called the                           

position-dependent model (PDM). The position-dependent model considers two main metrics, namely 

the distance to the top frame, and the alignment offset to calculate the similarity among stack traces. 

PDM separates all shared function sequences between two call stacks, and then for each, it calculates 

the distance to the top and the alignment offset. The evaluation that has been done on five Microsoft 

products showed that comparing diverse approaches including WER, ReBucketing, Prefix match and 

Crash Graphs while using buckets created by Microsoft developers as the ground truth, PDM has slightly 

worse purity than WER but better inverse purity and F-measure on all of the Microsoft products. When 

PDM was used for bucketing bug reports, the total number of buckets has been reduced by 25%. 

Le et al. [LK12], argued against placing only duplicate bug reports in a group. They conducted a study on 

five Mozilla applications and showed that a good grouping of bug reports should consider reports of bugs 

that are caused by the same root causes and those that are dependent on these causes. The rationale is 

that bugs that can be resolved by the same group of developers should be placed in the same group.  

Wang et al. [WKZ13] proposed to use crash correlation to group reports of bugs with the related causes 

in the same crash group. A crash correlation group is defined as a diverse group of crash types that are 

related to the same faults. Crash types are created by collecting crashes with similar stack traces.  Studies 

on Firefox Bugzilla and Eclipse Bugzilla involving developers showed that using only crash type signatures 

(the common top frame functions among all the stack traces in a crash type), one can identify the crash 

correlation groups with an acceptable level of precision and recall. To push the idea to a next step, they 

showed that not only comparing crash types signatures but also comparing fully qualified file names in 
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the top frame of crash types or the presence of a frequent close ordered subset of frames between crash 

types can be used to create crash correlation groups.  

Lerch et al. [LM13] applied TF-IDF to the corpus of stack traces considering each frame containing the 

function name as a feature. Each feature was weighed using its frequency in the current stack trace and 

normalized by its frequency in the whole corpus (containing all stack traces). The authors used Eclipse 

bug reports submitted between 2001 and 2008 for their experiments. Their study showed that the 

majority of duplicate bug reports sets contain only two bug reports. In fact, the number of groups of 

duplicate bug reports containing only two bug reports is ten times more than the total number of groups 

of bug reports having more than two bug reports. 

Ebrahimi et al. [EH15, EIHH16, ETIHK19] proposed several approaches that leverage the use of 

generalizable automata and Hidden Markov Models (HMM) and stack traces for the detection of 

duplicate bug reports. They showed that stack traces can be modeled as stochastic processes, which are 

used as a prediction model. Their models reach an accuracy of up to 90% using a ranked list of suggested 

bug reports. 

2.2.3. Predicting Bug Severity 

When reporting a bug, users usually assign a severity to it. The severity level of a bug should reflect the 

impact of the bug on the execution of the software system [LDSV11]. Triagers approve or modify the 

severity level assigned by users. Critical bugs should be dealt with sooner by the developers, whereas low 

priority bugs could be handled once resources become available. Severity is also used by developers to 

assign a priority to the bug report. In practice, it is difficult to assign a severity level to a bug without some 

tool support. There exist several approaches that aim to automatically predict the severity of incoming 

bug reports based on historical data [GS14, LDGG10, LDSV11]. 
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2.2.3.1. Predicting Severity Using Bug Report Description 

Antoniol et al. [AADPKG08] built a dataset using 1800 issues reported to bug tracking systems of Mozilla, 

Eclipse and JBoss (600 reports from each bug tracking system). In these bug tracking systems, issues can 

be labeled as corrective maintenance or other kinds of activities such as perfective maintenance, 

preventive maintenance, restructuring or feature addition. In this study, issues that are related to 

corrective maintenance are categorized as Bug, while issues related to other activities are categorized as 

Non-bug. Each of the 1800 issues, extracted from bug tracking systems, is revised and labelled manually. 

In some cases, bugs were not related to Eclipse, so they are removed from the training and testing set. 

They considered bug reports descriptions as the best sources of information to train the machine learning 

techniques for predicting severity [BJSWPZ08]. The authors used words in the descriptions as features. 

They used the frequency of words for weighing the feature vector, which corresponds to each bug report. 

In addition to the words in the description, they added the value of the severity field as a feature. After 

extracting words, they are stemmed. However, no stop-word removal is performed. The rationale behind 

not removing stop-words is that they may be discriminative and may be used by the classifier to improve 

classification accuracy. They used various classification methods, such as decision trees, logistic 

regression, and naïve Bayes to classify issues. Each of the classifiers is trained using the top 20 or 50 

features. The accuracy of the approach, when applied to Mozilla, is 67% and 77% with the top 20 and 50 

features, respectively. The accuracy of the approach applied to Eclipse issues having 20 features is 81%, 

and having 50 features is 82%. The accuracy of the approach, when applied to JBoss issues having 20 

features, is 80%, and having 50 features is 82%. They showed that for Eclipse, some words                                 

(e.g. “Enhancement”) are good indicators of Non-bug issues, while some words (e.g. “failure”) are good 

indicators of Bug issues. They also showed that their approach outperforms the regular expression based 

approach, which uses the grep command [AADPKG08]. 

Menzies et al. [MM08] did a study on an industrial system in NASA. NASA uses a bug tracking system 

called Project and Issue tracking system (PITS). They examined bug reports raised by testers and sent to 
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PITS. In NASA severity of bugs are on a five-point scale. One corresponds to the worst, most critical bug 

and five is the dullest bug. They introduced a tool called SEVERIS, which, using the description of the bug 

reports and text mining techniques, predicts the severity of an issue. They tokenized terms, removed 

stop-words and finally stemmed the terms. They used the TF-IDF score of each term to rank them, and 

then they cut all but top K features. Furthermore, they did another round of feature reduction using 

information gain. They used rule learner to deduce rules from the weighed features. For the case study, 

five different systems and consequently, five different datasets are used. The main problem with the 

datasets was that they did not have any bug with severity one (Critical severity), and the total number of 

bug reports was 3877. The authors calculated precision, recall and F-measure for each of the severities. 

Using the top 100 words as features, F-measure was averagely 50% for predicting bugs severities. They 

showed that in their dataset, using the top 3 features or 100 features does not change the F-measure of 

the proposed approach significantly. This fact shows that predicting severities using a much smaller 

number of features that have more discriminative power reveals good results.  

Lamkanfi et al. [LDGG10] did a study to show the discriminability power of the terms in bug report 

descriptions. They build a dataset of open-source software such as Mozilla, Eclipse and Gnome to 

evaluate the proposed approach. In Bugzilla, severity can be Critical, Major, Normal, Minor, Trivial or 

Enhancement. To have a coarse-grain categorization, the authors labelled all issues which were Critical 

or Major as Severe and issues that were Minor, Trivial or Enhancement as Non-Severe. They ignored using 

issues marked as Normal because it is the default choice that will be assigned to a bug in Bugzilla, and 

users may choose it arbitrarily. The bug severity prediction in this study is modelled as a document 

classification problem. They used the summary and description of bug reports for training and evaluation. 

The authors organized bug reports according to their faulty product and component fields. They used 

70% of bug reports as the training set and 30% of bug reports as the testing set. They did a study on the 

most important features and concluded that words like “crash” or “memory” are good indicators of 

severe bugs. The authors did a second round of experiments using only descriptions and showed that 
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using only descriptions decreases the performance in many cases. They did experiment having training 

sets with different sizes and concluded that a training set having 500 bug reports is enough to have a 

generalizable result. They also showed that increasing the number of bug reports to more than 500 does 

not change the evaluation result. In the fourth round of experiments, they showed that when applying 

the severity prediction approach on the Eclipse bug tracking system, isolating bug reports according to 

the affected component and product fields leads to a better result. 

Lamkan et al. [LDSV11] compared the effect of having diverse mining algorithms applied to bug 

repositories to predict the severity of the bugs. The authors used the same labeling principal as Lamkanfi 

et al. [LDGG10]. Eclipse and Gnome are the datasets that are used to evaluate the accuracy of predicted 

severities. Bug reports are extracted and categorized according to their faulty product and component 

fields. They compared Naive Bayes, Naive Bayes multinomial, 1-Nearest Neighbour and Support Vector 

Machine classifiers. Since different classification approaches need different ways to weigh feature vector, 

in this study when doing experiments using Naïve Bayes, only the presence or absence of each term is 

used for weighing features. When doing experiments using Naïve Bayes Multinomial, the frequency of 

each word is used for weighing each feature vector. Using 1-Nearest Neighbour or Support Vector 

Machine, term frequency and inverse document frequency is used for weighing feature vectors. They 

calculated precision and recall, the area under the curve (AUC) for each dataset to compare the classifiers. 

They showed that using Naïve Byes Multinomial, the area under the curve is averagely 80% which is 

higher than other approaches. Next, they showed that using the Naïve Bayes classifier, a stable accuracy 

value is achieved having 250 bug reports of each severity for training. The result shows that increasing 

the training set by adding more than 250 bug reports does not change the accuracy. Having a list of words 

that have good discriminative power, they concluded that each component has its list of words. Thus, 

terms that have good discriminative power are component-specific. This result encourages applying 

severity prediction approaches on each component independently since it reveals better results. 
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Yang et al. [YHKC12] compared the effectiveness of feature selection methods on a coarse grain severity 

prediction technique. They used the Naïve Bayes classifier to study the effectiveness of each feature 

selection method. They used information gain, Chi-square and correlation coefficient as feature selection 

techniques. They used Eclipse and Firefox datasets and true positive rate (TPR), false positive rate (FPR) 

and area under curve (AUC) metrics to evaluate their studies. They showed high information gain is a 

good indicator of severe bugs and low information gain is a good indicator of non-severe bugs. They 

concluded that the best feature selection technique for Eclipse and Mozilla is the correlation coefficient.  

While all of the studies presented so far focus on a coarse-grain severity prediction, Tian et al. [TLS12] 

proposed an approach for finer grain prediction of bug severities. A fine-grain approach targets each 

severity type (Critical, Major, Normal, Minor, Trivial, and Enhancement) to predict the severity of a bug 

by classifying it into one of these types. The authors used OpenOffice, Mozilla and Eclipse bug repositories 

to evaluate their approach. In the first place, they removed bug reports having Normal severities, because 

they are the default value when reporting a bug. They used the K-nearest neighbour algorithm to predict 

severity. They used  𝐵𝑀25𝑒𝑥𝑡  as the similarity metric. They used the similarity of bug reports descriptions 

using 1-gram words as the first feature, similarity of the descriptions of bug reports using 2-gram as the 

second feature, and faulty product and component fields of bug reports as the third and fourth features 

respectively. With the arrival of each new bug report, it is compared to all the existing bug reports and 

the severity of the bug that is the closest to the incoming bug is used as the predicted severity of the 

incoming bug.   

Yang et al. [YZL14] studied the effectiveness of topic modeling on fine-grain severity prediction. Instead 

of using categorical features in similarity calculation, they only considered bug reports if they had the 

same product, component and priority. In the first step, they used latent Dirichlet allocation (LDA) to 

extract topics from the corpus of documents. They represented each topic as a bag of words. Instead of 

the vector space model, they used smoothed unigram vectors and they used KL divergence instead of 

cosine similarity to measure the similarity of smoothed vectors. They showed the effectiveness of their 
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approach by applying it on Mozilla, Eclipse and NetBeans bug repositories.  They used an online approach 

in which with the incoming of each bug report its probability vector is extracted. K-nearest neighbour is 

then applied to the bug reports with the same topics and according to the returned list of similar bug 

reports, the label is chosen. 

Bhattachrya et al. [BINF12] explored alternate avenues for bug severity prediction using a graph-based 

analysis of the software system. They built a graph based on different aspects of software systems 

including source code graphs based on function calls (e.g., a static call graph) or modules (module 

collaboration graph) and, at a more abstract level, they built a graph based on developer’s collaboration. 

They used Firefox, Eclipse and MySql to show the effectiveness of their approach. They used various 

graph-based metrics including average degree, clustering coefficient, node rank, graph diameter and 

assortativity to characterize software structure and evolution. They showed that the node rank metric in 

the function call graph is a good indicator of bug severity. They also showed that the Modularity Ratio is 

a good indicator for modules that need less maintenance effort. 

Zhang et al. [ZYLC15] explored the effectiveness of concept profiles in predicting the severity of bugs. 

They extracted concept terms and calculated their threshold for each fine-grain severity label in the 

training set. A concept profile corresponding to each severity label using concept terms is built next. 

Instead of the vector space model, they used the probability vector to represent each bug report. Also, 

instead of cosine similarity, they used KL divergence for calculating the similarity between each bug 

report in the testing set and each concept profile which corresponds to each severity label in the training 

set. They showed the effectiveness of their approach by applying it on Eclipse and Mozilla bug 

repositories. They used an offline approach in which they used 90% of the data as the training set and 

10% of the data as the testing set. 
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2.2.4. Bug Report Faulty Product and Component Field Prediction  

Faulty components or products are important fields of bug reports that are used by triagers and 

developers to localize the faults. When submitting a bug report, a user has the option to choose a product 

of the software system from a predefined set provided by the bug tracking system. Since each product, 

in the system, has its own set of components, after choosing the product, a set of predefined components 

according to the selected product will be made available to the user to choose from. 

2.2.4.1. Bug Report Faulty Product and Component Field Prediction Using Bug Description 

An early work on bug categorization was conducted by Lucca et al. [LPG02]. The authors used five 

different text mining models to classify incoming bug reports (referred to as tickets in their paper). They 

manually labelled each ticket into eight predefined categories, each corresponding to a maintenance 

team. They used the description of tickets and applied a probabilistic model, a vector space model, 

support vector machine, regression tree, and K-nearest neighbour. They showed that probabilistic and 

the K-nearest neighbour models provide the best accuracy. 

Betteneburg et al. [BJSWPZ08] explained that since users do not usually have technical knowledge about 

the system, it is very difficult for them to properly report the faulty product and component fields. They 

also showed that incomplete (or incorrect) information of a bug report is one of the major obstacles for 

developers for providing fixes.  

Guo et al. [GZNM11] showed that there are five main reasons which cause bug report field reassignment: 

Finding the root cause, determining ownership, poor bug report quality, proper fix determination 

(identifying how to fix the root cause), and workload balance. They introduced the bug pong concept as 

sending the bug reports between development teams similar to ping pong ball. The authors showed that 

it happens when a faulty component field is not correctly identified in the bug report. The authors also 

showed that the incorrect selection of the faulty component field increases the bug reports processing 

time. 
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Breu et al. [BPSZ09] showed that the questions asked when submitting bug reports can be grouped into 

eight categories: Missing information, clarification, triaging, debugging, correction, status inquiry, 

resolution, and administration. They showed that triaging questions are mostly due to the fact that users 

enter the wrong faulty product and component when reporting a bug.  

Somasundaram et al. [SM12] showed that the component field of bug reports help triagers to route bug 

reports to the right development team. They also showed that incorrect component categorization often 

delays the resolution of the bug reports. They used the description of bug reports and applied Support 

Vector Machine (SVM), Latent Dirichlet Allocation (LDA) with SVM and LDA with Kullback divergence (KL). 

They showed that LDA-KL produces more stable results than SVM or LDA-SVM. 

Bhattacharya et al. [BN10] proposed a novel approach based on a multi-feature tossing graph to improve 

the bug triaging process. They trained their classifiers on the description, title, faulty product, and 

component fields of bug reports. They showed that adding a multi-featured tossing graph improves the 

bug report routing accuracy. 

Shihab et al. [SIKIO+10] showed that the processing time of re-opened bug reports is two times more 

than the processing time of regular bug reports. They showed that description, fixing time, and the faulty 

component field of bug reports are the most important factors in determining whether a bug report will 

be re-opened. They showed that the bug reporter name is not an important factor in predicting                          

re-opened bug reports. They structured their study in four dimensions: Work habit (weekday of closing 

bug reports), bug reports faulty component fields, bug fix (time spent to fix the bug), and people 

(experience of the bug fixer). They extracted features from these dimensions to build a decision tree for 

predicting whether a bug report will be re-opened.  

Giger et al. [GPG10] showed that, in Firefox bug reports, the faulty component field is the most important 

factor in determining how fast a bug will be fixed. They also showed that, in Gnome bug reports, the 

faulty component field is one of the most important fields in determining the fixing time of the bug. 
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Sureka [S12] showed that the most important feature to localize the fault of a bug is the component. He 

also showed that the component field is usually assigned incorrectly by most users. He showed that the 

highest frequency of reassignment after the assignee field is the component field. The author used a 

statistical, and probabilistic model applied to the title and description of bug reports to predict the faulty 

component field. The study achieved 42% accuracy when predicting the faulty component field of bug 

reports. The author also showed that TF-IDF applied to the description of bug reports performs the same 

as the Dynamic Language Model (DLM). His approach predicted the reassignment of the component field 

of bug reports with 42% accuracy. 

Lamkanfi et al. [LD13] showed that the faulty component field in Eclipse and Mozilla bug reports tends 

to be regularly reassigned. They extracted all initial values of a bug report information including 

component, reporter, operating system, version, severity, and bug report summary to decide whether 

the component field of the bug report will be reassigned. They trained a Naïve Bayes classifier. Their 

classifier predicted reassigned bug reports with an F-measure of over 44% and not reassigned bug reports 

with an F-measure of over 83%.  

Xia et al. [XLWSZ14] showed that 80% of bug reports have their fields reassigned. They also showed that 

the bug reports that are reassigned take a longer time to be fixed. They showed that the product and 

component fields usually get reassigned together. The authors also showed that some product and 

component fields reassignments occur more than three years after the initial submission. 

Xia et al. [XLSW16] used a multi-label learning algorithm (ML.KNN) to predict the reassignment of bug 

report fields. To overcome the unbalanced dataset problem, they used the IM-ML.KNN classification 

approach. IM-ML.KNN is a composite classifier that is used as a combination of three classifiers which are 

built based on metadata of bug reports, textual information of bug reports, and a mixture of both 

(metadata and textual information).  Their approach achieved an accuracy (F-measure) ranging from 56% 

to 62%. 
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Wang et al. [WZLLW12] used bug report descriptions and summaries to predict the component field of 

bug reports. They created feature vectors using words in the descriptions and summaries. They weighed 

the feature vectors using TF-IDF. They compared the performance of support vector machine and Naïve 

Bayes machine learning techniques. They applied their approach to Eclipse bug reports and showed that 

the support vector machine model outperforms the Naïve Bayes model in predicting components. 

Florea et al. [FAA16] introduced a parallel recommender system to help assign bug reports to the right 

developers. They used textual description and categorical information as features and convolutional and 

recurrent neural networks (CNN and RNN) to predict the developers that should fix the bug. The authors 

applied their approach to Netbeans, Eclipse and Mozilla datasets. They showed that their parallel deep 

learning-based implementation using CNN has comparable results to multiple SVMs running in parallel. 

Zhang et al. [ZWW15] introduced an approach that assigns bug reports to developers using a two-phase 

process. In the first phase, the K-nearest neighbour is applied to the history of bug reports. The second 

phase ranks developers based on their experience with similar bugs. The authors built a heterogeneous 

network based on five entities (developers, bugs, comments, components and products) and ten types 

of relations among these entities (e.g., reported by, commented by, written by, etc.). Bug report 

descriptions are transformed into vectors weighed using TF-IDF. For each bug report, the K-nearest bug 

reports with the same descriptions are retrieved, and a second refinement ranking is done to rank 

developers based on the network. They tested their approach on Apache Ant, Apache Tomcat, Mozilla, 

and Eclipse and showed that their approach improves recall by 7.5% to 32.25% on those datasets. 

  



28 

 

Chapter 3 

 Data Preparation 

In this chapter, we discuss the datasets we used to evaluate the contributions of the thesis.  

3.1. Eclipse Dataset 

In this thesis, we used Eclipse and Gnome datasets to evaluate the proposed approaches. Eclipse is an 

integrated development environment which is written in java. Eclipse bug repository has evolved during 

the past 16 years. It has been the subject of mining challenge in the Mining Software Repositories 2008 

conference. It is a platform in which various plugins can be added to it for different purposes.  One of the 

main reasons for choosing Eclipse is that it is an open-source system which incorporates a large number 

of developers. Every day large number of bug reports are being sent to triagers in the Eclipse bug tracking 

system. Having more than 500,000 reports starting from 2001 to 2015 makes Eclipse a comprehensive 

dataset that can be used for evaluating our proposed approaches. 

Since in the current version of Bugzilla, users can not send the structural information including stack 

traces of bug reports separately, they have to copy that information into the description of the bug 

reports. In MSR 2008, a tool called Infozila was proposed by Bettenburg et al. [BPZK08b]. This tool can 

extract four types of structural information including stack traces, source codes, patches, and 

enumerations from Eclipse bug report descriptions. Lerch et al. [LM13] provided some enhancement to 

the regular expression which was provided by Bettenburg et al. [BPZK08b] and proposed the following 

regular expression to extract stack traces more accurately. 

[EXCEPTION] ([:][MESSAGE])? ([at][METHOD][(] 

[SOURCE] [)] )+ ( [Caused by:] [TEMPLATE] )? 

Figure 5 Regular expression used for extracting stack traces 
from bug report descriptions in the Eclipse bug repository 
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Our Eclipse dataset consists of Eclipse bug reports from October 2001 to February 2015. In this period, 

454,486 reports were submitted to the Eclipse bug tracking system. Out of these reports, 66,859 were 

labelled as Enhancement.  42,892 bug reports from the 454,486 bug reports (11%) in Eclipse had at least 

one stack trace in their description.  

Table 1 Eclipse dataset charchteristics 

Data Eclipse 

Total number of reports 454,486 

Total number of bug reports 387,627 

Total number of enhancement reports 66,859 

Total number of bug reports with stack traces 42,892 

3.2. Gnome Dataset 

Gnome is a desktop environment that is designed for Linux and BSD based operating systems. The Gnome 

bug repository contains more than 17 years of bug reports.  It has been the subject of challenge in the 

Mining Software Repositories 2009. Gnomes' main purpose is to provide a powerful and easy to use 

desktop environment to users who are using Linux or BSD based operating systems. Gnome used to have 

the same bug tracking system as Eclipse (From March 2019 Gnome started using GitLab instead of 

Bugzilla). Similar to Eclipse, it did not have any separate mechanism for storing structural information. 

The main difference between Gnome and Eclipse is that Gnome is written using multiple programming 

languages. Most of the Gnome is written in C and the rest is written in other programming languages 

such as C++, Perl, Python, and Lisp [FFHL05]. Since Infozilla is designed to capture stack traces that are 

written Java, it cannot be used to extract stack traces from the Gnome bug tracking system. We 

developed a tool that extracts all four types of structural information (stack traces, source codes, patches, 

and enumerations) from Gnome bug reports. We used the regular expression of Figure 6 to extract stack 

traces from the description of the Gnome bug reports. 
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([#NUMBER] [HEX ADDRESS] [IN] [FUNCTION NAME] [(] 

[PARAMETERS] [)] ([FROM] | [AT]) ([LIBRARYNAME] | 

[FILENAME]))* 

Figure 6 Regular expression used for extracting stack traces 
from bug report description in the Gnome bug repository 

We verified our tool by manually examining structural information extracted from 1000 Gnome bug 

reports. The precision and recall of our method for extracting stack traces is 99% and 90%, respectively.  

We have a precision and recall of 97% and 100% for detecting source codes. For patches, the precision 

and recall are 100% and 100% respectively. Our tool could extract Enumerations with a precision and 

recall of 80% and 95% respectively. 

Our Gnome dataset consists of Gnome bug reports from October 1999 to August 2015. In this period, 

697,800 reports were submitted to the Gnome bug tracking system. Out of these reports, 57,446 were 

labelled as Enhancement.  201,302 bug reports from the 640,354 bug reports (32%) in the Gnome bug 

repository had at least one stack trace in their description.  

Table 2 Gnome dataset charchteristics 

Data Gnome 

Total number of reports 697,800 

Total number of bug reports 640,354 

Total number of enhancement reports 57,446 

Total number of bug reports with stack traces 201,302  
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Chapter 4 

 An Empirical Study on the Effectiveness of Presence of Stack 
Traces in Bug Triaging Process 

Some studies systematically investigate the usefulness of stack traces in debugging software bugs and in 

fixing time of bugs [SBP10, K12, YCKY14, MHNSL15]. Schorter et al. [SBP10] studied the association 

between stack traces and source code debugging. They showed that bug reports with stack traces are 

fixed sooner. Krikke [K12] and Yang et al. [YCKY14] studied the association between the presence of stack 

traces and the value of bug report fields such as the severity field. 

In this chapter, we shed light on newer aspects of the usefulness of stack traces in the bug triaging 

process. More precisely, we extend Schroter et al. [SBP10], Krikke [K12] and Yang et al. [YCKY14] studies 

by examining the relationship between the presence of stack traces and the time to detect duplicate bug 

reports. We also extend previous studies by studying the association between stack traces and the 

severity of bug report in the Gnome bug repository as well as the reassignment of product and 

component fields of bug reports.  

4.1. Dataset Setup 

We used the Eclipse bug reports from 2010-1-1 to 2014-1-1 and Gnome bug reports from 2010-1-1 to 

2015-1-1 for this study. Although we chose a window of bug reports from the datasets presented in 

Chapter 3, we believe that the conclusions of this study reflect the overall characteristics of the dataset 

irrespective of the selected time window because of the use of statistical tests. 

In Bugzilla, each bug report page is linked to a bug activity page, which shows changes to the bug report 

fields. More precisely, it shows what was done (e.g., bug report product field was reassigned), who did 

it, and when did it happen. We use the bug activity page to extract resolution time (fixing time) of 

duplicate reports, product and component field reassignments, and fixing time of bugs. 
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Bugs in Gnome and Eclipse have seven severity levels. We remove bugs with normal severity since they 

represent the grey area and are usually selected arbitrarily by the users [YCKY14]. Then, we categorize 

the bug reports into two groups: Severe bugs include bugs with Blocker, Critical and Major severity and 

Non-severe bugs include bugs with Minor and Trivial severities [YCKY14]. 

4.2. Statistical Analysis 

We present our data collection and analysis process in Figure 7. For each bug report, we extract the 

following information. 

 The presence of stack trace in the bug report 

 The bug report opening time and fix closing time 

 The bug report severity value 

 If the product field of the bug report is reassigned  

 If the component field of the bug report is reassigned  

We use this information to calculate the fixing time of duplicate reports, coarse grain severity level, and 

the reassignment of the bug report faulty product and component fields. 

We use two-tailed Mann-Whitney test to calculate if the difference between two sets of results (e.g., the 

duplicate bug report fixing time of bugs with stack traces and those without stack traces) is statistically 

significant. We use two-tailed Chi-square test to show if the association between two variables is 

statistically significant (e.g., presence of a stack trace in a bug report and the severity of the bug). 

4.3. Experiments 

We explain our experiments by listing the research questions and presenting the variables and the 

analysis method used to answer these research questions. For each research question, we define a null 

hypothesis corresponding to that research question. 
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Figure 7 Data collection and analysis 

 

RQ1: Does the presence of stack traces in bug reports reduce the duplicate detection time of bug 

 reports? 

Lerch et al. [LM13] showed that stack traces can be used to detect duplicate bug reports with higher 

accuracy compared to bug report descriptions. Triagers and developers mark a new bug report as fixed 

duplicate if they find the bug report to be a duplicate of previously seen bug reports. If triagers and 

developers leverage stack traces for detecting duplicate bug reports, we expect bug reports with stack 

traces to have lower duplicate detection time compared to bug reports without stack traces.  

𝑯𝟎𝟏: There is no statistically significant difference between the duplicate detection time of bug 

 reports with stack traces and those without stack traces. 

Variables: Our variables to answer RQ1 is the fixing time of duplicate bug reports and a boolean that 

indicates the presence of a stack trace in the bug report.  We use the period between the opening time 

and the time that the bug report is marked as duplicate fixed to calculate the duplicate bug report fixing 

time. We perform the test of independence between the observed variables (duplicate detection fixing 

time of bug reports with and without stack traces). 
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Analysis method: We answer RQ1 in two steps. In the first step, we use the Mann-Whitney test to assess 

if there is a statistically significant difference between the duplicate detection fixing time of bug reports 

with stack traces and those without stack traces.  

RQ2: Is the presence of stack traces in bug reports associated with the severity level of bugs? 

Bug severity is an indicator of how much the bug affects the normal execution of the software system 

[LDGG10]. In this question, we want to know if there is an association between the presence of stack 

traces and the type of severity of bugs. 

𝑯𝟎𝟐: Bug severity type is statistically independent of the presence of stack trace in the bug 

 report. 

Variables: Our variables are the bug severity type and a boolean variable indicating whether the bug 

report has a stack trace or not. We categorize bugs based on two severity types (severe or non-severe). 

We also categorize bug reports based on the presence of stack traces. Then, we build the contingency 

table using the severity types and the presence of stack traces. Our contingency table contains the 

number of severe bug reports with and without stack traces and the number of non-severe bug reports 

with or without stack traces. 

Analysis method: We answer RQ2 using the Chi-square test of independence. More precisely, we use 

Chi-square test to test the independence of the two variables: bug severity type and the presence of a 

stack trace. We also analyze the type of severity of bug reports with stack traces and type of the severity 

of bug reports without stack traces. We show the percentage of severe bugs with and without stack traces 

and the percentage of non-severe bugs with and without stack traces. 

RQ3: Does the presence of stack traces help to identify the right product and component fields 

of bug reports? Does this improve the fixing time of bugs? 



35 

 

Studies have shown that bug reports which their fields are reassigned take a longer time to be fixed 

[XLSW16]. In particular, product and component fields of bug reports can help triagers direct bug reports 

to the right development team. Bug fixing time can also be improved by correctly choosing product and 

component fields. In this question, we want to know if there is an association between the presence of 

stack traces and the reassignment of the product and component fields of bug reports. We also study the 

difference between the fixing time of bug reports, which have their product and component field 

reassigned, with stack traces and without stack traces. We state the following hypotheses: 

𝑯𝟎𝟑𝑨: Reassignment of the product field of bug reports is statistically independent of the presence 

of stack traces in the bug reports. 

𝑯𝟎𝟑𝒃: Reassignment of the component field of bug reports is statistically independent of the 

presence of stack traces in the bug reports. 

𝑯𝟎𝟑𝒄: There is no statistically significant difference between the fixing time of bug reports, which 

have their product field reassigned, with stack traces and without stack traces. 

𝑯𝟎𝟑𝒅: There is no statistically significant difference between the fixing time of bug reports, which 

have their component field reassigned, with stack traces and without stack traces. 

Variables: Our variables consist of a boolean variable that indicates if the product (or component) of a 

bug report has been reassigned (its value changed after the report has been submitted), the fixing time 

of these bug reports, and another boolean variable that indicates if the bug report has a stack trace or 

not. For each bug report, we parse the history of changes to the bug report fields. We label a bug report 

field as reassigned if the value of that field is changed in the bug activity history. We consider the time 

between the opening time of a bug report and marking the bug report fixed as the fixing time of a bug 

report. We use the reassignment of the product field of bug reports and the presence of stack traces in 

those bug reports to build a contingency table. We also use the reassignment of the component field of 

bug reports and the presence of stack traces to create another contingency table. We build two lists 
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containing fixing time of bug reports, which have their product field reassigned, with and without stack 

traces. We also build two other lists for the component field with the same approach.  

Analysis method: We answer RQ3 in four steps: 

1. We use the two-tailed Chi-square test to test the independence of the reassignment of the product 

field and the presence of the stack traces. 

2. We use the two-tailed Chi-square test to test the independence of the reassignment of the 

component field and the presence of the stack traces. 

3. We use two-tailed Mann-Whitney test to test if the difference between the fixing time of bug 

reports with and without traces and for which their product field is reassigned is statistically 

significant. If two sets are statistically different, we use the median to compare them together. 

4. We use two-tailed Mann-Whitney test to test if the difference between the fixing time of bug 

reports with and without traces and for which their component field is reassigned is statistically 

significant. If two sets are statistically different, we use the median to compare them together. 

4.4. Study Result 

RQ1: Based on two-tailed Mann-Whitney test, the time to detect a duplicate bug report and mark it as 

duplicate fixed is significantly different for bug reports with stack traces compared to those without stack 

traces with p-value < 0.05 for Gnome and Eclipse datasets. Since p-value < 0.05, we can reject the null 

hypothesis 𝐻01 that there is no statistically significant difference between the duplicate detection time 

of bug reports with stack traces and the ones without stack traces. 

To further examine which group has lower fixing time, we compared the median of the number of 

minutes it took to fix duplicate bug reports with stack traces to the median time it took to fix bug reports 

without stack traces. For Eclipse, the median duplicate fix time of bug reports with stack traces is 

221.8333 minutes (0.15 day), whereas the median duplicate fix time of bug reports without stack traces 

is 253.4333 minutes (0.17 day).  
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For the Gnome dataset, the median of duplicate bug reports fix time is 17748.6 minutes, which is 12.33 

days for bug reports with stack traces and 18844.475 minutes (13.086 days) for bug reports without stack 

traces. 

These results confirm that the duplicate detection fix time for bug reports with stack traces is statistically 

lower compared to duplicate detection fix time of bug reports without stack traces. We can conclude that 

the presence of stack traces in bug reports has an impact on the time it takes to detect duplicate bug 

reports.  

RQ2:  We applied the two-tailed Chi-square test to test the independence of two variables: The presence 

of stack traces and the severity of the bugs. We applied the test on the contingency table containing the 

number of severe bug reports with stack traces, the number of severe bug reports without stack traces, 

the number of non-severe bug reports with stack traces, and the number of non-severe bug reports 

without stack traces. 

For Eclipse, Chi-square test result is 14.021 with 1 degree of freedom. The two-tailed p-value = 0.0002. 

Since p-value < 0.05, we can reject the null hypotheses 𝐻02 that the two variables are statistically 

independent. The chi-square test result shows that there is a relationship between the severity of bugs 

and the presence of stack traces in the bug reports. This is consistent with the result presented by Yang 

et al. [YCKY14]. 

For Gnome, the Chi-square test result is 101.470 with 1 degree of freedom. The two-tailed                                         

p-value = 0.0001. Since p-value < 0.05, we can reject the null hypotheses 𝐻02 that the two variables are 

statistically independent. Similar to Eclipse, we conclude that there is a relationship between the severity 

of bug reports and the presence of stack traces in the Gnome dataset. Figure 8 and Figure 9 show the 

percentage of severe and non-severe bug reports based on the presence of stack traces for Eclipse and 

Gnome datasets respectively. 
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Figure 8 Percentage of severe and non-severe bug reports based on the 

presence of stack traces in Eclipse dataset. 

 

Figure 9 Percentage of severe and non-severe bug reports based 
on the presence of stack trace in Gnome dataset 

 

To examine the type of severity of bug reports with stack traces and the bug reports without stack traces, 

we calculate the conditional probability that a bug report has high severity if it has stack trace and the 

conditional probability that a bug report has high severity if it does not have stack trace. 
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For Eclipse, the conditional probability of a bug report to have a high severity level if it has a stack trace 

is 78.4%, whereas the probability of a bug report to have high severity, if it does not have stack trace is 

32.7%. For Gnome, the conditional probabilities are 98% and 40%. The result shows that bug reports with 

stack traces tend to have higher severity levels. 

RQ3:  We apply two-tailed Chi-square test on two contingency tables. The first contingency table contains 

the number of bug reports with reassigned product field with and without stack traces. The second 

contingency table contains the number of bug reports with reassigned component field with and without 

stack traces. 

For Eclipse, the Chi-square test result on the contingency table based on the reassignment of the product 

field is 31.80 with 1 degree of freedom. The two-tailed p-value = 0.0001, which is less than 0.05. We can 

reject the null hypotheses 𝐻03𝐴 that the two variables are statistically independent.  For Gnome, the        

Chi-square test result is 93.43, with 1 degree of freedom. The two-tailed p-value = 0.0001, which is less 

than 0.05, so we can reject the null hypotheses 𝐻03𝐴 that the two variables are statistically independent. 

We conclude that there is a relationship between the reassignment of the product (and component) field 

of a bug report and whether the bug report contains a stack trace or not.  

Figure 10 and Figure 11 show the percentage of bug reports with and without reassigned product field in 

relation to the presence of stack traces for Eclipse and Gnome datasets, respectively. These figures show 

clearly that the presence of stack traces has an impact on the reassignment of the product field.  

As for the component field, for the Eclipse dataset, the Chi-square test result is 31.806 with 1 degree of 

freedom. The two-tailed p-value = 0.0001, which is less than 0.05. We can reject the null hypothesis 𝐻03𝑏. 

For Gnome, the Chi-square test result is 93.43 with 1 degree of freedom. The two-tailed Chi-square                 

p-value = 0.0001, which is less than 0.05. Similar to Eclipse, we can reject the null hypothesis 𝐻03𝑏.  These 

results show that there is a relationship between the reassignment of the bug reports component field 

and the presence of stack traces. 
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Figure 10 Percentage of bug reports based on the presence of stack traces 
in the Eclipse dataset 

 

 

Figure 11 Percentage of bug reports based on the presence of stack traces 
in the Gnome dataset 

 

Figure 12 and 13 shows the percentage of bug reports with and without reassigned components in 

relation to the presence of stack traces in Eclipse and Gnome, respectively. The results show that the 

presence of stack traces has an impact on whether a bug report component field is reassigned or not.  
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Figure 12 Percentage of bug reports based on the presence of stack trace 
in the Eclipse dataset. 

 

Figure 13 Percentage of bug reports based on the presence of stack trace 
in the Gnome dataset. 
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For Eclipse, the probability that the component field of a bug report gets reassigned if the report has 

stack trace is 18.4% compared to 16.5% in the absence of a stack trace. For Gnome, the probabilities are 

12.5% and 9.2%. The result shows that the probability of reassigning the component field is higher for 

bug reports with stack traces compared to those without stack traces. 

Moreover, we study the time to fix bug reports with reassigned product (and component) field depending 

on whether the report has a stack trace or not. We use the two-tailed Mann-Whitney test to assess the 

statistical significance of the difference between the fixing time of the two groups of bug reports. 

The results show that, for the Eclipse dataset, the time to fix bug reports with the reassigned product (or 

component) fields and stack traces is significantly different from the fixing time of bug reports without 

stack traces with a p-value < 0.05. We can reject the null hypothesis 𝐻03𝑐 and 𝐻03𝑑 and conclude that 

there exists a significant statistical difference between the fixing time of bug reports which their product 

(or component) field is reassigned with or without stack traces. For Gnome there exist a statistically 

significant difference between the fixing time of bug reports which their component field is reassigned 

with or without stack traces, however, there is no significant difference between the fixing time of bug 

reports which their product field is reassigned with or without stack traces. 

The median of the time to fix Eclipse bug reports with reassigned product field is 14444.85 minutes (10 

days), whereas the median of time to fix of bug reports with their product field reassigned and do not 

have stack traces is 10324.8 minutes (7.17 days). These medians are 17405.9 minutes (12 days) and 

28853.1 minutes (20 days) for the component field.  

For Gnome, the median of the fixing time of bug reports with reassigned component fields with stack 

traces is 26031.53minutes (18 days), and the median of the fixing time of bug reports with reassigned  

component field and without stack traces is 29961.7 minutes (20.8 days).  Since no significant difference 

between the fixing time of bug reports which their product field is reassigned with or without stack traces 
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for the Gnome dataset, we did not compare the median of time to fix of bug reports which their product 

field reassigned with or without stack traces. 

4.5. Discussion 

We studied the effect of the presence of stack traces on various aspects of bug reports. We showed that 

bug reports with stack traces take less time to be detected as duplicates, compared to bug reports 

without stack traces. We also showed that consistent with previous findings on the Eclipse dataset 

[YCKY14], there is a relationship between the presence of stack traces and the severity type of bug reports 

in the Gnome dataset. In addition, we showed that there is a relationship between the presence of stack 

traces and the reassignment of product and component fields in bug reports. We also showed that bug 

reports with reassigned product or component fields and stack traces take less time to be fixed, compared 

to bug reports (with reassigned product and component fields) without stack traces. The results suggest 

that stack traces may be one factor for determining the accurate product and component fields.  

However, we want to note that there are many other factors that can affect the bug fixing time, including 

the experience of developers, the accuracy of bug report descriptions, etc. Therefore, in this thesis, we 

can only state that the presence of stack traces could be one factor that can characterize bug reports in 

a way that may speed up the fixing time. We also need to examine the extent to which stack traces can 

be helpful in comparison with other bug report elements such as the descriptions, the developer 

experience, etc. We defer this to future work. 
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Chapter 5 

 Detecting Duplicate Bug Reports 

There exist techniques for automatic detection of duplicate bug reports (e.g., [DMJ11, RAN07, JW08]). 

They build a model from historical bug reports, using machine learning techniques. The model is then 

used to detect duplicate bug reports. These techniques can be grouped into two main categories based 

on the features they use to characterize bug reports. The first category uses the bug report description 

provided by the submitter. They assume that bug reports with similar descriptions are potential 

duplicates. While bug report descriptions can be useful, they remain informal and not quite reliable 

[JW08]. The second category encompasses the techniques that use stack traces and assume bug reports 

with similar stack traces are duplicate. Stack traces have shown to be more reliable than bug report 

descriptions [LM13] to detect duplicate bug reports. In addition, as noted by Schroter et al. in [SBP10], 

bug reports that have stack traces tend to be fixed sooner.  

A recent technique for detecting duplicate bug reports using stack traces was proposed by                              

Lerch et al. [LM13]. The authors developed a technique for comparing stack traces of different bug 

reports. They considered bug reports with similar stack traces as potential duplicates. They used TF/IDF 

(Term Frequency-Inverse Document Frequency) as a weighing mechanism. Their approach, however, 

suffers from scalability problems due to the large number of distinct functions that exist in large bug 

repositories.  

In this chapter, we propose a more efficient approach for detecting duplicate bug reports using stack 

traces, called DURFEX (Detection of Duplication Reports Using Feature Extraction). DURFEX uses a                

multi-step feature extraction algorithm that leverages the concept of trace abstraction. More precisely, 

we substitute functions in historical stack traces by their package names to reduce the number of features 

used for building the training model. We then use the varying length N-gram of packages to build feature 
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vectors from stack traces. To detect whether an incoming bug report is a duplicate of an existing one, 

first, we measure the distance between the vector of an incoming bug report and the bug reports in the 

bug tracking system, then we use the linear combination of the stack traces similarity and non-textual 

(categorical) features to retrieve a list of potential duplicate bug reports. 

This chapter is organized as follows: We discuss our feature extraction and weighing techniques in  

Section 5.1. The overall approach and detailed implementation of the approach is presented in Section 

5.2. The evaluation techniques are presented in Section 5.33. We discuss the results of our approach in                 

Section 5.4. Threats to validity are presented in Section 5.5. The conclusion is presented in Section 5.6. 

5.1. Preliminaries 

This section starts by providing a formal description of term vector weighing strategy, term frequency 

and inverse document frequency (considered in related work [LM13]). The proposed approach for 

extracting feature vectors from traces of package names based on variable length N-grams is described 

next. 

Let 𝑇 = 𝑝1,𝑝2, … . . , 𝑝𝐿 be a stack trace, T of length L, where the function calls are substituted by their 

defining packages. The stack trace T is generated by a bug in a system with an alphabet  of size m = || 

(unique) package names. The collection of K traces that are generated by the process (or system) of 

interest and then provided for designing the duplicate detection system is denoted by                                             

𝛤 = 𝑇1,𝑇2, … . . , 𝑇𝐾. 

The term vector maps each trace T into a vector of size m packages, 𝑇 → ∅(𝑇)𝑜𝜖Σ, where each package 

name 𝑝𝑖   in the vector is assigned a binary flag depending on its appearance (one) or not (zero) in the 

trace T. The term vector can be weighed by the term frequency (tf): 

𝜙𝑡𝑓(𝑝, 𝑇) = 𝑓𝑟𝑒𝑞(𝑝𝑖); 𝑖 = 1, … , 𝑚  (2) 
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where freq(pi) is the number of times the package 𝑝𝑖  appears in 𝑇 normalized by L (the total number of 

package calls in T). 

The term frequency considers all terms as equally important across all documents or collection of traces 

(𝛤). However, rare terms that frequently appear in a small number of documents convey more 

information than those that are frequent in most documents. The inverse document frequency (IDF) is 

proposed to increase (or decrease) the weights of terms that are rare (or common) across all documents. 

The term vector weighed by the TF-IDF is therefore given by: 

𝜙𝑡𝑓.𝑖𝑑𝑓(𝑝, 𝑇, 𝛤) =
Κ

𝑑𝑓(𝑝𝑖)
𝑓𝑟𝑒𝑞(𝑝𝑖); 𝑖 = 1, … , 𝑚  (3) 

where the document frequency 𝑑𝑓(𝑝𝑖) is the number of traces Tk in the collection of 𝛤 of size K that 

contains the package name 𝑝𝑖. A high weight in TF-IDF is thereby given to package names that are 

frequent in a particular trace T , but appear in few or no other traces of the collection, .  

The weighing strategy of Equation (3) discards the temporal order of packages. The proposed approach, 

DURFEX, however, accounts for the temporal order of package occurrences by extracting and mapping 

variable length N-grams and their frequencies from each trace T, to fixed-size feature vectors. Each  

N-gram is a sequence of contiguous package names of length N extracted from trace T. 

 

      Figure 14 Variable length N-gram 
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As illustrated in Figure 14, the feature extraction starts by sliding a window of N package names over the 

trace T, shifted by one package name. For each sequence, the individual (or 1-gram) package names 

are first extracted, followed by all N-grams for n = 1,…,N that are rooted at the first package name inside 

the sliding window, which are then organized in vectors Vi (see Figure 14).  

With the arrival of each new incoming bug report 𝐵𝑖,  a dictionary of all variable length N-grams from the 

packages extracted from vectors 𝛤 = T1,T2, … . . , TK is constructed. The constructed dictionary has a 

distinct alphabet ∑ with the size m = |∑|. Each feature in the feature vector is weighed according to the 

frequency and inverse document frequency of that feature in N-gram features extracted from each T,  

corresponding to the stack traces in the bug reports. 

The unique N-grams (for n = 1,…,N) from all unique vectors Vi obtained by sliding the window over the 

available traces T are used as dictionary keys, while their accumulated frequencies are used as values. 

This dictionary of size, say D, is, therefore, the reference database representing the                                                              

1-grams, 2-grams, . . . , N-grams that occurred in the collection of traces . Finally, each vector Vi (shown 

in Figure 14) is mapped to the space D of the reference dictionary and becomes a feature vector. 

For a specific process, the size of the dictionary (D), which is the size of the unique feature vectors, 

depends on the alphabet size m, the sliding window size N and the regularity of the process. The value of 

N is a user-defined parameter that influences the detection power and the size of the feature vectors.             

A small N value is always desirable since it results in smaller feature vectors, and hence allows faster 

detection and response during operation. 

For each T , if we assume |T|=L, then the maximum number of N-gram features or sequences of N 

package names that can be extracted is L– (Ngram - 1). For example, the number of 3-gram features that 

can be extracted from a sequence of L packages is L-2. Considering that varying N-gram is the collection 

of features extracted by applying 1-gram, 2-gram up to N-gram, the maximum number of features that 

can be extracted from |T |=L denoted as F can be calculated as Equation (4). 
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F= L + L -1 + L-2 +….+ L – (N-gram - 1) 

𝐹 = 𝑁 ∗ 𝐿 
 −  

𝑁∗(𝑁−1)

2
              (4) 

In practice, given that one package can appear more than once and overlaps of N-grams are common, 

the number of features is far less than what is stated in Equation (4). According to Equation (4), the 

number of features extracted from |T |=L is always less than the number of grams multiplied by the 

length of the sequence of packages in the stack traces. In our case studies, we found that the most 

suitable number of grams is at most three. This shows that even by using varying length N-grams to 

extract feature vectors from packages, the number of features remains by far less than the number of 

unique functions. 

The only non-null elements of the feature vectors are those that correspond to the N-grams of the original 

vector (Vi) before the mapping. These elements are weighed by their frequencies and inverse document 

frequencies that have been accumulated as values in the reference dictionary. We conducted 

experiments using TF-IDF.  

5.2. Proposed Approach 

We conducted an investigation on groups of duplicate bug reports in eclipse. We noticed that in most 

cases, not only the stack traces but also the categorical information such as severity and component is 

the same for all duplicate bug reports in the same group. Thus, we extended our similarity function to 

incorporate these categorical features as well. In this chapter, we define the similarity function between 

two bug reports (𝐵1, 𝐵2) as follows: 

SIM (𝐵1, 𝐵2) =    ∑ 𝑤𝑖 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
3
𝑖=1  (5) 

Where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 are defined as follows: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 =   𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒𝑠 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 =  {
1, 𝑖𝑓 𝐵1. 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝐵2. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 =  {
1, 𝑖𝑓 𝐵1. 𝑠𝑒𝑣𝑒𝑖𝑟𝑡𝑦 = 𝐵2. 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦
0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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According to Equation (5), the similarity of two bug reports is linear combination of their stack traces and 

categorical features similarity. 

The distance between two stack traces is measured as the distance between their corresponding feature 

vectors, weighed according to Section 5.1. We use cosine similarity to measure the similarity between 

two vectors.  

Typically, given 𝑉1 =< 𝑤11, 𝑤12, … . . 𝑤1𝑛 >  and 𝑉2 =< 𝑤21, 𝑤22, … . . 𝑤2𝑛, the cosine similarity is 

calculated using Equation (6) [MRS08]:  

𝐶𝑜𝑠(𝜃)  =  
𝑉1.𝑉2

|𝑉1|.|𝑉2|
  (6) 

The cosine similarity between two vectors, which is the cosine of the angle between two vectors, is equal 

to the dot product of the two vectors divided by the multiplication of their sizes. 

The SIM function contains three free parameters (𝑤1, 𝑤2, 𝑤3) which must be optimized. We used 10% of 

our dataset for training these parameters. Our training dataset format is consistent with                                      

Sun et al. [BJSWPZ08]. It contains triples in the form of (q, rel, irr) where q is the query bug report, rel is 

a duplicate bug report and irr is a bug report which is not duplicate of q. The method used to create the 

training set is depicted in Figure 15 [BJSWPZ08]. 

TS = ∅: training set 
N>0 size of TS 
G: Group of duplicate bug reports 
For each Group G in the repository do 
   R= all bug reports in Group G 
   For each report q in R do 
        For each report rel  in R-{q} do 
             For i=1 to N do 
                    Randomly choose a report irr out of R 
                   TS=TS U  {(q,rel,irr)} 
             End for 
        End for 
   End For 
End for 
Return TS 

Figure 15 Training Dataset 

 



50 

 

We need to define a cost function to optimize the free parameters (𝑤1, 𝑤2, 𝑤3)  based on our training 

set. We define the RankNet cost function as follows [BJSWPZ08]: 

Y= Sim(irr,q) – sim (rel,q) 

RNC(I)=𝐿𝑜𝑔(1 + 𝑒𝑌) (7) 

The cost function is minimized when the similarity of a bug report and its duplicate is maximized and the 

similarity of a bug report and its not a duplicate bug report is minimized. We used gradient descent as 

shown in Figure 16 [BJSWPZ08] to minimize the above cost function. The optimization algorithm adjusts 

each free parameter x in each iteration according to coefficient Ƞ and partial derivative of RNC with 

respect to each free parameter x [BJSWPZ08]. 

TS = ∅: training set 
N>0 size of TS 
Ƞ: the tuning rate 
For n=1 to N do 
    For each instance I in TS in random order do 
        For each free parameter x in sim() do 

            x=x-  Ƞ * 
𝜕𝑅𝑁𝐶

𝜕𝑥
             

        End for 
    End for 
End For 

Figure 16 Optimization using gradient descent 

We optimize the free parameters of the linear model of Equation (5) on the dataset created based on 

Figure 15, using 10% of the dataset. After training the model, we can extract the weights 𝑤1, 𝑤2, 𝑤3. 

These extracted weights are then used to detect duplicate bug reports online. For the rest of the dataset, 

with the incoming of each bug report its stack trace similarity and categorical features similarity to all the 

previous bug reports is calculated. Stack trace similarity is obtained by comparing stack traces weighed 

using term frequency and inverse document frequency. Categorical features similarity is one if they have 

the exact same value. It is zero otherwise. Next, we use the 𝑤1, 𝑤2, 𝑤3 weights to calculate the similarity 

of bug reports using the linear combination of the stack traces and categorical features. After calculating 

the similarity of bug reports to all the previous bug reports in the dataset, a list of N most similar bug 

reports is returned as the potential duplicates of the incoming bug reports. In the next section, we explain 
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the evaluation metric, which is used for evaluating the accuracy of the proposed approach in detecting 

duplicate bug reports. 

DURFEX is as an online duplicate detection approach. Figure 17 shows an overview of how DURFEX is 

applied. 

 

Figure 17 Proposed approach (DURFEX) 

5.3. Evaluation 

The objective of the experiment is to investigate if stack traces represented as package names instead of 

the raw trace of function calls can be used to detect duplicate bug reports, and if so, what would be the 

accuracy? More precisely, the experiment aims to answer the following questions: 
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 RQ1.  Can traces of package names alone be used to detect duplicate bug reports? 

 RQ2. What is the accuracy of detecting duplicate bug reports using traces of package names and 

 categorical features compared to traces of function calls? 

 RQ3. What is the processing time of DURFEX compared to the approach which uses stack traces  

 only? 

5.3.1. The Dataset 

The dataset used for evaluation consists of bug reports of the Eclipse bug repository. In this repository, 

stack traces are embedded in the bug report description. To extract the content of the stack traces in 

Eclipse, we use the same regular expression presented by Lerch et al. [LM13]. For Eclipse, the extracted 

traces are preprocessed to remove the noise in the data such as native methods, which are used when a 

call to the Java library is performed. There are also lines in the traces that are labelled ‘unknown source’. 

This occurs due to the way debugging parameters are set. We removed those lines from stack traces too. 

Table 3 characteristics of the dataset 

Data Eclipse 

Total number of reports 455,700 

Total number of bug reports 388,827 

Total number of enhancement reports 66,873 

Total number of bug reports with stack traces 42,853 

Total number of duplicate bug reports with stack traces 8,834 

Total number of groups of duplicate bug reports with stack trace 3,278 

The dataset contains Eclipse bug reports from October 2001 to February 2015. This dataset contains 

455,700 reports, of which 388,827 are bugs and 66,873 are labelled as enhancement (see Table 3). Among 

all these bugs, 42,853 had one or more stack traces in their description and, if labelled as duplicate, can 

be used to assess duplicate detection capability of our approach. We have a total of 8,834 duplicate bug 

reports that are distributed in 3,278 groups which contain at least two duplicates. 
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5.3.2. Dataset Analysis 

In Eclipse, almost 68% of duplicate bug report groups contain only two bug reports, while the other 32% 

are distributed among groups of 3 or more (see Figure 18). Pursuing this further, the fact that the duplicate 

bug report groups rarely contain more than six duplicate bug reports shows that the problem of detecting 

duplicate bug reports in the Eclipse bug repository is challenging. Most of the time, there exists only one 

duplicate bug report for each bug report in the repository.  

To compare the difference when using package names instead of functions, we measure the total number 

of unique functions and packages. The result is shown in Figure 19. It shows the number of unique 

functions and unique packages in the Eclipse dataset between 2002 and 2014. For the bug reports 

submitted in 2002, the number of functions is 7,670 compared to 534 packages (which represents only 

7% of the number of functions). The bug reports submitted until 2014 contain 130,483 unique functions 

defined in only 9,733 packages (7.4%). Clearly, the use of package names instead of functions is a suitable 

abstraction level for detecting duplicate bug reports size-wise. 

 
 

Figure 18 The number of duplicate reports in all duplicate bug reports groups in Eclipse 
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Figure 19 Cumulative number of distinct functions and packages in Eclipse 

We also studied the period in which most of the duplicate reports appear. This can help design an 

approach that considers only the periods where most of the duplicate reports are submitted. For 

example, Runeson et al. [RAN07] conducted a study on the Sony-Ericsson bug repository and concluded 

that a time window of 50 days has the best recall rate for the Ericsson dataset. Their technique uses 

natural language processing of bug report descriptions.  

In the Eclipse dataset, the period in which the duplicate bug reports are submitted is shown in Figure 20. 

In this figure, the time between the creation of the first and last bug report in the group is computed. 

Most duplicate bugs are reported within a time window of 100 days. Almost 81% of bug reports and their 

duplicates can be placed in a time window of 100 days. The last bar in Figure 20 shows the number of 

bug reports which their distance to their duplicate is farther than 500 days. 
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Figure 20 Number of days between the first and last bug report in the duplicate group in Eclipse 

5.3.3. Evaluation Measure 

Precision and recall are popular evaluation metrics for classification problems. In this study, since we seek 

to find the duplicate of a given bug report among existing bug reports, precision and recall do not seem 

to be suitable metrics. Instead, similar to Runeson et al. [RAN07] and Lerch et al. [LM13], in this chapter, 

the duplicate bug report detection accuracy is measured using the recall rate and mean reciprocal rank. 

Recall rate is defined as the percentage of duplicate bug reports from the whole duplicate bug reports 

set in our system, for which their duplicate bug report was found by the approach in the suggested list 

(Equation (1)). 

The list size represents the number of bug reports that are most similar to the incoming report. This is 
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is counted as a detected duplicate. The recall rate is then defined as the portion of bug reports for which 

their duplicate is detected, given a certain list size (Equation (1)). 

The recall rate, however, does not show the position of the duplicate bug report in the suggested list. To 

evaluate the accuracy of the approach based on the rank of duplicate bug reports in the suggested list, 

Lerch et al. [LM13] introduced the mean reciprocal rank (MRR), which is defined as: 

𝑀𝑅𝑅 =
1

𝑄
 ∑

1

𝑟𝑎𝑛𝑘𝑖

| 𝑄 |
𝑖=1    (8) 

In MRR, Q is defined as the number of bug reports, which have at least one duplicate in the list and 𝑟𝑎𝑛𝑘𝑖 

is the rank of the duplicate bug report in the suggested list. MRR approaching one means that the 

duplicate is ranked among the first reports. MRR approaching to zero means that the detected duplicate 

is placed on the bottom of the list.  

5.4. Results and Discussion 

In this Section, we discuss the results of applying DURFEX to stack traces and categorical features of the 

bug reports of the Eclipse bug repository. We also compare our approach to the one presented by Lerch 

et al. [LM13], where the authors used only function names with the term frequency and inverse document 

frequency as the weighing mechanism. Consistent to Lerch et al. [LM13], when using text to detect 

duplicate bug reports, we used bug report descriptions, including stack traces. 

5.4.1. Comparison of DURFEX to the Use of Function Calls 

Figure 21 shows that in the Eclipse dataset, using package names (only 1-gram) (weighed by their 

frequencies of occurrence and inverse document frequency) and categorical features, we have a recall 

rate of up to 84%. This result answers RQ1 and shows that packages and categorical features could be 

used to detect duplicate bug reports. 
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Figure 21 Recall rate of DURFEX with different N-grams compared to the use of unique functions in Eclipse dataset 

Table 4 DURFEX recall rate on the Eclipse dataset 

Approach 
List Size 

2 5 10 15 20 25 

Packages (1-gram) 58% 70% 77% 81% 83% 84% 

Packages (2-gram) 62% 73% 80% 82% 84% 86% 

Packages (3-gram) 62% 73% 80% 82% 84% 86% 

Packages (4-gram) 62% 71% 79% 81% 83% 85% 

Packages (5-gram) 62% 71% 78% 80% 82% 84% 

Functions Only 65% 73% 76% 78% 80% 81% 

Words 44% 52% 58% 63% 65% 68% 

In Figure 21, the recall rate is best (86%)  when using 2-gram sequences, which outperforms using distinct 

function names only (81%) see Table 4. Mean reciprocal rank (Table 5) is almost the same when using             
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1-gram packages and categorical features compared to functions. Using 2-gram, our approach 

outperforms using function calls only. In addition, in all cases using abstracted stack traces outperforms 

using bug reports textual descriptions. This is consistent with the result presented by Lerch et al. in 

[LM13]. Based on the results presented in Figure 21, Table 4 and Table 5 we can answer RQ2 and conclude 

that using packages and categorical features, we are not only able to significantly decrease the number 

of features (which yields lower processing time), but also improving the performance of the approach. 

     Table 5 DURFEX Mean reciprocal rank on the Eclipse dataset 

Approach Eclipse without a time window 

DUEFEX (1-gram) 65% 

DUEFEX (2-gram) 68% 

DUEFEX (3-gram) 68% 

DUEFEX (4-gram) 68% 

DUEFEX (5-gram) 68% 

Function calls 64% 

Bug report descriptions 58% 

 

5.4.2. Comparison of DURFEX to the Use of Function Calls with a Time Window 

As we discussed earlier, the number of days between the submission of a bug report and its duplicate is 

less than 100 days in 81% of cases in the Eclipse dataset. This result encouraged us to study the effect of 

having a time window when detecting duplicate bug reports. This was also used by Runeson et al. [RAN07].  

Figure 22 (Table 6) shows the results of applying DURFEX to the Eclipse dataset comparing bug reports 

that appear only in the time window of 100 days before the submission of a new bug report. The recall 

rate obtained by DURFEX with 2-gram and 3-gram is 89%, which is better than the results obtained when 

using functions only. In Table 7, the mean reciprocal rank is best when using 2-gram (73%) which 

outperforms using distinct functions only (59%) and using bug report description. 
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Figure 22 Recall rate of DURFEX with different N-grams compared to the use of distinct functions in the 100-day-
time period in Eclipse 

Table 6 DURFEX results on the bug reports of the 100-day period on Eclipse 

Approach 
List Size 

2 5 10 15 20 25 

Packages (1-gram) 69% 81% 86% 87% 87% 87% 

Packages (2-gram) 73% 84% 87% 88% 88% 89% 

Packages (3-gram) 73% 83% 87% 88% 88% 89% 

Packages (4-gram) 72% 81% 86% 87% 87% 88% 

Packages (5-gram) 71% 80% 85% 86% 86% 87% 

Functions Only 71% 77% 81% 83% 84% 85% 

Words 55% 65% 72% 76% 78% 80% 

 

These findings are very promising since they suggest that we can detect duplicate bug reports using an 

abstract trace (in our case, a trace of packages) instead of raw traces (this answers RQ1) with better 
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accuracy (this answers RQ2). In the next subsection, we will show that the gain in terms of the execution 

time is huge. DURFEX is considerably more efficient than an approach that uses functions only. 

Table 7 DURFEX Mean reciprocal rank on the bug reports of the 100-day period on Eclipse 

Approach Eclipse without a time window 

DUEFEX (1-gram) 70% 

DUEFEX (2-gram) 73% 

DUEFEX (3-gram) 73% 

DUEFEX (4-gram) 73% 

DUEFEX (5-gram) 73% 

Function calls 59% 

Bug report descriptions 58% 

5.4.3. Comparison of Processing Time Using Functions and Packages 

We measured the time it takes to find a duplicate bug report using DURFEX and compare it to the time it 

takes to find a duplicate report using distinct functions in stack traces to show the performance of DURFEX 

compared to an approach that only uses function calls such as the one from Lerch et al. [LM13]. Table 8 

shows the average execution time when applying DURFEX to Eclipse dataset (2002-2014), compared to 

an approach that uses functions (Figure 23 shows detailed results for each year of the dataset for Eclipse). 

As we can see, with 1-gram, DURFEX execution time represents only 7% of the execution time of the 

approach that uses functions as features. This is a gain of 93%.  When used with 2-gram (that provide the 

best detection accuracy as discussed in the previous Section), DURFEX execution time represents 32% of 

the execution time of the approach that uses functions. In other words, DURFEX (with 2 gram) runs on 

average, around 70% faster than an approach that uses functions only (this addresses the research 

question RQ3). Finally, we want to note that when DURFEX is used with 4 and 5 grams, we start noticing 

a decrease in the processing time gap. This is expected since the larger the N-gram, the more features we 

have, which results in a longer time in processing duplicate bug reports. 
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Combined with the results shown in the previous subsection, we demonstrated that abstract traces of 

package names can be used to detect bug reports with good accuracy while keeping the execution time 

considerably low. We believe that this makes DURFEX a practical approach for detecting duplicate bug 

reports. 

Table 8 Comparing the average execution time in seconds of DURFEX to the execution time of an approach that uses 
function calls applied in ECLIPSE. The percentage indicates the ratio of the execution time of DURFEX to the 

execution time taken by an approach that uses function calls only 

Approach Eclipse 

Use of function calls 5660.71 

DURFEX (1-gram)  400.6 (7%) 

DURFEX (2-gram)  1866.42 (32%) 

DURFEX (3-gram)  4511.89 (79%) 

DURFEX (4-gram)  8382.42 (148%) 

DURFEX (5-gram)  13442 (237%) 
 

 
 

 

Figure 23 Comparison of processing time of in Eclipse dataset 
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5.5. Threats to Validity 

The regular expression used may miss some stack traces causing false negatives. Using a more robust 

parser or a better regular expression may affect the number of available stack traces and thus may change 

the recall rate.  

In our dataset, the completeness of stack traces can be a threat to validity. Since stack traces are copied 

by users who are not necessarily experienced, only a section of the traces that seems to be important 

may have been copied by users in the description of the bug report. Incomplete stack traces may have 

affected the accuracy of the proposed approach. 

In this chapter, we used the Eclipse dataset. To generalize our approach, we need to apply it to more 

datasets (both public and proprietary). 

5.6. Conclusion 

In this chapter, we proposed an approach, called DURFEX that, if implemented in bug tracking systems, 

can facilitate the process of bug handling by automatically detecting duplicate reports. Our approach is 

based on the concept of trace abstraction, where we turn stack traces of function calls to traces of 

packages (by replacing each function with its containing package). DURFEX keeps track of the temporal 

order of calls by creating feature vectors from package name traces using varying length N-grams.  

When applied to the Eclipse bug repository, our approach achieves better results than an approach that 

uses function calls. The difference is that the execution time of DURFEX can be 93% less than an approach 

that uses functions only with the 1-gram, approximately up to 70% less using 2-gram. These results 

demonstrate the effectiveness of DURFEX compared to an approach that uses functions only. 
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Chapter 6 

 Bug Severity Prediction 

The main objective of bug tracking systems is to enable end-users to submit bug reports, where they can 

report various information about the bug. This information includes the textual description, the stack 

trace, and other categorical information, such as the perceived severity of the bug and its operating 

environment (e.g., product, component and operating system). This information is then used by 

developers to fix the bug. 

After a bug report is submitted, a team of triagers examine each report in order to redirect the ones 

requiring fixes to the developers of the system. For software systems with a large client base like Eclipse, 

triaging is a tedious and time-consuming task. To balance the workload of the developers and optimize 

the bug handling process, not all the bug reports are handled at the same time. Bug reports need to be 

prioritized. This is due to the large number of reports received [DMJ11]. Triagers usually prioritize the 

bug reports using the reported bug severity typically. Bug severity is defined as a measure of how a defect 

affects the normal functionality of the system [LDSV11, YHKC12]. It is used as an indicator of how soon a 

bug needs to be fixed [ZYLC15]. 

In theory, a user chooses the severity of a bug according to its defective appearance. However, despite 

the existence of guidelines on how to determine the severity level of a bug, studies show that the severity 

level is often incorrectly assigned by the users [ZCYLL16]. As a result, the severity that is submitted in the 

bug report does not reflect the real impact of the bug on the system, which affects the bug report 

handling process. This is mainly due to the fact that users are not expert in the system domain, so they 

assign incorrect severity levels to the bugs. An inaccurate severity level causes a delay in the processing 

of the bug reports [ZCYLL16]. 
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To address this issue, several prediction methods [LDSV11, AADPKG08, MM08] have been developed to 

predict the correct severity level of a bug. These techniques treat the problem as a classification problem 

by learning from historical bug reports in order to classify the incoming ones. They use mainly the words 

in the bug report descriptions as the main features for classification. 

In this chapter, we propose two new bug severity prediction techniques. An approach based on stack 

traces and another approach based on stack traces and categorical features. We show that stack traces 

could be used to predict the severity of bugs more accurately than bug reports descriptions. We also 

show that adding categorical information to the stack traces further improves the severity prediction 

accuracy. To the best of our knowledge, this is the first time that stack traces are used to predict the 

severity of bugs. We evaluate our approach on 11,825 and 153,343 bug reports from Eclipse and Gnome 

bug repositories respectively. 

This chapter is organized as follows: We discuss the features used for severity prediction in Section 6.1. 

The Severity labels of Gnome and Eclipse dataset is explained in Section 6.2. The proposed approaches 

are explained in Section 6.3. We discuss the dataset, evaluation approach and results in Section 6.4. 

Threats to validity are presented in Section 6.5. The conclusion is presented in Section 6.6. 

6.1. Bug Report Features 

A bug report consists of the bug description, the bug stack trace and other categorical information.  Bug 

report description provides information about bug report using natural text, and stack trace provides 

more information about the execution path of the software when it crashed. Categorical information in 

the bug report provides information about the environment in which the bug has been discovered. Such 

information is important when assigning a bug severity, particularly for system and integration bugs, 

which are the most difficult ones to identify at the development time [MM08].  

In this chapter, we choose to use three categorical features to predict the severity of a bug. These three 

categorical features include the product, the component, and the operating system of the bug report. 



65 

 

Each bug report categorical field will be assessed by the triager after being submitted to the bug tracking 

system. The assessed bug report fields, if needed, will be further adjusted by the triagers who are experts 

in the software system. 

The severity of a bug is defined as a measure of how much the bug affects the functionality of a software 

system [LDSV11, YHKC12]. If a bug stops the main functionality of the software system (e.g. the Eclipse 

IDE editor stops responding) then we can categorize that as a high severity bug. Eclipse and Gnome are 

both platforms which are composed of different products. We chose product as one of the categorical 

features because bugs that are bounded to products which are crucial for the main functionality of the 

software system could be an indicator of high severity bugs. Each product is composed of a set of 

components. Components are used in bug reports to locate defective locations more precisely inside 

each product. Since not all components of a product, which controls important functionality of a software 

system, are of the same importance to the functionality of the product, we also use components as 

another categorical feature for predicting the severity of bugs. Furthermore, when a software system 

runs on different operating systems, different types of functionalities could be expected. Software 

behaviour is usually related to the operating system it is being run on. We expect the similarity of bugs 

caused by running software on the same operating systems to be a better indicator for severity 

prediction. We did not include the version of the software, since a bug may exist in multiple versions of 

the software and not be version specific. A bug can be reported by many different users using different 

versions while having the same underlying reason and severity. 

6.2. Levels of Bug Severity 

Severity can be manually assigned by a user and describes the level of the impact of a bug. The followings 

are the severity levels that can be found in Eclipse and Gnome bug tracking systems: 
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o Blocker4 severity shows bugs that halt the development process. Blocking bugs are the bugs that 

do not have any workaround.  

o Critical4 bugs are the bugs that cause loss of data or sever memory leak.  

o Major4 bugs are the bugs that are a serious obstacle to work with the software system.  

o Normal4 bugs are advised to be chosen when the user is not sure about the bug or if the bug is 

related to documentation.  

o Minor4 bugs are the ones that are worth reporting but do not interfere with the functionality of 

the program.  

o Trivial4 bugs are cosmetic bugs.  

o Enhancements4 bugs are the gray areas, including new features that are not considered a bug. 

There are two types of severity prediction techniques based on the level of granularity of the severity 

labels (coarse-grained and fine-grained severity prediction). In the literature, many studies focused on 

coarse-grained severity prediction, in which, the severity of a bug takes two values: non-severe or severe. 

In these studies [LDSV11, LDGG10], severe bugs are bugs with Blocker, Critical or Major severity, while 

non-severe bugs are bugs with Minor or Trivial severity [LDSV11]. Non-severe bugs can stay in a bug 

routing queue for a longer period of time, while severe bugs must be routed immediately to the 

developers to provide fixes. In fine-grained severity prediction [TLS12], each of the severity labels is 

considered separately and is not abstracted out to non-severe and severe categories. This helps bug 

triagers to optimize resources more efficiently. In this chapter, we focus on fine grain severity prediction 

approaches. 

 

 

                                                                 
4 https://wiki.eclipse.org 



67 

 

6.3. The Proposed Approach 

In this Section, we propose a new severity prediction approach that uses stack traces to predict the 

severity of bugs. We also propose an approach, which predicts the severity of bugs using the combination 

of stack trace and categorical information. We predict severity by calculating the similarity of each 

incoming bug report to all the previous bug reports in the bug tracking system. The similarity of bug 

reports is calculated based on the linear combination of the similarity of their stack traces and the 

similarity of their categorical features including product, component and operating system. The severity 

of the bug report is then selected based on the severity of the K nearest neighbour (K nearest bug reports) 

to the incoming bug. 

6.3.1. Predicting the Bug Severity Using Stack Traces and Categorical Features 

We follow an approach based on the linear combinations of stack traces and categorical features similarity 

to calculate the similarity of bug reports and predict the severity of bugs based on stack traces and 

categorical features. Given two bug reports (𝐵1, 𝐵2) the combined similarity is calculated as follows: 

SIM (𝐵1, 𝐵2) =    ∑ 𝑤𝑖 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
4
𝑖=1  (9) 

Where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 𝑎𝑛𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 are defined as follows: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 =   𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒𝑠  

𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 =  {
1               𝑖𝑓 𝐵1. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐵2. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 =  {
1           𝑖𝑓 𝐵1. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐵2. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 =  {
1         𝑖𝑓 𝐵1. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐵2. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚
0                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Based on Equation (9), the similarity of two bug reports is the linear combination of their corresponding 

stack traces and categorical features similarities. In Equation (9) similarity of categorical features is one 

if they are the same and zero if they are not. The approach which predicts severity based on stack traces 

only is explained in Section 6.3.2. The method used to extract features (stack trace and categorical) is 
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explained in Section 6.3.3 , and the method used for calculating the similarity of stack traces is explained 

in Section 6.3.4. The K nearest neighbour method used for predicting severity is explained in Section 

6.3.5. The introduced similarity function in Equation (9) has four tuneable parameters                                                                 

wi: (w1, w2, w3, w4), which represent the weights of each feature. These four parameters must be 

optimized to reflect the importance of each feature. To tune these parameters, we used an adaptive 

learning approach that uses a cost function and gradient descent in a similar way to the one used by                                          

Sun et al. [SLKJ11]. The format of our training set is similar to the one used by Sun et al. [SLKJ11]. The 

dataset contains triples in the form of (q, rel, irr) where q is the incoming bug report, rel is a bug report 

with the same severity and irr is a bug report with a different severity. The method used to create the 

training set (TS) is shown in Figure 24. 

TS = ∅: training set 
N>0: size of TS 
G: Group of bug reports with the same severity 
For each Group G in the repository do 
   R= all bug reports in Group G 
   For each report q in R do 
        For each report rel  in R-{q} do 
             For i=1 to N do 
                    Randomly choose a report irr out of R 
                   TS=TS U  {(q,rel,irr)} 
             End for 
        End for 
   End For 
End for 
Return TS 

Figure 24 Training Dataset 

Based on Figure 24, at the first step bug reports are grouped based on the severities. Next, for each bug 

report (q) in each severity group, we need to find bug reports which have the same severity and bug 

reports with other severities.  We chose a bug report from the same severity group (rel) and another bug 

report from another severity group (irr). The process continues till we create all (rel, irr) pairs for the bug 

report (q). We continue the same steps for all the bug reports in our training set to create the (q, rel, irr) 

triples. 
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As explained earlier, to optimize the free parameters (𝑤1, 𝑤2, 𝑤3, 𝑤4), we need to define a cost function 

based on the created triple format. The selected RankNet cost function [SLKJ11] is shown in (7). Our goal 

is to minimize the defined RankNet cost function. The cost function is minimized when the similarity of 

bug reports with the same severity (defined in Equation (9))  is maximized, and the similarity of the bug 

reports with different severities is minimized. To minimize the above cost function, we used a gradient 

descent algorithm as shown in Figure 16. 

6.3.2. Predicting Severity Using Stack Traces 

To predict severity using stack traces only, the similarity of bug reports is defined as the similarity of their 

stack traces only. When predicting the severity of bugs using stack traces and categorical features, we 

needed a separate training step to tune the importance (weight) of similarity of stack traces and 

categorical features. However, since the approach which uses stack traces to predict severity of bugs 

considers the similarity of bugs as similarity of their stack traces, we do not have tunable parameters and 

we do not need separate training phase for tuning those parameters.  

6.3.3. Bug Features Extraction (Stack Traces and Categorical Features) 

In Bugzilla, users copy the stack trace of a bug inside the description of the bug report. To identify and 

extract these traces, we use the regular expression of Figure 5 of Section 3.1 [LM13]. Moreover, to extract 

stack traces form the Gnome bug repository, we defined and implemented the regular expression 

presented in Figure 6 of Section 3.2. Normally, categorical features can be found in the XML preview of a 

bug report.  Different categories use different XML tags that conform to the Bugzilla schema. In our work, 

we implemented a custom parser to extract this information from the bug reports XML previews of Eclipse 

and Gnome bug tracking system. 
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6.3.4. Stack Trace Similarity 

For each incoming bug report, its stack trace and the stack traces of all bug reports previous to that in the 

bug tracking system are extracted. We create feature vector from all distinct functions from the extracted 

stack traces, then we weigh the feature vector for each stack trace using term frequency and inverse 

document frequency of Equation (3) and compare the weighed feature vectors together using cosine 

similarity of Equation (6).  

6.3.5. KNN Classifier for Severity Classification 

After calculating the similarity of bug reports using either the linear combination of their stack traces and 

categorical feature similarity or their stack traces similarity only, we use KNN to predict bug report 

severity. KNN is an instance-based lazy learning algorithm [TLS12]. Given a feature vector, KNN returns 

the K most similar instances to that vector. Following a typical KNN classification algorithm, in our case, 

KNN has two phases: In the first phase, the similarity of the incoming bug report 𝐵𝑖  to all the bug reports 

in the training set is calculated. Accordingly, based on the value of (k), which is a constant value that 

defines the number of returned neighbours, the algorithm returns the K nearest relevant instances. In the 

second phase, a voting algorithm (e.g., majority voting) among the labels of the k most similar instances 

is used to classify the incoming bug report 𝐵𝑖. The label of instance X (i.e., the instance that corresponds 

to 𝐵𝑖)  can be determined given the labels set C by majority voting as in Equation (10) [PF13]. 

C(X) = 
𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑗  ∈ 𝐶 𝑠𝑐𝑜𝑟𝑒 (𝑐𝑗 , 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋)) (10) 

In Equation (10) 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋) is the K nearest neighbours of instance X, argmax returns the label that 

maximizes the score function, which is defined in Equation (11) [PF13]. 

Score (𝑐𝑗 , 𝑁) =  ∑  [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁   (11) 

In Equation (11), 𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗 returns either one or zero. It is one when 𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗 and zero 

otherwise. In Equation (11), the frequency of appearance of a label is the only factor that determines the 
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output label. Finally, the label with the highest frequency among K labels is chosen as the label of the 

incoming bug report. 

While the score function in Equation (11) shows promising results, to further enhance the prediction 

capability of our approach, we also need to consider the similarity of each top K returned bug reports by 

giving more weights to the label of the bug reports that are closer to the incoming bug report. The reason 

is that, bug reports that are closer to the incoming bug report 𝐵𝑖  will most probably have the same label 

as 𝐵𝑖. 

If we assume the distance of the closest bug report in the sorted list as 𝑑𝑖𝑠𝑡1 and the distance of the 

farthest bug report in the retrieved list as 𝑑𝑖𝑠𝑡𝑘, then the weight of each label in the list can be calculated 

as Equation (12), as discussed by Gou et al. [GDZX12], where 𝑑𝑖𝑠𝑡𝑖 is the distance of bug report i. 

𝑤𝑖 = {

𝑑𝑖𝑠𝑡𝑘 −  𝑑𝑖𝑠𝑡𝑖

d𝑖𝑠𝑡𝑘− 𝑑𝑖𝑠𝑡1 
, 𝑖𝑓  𝑑𝑖𝑠𝑡𝑘  ≠  𝑑𝑖𝑠𝑡1 

1 ,                 𝑖𝑓 𝑑𝑖𝑠𝑡𝑘  =  𝑑𝑖𝑠𝑡1 
   (12) 

Equation (12) ensures that higher weights are given to bug reports that are closer to the incoming bug 

report. We need to update the score function in Equation (11) to incorporate the weights calculated in 

Equation (12). The updated score function is shown in Equation (13) [PF13]: 

Score (𝑐𝑗 , 𝑁) =  ∑ 𝑤(𝑥, 𝑦)  ×  [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁  (13) 

where w(x,y) is the weight of each instance in the top k similar returned instances which is calculated by 

Equation (12) according to its distance to the incoming bug report  𝐵𝑖  corresponding to instance X. After 

calculating the weight of each label, according to Equation (13), the label with the highest weight is 

selected as the output label. 

For using the K nearest neighbour method, we assume that the sets of bugs created by grouping bug 

reports based on their severity label in the dimensional space defined based on Equation (9) has the 

following characteristics. The distance between each bug 𝐵𝑖  and itself is zero. The distance between 𝐵𝑖  
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and 𝐵𝑗 is the same as the distance between 𝐵𝑗 and 𝐵𝑖. If the distance between bug 𝐵𝑖  and 𝐵𝑗 is close and 

the distance between 𝐵𝑗 and 𝐵𝑘 is close, then the distance between 𝐵𝑖  and 𝐵𝑘 is also close. 

6.3.6. Overall Approach 

We used a simple linear model with a gradient descent optimizer in Section 6.3.1 because we want to 

understand the importance of similarity of features. Unlike other models such as neural networks, which 

tend to be hard to interpret, the trained linear model with a gradient descent optimizer could be easily 

interpreted to show the importance of features. Considering that our online approach, for each incoming 

bug report, needs to compare the incoming bug report to all previous bug reports in the dataset and we 

aimed to make the proposed approach easily deployable in practice, we choose to use K nearest 

neighbour as the classification method. 

We explain the Training and Testing phase of our online severity prediction method in this Section.               

Figure 25 shows the overall approach.  

6.3.6.1. Training 

Our training phase is shown in Figure 25. The training phase starts by extracting the main features (Section 

6.3.3) that can be used to predict bug severity, namely, the bug stack traces and the bug categorical 

features. Then, stack traces are mapped to weighed feature vectors. The details of how to create these 

feature vectors for stack traces are explained in Section 5.1. After creating the feature vectors for stack 

traces, similarity analysis (Equation 8) is used to measure the similarity between stack traces of different 

bug reports. We use linear combination (Section 6.3.1) of the corresponding stack traces and categorical 

features similarity to take categorical features into consideration in the final similarity results. The linear 

model is trained using the training dataset build according to Figure 24 using the 10% of the dataset and 

optimized using the gradient descent (Figure 16). The tuned coefficients (𝑤1, 𝑤2, 𝑤3, 𝑤4) are then used in 

the testing phase.  
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Figure 25 Overall Approach 

6.3.6.2. Testing 

Our online severity prediction (depicted in Figure 25) works as follows:  when the system receives a new 

bug report, the bug stack trace is extracted using the same regular expression used in the training part. 

Next, the feature vector is built using all the distinct functions in the stack trace of the new bug report and 

stack traces of all bug reports previous to that in the bug tracking system. The feature vector is weighed 

using TF-IDF. After that, the similarity between the weighed feature vector of the new bug report and the 

weighed feature vectors of the previous bug reports in the dataset (i.e., adjacency matrix representing all 

stack traces of previous bug reports) is calculated. The output of this part is a matrix, which shows how 

similar is the incoming bug-report stack trace to the stack traces of all the previous bug reports. The 
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similarity of the incoming bug report stack trace is then linearly combined with the similarity of its 

categorical features to all the previous bug reports using the tuned coefficients (w1, w2, w3, w4) from the 

training phase. Finally, the linear combined similarity is used to predict the severity of the incoming bug 

using the K-nearest neighbour method. 

6.3.6.3. An example of the approach 

In this Section we give an example of the approach. Let’s consider we have a set of 1000 bug reports 

sorted based on their creation date. Dataset = {𝐵1, 𝐵2, … … , 𝐵1000}. In the first phase, we use 10% of the 

dataset for training 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑏𝑢𝑔𝑠 = {𝐵1, 𝐵2, … … , 𝐵100}. Let’s consider we have two severity labels         

𝑆1 = { 𝐵1, 𝐵3} and 𝑆2 = { 𝐵2, 𝐵4}. Based on Figure 24 we create our training dataset containing triples in 

the form of  (bug, rel, irr), 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {(𝐵1, 𝐵3, 𝐵2), (𝐵1, 𝐵3, 𝐵4), (𝐵2, 𝐵4, 𝐵1), (𝐵2, 𝐵4, 𝐵3)}. Our 

training dataset with 100 bug reports has more bugs with more severity labels, but for simplicity, we gave 

an example of two labels and four bug reports. Next, our training model will be optimized using gradient 

descent (Figure 16). Let’s consider the output of the training phase is that the weight of stack traces 

similarity importance to be w1, the weight of products similarity importance to be w2, the weight of 

components similarity importance to be w3 and the weight of operating systems similarity importance to 

be w4. Next, we use the weights to predict the severity of bugs. 

To predict the severity of bugs, we used bug reports which were not included in tuning the similarity 

weight (w1, w2, w3, w4). In our example 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = {𝐵101, 𝐵102, … … , 𝐵1000}. The dataset is sorted 

based on the creation date of bug reports. In the online approach with the incoming of each bug reports, 

it’s TF-IDF similarity (based on the Equation (9)) to all the previous bug reports in the dataset is calculated.  

 

 

 

Figure 26 Example of online severity prediction approach 

Bug report #500 
Compare similarity of bug#500 
to bug#100-bug#499 using stack 
trace and categorical features 

Take top K bug  
reports 

Predict severity of bug#500 
using K nearest neighbour 
method 

Bug report #100 To 
Bug report#499 
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In this example let’s consider 𝐵500 is reported to the bug tracking system. Based on Figure 26, the 

similarity of 𝐵500 to 𝐵100 - 𝐵499 is calculated. The similarity is defined as TF-IDF similarity of stack traces 

and similarity of product, component and operating system of 𝐵500 to 𝐵100 - 𝐵499.  Based on the 

calculated similarities, K nearest bug report is chosen. Next, based on the K nearest neighbour the 

severity of the 𝐵500 is predicted. 

6.4. Evaluation 

The goal of this Section is to evaluate the accuracy of predicting the severity based on the approach which 

uses stack traces and based on the approach which uses stack trace and categorical features. Both 

proposed approaches are then compared to the approach which uses bug report descriptions. More 

precisely, experiments aim to answer the following questions: 

 RQ1. How much improvement (if any) could be obtained by using stack traces over the 

 approach that uses bug report descriptions? 

 RQ2. How much improvement (if any) could be obtained by using stack traces over the random 

 classifier approach? 

 RQ3. Using the KNN classifier for predicting bug severity, how the different number of 

 neighbours can affect the F-measure of the approach which uses stack traces? 

 RQ4. How adding categorical features to the stack traces affects the accuracy of the severity 

 prediction compared to solely using stack traces and compared to using bug report descriptions? 

 RQ5. How adding categorical features to the stack traces affects the accuracy of the severity 

 prediction compared to the random classifier approach? 

 RQ6. Using the KNN classifier for predicting bug severity, how the different number of 

 neighbours can affect the F-measure of the approach which uses stack traces and categorical 

 features? 
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Answering question 1,2 shows the importance of using stack traces as an alternative to using bug report 

descriptions and random approach. Answering question 3 shows the sensitivity of the proposed approach 

based on the number of nearest neighbours chosen. Answering question 4,5 explains how adding 

categorical features can contribute to predicting the severity of bugs. Answering question 6 shows the 

sensitivity of the approach which uses stack traces and categorical features to the number of nearest 

neighbours. 

6.4.1. Experimental Setup 

In our experiments, we compared our approaches to the approach that uses the description of bug 

reports. In this Section, we describe the dataset used in the experiment and provide some statistical 

analysis regarding the dataset. 

6.4.1.1. The Datasets 

The datasets used in this chapter consists of bug reports of the Eclipse and Gnome bug repositories. Both 

of these datasets are used extensively in different studies [YZL14, BINF12, ZYLC15, SHH16]. 

In these repositories, stack traces are embedded in the bug report descriptions. As explained earlier, to 

extract the content of the stack traces in Eclipse, we use the same regular expression presented by Lerch 

et al. [LM13], and for Gnome, we use the regular expression showed in Figure 6. 

Normal severity is the default choice when submitting a bug report, so it is usually chosen arbitrarily. 

Consistent with previous severity prediction studies (e.g. [LDSV11, AADPKG08, MM08]), we remove bugs 

with normal severity. Furthermore, Enhancements are not considered as bugs and are removed from 

datasets when performing the experiments [LDSV11].  

Triagers analyze bug reports in the bug tracking system to assess the validity of bug report fields. Since 

users are not expert in the software system, triagers further adjust and reassign bug reports fields based 

on the bug report description provided by the user. Consistent with the previous studies [MM08, 
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LDGG10, LDSV11, YHKC12, TLS12, YZL14, ZYLC15], we use the severity of bugs from the bug tracking 

system as the label. These severities are set by users and then further adjusted by bug triagers after the 

user reports the bug.  Figure 27 shows the process of assessing bug severities by the triagers after the 

bug report is submitted by the user [SSG15]. 

 

Figure 27 The bug handling process 

We used the Eclipse dataset for the period of October 2001 to February 2015, having a total of 455,700 

bug reports, of which 297,151 had Normal severity and 66,873 were labelled with Enhancement severity. 

Also, 1,000 bug reports were removed from the dataset history by the Eclipse Bugzilla administrators for 

maintenance purposes. After removing bug reports with Normal and Enhancement severity, we have 

90,676 bug reports with severities other than Normal or Enhancement. After applying regular expression, 

we had 11,925 bug reports having at least one stack trace in the description. Stack traces with less than 

three functions are removed since they are partial stack traces and may mislead the approach. The 

resulting dataset contains a total of 11,825 bug reports having 17,695 stack traces in their descriptions. 

The Gnome dataset used in this chapter contains bug reports from February 1997 to August 2015. The 

dataset contains 752,300 reports, out of which 57,446 are labelled as enhancement and 297,831 are 

labelled as normal. Also, 54,500 bug reports were later removed from the dataset (see Table 9). From the 

remaining 342,523 bug reports, 153,385 bug reports come with one or more stack traces in their 

description. After eliminating bug reports with partial stack traces, we had 153,343 bug reports with at 

least one stack trace in their description. 

Since in this chapter, we removed bug reports with normal and enhancement severity, the number of 

bug reports with stack traces is different from the number of bug reports with stack traces presented in 

Table 1 and Table 2 for both datasets. 

Bug report analysis 

Assessment of bug     
report severity and    

adjusting it if necessary  

Assignment of bug 
report to developers 
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Table 9 Characteristics of the datasets 

Data Eclipse Gnome 

Total number of reports 455,700 752,300 

Total number of enhancement reports 66,873 57,446 

Total number of bug reports with normal severity 297,151 297,831 

Total number of bug reports removed from dataset 1000 54,500 

Total number of bug reports excluding normal and Enhancement  90,676 342,523 

Total number of bug reports with stack traces 11,925 153,343 

6.4.1.2. Dataset Setup 

In our approach, we sort bug reports by their creation date and use the first 10% of the datasets to train 

the linear combination model of Equation (9) and optimize the coefficients using Figure 16. We tested 

different training dataset sizes for both datasets and did not find noticeable differences for coefficients of 

Equation (9) by increasing training dataset size beyond 10% of the bug reports. After optimizing the 

coefficient, we used the remaining 90% of the dataset for testing our online approach, as explained in 

Section 6.3.6.2. According to our method, bug reports are sorted based on the creation date in the bug 

tracking system, with the arrival of each bug report in the test set its stack trace is compared to stack 

traces of all previous bug reports in the test set and then using the obtained coefficients in the training 

phase, the similarity of the bug reports is calculated, and the k-nearest neighbour approach is then used 

for predicting bug severity. For instance, assume our test set has N bug reports, in our online severity 

prediction method with the arrival of M’th bug report (0<M<=N), all the M-1 previous bug reports in the 

test set are compared to that bug report and their similarity is calculated using the linear model of  

Equation (9). The K nearest neighbour is then used to predict the severity of the M’th incoming bug. 

Since bug reports follow a temporal order based on their creation date, we did not use the traditional   

10-fold cross-validation to validate our model. To be practical in the sense that it can be deployed in an 

actual bug tracking system, we create an ordered list of bug reports based on their creation date in the 
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bug tracking system. When predicting the severity of an incoming bug report, we compare it, using our 

linear model, to bug reports that were reported previous to the incoming bug report only. 

6.4.1.3. Dataset Analysis 

The distribution of severities of bugs in both datasets is not balanced. Overall, more bugs are having 

Critical or Major severities than other severity labels. The distribution of the severity labels in our datasets 

is shown in Figure 28. Note that for Gnome, the severity label distribution is shown using the logarithmic 

scale since the dataset is much more unbalanced compared to Eclipse. 

These figures show that the distribution of severity labels in Eclipse and Gnome are unbalanced, favouring 

Critical and Major Severity labels.  In the next Section we discuss the approach that is used to tackle the 

unbalance dataset distribution problem. 

  

1) Eclipse dataset 2) Gnome dataset 

Figure 28 Distribution of the severity labels in Eclipse and Gnome datasets 

6.4.2. Cost-sensitive K Nearest Neighbour 

In an ideal scenario, the distribution of labels in the training set should be balanced (there are similar 

sample sizes for each label). Unfortunately, this scenario is not common for large industrial systems. For 
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example, in Eclipse and Gnome datasets, some severities have fewer bug reports in the bug tracking 

system and the distribution of the labels is unbalanced. 

Training a classifier on an unbalanced dataset makes it biased toward the majority class labels. This is due 

to the fact that the classifier tends to increase the overall accuracy, which leads to ignoring minority class 

samples in the training set. Different approaches exist to overcome the unbalance dataset problem. 

These approaches include oversampling the minority class, under-sampling the majority class or creating 

a cost-sensitive classifier [ZM03]. We experimented with all these approaches and observed that                

cost-sensitive classification [ZM03] is the most suitable approach to overcome the unbalanced dataset 

problem in Eclipse and Gnome datasets. 

To transform a classifier into a cost-sensitive classifier, we need the output of the classifier to be equal 

to the probability of a bug belonging to each severity class. Furthermore, we need to define a cost matrix. 

Using a cost matrix, the probability of each label is replaced by the average cost of choosing that class 

label. Indeed, to change a classifier to a cost-sensitive classifier [ZM03], we don’t need to change the 

internal functionality of the classifier. Instead, according to the output probabilities and using a cost 

matrix, the classifier makes an optimal cost-sensitive prediction [ZM03]. 

In Equation (13), the K-nearest neighbour returns weight for each label, then the label with the largest 

weight is chosen. To make our classifier cost-sensitive, in the first step, we need to adjust the outputs to 

represent probabilities instead of weights. For example, if B is a bug report in a testing dataset that has 

m classes. The classifier must provide a list of probabilities 𝑝1 … … … 𝑝𝑚, in which each 𝑝𝑖  shows the 

probability that the bug (B) severity label belongs to the 𝑖𝑡ℎ class. Since the summation of all probabilities 

should be equal to one (i.e., 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑚 =1), the weights need to be normalized. 

To calculate the probability of each label, considering that the output of our classifier is 𝑤1 … … … 𝑤𝑖 we 

use Equation (14) [SHH16], where W=𝑤1 + ⋯ + 𝑤𝑚. 
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𝑝𝑖 =  
𝑤𝑖

𝑊
            (14) 

The probability of each label is then changed to the classification cost of each class label by a cost matrix 

which contains the misclassification cost of each class label. We set the misclassification cost in a cost 

matrix that corresponds to the confusion matrix [LD13] in Figure 29. 

 Actual 

Positive Negative 

Predicted 
True positive False positive 

False negative True negative 

 Figure 29  Confusion matrix 

In the confusion matrix, higher values of true positives and true negatives are favourable, thus we set the 

misclassification cost of these two values to zero. However, the cost of false positives and false negatives 

is selected based on the classification context. 

We overcome the unbalance distribution problem by assigning high misclassification costs to the            

under-sampled class labels and low misclassification cost to over-sampled class labels. We chose the cost 

of the misclassification of each class label to be reciprocal to the number of existing instances of that 

class divided by the number of instances of the majority class (see Equation (15)). In this case, classes 

which have a lower number of instances will have higher misclassification cost and classes which have a 

high number of instances will have lower misclassification cost. If we consider having C different classes 

and assume 𝑠𝑗 is the number of instances of class j in the training set and s is the number of instances of 

the majority class in the training set, then the misclassification cost of each class  𝐶𝑗 is calculated by 

Equation  (15).  

𝑀𝐶𝑗 =  
𝑆

𝑆𝑗
        (15) 
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The cost matrix is constructed using the misclassifications cost based on Equation  (15). Then, we need 

to calculate the classification cost of each class label based on the cost matrix and the calculated 

probabilities based on Equation  (14). Assume we have M classes and the incoming bug report belongs 

to each of these classes with probabilities of 𝑃1 … … 𝑃𝑚,  and assume that each class has a 

misclassification cost of 𝐶𝑂1 … … 𝐶𝑂𝑚, then the cost of assigning the bug report to each of those classes 

is calculated by  (16) [QWZZ13]. 

𝐶𝐶𝑂𝑖 =  ∑ 𝐶𝑂𝑗  × 𝑃𝑗𝑗 ∈𝑚 𝑎𝑛𝑑 𝑗≠𝑖   (16) 

Finally, the class label with the lowest classification cost is selected as the output of the classifier. 

Misclassification costs, if assigned improperly, may degrade the classification accuracy of the classifier. 

In this chapter, we used Equation (15) to determine the misclassification costs. Furthermore, to avoid 

very high misclassification costs that may be associated with some class labels, we choose a threshold of 

ten to be the maximum misclassification cost.  

For example, let us assume the misclassification cost of Blocker, Critical, Major, Minor and Trivial are 4.3, 

2.5, 1, 6.2 and 10 respectively. Let us also assume that after applying K-nearest neighbour and calculating 

probabilities based on Equation (14), the bug severity is 20% Blocker, 10% Critical, 30% Major, 30% 

Minor, and 10% trivial. According to  Equation (16), we will have the cost of predicting each severity label 

and choose the label with the lowest classification cost as follows: 

𝐶𝑜𝑠𝑡𝐵𝑙𝑜𝑐𝑘𝑒𝑟 = 0 ∗ 0.2 + 2.5 ∗ 0.1 + 1 ∗ 0.3 + 6.25 ∗ 0.3 + 10 ∗ 0.1 =  3.425 

𝐶𝑜𝑠𝑡𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 4.3 ∗ 0.2 + 0 ∗ 0.1 + 1 ∗ 0.3 + 6.25 ∗ 0.3 + 10 ∗ 0.1 =  4.035 

𝐶𝑜𝑠𝑡𝑀𝑎𝑗𝑜𝑟 = 4.3 ∗ 0.2 + 2.5 ∗ 0.1 + 0 ∗ 0.3 + 6.25 ∗ 0.3 + 10 ∗ 0.1 =  3.985 

𝐶𝑜𝑠𝑡𝑀𝑖𝑛𝑜𝑟 = 4.3 ∗ 0.2 + 2.5 ∗ 0.1 + 1 ∗ 0.3 + 0 ∗ 0.3 + 10 ∗ 0.1 =  2.41 

𝐶𝑜𝑠𝑡𝑡𝑟𝑖𝑣𝑖𝑎𝑙 = 0 ∗ 0.2 + 2.5 ∗ 0.1 + 1 ∗ 0.3 + 6.25 ∗ 0.3 + 0 ∗ 0.1 =  2.985 

 Figure 30 cost of predicting each severity label 
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Based on the proposed cost-sensitive K nearest neighbour method, we update our testing phase to take 

into account the probability of each severity and the cost of classifying each bug to that severity using 

the misclassification cost matrix. Finally, the severity with the least classification cost will be selected as 

the output label (Figure 31 shows this process). 

 

Figure 31 Updated testing phase using cost-sensitive k nearest neighbour 

6.4.3. Predicting Severity of Bugs Using Description 

To predict the severity of a bug using the bug report description, we extract descriptions from all bug 

reports in our dataset. We tokenize words in the description of bug reports by splitting the text using 

space and new line character. We used the raw tokenized words for building a feature vector for each bug 

report. We build the feature vector using the distinct words in all bug report descriptions in our dataset.  

We use TF-IDF to weight the feature vectors, just as we did in our approach (Section 6.1). In this approach, 

each bug report description is represented by a vector built based on the frequency of occurrence of each 

word (Equation (2)) multiplied by inverse document frequency of each word (Equation (3)). We follow 

the same online severity prediction approach, discussed in (Section 6.3.6.2 ) for predicting severity based 

on weighed feature vectors constructed from bug report descriptions. 
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We create an ordered set of bug reports based on their creation date. We then exercise the scenario in 

which each bug report in our ordered set is compared to all previous bug reports using their 

corresponding weighed feature vectors. After calculating the distance of each bug report to all the 

previous bug reports, we use the K nearest neighbour bug reports to determine the bug severity label 

using (Equation (13)). Based on the K nearest neighbour of (Equation (13)), the severity of an incoming 

bug report is selected based on the severity label of its nearest neighbours weighed using their distance 

to the incoming bug report. 

Furthermore, we tackle the unbalanced dataset distribution problem by using the cost-sensitive k nearest 

neighbour method with the same setting as for our approach using stack traces and categorical features. 

In this approach after calculating the probability of each severity label, we use cost-sensitive k nearest 

neighbour of Equation (16) which calculates the cost of choosing each severity label by considering the 

misclassification cost of each severity label calculated using Equation (15) to predict the severity of a bug. 

For example, assume our test set contains sorted bug reports {𝐵𝑀 , … … , 𝐵𝑁}, to predict the severity of                           

𝐵𝐽 (M < J < N), we compared 𝐵𝐽 description to all the bug reports in {𝐵𝑀 , … , 𝐵𝐽−1}, then we predict the 

severity of 𝐵𝐽 using the Equation (16). 

6.4.4. Predicting Severity of Bugs Using a Random Classifier 

We also compare the result of the approach, which uses stack traces and the approach which uses stack 

traces and categorical features to a random classifier, which selects a severity label for each bug in 

proportion to the different class labels. Assume we have N severity classes and the number of bug reports 

that belong to each class is 𝐵𝑠1
… … 𝐵𝑠𝑁

. If we randomly select severity labels for each bug, then our 

accuracy of predicting the severity label 𝑆𝑖 can be calculated using (17): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆𝑖)   =
𝐵𝑆𝑖

∑ 𝐵𝑆𝑗
𝑁
𝑗=1

    (17) 
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6.4.5. Severity Prediction Approaches Setup 

For all the models, we followed the same approach to address the unbalanced dataset distribution 

problem. We explained the heuristic used for choosing misclassification costs in Section 6.4.2. For all the 

models, the returned list size of the k-nearest neighbour varies from 1 to 10 to assess the severity 

prediction accuracy with different returned list sizes. For the approach that use stack traces and 

categorical features, we initialized the four weights (coefficients initial value) from a normal distribution 

with zero mean and a standard deviation of 0.1 and used 0.001 as the learning rate. We also trained the 

model using the first 10% of the dataset as explained in Section 6.6.2.  

6.4.6. Evaluation Metrics 

In this study, we use the precision, recall and F-measure metrics to evaluate our approach. If we consider 

the number of bugs for which we predict that they should have a severity label 𝑆𝐿  as 𝑃𝑆𝐿
 and the number 

of bugs for which we correctly predict the severity label to be 𝑆𝐿 as 𝐶𝑆𝐿
 then the precision is defined by 

Equation  (18): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑆𝐿) =
𝐶𝑆𝑙

𝑃𝑆𝑙
 
     (18) 

Furthermore, if we consider the number of bugs that actually have the severity label 𝑆𝐿 (ground truth) as 

𝑇𝑆𝐿
 then recall is calculated by Equation (19):  

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝐿)   =
𝐶𝑆𝑙

𝑇𝑆𝑙

     (19) 

In this study, a confusion matrix is built for each severity label. Then using the built confusion matrix, 

recall and precision are calculated. Since precision is the ratio of correctly predicted labels of a specific 

severity to the total number of labels predicted to have that severity, it actually measures the correctness 

of the approach. Meanwhile, since recall is the number of correct predictions of a severity to the total 

number of instances of that severity, it actually shows the completeness of the approach. However, the 

common practice is to combine these two metrics together to have a better perception of the accuracy 
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of the severity prediction results. A common approach for combining these two metrics is F-measure.                

F-measure is the harmonic mean of precision and recall [GS14]. F-measure is calculated according to 

Equation (20). 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (20) 

6.4.7. Evaluation Results 

In the rest of the chapter, we refer to the approach that uses stack traces alone as  𝐵𝑆𝑃𝑆𝑇, the approach 

that uses bug report descriptions as 𝐵𝑆𝑃𝐷𝐸,  and the approach that uses stack traces and categorical 

features as 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹. The approach that uses bug report descriptions predicts the severity of bug reports 

using the description of bug reports, which also include stack traces since stack traces are copied inside 

bug report descriptions. 

In this section, we discuss the results of applying the proposed approach to stack traces and categorical 

features of the bug reports of the Eclipse and Gnome datasets. We show that 𝐵𝑆𝑃𝑆𝑇 outperforms 𝐵𝑆𝑃𝐷𝐸. 

We also show how 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 performs better compared to 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸. When using a K-nearest 

neighbour classifier, one of the most important factors is the value of K. The value of K shows the number 

of most similar items, which are used to choose the label. In our experiments, we recorded precision and 

recall and calculated F-measure by varying the value of K from 1 to 10 for each severity label in each 

dataset.   

Figure 32 to Figure 41 show the results for predicting different severity levels by varying list size for the 

Eclipse and Gnome datasets, respectively. We revisit the research questions in light of the results 

presented in Figure 32 to Figure 41. We provide the detailed values of precision, recall and F-measure for 

each of the list sizes for all severity levels for both datasets in Table 10 to Table 19. 
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6.4.7.1. F-measure of 𝑩𝑺𝑷𝑺𝑻 

 

Figure 32 F-measure of predicting different severity levels by varying list size in Eclipse dataset – Critical Severity 
Level 

Table 10 Severity prediction accuracy (Eclipse Critical severity) 

List size 
Bug report description Stack traces Stack trace and categorical features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 28.2% 29.1% 28.64% 31.5% 27.1% 29.1% 34.5% 25.1% 29.14% 

2 26.4% 33.1% 29.37% 30.6% 33.1% 31.8% 33.9% 30.1% 31.88% 

3 26.3% 33.1% 29.31% 30% 34.4% 32% 34.3% 31.4% 32.785 

4 26.3% 33.1% 29.31% 30.3% 34.8% 32.4% 33.3% 37.5% 35.27% 

5 27.5% 34% 30.4% 31.1% 35.6% 33.2% 34.1% 38.2% 36.03% 

6 27.2% 34.1% 30.26% 31.1% 35.2% 33% 33.3% 38.9% 35.88% 

7 28% 34% 30.7% 31.3% 34.5% 32.8% 33.3% 38.1% 35.53% 

8 28% 34% 30.7% 31.6% 34.7% 33.1% 33.3% 38.7% 35.79% 

9 28% 34% 30.7% 31.6% 34.6% 33% 34% 38.3% 36.02% 

10 28% 34% 30.7% 31.7% 34.8% 33.2% 32.6% 38.3% 35.22% 
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Figure 33 F-measure of predicting different severity levels by varying list size in Eclipse dataset – Blocker Severity 
Level 

 

Table 11 Severity prediction accuracy (Eclipse Blocker severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 23% 24.6% 23.77% 26.5% 23.5% 24.91% 27.7% 26.2% 26.92% 

2 20% 29.4% 23.8% 23.2% 27.9% 25.33% 24.5% 31.8% 27.67% 

3 20% 32% 26.76% 23% 32% 26.76% 24.2% 36.7% 29.16% 

4 20% 35.3% 28% 23.2% 35.4% 28.03% 23.8% 39.4% 29.67% 

5 20% 36.1% 27.87% 22.7% 36.1% 27.87% 24.2% 40.6% 30.32% 

6 20% 37.3% 27.89% 22.5% 36.7% 27.89% 24.1% 41.4% 30.46% 

7 20% 38% 28.42% 22.7% 38% 28.42% 24% 42% 30.54% 

8 20% 38% 28.63% 22.8% 38.5% 28.63% 23.8% 43% 30.64% 

9 20% 38.1% 28.5% 22.6% 38.6% 28.50% 23.8% 43.6% 30.79% 

10 20% 39% 28.53% 22.5% 39% 28.53% 23.5% 44% 30.63% 
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Figure 34 F-measure of predicting different severity levels by varying list size in Eclipse dataset – Major Severity 
Level 

 

Table 12 Severity prediction accuracy (Eclipse Major severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 60% 58% 62.59% 61.7% 54.1% 57.65% 63.1% 62.1% 62.59% 

2 61.1% 45% 57.16% 63.5% 43.2% 51.41% 64.7% 51.2% 57.16% 

3 62% 38% 52.69% 64.5% 35.6% 45.87% 65.9% 43.9% 52.69% 

4 63.3% 33% 49.63% 65.5% 31.7% 42.72% 66.5% 39.6% 49.63% 

5 63% 30.1% 48.03% 66% 29% 40.29% 66.8% 37.5% 48.03% 

6 64.1% 28% 46.76% 66.3% 27.1% 38.47% 67.4% 35.8% 46.76% 

7 65% 26% 46.35% 66.2% 25.8% 37.12% 67.5% 35.3% 46.35% 

8 65% 24.8% 45.44% 66.5% 24.5% 35.80% 67.7% 34.2% 45.44% 

9 65% 23.8% 45.37% 66.9% 23.5% 34.78% 68.6% 33.9% 45.37% 

10 65% 22.7% 45.19% 66.5% 22.7% 33.84% 68.2% 33.8% 45.19% 
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Figure 35 F-measure of predicting different severity levels by varying list size in Eclipse dataset – Minor Severity 
Level 

Table 13 Severity prediction accuracy (Eclipse Minor severity) 

List size 
Bug Report Description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 23.1% 21.4% 22.21% 23.5% 17.6% 20.12% 28.1% 21.1% 24.10% 

2 20.9% 29.3% 24.39% 20.8% 23.8% 22.19% 24.6% 27.6% 26.01% 

3 19.6% 34.7% 25.05% 19.8% 28.6% 23.4% 22.1% 31.5% 25.97% 

4 19.2% 39.2% 25.77% 18.8% 32.1% 23.71% 20.1% 33.5% 25.12% 

5 18.2% 40.9% 25.19% 18.5% 34.8% 24.15% 19.9% 36.9% 25.85% 

6 17.8% 43.35 25.22% 18% 36.2% 24.04% 19.1% 37.4% 25.28% 

7 17.5% 45.7% 25.30% 17.6% 37.7% 23.99% 18.9% 39.2% 25.50% 

8 17.6% 47.1% 25.62% 17.3% 39% 23.96% 18.7% 41.6% 25.80% 

9 17.5% 48.2% 25.67% 17.1% 40% 23.95% 18.5% 43.2% 25.90% 

10 17.3% 49.2% 25.59% 16.8% 40.1% 23.67% 18.6% 44.2% 26.18% 
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Figure 36 F-measure of predicting different severity levels by varying list size in Eclipse dataset – Trivial Severity 
Level 

Table 14 Severity prediction accuracy (Eclipse Trivial severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 6.7% 5.6% 6.10% 5.5% 4.3% 4.82% 7% 5% 5.83% 

2 5.5% 8.1% 6.55% 5.5% 6.8% 6.08% 6.4% 7.2% 6.77% 

3 4.1% 8.1% 5.44% 4.6% 8.5% 5.96% 6.2% 9.8% 7.59% 

4 4.6% 11% 6.48% 5.1% 11.8% 7.12% 5.9% 13.3% 8.17% 

5 4.4% 11% 6.28% 4.3% 11.8% 6.30% 5.1% 13.3% 7.375 

6 3.6% 11% 5.42% 3.8% 11.8% 5.74% 5.2% 14.9% 7.70% 

7 3.2% 11% 4.95% 3.5% 11.8% 5.39% 5.5% 16.5% 8.25% 

8 2.8% 10.5% 4.42% 3.4% 12.6% 5.35% 5.4% 17.3% 8.23% 

9 2.7% 10.5% 4.29% 3.1% 12.6% 4.975 4.9% 17.3% 7.63% 

10 2.6% 10.5% 4.16% 3.1% 13.5% 5.04% 4.8% 18.2% 7.6% 
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Figure 37 F-measure of predicting different severity levels by varying list size in Gnome dataset – Critical Severity 
Level 

Table 15 Severity prediction accuracy (Gnome Critical severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 79% 87% 82.80% 82% 82% 82% 86% 89% 87.47% 

2 79% 87% 82.80% 82% 82% 82% 85% 89% 86.95% 

3 79% 88% 83.25% 83% 83% 83% 85% 90% 87.42% 

4 79% 88% 83.25% 83% 85% 83.98% 85% 90% 87.42% 

5 79% 89% 83.70% 83% 86% 84.47% 85% 90% 87.42% 

6 79% 89% 83.70% 82% 86% 83.95% 85% 90% 87.42% 

7 79% 89% 83.70% 82% 87% 84.42% 85% 90% 87.42% 

8 79% 90% 84.14% 82% 87% 84.42% 85% 90% 87.42% 

9 79% 90% 84.14% 82% 87% 84.42% 85% 91% 87.89% 

10 79% 90% 84.14% 81% 87% 83.89% 85% 90% 87.42% 
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Figure 38 F-measure of predicting different severity levels by varying list size in Gnome dataset – Blocker Severity 
Level 

Table 16 Severity prediction accuracy (Gnome Blocker severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 54% 47% 50.25% 67% 67% 67% 70% 72% 70.98% 

2 54% 47% 50.25% 67% 69% 67.98% 70% 74% 71.94% 

3 56% 48% 51.69% 69% 70% 69.49% 72% 74% 72.98% 

4 57% 47% 51.51% 70% 70% 70% 72% 74% 72.98% 

5 58% 48% 52.52% 70% 69% 69.49% 72% 74% 72.98% 

6 59% 48% 52.93% 70% 69% 69.49% 72% 75% 73.46% 

7 59% 48% 52.93% 70% 69% 69.49% 72% 75% 73.46% 

8 60% 48% 53.33% 69% 69% 69% 73% 73% 73% 

9 61% 48% 53.72% 70% 67% 68.46% 73% 73% 73% 

10 61% 47% 53.09% 70% 67% 68.46% 73% 73% 73% 
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Figure 39 F-measure of predicting different severity levels by varying list size in Gnome dataset – Major Severity 
Level 

Table 17 Severity prediction accuracy (Gnome Major severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 64% 64% 64% 75% 64% 69.06% 77% 69% 72.78% 

2 64% 64% 64% 76% 64% 69.48% 78% 68% 72.65% 

3 64% 65% 64.49% 76% 65% 70.07% 79% 70% 74.22% 

4 64% 67% 65.46% 76% 67% 71.21% 79% 70% 74.22% 

5 65% 68% 66.46% 77% 67% 71.65% 79% 70% 74.22% 

6 65% 68% 66.46% 77% 66% 71.07% 79% 72% 75.33% 

7 65% 69% 66.94% 77% 66% 71.07% 79% 72% 75.33% 

8 65% 69% 66.94% 77% 67% 71.65% 78% 72% 74.88% 

9 65% 7% 67.40% 77% 69% 72.78% 78% 72% 74.88% 

10 66% 71% 68.40% 76% 66% 70.64% 78% 72% 74.88% 
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Figure 40 F-measure of predicting different severity levels by varying list size in Gnome dataset – Minor Severity 
Level 

Table 18 Severity prediction accuracy (Gnome Minor severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 26% 28% 26.96% 26% 18% 21.27% 32% 20% 24.61% 

2 26% 28% 26.96% 27% 18% 21.6% 33% 20% 24.90% 

3 26% 27% 26.49% 295 17% 21.43% 35% 20% 25.45% 

4 29% 27% 27.96% 30% 17% 21.70% 37% 20% 25.96% 

5 32% 26% 28.68% 32% 15% 20.42% 39% 18% 24.63% 

6 36% 265 51.62% 33% 13% 18.65% 40% 17% 23.85% 

7 40% 26% 31.51% 35% 12% 17.87% 42% 17% 24.20% 

8 44% 25% 31.88% 37% 10% 15.74% 44% 17% 24.52% 

9 49% 25% 33.10% 39% 9% 14.62% 46% 16% 23.745 

10 51% 25% 33.55% 40% 8% 13.33% 48% 16% 24% 
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Figure 41 F-measure of predicting different severity levels by varying list size in Gnome dataset – Trivial Severity 
Level 

Table 19 Severity prediction accuracy (Gnome Trivial severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 12% 9% 10.28% 23% 6% 9.51% 33% 12% 17.6% 

2 12% 9% 10.28% 29% 6% 9.94% 33% 12% 17.6% 

3 13% 9% 10.63% 29% 6% 9.94% 33% 12% 17.6% 

4 18% 9% 12% 29% 6% 9.94% 33% 12% 17.6% 

5 23% 9% 12.935 5% 6% 10.71% 33% 12% 17.6% 

6 12% 3% 4.8% 5% 6% 10.71% 40% 12% 18.46% 

7 12% 3% 4.8% 34% 3% 5.51% 50% 15% 23.07% 

8 16% 3% 5% 25% 3% 5.35% 72% 15% 24.82% 

9 20% 3% 5% 25% 3% 5.35% 72% 15% 24.82% 

10 33% 3% 5.5% 25% 3% 5.35% 83% 15% 25.40% 
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Figure 32 to Figure 41 show the F-measure of the 𝐵𝑆𝑃𝑆𝑇 compared to the F-measure of 𝐵𝑆𝑃𝐷𝐸. For Eclipse 

dataset severity prediction using 𝐵𝑆𝑃𝑆𝑇 outperforms 𝐵𝑆𝑃𝐷𝐸 for Critical and Blocker severity labels. 𝐵𝑆𝑃𝑆𝑇 

has the same performance as 𝐵𝑆𝑃𝐷𝐸 for Major and Trivial severity labels. For Gnome dataset severity 

prediction using 𝐵𝑆𝑃𝑆𝑇 outperforms 𝐵𝑆𝑃𝐷𝐸 for Major and Blocker severity labels. 𝐵𝑆𝑃𝑆𝑇 has the same 

performance as 𝐵𝑆𝑃𝐷𝐸 for Critical and Trivial severity labels. 

For both datasets, 𝐵𝑆𝑃𝐷𝐸 outperforms 𝐵𝑆𝑃𝑆𝑇  for the Minor severity label only. It is worth to mention 

that although the bug report description contains a stack trace, we have higher accuracy using stack traces 

independently, as described in our approach. These results answer RQ1 and confirm that 𝐵𝑆𝑃𝑆𝑇 

outperforms or has the same performance as 𝐵𝑆𝑃𝐷𝐸 for predicting all bug severity levels, except the 

Minor severity level, when applied to Eclipse and Gnome bug report datasets. 

We further investigated the reason that 𝐵𝑆𝑃𝑆𝑇 is slightly less performant compared to 𝐵𝑆𝑃𝐷𝐸 when 

predicting the Minor severity level. We elaborate more on this at the end of this Section. 

We also answer RQ2 by comparing the performance of our approach to a random classifier. Based on 

Figure 32 to Figure 41, we see that our approach outperforms a random classifier for all severity labels 

for both datasets, except for the Critical severity level in the case of the Gnome dataset. This is caused 

by two factors, including the fact that the Critical severity label is the majority class label in Gnome and 

that the distribution of labels in Gnome favours the majority class.  

Based on Figure 28, the number of bug reports in Eclipse with Major severity is excessively higher than 

other severity labels. Using a classifier, the excessive number of Major severity label instances creates a 

bias in the outcome of the classifier by drifting the machine learning approach toward predicting a Major 

class label to increase the overall accuracy. This explains the similar results in the severity prediction 

performance using 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸 in Figure 34. 
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The accuracy of predicting the Trivial severity level using both approaches is low compared to other 

severity labels in both datasets. The reason is due to the fact that the number of bug reports having trivial 

severity is considerably less than other severity labels. 

6.4.7.2. Sensitivity of the Approach to the Number of Nearest Neighbours 

We answer RQ3 and RQ6 Based on Figure 32 to Figure 41. Based on the results both 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 

are slightly sensitive to the number of nearest neighbours chosen. For Gnome, none of the approaches 

are hugely sensitive to the number of nearest neighbours. For Eclipse, only the major severity is slightly 

sensitive to the number of neighbours. The reason is that the Major severity label based on Figure 28 is 

the majority class label. In this case, increasing the number of nearest neighbours will cause more labels 

to appear in the returned list, which increases the probability of not choosing a majority severity label. 

6.4.7.3. Severity Prediction Improvement by Adding Categorical Features 

As shown in Figure 32 to Figure 36, for Eclipse dataset, we have the best performance using 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 

compared to 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸. Also based on Figure 37 to Figure 41 we have the best performance using 

𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 compared to 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸 for all cases but Minor severity for the Gnome dataset. Based 

on Figure 32 to Figure 41, we can answer RQ4 and conclude that using the categorical features including 

product, component and operating system in addition to stack traces improves the prediction accuracy of 

𝐵𝑆𝑃𝑆𝑇. The severity prediction accuracy improvement by adding categorical features ranges from 5% in 

Eclipse to 20% in the Gnome dataset. 

Based on Figure 32 to Figure 41 we can answer RQ5 and conclude that 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹  performs better than 

a random classifier, except for the Critical severity level of the Gnome dataset for the same reasons we 

explained in RQ2. 

The results shown in Figure 32 to Figure 41 confirm that stack traces could be used to predict the severity 

of bugs with higher accuracy than the description. Furthermore, we can conclude that adding product, 
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component, and operating system categorical features to stack traces increases the severity prediction 

accuracy. 

6.4.7.4. Statistical Significance of the Results 

We used two-tailed Mann-Whitney test to further assess the statistical significance of the difference 

between the results of the approaches shown in Figure 32 to Figure 41. More precisely, we compare the 

F-measure of 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 to the F-measure of 𝐵𝑆𝑃𝑆𝑇 and also the F-measure of 𝐵𝑆𝑃𝑆𝑇  to the F-measure of 

𝐵𝑆𝑃𝐷𝐸. We consider the difference between two sets of F-measures to be statistically significant if the 

significance level (p-value) is less than 0.05. 

Furthermore, we used Cliff’s non-parametric effect size measure, which shows the magnitude of the 

effect size of the difference between the two sets of F-measures. The effect size estimates the probability 

that a value chosen from one group is statistically higher than a value chosen from another group [GK05, 

MRL11]. We want to calculate Cliff’s effect size to estimate the probability that one F-measure obtained 

from one of our approaches is statistically higher than an F-measure of another approach.  Cliff’s effect 

size (d) is calculated as follows [GK05, MRL11]: 

Cliff’s effect size = 
#(𝑥1> 𝑥2)−#(𝑥1< 𝑥2)

𝑛1∗ 𝑛2
 (21) 

In  (21), x1 and x2 are F-measure values within each group (each approach), # indicates the number of 

times values of one group is higher or lower than values of other group and 𝑛1and 𝑛2 are the size of each 

approach result. More precisely, let's define 𝑑𝑖𝑗  as follows [GK05, MRL11]: 

𝑑𝑖𝑗 = {

+1 𝑖𝑓 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑖 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ >  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑗 𝑓𝑟𝑜𝑚 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 

−1 𝑖𝑓 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑖 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ <  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑗 𝑓𝑟𝑜𝑚 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

0 𝑖𝑓 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑖 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ =  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑗 𝑓𝑟𝑜𝑚 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 (22) 

Based on Equation (22), we can define Cliff’s effect size as follows [GK05, MRL11]: 

Cliff’s effect size = 
∑ ∑ 𝑑𝑖𝑗𝑗𝑖

𝑛1∗ 𝑛2
 (23) 

Cliff’s effect size ranges from [-1, +1]. Cliff’s effect size of +1 indicates that all the values of the first group 

are larger than the second group and -1 shows that all values of the first group are smaller than the 
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second group. Considering Cliff’s effect size as d, effect size is small when 0.147 ≤ d < 0.33, medium for 

0.33 ≤ d < 0.474 and large for d ≥ 0 .474 [GK05, MRL11]: 

Table 20 Mann-Whitney test significance level and Cliff’s effect size of the approach with stack traces and 

categorical features and an approach which uses stack traces alone for the Eclipse dataset 

 Critical Blocker Major Minor Trivial 

Two tailed Mann-Whitney test significance level 0.045 0.007 0.02 0.0001 0.0007 

Cliff’s effect size 0.59 0.72 0.62 0.98 0.90 

 

Table 21 Mann-Whitney test significance level and Cliff’s effect size of the approach with stack traces and 

categorical features and an approach which uses stack traces alone for the Gnome dataset 

 Critical Blocker Major Minor Trivial 

Two tailed Mann-Whitney test significance level 0.0001 0.00018 0.00028 0.00018 0.00018 

Cliff’s effect size 1 1 0.97 1 1 

 

Table 20 and Table 21 show the result of Mann-Whitney test significance level and Cliff’s effect size test 

between 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 and 𝐵𝑆𝑃𝑆𝑇 for Eclipse and Gnome, respectively. For both datasets and all severity 

levels, the difference of F-measure values of the two approaches is statistically significant with a                          

p-value < 0.05. Hence, we can conclude that the difference between the F-measures of 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 and 

𝐵𝑆𝑃𝑆𝑇 is statistically significant for both datasets. 

Furthermore, since for all severity labels, Cliff’s effect size of  𝐵𝑆𝑃𝑆𝑇+𝐶𝐹  compared to 𝐵𝑆𝑃𝑆𝑇 is more than 

0.474, we can conclude that the 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹  outperforms the 𝐵𝑆𝑃𝑆𝑇 with a large effect size for both 

datasets. 

Table 22 Mann-Whitney test significance level and Cliff’s effect size of the approach with stack traces and an 

approach that uses bug report descriptions for the Eclipse dataset 

 Critical Blocker Major Minor Trivial 

Mann-Whitney test a significance level 0.001 0.00736 0.79486 0.00168 0.72786 

Cliff’s effect size 0.88 0.72 -0.08 -0.84 0.1 
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Table 23 Mann-Whitney test significance level and Cliff’s effect size of the approach that uses stack traces and an 

approach that uses bug report descriptions for the Gnome dataset 

 Critical Blocker Major Minor Trivial 

Mann-Whitney test a significance level 0.34722 0.00018 0.00018 0.00018 0.8493 

Cliff’s effect size 0.26 1 1 -1 0.06 

 

Table 22 and Table 23 show the result of Mann-Whitney test significance level and Cliff’s effect size 

between 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸 for Eclipse and Gnome, respectively.  

For the Eclipse dataset, the difference of F-measure values of the two approaches is statistically 

significant with a p-value < 0.05 for all severity levels, except for Major and Trivial. As shown in Table 12, 

since the Major severity is the majority class label, and the classifier is normally biased toward the 

majority class label, we have the same accuracy when using 𝐵𝑆𝑃𝑆𝑇 as when using 𝐵𝑆𝑃𝐷𝐸. For Trivial, as 

shown in Table 14, since the Trivial severity level is under-sampled, we see the same effect. This is 

because the classifier is biased toward the majority class label.  

Furthermore, for Critical and BLocker, the Cliff’s effect size of 𝐵𝑆𝑃𝑆𝑇 compared to 𝐵𝑆𝑃𝐷𝐸 is more than 

0.474 and 𝐵𝑆𝑃𝑆𝑇 outperforms 𝐵𝑆𝑃𝐷𝐸 with a large effect. For the Major severity level, the Mann-Whitney 

test and Cliff’s effect size test results are consistent. Consistent with the Mann-Whitney test, Cliff’s effect 

size for Major severity is close to zero, which shows that the difference in F-measure values of two 

approaches is not statistically significant. For trivial severity, consistent with the Mann-Whitney test, 

Cliff’s effect size for Trivial severity is small. The reason is that the Trivial severity label is under-sampled. 

For the Minor severity level, the Mann-Whitney test shows that the difference between F-measure values 

of the two approaches is statistically significant and the Cliff’s effect size shows that  𝐵𝑆𝑃𝐷𝐸  largely 

outperforms 𝐵𝑆𝑃𝑆𝑇.  

For the Gnome dataset, the difference of F-measures of the two approaches is statistically significant 

with a p-value < 0.05 for all severity levels, except for Critical and Trivial.  
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Furthermore, for all severity labels other than Critical and Trivial, Cliff’s effect size is large. For Blocker 

and Major severity, Cliff’s effects size of 𝐵𝑆𝑃𝑆𝑇 compared to 𝐵𝑆𝑃𝐷𝐸  is more than 0.474. For the Critical 

severity level, consistent with the Mann-Whitney test which shows that the difference of F-measure 

values of the two approaches is not statistically significant, Cliff’s test shows the effect size is small. Also, 

for Trivial severity level, we have consistent results from Mann-Whitney test and Cliff’s test                      

(Mann-Whitney p-value>0.05 and Cliff’s test is close to zero) which both show the difference of                         

F-measure values of 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸 are not statistically significant and both approaches have the same 

performance. For the Minor severity level, the Mann-Whitney test shows that the difference of                       

F-measure values of the two approaches is statistically significant and Cliff’s effect size shows 

𝐵𝑆𝑃𝐷𝐸  outperforms  𝐵𝑆𝑃𝑆𝑇 by a large effect size.  

6.4.7.5. Analysis of Lower Performance of the Proposed Approach 

For Eclipse dataset in the case of Minor severity, we had lower performance when using 𝐵𝑆𝑃𝑆𝑇 compared 

to using the 𝐵𝑆𝑃𝐷𝐸. We investigated the dataset to study the underlying reason.  

Bug reports from Eclipse with Minor severity are mainly not from the Eclipse platform, but from the 

Eclipse plugins. Hence, their stack trace significantly varies from one to another. Studies [LM13] show 

that 𝐵𝑆𝑃𝑆𝑇 can detect duplicate bug reports with higher accuracy compared to the approach which uses 

bug report descriptions. The results presented in Figure 32 to Figure 41 confirms the hypothesis and 

shows that 𝐵𝑆𝑃𝑆𝑇 can predict bug severity with higher accuracy than 𝐵𝑆𝑃𝐷𝐸. However, in the case of 

bugs with Minor severity, due to the variety among plugins, there are fewer bug reports with similar stack 

traces. Hence, we have lower severity prediction accuracy using 𝐵𝑆𝑃𝐷𝐸 compared to 𝐵𝑆𝑃𝑆𝑇. 

We also studied bugs with Minor severity and observed that many bug reports with Minor severity have 

categorical features available in their header or description. Since categorical information is stored in the 

header or description of the bug reports, when using 𝐵𝑆𝑃𝐷𝐸, categorical features are being used to 

predict severity too. These categorical features boost the severity prediction accuracy of bug report 
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descriptions. For instance, bug report#296383 and bug report#313534 of Eclipse bug repository are 

shown in Table 24 and Table 25 respectively. 

Table 24 Eclipse Bug Report #296383 

Bug report field Value 

Product EclipseLink 

Component JPA 

Header 
JPA 2.0 server test script requires better rebuild integration with 

Eclipse IDE development 

Description 

If you are developing in eclipse while running these server tests - 
note that there is currently an issue with the JPA 2.0 test framework 

where a full build in eclipse will remove classes expected by the 
server test ant script. 

*You will see the following issue unless you do a full ant trunk build 
after any Eclipse IDE rebuild or clean .Do a 2nd rebuild off of trunk or 

eclipselink.jpa.test after any IDE development. 

Table 25 Eclipse Bug Report #313534 

Bug report field Value 

Product EclipseLink 

Component JPA 

Header 
JPA: entities in separate eclipse project must be explicitly listed in 

persistence.xml 

Description 

<exclude-unlisted-classes> has no effect in this configuration 

Configuration: (I am using an eclipse .classpath reference only) - and not 
generating a jar file - no MANIFEST.MF Class-Path entry - no <jarfile> 
element in persistence.xml - persistence.xml is in client project - no 
persistence.xml in entities project 

.classpath = <classpathentry combineaccessrules="false" kind="src" 
path="/org.eclipse.persistence.example.jpa.server.entities"/> 

 <classpathentry kind="src" path="src"/> 

This may be expected behavior for SE PU's when we fail to use the 
persistence.xml element - as mormally the entities must be at the root of 
the classpath that contains persistence.xml 
<jarfile>entities.jar</jarfile>>Found: 

Using <exclude-unlisted-classes>false</exclude-unlisted-
classes><class>org.eclipse.persistence.example.jpa.server.business.Cel 

l</class> 

[EL Config]: 2010-05-19 10:24:01.195--ServerSession(27196165)--
Thread(Thread[main,5,main])--The access type for the persistent class 
[class org.eclipse.persistence.example.jpa.server.business.Cell] is set to 
[FIELD]. 
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In both bug reports, JPA, the faulty component of the bug, appeared in the header of the bug reports. 

This extra information helps 𝐵𝑆𝑃𝐷𝐸 to outperform predictions based on 𝐵𝑆𝑃𝑆𝑇. However, as shown in 

Table 13, if we add categorical features to stack traces, then the 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 outperforms the approach 

that uses only 𝐵𝑆𝑃𝐷𝐸 .  

For the Gnome dataset, the only case that the 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 is outperformed by the 𝐵𝑆𝑃𝐷𝐸 is when the 

approach is predicting Minor severity. We investigated the reason and observed that the descriptions of 

bug reports with Minor severity contain more structured information than categorical features of the bug 

reports in Gnome Bugzilla. For example, as shown in Table 26, Gnome bug report#273727, which is a bug 

with Minor severity, not only contains all important categorical features in its description but also 

contains information regarding the bug’s package and the step to reproduce the bug. Moreover, in 

addition to categorical features, sometimes the source code is copied in the description of the bug report 

with Minor severity. For example, Gnome bug report# 532680, shown in Table 27, contains the source 

code of the bug. This information causes the approach which uses descriptions to outperform the 

approach which uses stack traces when predicting the Minor severity. 

6.5. Threats to Validity 

In this Section, we explain the threat to the external validity, internal validity and construct validity of our 

approach. 

6.5.1. Threats to External Validity 

We evaluated both proposed approaches using two well-known open-source datasets. We also used the 

history of bug reports in those datasets from the time of the creation of bug reports in bug repositories 

until 2015. While the results of our experiments show that leveraging categorical features improves the 

severity prediction accuracy, in order to generalize these results, our approach needs to be tested on a 

bigger pool of datasets.  
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Table 26 Gnome Bug Report#273727 

Bug report field Value 

Product evolution 

Component Shell 

Header sanity check for e-d-s on start 

Description 

Descriptionorogor 2005-03-15 19:41:19 UTC 

Distribution: Gentoo Base System version 1.4.16 

Package: Evolution 

Priority: Normal 

Version: GNOME2.8.1 2.0.3 

Gnome-Distributor: Gentoo Linux 

Synopsis: Random UI crash 

Bugzilla-Product: Evolution 

Bugzilla-Component: Calendar 

Bugzilla-Version: 2.0.3 

BugBuddy-GnomeVersion: 2.0 (2.8.1) 

Description: 

Description of the crash: 

It just  exit 

Steps to reproduce the crash: 

1. Do random stuff , preferably around the  contact list 

2.  wait 

3.  play with  it again 

4 Expected Results: than it doesn t  exit. How often does this happen? 

maybe  average session is 15 minutes ( depends  how mutch you use the ui 

) 
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Table 27 Gnome Bug Report #532680 

Bug report field Value 

Product GIMP 

Component Plugins 

Header help-browser segfaults on 64bit systems 

Description 

It was the latest Ubuntu HH version of the libgtk2.0-0 package. 

%  dpkg -p libgtk2.0-0 

Package: libgtk2.0-0 

Architecture: amd64 

Source: gtk+2.0 

Version: 2.12.9-3ubuntu3 

Now it is immediately clear what went wrong: 

_gdk_x11_convert_to_format has parameter src_buf==NULL 

This shows that we have a pixmap that is non-NULL, with pixmap->pixels that is NULL. 

This pixmap is found in the cache. If I insert the condition 

  && gdk_pixbuf_get_pixels(icon->pixbuf) != NULL 

 

in gtk+-2.12.9/gtk/gtkiconfactory.c around line 2445: 

 

@@ -2441,7 +2441,8 @@ 

       if (icon->style == style && 

           icon->direction == direction && 

           icon->state == state && 

-          (size == (GtkIconSize)-1 || icon->size == size)) 

+          (size == (GtkIconSize)-1 || icon->size == size) && 

+         gdk_pixbuf_get_pixels(icon->pixbuf) != NULL) 

         { 

           if (prev) 

             { 

then the segfault goes away. I have not investigated further what the real cause of the 

problems is. 
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Moreover, in Eclipse, stack traces are stored in the description of the bug reports and are optional. Only 

10% of Eclipse bug reports contain stack traces. Even though Eclipse established an automatic stack trace 

collection system since 2015, the stack traces are not publicly available yet. On the other hand, in the 

Gnome dataset used in this chapter, in which same as the Eclipse bug repository stack traces are stored 

in the description, 45% of bug reports contain stack traces. 

We evaluated our approach using the severity labels that are reported from users and further revised 

and adjusted (if need be) by the triagers. Errors may occur when reporting or adjusting severity levels, 

which can impact our analysis. 

6.5.2. Threats to Internal Validity 

One of the sources of internal threats is the misclassification function used in our approach. In our study, 

we used Equation (15) to calculate the misclassification cost. This misclassification cost equation was 

derived based on heuristics. While the results obtained using Equation (15) are convincing, using a more 

optimized approach for deriving misclassification cost of each severity label could further improve the 

severity prediction accuracy. 

We set a threshold of ten to be our upper bound for the misclassification cost based on the criteria we 

explained in Section 6.4.2. A different threshold may have yield different results. 

The regular expression used for extracting stack traces from bug report descriptions may have missed 

some stack traces or some functions in the stack traces. This could reduce the accuracy of the severity 

prediction approach. Using a different regular expression may improve the results.  

6.6. Conclusion 

In this chapter, we proposed two new severity prediction approaches. A new approach which uses stack 

trace to predict severity of bugs and also an approach which combines the use of stack traces and 

categorical features. The first approach uses stack traces only and the second approach uses a linear 
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combination of stack trace similarity and categorical features similarity to predict the severity of bugs. 

Since the dataset (i.e., the labels in bug report repositories) is normally unbalanced, we adopted a             

cost-sensitive K-nearest neighbour approach to predict the severity.  

We used two open-source and popular datasets (Eclipse and Gnome bug repositories) to evaluate our 

approach. The result showed that in both cases the accuracy of predicting the severity of bugs is higher 

using 𝐵𝑆𝑃𝑆𝑇 compared to 𝐵𝑆𝑃𝐷𝐸. Moreover, adding categorical features and using the linear 

combination of stack traces and categorical features similarity can further improve the severity prediction 

accuracy for both datasets. 
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Chapter 7 

 Automatic Prediction of Bug Report Faulty product and 
component fields 

When a bug report is submitted, it is examined by a triaging team with the objective of redirecting it to 

the development team, which is expert in the affected software component. To achieve this task, triagers 

rely heavily on the information provided in the bug reports. It has been shown that it is common for users 

to enter incorrect bug report fields [BJSWPZ08, LD13]. Xia et al. [XLSW16] showed that 80% of bug reports 

have their fields reassigned several times after they have already been submitted to developers to be 

fixed. Battenberg et al. [BJSWPZ08] showed that there is an important gap between what users provide 

as input and what developers need to fix the bug. They explained that since end-users do not usually have 

technical knowledge about the system, it is very difficult for them to set bug report fields properly. As a 

result, many bug reports take a considerable amount of time to be fixed. 

Among the reassigned bug report fields, the component and product fields are the ones that are 

reassigned the most, as shown by Lamkanfi et al. [LD13], Xie et al. [XZM13], Guo et al. [GZNM11], and 

Sureka et al. [S12], which explains the growing number of studies that aim at predicting these fields. 

Sureka et al. [S12] have proposed an approach based on bug report descriptions to predict faulty 

components. Wang et al. [WZLLW12] have compared the effectiveness of different machine learning 

techniques to predict faulty components. Existing studies, however, rely on bug report descriptions as 

the main features for classification.  

As a motivating example, consider the history of Eclipse bug report #215679, shown in Figure 42. The 

report was first assigned to a developer to be fixed on January 17th, 2008. The component and product 

fields were first changed from UI and Platform to PHP Explorer View and PDT, respectively. After 16 

months, these fields were changed again to Common and DLTK, which were the correct fields. Clearly 

there is a need to develop techniques and tools that can predict the correct product and component 
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fields at the time of submission of a bug report. Such techniques can provide tremendous help to triagers 

in processing the bug reports. 

 

Figure 42 Eclipse bug report #215679 history information 

In this chapter, we propose an approach to automatically predict the component and product fields of 

bug reports based on a combination of stack traces and categorical information (system version, severity, 

and platform). Our approach relies on mining historical bug reports in order to predict faulty component 

and product fields of new incoming bugs. More precisely, we map stack traces of historical bug reports 

to term vectors, weighed using TF-IDF (term frequency-inverse document frequency). The term vectors, 

together with categorical information, are then used to predict the faulty component and product fields 

associated with an incoming bug report.  

We show the effectiveness of our approach by applying it to Eclipse bug reports submitted between 

October 2001 to February 2015 and to Gnome bug reports submitted between February 1997 and August 

2015. Moreover, we show that our approach outperforms existing studies that rely mainly on bug report 

descriptions [S12]. To the best of our knowledge, this is the first time that stack traces and categorical 

features are used to predict faulty product and component fields of bug reports. 

This chapter is organized as follows: We discuss the features used for product and component prediction 

in Section 7.1. The proposed approach is explained in Section 7.2. We discuss the evaluation and results 

in Section 7.3. Threats to validity are presented in Section 7.4. The conclusion is presented in Section 7.5. 
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7.1. Bug Report Features 

For this study, we used two types of features to train our classification algorithm: stack traces and bug 

report categorical information. A stack trace ideally represents a log of the information found in the stack 

memory at the time of the crash, however, in some cases, this information is trimmed. 

In addition to stack traces, we used the following categorical information: version, operating system, and 

severity. The motivation behind using these categorical attributes comes from the work of                                

Xia et al. [XLSW16], who showed that using categorical features (called meta-features in their study) 

improves the prediction accuracy of bug report fields that will most likely be reassigned. Categorical 

features are also used in Chapter 5 [SLKJ11] and Chapter 6 [SHH19] as additional features to detect 

duplicate bug reports and predict the severity of bugs respectively.  

Furthermore, in the previous chapter, we showed that stack traces and categorical information are better 

features than bug report descriptions for predicting the severity of bugs, another important bug report 

field. This motivated us to apply a similar approach for predicting bug report product and component 

fields. We summarize the steps of the training and testing phases of our approach in Section 7.2. 

7.2. The Proposed Approach 

In this Section, we propose a faulty product and component prediction approach that uses stack traces 

and categorical information. We predict faulty product and component fields of a bug report using its               

K-nearest neighbours bug reports. We use linear combination of similarity of stack traces and categorical 

features of bug reports to measure the similarity of bug reports. 

7.2.1. Predicting Bug Report Faulty Product and Component Fields 

In this chapter, we follow an approach based on the linear combinations of stack traces and categorical 

features similarity to calculate the similarity of bug reports and predict faulty product and component 

fields. Given two bug reports (𝐵1, 𝐵2) the combined similarity is calculated as follows: 
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SIM (𝐵1, 𝐵2) =    ∑ 𝑤𝑖 ∗  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
4
𝑖=1  (24) 

 

Where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 𝑎𝑛𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 are defined as follows: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 =   𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒𝑠  

𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 =  {
1               𝑖𝑓 𝐵1. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝐵2. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛
0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 =  {
1           𝑖𝑓 𝐵1. 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝐵2. 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦
0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 =  {
1         𝑖𝑓 𝐵1. 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 = 𝐵2. 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚
0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

In Equation (24) similarity of categorical features is one if they are the same and zero if they are not. The 

SIM function in Equation (24) contains four free parameters (𝑤1, 𝑤2, 𝑤3, 𝑤4) that represent the weights 

we assign to each feature. These weights are adjusted in a separate training phase. Our training dataset 

format is similar to the one presented by Sun et al. [SLKJ11]. It contains triples in the form of (q, rel, irr), 

where q is the incoming bug report, rel is a bug report with the same product or component and irr is a 

bug report with a different product or component. The method used to create the training set is shown 

in Figure 43. 

We need to define a cost function to optimize the free parameters (𝑤1, 𝑤2, 𝑤3, 𝑤4) based on our training 

set. We used the RankNet Cost function (RNC) of Equation (7) as our cost function. 

We need to find the values of each of the four free parameters (𝑤1, 𝑤2, 𝑤3, 𝑤4) that minimizes the cost 

function of Equation (7). The cost function is minimized when the similarity of bug reports with the same 

product or component is maximized, and the similarity of bug reports with different components or 

products is minimized. We use gradient descent as shown in Figure 16, provided by Sun et al. [SLKJ11], 

to minimize the above cost function. 
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Method inputs: 

N>0 size of TS 

G={𝐺1, 𝐺2, 𝐺3, 𝐺4, … , 𝐺𝑛 } 

𝐺𝑖 =  𝑏𝑢𝑔 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖   𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 
Method output: 

TS (Training set). 

Initialize training set to be empty (TS = ∅) 

For each Group 𝐺𝑖 in the repository do 

   R= all bug reports in Group 𝐺𝑖 

   For each report q in R do 

        For each report rel  in R-{q} do 

             For i=1 to N do 

                    Randomly choose a report irr out of R 

                   TS=TS U  {(q,rel,irr)} 

             End For 

        End For each 

   End For each 

End For each 

Return TS 

Figure 43 Training dataset 

The optimization algorithm adjusts each free parameter x in each iteration according to coefficient Ƞ and 

partial derivative of RNC with respect to each free parameter x. Then the four free parameters 

(𝑤1, 𝑤2, 𝑤3, 𝑤4) are used to calculate the similarity of each incoming bug report to all the previous bug 

reports in the dataset to predict the faulty product and component fields using a cost-sensitive K-nearest 

neighbour. We explain the method used to extract stack traces and categorical features in Section 7.2.2. 

Next, we explain the method used for calculating the similarity of stack traces and the K nearest 

neighbour method for predicting faulty product and component fields in Section 7.2.3. 

7.2.2. Bug Features Extraction (Stack Trace Extraction and Categorical Features 
Extractions) 

We use the regular expression introduced in Section 3.2 to extract stack traces from Gnome bug report 

descriptions.  We also used the regular expression by Lerch et al. [LM13] introduced in Section 3.1 to 

extract stack traces from Eclipse bug reports descriptions.   
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We implemented a custom parser to extract bug report categorical features for Eclipse and Gnome. 

Eclipse and Gnome both use Bugzilla, each bug report is exported as XML and the parser is used to parse 

the XML and extract categorical features. 

7.2.3. KNN Classifier for Faulty Component and Product Classification 

For each incoming bug report, we extract the corresponding stack traces, build the weighed feature vector 

and compare it to feature vectors of all previous bug reports in the dataset. The calculated similarities are 

used to build a list that shows how similar the current bug report stack traces is to all the previous stack 

traces of all bug reports in the dataset. These similarities are combined with the similarity of categorical 

features. Then we use the K-Nearest Neighbour (KNN) algorithm to retrieve the most similar bug reports 

to the incoming bug report. We use Equation (24) to calculate and return similar bug reports in the KNN 

method.  

Next, we chose K nearest bug reports from the dataset and chose the label of the bug report 𝐵𝑖  based on 

majority voting based on Equation (10). The score function of Equation (10) is defined as                              

Equation   (11). Based on Equation (10) and (11) the label with the highest frequency of occurrence among 

the K returned labels is considered as the output label.  

Since the bug reports that are closer to the incoming bug report Bi must have more impact on choosing 

the incoming bug report Bi  product or component label, we need to give more weight to the bug reports 

that are closer to the incoming bug report.  

If we assume the distance of the closest bug report in the sorted list of K nearest instances as 𝑑𝑖𝑠𝑡1 and 

the distance of the farthest bug report as 𝑑𝑖𝑠𝑡𝑘, we weigh each of the bug reports in the list of nearest 

neighbours returned using the Equation (12).  Next, we incorporate the calculate weights from                   

Equation (12) in Equation (10) and defined the Equation (13) which assigns scores to each faulty product 

and component class considering the distance of k nearest neighbour returned bug reports. 
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Ideally, there are equal samples for each label in the training set, however, in large software systems such 

as Eclipse and Gnome, some products or components have fewer bug reports in the bug tracking system, 

which results in an unbalanced distribution of labels. 

Classifiers tend to increase overall accuracy if trained on an unbalanced dataset, which will result in a bias 

towards the majority class labels. We use cost-sensitive learning [ZM03] to overcome the unbalance 

dataset problem.   

At the first step, we need to convert the output of the K-nearest neighbour classifier of Equation (13) to 

probabilities. We defined probability as the value of class label weight divided by the sum of all class label 

weights based on Equation (14) 

We set the misclassification cost in a cost matrix that corresponds to the confusion matrix [LD13] of  

Figure 29. We need to assign high misclassification costs to the false positive and false negative in the 

confusion matrix since they are considered as wrong classification results. Furthermore, true positive and 

true negative show correct classification results and are favourable conditions, so we set the 

misclassification cost of them to be zero. Considering that the faulty product and component prediction 

problem is a multiclass classification scenario, we extend the same rationale to the multiclass 

classification case. In the multiclass classification scenario, the diagonal of the confusion matrix is 

representative of true positives and true negatives, so we set the misclassification cost on the diagonal 

of the confusion matrix to zero. In addition, the cost of false positives and false negatives are chosen 

based on the classification scenario. In this chapter, we use Equation (15) which defines misclassification 

cost to be reciprocal to the number of instances of each class label divided by the number of instances of 

majority class label to build the cost matrix. 

After building the cost matrix according to Equation (15), we can calculate the classification cost of each 

class label for each instance using the cost matrix and the probability of the instance in the test set 
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belonging to each class label based on Equation (14) using new cost-sensitive classifier [ZM03] of                     

Equation (16). Next, the class label with the lowest classification cost is chosen as the label for instance. 

In this chapter, we use Equation (15) to calculate the misclassification cost of each label. We choose a 

threshold of ten as the maximum value for misclassification cost to avoid very high misclassification cost, 

which may happen due to the very limited number of instances of some minority class labels. Determining 

the optimal value of the threshold is beyond the scope of our study.  

7.2.4. Overall Approach 

Since we need to understand the importance of similarity of stack traces compared to categorical features, 

we chose to use a linear model with a gradient descent optimizer. In our approach with incoming of each 

bug report, its label is predicted considering all the previous bug reports in the dataset. To make our 

approach easily deployable in practice, we chose to use K-nearest neighbour for classification in the 

mentioned setting. 

We explain the Training and Testing phase of our online severity prediction method in this Section.              

Figure 44 shows the overall approach.  

7.2.4.1. Training 

Our training phase is shown in Figure 44. In our training phase, we extract stack traces from bug report 

descriptions using the regular expression introduced in Section 7.2.2. We also extract categorical features 

using the same parser introduced in Section 7.2.2. Stack traces are converted to feature vectors and 

weighed using TF-IDF, explained in Section 5.1. Next, stack traces are compared using cosine similarity of 

Equation (6). We use linear combination (Equation (24)) of the corresponding stack traces and categorical 

features similarity to take categorical features into consideration in the final similarity results. The linear 

model is trained using the training dataset build according to Figure 43 and optimized using the gradient 

descent. The tuned coefficients (w1, w2, w3, w4) are then used the testing phase.  



117 

 

 
 

Figure 44 Overall approach 

7.2.4.2. Testing 

Our online faulty product and component prediction approach is depicted in Figure 44. With the incoming 

of each bug report to the system, its stack trace is extracted using regular expression introduced in          

Section 7.2.2. The similarity of the bug report to all the previous bug reports is then calculated using the 

linear combination of stack traces and categorical features similarity of Equation (24) based on the 

coefficient output of the training phase. After calculating top K nearest bug reports to the incoming bug 

report, the faulty product and component fields of the incoming bug report is predicted. 
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7.3. Evaluation 

In this Section, we evaluate the accuracy of predicting faulty product and component fields using the 

proposed approach and compare it to the Sureka et al. [S12] approach. We conduct experiments to 

answer the following research questions: 

 RQ1.  Can stack traces and categorical features be used to predict the product field of a   

 bug report, and if so, what would be the accuracy and how does it compare to the use of  

 bug report descriptions? 

 RQ2.  Can stack traces and categorical features be used to predict the component field of  

 a bug report, and if so, what would be the accuracy and how does it compare to the use   

 of bug report descriptions? 

 RQ3. How does our approach compare to a random classifier? 

7.3.1. Experimental Setup 

In our experiments, we compared our approach (Figure 44) to the approach that uses the description of 

bug reports and random approach. It is important to mention that in Eclipse and Gnome, stack traces are 

embedded in the description. In this Section, we describe the dataset used in the experiments and provide 

statistical analysis regarding the dataset. 

7.3.1.1.1. The dataset 

In this chapter, we used bug reports extracted from the two large open-source software projects: Eclipse 

and Gnome. These systems have their bug reports open and accessible to researchers and have been 

widely used in the literature [AADPKG08, LDGG10, LDSV11, TLS12, YZL14, ZYLC15]. 

Eclipse contains a comprehensive set of bug reports with their faulty product and component fields. As a 

universal tool platform, the Eclipse project has been very active with new products and components 
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added on a daily, weekly and monthly basis. Gnome is a collection of Unix-based projects. Since it is an 

open-source project, developers contribute to it daily and it consists of many products and components. 

7.3.1.1.2. Dataset Setup 

In this chapter, we use 10% of our dataset is used for training the linear model of Equation (24). The rest 

of the 90% is used as the testing set. In our testing set, we use our online classification model to predict 

faulty product and component fields of the bug reports. With the incoming of each bug report its similarity 

to all the previous bug reports in the dataset is calculated.  We use cost-sensitive K-nearest neighbour to 

predict the faulty product and component fields of the incoming bug report by comparing it to all the 

previous bug reports. 

Since bug reports follow a temporal order, we compare each bug report to only previous bug reports in 

the dataset. We cannot use K-fold validation since we cannot train the model on the future data and use 

it to predict the faulty product and component fields of the current data. 

7.3.1.1.3. Dataset Analysis 

Eclipse platform can be extended by means of plugins. Each plugin that is separated from Eclipse has its 

own sets of products and components. In this work, we have focused only on Eclipse products and 

components and ignored the plugins. Eclipse has five products: Platform, JDT, PDE, Equinox and E4, each 

of which contains a set of components. In Eclipse, stack traces are not provided separately; they are 

indeed pieces of the description of bug reports. The list of Eclipse products and the number of components 

of each product are shown in Table 28. 

Table 28 Products and components in Eclipse dataset 

Product name Number of components 

Platform 17 

JDT 5 

PDE 4 

Equinox 9 

E4 3 

Total 38 
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Although Gnome uses the same bug tracking system as Eclipse, it is structured slightly differently. Most 

of Gnome products are not broken down into components. Instead, one upper layer of abstraction is 

defined (Classification), in which each bug has a class, and each class has its own set of products. In this 

work, we considered bug classes in Gnome to be the same as bug products in Eclipse and bug products 

in Gnome to be the same as bug components in Eclipse. 

Table 29 Products and components in Gnome dataset 

Product name Number of components 

Platform 12 

Core 9 

Applications 12 

Infrastructure 2 

Bindings 7 

Other 18 

Deprecated 20 

Total 80 

The total number of Eclipse bug reports is 193,177, but only 19,458 (10%) have stack traces. This 

percentage results from the fact that up to 2015, stack traces had to be appended manually by users. The 

automatic submission of stack traces to the Eclipse bug report repository has been made possible by Eclipse 

at the end of 2015. So far, these stack traces have not been made publicly available.  In the case of Gnome, 

the total number of bug reports is 629,549, among which 201,580 (32%) have stack traces. The list of 

Gnome products and the number of components of each product are shown in Table 29. 

The sparsity of stack traces is a limitation of our approach. Nevertheless, we believe that it is still 

important to investigate the use of stack traces, especially that there is a recognized need to have stack 

traces for debugging, bug reproduction, and other software maintenance tasks. We should expect to see 

more bug reporting systems collect stack traces automatically whenever a bug report is submitted. 

Detailed characteristics of our datasets are presented in Table 30. 

 

 



121 

 

Table 30 Characteristics of the datasets 

Data Eclipse Gnome 

Total number of bug reports 192,998 697,800 

Total number of bug reports with stack traces 19,458 (10%) 201,580 (32%) 

7.3.2. Predicting Faulty Product and Component Fields of Bug Reports Using 
Description 

We tokenize words from Eclipse and Gnome description using space and new line character. We use the 

raw distinct extracted words to create the feature vector. Feature vector corresponding to each bug 

report is weighed using TF-IDF, explained in Section 5.1. After ordering bug reports based on their creation 

dates, we compare incoming bug reports to all the previous bug reports in the dataset. We use the             

cost-sensitive classifier introduced in Section 6.4.2 to predict the faulty product and component fields of 

the bug reports. 

7.3.3. Predicting Faulty Product and Component Fields of Bug Reports Using 
Random Approach 

We compare our proposed approach with the approach which predicts faulty product and component 

fields randomly in proportion to each class label. If we assume that there are N products and the number 

of bug reports belonging to each product is 𝐵𝑠1
… … 𝐵𝑠𝑁

 then the accuracy of the approach which predicts 

product randomly for the label 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖(𝑆𝑖) is calculated using (17). For each product, we have predicted 

its components using the same proposed random approach. 

7.3.4. Faulty Product and Component Prediction Approaches Setup 

We used the cost-sensitive classification approach introduced in Section 6.4.2 to overcome the 

unbalanced dataset distribution problem. We assessed the performance of all models by varying the 

returned list size 1 to 10. For training the linear model of Equation (24) we initialized from a normal 
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distribution with zero mean and a standard deviation of 0.1. We also used 0.001 as the learning rate and 

trained the model on the first 10% of the dataset. 

7.3.5. Evaluation Metrics 

We used precision, recall, and F-measure to assess the effectiveness of our approach. These metrics are 

widely used in the literature [LD13, XLSW16] to evaluate the accuracy of a classifier. We defined product 

(component) prediction precision as the ratio of bug reports for which we have correctly predicted the 

product field 𝑝𝐿 (component field 𝐶𝐿)  (true positives) to the total number of bug reports for which we 

predicted product field 𝑝𝐿 (component field 𝐶𝐿)  (true positives + false positives). We calculated the 

precision for each product and component label separately. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝐿) =
# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙(𝑝𝐿/𝐶𝐿)

# 𝑜𝑓𝑏𝑢𝑔𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙(𝑝𝐿/𝐶𝐿)
     (25) 

The recall is defined as the ratio of bug reports for which we have correctly predicted product field 𝑝𝐿 

(component field 𝐶𝐿)  (true positives) to the total number of bug reports which actually have the product 

label 𝑝𝐿 (component field 𝐶𝐿) (true positives + false negative)  . 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑃𝐿)   =
# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 (𝑃𝐿/𝐶𝐿)

# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 ℎ𝑎𝑣𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 (𝑃𝐿/𝐶𝐿)
  (26) 

We built the confusion matrix separately for each product or component field. We combined precision 

and recall values and presented them as one value, F-measure of Equation (20). 

To compare the results of our approach to Sureka’s [S12] approach, which uses bug report descriptions, 

and also the random approach, we measured the improvement achieved by one method over the other. 

More precisely, if we denote the F-measure of Sureka’s [S12] approach as 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇𝑒𝑥𝑡 and the                       

F-measure of our approach by 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝑡𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑒, we calculate the improvement as follows:  

Improvement =  
𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝑡𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑒 − 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇𝑒𝑥𝑡

𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇𝑒𝑥𝑡
     (27) 
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Because we have a large number of components for each product and that the precision and recall must 

be calculated separately for each component, we used the macro-average precision to show the average 

precision of the components of each product. If we denote precision of the first component as 𝑃𝐶1 and 

the 𝑛𝑡ℎ component precision as 𝑃𝐶𝑛, we can use the Equation provided by Manning et al. [MRS08] to 

calculate the macro-average precision: 

𝑀𝑎𝑐𝑟𝑜𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑃𝐶1+ 𝑃𝐶2+⋯.+𝑃𝐶𝑛

𝑛
      (28) 

Similarly, if we denote recall of the first component as 𝑅𝐶1 and the 𝑛𝑡ℎ  component recall as 𝑅𝐶𝑛, the 

macro-average recall is calculated using the following Equation [MRS08]. 

𝑀𝑎𝑐𝑟𝑜𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑅𝐶1+ 𝑅𝐶2+⋯.+𝑅𝐶𝑛

𝑛
  (29) 

In our experiments, we varied the value of the K (size of the similar bug reports returned) from 1 to 10, 

and we captured the best accuracy of the approaches. Next, we use the captured accuracies to compare 

approaches. 

7.3.6. Evaluation Results 

We have presented the results of our experiments by focusing on research questions RQ1 to RQ3, 

followed by a discussion Section.  For simplicity reason, we use the notation BRFPst+cat to refer to our 

approach for predicting bug report fields using stack traces and categorical features. We also use 

BRFPdesc to refer to the approach that uses bug report descriptions. The approach that uses bug report 

descriptions predicts the faulty product and component of bug reports using the description of bug 

reports, including stack traces. 

RQ1.  Can stack traces and categorical features be used to predict the product field of a bug report, and if 

so, what would be the accuracy and how does it compare to the use of bug report descriptions? 
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Table 31 and Table 32 show the precision, recall and F-measure of BRFPst+cat to predict the product field 

of bug reports in Eclipse and Gnome datasets. In our experiments, we have varied K from 1 to 10 and 

recorded K, which provides the best accuracy. 

When applied to Eclipse products, the results show that our approach, BRFPst+cat, predicts faulty 

products with an average F-measure of 60%. The average precision and recall are 58% and 62%, 

respectively. For Gnome, we applied our approach to seven products and predicted faulty products with 

an average precision of 74% and an average recall of 67%. The average F-measure is 70%.  

Table 31 shows the average F-measure improvement of predicting faulty products using BRFPst+cat for 

Eclipse compared to the use of BRFPst, Sureka’s [S12] approach. Based on the results of Table 31, we 

have improved the average F-measure from almost 5% to 143.1% for different products. The average           

F-measure improvement rate over all Eclipse products is 46%.  

Table 32 shows that the average F-measure improvement of predicting faulty products using our 

approach compared to BRFPdesc for Gnome. The results show an improvement ranging from almost 4% 

to 174.44% for different products. On average, using stack traces and categorical features improves 

accuracy by 41% across all products in Gnome. 

By answering RQ1, we can conclude that the use of stack traces and categorical features (system version, 

severity, and platform) provides better accuracy in predicting bug report product fields compared to the 

use of bug report descriptions. 

RQ2. Can stack traces and categorical features (system version, severity, and platform) be used to predict 

the component field of a bug report? If so, what would be the prediction accuracy and how does it 

compare to the use of bug report descriptions? 

Table 33 shows the macro average F-measure improvement to predict bug reports component field using 

BRFPst+cat compared to BRFPdesc for Eclipse. Based on the results, the improvement ranges from 0% to 
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almost 42%. Moreover, the macro average F-measure of the components of each product has improved 

using the proposed approach by 19% on average. Table 34 presents the results for the Gnome dataset. 

The improvement ranges from 14.73% to 50%. For the components of each product, the proposed 

approach outperforms BRFPdesc by 31% on average. 

By answering RQ2, we can conclude that the use of stack traces and categorical features (system version, 

severity, and platform) provides better accuracy in predicting bug reports component field compared to 

the use of bug report descriptions. 

Detailed precision, recall and F-measure of the proposed approach for predicting each component is 

presented in Table 35 to Table 46. 

RQ3. How does our approach compare to a random classifier? 

Table 31 and Table 32 show the product prediction accuracy of our approach using stack traces and 

categorical features compared to a random approach for Eclipse and Gnome, respectively. Our approach 

outperforms a random approach when predicting faulty products in Eclipse and Gnome datasets with an 

average improvement of 200% and 250% respectively. Similarly, as we can see in Table 33 and Table 34, 

our approach outperforms a random classifier for predicting faulty components by 205% and 391% for 

Eclipse and Gnome respectively. 

7.3.6.1. Discussion 

We showed that our approach outperforms Sureka’s [S12] approach using bug report descriptions for 80% 

of the components for both datasets. We discuss in what follows, particular cases when Sureka’s [S12] 

approach outperforms ours.  
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7.3.6.2. Product Prediction Accuracy  

Table 31 Product prediction accuracy for Eclipse. 

Product 
Bug report Descriptions 

Bug report Stack traces and categorical 
features 

Random Improvement 
over 
description  

Improvement 
over random 

Precision Recall F-Measure Precision Recall F-Measure Accuracy 

Platform 46% 68% 54.80% 55% 68% 60% 50.2% 9.50% 19.5% 

JDT 47% 68% 55.50% 69% 68% 68.40% 30.1% 23.20% 127.2% 

PDE 27% 23% 24.80% 50% 76% 60.30% 9% 143.10% 570% 

Equinox 34% 37% 35.40% 60% 48% 53.30% 7.9% 50.50% 574.6% 

E4 55% 47% 50.60% 56% 50% 52.80% 2.7% 4.34% 1855.5% 

AVERAGE 42% 49% 44% 58% 62% 60% 20% 46% 200% 

 Table 32 Product prediction accuracy for Gnome 

Product 
Bug report Description 

Bug report Stack traces and categorical 
features 

Random 
Improvement 
over 
description 
model 

Improvement 
over random 

Precision Recall F-Measure Precision Recall F-Measure Accuracy 

Deprecated 71% 75% 72.94% 81% 77% 78.94% 15.8% 8.23% 399.62% 

Core 65% 73% 68.76% 70% 73% 71.46% 35.7% 3.93% 100.17% 

Other 60% 65% 62.4% 68% 68% 68% 16.2% 8.97% 319.75% 

Platform 69% 38% 49% 92% 72% 80.78% 2.3% 64.83% 3412.17% 

Applications 74% 62% 67.47% 83% 72% 77.1% 29.6% 14.29% 160.47% 

Infrastructure 35% 52% 41.83% 46% 47% 46.49% 0.1% 11.13% 46390.00% 

Bindings 36% 18% 24% 78% 57% 65.86% 0.07% 174.44% 93985.71% 

AVERAGE 59% 55% 55% 74% 67% 70% 20% 41% 250.00% 

7.3.6.3. Macro Component Prediction Accuracy  

Table 33 Component prediction accuracy for Eclipse  

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features 

Random 
Improvement 
over 
description 
model 

Improvement 
over random 

Precision Recall F-Measure Precision Recall F-Measure Accuracy 

Platform 35% 29% 31.71% 50% 41% 45.05% 5.8% 42.04% 676% 

JDT 52% 49% 50.45% 67% 64% 65.46% 20% 29.74% 227% 

PDE 61% 56% 58.39% 68% 60% 63.75% 25% 9% 155% 

Equinox 55% 37% 44.23% 63% 43% 51.11% 11% 15.53% 364% 

E4 73% 58% 64.64% 78% 56% 65.19% 33% 0% 97% 

AVERAGE 55% 46% 50% 65% 53% 58% 18.96% 19% 205% 

Table 34 Components prediction accuracy for Gnome 

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features 

Random 
Improvement 
over 
description 
model 

Improvement 
over random 

Precision Recall F-Measure Precision Recall F-Measure Accuracy 

Deprecated 59% 59% 59% 96% 71% 81.63% 5% 38.35% 1532.60% 

Core 65% 41% 50.28% 73% 62% 67.05% 11% 33.35% 509.55% 

Other 50% 42% 45.65% 75% 63% 68.48% 5.5% 50% 1145.09% 

Platform 62% 48% 54.10% 85% 67% 74.93% 5.8% 38.51% 1191.90% 

Applications 58% 47% 51.92% 68% 53% 59.57% 8.3% 14.73% 617.71% 

Infrastructure 60% 53% 56.28% 72% 63% 67.20% 50% 19.40% 34.40% 

Bindings 61% 55% 57.84% 78% 66% 71.50% 14.2% 23.61% 403.52% 

AVERAGE 59% 49% 54% 78% 64% 70% 14.25% 31% 391.23% 
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7.3.6.4. Component Prediction Accuracy  

Table 35 Component prediction accuracy (Eclipse Equinox Product) 

Component 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

Framework 52.00% 53% 52.40% 59% 49% 53.50% 2% 

Incubator 58.00% 84% 68.60% 59% 88% 70.60% 2.90% 

Compendium 39% 36% 37.40% 50% 29% 36.70% -1.80% 

Components 0 0 0 50% 11% 18% 18.18% 

Launcher 50% 11% 18% 50% 11% 18% 0 

DeviceKit 80% 23% 35.70% 43% 18% 25.30% -29.10% 

ServerSide 66% 14% 23.10% 86% 43% 57.30% 148% 

P2 83% 81% 81.90% 86% 83% 84.40% 3% 

Security 70% 38% 49.20% 77% 55% 64.10% 30.20% 

Table 36 Component prediction accuracy (Eclipse PDE Product) 

Component 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

UI 87% 96% 91.20% 92% 96% 93.90% 2.96% 

Build 38% 34% 35.80% 69% 47% 55.90% 56.10% 

Incubator 42% 36% 38.70% 24% 28% 25.80% -33.30% 

Tools 78% 58% 66.50% 85% 68% 75.50% 13.50% 

Table 37 Component prediction accuracy (Eclipse E4 Product) 

Component 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

Resources 42% 50% 45.60% 36% 50% 41.80% -8.35 

UI 96% 97% 96.40% 97% 96% 96.40% 0% 

Tools 80% 28% 41.40% 100% 22% 36% -13% 

Table 38 Component prediction accuracy (Eclipse JDT Product) 

Component 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

Debug 57% 60% 58.40% 71% 79% 74.70% 27.90% 

Core 66% 73% 69.30% 84% 75% 79.20% 14.20% 

UI 58% 60% 58.90% 70% 76% 72.80% 23.50% 

Text 42% 29% 34.30% 57% 50% 53.20% 55.10% 

APT 35% 21% 26.20% 54% 39% 45.20% 72.50% 
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Table 39 Component prediction accuracy (Eclipse Platform Product) 

Component 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

Team 33% 37% 34.80% 38% 52% 43.90% 26.10% 

Assistance 39% 25% 30.40% 67% 45% 53.80% 76.90% 

UI 48% 71% 57.20% 59% 70% 64% 11.80% 

Scripting 16% 20% 17.70% 8% 20% 11.40% -35.50% 

Text 31% 19% 23.50% 55% 44% 48.80% 107.65% 

Resources 38% 43% 40.30% 50% 52% 50.90% 26.30% 

Ant 48% 28% 35.30% 66% 50% 56.80% 60.90% 

SWT 55% 39% 45.60% 63% 49% 55.10% 20.80% 

Compare 24% 17% 19.90% 53% 42% 46.80% 135.10% 

Debug 41% 28% 33.20% 57% 52% 54.30% 63.50% 

Search 18% 13% 15% 56% 38% 45.20% 201.30% 

Runtime 41% 33% 36.00% 49% 32% 38.70% 7.50% 

Update 55% 45% 49.50% 69% 54% 60.50% 22.20% 

Releng 56% 31% 39.90% 46% 28% 34.80% -12.70% 

WebDAV 0 0 0 34% 13% 18.80% 18.18% 

CVS 39% 34% 36.30% 59% 44% 50.40% 38.80% 

IDE 17% 11% 13.30% 17% 8% 10.88% -18.19% 

Table 40 Component prediction accuracy (Gnome Deprecated Product) 

Product 

Bug report Descriptions 
Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

galeon 92% 95% 93.47% 88% 97% 92.28% -1.28% 

gnome-media 51% 71% 59.36% 71% 75% 72.94% 22.88% 

gnome-core 60% 75% 66.66% 65% 79% 71.31% 6.98% 

gtop 83% 45% 58.35% 83% 68% 74.75% 28.09% 

gnome-pim 33% 30% 31.42% 59% 48% 52.93% 68.43% 

gnome-games 63% 50% 55.75% 35% 26% 29.83% -46.48% 

gnome-utils 32% 38% 34.74% 53% 40% 45.59% 31.23% 

scaffold 32% 30% 30.96% 58% 30% 39.54% 27.7% 

GGV 50% 29% 36.70% 45% 29% 35.27% -3.92% 

GnomeICU 54% 64% 58.57% 74% 68% 70.87% 20.99% 

acme 37% 40% 38.44% 42% 44% 42.97% 11.8% 

gnome-themes 67% 29% 40.47% 60% 43% 50.09% 23.76% 

gtkhtml2 63% 28% 38.76% 100% 33% 49.62% 28% 

mergeant 50% 47% 48.45% 77% 77% 77% 58.91% 

gnome-vfs 71% 19% 29.97% 71% 38% 49.50% 65.14% 

bug-buddy 46% 38% 41.61% 55% 46% 50.09% 20.38% 

gnome-python 75% 60% 66.66% 67% 80% 72.92% 9.39% 

glade-legacy 67% 49 56.60% 100% 35% 51.85% -8.39% 

magicdev 59% 70% 64.03% 58% 59% 58.49% -8.64% 

gossip 70% 39% 50.09% 100% 50% 66.66% 33.09% 
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Table 41 Component prediction accuracy (Gnome Other Product) 

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

gnome-panel 76% 94% 84.05% 85% 70% 76.77% -8.66% 

gnome-applets 60% 63% 61.46% 72% 64% 67.76% 10.25% 

GIMP 92% 66% 76.86% 88% 79% 83.26% 8.32% 

balsa 65% 43% 51.76% 75% 68% 71.33% 37.80% 

rhythmbox 86% 71% 77.78% 78% 90% 83.57% 7.44% 

Pan 56% 50% 52.83% 79% 81% 79.99% 51.41% 

gthumb 74% 62% 67.47% 74% 84% 78.68% 16.61% 

GnuCash 89% 65% 75.13% 93% 91% 91.99% 22.44% 

metacity 65% 41% 50.28% 100% 70% 82.35% 63.78% 

dia 64% 60% 61.94% 77% 65% 70.49% 13.80% 

gnome-pilot 67% 66% 66.5% 89% 87% 87.99% 32.31% 

gtranslator 42% 26% 32.12% 64% 37% 46.89% 45.98% 

memprof 0% 0% 0% 75% 27% 39.71% 39.71% 

conglomerate 50% 26% 34.21% 90% 54% 67.5% 97.31% 

mlview 100% 33% 49.62% 100% 58% 73.42% 47.96% 

gnome-alsamixer 50% 59% 54.13% 96% 89% 92.37% 70.64% 

gnome-commander 60% 29% 39.1% 89% 38% 53.26% 36.21% 

planner 25% 9% 13.24% 100% 45% 62.07% 368.8% 

Table 42 Component prediction accuracy (Gnome infrastructure Product) 

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

bugzilla.gnome.org 89% 95% 91.9% 91% 98% 94.37% 2.69% 

website 29% 22% 25.02% 100% 44% 61.11% 144.24% 

Table 43 Component prediction accuracy (Gnome Binding Product) 

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

pygtk 47% 80% 59.21% 60% 80% 68.57% 15.81% 

gnome-perl 50% 25% 33.33% 40% 50% 44.44% 33.33% 

gtkmm 50% 13% 20.63% 29% 25% 26.85% 30.15% 

pygobject 66% 62% 63.94% 97% 68% 79.95% 25.04% 

java-gnome 100% 40% 57.14% 100% 60% 75% 31.26% 

gjs 86% 27% 41.1% 100% 82% 90.11% 119.25% 

seed 57% 40% 47.01% 88% 70% 77.97% 65.86% 

Table 44 Component prediction accuracy (Gnome Platform Product) 

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

gtk+ 56% 70% 62.22% 79% 84% 81.42% 30.86% 

GStreamer 71% 61% 65.62% 89% 94% 91.43% 39.33% 

pango 55% 43% 48.27% 77% 73% 74.95% 55.27% 

glib 21% 14% 16.8% 37% 15% 21.35% 27.08% 

gdk-pixbuf 28% 15% 19.53% 75% 52% 61.42% 214.49% 

libxslt 67% 32% 43.31% 72% 68% 69.94% 61.49% 

evolution-data-server 76% 77% 76.5% 85% 94% 89.27% 16.69% 

at-spi 48% 25% 32.88% 68% 33% 44.44% 35.16% 

atk 28% 31% 29.42% 68% 55% 60.81% 106.7% 

libxml2 65% 41% 50.28% 89% 51% 64.84% 28.96% 

gtksourceview 9% 13% 10.64% 73% 53% 61.41% 477.16% 

NetworkManager 73% 87% 79.39% 93% 84% 88.27% 11.19% 
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Table 45 Component prediction accuracy (Gnome Core Product) 

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features Improvement 

Precision Recall F-Measure Precision Recall F-Measure 

nautilus 86% 90% 87.95% 89% 95% 91.9% 4.55% 

gnome-control-center 71% 73% 71.99% 84% 79% 81.42% 12.5% 

gnome-terminal 69% 84% 75.76% 86% 78% 81.8% 7.89% 

system-monitor 84% 70% 76.36% 94% 86% 89.82% 18.42% 

gnome-desktop 26% 21% 23.23% 4% 17% 23.86% 4.35% 

vte 23% 9% 12.94% 35% 19% 24.63% 92.31% 

gnome-session 31% 20% 24.31% 56% 34% 42.31% 75% 

totem 56% 41% 47.34% 74% 70% 71.94% 53.19% 

epiphany 94% 72% 81.54% 93% 90% 91.48% 10.98% 

Table 46 Component prediction accuracy (Gnome Applications Product) 

Product 
Bug report Descriptions 

Bug report Stack Traces with categorical 
features 

Improvement 

Precision Recall F-Measure Precision Recall F-Measure  

evolution 97% 100% 98.48% 97% 100% 98.48% 0% 

Gnumeric 77% 60% 67.45% 82% 73% 77.24% 15% 

gedit 64% 63% 63.5% 84% 68% 75.16% 19% 

ekiga 89% 66% 75.79% 60% 91% 72.32% -5% 

yelp 59% 62% 60.46% 78% 74% 75.95% 27% 

gnome-chess 80% 53% 63.76% 92% 73% 81.41% 27% 

file-roller 52% 61% 56.14% 74% 64% 68.64% 23% 

devhelp 34% 43% 37.97% 81% 57% 66.91% 76% 

gconf-editor 27% 29% 27.96% 33% 19% 24.12% -14% 

seahorse 38% 59% 46.23% 76% 66% 70.65% 54% 

anjuta 60% 20% 30% 100% 40% 57.14% 90% 

sound-juicer 56% 48% 51.69% 78% 65% 70.91% 37% 

 

7.3.6.4.1. Eclipse 

For some cases Sureka’s [S12] approach has outperformed ours (Table 35 to Table 39) in the Eclipse 

dataset, we found that this happens mainly when (1) the number of stack traces is small, and (2) bug 

report submitters provide descriptions which contain bug reproduction steps, source code information or 

other types of structural information. 

7.3.6.4.1.1. The Number of Stack Traces 

For the Eclipse product “E4” components “Resources” and “Tools”, our approach achieved lower accuracy 

than Sureka’s [S12] approach using bug report descriptions (Table 37). Our model needs a sufficient 

number of stack traces to generalize and make accurate predictions. When the number of stack traces is 

low, it is less likely to have shared methods (features) among stack traces (this is due to the uniqueness 
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of stack traces) compared to bug report descriptions, which contain common features (words) since they 

are written in natural language. Since the number of stack traces is low in these three products, the 

feature vector built using methods in stack traces could not properly represent bug reports in the vector 

space. So, the similarity of stack traces (bug reports) based on Equation (6) is zero for most of the cases, 

compromising the product and component fields prediction accuracy.  

Table 47 Eclipse Bug Report #213234 

Bug Report Field Value 

Product Equinox 

Component Components 

Header 
 IOexception on an invalid file path returned by 

FileLocator.toFileURL 

Description 

Hello Equinox Team 

I got an IOexception on the FileLocator.toFileURL() method when 

trying to resolve the installation path of a bundle. 

Here is the snippet 

public static IPath getInstallPath() { 

URL installURL  = null; 

URL resolveURL = null; 

File file  = null; 

if (installPath == null) { 

try { 

installURL = getInstallURL(); 

if (isDebug()) {System.err.println("getInstallPath: installURL : " + 

installURL.toString()); 

java.io.IOException: The filename, directory name, or volume label 

syntax is incorrect 

at java.io.WinNTFileSystem.canonicalize0(Native Method) 

at 

java.io.Win32FileSystem.canonicalize(Win32FileSystem.java:395) 

at java.io.File.getCanonicalPath(File.java:531) 

at 

com.anubex.ndt.core.Activator.getInstallPath(Activator.java:181) 

For Eclipse “Equinox” in the case of the “Components” component, we have very low accuracy when 

using bug report description. By further investigating this component, we observed that there is a small 

number of bug reports for this component and these bug reports only contain stack traces and source 

code, and barely contain any words in the description field. An example of a bug report description for 
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this component is shown in Table 47. The same observation holds for the “Webdav” component of the 

“Platform” product.   

7.3.6.4.1.2. Bug Report Submitters Provide Descriptions, Which Contain Bug Reproduction Steps 
or Source Code Information.   

For the “Incubator” component of the Eclipse “PDE” product, Sureka’s [S12] approach using bug report 

descriptions yields better results than our approach. By further investigating the “Incubator” component 

bug reports, we observed that they contain steps to reproduce the bug embedded in the bug report 

description. An example of a snippet of the bug report description for this component is shown in             

Table 48. 

The same observation holds for the “Device Kit” and “Equinox” products where most bug reports related 

to these products contain the bug reproduction steps in their description (see Bug Report #192746 in 

Table 49). 

Table 48 Eclipse Bug Report#213234 

Bug Report Field Value 

Product PDE 

Component Incubators 

Header [api tooling] invalid thread access setting up API tooling 

Description 

steps: 

1. open the editor for an element that will have a source tag 

added to it by the wizard 

2. make a change to the type and do not save it 

3. start the setup wizard 

specific example I used to reproduce: 

1. get debug.ui from head 

2. open FileLink and make a change, do not save 

3. run the setup wizard on debug 

7.3.6.4.2. Gnome 

For the Gnome dataset, our approach outperforms Sureka’s [S12] approach in most cases except for 

predicting the components “gnome-games” and “gconf-editor”. We found out that this is due to the fact 
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that the bug reports of those components contain information which is mostly technical and different 

from the categorical information provided in the bug tracking system. For example, in Bug 

Report#408425 (Table 50), we have information such as the distribution of the Linux environment, the 

release information of the OS, memory status, etc. 

The same observation holds for the “gconf-editor” component of the Gnome “Applications” product. In 

Bug Report#404634 (Table 51), for example, we can see technical information, which is embedded in the 

bug report description. 

Table 49 Eclipse Bug Report#192746 

Bug report field Value 

Product Equinox 

Component Incubator.DeviceKi 

Header Try to create new DK project fails 

Description 

Steps to recreate: 

1.  New->Other->Device Kit->Device Kit Components-

>Connection 

2. Connection Name = Something 

3. Finish becomes enabled click to attempt to create the 

connection 

4. Device Kit Error 

Found this error in the log 

!SESSION 2008-02-26 23:40:00.369 --------------------- 

eclipse.buildId=M20071023-1652 

java.version=1.5.0_13 

java.vendor=Apple Computer, Inc. 

BootLoader constants: OS=macosx, ARCH=x86, WS=carbon, 

NL=en_US 

Framework arguments:  -keyring 

/Users/pddempse/.eclipse_keyring -showlocation 

Command-line arguments:  -os macosx -ws carbon -arch 

 x86 -keyring /Users/pddempse/.eclipse_keyring -consoleLog -

showlocation 
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Table 50 bug report#408425 

Bug report field Value 

Product Deprecated 

Component gnome-games 

Header Crash while closing the window 

Description 

If you click the New button in the toolbar, so that the ‘new 

game’ dialog shows up, and then you close the window using 

the window manager close button, HEAD crashes. 

Distribution: Fedora Core release 6 (Zod) 

Gnome Release: 2.17.90 2007-02-10 (JHBuild) 

BugBuddy Version: 2.17.3 

System: Linux 2.6.19-1.2895.fc6 #1 SMP Wed Jan 10 19:28:18 

EST 2007 i686 

X Vendor: The X.Org Foundation 

X Vendor Release: 70101000 

Selinux: Enforcing 

Accessibility: Enabled 

GTK+ Theme: Clearlooks 

Icon Theme: gnome 

Memory status: size: 58736640 vsize: 58736640 resident: 

24649728 share: 13119488 rss: 24649728 rss_rlim: 4294967295 

CPU usage: start_time: 1171580860 rtime: 380 utime: 343 

stime: 37 cutime:0 cstime: 0 timeout: 0 it_real_value: 0 

frequency: 100 

 

Table 51 Bug report#404634 

Bug report field Value 

Product Applications 

Component gconf-editor 

Header crash in Configuration Editor: Set up my hot keys 

Description 

Descriptionlvlo 2007-02-05 16:02:31 UTC 

Version: 2.16.0 

What were you doing when the application crashed? 

Set up my hot keys 

Distribution: Ubuntu 6.10 (edgy) 

Gnome Release: 2.16.1 2006-10-02 (Ubuntu) 

BugBuddy Version: 2.16.0 

Memory status: size: 34299904 vsize: 0 resident: 34299904 

share: 0 rss: 12042240 rss_rlim: 0 

CPU usage: start_time: 1170690882 rtime: 0 utime: 665 

stime: 0 cutime:617 cstime: 0 timeout: 48 it_real_value: 0 

frequency: 0 
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7.3.7. Implication and limitations 

On stack traces: Our findings clearly show the importance of stack traces in predicting the product and 

component fields of bug reports. This confirms the need to collect stack traces whenever a bug report is 

submitted. Traces should not be copied and pasted in bug report descriptions, as it is the case in many 

bug tracking systems. Bug report tracking systems should be designed in a way that facilitates the 

collection and mining of stack traces. It is recognized that stack traces require storage and processing 

capabilities because of their size. For Mozilla products, for example, stack traces are only kept for one 

year because of the overhead caused by managing these traces [CSVP17]. Therefore, simply collecting 

traces may not be sufficient. We need to investigate better ways to structure their content by reducing 

noise and other elements that may not be needed to characterize the corresponding bug reports.  

On bug report categorical attributes: We showed that categorical attributes, namely version, platform, 

and severity, enhance the prediction accuracy. The problem is that these attributes themselves may be 

entered incorrectly, which is a threat to validity for our approach. Our findings strengthen the need to 

have these attributes automatically and correctly generated. Users should never have to enter these 

attributes.  

On the differences between Eclipse and Gnome: When predicting faulty product and component fields, 

we have approximately 10% more accuracy (60% for Eclipse compared to 70% in Gnome) for Gnome 

compared to Eclipse. Since Gnome has more stack traces than Eclipse, our approach has more data to be 

trained on. More training data helps the proposed approach to generalize better, which yields better 

accuracy.  Furthermore, the proposed approach improves over the random approach for Gnome more 

than Eclipse (250% improvement for Gnome and 200% improvement for Eclipse). The reason is twofold. 

The first reason is the higher accuracy of the proposed approach for Gnome due to the presence of more 

stack traces in the Gnome dataset. The second reason is the number of products and components and 

their distribution in Gnome. Gnome has more products and components than Eclipse. The distribution of 
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faulty product and component labels are also more unbalanced. Based on the random approach proposed 

in Equation (17), existence of more class labels and higher unbalanced class labels reduce the random 

approach accuracy. Training a more accurate model because of the presence of more stack traces and less 

accuracy of the random model because of the number of class labels and their distribution results in better 

improvement of the proposed approach over the random model for the Gnome dataset. 

7.4. Threats to Validity 

Our proposed approach and the conducted experiments are subject to threats to validity that we 

categorize into three categories, namely, external, internal, and construct validity. 

7.4.1. Threats to External Validity 

Our approach is evaluated against two well-known open-source datasets. We tested our approach on all 

bug reports having stack traces from the beginning of the bug repository to 2015. We showed that our 

approach (using stack traces and categorical features) outperforms the approach that relies on bug report 

description to predict the product and component fields of bug reports. We need to apply our model to 

more datasets to see if it outperforms bug report descriptions in other datasets as well. 

Since in both Gnome and Eclipse, stack traces are stored in the description by the user, not necessarily 

all of the bug reports have stack traces. Whereas in Eclipse, 10% of bug reports have stack traces in the 

description, because in 2015 Eclipse established an automatic stack trace collection system, we expected 

more bug reports to have stack traces from 2015 onwards. These stack traces are not made publicly 

available yet. For the Gnome dataset, 32% of bug reports had stack traces in their description, which is a 

good ratio. 

7.4.2. Threats to Internal Validity 

In our approach, the misclassification cost is calculated using our own proposed heuristic based on 

Equation (15). The outcome of the approach using that heuristic is promising. However, the parameter 
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could be adjusted using an exhaustive domain search or training machine learning methods. Using a more 

optimal parameter could further enhance the product and component prediction capability of our 

approach. 

Another possible threat may be concerning the use of regular expressions to extract stack traces from 

bug report descriptions. Our regular expression may have missed some stack traces. The missed stack 

traces could have slightly altered the accuracy of our approach. 

7.4.3. Threats to Construct Validity 

The construct validity shows how the used evaluation measures could reflect the performance of our 

predictive model. In this study, we used precision, recall and F-measure. These measures are widely used 

in other studies to assess the accuracy of machine learning models (e.g., [SHH16, XLSW16, LPG02, SM12]).  

7.5. Conclusions and Future Work 

In this chapter, we have proposed a new approach to predict faulty product and component fields of bug 

reports. Our approach leverages stack traces and categorical features instead of bug report descriptions. 

In our approach, we have used a linear combination of stack traces and categorical features similarity to 

predict product and component fields. We have also used the cost-sensitive K-nearest neighbour method 

to overcome the unbalanced dataset distribution problem and predict faulty products and components. 

To assess the accuracy of our approach, we used two well-studied and publicly available datasets (Eclipse 

and Gnome). We have assessed the performance of our approach using 221,038 bug reports from Gnome 

and Eclipse. Experiment results showed that our approach could predict the faulty product and 

component fields by an average F-measure of 65%. We have also shown that using stack traces and 

categorical features as a more formal source of information could improve the bug report faulty product 

and component field prediction accuracy. We showed that our approach using stack traces and 
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categorical features outperforms the one that uses bug report descriptions to predict faulty product and 

component fields of bug reports by 35% on average. 

Our approach can be used effectively to predict faulty product and component fields of bug reports to 

eliminate the overhead of the wrong assignment of the bug reports to the development teams. The 

proposed approach could significantly reduce the software maintenance cost by efficient localization of 

software bugs. 

As future work, we plan to evaluate our approach using additional datasets. We also plan to use a training 

model to obtain the optimized misclassification cost for each product and component. Furthermore, we 

plan to use more advanced machine learning techniques. 
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Chapter 8 

 Conclusion and future work  

Handling bug reports after the release of a software system is an end-users and time-consuming part of 

software maintenance. Bug tracking systems are widely used to capture software bugs from the                  

end-users. These bug reports need to be handled by the software company. Bug tracking systems require 

end-users to provide technical information when submitting software bug reports. Bug triagers mainly 

rely on the information provided by the users to route the bug reports to the development teams. Bug 

report handling process suffers from many shortcomings. In practice, the end-users are usually unfamiliar 

with the structure and technical aspects of the software system. The information they tend to provide is 

limited and often error-prone. Since bug triagers mainly rely on the information provided by users, 

incorrect data misleads them and consequently delays the resolution of bugs.  There is a need for tools 

that can alleviate the necessity of providing information from users.  

There exist studies for automatically predicting the information needed for triaging bug reports. However, 

these techniques mainly rely on the description of bug reports, which are written by end-users and hence 

tend to be error-prone. In this thesis, we studied the effectiveness of using stack traces. Stack traces are 

automatically generated by the software systems when a crash happens and do not require end-user to 

provide any information about the bug (reducing the human error element). 

We showed that our proposed approaches in Chapters 5, 6 and 7 can be used to automate the main steps 

of a bug triaging process with an acceptable level of accuracy. We believe that an automatic bug triaging 

system could significantly improve the accuracy of bug assignment and bug fixing process, which can result 

in cost savings. Furthermore, the proposed methods for automating the bug triaging process in this thesis 

are designed to be easily deployable. 

In this chapter, we provide a summary of our findings and introduce future research directions. 
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8.1. Thesis Findings 

In this section, we provide a summary of our findings. 

We compared the time to detect duplicate of an incoming bug report in the presence and absence of stack 

traces and found that the duplicate detection time for bug reports, which have stack traces, is statistically 

significantly different from duplicate detection time of bug reports without stack traces. We also found 

that duplicate bug report detection time in the presence of stack traces is lower compared to bug reports 

without stack traces. 

We studied the relation between the presence of stack traces in bug reports and the severity of the bugs. 

We found that there is a strong statistical association between the existence of stack traces and the 

severity of bug reports. 

We found that there is a significant statistical association between the reassignment of bug report faulty 

product and component fields and the existence of stack traces in the bug reports. We found that although 

faulty product and component fields of bug reports with stack traces are reassigned more than bug reports 

without stack traces, bug reports for which faulty product or component fields are reassigned are fixed 

sooner if they have stack traces. 

When a bug report is received in the bug tracking system, bug triagers assess if it is a duplicate bug report. 

We created groups of duplicate bug reports and found that in Eclipse 68% of duplicate bug reports groups 

contain only two bug reports. 

We showed that since open source software systems such as Eclipse grow quickly, using functions in stack 

traces to detect duplicate bug reports leads to the curse of dimensionality problem. We devised DURFEX, 

a duplicate detection approach that overcomes the curse of dimensionality problem by leveraging trace 

abstraction techniques. We showed that DURFEX not only eliminates the curse of dimensionality problem 
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by reducing the feature set almost 70% but also detects duplicate bug reports more accurately compared 

to approaches that are based on sequences of function calls. 

If a bug report is not duplicate of a previously triaged bug report, triagers need to assess the severity of 

the bug. We devised an approach for predicting the severity of bugs using stack traces. We showed that 

stack traces could be used to predict the severity of bugs. We also showed that stack traces could predict 

the severity of bugs with a statistically higher accuracy compared to bug report description provided by 

the end-users when submitting bug reports. We also showed that severity prediction accuracy is higher 

using stack traces compared to the approach which predicts severity labels randomly. 

We found that, in addition to stack traces, using categorical features such as faulty product, faulty 

component and operating system could further increase bug severity prediction accuracy. We devised a 

new approach, which predicts the severity of bugs using stack traces and categorical features. We showed 

that severity prediction accuracy is statistically significantly higher when using stack traces and categorical 

features compared to using stack traces only. We also showed the approach which uses stack traces and 

categorical features predict severity with higher accuracy compared to the approach, which predicts 

severity labels randomly. 

The last step in the bug triaging process is routing bug report to the development team who is responsible 

for the faulty product and component. We designed a new approach that predicts faulty product and 

component fields of bug reports based on stack traces and categorical features. We showed that the 

prediction accuracy is higher using the devised approach compared to using the bug report description 

provided by the end-user. We also show that the faulty product and component prediction accuracy is 

higher using the proposed approach compared to the approach which predicts faulty product and 

component fields of bug reports randomly [SHTH19, SNTH18]. 
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8.2. Future Work 

8.2.1. Limitations 

One of the limitations of this thesis is the availability of stack traces. At the present time, stack traces are 

manually copied to the description of bug reports in many bug tracking systems. This may explain why 

only 10% of Eclipse bug reports contain stack traces. Eclipse recently started an automatic system for 

collecting stack traces when a crash occurs. However, stack traces are not made available publicly yet. In 

Gnome, similar to Eclipse, stack traces are copied to the description of bug reports. However, the number 

of stack traces in Gnome is higher compared to Eclipse. In the Gnome dataset used for severity prediction, 

45% of bug reports had stack traces and, in the dataset, used for prediction of product and component 

fields, 32% of bug reports had stack traces. This limitation can be further resolved once software systems 

start providing automatic stack trace collection systems, and when bug tracking systems made stack traces 

publicly available. 

Another limitation is the misclassification heuristic used for the cost-sensitive K nearest neighbour 

method. The misclassification cost can be adjusted more precisely by an exhaustive domain search. It also 

could be adjusted using machine learning methods. In our studies, we set the cost of the misclassification 

of each class label to be reciprocal to the number of existing instances of that class divided by the number 

of instances of the majority class. Using a more optimal parameter could further enhance the severity, 

product and component field prediction capability of our approaches. 

One other limitation is the way we implemented the approach for extracting words from bug report 

descriptions. We simply tokenized each bug report description and used the extracted words to form 

feature vectors. We did not resort to any natural language processing method. The use of a powerful 

natural language processing method may result in better performance of an approach that uses bug 

report descriptions. 
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The regular expressions used to extract stack traces from bug report descriptions may miss some complex 

cases. We used the regular expression provided by Lerch et al. [LM13] to extract stack traces from Eclipse 

bug repository, but for Gnome since to the best of our knowledge, there is no publicly available tool for 

extracting stack traces, so we defined our own regular expression. To mitigate this threat, we manually 

verified hundreds of extracted traces from the Gnome dataset using our regular expression. Based on our 

evaluation, our regular expression extracts stack traces from Gnome bug reports with an accuracy of 95%.  

In this thesis, we relied on the labels provided by the triagers in the bug tracking systems. Although triagers 

are usually knowledgeable of the system, errors may occur, which can affect the accuracy of the proposed 

approaches. 

In this thesis, we focused on bugs that cause software systems to crash. However, some bugs do not lead 

to crashes. If a bug does not lead to a crash, we cannot generate a stack trace, which limits the applicability 

of the proposed approaches.  

Similar to most of the classifiers, K-nearest neighbour is also sensitive to noise. In our experiments, we 

used the labels provided by the triagers. However, there could be some noise in the data, which may 

render K-nearest neighbour approach sensitive and therefore impacts its performance.  

8.2.2. Future Research Opportunities 

We should aim to assess the effectiveness of stack traces in other bug report processing tasks. We can 

apply the proposed methods to predict bug reports that may be re-opened. Re-opened bug reports are 

bug reports, which are revisited because the fix was not satisfactory. Re-opened bug reports also have 

longer processing time [SIKIO+10] than the not re-opened bug reports. In the literature, bug report 

descriptions are used for predicting re-opened bug reports [SIKIO+10]. An interesting research direction 

is to use stack traces to see if better techniques can be developed.  
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In our studies, we leveraged stack traces to predict different bug report fields. We showed that stack 

traces can help predict bug report fields more accurately than bug report descriptions. One interesting 

future research direction is to use other types of information such as domain expertise. In addition, we 

need to study how the combination of various sources of data (traces, descriptions, domain knowledge, 

etc.) can be combined and which context they can be used either separately or by combining them.  

We used stack traces for predicting severity and product and component fields of bug reports. We use 

distinct method names in all the stack traces as features.  Software systems grow quickly, and as a result, 

more features will be introduced. Excessive increase in the number of features leads to the curse of 

dimensionality problem and limits the practical applicability of the proposed approaches. In Chapter 5, 

we introduced DURFEX [SHL17], which leverages trace abstraction concepts to reduce the number of 

features used for detecting duplicate bug reports. One future area of research can be to assess the 

accuracy of predicting severity and faulty product and component fields of bug reports using trace 

abstraction techniques. In addition, we need to investigate the use of other trace abstraction techniques 

such as the ones used in program comprehension [PH11, PAH10, HL04, HL06, HLF05]. 

Another future avenue of improvement is the use of more advanced machine learning methods. We used 

a linear model and cost-sensitive K-nearest neighbour method for our studies. There are future 

opportunities for using more advanced machine learning methods such as deep learning methods to 

further improve the prediction accuracy of the proposed approaches. 
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