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Abstract

Individual Claims Reserving: Using Machine Learning Methods

Dong Qiu

To date, most methods for loss reserving are still used on aggregate data arranged in a tri-

angular form such as the Chain-Ladder (CL) method and the over-dispersed Poisson (ODP)

method. With the booming of machine learning methods and the significant increment of

computing power, the loss of information resulting from the aggregation of the individual

claims data into accident and development year buckets is no longer justifiable. Machine

learning methods like Neural Networks (NN) and Random Forest (RF) are then applied and

the results are compared with the traditional methods on both simulated data and real data

(aggregate at company level).
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Introduction

In the case of non-life insurance, the related benefit is not paid to the insured necessarily

as soon as the accident occurs, some years may pass between the actual occurrence and

the final claim payment. There can be several reasons why the claim cannot be settled

immediately, including further investigation, new information, court decisions, and so on.

This time gap is the reason why insurance companies must allocate sufficient loss reserves

to cover any future payments for outstanding loss liabilities. To date, most methods for loss

reserving still use aggregate data arranged in a triangular form, as shown in Table 1. Aggre-

gate loss reserving data are placed in different cells for different accident and development

years. Based on this, methods such as the Chain-Ladder (CL) or Bornhuetter-Ferguson

(BF) algorithms are then applied to find some factors that can explain the development of

payments from year to year, or to find the ultimate claims reserves at the finalization of the

development period.

Wüthrich [2019] gives the notation of the aggregate claims reserves, where Xi,j rep-

resents the payments made for claims with accident year i in development year j, and

Ci,j =
!j

k=0Xi,k as the total payments made for claims with accident year i until devel-

opment year j. All the observations in the upper triangle are noted as DI , and the lower

triangle Dc
I is the part that actuaries would like to predict.
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Accident Year Development Years

i 0 1 . . . j . . . J − 1

1 X1,0 X1,1 . . . X1,j . . . X1,J−1

...

i Xi,0 Xi,1 . . .

... observations DI to predict Dc
I

I − 1

I XI,0 XI,1 . . . XI,j . . . XI,J−1

Table 1: Claims Development Triangle

Later on, in order to know how much the real payments may deviate from the predictions,

it was natural to set the CL model into a stochastic framework. For the CL method, according

to Wüthrich [2019], many stochastic models were developed, including the distribution-free

CL model, the over-dispersed Poisson (ODP) model with MLE parameter estimates, and

the Bayesian CL model. In Taylor and McGuire [2016], some other models are mentioned

(such as the EDF Mack model, cross-classified models).

Nonetheless, with the booming of machine learning methods, and the significant incre-

ment of computing power, the loss of information resulting from the aggregation of the

individual claims data into accident and development year buckets can now be prevented to

a certain level. In Taylor et al. [2008], a GLM method is proposed to build the model for

individual claim loss reserving in different cases.

Due to the pattern recognition capabilities of neural networks, Harej et al. [2017] used

these on long-tailed and short-tailed claims, for reserving and pricing of the simulated data

introduced by Taylor et al. [2008] mentioned above. Long-tailed and short-tailed patterns

are modeled by two log-normal distributions with different parameters, and a copula is used

to induce a dependence between them. There are 6,000 short-tailed claims and 4,000 long-

tailed claims that are produced under this unified model. More samples are produced by

2



allocating different numbers of claims from these two samples to each accident years.

Then, we start with the same approach as Harej et al. [2017], by applying machine

learning methods on simulated data, to which we add Random Forest (RF) along with a

modified version of the cascading method. The RF method is one of the most accurate

statistical learning algorithms available. It produces a highly accurate classifier for most

datasets, and it runs efficiently on large databases. It corrects decision trees’ tendency

to overfit their training set. Furthermore, instead of finding the development pattern of

payments, the RF method puts the individual claims that have the same pattern or features

into the same category and predicts the value by averaging all the values at the end node.

To eliminate the limitation of the cascading method, we found some approaches proposed

by Aleandri [2017], by separating the predicting procedure into different parts. It allows us

to predict the closing delay time, the final amount of payments, and then individual loss

reserving. However, in this thesis, due to the lack of real reserving data, we are not able to

use them for comparison purposes.

3



Chapter 1

Classical Methods

1.1 Chain Ladder Algorithm

The Chain Ladder (CL) method consists in a deterministic algorithm, which is widely

used to forecast future claim reserves. The main idea of the CL algorithm (see Wüthrich

[2019]) is based on the assumption that for all accident years i, the cumulative payments

behave according to the same pattern of changes in the sequence of the coming development

years. For a given accident year i, and development year j, the cumulative payments have

the following relation

Ci,j+1 ≈ fjCi,j, i ∈ {1, ..., I}, j ∈ {1, ..., J}, (1.1)

where the fj are called CL factors, age-to-age factors or link ratios.

Ultimately, we would like to know the cumulative claims reserves Ci,J−1 for each accident

year, which can be calculated by equation

ĈCL
i,J−1 = Ci,I−i

J−2"

j=I−i

f̂CLj , with i > I − J + 1, (1.2)

and more generally, ĈCL
i,n = Ci,I−i

#n−1
j=I−i f̂

CL
j for i + n > I, where f̂CLj is the estimator for

4



fj. In Wüthrich et al. [2010], estimators of fj are given as

f̂CLj =

!i∗(j+1)
i=1 Ci,j+1!i∗(j+1)
i=1 Ci,j

=

i∗(j+1)$

i=1

Ci,j!i∗(j+1)
n=1 Cn,j

Ci,j+1

Ci,j

, (1.3)

where i∗(j) = I − j is the last observed development year, which is the last diagonal

in the observed claims development triangle (See Table 1). If weights are added, then the

weighted average CL factors can be represented by:

f̂CLj =
J−1$

k=1

ωkj f̂ik, (1.4)

where fij =
Ci,j+1
Ci,j

and
!J−j

i=1 ωij = 1. When ωij =
Ci,j!J−j
i=1 Ci,j

, then the weighted average CL

factors in (1.4) reduce to those used in (1.3).

Easily we can calculate the total predicted CL reserve at time I for accident year i >

I − J + 1, which is given as

X̂CL
i = ĈCL

i,J−1 − Ci,I−i = Ci,I−i

% J−2"

j=I−i

f̂CLj − 1
&
. (1.5)

Therefore, the total yearly predicted claims in development year J for all accident years

can be written as:

R̂CL
J =

I$

i=1

(Ĉi,J − Ĉi,J−1)

=
I$

i=1

(Ci,I−i

J−1"

j=I−i

f̂CLj − Ci,I−i

J−2"

j=I−i

f̂CLj )

=
I$

i=1

Ci,I−if̂
CL
J−1,

along with the total predicted claim reserve over all accident years, which is given by:

R̂CL =
$

i>I−J+1

R̂CL
i . (1.6)

5



For example, Tables 1.1 and 1.2 use the synthetic data presented in Chapter 4 to illustrate

the above formulas. They follow the steps of the CL algorithm by calculating the CL factors

first; calculate the cumulative losses for the lower triangle; then compute the estimated

loss reserves and compare them with the available data. The CL algorithm predicts overall

reserves precisely when the claims are evenly distributed over different development patterns

or when the line of business is small; however, it performs poorly when the distribution of

the patterns varies more.

A Robust General Multivariate Chain Ladder (GMCL) Method

A non-life insurance company typically divides portfolios intom correlated sub-portfolios,

wherem = 1, . . . ,M andM is the total number of sub-portfolios, so that certain homogeneity

properties on each sub-portfolio are satisfied. The GMCL method is explained by Peremans

et al. [2018]. The overall outstanding reserve R that will need to be paid in the future is

defined as:

R =
M$

m=1

I$

i=1

(C
(m)
i,J − C

(m)
i,J−i). (1.7)

Let Ci,j = (C
(1)
i,j , . . . , C

(M)
i,j ) denote the vector of cumulative claims of accident period i

and development period j for business line m. Consider the following model structure from

development period j to j + 1:

Ci,j+1 = Aj +BjCi,j + !i,j, i = 1, . . . , I, (1.8)

where Aj is theM vector containing the intercepts β
(1)
0,j , ..., β

(M)
0,j , Bj is the theM×M matrix

that contains the development parameters β
(m)
1,j , ..., β

(m)
M,j for run-off triangle m in row j, and

!i,j = (#
(1)
i,j , ..., #

(M)
i,j ) are independent (over i) and symmetrically distributed random vectors

representing the error terms. Moreover, it is assumed that the errors !i,j satisfy

E[!i,j|Di,j] = 0,

Cov[!i,j|Di,j] = diag[Ci,j]
1/2Σkdiag[Ci,j]

1/2,
(1.9)

where Di,j is the set of cumulative claims for accident year i up to and including development

6
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year j, Σk is a symmetric positive definite M × M matrix, and diag is the operator that

turns its arguments into a diagonal matrix.

Therefore, the parameters Aj, Bj and Σk are unknown model parameters and need to

be estimated from historical claims in order to predict future losses.

The Seemingly Unrelated Regression (SUR) model is then used based on (1.8). For

historical claims only, the following system of equations is obtained





y
(1)
j

...

y
(M)
j




=





X
(1)
j . . . 0
... . . . ...

0 . . . X
(M)
j









β
(1)
j

...

β
(M)
j




+





!
(1)
j

...

!
(M)
j




, for i = 1, . . . , n(j) with n(j) = I − j,

(1.10)

where I is the latest accident period, j = 0, 1, · · · , J − 1 for m = 1, . . . ,M and where the

following holds true:

• y
(m)
j = (C

(m)
1,j+1, . . . , C

(m)
n(j),j+1)

′ is the n(j) vector of all observed losses at development

period j + 1 from triangle m;

• X
(m)
j = ((1, C

(m)
1,j )′, . . . , (1, C

(m)
n(j),j)

′)′ is the n(j) × (M + 1) matrix of the first n(j)

observations at development period j from each triangle, including the constant 1 as

the intercept Cm
0,j. Hence, X

(1)
j = . . . = X

(M)
j ;

• β
(m)
j = (β

(m)
0,j , . . . , β

(m)
M,j)

′ is the M + 1 vector of development parameters of triangle m,

including the intercept, here (β
(m)
0,j , . . . , β

(m)
M,j) does not depend on subscript m, but it

makes it easier to align with the rest part of the equation;

• !
(m)
j = (#

(m)
1,j , . . . , #

(m)
n(j),j)

′ is the n(j) vector of error terms of triangle m.

The set of the first n(j) claims up to and including development period j is presented as

Dj = {Ci,j|1 ≤ i ≤ n(j), j ≤ J − 1}. From (1.9) it follows that

Cov[!j|Dj] = E[!j!′
j|Dj] = diag[Cj]

1/2(Σk ⊗ In(j))diag[Cj]
1/2, (1.11)

where !j = (!
(1)′

j , . . . , !
(M)′

j )′, Cj = (C
(1)′

j , . . . ,C
(M)′

j )′ with C(m)′

j = (C
(m)′

1,j , . . . , C
(m)′

n(j),j) for
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m = 1, ...,M , and ⊗ is the Kronecker product. Pre-multiplying both sides of Equation

(1.10) by diag[Ck]
1/2 leads to the following linear regression model:





y
(1)∗
j

...

y
(M)∗
j




=





X
(1)∗
j . . . 0
... . . . ...

0 . . . X
(M)∗
j









β
(1)
j

...

β
(M)
j




+





!
(1)∗
j

...

!
(M)∗
j




, (1.12)

with y(m)∗
j = diag[C(m)

k ]−1/2y
(m)
j ,X(m)∗

j = diag[C(m)
k ]−1/2X

(m)
j , and !

(m)∗
j = diag[C(m)

k ]−1/2!
(m)
j .

The generalized least squares (GLS) is an adaptation of least squares that can handle

any type of correlation. Therefore, the estimator for the model in (1.12) becomes

β̂j = (X∗′

j )(Σ
−1
j ⊗ In(j))(X

∗
j)

−1X∗′

j (Σ
−1
j ⊗ In(j))y

∗
j , (1.13)

where X∗
j = diag[X(1)∗

j , ...,X
(M)∗
j ] is a block diagonal matrix of size n(j)M × M(M + 1),

and y∗
j = (y

(1)∗
j , ...,y

(M)∗
j ). A feasible GLS (FGLS) estimator is usually introduced to

estimate the unknown Σj. FGLS replaces the unknown matrix Σj in (1.13) with Σ̂j =

(!̂
(1)∗
j , . . . , !̂

(M)∗
j )′(!̂

(1)∗
j , . . . , !̂

(M)∗
j )/n(j), where !̂

(m)∗
j are the residuals obtained from estimat-

ing (1.12) by least squares.

It has been shown that FGLS estimators in the GMCL model are very sensitive to

outliers. Therefore, a robust methodology is then proposed by Peremans et al. [2018] for

reserve estimates and outlier detection by combining robust SUR estimators with the GMCL

model.

The system of equations in (1.12) can be rewritten as another linear regression model by

reordering the equations. Let Y∗
i,j,X ∗

i,j and e∗
i,j be the subvector or submatrix of yj,Xj and

!∗
j respectively by extracting rows i, i+ n(j), ..., i+ n(j)(M − 1).

Then the system of equations in (5) is equivalent to

Y∗
i,j = X ∗

i,jβj + e∗
i,j, i = 1, ..., n(k). (1.14)

The Cov[e∗
i,j|Di,j] can be easily obtained by Σj. Decompose the covariance matrix Σk into

a shape component Γj and a scale parameter σj such that Σj = σ2
jΓj with the determinant
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of the matrix |Γj| = 1.

Let e∗
i,j(b) be equal to Y∗

i,j − X ∗
i,jb for any M(M + 1) vector b according to the SUR

representation in (1.14). Then, given an initial estimator of the scale σ̂j, the MM-estimators

(β̂j, Γ̂j) minimize

1

n(j)

n(j)$

i=1

ρ





-
e∗
i,j(b)

′G−1e∗
i,j(b)

σ̂k



 , (1.15)

over all M(M + 1) vectors b and positive definite symmetric M × M matrices G, where G

represents Γ, with the determinant of the matrix |G| = 1. The MM-estimator for covariance

is defined as Σ̂j = σ̂2
j Γ̂j. Evidently, taking ρ(x) = x2 yields the iterated FGLS estimator. To

be robust against outliers, it is necessary to consider bounded ρ functions. More specifically,

we assume that the function ρ satisfies the following conditions:

• ρ is symmetric, twice continuously differentiable and satisfies ρ(0) = 0;

• ρ is strictly increasing on [0, c] and constant on [c,∞] for some c > 0.

The most favored family of ρ functions for MM-estimators is the class of Tukey bi-square

ρ functions given by ρ(x) =min(x2/2 − x4/2c2 + x6/6c4, c2/6). Under the SUR model with

normally distributed errors, the tuning parameter c > 0 is usually chosen to obtain a certain

level of asymptotic efficiency. In the paper of Peremans et al. [2018], the Tukey bi-square ρ

function is always considered with tuning parameter c = 5.1229.

An initial estimator of scale σ̂k is required for MM-estimators. This scale estimator should

be robust in order for MM-estimators to be robust. Therefore, highly robust S-estimators

have been introduced for SUR models to obtain a highly robust scale estimator.

Starting from the initial S-estimates, MM-estimates are computed simply by iterating

the following estimating equations until convergence according to Maronna et al. [2006]:

β̂j = (X∗′

j )(Σ̂
−1

j ⊗Dn(j))X
∗
j)

−1X∗′

j (Σ̂
−1

j ⊗Dn(j))y
∗
j ,

Σ̂j = M(e∗
1,j(β̂j), . . . , e

∗
n(j),j(β̂j))Dj(β̂j), . . . , e

∗
n(j),j(β̂j))

′
% n(j)$

i=1

ρ′(d1,j)di,j

&
,
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with Dj = diag[ω(d1,j), . . . ,ω(dn(j),j)], where ω(x) = ρ′(x)/x, d2i,j = e∗
i,j(β̂j)

′Σ̂
−1

j e
∗
i,j(β̂j),

and e∗
i,j(β̂j) = Y∗

i,j −X ∗
i,jβ̂j are the residuals derived from the representation in (1.14).

1.2 Bornhuetter-Ferguson Algorithm

The Bornhuetter-Ferguson (BF) algorithm is similar to the CL algorithm, but it adds an

assumption on prior information µ̂i for the expected ultimate claims of accident year i. Once

we have a claims development pattern (γj)j=0,1,...,J−1, which is the proportion of total loss

for any accident year observed in development year j, it will allow us to predict the reserves

using

X̂BF
i,j ≈ γjµ̂i, (1.16)

under the normalization
!J−1

j=0 γj = 1, and the γj have to be estimated based on observations.

An expert should give the prior information µ̂i here instead of basing it on the past data

in DI , which is the claim reserve information we have from the upper triangle. Wüthrich

[2019] defines the following estimators for the development pattern,

γ̂BF0 = β̂BF
0 , (1.17)

γ̂BFj = β̂BF
j − β̂BF

j−1, for j = 1, ..., J − 2, (1.18)

γ̂BFj = 1 − β̂BF
J−2, (1.19)

where βBF
j =

#J−2
l=j

1

f̂CLl

=
"j−1

l=o f̂
CL
l"J−2

l=0 f̂CLl

. Therefore the ultimate claim estimate Ĉi,J−1, for

i > I − J + 1, is estimated by the BF method

ĈBF
i,J−1 = Ci,I−i + µ̂i

J−1$

j=I−i+1

γ̂BFj = Ci,I−i + µ̂i(1 − β̂BF
I−i), (1.20)

and then the claim reserve at time I for accident year i > I − J + 1 is

R̂BF
i = µ̂i

J−1$

j=I−i+1

γ̂j
BF = µ̂i(1 − β̂BF

I−i). (1.21)
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Finally the total outstanding loss liabilities would just be the sum of claim reserves from

all accident years

R̂BF =
$

i>I−J+1

R̂BF
i . (1.22)

No examples are given for the BF methods, since for the simulated data, no prior infor-

mation by experts is available. However, a comparison of the CL and BF algorithms is given

in Wüthrich [2019], which shows that they have the same structure:

ĈCL
i,J−1 = Ci,I−i + ĈCL

i,J−1(1 − β̂BF
I−i), (1.23)

ĈBF
i,J−1 = Ci,I−i + µ̂i(1 − β̂BF

I−i). (1.24)

The only difference is that for the BF method the external estimate µ̂i is used for the

final claim and in the CL method, it is an observation based on the estimated ĈCL
i,J−1.
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Chapter 2

Stochastic Methods

The previous chapter reviews some classical algorithms that provide ways to calculate

the claim reserves, however as a measure of preciseness, there is also a need to validate the

prediction uncertainty of these models.

In Wüthrich [2019], the conditional mean square error of prediction (MSEP) was used

to validate model uncertainty. It is the most popular prediction uncertainty measure, and it

can be calculated or estimated explicitly in many examples. Assume X̂ is a DI-measurable

response variable for the random variable X. The conditional MSEP is defined by

msepX|DI
(X̂) = E[(X − X̂)2|DI ], (2.1)

which can also be written as

msepX|DI
(X̂) = V(X|DI) + (E[X − X̂|DI ])

2, (2.2)

where in the righthand side of the equation, the first part is called process uncertainty,

and the second part is called parameter estimation error or bias. In order to minimize the

conditional MSEP, X̂ should be chosen such that its expected value is the same as E[X|DI ],

if all parameters are known and if we can calculate E[X|DI ]. In other cases, E[X|DI ] needs

to be estimated as accurately as possible, and the possible sources of parameter uncertainty

in this estimation need to be determined.
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In order to analyze this prediction uncertainty, the claim reserving algorithms must be

set in a stochastic framework, which means the variables {Xi} have to be put into a family,

where each one is indexed by a parameter i, where i belongs to some index set I, and it has

to be measurable with respect to some measurable space
.
S,

! /
.

Several stochastic methods are mentioned by Taylor and McGuire [2016] and by Wüthrich

[2019], but only the following three main methods are reviewed here:

1. Mack models,

2. Cross-Classified models,

3. Bayesian CL models.

2.1 Mack Models

The non-parametric Mack model is the most basic of Mack models, which assumes the

three following conditions:

(M1) Accident years are stochastic independent, i.e., incremental payments Xi1,j1 and Xi2,j2

are independent if i1 ∕= i2,

(M2) for each i, cumulative payments Ci,j form a Markov process, as j varies,

(M3) there exist fj > 0, j ∈ {0, ..., J − 1}, and σ2
j > 0, j ∈ {0, ..., J − 1}, such that for all

i ∈ {1, ..., I} and j ∈ {1, ..., J − 1},

(a) E[Ci,j+1|Ci,j] = fjCi,j,

(b) V[Ci,j+1|Ci,j] = σ2
jCi,j.

As we can see from these three conditions, and comparing to the previous CL algorithm,

it is a stochastic model in the sense that it considers both expected values (fj) and the

variances (σj) of observations and the reason why it is called distribution-free is that it does

not assume a known distribution for the observations, we will see the difference later when

introducing other models.

Wüthrich et al. [2010] give unbiased estimators for both fj and σj, with n(j) = I − j,
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f̂j =

!n(j+1)
i=1 Ci,j+1!n(j+1)
i=1 Ci,j

=

n(j+1)$

i=1

Ci,j!n(j+1)
k=1 Ck,j

Ci,j+1

Ci,j

, (2.3)

σ̂j =
1

n(j + 1) − 1

n(j+1)$

i=1

Ci,j

%Ci,j+1

Ci,j

− f̂j

&2

. (2.4)

By adding the variance, it makes it possible to compute the MSEP for Ĉ using (2.2). In

this case,

msepC|DI
(Ĉ) = V(C|DI) + (E[C|DI ] − Ĉ)2, (2.5)

where E[X|DI ] − X̂ = 0. By using (M3b) recursively, (2.5) can be written as

msepC|DI
(Ĉ) = V(C|DI) =

I$

i=2

%
Ci,I−i

J−2"

j=I−i

σ2
j ). (2.6)

The CL factor and variance can be calculated using (2.3) and (2.4), except for the last

variance since there will not be enough information. According to Mack [1993], if f̂J−2 = 1

and if the claims development is believed to be finished after J − 2 years, we can put

σ̂J−2 = 0. If not, we extrapolate the usually exponentially decreasing series σ1, ..., σJ−4, σJ−3

by one additional member, for instance by log-linear regression or more simply by requiring

that σJ−4/σJ−3 = σJ−3/σJ−2 holds at least as long as σJ−4 > σJ−3. This last possibility

leads to:

σ̂J−2 = min{
σ̂4
J−3

σ̂2
J−4

; σ̂2
J−3; σ̂

2
J−4}. (2.7)

Table 2.1 gives an example of the calculation of CL factors and variances for the data in

Sample 3, which will be defined later in Chapter 4.

0 1 2 3 4 5 6 7 8 9 10
fCLj 2.0163 1.3896 1.2077 1.1285 1.0864 1.0631 1.0483 1.0372 1.0308 1.0252 1.0214
σj 872.84 479.32 797.58 875.44 531.01 318.07 685.87 384.31 393.44 403.36 632.96

11 12 13 14 15 16 17 18 msep
1.0177 1.0140 1.0123 1.0104 1.0094 1.0078 1.0083 1.0046 -
948.43 809.23 1760.62 1067.58 684.23 441.54 9.38 1.00 6,313,104,379.62

Table 2.1: CL Factor and Variance from Sample 3

Two other generalized linear models (GLMs) that are from the Mack family are extensions
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of this non-parametric Mack model: one of them is called Exponential Dispersion Family

parametric Mack model (EDF Mack model), which simply replaces (M3b) above with a dis-

tributional assumption Xi,j+1|Ci,j ∼ EDF (δij,φij; a, b, c). The form of the variance allowed

in the EDF Mack model is more general than in the non-parametric Mack model. The other

extension is called Over-Dispersed Poisson (ODP) Mack model, which replaces (M3b) with

another distributional assumption Xi,j+1|Ci,j ∼ ODP (µij,φij).

According to Taylor and McGuire [2016], under the assumption of the ODP Mack model,

and if in addition the dispersion parameters φij are just column dependent (φij = φj), then

the f̂j from (2.3) are minimum variance unbiased estimators (MVUEs) of the fj. The Ĉi,j

and X̂, under the same condition are also MVUEs of Ci,j and X.

This MVUE result is much stronger than the non-parametric Mack model that was

referred to in the previous section, as the estimators here are minimum variance out of all

unbiased estimators, not just out of the linear combinations of the f̂j.

With the definition above, the parameter estimates of the ODP Mack model can be

calculated using the maximum likelihood method. However, Strascia and Tripodi [2018] used

another method called quasi-likelihood function, which is defined by Wedderburn [1971] by

specifying only the relation between mean and variance as follow:

k(Xi,j,φ)

µi,j
=
Xi,j − µi,j
V (µi,j)

, (2.8)

or equivalently,

k(Xi,j,φ) =

0 µij

Xij

Xij − s

φV (s)
ds. (2.9)

Therefore over all Xi,j, the quasi-likelihood function can be written as,

K(X; β,φ) =
$

i+j≤t

ωij k(Xi,j; β,φ) =
$

i+j≤t

ωij

0 µij

Xij

Xij − s

φV (s)
ds, (2.10)

where µi,j depends on β – the parameter estimates of this model. φ is the dispersion pa-

rameter independent from i and j, ωi,j is the weight on each K(Xi,j; β,φ). t is introduced

by Strascia and Tripodi [2018] as the balance-sheet year, all the data before t is known with

certainty, while the data after is subjected to randomness. Then V (µij) = h′′(h′−1(µij)) is
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the so-called variance function of the GLM, and h = g−1, where g is the link function. Maxi-

mizing this equation can be used to estimate the β parameters, due to the similar properties

it has with the likelihood function.

In the ODP model with a logarithmic link-function instead, the relation between mean

and variance is the following:

E[Xi,j+1|Ci,j] = µij = ec+ai+bj and V[Xi,j+1|Ci,j] = φV (µij) = φµij. (2.11)

By inserting these equations into (2.8), the expression of the quasi-likelihood function for

the ODP model can be written as:

K(X; β,φ) =
$

i+j≤t

ωij

φ

1
Xijlog

µij
Xij

− µij +Xij

2
, (2.12)

the β̂ estimate is calculated by searching for the β = (c, a1, . . . , aI , b1, . . . , bJ)
⊤ values that

maximize Function K in (2.10), so that the observed data is the most probable. The opti-

mization problem can be solved through the Gauss-Newton method.

One method often used to estimate the observed data model goodness of fit is to analyze

the generalized Pearson residuals. In the ODP case, with ωij = 1, the residuals are:

rij =
Xij − µ̂ij-

φ̂µ̂ij

, (2.13)

where φ̂ can be calculated through Pearson estimator φ̂ = 1
n−p

!
i+j≥t ωij

(Xij−µ̂ij)2
V (µ̂ij)

, n − p is

the number of the model degrees of freedom, n is the number of the observed data, p is the

number of parameters to be estimated.

Pearson statistics χ2 =
!

i+j≤t ωij
Xij−µ̂ij
V (µ̂ij)

is used in Strascia and Tripodi [2018] to cal-

culate the overall discrepancy between empirical and theoretical data. Under the quasi-

likelihood case, the deviance is:

D(µ̂, X) = −2φ̂K(X; β̂, φ̂). (2.14)
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Finally, according to Strascia and Tripodi [2018], for the ODP Mack Model, it is possible

to calculate the MSEP for total reserve R with the following more compact form:

msepX|DI
(R̂) = φ̂

$

i+j>t

µ̂ij +
$

i+j>t

µ̂2
ijx

⊤
ijV̂[β̂]xij

+
$

i1+j1>t
i2+j2>t

(i1,j1)∕=(i2,j2)

µ̂ij1µ̂ij2x
⊤
i1,j1
V̂[β̂]xi2,j2 ,

(2.15)

where xi,j is the dummy variables vector, which is used to code accident and development

year.

Another concept is introduced by Strascia and Tripodi [2018] which is the Claims De-

velopment Result; it calculates if the claims reserve estimate in year t for accident year i is

enough to pay the claims for the next year and new claims reserve at the next year t+ 1:

CDRi,t+1 = Ĉ
(t)
i,J − Ĉ

(t+1)
i,J , (2.16)

where Ĉ(t)
i,J is the ultimate cost estimate at time t for claims from accident year i. Here t is

used as the superscript instead of using m , which was used to represent the different line of

business earlier.

Particularly, it is a loss for the insurance company if CDRi,t+1 < 0, while it is a gain

with a positive result.

In the chain ladder framework, the CDRi,t+1 is written in the following way:

!CDRi,t+1 = Ĉ
(t)
i,J − Ĉ

(t+1)
i,J = Ci,t−i

% J−1"

j=t−i

f̂
(t)
j

&%
1 − Ci,t−i+1/Ci,t−i

f̂
(t)
t−i

J−1"

j=t−i+1

f̂
(t+1)
j

f̂
(t)
j

&
. (2.17)

By adding a credibility factor α
(t)
j =

Ct−j,j!t−j
i=1 Cij

, the ratio between two link ratios associated

with the same j development year and estimated in a two-years-in-a-row balance sheet can

be written as:
f̂
(t+1)
j

f̂
(t)
j

= α
(t)
j

Ct−j,j+1/Ct−j,j

f̂
(t)
j

+ (1 − α
(t)
j ). (2.18)

By using (2.16) for the link ratios, the CDR estimator in (2.15) can also be written in
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the following way:

!CDRi,t+1 = Ĉ
(t)
i,J − Ĉ

(t)
i,J

Ci,t−i+1/Ci,t−i

f̂
(t)
t−i

J−1"

j=t−i+1

%
α
(t)
j

Ct−j,j+1/Ct−j,j

f̂
(t)
j

+ (1 − α
(t)
j )

&
. (2.19)

Another additive loss reserving model for the multi-year non-life insurance risk was de-

veloped by Diers and Linde [2013], which is to elaborate on the risk modelling for non-life

insurance companies by modelling insurance risk in a multi-year context. It is recommended

to use this formula in case of attritional claims such as homogeneous and stable portfolios.

However, for large claims, it should be modelled separately. Hahn [2017] also extended this

model onto dependent lines of business by adding weights and covariance matrix.

2.2 Cross-Classified Model

Referred to as EDF cross-classified model (Taylor and McGuire [2016]), it is defined as:

(EDFCC1) The random variables Xij ∈ DI are stochastically independent.

(EDFCC2) For i = 1, 2, ..., I, and j = 1, 2, ...J

(a) Xij ∼ EDF (µij,φij; a, b, c), φij are dispersion parameters,

(b) E[Xij] = µij = αiβj for some parameters αi, βj > 0, and,

(c)
!J

j=1 βj = 1.

Comparing to the regular Mack model (i.e. non-parametric Mack model), instead of

having only fj as a parameter, this model uses αi and βj as parameters for both row and

column effects on the expected value ofXij, we can regard αi as the ultimate claim reserve for

accident year i, and βj as the portion of this total claim reserve amount in each development

year j, which is similar to the assumption of the BF algorithm, but without prior information

given by experts. It is obvious that regular Mack models apply to cumulative data, whereas

cross-classified models apply to incremental data, which implies that the cross-classified

model is more general.
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If the modified (EDFCC2a), (EDFCC2b) are as in ODP form, which is the sub-family

of EDF cross-classified family, along with the further condition φij = φ, then it can be

rewritten as

Xij ∼ ODP (αiβj,φ) = ODP (µij,φ), (2.20)

where

µij = exp(lnαi + ln βj). (2.21)

This modified model is called over-dispersed Poisson (ODP) cross-classified model. Wüthrich

[2019] gives more details about this model, where

Xij

φ
∼ Poi(

αiβj
φ

), (2.22)

and we observe that,

E[Xij] = αiβj, (2.23)

V(Xij) = φαiβj. (2.24)

Two side constraints are commonly used in order to make the parameters αi and βj

uniquely identifiable, which are

α1 = 1 or
J−2$

j=1

βj = 1. (2.25)

The first option is more convenient in the application of GLM methods, the second option

gives an explicit meaning to the pattern (β1, β2, . . . , βJ−2), namely, that it corresponds to

the cash flow pattern.

The best-estimate reserves at time I are given by

X̂ =
$

i+j>I

E[Xij|DI ] =
$

i+j>I

αiβj, (2.26)

where DI holds the same definition as from the previous subsections.
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Then the MLE estimates of αi and βj are given by

α̂MLE
i = ĈCL

i,J−1 and β̂MLE
j =

%
1 − 1

f̂CLj−1

& J−2"

k=j

1

f̂CLk

, (2.27)

for i = 1, . . . , I and j = 1, . . . , J − 1. Moreover, β̂MLE
0 =

#J−2
k=0

1

f̂CLk

.

Since ĈCL
i,J−1 is the estimator for α̂i, and

!J−2
j=1 βj = 1, on the overall level, the results

should be almost the same as the results of the CL Mack model, but for the prediction of

payments for each development year, the results will show some differences.

2.3 Bayesian CL Model

Wüthrich [2019] gives the gamma-gamma Bayesian CL model, which belongs to the

exponential dispersion family (EDF) with conjugate priors. The advantage of this model is

that the posterior distribution can be calculated analytically, which allows that all quantities

of interest be determined in closed form.

Assume that giving fixed constants σj > 0, and j = 0, ..., J − 2, the Bayesian CL model

is defined as:

(a) Conditionally, given Θ = (θ0, . . . , θJ−2), the Ci,j are independent (in i) Markov

processes (in j) with conditional distributions,

Fi,j+1 =
Ci,j+1

Ci,j

333Ci,j,Θ ∼ Γ(Ci,jσ
−2
j , θjCi,jσ

−2
j ). (2.28)

(b) θj are independent and Γ(γj, fj(γj − 1))-distributed with given prior constants

fj > 0, γj > 1.

(c) Θ and Ci,0 are independent and Ci,0 > 0, P-a.s.

For a given parameter Θ, the conditional mean is given by

E[Ci,j+1|Ci,j,Θj] = Ci,jE[Fi,j+1|Ci,j,Θj] = θ−1
j Ci,j. (2.29)
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From this, it can be found that θ−1
j plays the role of the CL factor fj here. The reason

for choosing the prior parameters of the distribution of θj is that

E[θ−1
j ] =

1

γj − 1
fj(γj − 1) = fj. (2.30)

where the γj here is different from the γ from equation (1.16).

Recall that the corresponding probability density function in the shape-rate parametriza-

tion for the gamma distribution Γ(α, β) is

f(x;α, β) =
βαxα−1e−βx

Γ(α)
, (2.31)

where Γ(α) =
4 ∞
0
xα−1e−xdx is the gamma function, when α is a complex number with a

positive real part, while Γ(α) = (α − 1)! when α is a positive integer.

Then the joint likelihood function of the observations DI and the parameters Θ is given

by

h(DI ,Θ) =
"

(i,j)∈II ,j>1

(
θj−1Ci,j−1

σ2j−1
)

Ci,j−1
σ2
j−1

Γ(
Ci,j−1
σ2j−1

)
F

Ci,j−1
σ2
j−1

−1

i,j exp{−θj−1Ci,j−1

σ2
j−1

Fi,j}

× g(C1,0, ..., CI,0)
J−2"

0

(fj(γj − 1))γj

Γ(γj)
θ

γj−1
j exp{−θjfj(γj − 1)},

(2.32)

where II is the index set of observations DI , and g(C1,0, ..., CI,0) denotes the density of the

first column j = 0.

This allows to apply Bayes rule which provides the posterior of Θ, conditionally given

DI ,

h(Θ|DI) ∝
J−2"

j=0

θ
γj+

!I−j−1
i=1

Ci,j

σ2
j

−1

j e
−θj

5
fj(γj−1)+

!I−j−1
i=1

Ci,j+1

σ2
j

6
(2.33)

which in turn proves that

Θ|DI ∼ Γ

7
γj +

I−j−1$

i=1

Ci,j

σ2
j

, fj(γj − 1) +

I−j−1$

i=1

Ci,j+1

σ2
j

8
. (2.34)
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Under the assumptions of a gamma-gamma Bayesian CL model, the posterior Bayesian

CL factors are given by

f̂BCLj = E[θ−1
j |DI ] = αj f̂

CL
j + (1 − αj)fj, (2.35)

with CL factor estimate f̂CLj given by (1.3) and credibility weight

αj =

!I−J−1
i=1 Ci,j!I−J−1

i=1 Ci,j + σ2
j (γj − 1)

∈ (0, 1). (2.36)

Therefore, the prediction for the accumulative payment for accident year i with i+J−1 >

I is

ĈBCL
i,J−1 = E[Ci,J−1|DI ] = Ci,I−i

J−2"

j=I−i

f̂BCLj . (2.37)

Consider the gamma-gamma Bayesian CL model with a non-informative prior γj → 1,

it is obvious that αj = 1 in this case, and therefore f̂BCLj = f̂CLj and ĈBCL
i,J−1 = ĈCL

i,J−1, which

implies that the CL model is a special case of the Bayesian CL model.

For the conditional MSEP obtained earlier,

msepCi,J−1|DI
(ĈBCL

i,J−1) = V(Ci,J−1|DI) + (E[Ci,J−1|DI ] − ĈBCL
i,J−1)

2

= V(Ci,J−1|DI).
(2.38)

This shows the optimality of the Bayesian CL predictor within the model, and that what

remains is the calculation of the conditional variance of the final claim.

Wüthrich [2019] gives the solution for conditional MSEP as:

msepCi,J−1|DI
(ĈBCL

i,J−1) = ĈBCL
i,J−1ΓI−i + (ĈBCL

i,J−1)
2∆I−i,

msepCi,J−1|DI
(
$

i

ĈBCL
i,J−1) =

$

i

msepCi,J−1|DI
(ĈBCL

i,J−1) + 2
$

i<l

ĈBCL
i,J−1Ĉ

BCL
l,J−1∆I−i,

(2.39)
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where Γk and ∆k are defined as

Γk =
J−2$

j=k

σ2
j

J−2"

n=j

%
f̂BCLn

σ2
n(γn − 1) +

!I−n−1
i=1 Ci,n

σ2
n(γn − 2) +

!I−n−1
i=1 Ci,n

&
,

∆k =
J−2"

j=k

%σ2
n(γn − 1) +

!I−n−1
i=1 Ci,n

σ2
n(γn − 2) +

!I−n−1
i=1 Ci,n

&
− 1.

(2.40)

Wüthrich [2019] also discovered that in the non-informative prior case, γj → 1, the

approximation of msepCi,J−1|DI
with non-informative priors and Mack’s formula are very

close. For many typical non-life insurance data sets, this observation still holds true and it

suggests the use of the simpler formula.

There are many other stochastic methods, however they still share same pitfalls when

applied to actual data. Therefore, Hartl [2014] provides a way to improve the performance

of triangle GLMs using splitlinear rescaling and parametric resampling with a limited Pareto

distribution. Meyers [2016] describes a method to fit a bivariate stochastic model that cap-

tures the dependencies between the two lines of insurance, given a Bayesian Markov chain

Monte Carlo (MCMC) stochastic loss reserve model. Also, Korn [2015] gives some strategies

on loss development modelling with curve fitting, credibility, and layer adjustments. Lally

and Hartman [2018] applied Gaussian Process (GP) regression with input warping and sev-

eral covariance functions for loss reserving prediction, which requires little input from the

modeller.

Mulquiney [2006] applied artificial neural networks on loss reserves triangle data. Fur-

therer more, Jamal [2018] applied more machine learning methods on loss reserves triangle

data, including random forest, neural network, gradient boosting machine and a boosted

Tweedie compound poisson model.
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Chapter 3

Individual Claim Reserving

The previous methods described above all focus on using the aggregate data triangle for

loss reserving, assuming that insureds are independent. However, in real life, they are not

necessarily independent, and there are different types of dependency between the claims of

different insured. With the computational power we have now, it would be more accurate

to predict the claim reserve of each insured separately without losing the dependence be-

tween claims, and then aggregate the claim reserves to produce the aggregate claim reserves

prediction.

So as not to confuse it with aggregate claim reserving methods, here each individual claim

payment is denoted as xmi,j, where m is the index of each insured, m ∈ M = {1, 2, . . . ,M},

and i is the accident year, while j is the development year. Here each claim must have a

fixed accident year, therefore the combinations of m and i are prescient.

Naturally, the aggregate claim reserve Xi,j can be written as:

Xi,j =
$

m∈Φ(i)

xmi,j, (3.1)

where Φ(i) = {m(1)
i ,m

(2)
i , ...,m

(n)
i , ...,mNi

i } is the set of claims incurred in accident year i,

m
(n)
i ∈ M, n = 1, 2, ..., Ni, where Ni is the maximum number of claims in accident year i.

So the cumulative claim reserve for the m-th insured over all development years would be
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written as

cmi,j =

j$

k=1

xmi,k. (3.2)

Then the cumulative aggregate claim reserve can be written as:

Ci,j =

j$

k=1

Xi,k =

j$

k=1

$

m∈Φ(i)

xmi,k =
$

m∈Φ(i)

cmi,j. (3.3)

Here our ultimate goal is to find a model that can predict each unknown xmi,j in the lower

triangle, knowing that here the total reserve for the most recent year can be calculated by

R =
I$

i=1

Xi,J−i+1 =
I$

i=1

$

m∈Φ(i)

xmi,J−i+1. (3.4)

3.1 GLM Individual Claim Reserving Methods

In some companies, actuaries have already started using GLM methods to predict indi-

vidual claim loss reserving.

Taylor et al. [2008] provides various forms of individual claim reserving models, showing

how these methods perform more efficiently than aggregate models. To establish an individ-

ual model, let ym be the response of interest for the m-th claim, and use vm instead of Xm

(to avoid being confused with aggregate reserve data Xi,j) to be the covariate vector for the

m-th claim. It has the following basic form:

ym ∼ F (·; vm, β), (3.5)

where F is some specific distribution function, β is a vector of parameters which are inde-

pendent of the claims and needs to be estimated.

Denote

gm = E[ym], (3.6)

where, more explicitly

26



gm = g(vm, β), (3.7)

for some unique function g. vm can also be decomposed into three general parts as vm(S),

vm(T ), and vm(U) that stand for static, time, and unpredictable covariate vectors.

For the individual claim models that are only dependent on time covariates, there is a

more obvious way to separate the time covariates into different components, namely

am = accident period;

dm = development period when the claim finalized;

pm = am + dm = experience period in which the claim finalization occurs;

tm = operational time, which maps development time δ to an interval [0,1],

where in each case the superscript m indicates that the value of the time variable concerned

is that observed for the m-th claim.

Here we changed the notation for operational time t as tm(δ) =
!N

i=1
I{τi≤δ}

N
, where I

is an indicator function, τi is the finalization time for claim i, and this definition gives the

proportion of incurred claims that are finalized at or before that time (δ), for a given but

arbitrary accident year, with N claims incurred.

Taylor et al. [2008] also explains that the model depends only on am and tm, or else time

related quantities other than am and tm, do not require statistical case estimation (in short,

statistical case estimation consists of estimating the ultimate cost of each claim). At the

same time, depending on unpredictable covariates will make the model more complicated and

will require to average the forecast; Therefore, the best model here would be one depending

only on time and static covariates, as its forecast can be put into statistical case estimate

form.

For a single accident period a, the model used to predict the m-th claim’s loss reserve

would now be:

y∗m =

0
g(a, tm(pm), pm, v∗m(S); β̂)dP (pm|v∗m(S)), (3.8)

where
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• the * in y∗m represents that its value is a forecast;

• the integral is only over pm because a is a single period, tm depends on pm only, and

v∗m(S) is static;

• g(·) is the statistical case estimate in respect of the m-th unfinalised claim, conditional

on a, tm , pm , v∗m(S);

• the ∗ in v∗m(S) means that its response will only be observable in the future;

• tm is the mapping of real-time pm to operational time;

• and the measure P (·) on pm may now depend on v∗m(S).

This is equivalent to the GLM form which is usually known as: g(y∗m) = vmT β̂, where

g(·) is the link function, β̂ is a vector of estimated parameters, and the upper T denotes

vector or matrix transposition, and here vm can be decomposed into (a, tm, pm, v∗m(S)).

Actuaries see the models discussed above as “paid” models, for the reason that they only

depend on paid losses. The insurer’s various estimates of these losses through the lifetimes

of the claims are not taken into consideration at all.

Another model which is usually referred to as “incurreds” model is a conventional alter-

native form of model forecasts for ultimate losses on the basis of the insurer’s estimates at

the valuation date. A statistical case estimation form of this is also considered in Taylor

et al. [2008].

In the following, the term case estimate will be used to mean a subjective estimate of

the ultimate incurred loss placed by an insurer on an individual claim. The estimate will

usually be made by a claims assessor and is often referred to as a real estimate or manual

estimate, where each claim involves a whole sequence of case estimates through its lifetime.

The factor relating case estimates and the ultimate incurred cost is considered as the

general thrust of a model, and it is usually represented by a ratio referred to as the age-to-

ultimate ratio, defined as:

R : Age-to-ultimate ratio =
U : Expected ultimate incurred loss

I : Current case estimate
, (3.9)
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where the “Expected” in the numerator is used in its statistical sense. A model like this

will be referred to as a case estimates model. It corresponds to the conventional “incurreds”

model.

However, the possibility of a zero numerator or denominator in (3.7) complicates the

model, with the result that the model needs to consist of some sub-models, where I denotes

the current case estimate, U denotes the ultimate incurred loss, therefore R = U/I. Here

F (.) denotes a distribution function.

More specifically, three sub-models are required:

• Sub-Model 1: P[U = 0],

• Sub-Model 2: F (U |I = 0, U > 0),

• Sub-Model 3: F (R|I > 0, U > 0).

Because in the case I = 0, the ratio R does not exist, and so the size of U must be

modeled directly, rather than as U = I ×R, cases I = 0 and I ∕= 0 are dealt with separately,

as are the cases U = 0 and U ∕= 0. Moreover, the distribution of U , with a discrete mass

at U = 0, is best modeled by recognizing separately the mass and the remainder of the

distribution (assumed continuous).

Under this model, the statistical case estimate for U is:

E[U ] = E[U |U ∕= 0]P[U ∕= 0]. (3.10)

Consider a claim from accident period a, reported in development period r, and finalized

in development period f , which is not the same as CL factor. It will carry a case estimate Id

at the end of development period d = r, r + 1, ..., f − 1, and then the ultimate cost U . This

implies a total of f − r records as shown below:

Ir
Ir+1 Ir+2 ... If−2 If−1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U

However, this would create difficulties of two types. First, the case estimates would

become unpredictable dynamic covariates. Second, any feasible means of forecasting future

case estimate development would be likely to involve a highly dubious Markov assumption
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as the future evolution only depends on the current state, and not taking the information

from previous states.

It seems preferable to create observations of case estimate development, each taken over

some periods from the end of some development period d (= r, r+1, . . . , f−1) to finalization

in development period f . Thus, all observation periods would end at finalization and would

be age-to-ultimate, which has a structure as shown below:

Ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U
Ir+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U

Ir+2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U
...
...

If−2 −−−−−−−−−−−−−−→ U
If−1 −−−→ U

Figure 3.1: Structure of Case Estimate Development Observations

It would require the replacement of GLMs by Generalized Estimating Equations (GEEs)

if a dependency structure is added on observations, but this was not done by Taylor et al.

[2008]. Instead, one record from the multi-period observations corresponding to each claim

has been sampled at random. That is to say, an integer is selected randomly from the set

(d+ u, d+ u+ 1, . . . , f − 1) where d+ u is the least value for which Id+u > 0. If this integer

is denoted d + v, then the value R = U/Id+v is taken as the observation to be modelled, as

Sub-Model 2. A GLM may then be applied to these records since it removes the dependency

while retaining a selection of records over different period lengths.

Then it would be possible to model the finalization rate (Sub-Model 3), which is defined

as the number of claims finalized in the period divided by some measure of exposure to

finalization, such as the average number open over the period. Therefore, future operational

times may be derived and thus the finalization of claims corresponds to the advancement of

operational time.

Taylor et al. [2008] provide a simple model of future claim finalisation with the form:

∆ti(d) = ti(d) − ti(d − 1) = ωiδi(d), (3.11)
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where ti(d) denotes the operational time at the end of development period d of origin period

i, and ∆ti(d) denotes the increment in operational time over that development period. On

the right side of equation (3.11), δi(d) is a selected increment, specific to the origin period,

and ωi is an adjustment factor which is usually close to 1, so that

ti(∞) = ti(d
∗) +

∞$

d=d∗+1

∆ti(d) = ti(d
∗) + ωi

∞$

d=d∗+1

δi(d) = 1, (3.12)

where d∗ is the value of d (for origin period i) at the valuation date.

According to Taylor et al. [2008], it is preferable to model such probabilities for each

claim as dependent on the attributes of that claim. This is most naturally done by means of

survival analysis. This means that, for each i, the i-th claim, with vector Xi of covariates,

has a lifetime Ti, from reporting to finalization, assumed subject to a survival function S(.)

such that

Prob[Ti > t] = Si(t;Xi). (3.13)

The hazard rate associated with the i-th claim is h(t) = −S′(t)/S(t). A convenient form

for the present application is the proportional hazards form

hi(t) = exp[XT
i β], (3.14)

where β is a vector of parameters and the upper T denotes matrix transposition. This will

be used to model the development patterns for both “paids” and “Outstandings” models in

Chapter 4 with different parameters.

According to Taylor et al. [2008], it is often possible to achieve high efficiency with a

model of the “paids” type that has a small number of parameters, certainly fewer than in

most conventional actuarial models. The issues involved in the construction of such a model

are relatively simple. Further improvements are possible, but possibly with considerable

effort.

Even though in Taylor et al. [2008], the loss reserve forecast conditioned by case estimates

did not, in itself, improve predictive efficiency, it did provide an alternative model that

was largely stochastically independent of the paids model. The two models (“paids” and
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“incurreds”) could then be used to produce a blended estimate of higher efficiency than

either one. Later this idea was applied by Harej et al. [2017] to simulate a data set. More

details will be discussed in Chapter 4.

Another proposal by Zhao et al. [2009] with GLMs, suggests a model with a semi-

parametric structure that can be used to fit the individual claims reserving with more flexi-

bility.

3.2 Neural Networks With Cascading Method

Harej et al. [2017] give an example to predict the loss reserving of individual claims

with artificial neural networks (ANNs) (which is popularly known as neural networks), more

specifically with a multilayer perceptron (MLP). The triangular cascading architecture can

be used to predict the lower triangle Dc
I in a step-by-step way. The data sets are simulated

by the unified paids and incurreds model introduced in Taylor et al. [2008]. Cascading

architectures will be explained in Figure 3.3.

There are three major parts to MLP: the input layer, the hidden layer, and the output

layer. The input layer which can also be called input neurons contains some features that can

be used for training and prediction purposes. Then the features are assigned with weights

(ω) and are projected into the hidden layer with a combination function as hidden neurons.

Then with another function, which is called activation function (σ), the hidden neurons are

being projected to the output layer as output neurons. The reason why MLP is categorized

as supervised learning is in the sense that it requires an output as the response to complete

the model.

For activation functions, Harej et al. [2017] chose Sigmoid and Hyperbolic tangent ac-

tivation functions because they fit well with the backpropagation algorithm in a way that

they are continuous and differentiable:

Sigmoid function: σ(x) =
1

1 + e−x , x ∈ R,

Hyperbolic tangent: σ(x) =
ex − e−x

ex + e−x , x ∈ R.
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Figure 3.2: Graphical Representation of MLP with one Hidden Layer

Then in order to measure the quality of the model, mean square error (MSE) is used

through the cost function:

C(ω) =
$

α

(yα(ω) − tα)
2, (3.15)

where ω is the weight, tα is the α-th response in the output layer, and yα is the predicted

output for the α-th response in the output layer, with yα = σ(z) = σ(ωx).

Hence the model with the smallest MSE is, in relative terms, the best model. There are

other possible cost functions (e.g., the AIC or BIC criteria) that could also be considered.

Harej et al. [2017] explain how to complete the triangle, step by step, for individual claims

from different accident years; which is the method mentioned earlier, called cascading. The

graphical representation of the cascading method is shown below. The steps are shown as

the white colour numbers.

(a)

1

2

(b)

3

4

(c)

Figure 3.3: Graphical Representation of Cascading (Type 1)

It uses the most information from both previous accident years and future accident years
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to predict the claim reserve from the bottom left corner to the top right of the triangle by

repeating Steps 1 to 4 as shown in black blocks from Figure 3.3, which are

Step 1 (Train): Train the model using the data from top left as predictors, and the

data from top right as responses.

Step 2 (Predict): Use the trained model to predict the bottom right using the predictors

from bottom left.

Step 3 (Train): Train the model again using the predictors from top left, and the data

from top right as responses.

Step 4 (Predict): Use the trained model to predict the bottom right using the variables

from bottom left.

However, Harej et al. [2017] mention a weakness using the cascading method, due to the

similarity with the CL algorithm, it performs poorly on the data that contains claims with

different developments patterns.

In order to compute the parameters of the ANN model, two learning algorithms were

introduced by Harej et al. [2017]; One is a standard backpropagation algorithm (BA) algo-

rithm, which is a first order learning method. A simple explanation will follow.

In order to minimize the cost function (3.13), the partial differential equations ∂C(ω)
∂ω

for

both output and hidden layers need to be calculated. A sigmoid function will be used here

for the explanation because the differential equation is simpler to show. The differential

equation of the cost function can be written as:

C ′(ω) = C(ω)(1 − C(ω)). (3.16)

As shown in Figure 3.2, I, J,K are the sets of nodes from the input, hidden, and output

layers; wij are defined as the weights going from the input layer to the hidden layer, and wjk

are defined as the weights from the hidden layer to the output layer.

For an output layer, yj is the node from the hidden layer and yk is the node from the
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output layer, then we have
∂C(ω)

∂ωjk

= yjδk, (3.17)

where

δk = yk(1 − yk)(yk − tk). (3.18)

For a hidden layer, yi is the node from the input layer and yk is the node from the hidden

layer, then we have
∂C(ω)

∂ωij

= yiδj, (3.19)

where

δj = yj(1 − yj)
$

k∈K

δkωjk. (3.20)

If the bias term θ were considered, it would be easy to find that:

∂y

∂θ
= 1. (3.21)

Hence, the backpropagation algorithm is based on the following steps:

1. Run the neural network forward with input data to get the network output tk;

2. For each output node, compute

δk = yk(1 − yk)(yk − tk). (3.22)

3. For each hidden node, calculate

δj = yj(1 − yj)
$

k∈K

δkωjk. (3.23)

4. Update each weight and bias as follows:

ωℓ−1,ℓ = ωℓ−1,ℓ + ∆W = ωℓ−1,ℓ − ηδℓyℓ−1, (3.24)

θ = θ + ∆θ = θ − ηδℓ, (3.25)

where W represents both ωij and ωjk, η is the learning rate, and ℓ represents the index of
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the layers (e.g j or k): if ℓ = k, then ℓ − 1 = j; if ℓ = j, then ℓ − 1 = i.

Repeating this process for some times, the optimized weight and bias can be found when

the cost function is minimal. Since there might be a local minimum, the number of repetitions

should not be too small. Meanwhile, a large number of repetitions can be time-consuming.

Therefore, 500 epochs are the standard number of times that is used frequently.

The other learning algorithm is called scaled conjugate gradient backpropagation (SCG)

algorithm (see Møller [1993]), which is a second-order learning method. A quadratic approx-

imation of the cost function in the neighborhood of the point concerned was used, which can

be computed by the first three elements of the Taylor expansion of the cost function,

CSCG(ω + ∆ω) ≈ C(ω) + C ′(ω)∆ω +
1

2
C ′′(ω)∆ω. (3.26)

In order to minimize CSCG, the critical points need to be found where

C ′
SCG(∆ω) = C ′′(ω)∆ω + C ′(ω) = 0. (3.27)

The final algorithm for SCG was given by Møller [1993], which has the following 9 steps:

1. Choose weight vector ω1 and scalars σ > 0, λ1 > 0, and λ̄1 = 0:

Set p1 = r1 = C ′(ω1), k = 1 and success = true.

2. If success = true, then calculate second order information:

σk =
σ

|pk|
, (3.28)

sk =
C ′(ωk + σkpk) − C ′(ωk)

σk
, (3.29)

δk = pTk sk. (3.30)

3. Scale sk:

sk = sk + (λk − λ̄k)pk, (3.31)

δk = δk + (λk − λ̄k)|pk|2. (3.32)
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4. If δk ≤ 0 then make the Hessian matrix positive definite:

sk = sk + (λk − 2
δk
|pk|2

)pk, (3.33)

λ̄k = 2(λk − δk
|pk|2

), (3.34)

δk = −δk + λk|pk|2,λk = λ̄k. (3.35)

5. Calculate the step size:

µk = pTk rk, αk =
µk
δk
. (3.36)

6. Calculate the comparison parameter:

∆k =
2δ[C(ωk) − C(ωk + αkpk)]

µ2
k

. (3.37)

7. If ∆k ≥ 0, then a successful reduction in error can be attained as:

ωk+1 = ωk + αkpk, (3.38)

rk+1 = C ′(ωk+1), (3.39)

λk = 0, success = true. (3.40)

7a. If k mod N = 0 then restart the algorithm: pk+1 = rk+1 + βkpk,

else create a new conjugate direction:

βk =
|r2k+1 − rk+1rk|

µk
, (3.41)

pk+1 = rk+1 + βkpk. (3.42)

7b. If ∆k ≥ 0.75 then reduce the scale parameter: λk =
1
2
λk,

else a reduction in error is not possible: λk = 4λk, success = false.

8. If ∆k < 0.25 then increase the scale parameter: λk = 4λk.

9. If the steepest descent direction rk ∕= 0 then set k = k + 1 and go to Step 2,
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else terminate and return ωk+1 as the desired minimum.

Comparing SCG with the BA algorithm, we see that SCG outperforms BA because it

does not need to adjust the learning rate continually. The solution suggested by this SCG

algorithm is to reduce the number of iterations by looking for an optimal direction of descent.

From the result of Harej et al. [2017], it seems that an individual development of claims

with an ANN cascading method might have a better performance on long-tailed claims.

Typically, ANNs predict better if paid and outstanding claims are used as an input, also

ANNs sometimes predict better if input data are modified to ratios, but this is not always

the case.

If a line of business is not homogeneous, ANN might differentiate claims with statistically

different underlying patterns. More generally, CL may underperform when data is not well

dealt by the specified model (data does not satisfy the model assumptions).

3.3 Random Forests With Modified Cascading Method

Random Forest (RF) is a method that combines the decision trees method with bagging

and bootstrapping methods (See Hastie et al. [2017]). The advantage of using Random

Forest is that it can prevent overfitting by averaging several decision trees and reduce the

chance of stumbling across a classifier that does not perform well because of the relationship

between the training data and testing data. Three major methods in RF will be explained

in this section.

Decision trees, as the name suggests, involve dividing the features space into some regions

with a tree diagram (see Figure 3.4). Performing predictions with a tree involves the following

two main steps:

1. Divide the predictor space into J distinct and non-overlapping regions R1, ..., RJ .

2. For every observation that falls into the region Rj, j ∈ {1, . . . , J} make the same

prediction.
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Normally, the mean (for a regression problem) or mode (for a classification problem, most

common class) of the training features in each region is used to make predictions.

Figure 3.4: Decision Tree Graphical Representation

Applying this method to the loss reserving case falls into the regression problem, in order

to find the best model, the prediction sum of square error (RSS) can be used as an objective

function to assess the tree predictions quality:

RSS =
J$

j=1

$

i:xi∈Rj

(yi − ŷRj
)2, (3.43)

where ŷRj
is the predicted value when predictors lie in Rj.

As it is computationally unfeasible to consider every possible partition of the feature

space into J boxes, therefore, some other approaches are required. Generally, recursive

binary splitting is taken as an approach to solving the issue.

There are two features in recursive binary splitting:

1. Top-down: it begins at the top of the tree where all observations belong to a single

region. Then it successively splits the predictor space.

2. Greedy: at each step, the best split is done. Does not look ahead and picks a split that

will lead to a better tree in some future step.

The first step of recursive binary splitting is to select the predictor Xj and the cut point

s such that the predictor space can be split into the two regions

R1(j, s) := {X|Xj < s} and R2(j, s) := {X|Xj ≥ s},
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which leads to the greatest possible reduction in RSS, i.e. minimizes

$

i:xi∈R1(j,s)

(yi − ŷR1(j,s))
2 +

$

i:xi∈R2(j,s)

(yi − ŷR2(j,s))
2

across values of j and s.

This splitting process is repeated at each step by subdividing all of the subregions ob-

tained from the previous step until a stopping criterion is reached. In the absence of a

stopping criterion, the final tree would have n regions with one observation in each, which is

an overfit. Even with the stopping criterion, the resulting tree is likely to produce overfitting.

Decision trees are easy to interpret but do not have the same level of prediction accuracy

as some other methods, and it is not robust, because a slight change in the dataset can build

a dramatically different tree. A smaller tree with fewer splits might lead to lower variance

and better interpretation at the cost of a little bias. However, a seemingly worthless split

early on in the tree might be followed by a split that leads to a significant reduction in RSS

later on.

In order to improve this, other methods can be added upon decision trees, one of them is

an approach called cost-complexity pruning, which is similar to ridge and lasso regressions

as it also involves a tuning parameter α.

Cost complexity pruning involves identifying the subtree T ⊆ T0 which minimizes

|T |$

m=1

$

i:xi∈Rm

(yi − ŷRm)
2 + α|T |,

where α is a tuning parameter, which can be selected through cross-validation. |T | is the

number of leaves (i.e. of subregions) of the subtree.

Baudry and Robert [2019] proposed another method called ExtraTrees algorithm based

on this decision tree method. This algorithm builds an ensemble of unpruned regression

trees with the traditional cascading method. The predictions of the trees are aggregated to

yield the final prediction by a majority vote in classification problems and arithmetic average

in regression problems. The main differences of this method compared to other tree-based

ensemble methods are:
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1. It splits nodes by choosing cut points fully at random

2. It uses the whole learning sample (rather than bootstrapping) to grow the trees

Another approach is called Bagging, which is a general procedure for reducing the variance

of a learning method. By adding this approach into Random Forest, it involves the following

steps:

1. Obtain N different training sets, (which requires bootstrapping, explained below).

2. Build a decision tree for each training set.

3. The final prediction for observation is an average of predictions from a large number

N of decision trees:

f̂avg(x) =
1

N

N$

n=1

f̂n(x),

where f̂n is the prediction at the n-th decision tree, x is the variables.

Since predictions from all B models are imperfectly correlated, the variance of the final

prediction will be reduced:

V[f̂avg(x)] =
1

N2
V[

N$

n=1

f̂n(x)]

=
1

N2

N$

n1=1

N$

n2=1

Cov[f̂n1(x); f̂n2(x)]

<
1

N2
N2V[f̂ni(x)],

since when n1 ∕= n2,

Cov[f̂n1(x); f̂n2(x)] < 1.

In practice, it is complicated to have N different training sets. Furthermore, splitting the

training set into N subsets might generate training subsets that are too small. Hence another

approach mentioned above was proposed – bootstrapping, where sample with replacement n

times from the original training set was drawn to create the n− th training set. This method
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Figure 3.5: Random Forest Graphical Representation
Source: https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png

can improve the accuracy of prediction dramatically, and it can handle missing data easily.

Unfortunately, it makes it difficult to interpret the resulting model.

The RF diagram shown in Figure 3.5 falls into the case for the classification problem.

In order to predict the loss reserving amount, we need to apply the regression case of RF,

which is also called regression forest. Instead of predicting class A or B at the end of each

tree, it uses the average value of responses that fall into the same region and can be written

as

Prediction =

!
m in {i,j} that fall into the same region x̂

m
i,j

# of m in {i, j} that fall into the same region
(3.44)

as in the individual claims loss reserving case.

Due to the nature of the cascading method, the predictions that it made are based on

both past and post information. Here I would like to propose a modified cascading method,

which predicts the individual loss reserving following the timeline. We use only the past

historical data of one accident year claims to predict the recent year payment, then apply

this trend to the next accident year, to find the trend for the next year. In this way, for

each accident year, the prediction will only be based on the past data, instead of “future

data”. For each accident year, we would have hundreds, even thousands of claims, which is
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plausible enough to be used for training the model. The process is shown in Figure 3.6, the

steps are shown as the white colour numbers, which has 6 steps as follow:

Step 1 (Train): Train the model using the data from top left black block as predictors,

and the data from top right black block as responses.

Step 2 (Predict): Use the trained model to predict the middle right black block using

the predictors from middle left black block.

Step 3 (Train): Train the model again using the predictors from top left black block,

and the data from top middle black block as responses .

Step 4 (Predict): Use the trained model to predict the bottom middle black block

using the variables from bottom left black block.

Step 5: (Train): Train the model again using the predictors from top left black block,

and the data from top right black block as responses.

Step 6 (Predict): Use the trained model to predict the bottom right black block using

the variables from bottom left black block.

1

2

(a)

3

4

(b)

5

6

(c)

Figure 3.6: Graphical Representation of Cascading (Type 2)

3.4 Support Vector Machines On Triangle-Free Models

Previous sections applied machine learning methods on paid and outstanding data, how-

ever, it still has some limits due to the nature of the cascading method as it lacks data for

the more recent accident years.
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3.4.1 Triangle-Free Model

Ticconi [2018] uses another approach instead of the cascading method, which has the

following steps for Reported But Not Settled (RBNS) and Incurred But Not Reported (IBNR):

• Prediction for the closing delay, in the RBNS case.

• Probability that an existing risk will cause a late reporting claim in a fixed time interval

of r∗, in the IBNR case.

• Estimation for outstanding liabilities.

For RBNS, a proper classification model is needed to estimate probabilities for the random

variable closing delay c of each opened claim,

P̂ (c = c∗|DI) = P̂ (c = c∗|x(t)). (3.45)

Then a regression function f1 will be build to provide an estimation of outstanding

liabilities for RBNS claims

Xi,r(c) = f1(x(t)). (3.46)

As for IBNR, there will be two tasks. The first task, a classification tool has to be used

to predict the probabilities that each existing risk will cause a late reporting claim in a fixed

time interval of r∗:

P̂(1[n, j<r∗, and i≤I, i+j>J−1]|DI) = P̂(1[n, j<r∗, and i≤I, i+j>J−1]|xn(t)) = p1(xn(t)). (3.47)

xn(t) is all the available information collected by the companies in time t. i, j represent

the accident period and development period, I, J − 1 are the most recent accident period

and development period, and n = 1, ..., N represents each claim as they need to be evaluated

separately at the evaluation date.

Selecting a proper cut-off value k, it can be seen that the IBNR claims can be discerned
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from the rest of the claims according to the probability estimates produced by (3.43):

1[n, j<r∗, and i≤I, i+j>J−1] =






1 if p1(xn(t)) ≥ k,

0 if p1(xn(t)) < k.

(3.48)

Hence, the second task is to provide an estimation of the outstanding liabilities for each

risk marked as IBNR using a regression function f , which can be represented as

X̂i,j = f(xn(t)|1[n, j<r∗, and i≤I, i+j>J−1]). (3.49)

There are a few regression methods mentioned in Ticconi [2018] and his extended research

in 2019 (Ticconi [2019]), but it seems support vector machines (SVM) have the best results

among other methods including ANN, and GLM, so only the SVM method will be introduced

here.

3.4.2 Support Vector Machines

Introduced by Cortes and Vapnik [1995], SVM represents a good alternative to common

machine learning tools. The idea behind SVM is to find, among all possible linear solutions

to a regression or classification problem, the one being the farthest from the observed data, as

it should be more resilient against noise, because the noise would have less chance to ‘cross’

the linear solution, a linearly separable binary classification example is shown in Figure 3.7.

As shown in Figure 3.7, the objective is to find a linear decision boundary dn maximizing

the so-called margin, i.e., the “tube” between observed data, represented in Figure 3.7 by

two dotted lines.

Given two classes C0, C1, a convenient choice of the boundary is dn = sign(wTxn + b),

where w is the weight vector, which implies that






dn = +1 if xn ∈ C1 ⇔ yn = +1,

dn = −1 if xn ∈ C0 ⇔ yn = −1.

(3.50)
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Figure 3.7: Graphical Representation of SVM

It can be shown that the margin equals M = 2
*w* , hence maximizing the margin entails

minimizing over w, which can be represented as

min
1

2
wTw,

subject to yn[w
Txn + b], ∀n = 1, . . . , N,

(3.51)

which is a quadratic optimum problem with n convex constraints - requiring that each data

point is correctly classified, but it is not necessarily achievable, since the dataset might not

be linearly separable.

Equation (3.45) can be solved employing Lagrange multipliers approach, which in dual

space assumes the following form

max
xn,xm

L =
N$

n=1

λn − 1

2

N$

n=1

N$

m=1

ynymλnλmx
T
nxm,

subject to λn ≥ 0, ∀n = 1, . . . , N,

N$

n=1

λnyn = 0,

(3.52)
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where λn are the multipliers and whose solution is given by

w∗ =
N$

n=1

λ∗
nynx,

b∗ =
1

NSV

NSV$

k=1

(yk − xTkw
∗).

(3.53)

Equation (3.47) gives the name to the algorithm: the support vectors are the only input

vectors whose multiplier are different from 0, hence contributing to the final solution.

It should be noted that equation (3.46) only depends on the dot product of couples of

input vectors (xn,xm) and this can provide insight on both how inputs contribute to a final

solution and how to deal with more complex problems.

A transformation can be applied on equation (3.46) by means of the so-called kernel trick,

i.e. employing in equation (3.46) kernel functions K(xn,xm) = φ(xn)φ(xm), that allow the

quantification of vector similarity in transformed spaces, without computing dot products.

Even though it is impossible to determine the best kernel transformation, the radial kernel

has shown the best performances empirically overall. Common kernel choices are listed in

the Table 3.1.

Kernel Function
Linear K(xn,xm) = xTnxm

Polynomial K(xn,xm) = (xTnxm + 1)k

Sigmoid K(xn,xm) =tanh(xTnxm + b)

Gaussian RBF K(xn,xm) = exp ( ||xn−xm||2
2σ2

)

Table 3.1: List of Most Common Kernel Functions.

Generalization for non-perfectly-separable problems, that are more common in practice

is easily made by introducing a parameter C to delimit the influence of misclassified training

47



points. Adopting a Gaussian RBF kernel, this translates (3.48) into

max
xn,xm

L =
N$

n=1

λn − 1

2

N$

n=1

N$

m=1

ynymλnλmexp(
||xn − xm||2

2σ2
),

subject to 0 ≤ λn ≤ C, ∀n = 1, . . . , N,

N$

n=1

λnyn = 0.

(3.54)

While all of the methodologies presented by Ticconi [2018] have achieved both, com-

parable results and capacity concerning actual payments, SVMs seem to have shown the

best training metrics overall, as SVMs are easier to interpret, are granted with a structure

more stable and resilient, and do not require architecture designing comparing to GLMs and

Neural Networks.

However, we will not be able to apply this method in this paper, due to the fact that we

lack real data. The real data used by Ticconi [2018] are from an Italian insurance company,

including information of the policyholder, the loan, the claims and even the macro-economic,

but it was not made public.
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Chapter 4

Implementations

4.1 Data Handling

4.1.1 The Model for Synthetic Data

Harej et al. [2017] give the model to simulate the individual claims data set based on the

unified models described in Taylor et al. [2008]. There are three major components:

Paids: P (t) = UFP (t),

Outstandings: O(t) = UFO(t),

Incurred: I(t) = P (t) +O(t).

where FP (t) and FO(t) are both lognormal distributions.

Paids are the payments that are already made and recorded, outstandings are the pay-

ments that are still waiting to be paid, and are estimated by the insurers. Incurred is merely

the sum of paids and outstandings.

The variable U is the ultimate claim amount at ultimate, which follows a lognormal law

U ∼ LN(µ, σ); whereas FP (t), FO(t) are the development patterns, age to ultimate, and

correspond to the cumulative distribution functions of lognormal variates LN(µPt , σt) and

LN(µOt , σt) respectively.
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To specify the development pattern of both paid and outstanding, the log-normal distri-

bution for both cases are defined as:

FP (t) ∼ LN
%1

1 − e− t−τ
λ

2α

, σt

&
, for paid, (4.1)

FO(t) ∼ LN
%
αe−( t−τ

λ
)2 , σt

&
, for outstandings. (4.2)

Finally, a Frank copula was used to link the paids and the outstandings, in order to induce

a dependency between them across time. The data model assumes a higher dependency in

the tail.

Figure 4.1: Frank Copula

In practice, Archimedean copulas are popular because they allow modeling dependence

in arbitrarily high dimensions with only one parameter, governing the strength of the depen-
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dence. The Frank copula is a symmetric Archimedean copula; see for example Venter [2002]

where θ is the Frank copula parameter:

Cθ(u, v) = −1

θ
ln

=
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

>
, u, v ∈ [0, 1], (4.3)

with conditional distribution

C1(u, v) =
(e−θu − 1)(e−θv − 1) + e−θv − 1

(e−θu − 1)(e−θv − 1) + e−θ − 1
, (4.4)

and the relationship between Kendall’s tau τ and the Frank copula parameter θ is given by:

τ = 1 +
4

θ

.
D1(θ) − 1

/
, (4.5)

where D1(θ) =
1
θ

4 θ

0
t

et−1
dt.

Harej et al. [2017] chose θ < 0 to create a negative association between FP (t) and FO(t).

In order to simulate the data for P (t) and O(t), the first step is to simulate u and p by

random draws on [0, 1]. Here p is considered a draw from the conditional distribution of

V | u, since this has distribution function C1, v can then be found as:

v = C−1
1 (p | u) = −1

θ
ln

=
1 +

p(e−θ − 1)

1 + (1 − p)(e−θu − 1)

>
. (4.6)

Therefore, the variables of interest t1 and t2 can be simulated by inverting the marginal

distributions, i.e., t1 = F−1
t1 (u) and t2 = F−1

t2 (v).

To see the effect more properly, Harej et al. [2017] give two types of samples, one is short-

tailed, and the other is long-tailed, which could correspond to material and non-material

motor claim damages under motor third party liability. Sample 1 includes 6,000 short-tailed

claims, while Sample 2 includes 4,000 long-tailed claims; the parameters used for both sample

are shown in Table 4.1. Both samples were calibrated to have a mean ultimate amount of

paid claims of 1 million. All standard deviations were set to be 2%.

Lopez [2019] gives another model for micro-level claim reserving with the presence of

censoring, which also involves copulas. The model contains three parts: the first part is
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Short-tailed sample Long-tailed sample
paids outs paids outs

τ -1.0 1.6 -3.0 2.0
λ 2.0 5.0 6.0 5.0
α 1.5 2.0 3.0 0.6

Table 4.1: Calibration Parameters of Sample 1 and Sample 2

to predict the delay time T, using a Cox regression model, and an accelerated failure time

model (AFT); the second part is to predict the amount of a claim M, with a generalized

linear model (GLM); then, it combines these two models with a copula. Frank’s, Clayton’s,

and Gumbel’s models were compared in the paper. A Clayton’s model was suggested for its

superior performance.

4.1.2 Mock Samples

With Sample 1 and Sample 2, which are both generated using the models from Taylor

et al. [2008], Harej et al. [2017] produced three more samples by mixing these two. The

first mixed sample (Sample 3) can be described as a sample that has a stable ratio between

claims of different patterns between long-tailed claims and short-tailed claims. The next has

a changing pattern from a high ratio of long-tailed claims towards a high ratio of short-tailed

claims (Sample 4). The last sample (Sample 5) presents a sudden change in a ratio at last

two accident years where there are more short-tailed claims and less or none long-tailed

claims.

We present the allocation of these three samples in the following tables and provide the

aggregate data in Table 1.1 of Sample 3 to illustrate how the traditional and stochastic

methods work.
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Sample 3

Accident Year Sample 1 claims Sample 2 claims

1998 300 200

1999 300 200

2000 300 200

2001 300 200

2002 300 200

2003 300 200

2004 300 200

2005 300 200

2006 300 200

2007 300 200

2008 300 200

2009 300 200

2010 300 200

2011 300 200

2012 300 200

2013 300 200

2014 300 200

2015 300 200

2016 300 200

2017 300 200

Table 4.2: Allocation of Sample 1 and Sample 2 in Sample 3
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Sample 4

Accident Year Sample 1 claims Sample 2 claims

1998 15 390

1999 45 370

2000 75 350

2001 105 330

2002 135 310

2003 165 290

2004 195 270

2005 225 250

2006 255 230

2007 285 210

2008 315 190

2009 345 170

2010 375 150

2011 405 130

2012 435 110

2013 465 90

2014 495 70

2015 525 50

2016 555 30

2017 585 10

Table 4.3: Allocation of Sample 1 and Sample 2 in Sample 4

Sample 5

Accident Year Sample 1 claims Sample 2 claims

1998 280 220

1999 280 220

2000 280 220

2001 280 220

2002 280 220

2003 280 220

2004 280 220

2005 280 220

2006 280 220

2007 280 220

2008 280 220

2009 280 220

2010 280 220

2011 280 220

2012 280 220

2013 280 220

2014 280 220

2015 280 220

2016 460 40

2017 500 0

Table 4.4: Allocation of Sample 1 and Sample 2 in Sample 5
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4.1.3 Loss Reserving Data from NAIC Schedule P

The data used here are from National Association of Insurance Commissioners (NAIC)

Schedule P1. The dataset corresponds to claims from accident years 1988-1997, with devel-

opment experience of 10 years for each accident year. Six data sets are available at the CAS

website, but only four data sets are used here, including the PP Auto Data Set, Commercial

Auto Data Set, Product Liability Data Set, Other Liability Data Set. However, the data is

not completely available at an individual level, it is aggregate based on the company names.

A list of variables in the data is as follows:

- GRCODE NAIC: company code (including insurer groups and single insurers)

- GRNAME NAIC: company name (including insurer groups and single insurers)

- AccidentYear: Accident year (1988 to 1997)

- DevelopmentYear: Development year (1988 to 1997)

- DevelopmentLag: Development year (AY - 1987 + DY - 1987 - 1)

- IncurLoss_: Incurred losses and allocated expenses reported at year end

- CumPaidLoss_: Cumulative paid losses and allocated expenses at year end

- BulkLoss_: Bulk and IBNR reserves on net losses and defence and cost containment

expenses reported at year end

- PostedReserve97_: Posted reserves in year 1997 taken from the Underwriting and In-

vestment Exhibit - Part 2A, including net losses unpaid and unpaid loss adjustment expenses

- EarnedPremDIR_: Premiums earned at incurral year - direct and assumed

- EarnedPremCeded_: Premiums earned at incurral year - ceded

- EarnedPremNet_: Premiums earned at incurral year - net

- Single: 1 indicates a single entity, 0 indicates a group insurer

However, only the GRCODE NAIC, AccidentYear, DevelopmentYear, and CumPaid-

Loss are used to build the individual training sets, and there are 4,593 claims in total, the

allocation in each accident year is as follow:
1Loss reserving data pulled from NAIC Schedule P: https://www.casact.org/research/index.cfm?

fa=loss_reserves_data.
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Accident Year 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Number of claims 413 427 433 439 456 475 470 482 498 500

Table 4.5: Number of Claims in Each Accident Year

4.2 Results

4.2.1 Simulated Data

For the traditional and stochastic methods, all the data from Samples 3 to 5 are first

aggregated in the triangle form based on the accident years and development years; then we

can apply the classical and stochastic methods.

Following are the ultimate claim amounts and claims loss reserving for Sample 3, 4 and

5 along with the mismatch rate, which is the percentage of the difference between prediction

and real data over the real data.

The methods compared here include the CL algorithm, ODP Mack model, ANN (with

cascading), and RF (with modified cascading) methods.
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Sample 3: Stable ratio case

Ultimate Claims of Sample 3 (in dollars)

Accident Year CL mismatch ODP Mack Model mismatch ANN mismatch RF mismatch

1998 - - - - - - - -

1999 485,702,128 0.000% 485,702,141 0.000% 485,713,783 0.003% 485,700,217 0.000%

2000 485,801,030 0.006% 485,800,878 0.007% 485,835,736 0.001% 485,800,306 0.007%

2001 485,482,809 0.003% 485,482,552 0.003% 485,552,231 0.011% 485,485,662 0.003%

2002 485,084,279 0.001% 485,084,440 0.001% 485,121,017 0.007% 485,060,627 0.006%

2003 485,041,436 0.006% 485,041,550 0.006% 485,024,279 0.010% 485,075,584 0.001%

2004 485,211,372 0.002% 485,212,037 0.002% 485,297,609 0.020% 485,209,508 0.002%

2005 484,186,605 0.010% 484,187,886 0.010% 484,249,785 0.003% 484,236,081 0.000%

2006 485,229,372 0.005% 485,228,763 0.005% 485,582,913 0.068% 485,254,448 0.000%

2007 484,858,506 0.006% 484,857,817 0.006% 485,347,030 0.107% 484,831,247 0.001%

2008 484,872,466 0.012% 484,872,922 0.012% 485,163,202 0.048% 484,940,046 0.002%

2009 485,411,975 0.019% 485,412,516 0.019% 486,077,010 0.118% 485,494,199 0.002%

2010 485,560,641 0.028% 485,561,119 0.028% 486,632,381 0.249% 485,416,928 0.002%

2011 485,061,104 0.001% 485,059,611 0.001% 486,877,746 0.376% 485,043,084 0.002%

2012 485,124,682 0.012% 485,126,197 0.012% 487,210,086 0.442% 485,064,744 0.001%

2013 485,852,926 0.028% 485,850,814 0.028% 488,224,865 0.517% 485,705,204 0.002%

2014 484,365,182 0.063% 484,365,770 0.063% 487,300,649 0.542% 484,664,568 0.001%

2015 485,239,255 0.035% 485,244,533 0.036% 486,604,879 0.316% 485,103,608 0.007%

2016 485,523,771 0.031% 485,524,902 0.031% 486,915,223 0.255% 485,661,160 0.003%

2017 484,614,480 0.010% 484,615,325 0.010% 487,227,180 0.529% 484,702,307 0.008%

Total 9,703,647,527 0.014% 9,218,231,773 0.014% 9,235,957,603 0.180% 9,218,449,526 0.002%

Reserve 1,943,211,588 0.014% 1,943,219,340 0.013% 1,960,945,170 0.899% 1,943,437,093 0.002%

Table 4.6: Predictions for Sample 3
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Sample 4: From a high ratio of long-tailed claims to short-tailed claims

Ultimate Claims of Sample 4 (in dollars)

Accident Year CL mismatch ODP Mack Model mismatch ANN mismatch RF mismatch

1998 - - - - - - - -

1999 500,766,726 0.006% 500,766,726 0.006% 500,795,465 0.000% 500,782,613 0.002%

2000 499,948,350 0.002% 499,948,353 0.002% 499,919,612 0.008% 499,947,492 0.003%

2001 500,194,589 0.003% 500,194,433 0.003% 500,129,440 0.016% 500,196,095 0.002%

2002 501,117,238 0.001% 501,116,758 0.001% 501,079,126 0.009% 501,117,913 0.001%

2003 499,957,449 0.007% 499,957,143 0.007% 499,913,252 0.016% 499,971,489 0.004%

2004 499,615,719 0.005% 499,615,569 0.005% 499,584,109 0.012% 499,647,365 0.001%

2005 500,382,186 0.001% 500,381,166 0.002% 500,434,001 0.009% 500,383,954 0.001%

2006 500,055,037 0.002% 500,055,051 0.002% 500,033,136 0.006% 500,045,696 0.004%

2007 500,057,391 0.003% 500,058,390 0.003% 499,944,202 0.020% 500,055,972 0.002%

2008 499,948,534 0.005% 499,949,002 0.005% 499,951,638 0.004% 499,951,415 0.004%

2009 499,833,709 0.003% 499,834,545 0.002% 499,753,905 0.018% 499,869,424 0.005%

2010 499,944,113 0.004% 499,942,227 0.004% 500,009,277 0.009% 499,942,324 0.004%

2011 499,937,871 0.001% 499,937,213 0.001% 499,906,180 0.007% 499,949,210 0.002%

2012 500,452,642 0.003% 500,451,461 0.003% 500,443,221 0.005% 500,471,178 0.001%

2013 500,620,229 0.003% 500,615,716 0.004% 500,630,190 0.001% 500,623,309 0.003%

2014 500,759,277 0.001% 500,763,405 0.002% 500,755,709 0.000% 500,743,718 0.002%

2015 500,043,465 0.006% 500,042,454 0.006% 500,083,096 0.002% 500,053,140 0.004%

2016 500,336,821 0.002% 500,345,298 0.001% 500,263,084 0.017% 500,334,520 0.003%

2017 499,785,826 0.001% 499,787,524 0.000% 499,787,966 0.000% 499,801,104 0.002%

Total 9,503,757,172 0.003% 9,503,762,433 0.003% 9,503,416,609 0.006% 9,503,887,929 0.001%

Reserve 1,034,791,457 0.024% 1,034,796,717 0.023% 1,034,450,893 0.057% 1,034,922,214 0.011%

Table 4.7: Predictions for Sample 4
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Sample 5: Sudden change in ratio in the last two accident years

Ultimate Claims of Sample 5 (in dollars)

Accident Year CL mismatch ODP Mack Model mismatch ANN mismatch RF mismatch

1998 - - - - - - - -

1999 484,516,515 0.002% 484,516,287 0.002% 484,394,541 0.027% 484,510,651 0.003%

2000 484,178,471 0.007% 484,178,976 0.007% 484,076,266 0.028% 484,196,892 0.003%

2001 483,765,744 0.006% 483,766,537 0.006% 483,657,545 0.029% 483,778,879 0.004%

2002 483,473,296 0.000% 483,472,791 0.000% 483,381,284 0.019% 483,454,671 0.004%

2003 483,549,727 0.007% 483,551,807 0.006% 483,470,427 0.023% 483,574,047 0.002%

2004 483,613,572 0.002% 483,617,573 0.001% 483,759,470 0.028% 483,606,770 0.003%

2005 483,277,055 0.008% 483,277,817 0.008% 483,686,116 0.077% 483,306,221 0.002%

2006 483,134,218 0.010% 483,134,553 0.010% 483,761,304 0.120% 483,219,923 0.008%

2007 483,624,352 0.004% 483,627,392 0.003% 483,958,056 0.065% 483,643,066 0.000%

2008 483,693,162 0.031% 483,696,087 0.030% 484,362,850 0.107% 483,821,793 0.004%

2009 483,515,289 0.014% 483,522,366 0.015% 484,642,854 0.247% 483,441,365 0.001%

2010 483,136,402 0.005% 483,139,203 0.004% 484,514,532 0.281% 483,133,660 0.005%

2011 484,165,156 0.024% 484,172,855 0.025% 481,917,655 0.441% 484,039,654 0.002%

2012 483,814,155 0.019% 483,814,552 0.019% 482,017,936 0.390% 483,916,850 0.003%

2013 483,559,820 0.010% 483,554,289 0.009% 482,113,134 0.289% 483,523,673 0.003%

2014 484,591,624 0.032% 484,593,432 0.033% 481,858,216 0.532% 484,403,538 0.007%

2015 483,019,516 0.059% 483,029,653 0.056% 482,249,714 0.218% 483,306,653 0.001%

2016 686,707,588 38.137% 686,711,995 38.138% 499,271,891 0.433% 497,110,780 0.002%

2017 723,564,880 44.731% 723,564,740 44.731% 502,865,647 0.586% 499,950,982 0.003%

Total 9,632,900,541 4.478% 9,632,942,903 4.478% 9,219,959,436 0.001% 9,219,940,070 0.001%

Reserve 2,366,596,125 21.131% 2,366,638,487 21.133% 1,953,655,020 0.005% 1,953,635,654 0.006%

Table 4.8: Predictions for Sample 5

Figure 4.2 - 4.4 give a more direct visual representation.
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Figure 4.2: Prediction Comparison for Sample 3

Figure 4.3: Prediction Comparison for Sample 4
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Figure 4.4: Prediction Comparison for Sample 5

In Figure 4.2, the prediction of ANN seems good until development year 8, when predic-

tions start to drift away from actual values. This could be due to the decrease in size of the

training data set. In Figure 4.3, we can see all four models perform well. However in Figure

4.4, there is a high peak at development year 17, due to the predictions from the traditional

Chain Ladder (CL) and the over-dispersed poisson (ODP) methods, while the prediction of

ANN and RF are still close to the actual value.

It is evident that the traditional Chain Ladder (CL) method is predicting well when the

pattern varies on a small scale. The over-dispersed poisson (ODP) method can increase the

performance slightly compared to the CL method. However, traditional methods surely have

flaws when the pattern of the claims has a sudden change (as in Sample 5), which makes it

unpredictable with methods that use aggregate data.

On the other hand, the ANN method does not necessarily perform better (see Sample

3). It can be strenuous to define the number of hidden layers and of neurons. At the same

time, the performance is a�ected by the nature of the cascading method, which might cause

less accurate predictions in recent years due to lack of information. However, individual
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claims reserving methods can track down the sudden changes and predict more precisely

(as in Sample 5). It has to be noted that in Samples 3 and 4, only the ANN method over-

estimated the reserve amount, while the rest of the methods under-estimated the reserve.

Moreover, we see that the random forest (RF) method with modified cascading performs

better compared to the ANN method with regular cascading. Even in Sample 5, when

ANN and RF show almost the same mismatch for reserves, the RF method has much better

performance when it comes to predicting each ultimate claim from different accident years.

The reserve amounts under the ANN and RF methods are much lower and obviously closer

to the real data. The number might be slightly conservative, but there is still a huge gap

(around 400 millions dollars) comparing to the CL and ODP Mack models, and this can save

insurance companies a lot of money.

Above all, the RF method with the modified cascading method outperforms all the other

methods. However, the running time of this method can very time-consuming as shown in

Table 4.9.

CL ODP ANN RF
Time 1 second 2 minutes 8 minutes 1 hour 30 minutes

Table 4.9: Running Time of Different Methods

With more computational power, it is possible to run the model on the cloud service,

which is easier and faster. Then, the real problem would be calculating the cost of running

this cloud service and comparing it to the amount of money saved from more accurate

reserves prediction.

By changing the parameters in Table 4.1 as in the following Table 4.10, we would have

two new samples, short-tailed Sample a and long-tailed Sample b, which are used to confirm

the results we obtained from Samples 1-5. Standard deviations were set to be 3%,

62



Short-tailed sample Long-tailed sample

paids outs paids outs

τ -1.5 1.2 -3.5 1.5

λ 1.5 3.5 5.0 4.5

α 1.0 1.5 2.5 0.4

Table 4.10: Calibration Parameters of Sample a and Sample b

After redoing the whole sampling process, three new samples can be produced. Samples

c and d have the same allocation as Samples 3 and 4, whereas Sample e also has a sudden

change in ratio, not in the last two accident years, but two years before the most recent year,

as shown in the Table 4.11.

Sample e

Accident Year Sample a claims Sample b claims

1998 280 220

1999 280 220

2000 280 220

2001 280 220

2002 280 220

2003 280 220

2004 280 220

2005 280 220

2006 280 220

2007 280 220

2008 280 220

2009 280 220

2010 280 220

2011 280 220

2012 280 220

2013 280 220

2014 280 220

2015 420 80

2016 500 0

2017 280 220

Table 4.11: Allocation of Sample a and Sample b in Sample e

The prediction of loss reserves from the second set of samples are provided below.
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Figure 4.5: Graphical Prediction Comparison for Sample c

Figure 4.6: Graphical Prediction Comparison for Sample d

64



Figure 4.7: Graphical Prediction Comparison for Sample e

From Figures 4.5-4.7, the final result still yields the same conclusion as the result from

Samples 3-5, that is when the pattern varies little, the aggregate methods perform well

and can be useful. Between the di�erent methods, there is only about 1%-2% di�erence

in reserves. However, when the ratio gets more complicated, the individual method would

outperform the aggregate method on a dramatic scale, which is about 10% di�erence in

reserves. On the level of each accident year, the prediction from the aggregate methods can

be much worse around the years when the ratio changes.

4.2.2 Real Data

The prediction of the real data is shown below.
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Method Loss reserves mismatch rate

CL 7.79%

ODP 5.07%

ANN 5.22%

RF -256%

RF - INC -4.95%

Table 4.12: Comparison of loss reserve

Figure 4.8: Graphical Prediction Comparison for Real Data

In Table 4.12, both ODP and ANN show a good loss reserves prediction for about 5%

mismatch rate, while CL has 7.79%. However, RF using accumulative data shows a dramatic

bad result with over 200% di�erence. After inspecting the data more carefully, the maximum

value at development year 10 is 6,815,646 for claims from accident year 1988, while the

maximum value is 10,512,108 for all accident years in development year 10. This explains
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why the predictions at development year 10 are much lower than the actual data, since the

patterns from later years (1989 - 1997) are not apparent in accident year 1988. By using

incremental data with the RF method, this issue gets resolved. The result (RF - INC)

performs much better, with only -4.95% loss reserves mismatch rate.

Table 4.11 summarizes the advantages and disadvantages of the reserving methods com-

pared in this thesis.
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Comparison
Structured Data Unstructured Data

Advantage Disadvantage Advantage Disadvantage

Group Methods Easier and faster to com-

pute;

Bad performance when pat-

terns vary a lot

Good performance if the

pattern does not vary too

much

N/A

CL Very basic, easy to interpret

and apply;

Aggregate data only N/A

BF Expert’s advice can be con-

sidered;

Aggregate data only

More details with each pay-

ments

N/A

CC Incremental payments are

being presented

Aggregate data only N/A

Bayesian Posterior distribution can

be calculated analytically

Aggregate data only N/A

Individual Methods More information can be in-

cluded

Might be difficult to inter-

pret

All variables can

be considered;

Might be time-

consuming

GLM High efficiency with a small

number of parameters

Does not necessarily im-

prove predictive efficiency

N/A

ANN Ability to work with incom-

plete data

CPU intensive calculations; Good with un-

structured data

N/A

Risk of over-fitting;

Determination of proper

network structure (number

of layers, and nodes)

RF Less risk of overfitting Even more time-consuming

than other methods; Re-

quire a large amount of

training data set

N/A

SVM More flexible when using

the kernels;

Might be sensitive to over-

fitting the model

Good on a large

dimension of

data

Might be sen-

sitive to over-

fitting the model

No local minima;

Table 4.13: Advantages and Disadvantages of Different Methods
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Conclusion and Further Research

The purpose of this thesis is to review methods that can be used for loss reserving

prediction and compare the performance between classical methods and machine learning

methods. The methods reviewed in this thesis include aggregate claims reserving methods

(classical methods, stochastic methods), and individual claims reserving methods (GLMs,

machine learning methods). We want to see if individual claims reserving methods should

be adopted more generally in the insurance industry.

At a time when computational power was not sufficient to apply individual claims re-

serving methods, the classical methods like the Chain Ladder and Bornhuetter-Ferguson

algorithms dominated. They show a good performance on aggregate data when it has a

relatively steady pattern for the claims payments. However, insurance policies are becoming

much more complex nowadays; the uncertainty of each payment creates a significant problem

for the accuracy in predicting loss reserves.

To calculate the prediction uncertainty, the models need to be set in a stochastic frame-

work; for instance the Mack models, cross-classified models, and Bayesian CL models. They

provide a way to predict the aggregate loss reserves, and they also provide some metrics to

compare the goodness-of-fit of each method, again, due to the nature of aggregated data,

here a great amount of information is lost when the data is combined.

Over the last 10 years, the technology has developed and simultaneously the computa-

tional power has improved on a large scale. Therefore, individual claims reserving methods

have to be brought in because they use more information for predictions. We reviewed some

of these methods such as generalized linear models (GLM), artificial neural networks (ANN),

random forests (RF), and support vector machines (SVM).

We simulated some claims to apply those different methods and compare the results. We
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used the same approach as Harej et al. [2017] did which is based on the GLM model from

Taylor et al. [2008]. A set of real data was also pulled from NAIC Schedule P, however, the

data are aggregated to company level instead of individual level.

Four different methods were then applied to two sets of samples and the real data, in-

cluding the CL algorithm, ODP Mack model, ANNs, and RF methods, covering the different

approaches, from classical methods to stochastic methods and individual claims reserving

methods. In the end, traditional models seem to performs as well as individual methods

in some cases, however, in other cases, their performance can be dramatically worse than

the individual methods, especially in simulated data. In real cases, the individual methods

perform as well as the traditional methods, but not necessarily better, as the training set is

not sufficiently large in the real data we used.

Carrato and Visintin [2019] provide another approach in loss reserving prediction which

combines traditional methods with machine learning methods. Their objective is to find the

balance between the interpretability of traditional methods and the predictive power of ML

methods. They suggest to cluster the claims first with machine learning for instance with

k-means or Gaussian mixtures, then apply the traditional methods to predict the reserves.

This is similar to the random forest method, which would put similar claims into the same

nodes on a single decision tree.

In Table 4.11, all the aggregate and individual methods we reviewed in this thesis are

compared, in order to see their advantages and disadvantages for structured data and un-

structured data.

Future, research could include:

1. These methods need to be applied on real individual data (without any aggregation), to

test the efficiency of these machine learning methods against the classical and stochastic

methods, and find which method fit which case the best.

2. Harej et al. [2017] also suggested that it would be good to get rid of the cascading

method. Ticconi [2018] provides an idea to escape from the cascading method and

gives a way of predicting the loss reserves; however he/she applies the methods on both

structured and unstructured data, while we only applied these methods on structured
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data, as seen in the three samples.

3. Try deep learning methods such as recurrent neural networks (Rumelhart et al. [1986])

with long short-term memory (Hochreiter and Schmidhuber [1997]), a method which

is good at classifying, processing and predicting based on time series data.

4. Then, it is possible to increase the performance with a hybrid method by combining

different methods. Duval and Pigeon [2019] applied gradient boosting techniques to

evaluate loss reserves in an individual framework. Then the techniques can also be

applied on Random Forest, as a boosted trees method.
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Appendix

Listing 4.1: R Code to Generate the Simulated Data

################################################

mu = 1000000

sigma = 0.02

#Ultimate amount

U <- rlnorm(10000, log(mu), sd = sigma )

#Year

t <- seq(1,20,1)

################################################

##Sample 1 equation: short-tailed samples

short_mu1 <- (1 - exp(1)^(- ((t + 1)/2) ) )^1.5

short_mu2 <- 2 * exp(1)^(- ((t-1.6)/5)^2 )

##Sample 2 equation: long-tailed samples

long_mu1 <- ( 1 - exp(1)^(- ((t + 3)/6) ) )^3

long_mu2 <- 2 * exp(1)^(- ((t-2)/5)^0.6 )

################################################

#Copula needs to be added here to have dependency between Fp and Fo

### Frank copula

#install.packages("copula")

#install.packages("VineCopula")
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library(copula)

set.seed(100)

#build the ralation

library(VineCopula)

################################################

#for Sample 1

################################################

my_dist <- mvdc(frankCopula(param = 1, dim = 2), margins = c("lnorm","lnorm

"), paramMargins = list(list(meanlog = log(short_mu1), sdlog = sigma^2),

list(meanlog = log(short_mu2), sdlog = sigma^2 )))

short_term_paids <- data.frame()

short_term_outstandings <- data.frame()

for(i in 1:6000)

{

set.seed(i)

new_data <- rMvdc(20, my_dist)

new_data <- t(new_data)

short_term_paids <- rbind(short_term_paids, U[i]*new_data[1,])

short_term_outstandings <- rbind(short_term_outstandings, U[i]*new_data

[2,])

}

colnames(short_term_paids) <- c

(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

colnames(short_term_outstandings) <- c

(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

################################################

#for Sample 2

################################################

my_dist2 <- mvdc(frankCopula(param = 1, dim = 2), margins = c("lnorm","lnorm

"),
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paramMargins = list(list(meanlog = log(long_mu1), sdlog =

sigma^2), list(meanlog = log(long_mu2), sdlog = sigma^2 ))

)

long_term_paids <- data.frame()

long_term_outstandings <- data.frame()

for(i in 1:4000)

{

set.seed(i+6000)

new_data <- rMvdc(20, my_dist2)

new_data <- t(new_data)

long_term_paids <- rbind(long_term_paids, U[i+6000]*new_data[1,])

long_term_outstandings <- rbind(long_term_outstandings, U[i+6000]*new_data

[2,])

}

colnames(long_term_paids) <- c

(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

colnames(long_term_outstandings) <- c

(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

################################################

#Sample 3

################################################

Sample3_paids <- data.frame()

Sample3_outstandings <- data.frame()

#500 claims (300 short-tailed + 200 long-tailed) a year

#20 years in total

for (k in 1:20)

{

Sample3_paids <- rbind(Sample3_paids, short_term_paids[ (300*(k-1)+1) :

(300*k),])
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Sample3_paids <- rbind(Sample3_paids, long_term_paids[ (200*(k-1)+1) :

(200*k),])

}

for (k in 1:20)

{

Sample3_outstandings <- rbind(Sample3_outstandings,

short_term_outstandings[ (300*(k-1)+1) : (300*k),])

Sample3_outstandings <- rbind(Sample3_outstandings, long_term_outstandings

[ (200*(k-1)+1) : (200*k),])

}

write.csv(Sample3_paids, "~/Sample3_paids.csv")

write.csv(Sample3_outstandings, "~/Sample3_outstandings.csv")

################################################

#Sample 4

################################################

Sample4_paids <- data.frame()

Sample4_outstandings <- data.frame()

a <- seq(15, 585, 30)

pre <- 0

for (i in 1:20)

{

addon <- a[i]

A[i] <- a[i] + pre

pre <- pre + a[i]

}

b <- seq(390,10,-20)
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pre <- 0

for (i in 1:20)

{

addon <- b[i]

B[i] <- b[i] + pre

pre <- pre + b[i]

}

A <- as.integer(A)

B <- as.integer(B)

Sample4_paids <- rbind(Sample4_paids, short_term_paids[ ( 1 ) : ( A[1] ),])

Sample4_paids <- rbind(Sample4_paids, short_term_paids[ ( 1 ) : ( B[1] ) ,])

for (k in 1:19)

{

Sample4_paids <- rbind(Sample4_paids, short_term_paids[ (A[k] + 1 ) : ( A[

k+1] ),])

Sample4_paids <- rbind(Sample4_paids, short_term_paids[ (B[k]+1 ) : ( B[k

+1] ) ,])

}

Sample4_outstandings <- rbind(Sample4_outstandings, short_term_outstandings[

( 1 ) : ( A[1] ),])

Sample4_outstandings <- rbind(Sample4_outstandings, long_term_outstandings[

( 1 ) : ( B[1] ) ,])

for (k in 1:19)

{

Sample4_outstandings <- rbind(Sample4_outstandings,

short_term_outstandings[ ( A[k] + 1 ) : (A[k+1] ),])
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Sample4_outstandings <- rbind(Sample4_outstandings, long_term_outstandings

[ ( B[k]+1 ) : ( B[k+1] ) ,])

}

#claims in each year varies

#20 years in total

Sample4_paids

Sample4_outstandings

write.csv(Sample4_paids, "~/Sample4_paids.csv")

write.csv(Sample4_outstandings, "~/Sample4_outstandings.csv")

################################################

#Sample 5

################################################

Sample5_paids <- data.frame()

Sample5_outstandings <- data.frame()

#claims in each year varies

#20 years in total

a <- c(280,280,280,280,280,

280,280,280,280,280,

280,280,280,280,280,

280,280,280,460,500)

pre <- 0

for (i in 1:20)

{

addon <- a[i]

A[i] <- a[i] + pre

pre <- pre + a[i]

}
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b <- c(220,220,220,220,220,

220,220,220,220,220,

220,220,220,220,220,

220,220,220,40,0)

pre <- 0

for (i in 1:20)

{

addon <- b[i]

B[i] <- b[i] + pre

pre <- pre + b[i]

}

A <- as.integer(A)

B <- as.integer(B)

A;B

#

Sample5_paids <- rbind(Sample5_paids, short_term_paids[ ( 1 ) : ( A[1] ) ,])

Sample5_paids <- rbind(Sample5_paids, long_term_paids[ ( 1 ) : ( B[1] ) ,])

for (k in 1:18)

{

Sample5_paids <- rbind(Sample5_paids, short_term_paids[ (A[k] + 1 ) : ( A[

k+1] ),])

Sample5_paids <- rbind(Sample5_paids, long_term_paids[ (B[k] + 1 ) : ( B[k

+1]) ,])

}

Sample5_paids <- rbind(Sample5_paids, short_term_paids[ (A[19] + 1 ) : ( A

[20] ),])

Sample5_outstandings <- rbind(Sample5_outstandings, short_term_outstandings[

( 1 ) : ( A[1] ),])
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Sample5_outstandings <- rbind(Sample5_outstandings, long_term_outstandings[

( 1 ) : ( B[1] ) ,])

for (k in 1:18)

{

Sample5_outstandings <- rbind(Sample5_outstandings,

short_term_outstandings[ ( A[k] + 1 ) : (A[k+1] ),])

Sample5_outstandings <- rbind(Sample5_outstandings, long_term_outstandings

[ ( B[k]+1 ) : ( B[k+1] ) ,])

}

Sample5_outstandings <- rbind(Sample5_outstandings, short_term_outstandings[

(A[19] + 1 ) : ( A[20] ),])

Listing 4.2: R Code for CL and ODP Methods

library("ChainLadder")

sample3_agg_paids <- read.csv( "~/sample3_agg_paids.csv", header = T, sep=

",")

sample3_acc_paids <- sample3_agg_paids[,2:21]

Cumulative.Paid <- sample3_acc_paids

Incremetal.Paid <- as.data.frame.array(cum2incr(Cumulative.Paid))

#############

#CL model first

Cumulative.Paid <- as.data.frame.array(incr2cum(Incremetal.Paid))

M <- MackChainLadder(Cumulative.Paid, est.sigma="Mack")

f <- as.numeric(M$f)

alpha <- as.numeric(M$FullTriangle[,20])

#############

# ODP Mack Model

# Build the model with X|D ~ ODP (mu, phi)

83



Incremetal.Paid <- sample3_inc_paids

claims <- as.vector(t(Incremetal.Paid)) # Incremental paid as vector

n.origin <- nrow(Incremetal.Paid)

n.dev <- ncol(Incremetal.Paid)

origin <- factor(row <- rep(1:n.origin, n.dev)) # accident year as vector

dev <- factor(col <- rep(1:n.dev, each=n.origin)) # development year as

vector

W <- data.frame(claims=claims, origin=origin, dev=dev)

model <- glm(claims ~ origin + dev, family = quasipoisson(), subset=!is.na(

claims), data=W)

Model.Summary <- summary(model) # summary of glm model

Table.3 <- Model.Summary$coefficients[,c(’Estimate’,’Std. Error’)]

rownames(Table.3) <- c(’c’,paste(’a’,2:n.origin,sep=""),paste(’b’,1:(n.

origin-1),sep=""))

colnames(Table.3) <- c(’Estimate’,’Std. Error’)

Table.3

#####rMSEP ultimate

library(ChainLadder)

Cumulative.Paid <- incr2cum(Incremetal.Paid)

set.seed(15870)

BS <- BootChainLadder(Cumulative.Paid,R=999, process.distr=c("od.pois"))

CDR.BS <- CDR(BS)

indexes <- which(as.numeric(origin)+as.numeric(dev)>n.origin+1)

origin.hat <- as.numeric(origin[indexes])

dev.hat <- as.numeric(dev[indexes])

84



X.hat <- matrix(0, nrow=length(indexes), ncol=n.origin+n.dev-1)

X.hat[,1] <- 1

for(i in 1:length(indexes)){

X.hat[i,origin.hat[i]] <- 1

X.hat[i,n.origin-1+dev.hat[i]] <- 1 }

Estimate.Parameters <- Model.Summary$coefficients[,’Estimate’]

Linear.Predictor <- X.hat%*%Estimate.Parameters

Estimate.Reserve <- exp(Linear.Predictor)

R.i.hat <- tapply(Estimate.Reserve,origin.hat,sum)

phi <- Model.Summary$dispersion

Process.Variance.R.i <- phi*tapply(Estimate.Reserve,origin.hat,sum) # Eq. 31

Var.beta <-Model.Summary$cov.scaled

Var.eta <- X.hat%*%Var.beta%*%t(X.hat) # Eq. 28

Parameters.Variance.R.i <- c() # Eq. 36

for(i in 2:n.origin){

indexes <- which(origin.hat==i)

Parameters.Variance.R.i[i-1] <- t(Estimate.Reserve[indexes])%*%Var.eta[

indexes,indexes]%*%Estimate.Reserve[indexes] }

MSEP.R.i <- Process.Variance.R.i + Parameters.Variance.R.i # Eq. 30

rMSEP.R.i <- sqrt(MSEP.R.i)

MSEP.R <- sum(Process.Variance.R.i) + t(Estimate.Reserve)%*%Var.eta%*%

Estimate.Reserve # Eq. 39

rMSEP.R <- sqrt(MSEP.R)
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Table.4 <- matrix(0, nrow=n.origin+1, ncol= 6)

colnames(Table.4) <- c(’R.BS’,’R.CT’,’delta.R’,’rMSEP.BS’,’rMSEP.CT’,’delta.

rMSEP’)

Table.4[,’R.BS’] <- CDR.BS[,’IBNR’]

Table.4[,’R.CT’] <- c(0, R.i.hat, sum(R.i.hat))

Table.4[,’delta.R’] <-Table.4[,’R.CT’] / Table.4[,’R.BS’] -1

Table.4[,’rMSEP.BS’] <- CDR.BS[,’IBNR.S.E’]

Table.4[,’rMSEP.CT’] <- c(0,rMSEP.R.i,rMSEP.R)

Table.4[,’delta.rMSEP’] <- Table.4[,’rMSEP.CT’]/Table.4[,’rMSEP.BS’]-1

#######

data.frame(CDR.BS[,’IBNR’])

Listing 4.3: R Code for ANN Method

#########################################

#Write a Loop to do the ANN

#########################################

fill_part_sample3_paids <- part_sample3_paids

#normalize the data

for (j in 1:20)

{

fill_part_sample3_paids[,j] <- normalizeD(fill_part_sample3_paids[,j], min

(fill_part_sample3_paids[,j], na.rm=TRUE),

max(fill_part_sample3_paids[,j],na.

rm=TRUE) )

}

set.seed(101)
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for (i in 1:19) #19 development years

{

nn <- mlp(fill_part_sample3_paids[ (1:(10000 - 500*i)) , (1:i)],

fill_part_sample3_paids[ (1: (10000 - 500*i)) , (i+1)], size = c(2),

maxit = 100,

initFunc = "Randomize_Weights", initFuncParams = c(-0.3, 0.3),

learnFunc = "SCG", learnFuncParams = c(0.2, 0),

hiddenActFunc = "Act_Logistic", shufflePatterns = TRUE,

outputActFunc = "Act_Logistic" ,

inputsTest = NULL, targetsTest = NULL, pruneFunc = NULL,

pruneFuncParams = NULL)

predict <- predict(nn, data.frame(fill_part_sample3_paids[(10000 - 500*i

+ 1):(10000) , 1:i]))

fill_part_sample3_paids[(10000 - 500*i + 1):(10000) ,i+1] <- predict

}

#denormorlize the data

for (j in 1:20)

{

fill_part_sample3_paids[,j] <- denormalizeD(fill_part_sample3_paids[,j],

min(part_sample3_paids[,j], na.rm=TRUE),

max(part_sample3_paids[,j],na.rm=

TRUE) )

}

#sum the prediction for the last year

prediction_R_nn <- vector()

for (i in 1:20)

{
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prediction_R_nn[i] <- sum(fill_part_sample3_paids[( (500*(i-1)+1) : (500*i

) ),20])

}

data.frame(prediction_R_nn)

Listing 4.4: R Code for RF Method

library(randomForest)

fill_part_sample3_paids_rf <- part_sample3_paids

for (j in 1:20)

{

fill_part_sample3_paids_rf[,j] <- normalizeD(fill_part_sample3_paids_rf[,j

], min(fill_part_sample3_paids_rf[,j], na.rm=TRUE),

max(fill_part_sample3_paids_rf[,j],

na.rm=TRUE) )

}

set.seed(102)

#RF algorithm - loop - revised cascading

for (i in 1:19)

{

for (j in 1:i)

{

rf <- randomForest( fill_part_sample3_paids_rf[ (1:(500*i)) , 1:(20-i +

(j-1) )], fill_part_sample3_paids_rf[(1:(500*i)), (21-i + (j-1))],

mtry=3,importance=TRUE)

predict_rf <- predict(rf, fill_part_sample3_paids_rf[(1+500*i):(500*(i

+1)),1:(20-i+(j-1))], type="response", norm.votes=TRUE,

predict.all=FALSE, proximity=FALSE, nodes=FALSE)

fill_part_sample3_paids_rf[(1+500*i):(500*(i+1)), (20-i+j)] <-

predict_rf

}
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}

for (j in 2:j)

{

last_part <- fill_part_sample3_paids_rf[ (1:(500*i)) , 1:(21-i + (j-1) )]

last_predict <- data.frame(fill_part_sample3_paids_rf[(1+500*i):(500*(i+1))

,1:(20-i+(j-1))])

colnames(last_predict) <- colnames(last_part)[1:j]

rf <- randomForest( X1 ~ X0 , data = last_part , mtry=1,importance=TRUE)

predict_rf <- predict(rf, last_predict , type="response", norm.votes=TRUE,

predict.all=FALSE, proximity=FALSE, nodes=FALSE)

fill_part_sample3_paids_rf[(1+500*i):(500*(i+1)), (20-i+j)] <- predict_rf

}

for (j in 19:i)

{

rf <- randomForest( fill_part_sample3_paids_rf[ (1:(500*i)) , 1:(20-i + (j

-1) )], fill_part_sample3_paids_rf[(1:(500*i)), (21-i + (j-1))], mtry

=2,importance=TRUE)

predict_rf <- predict(rf, fill_part_sample3_paids_rf[(1+500*i):(500*(i+1))

,1:(20-i+(j-1))], type="response", norm.votes=TRUE,

predict.all=FALSE, proximity=FALSE, nodes=FALSE)

fill_part_sample3_paids_rf[(1+500*i):(500*(i+1)), (20-i+j)] <- predict_rf

}

for (j in 1:20)

{

fill_part_sample3_paids_rf[,j] <- denormalizeD(fill_part_sample3_paids_rf

[,j], min(part_sample3_paids[,j], na.rm=TRUE),

max(part_sample3_paids[,j],na.rm=

TRUE) )
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}

#sum the prediction for the last year

prediction_R_rf <- vector()

for (i in 1:20)

{

prediction_R_rf[i] <- sum(fill_part_sample3_paids_rf[( (500*(i-1)+1) :

(500*i) ),20])

}

data.frame(prediction_R_rf)
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