
Fine Feature Reconstruction in Point Set Surfaces Using Deep Learning

Prashant Raina

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy (Computer Science)

Concordia University

Montréal, Québec, Canada

October 2019

c© Prashant Raina, 2019

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Prashant Raina

Entitled: Fine Feature Reconstruction in Point Set Surfaces Using Deep
Learning

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

Chair

Dr. William Lynch

 External Examiner

Dr. David Mould

 External to Program

Dr. Hassan Rivaz

 Examiner

Dr. Thomas Gordon Fevens

 Examiner

Dr. Adam Krzyzak

Thesis Co-Supervisor

Dr. Sudhir P. Mudur

Thesis Co-Supervisor

Dr. Tiberiu Popa

Approved by

Dr. Leila Kosseim, Graduate Program Director

January 9, 2020

Dr. Amir Asif, Dean

 Gina Cody School of Engineering & Computer Science

Abstract

Fine Feature Reconstruction in Point Set Surfaces Using Deep Learning

Prashant Raina, Ph.D.

Concordia University, 2019

Point clouds are typically captured from surfaces of real-world objects using scanning devices. This

scanning process invariably results in the loss of sharp edges as well as other geometric features of

the original surface, which we collectively refer to as “fine features”. This thesis explores leveraging

recent advances in deep learning in order to recover fine features of surfaces which were lost when

acquiring the point cloud. We first focus on reconstructing sharp edges of the original surface. We

define a new concept — a sharpness field — over the underlying surface of a point cloud, whose

ridges give the locations of sharp edges even at points not originally sampled from the surface.

We then demonstrate that with appropriate training data, deep neural networks can be trained to

compute the sharpness field for a point cloud. We evaluate several different local neighborhood

representations and deep learning models to improve the accuracy of sharpness field computation

across different neighborhood scales. Some applications of the sharpness field are then described.

The most important such application is feature-aware smoothing : using the computed sharpness field

to preserve sharp edges while removing noise from point clouds. Our novel smoothing algorithm

shows superior performance in reconstructing sharp edges and corners compared to the state-of-

the-art RIMLS algorithm, while also yielding points lying on sharp edges. Other applications of

the sharpness field are also presented: generating a graphical representation of sharp edges and

segementing a point cloud into smooth surface patches. We then expand the scope of the problem

from sharp edges to undersampled fine features in general. We tackle this by developing a unique

deep learning approach to point cloud super-resolution using an innovative application of generative

adversarial networks (GANs). The novelty of our super-resolution method lies in framing point cloud

super-resolution as a domain translation task between heightmaps obtained from point clouds and

heightmaps obtained from triangular meshes. By using recent developments in domain translation

using GANs, we obtain results qualitatively and quantitatively superior to state-of-the-art point

cloud super-resolution methods, all while using a radically different deep learning approach which

iii

is also more computationally efficient.

The main contributions of this thesis are:

1. Establishing sharpness field computation as a novel method for localizing sharp edges in 3D

point clouds.

2. Several new data-driven methods to compute the sharpness field for a point cloud using dif-

ferent local neighborhood representations and machine learning models.

3. A novel feature-aware smoothing algorithm for denoising point clouds while preserving sharp

edges, using the aforementioned sharpness field. This method produces denoising results su-

perior to the state-of-the-art RIMLS smoothing method.

4. An innovative application of GAN-based domain translation, in order to transform sparse

heightmaps obtained from point cloud neighborhoods into dense heightmaps obtained from

triangular meshes.

5. A unique method for reconstrucing fine features in point clouds, by using heightmap domain

translation to perform point cloud super-resolution. The reconstructed surfaces are qualita-

tively and quantitatively superior to those produced by state-of-the-art point cloud super-

resolution methods.

Other contributions include:

1. An algorithm for extracting an explicit graphical representation of the sharp edges of a point

cloud, using the sharpness field.

2. An algorithm for segmenting a point cloud into smooth patches, using the sharpness field.

3. Feature-aware smoothing algorithms which incorporate the aforementioned edge graph and

patch segmentation.

iv

Acknowledgments

My PhD journey was made possible by the Concordia University Full Tuition Recruitment Award

from the School of Graduate Studies at Concordia University. This tuition waiver made it financially

feasible for me to devote myself full-time to academic research work during these five years.

I would like to extend my sincere thanks to my two PhD supervisors, Dr. Tiberiu Popa and

Dr. Sudhir Mudur, for initiating me into computer graphics research, and for ensuring that I was

adequately funded and equipped during my time as a PhD student. Despite their busy schedules,

they always made themselves available for discussions related to my research. Their mentorship

inspired me to persevere in research and explore new ideas.

Dr. Popa’s infectious energy, enthusiasm and passion for computer graphics convinced me to

take the plunge into a PhD program in this field, despite the fact that my previous research work

was in natural language processing. Over the years, I have grown to see him not only as a guide and

collaborator, but also as a friend.

Dr. Mudur was a pillar of support to me during the difficult periods of my research life. He was

always willing to share his wisdom gained from decades of experience in conducting research and

guiding graduate students. I thank him for the meticulous attention he showed when editing my

research papers and thesis.

It was a risky career decision for me to give up my comfortable job in Singapore and start a new

life in Canada, pursuing research in a field that was new to me. During this time, my parents’ support

and encouragement have never wavered. They have always believed in my ability and potential to

perform well in my endeavors.

Most importantly, I would like to record my deepest gratitude to Master Li Hongzhi, founder

of the spiritual practice of Falun Dafa. His teachings, being well-suited to a modern lifestyle, have

enabled me to maintain a calm mind and a healthy body through all the ups and downs of life. I

will continue to be guided by these teachings in the future.

v

Contribution of Authors

Sharp Edge Reconstruction (Chapters 3 & 4)

Prashant Raina implementation, writing, editing and proofing

Tiberiu Popa research supervisor, funding, editing and proofing

Sudhir Mudur research supervisor, funding, editing and proofing

Point Cloud Super-Resolution (Chapters 5 & 6)

Prashant Raina implementation, writing, editing and proofing

Tiberiu Popa research supervisor, editing and proofing

Sudhir Mudur research supervisor, editing and proofing

vi

Contents

List of Figures x

List of Tables xvi

List of Algorithms xvii

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis structure . 5

2 Background and Related Work 7

2.1 Background . 7

2.1.1 Point clouds . 8

2.1.2 Deep learning for 3D geometry . 8

2.2 Related Work . 14

2.2.1 Point set surfaces . 14

2.2.2 Sharp features in 3D meshes and point clouds 16

2.2.3 GANs and their applications . 18

2.2.4 Point cloud super-resolution . 22

3 Methods for Sharp Edge Reconstruction 27

3.1 Sharpness Field Computation . 27

3.1.1 Definition of the sharpness field . 28

3.1.2 Moving Least-Squares projection . 29

3.1.3 Machine learning approach to sharpness computation 30

3.1.4 Sharpness field computation using normals sampled on a radial grid 32

vii

3.2 Representations and Models for Sharpness Field Computation 38

3.2.1 Radial grid heightmaps . 39

3.2.2 Cartesian heightmaps . 40

3.2.3 PointNet-based approaches . 46

3.3 Applying the Sharpness Field . 48

3.3.1 Feature-aware smoothing using barriers and patches 49

3.3.2 Feature-aware smoothing using an anisotropic Gaussian kernel 54

3.3.3 Segmentation into patches . 60

3.3.4 Edge graph extraction . 61

4 Results and Discussion: Sharp Edge Reconstruction 65

4.1 Sharpness Field Computation Using Normal Angles 65

4.1.1 Sharpness field results . 66

4.1.2 Comparison of machine learning models . 73

4.2 Representations and Models for Sharpness Field Computation 75

4.2.1 Radial grid heightmaps . 75

4.2.2 Cartesian heightmaps . 76

4.2.3 PointNet-based approaches . 78

4.2.4 The effect of scale on sharpness computation 81

4.3 Applying the Sharpness Field . 84

4.3.1 Feature-aware smoothing using an anisotropic Gaussian kernel 84

4.3.2 Quantitative evaluation of feature-aware smoothing 93

4.3.3 Segmentation into patches . 95

4.3.4 Edge graph extraction . 96

5 Feature Preservation Through Point Cloud Super-Resolution 99

5.1 GANs for domain translation . 100

5.2 Super-resolution of point clouds using domain translation 102

5.2.1 Local heightmap generation . 103

5.2.2 Prediction of normals . 104

5.2.3 Point cloud super-resolution . 104

5.2.4 Training details . 108

5.3 Super-resolution of the sharpness field . 110

viii

6 Results and Discussion: Point Cloud Super-Resolution 112

6.1 Comparison with recent work . 112

6.1.1 Disadvantages of PointNet++-based super-resolution 121

6.2 Quantitative evaluation . 121

6.3 Super-resolution of the sharpness field . 124

7 Conclusion 126

Bibliography 129

ix

List of Figures

1 PointNet neural network architectures for classification and segmentation (image by

Qi et al [1]). 11

2 PCPNet neural network architecture (image by Guerrero et al [2]). 12

3 PointNet++ neural network architecture (image by Qi et al [3]). 13

4 PU-Net neural network architecture (image by Yu et al [4]). 23

5 EC-Net neural network architecture (image by Yu et al [5]). 24

6 Illustration of an upsampling network unit in 3PU (image by Wang et al [6]). 25

7 Our initial training set [7], rendered with ground truth sharpness fields. 31

8 Example of points sampled in a 30 ˆ 30 radial grid on a proxy MLS surface. 33

9 Local neighborhood representation of 30 ˆ 30 sorted angles for three points selected

from the fandisk point cloud: (L to R) a point on a corner, a point on a sharp edge

and a point on a smooth patch. The top row of each image is the innermost ring of

the radial grid. Each row is sorted in ascending order. For clearer visualization, we

colorize the values with blue being the minimum, red being the maximum and white

being halfway in between. 34

10 CNN architecture used in Section 3.1.4 . 34

11 Unfolding breaks only for higher noise levels exceeding 15δ: (a) 1.5δ, (b)4.5δ, (c) 15δ. 37

12 Wedge models with different sharp feature profiles for additional training examples,

inspired by Figure 7 in [8]. 39

13 Visualization of radial heightmaps (with a blue-white-red color map). (L to R) A

point on a corner, a point on a sharp edge and a point on a smooth patch. 40

14 Visualization of the Cartesian heightmaps described in Section 3.2.2 (with a blue-

white-red color map). (L to R) A point on a corner, a point on a sharp edge and a

point on a smooth patch. 40

x

15 Harmonic network architecture used in Section 3.2.2 (reproduced from [9]). Red boxes

are harmonic convolutions and blue boxes are average pooling. The two rotation order

“streams" are combined by summing. 43

16 Network architecture with the STN, used in Section 3.2.2. The localization network

has the same structure as the outer network. 44

17 Visualization of Cartesian heightmaps before and after transformation by the spatial

transformer network in Figure 16. The localization network learns to transform the

input image to allow the subsequent layers to focus on the most salient features. . . 45

18 Procedure for noise removal from a point cloud using a sharpness field. 48

19 Smoothing result using local barrier planes (Section 3.3.1.1). Smoothing is performed

with a smoothing radius of 8δ on the fandisk model with 3δ normal noise added. Note

the artifacts in areas where there is more than one edge in the smoothing radius. . . 50

20 Example of a barrier mesh. 52

21 Smoothing result using barrier planes obtained from an edge graph (Section 3.3.1.2). 53

22 Smoothing result using patches obtained by flood-fill segmentation (Section 3.3.1.3). 54

23 Example of a radial grid near multiple sharp edges on the fandisk model. The cyan-

colored points are local minima of the sharpness field along each spoke of the grid,

i.e. barrier points. 55

24 Graphs showing the sharpness field values along different spokes of the radial grid

shown in Figure 23. Left: a collection of graphs for all spokes. Right: graphs for four

selected spokes, showing different possible radial profiles of the sharpness field. . . . 56

25 Anisotropic Gaussian kernel computed for the radial grid shown in Figure 23. Left:

collection of graphs of weights along each spoke. Right: 3D plot showing the overall

kernel shape. 56

26 Illustration of smoothing weights: a) The input point and the radial grid, showing the

barrier points rendered in cyan. b) The local neighborhood of the input point, with

weights color-coded on a logarithmic scale: red corresponds to a weight of 1 and dark

green corresponds to a weight of 0. Note that the points across edges have 0 weight.

c) Superimposition of the points in a) and b). 57

27 Sharpness field results obtained using 30 ˆ 30 sorted normal angles. (T to B) The

fandisk model with 1.5δ normal noise added, and with 3δ noise added,. 67

xi

28 Sharpness field results obtained using 30 ˆ 30 sorted normal angles. (L to R) The

blade model and the phone keypad model. 68

29 Sharpness field results obtained using 30ˆ30 sorted normal angles for the house model. 69

30 Sharpness field results obtained without sorting the 30 ˆ 30 normal angles. (T to B)

The fandisk model with 1.5δ normal noise added, and with 3δ noise added. 70

31 Sharpness field results obtained using 30 ˆ 30 normal angles, without sorting, for the

house model. 71

32 Sharpness field results obtained using 30 ˆ 30 sorted normal angles on the curved

edges of the blade model. We can see that the curved edges are not captured. 72

33 Ground truth sharpness field of the fandisk model. 74

34 Comparison of gradient boosting, random forests and convolutional neural networks

(CNNs). a,d) Gradient boosting results. b,e) Random forest results. c,f) CNN results. 74

35 Sharpness fields obtained using a CNN trained on radial grid heightmaps, as described

in Section 3.2.1. 76

36 Sharpness fields computed for the blade model using Cartesian heightmaps. (L to R)

Using an ordinary CNN, using a harmonic network, and using a CNN with a spatial

transformer network. 76

37 Sharpness field computed for the house model using Cartesian heightmaps passed to

a CNN with an STN. 77

38 Sharpness field results obtained at concave corners, using a CNN with a spatial trans-

former network. L: after 12 epochs. R: after 2,000 epochs. 78

39 Sharpness fields for the fandisk and blade models, computed using PointNet. 79

40 Sharpness fields for the fandisk and blade models, computed using a multi-resolution

PCPNet. 80

41 The half-pipe model used in our experiments. L: Ground truth sharpness field along

with points. R: Top view, shaded. 82

42 Zoomed-in smoothing results for the fandisk model, with 1.5δ normal noise added.

Left: RIMLS result. Right: our result. Full comparison in Figure 45. 84

43 Smoothing results for a surface with a short step-like feature. Top: original. Middle:

RIMLS result. Bottom: our result. 85

xii

44 Improved feature-aware smoothing as a result of better sharpness field computation.

L: smoothing result for the blade model obtained previously [7] for the sharpness field

in Figure 28 (page 68), which was computed using the method described in Section

3.1.4. R: improved result [10] obtained for the sharpness field in Figure 36 (page

76), which was computed by using Cartesian heightmaps with the spatial transformer

network as described in Section 3.2.2. 86

45 Smoothing results for the fandisk model, with 1.5δ normal noise added, using the

computed sharpness field from Figure 27 (page 67). Top: original. Middle: RIMLS

result. Bottom: our result. 87

46 Smoothing results for the fandisk model, with 3δ normal noise added, using the

computed sharpness field from Figure 27 (page 67). Top: original. Middle: RIMLS

result. Bottom: our result. 88

47 Smoothing results for the fandisk model, with 4.5δ normal noise added, using the

computed sharpness field from Figure 27 (page 67). Top: original. Middle: RIMLS

result. Bottom: our result. 89

48 Smoothing results for the blade model, using the computed sharpness field from Figure

28 (page 68). Top: original. Middle: RIMLS result. Bottom: our result. 90

49 Smoothing results for our 3D scan of a phone keypad, using the computed sharpness

field from Figure 28 (page 68). Left column: original scan. Right column: 3δ normal

noise added. Top row: original. Middle row: RIMLS result. Bottom row: our result. 91

50 Smoothing results for our 3D scan of the facade of a wooden house, using the computed

sharpness field from Figure 29 (page 69). Top: original. Middle: RIMLS result.

Bottom: our result. 92

51 Visualization of smoothing errors after smoothing a fandisk with 3δ noise. Red repre-

sents minimum error and blue represents maximum error. Left: Ours. Right: RIMLS. 94

52 Visualization of smoothing errors after smoothing a fandisk with 4.5δ noise. Red

represents minimum error and blue represents maximum error. Left: Ours. Right:

RIMLS. 94

53 The fandisk model, after segmentation into patches using the ground truth sharpness

field from Figure 33 (page 74). Points near edges were assigned to the nearest patch. 95

xiii

54 The blade model, after segmentation into patches using both the computed sharpness

field from Figure 28 (page 68), as well as a barrier mesh generated from the edge

graph (that was generated from the computed sharpness field). 95

55 An edge graph generated for the fandisk model, using the computed sharpness field

shown in Figure 27 on page 67. 96

56 An edge graph generated for our scan of a phone keypad, shown along with the

computed sharpness field from Figure 28 on page 68. 97

57 Heightmaps sampled from the fandisk model. The sparse and dense heightmaps have

different color maps to reflect the fact that sparse heightmaps are not occupied at all

pixels. Top row: sparse heightmaps obtained from the point cloud. Middle row: dense

heightmaps predicted by our GAN. Bottom row: ground truth heightmaps obtained

by casting rays onto the original mesh. 103

58 Examples of training models from SketchFab. 105

59 a) Ground truth head model. b) 5000 points sampled to act as testing input. c)

Poisson reconstruction of the input point cloud, showing the loss of features due to

undersampling. 106

60 Our super-resolution results for the 5000 points in Figure 59.b, using different modes.

Top: smooth mode. Middle: even mode. Bottom: superdense mode. The right

column contains their respective reconstructions using screened Poisson surface re-

construction. 107

61 Sharpness field sampled from the fandisk model. Top row: sparse sampling of the

sharpness field precomputed on the point cloud. Middle row: dense sharpness field

predicted by our GAN. Bottom row: ground truth sharpness field obtained by casting

rays onto the original mesh. 111

62 Results for the statue Cupid Fighting, reconstructed from a sample of 5000 points

from the ground truth mesh. 114

63 Results for the statue Lion Étouffant Un Serpent. The 5000 sampled points are

overlaid on the ground truth mesh. 115

64 Results for an extremely low-resolution sample of 625 points (in red) from Cupid

Fighting. We compare against the best results we were able to obtain for 3PU, across

multiple random samplings of 625 points. 116

xiv

65 Additional results for 16x super-resolution using our smooth mode, compared with

3PU and EC-Net. 117

66 Obtaining point clouds using our even mode, compared with others. The last column

shows results from Poisson disk sampling of our reconstructed mesh, using the smooth

mode. 118

67 Comparison of results obtained from multiple random samplings of 625 points of the

Cupid Fighting model. 119

68 Top & middle rows: Upsampling of point clouds scanned by us using Kinect v2.

Bottom row: Upsampling of a kitchen obtained from ScanNet [11]. Results are shown

as points. 120

69 Super-resolution results for the blade model, along with its sharpness field. Top: using

our GAN to estimate the sharpness field. Bottom: recomputing the sharpness field

from scratch on the high-resolution point cloud, using the method from Section 3.2.2. 125

xv

List of Tables

1 Comparison of error in the sharpness field for different machine learning models . . 73

2 Comparison of total squared error in the sharpness field for the half-pipe model, using

different methods presented in this Sections 3.1 and 3.2. 81

3 Comparison of total squared error in the sharpness field for the half-pipe model, using

different methods presented in Chapter 3. Scales 2δ to 9δ. 83

4 Comparison of total squared error in the sharpness field for the half-pipe model, using

different methods presented in Chapter 3. Scales 10δ to 17δ. 83

5 Quantitative comparison of our feature-aware smoothing method with RIMLS. . . . 93

6 Quantitative comparison of our three modes for super-resolution of input point clouds

with 5000, 2500 and 625 points. Note that the superdense mode produces 256 times

the number of points. 122

7 Comparison of using different point cloud sizes when training: all mesh vertices (over

300K points), 5000 points sampled using Poisson disk sampling, or 625 points. The

resulting metrics are compared for input point clouds with 5000, 2500 and 625 points. 122

8 Quantitative comparison of 16x super-resolution between EC-Net, 3PU and our smooth

mode for point clouds with 5000, 2500 and 625 points. 123

xvi

List of Algorithms

1 Algorithm for Moving Least-Squares Projection . 29

2 Radial grid unfolding algorithm . 35

3 Weight computation on the radial grid . 59

4 Algorithm for flood-filling a patch number . 61

5 Algorithm for generating an edge graph . 62

xvii

Chapter 1

Introduction

This thesis investigates reconstructing fine features in 3D point clouds using deep learning. By “fine

features”, we refer to geometric features of the underlying surface of the point cloud whose radius of

curvature is comparable to or smaller than the gaps between sampled points. This includes sharp

edges (corresponding to radius of curvature 0), as well as other fine details, such as creases and darts,

that are lost due to the limited sampling resolution of the point cloud. Preserving sharp edges and

increasing the resolution of point clouds are classic problems in 3D geometry, which have traditionally

been tackled using procedural methods. In constrast to these procedural methods, we are motivated

to seek data-driven solutions, in order to explore the viability of applying recent advances in machine

learning to classic geometric problems. In particular, to the best of our knowledge, ours is the

first attempt at sharp feature detection in point clouds using machine learning [7, 10]. We have

also developed an innovative application of generative adversarial networks (GANs) to point cloud

super-resolution [12].

Recent years have seen a veritable revolution in applying machine learning to complex tasks.

The availability of large datasets and widespread data collection from the real world have created

new frontiers for applying machine learning. Tasks which were previously handled by procedural,

expert-designed algorithms are now being revisited with new data-driven approaches. This has

been made possible by the advent of deep learning [13]. Deep learning generally refers to training

artificial neural networks with many hidden layers. These hidden layers learn progressively higher-

level representations of low-level input data such as audio samples or pixel intensities in images.

This hierarchical representation learning approach enables fully exploiting the potential of large

quantities of raw, low-level data.

1

Most of the developments in deep learning have centered around convolutional neural networks

(CNNs), which have proven to be very effective in the domain of image processing [14]. This is

because CNNs exploit the spatial relationships provided by the regular grid structure of discretized

data from Euclidean domains, such as 2D images. Bringing the benefits of deep learning to 3D

geometry is more challenging, since 3D geometric data is represented in many different forms. 3D

discrete convolution can still be applied to voxel grids, because they represent volumetric geometric

information. However, in the case of 3D surface representations such as point clouds and meshes, it

is impossible to directly apply discrete convolution directly to these representations, because they

do not have a regular grid structure. Furthermore, the data is sampled from 3D surfaces, which

have non-Euclidean geometry. This necessitates creative strategies to apply deep learning to 3D

geometric data, which makes for an exciting and active area of research.

The work in this thesis focuses on 3D point clouds, a 3D surface data representation which is

unstructured and lacks any topological information. Point clouds are important in the fields of

computer graphics and computer vision, not because they are convenient to work with, but because

they are the primary form in which 3D data is captured from the real world. It has also become

commonplace in consumer electronics to have hardware which captures 3D images in the form of

point clouds.

The broad theme of the research presented here is to leverage deep learning to “go deeper” into

3D point cloud data, and extract fine-grained geometric information in the gaps between the sampled

points. We shall see that it is possible to recover sharp edges as well as other fine features of the

underlying surface of a point cloud.

For recovering sharp edges from point clouds, we define a novel sharpness field over the under-

lying surface and demonstrate that a convolutional neural network can be trained to compute this

sharpness field. In brief, the sharpness field can be viewed as a truncated distance field which takes

the value 1 at edges and tapers to 0 at a short distance from edges. In contrast to previous work that

classified individual points of the point cloud as belonging to edges, our sharpness field is defined

even at points that do not belong to the input point cloud. It can therefore be used to identify the

locations of sharp edges even if the edges lie between points sampled from the original surface.

Feeding an entire point cloud as input to a feedforward neural network would require that every

point cloud have exactly the same number of points. This is, of course, an unrealistic requirement for

most applications. It is more practical to perform computations on a per-point basis, by obtaining

a representation of the local neighborhood of each point to be processed. We therefore begin our

2

attempts at sharpness field computation by developing an algorithm for unfolding a radial grid

around a point lying on a point set surface. This radial grid is used to generate a Euclidean

representation of the neighborhood of a point in a point cloud, which can be fed to a CNN as input.

With appropriate training data that we have designed, this is sufficient to train a CNN to compute

a sharpness field even for shapes that are more complex than those found in the training data.

In order to improve the performance of sharpness field computation on curved edges, we system-

atically experiment with simpler local neighborhood representations, while increasing the complexity

of the neural network to handle these new input representations. We show that heightmaps enable

better sharpness field computation, provided that they are fed to special neural network models that

provide rotation invariance, such as harmonic networks [9] or spatial transformer networks [15]. We

also show that even the raw coordinates of neighboring points can be used to train a neural network

to compute the sharpness field, by using the recently developed PointNet [1] neural network archi-

tecture and a multi-scale variant called PCPNet [2]. We have also performed a thorough evaluation

of these different neighborhood representations and neural network architectures for computing the

sharpness field, comparing their performance across different neighborhood sizes for the same point

cloud.

Once computed, the sharpness field can be used to recover sharp edges of the underlying surface

of a point cloud. We demonstrate this by developing an algorithm which removes noise from a point

cloud while using the sharpness field to preserve sharp edges. This denoising (smoothing) method

is quite effective. The resulting surface has distinctly visible sharp edges, something which is not

possible with the state-of-the-art RIMLS [16] denoising method. Patches of the point cloud enclosed

by edges can be smoothed to a great extent with a large smoothing radius parameter, without the

risk of losing sharp edges. In addition, we have developed algorithms for extracting a graphical

representation of the sharp edges from the sharpness field, as well as for segmenting a point cloud

into smooth patches using the sharpness field.

Since fine features are not limited to sharp edges, we have also developed a general-purpose

method for super-resolution of point clouds using deep learning. We adapt recent work on image

domain translation using generative adversarial networks (GANs) [17]. GANs have shown an aston-

ishing ability to generate realistic-looking images that appear to originate from a particular domain

of data. This capability has been used to produce realistic “translations” of images from one domain

to another, such as from summer landscapes to winter landscapes or from sketches of handbags

3

to photographs of handbags. Unlike these artistic or toy applications, we develop a surprising ap-

plication of this method to transforming sparse heightmaps from point cloud neighborhoods into

dense heightmaps from mesh neighborhoods. These dense heightmaps can be used to increase the

resolution of the point cloud at the local level. Furthermore, normals can be trivially computed

at the newly generated points as a byproduct of our method. We show that our super-resolution

method is superior both qualitatively and quantitatively to far more complicated state of the art

methods for point cloud super-resolution. We also show that our method can easily be extended to

interpolate the sharpness field over points that are newly generated during super-resolution. Pro-

vided the sharpness field was previously computed for the low-resolution point cloud, this is more

computationally efficient than recomputing the sharpness field.

1.1 Contributions

The main contributions of this thesis are:

1. Establishing sharpness field computation as a novel method for localizing sharp edges in 3D

point clouds.

2. Several new data-driven methods to compute the sharpness field for a point cloud using dif-

ferent local neighborhood representations and machine learning models.

3. A novel feature-aware smoothing algorithm for denoising point clouds while preserving sharp

edges, using the aforementioned sharpness field. This method produces denoising results su-

perior to the state-of-the-art RIMLS smoothing method.

4. An innovative application of GAN-based domain translation, in order to transform sparse

heightmaps obtained from point cloud neighborhoods into dense heightmaps obtained from

triangular meshes.

5. A unique method for reconstrucing fine features in point clouds, by using heightmap domain

translation to perform point cloud super-resolution. The reconstructed surfaces are qualita-

tively and quantitatively superior to those produced by state-of-the-art point cloud super-

resolution methods.

Other contributions include:

4

1. An algorithm for extracting an explicit graphical representation of the sharp edges of a point

cloud, using the sharpness field.

2. An algorithm for segmenting a point cloud into smooth patches, using the sharpness field.

3. Feature-aware smoothing algorithms which incorporate the aforementioned edge graph and

patch segmentation.

1.2 Thesis structure

Chapter 2 provides the background on related work in surface reconstruction from point clouds and

point cloud super-resolution. It also summarizes the developments in the field of deep learning which

are most important for 3D geometry.

Chapters 3 and 4 deal with the reconstruction of sharp edges in point clouds. We describe all

the methods in Chapter 3 and discuss the results obtained in Chapter 4.

We define a smooth scalar field called the sharpness field, defined over the underlying surface

of a point cloud, which allows us to localize sharp edges even at points which were not sampled

from the original surface. Chapter 3 describes several machine learning approaches to sharpness

field computation. It also details applications of the sharpness field for feature-aware smoothing,

edge graph reconstruction and patch segmentation. In Chapter 4, we present the set of results we

obtained using the different methods described in Chapter 3. The chapter includes a quantitative

comparison of all proposed methods for sharpness field computation, including their performance

for different neighborhood sizes.

In Chapters 5 and 6, we explore the recovery of fine features in point clouds as a super-resolution

problem. Again Chapter 5 deals with the methods and Chapter 6 presents the results.

We leverage recent work on deep learning for domain translation using generative adversarial

networks (GANs), in order to frame point cloud super-resolution as a problem of domain translation

between point cloud neighborhoods and polygonal mesh neighborhoods. This method is described in

detail in Chapter 5. Our local neighborhood-based deep learning approach allows us to obtain super-

resolution results superior to the state-of-the-art point cloud super-resolution methods that adopt

completely different deep learning approaches. Incidentally, our domain translation approach to

point cloud super-resolution also enables super-resolution of a precomputed scalar field, such as the

sharpness field described in Chapter 3. Details on our results and comparison with state-of-the-art

5

methods are provided in Chapter 6.

Chapter 7 concludes the thesis and provides directions for future work for possible extensions of

the methods presented here.

6

Chapter 2

Background and Related Work

In the context of computer vision and graphics, 3D surface geometry is first acquired as a set of

points from the real world, using LiDAR, laser scanners or other photogrammetric hardware (this

excludes the special case of medical imaging, where volumetric data is obtained). These points are

sampled from a 3D surface, but cannot be directly resampled or processed as a surface. A 3D surface

must therefore be reconstructed from these points, and this surface may or may not be represented

in an explicit form. The reconstructed surface is then used to build a polygonal mesh, if a mesh

is desired for the target application. Following this, the resulting surface representation undergoes

further processing, such as uniform resampling, simplification or analytical fitting. The geometry is

then consumed by the target application. The work in this thesis can best be understood as taking

place at or slightly before the surface reconstruction stage in the geometry pipeline.

Reconstructing surfaces from 3D point clouds has been studied extensively long before the

widespread adoption of deep learning. In Section 2.1, we first provide some general background

on the subjects of point clouds and deep learning. We then summarize the relevant past work in

surface reconstruction from point clouds in Section 2.2.

2.1 Background

We first provide some general background on the use of point clouds as a 3D geometry representation

in Section 2.1.1. Section 2.1.2 then gives a summary of the most important developments in the

field of deep learning which are relevant to 3D geometry. Three recently published deep learning

models related to point clouds are described in more detail. These models have been incorporated

7

into surface reconstruction and super-resolution methods described in this thesis.

2.1.1 Point clouds

3D geometric data is most easily acquired from the real world in the form of collections of 3D points

lacking any associated topological information. This is in contrast to human-designed 3D data,

which often have topological information built into them as a consequence of the design process (e.g.

parametric surfaces or polygonal meshes). Unstructured collections of 3D points are referred to as

point clouds.

Point clouds can be considered as irregular samplings of continuous 2D surfaces embedded in

R
3. Reconstructing the underlying surfaces of point clouds is a challenging problem for a variety

of reasons, including noisy measurements and limited sampling resolution (the sampling density

may not even be constant across the sampled surface). In particular, sharp features of surfaces are

difficult to reconstruct because reconstruction methods often contain assumptions of smoothness.

Surfaces reconstructed from point clouds are referred to as point set surfaces.

During the time period spanning approximately the years 2000 to 2010, it was unclear whether

point clouds or polygonal meshes would become the dominant representation of 3D geometry in

video games and other entertainment applications. Triangle meshes eventually emerged as the

winner for a number of reasons, including the ability to compactly represent large surfaces with

small numbers of triangles, planarity of triangles, easy differentiation of front-facing and back-

facing surfaces, continuity and easy interpolation of vertex properties over a triangle. The most

significant factor was, of course, the very flexible programmable rendering pipeline for triangle

meshes incorporated into consumer graphics processing units (GPUs).

In recent years, point clouds are seeing a resurgence in interest in the fields of computer graphics

and computer vision due to the growing availability of 3D depth sensors on consumer hardware, as

well as the increasing usage of LiDAR sensors for autonomous driving. It is therefore worth revisiting

past work from the early 2000’s on point set surfaces to investigate whether new developments in

the field of computer science can be used to improve upon earlier work.

2.1.2 Deep learning for 3D geometry

Deep learning [13] is the most successful form of representation learning. Representation learning is

a field of machine learning in which machine learning models automatically learn representations of

8

low-level or raw input data which enable them to make inferences. This is as opposed to being given

high-level representations called features as input (not related to geometric features). Such high-level

features are typically designed by humans through feature engineering. Deep learning is characterized

by the hierarchical learning of progressively more abstract representations from low-level data such

as pixel intensity values or audio samples. The learnable functions which transform the low-level

data into these higher-level representations are typically implemented as layers of an artificial neural

network (referred to as a “deep” neural network when there are more than two hidden layers).

Artificial neural networks are differentiable universal function approximators which are themselves

composed of many simple functions. It has been proven [18] that when training deep neural networks,

the global optimum can be reached using stochastic gradient descent [19]. Consequently, the memory

cost of large training datasets can be controlled by sampling small batches called minibatches from

the training dataset at each optimization step. Training these neural network models is very efficient

nowadays thanks to numerous programming frameworks which parallelize the optimization process

on the graphical processing unit (GPU).

The popularity of deep learning is largely due to the success of convolutional neural networks

(CNNs) in the fields of image processing, computer vision, speech and medical imaging. CNNs learn

kernels for performing convolutions on Euclidean data, such as 1D audio, 2D images or 3D voxel

grids. Their success in 2D image applications is due in large part to “deep image prior” induced by

the structure of CNNs [20]. Over the past years, several best practices have emerged for training

CNNs, including Glorot weight initialization [21], batch normalization [22], as well as a variety of

activation functions [23]. Most CNNs are also structured to have translation invariance, using either

max pooling or strided convolutions [24]. In recent years, spatial transformer networks [15] and

harmonic networks [9] have been proposed to provide other kinds of affine invariance.

After CNNs, the next major innovation in the field of deep learning is the generative adversarial

network (GAN) [25]. A GAN consists of a pair of neural networks which are trained in an adversarial

manner in order to obtain a generative model which generates realistic data samples. While GANs

have seen many variants used for many different applications [26], they have been most extensively

used for image-to-image translation. Image-to-image translation using deep learning has gained a

lot of attention since Isola et al published their seminal work [17] on using conditional adversarial

networks for translating between image domains given a training set of paired examples. This quickly

led to more work on unpaired image translation [27], as well as image translation between more than

two domains [28]. There have also been attempts to bring GAN-based domain translation methods

9

to other domains such as natural language text [29], audio [30] and voxel-based 3D data [31].

Most of the attempts to apply deep learning to 3D data have either used 3D voxel grids [32, 33, 34]

or 2D views of a 3D shape [35, 33, 36]. Point clouds have also been converted into Euclidean

representations through either voxelization [37] or multi-view rendering [38, 39, 40].

Some attempts have been made to extend the concept of a convolutional neural network layer to

Riemannian manifolds [41, 42, 43, 44, 45]. While most of these methods are primarily intended for

triangle meshes, some of them have been applied to point clouds as well, by creating nearest-neighbor

graphs connecting the points [44, 45].

An interesting approach was proposed by Qi et al, called PointNet [1]. PointNet, along with its

variants [3, 2], takes a fixed number of raw coordinates as input, while using a max operation and

shared weights to obtain permutation invariance. Other works have used a PointNet-like architecture

as part of a larger deep learning architecture [39, 46]. Guerrero et al used a multiresolution PointNet-

based architecture called PCPNet [2] to estimate local geometric features in point clouds, such as

normals and curvature. Achlioptas et al were the first to build a GAN based on PointNet [47]. Some

recent work on point clouds such as FoldingNet [48] and AtlasNet [46] can also, in some sense, be

regarded as precursors to domain translation between point clouds and explicit surfaces.

We now describe PointNet, PCPNet and PointNet++ [3] in further detail. This is to provide

the necessary background for our experiments with sharpness field computation using PointNet and

PCPNet. PointNet++ is the basis for all the recent point cloud super-resolution methods described

in Section 2.2.4, which we later compare with our method in Chapter 6. It is therefore important

to review it here before describing those methods.

2.1.2.1 PointNet

PointNet allows feeding a fixed number of unordered 3D points to a neural network. There are

two 3D spatial transformer networks inside PointNet, which output affine transformations that

transform their inputs to a canonical orientation. The PointNet architecture is naturally invariant

to permutations of these points, since the weights of its convolutional layers are shared across all

input points. After several convolutional layers, the activations of the neural network are aggregated

in a permutation-invariant manner by taking the maximum activations across all input points.

This produces a permutation-invariant global encoding of the point cloud. This global encoding,

called a “feature vector”, can be passed to subsequent layers to perform global classification of the

10

Figure 1: PointNet neural network architectures for classification and segmentation (image by Qi et
al [1]).

point cloud. It can also be concatenated with the activations of layers preceding the permutation-

invariant aggregation, thus forming a feature vector that provides both local and global context.

This feature vector can then be passed on to subsequent convolutional layers that perform global

semantic segmentation of the point cloud. The complete network architecture for classification and

segmentation is shown in Figure 1.

Note that in the context of PointNet and various methods derived from it, “features” and “feature

vectors” refer to the results of intermediate computations in the neural network. A feature vector

associated with a point in a point cloud is often high-dimensional, and contains implicit geometric

information about the neighborhood of the point. This high-dimensional vector cannot be directly

interpreted, but it nevertheless contributes to the final result of the neural network.

11

Figure 2: PCPNet neural network architecture (image by Guerrero et al [2]).

2.1.2.2 PCPNet

A PointNet variant called PCPNet [2] proposes a procedure for training PointNet to estimate geo-

metric properties in point clouds, such as oriented normals or curvatures. Unlike PointNet, which

operates on the entire point cloud at once, PCPNet takes the neighborhood of a single point as input.

This neighborhood is represented as the normalized and centered 3D coordinates of a fixed number

of nearest neighbors of the input point. Their single-resolution network architecture is essentially

the same as the PointNet architecture used for global classification of point clouds. However, the

first spatial transformer outputs a quaternion instead of a 3 ˆ 3 matrix. When estimating normals,

the output of the network must be rotated using the inverse of the quaternion suggested by the first

spatial transformer. They have also presented a new multi-resolution architecture which operates

on multiple point neighborhood sizes simultaneously. The network architecture is shown in Figure

2.

2.1.2.3 PointNet++

We have previously described PointNet in Section 2.1.2.1. PointNet++ [3] attempts to improve on

the performance of PointNet for point cloud classification and segmentation by learning hierarchical

multi-scale deep features from point clouds. The full network architecture is shown in Figure 3. In

each layer of the hierarchy (called a “set abstraction layer”), a number of points are chosen as “patch

centers” using farthest-point sampling. K nearest neighbors are found around each patch center.

This results in a 3D tensor of fixed size which can then be reshaped as a 2D matrix and passed as

12

Figure 3: PointNet++ neural network architecture (image by Qi et al [3]).

input to a PointNet (having the architecture for point cloud segmentation) which outputs a matrix

containing feature vectors for all patch centers. The number of patch centers naturally decreases

over several set abstraction layers, after which we have a matrix containing a small fixed number of

patch center feature vectors.

If one wishes to perform global classification of the point cloud, these feature vectors can be passed

to a couple of fully connected neural network layers to predict the class of the point cloud. If the

intended application is point cloud segmentation, the procedure is more complicated, since the output

must have the same number of points as the original input point cloud. In this case, the output

of the set abstraction layers is passed to several “feature propagation layers” which progressively

restore the number of points to the original number (the number of feature propagation layers is

equal to the number of set abstraction layers). In each feature propagation layer, the features of the

input patch centers are interpolated based on Euclidean distance to the patch centers obtained from

an earlier set abstraction layer (this concatatenation with previous layers is referred to as a “skip

connection”). These points and their feature vectors are passed through multiple 1 ˆ 1 convolutions

to obtain a desired number of features. The final feature propagation layer has a skip connection

to the original input, therefore it outputs a feature vector containing segmentation information for

every input point.

13

2.2 Related Work

This section summarizes important work related to our methods for fine feature reconstruction in

point clouds.

We recap the most relevant point set surface reconstruction literature in Section 2.2.1. We then

focus exclusively on sharp features and how they are detected and reconstructed in Section 2.2.2.

Section 2.2.3 then gives a brief introduction to generative adversarial networks and their applications.

Section 2.2.4 finally summarizes the relevant work in point cloud super-resolution, which has recently

been done almost exclusively using deep learning.

2.2.1 Point set surfaces

A comprehensive survey of methods to reconstruct surfaces from point clouds has been compiled by

Berger et al [49]. In this thesis, we are mainly interested in reconstructing fine features, as opposed

to the coarse shape of the original scanned object. Therefore, we do not consider methods that

require generating coarse explicit surface representations, such as a triangular mesh [50]. Methods

that generate implicit representations of surfaces are more interesting to us, because these implicit

representations can potentially be enhanced to include fine features of the surface.

Implicit methods for surface reconstruction may either try to reconstruct the entire shape glob-

ally, or they may reconstruct the surface at the local level. One early global method for surface

reconstruction was the attempt by Carr et al [51] to obtain radial basis functions (RBFs) which

interpolate points in a point cloud. As an interpolating method, it is naturally sensitive to noise

in the point cloud. RBF-based methods have also generally fallen out of favor due to their high

computational cost. Kazhdan et al [52, 53] had more success when they showed that given oriented

points on a watertight surface, a global indicator function can be obtained by integrating a Poisson

equation. The surface is then reconstructed as an isosurface of the indicator function. It is worth

noting that surfaces reconstructed in this manner are generally smooth and lack sharp features [54].

We are ultimately more interested in local implicit methods for surface reconstruction, since

these methods scale better to large point sets, and have more scope for adding fine details because

of their local nature. The most popular family of local implicit methods is based on Moving Least-

Squares (MLS) surfaces, which were pioneered by Alexa et al [55]. They showed that it is possible to

reconstruct surfaces as the set of stationary points of an MLS projection operator. This projection

operator projects points onto a Moving Least-Squares approximation of the underlying surface. This

14

builds upon earlier work by Levin [56] showing that Moving Least-Squares can be used to locally

approximate functions given scattered point data. In the case of MLS surface reconstruction, the

domain of the function being approximated is a plane fitted to the local neighborhood of a point near

the point cloud. MLS surfaces are known for being very efficient to compute, while also smoothing

out noise because they are infinitely differentiable. Alexa and others followed up with additional work

on utilizing MLS surfaces as a general technique for rendering point clouds as surfaces [57], as well as

variations of the numerical methods used to compute MLS surfaces [58, 59]. Some of the theoretical

properties valued in MLS surfaces are not preserved by the numerical methods used to approximate

MLS surfaces. Kolluri [60] proposed a numerical method for MLS surface computation which does

not compromise on these theoretical properties of MLS surface. Cheng et al [61] published a survey

of MLS surface reconstruction methods as of 2008.

Various methods extend MLS surface reconstruction while better preserving high-frequency fea-

tures. One approach has been to vary the shape of the local domain used for function approximation.

While the original MLS method fits planes, Guennebaud and Gross [62] fit spherical surfaces. Lip-

man et al [63] went even further, by fitting polynomial spline surfaces to local neighborhoods.

Another approach has been to change the manner in which neighboring points are handled when

computing MLS projections.

Fleishman et al [64] use an anistropic Gaussian kernel in MLS projection, inspired by earlier

work [65] on mesh smoothing using anisotropic diffusion and robust statistics [66]. Fleishman et

al perform iterative refitting of smooth patches to the neighborhood of a point in a point cloud,

using Least-Median-of-Squares fitting, in order to classify neighboring points as inliers or outliers.

Outliers are discarded from MLS projection computations. This classification is often inconsistent

along an edge, which leads to jagged edges in the smoothed result. This method also attempts to

synthesize new points lying on sharp edges by finding the intersections of pairs of smooth patches

and synthesizing points along these intersections.

The robust statistics approach to extending MLS surfaces culminated with Robust Implicit Mov-

ing Least-Squares (RIMLS) by Öztireli et al [16]. This method frames MLS as a form of Local

Kernel Regression (LKR). This formulation is then used to define a new type of implicit surface

which extends Kolluri’s implicit MLS surface formulation [60], while naturally incorporating robust

statistics [66] into the weighting of point neighbors. The resulting surface is differentiable every-

where, and therefore cannot completely recover sharp edges. Nevertheless, the quality of the feature

preservation and computational efficiency have made RIMLS the state of the art in local implicit

15

methods for surface reconstruction. It has also been made widely available as part of the software

Meshlab [67].

Our feature-aware smoothing method (Section 3.3.2) also adopts the approach of discarding

points across edges, similar to Fleishman et al [64]. Adopting this approach allows us to completely

reconstruct sharp edges, unlike RIMLS. Rather than using robust statistics, we identify outliers using

an explicitly computed sharpness field. In our method, as long as the sharpness field is computed

accurately, the problem of jagged edges does not arise. We also place points on sharp edges, but

without the assumption that there are exactly two smooth patches intersecting. This is because we

push points near edges or corners towards the local maximum of the sharpness field. This allows us

to obtain points lying on not only edges, but also corners.

2.2.2 Sharp features in 3D meshes and point clouds

Most of the initial work on handling sharp features in 3D surface data involved adapting techniques

for feature-preserving noise removal in 2D images to the 3D domain. One of the early attempts

in this direction was made by Tasdizen et al [68], who adapted anisotropic diffusion [69] to 3D

surfaces represented as level sets. Fleishman et al [70] later presented a method for denoising 3D

surfaces represented as meshes, by adapting bilateral filtering [71], to operate on the tangent planes

of triangular meshes. Jones et al had a concurrent work [65], which also aimed to move away from

diffusion-based mesh smoothing by applying robust statistics to the tangent planes of meshes. Sun

et al [72] later refreshed the anisotropic diffusion approach to mesh smoothing by introducing a

simpler and more computationally efficient algorithm for filtering vertex normals.

More recently, Zheng et al [73] have presented a new adaptation of bilateral filtering which filters

vertex normals and has a carefully designed weighting scheme to preserve sharp features. In addition

to the traditional local iterative implementation of bilateral smoothing, their work includes a global

noniterative implementation which improves preservation of sharp features. Another recent global

method by He et al [74] adapts L0 minimization on 2D images [75] to 3D meshes, by replacing the

color gradient operator in 2D images with the discrete Laplacian operator [76].

While the methods mentioned thus far have focused largely on triangular meshes, there has also

been plenty of work involving point clouds. Gumhold et al [77] attempted to identify sharp features

in point clouds by classifying individual points as belonging to creases. This classification was done

based on hand-crafted rules which consider the shape of the correlation ellipsoid of the neighborhood

16

of each point in the point cloud (in other words, principal component analysis — PCA). Pauly et

al [78] later implemented a multi-scale extension of this approach, in which the classification of

each point considers neighborhoods of different sizes. This method requires a significant amount of

parameter tuning.

Weber et al [8] depart from the PCA-based approach to classifying points, and instead construct

a Gauss map for each point. Sharp feature points are then identified based on the number of clusters

found in the Gauss map. The presence of two clusters implies an edge, while the presence of three

or more clusters implies a corner. Naturally, this approach is highly dependent on the normal

estimation method used prior to the creation of the Gauss map. They also attempt to reduce the

number of user-specified parameters by locally adapting some of the parameters used for clustering.

Cao et al [79] observe that when smoothing a point cloud by weighted averaging, points lying

near sharp features tend to be displaced by a greater amount than other points. They therefore use

a threshold parameter for this displacement to classify points as belonging to a sharp edge. This

method tends to perform poorly in the presence of noise, although it is nevertheless an improvement

over PCA-based approaches. Tran et al [80] adopt a similar method, but they use Otsu’s Method [81]

to automatically select the displacement threshold. Nie [82] also uses a similar method to create a

“smooth shrink index”, which is used to identify and connect points belonging to sharp edges.

Bazazian et al [83] build upon the method of Weber et al [8], by replacing the Gauss map

clustering with PCA-based clustering of neighboring points. They report improved performance for

edges with small dihedral angles. Fu and Wu [84] recently demonstrated a method to classify points

as belonging to edges by first eliminating points which are unlikely to belong to edges, and then

thresholding the remaining points based on a “linear intercept ratio”.

It is worth noting that all of the above methods only perform binary classification of points in

the point cloud. Our sharpness field, by contrast, is defined over the entire underlying surface, and

does not require thresholding (see Section 3.1.1).

Lipman et al [63] were among the first to implement feature-aware smoothing for point clouds.

They first detect sharp edges in a neighborhood based on the theoretical error of MLS projection.

This is similar to many of the aforementioned sharp feature detection methods, which are based on

the displacement caused by smoothing. They then fit a polynomial spline to the neighborhood so

that its singularities are aligned with the sharp features. This spline then serves as the local domain

for function approximation in MLS computations.

Weber et al have a follow-up work [85] to their sharp feature detection method which modifies

17

MLS surface reconstruction using sharp feature points detected using their method [8]. This pre-

serves sharp features better in the reconstructed surface. They accomplish this by fitting a cubic

Bezier curve to the detected feature points in each local neighborhood. This curve is used to cluster

neighboring points. All neighbors belonging to clusters other than that of the central point are

removed for the purpose of MLS computations. We have taken a similar approach in some of our

methods for feature-aware smoothing using barrier planes (Section 3.3.1.1). However, our methods

allow us to handle a larger variety of edge configurations in local neighborhoods, since we represent

edges as multiple polylines instead of as a single parametric curve.

2.2.3 GANs and their applications

Generative adversarial networks (GANs) are a class of neural network generative models introduced

by Goodfellow et al in 2014 [25]. Previous neural generative models such as variational autoencoders

(VAEs) sought to minimize ℓ1 or ℓ2 loss when modeling the probability distribution of a set of data.

GANs, on the other hand, seek to minimize an adversarial loss, which represents how “realistic” a

generated sample appears.

GANs are composed of two sub-networks:

• a generator, Gpzq : Rm Ñ R
n, which attempts to generate realistic samples that appear to

be sampled from the distribution of the n-dimensional training data. Different samples are

generated for different noise vectors z P R
m. Typically, m ăă n.

• a discriminator, Dpyq : Rn Ñ r0, 1s, which attempts to classify data samples as real or fake.

Dpyq is the probability that y is genuinely sampled from the training dataset, and not artificially

generated by the generator.

The objective of the GAN training is given by the following adversarial loss function:

LGAN “ EyrlogDpyqs ` Ezrlogp1 ´ DpGpzqqs (1)

Minimizing this loss is equivalent to minimizing the Jensen-Shannon divergence between the prob-

ability distribution of the training data and the implied distribution of the generator [25].

The generator and discriminator effectively play a minimax game, which ideally converges to

a Nash equilibrium during training. At this point, the trained generator is able to generate data

samples which are sufficiently realistic to fool the trained discriminator. The trained generator is

18

given by:

G˚ “ arg min
G

max
D

LGAN pG,Dq (2)

The GAN formulation described above provides a generative model which generates data samples

which realistically appear to be sampled from a particular domain of data. This has been used, for

instance, to randomly generate realistic-looking photos of non-existent celebrities, after training on

a dataset of photos of celebrities. However, it does not provide any way to control the generated

data samples. This limits the utility of the basic GAN architecture.

GANs become truly useful when they are extended to include some form of supervision or control

over their learning process. The most popular GAN application is in domain translation, that is,

translating a data sample from one domain to another structurally similar domain. This began with

the seminal work Isola et al [17] on using conditional adversarial networks for translating between

image domains given a training set of paired examples. For example, their work is able to translate

images of street maps into plausible satellite images of the same terrain, as well as between sketches

of shoes and plausible photorealistic images of shoes corresponding to the sketches. This GAN

application with paired training examples is popularly known as pix2pix.

2.2.3.1 pix2pix

The basic idea behind paired image-to-image translation using GANs is to modify the generator and

discriminator to be conditioned on an input image, x. This leads to a modified GAN objective:

LGAN “ Ex,yrlogDpx, yqs ` Ex,zrlogp1 ´ DpGpx, zqqs (3)

In addition, it is typical to add a simple ℓ1 loss to the objective, in order to improve the quality

of the low-frequency information in the resulting image:

Lℓ1 “ Ex,y,z | y ´ Gpx, zq |1 (4)

The trained generator is given by:

G˚ “ arg min
G

max
D

LGAN pG,Dq ` λLℓ1pGq (5)

where λ is a weighting coefficient for the ℓ1 loss.

19

In practice, the noise vector z is introduced implicitly by random dropout of neurons with 50%

probability. Furthermore, the discriminator used for image-to-image translation does not attempt

to classify the entire input image as real or fake, but rather classifies individual patches (referred to

as a PatchGAN architecture [17]).

2.2.3.2 CycleGAN

In a follow-up work, Zhu et al [27] have presented a method for eliminating the requirement of paired

translation examples during training. They have accomplished this by simultaneously training two

generators (F and G) and two discriminators (DX and DY), which learn both a forward mapping

and a backward mapping between two image domains (X and Y). This architecture is named

CycleGAN.

The most distinctive feature of training CycleGAN is the cycle consistency loss (Lcyc), which

constrains both generators to produce mappings that are inverses of one another:

LcycpG,F q “ ExPX r|F pGpxqq ´ x|1s ` EyPY r|GpF pyqq ´ y|1s (6)

During training, x and y are randomly chosen from the training datasets. The loss function to

be minimized is the sum of the cycle consistency loss and the standard GAN losses for the two

generator-discriminator pairs.

2.2.3.3 Improving GAN training and image quality

Training GANs is notoriously unstable [86], particularly when attempting to generate high-resolution

images (128ˆ128 pixels or larger). The reason for this is that the probability distribution learned by

the generator is the union of disjoint low-dimensional manifolds [86] that do not necessarily overlap

with the underlying low-dimensional manifold of real-world data [87]. This makes it too easy for

the discriminator to learn to differentiate between the two distributions, upon which the generator

may be unable to learn anything further. The problem is particularly acute when generating high-

resolution images, because the higher resolution allows easier differentiation between generated and

training images [88, 89]. In addition, several approaches have been proposed to enable GANs to

generate high-resolution images.

Zhang et al have described a two-step approach to training a GAN to generate high-resolution

images from textual descriptions, which they call StackGAN [90]. In their method, they train

20

two conditional GANs, referred to as Stage-I GAN and Stage-II GAN. Stage-I GAN learns to

generate low-resolution images (64 ˆ 64 pixels), conditioned on the embedding vector of a piece of

text describing the image contents. This embedding vector is obtained by passing the description

text through a pre-trained encoder [91]. Stage-II GAN learns to generate high-resolution images

(256 ˆ 256 pixels), conditioned on both the input text as well as the low-resolution output of the

Stage-I GAN. The key insight of this method is that by conditioning the Stage-II GAN on a roughly

aligned low-resolution image, there is a greater chance of the support of the implied distribution of

the GAN intersecting with the support of the distribution of training images.

Karras et al were the first to generate detailed 1024 ˆ 1024 images, by using a unique approach

to training GANs. They train their GAN to generate progressively larger images, starting from size

4 ˆ 4 and doubling the size after each period of training. Convolutional layers are progressively

added to the end of the generator and the beginning of the discriminator each time the image size

is doubled. The weights of the previously added layers continue to be fine-tuned even after new

layers are added. In order to gradually introduce the new layers and avoid drastically changing the

old layers, the output of each new layer is linearly interpolated with the upsampled/downsampled

output of the most recently added old layer. The interpolation factor is gradually increased from

0 (only output of old layer) to 1 (only output of new layer) over the course of training for a given

image size.

Some works have also shown that changing the loss functions for training GANs has benefits

to training stability. Arjovsky et al showed that minimizing Wasserstein distance instead of the

Jensen-Shannon divergence improves the stability of GAN training [92]. Isola et al used an ℓ1

loss to capture low-frequency information in their image translation method. Zhang et al recently

presented a method [93] for removing rain from photographs using a conditional GAN, in which the

loss function includes a perceptual loss based on the feature loss at layer relu2_2 in a pretrained

VGG-16 model [94].

These methods give a broad background of GAN applications. Since we can easily compute paired

examples of local heightmaps for point clouds and triangular meshes, our domain translation method

for point cloud super-resolution is based on the paired image translation method of Isola et al [17].

All of our heightmaps have 64 ˆ 64 pixels, therefore it is unnecessary to apply the aforementioned

techniques for generating large images. As we shall see in Chapter 5, our heightmaps are already

sufficiently large to obtain 256x super-resolution of point clouds (as in the case of our superdense

mode).

21

2.2.4 Point cloud super-resolution

Point cloud super-resolution is fundamentally a different problem than depth image super-resolution [95,

96], which mainly deals with 2D grids instead of non-Euclidean data. Furthermore, depth images

are almost invariably accompanied by color or intensity images, which provide vital information that

is exploited in past work. Point cloud super-resolution is related to the older problem of point cloud

consolidation, where the goal is to obtain a point cloud representation from which an accurate 3D

mesh can be reconstructed [97]. A variety of procedural point cloud consolidation methods have

been proposed, including LOP [98], WLOP [97], EAR [99] and deep points consolidation [100]. All

of these methods involve fitting local geometry to point clouds, and WLOP and EAR have been

incorporated into popular geometry processing libraries.

Recent years have seen a wave of interest in applying deep learning to point clouds, sparked

by the success of PointNet [1] and its multi-scale variant, PointNet++ [3], in the field of point

cloud classification and semantic segmentation. This has led to point cloud consolidation [39] and

super-resolution [101] approaches based on PointNet, as well as a family of point cloud upsampling

techniques based on PointNet++ that includes PU-Net [4], EC-Net [5] and patch-based progressive

upsampling [6]. Our super-resolution method in Chapter 5 uses local heightmaps, much like Roveri

et al [39]. However, their work focuses on consolidation of noisy point clouds with 50 thousand

points, while we are mainly interested in super-resolution of much sparser point clouds (5000 points

or less). Moreover, they do not use domain translation as we do, since their ground truth data is

also obtained from point clouds.

In the remainder of this section, we summarize the state-of-the-art point cloud super-resolution

approaches, to provide context for the comparisons with our method in Chapter 6.

The current state-of-the-art methods for point cloud super-resolution and upsampling are all

deep learning approaches based on the PointNet [1] architecture. These include the work by Zhang

et al [101] on training a PointNet-based neural network to upsample an entire point cloud in a

single step. Our super-resolution approach is not really comparable to this method because we

upsample each local neighborhood independently. More relevant to our work is a family of recent

neural network architectures [4, 5, 6] which upsample local patches of points from point clouds.

These neural network architectures are all based on the multi-scale extension of PointNet, called

PointNet++ [3].

22

Figure 4: PU-Net neural network architecture (image by Yu et al [4]).

The comparisons of our super-resolution method in Chapter 6 mainly focus on the 3PU archi-

tecture proposed by Wang et al [6], since it is the most recent and best-performing state-of-the-art

point cloud super-resolution method. Some comparisons with EC-Net [5] are also provided, since it

is the most recent method before 3PU.

Since PointNet++ is integral to all 3 state-of-the-art point cloud super-resolution methods listed

in this section, it is worth reviewing its workings in Section 2.1.2.3 before proceeding. Also, note that

in the context of PointNet++-based methods, “features” and “feature vectors” refer to the results

of intermediate computations in the neural network. These terms have no relation to geometric

features such as edges or creases. A feature vector associated with a point in a point cloud is often

high-dimensional, and contains implicit geometric information about the neighborhood of the point.

This high-dimensional vector cannot be directly interpreted, but it nevertheless contributes to the

final result of the neural network.

2.2.4.1 PU-Net

PU-Net [4] is the first deep learning-based point cloud super-resolution method. The authors show

that the point cloud segmentation architectures for both PointNet and PointNet++ can be naïvely

adapted to point cloud super-resolution, by treating the coordinates of 4 new points for every original

point as segmentation classes predicted by the network. However, they greatly improve super-

resolution results by using the PU-Net architecture shown in Figure 4. PU-Net mainly involves

extending PointNet++ with additional properties that aid super-resolution. An input point cloud

is first divided into several patches which are processed separately. The set abstraction and feature

23

Figure 5: EC-Net neural network architecture (image by Yu et al [5]).

propagation layers from PointNet++ are used to compute a hierarchical set of feature vectors for

all points of the patch, which are then concatenated along with the point positions to form a single

matrix of feature vectors for the points. This matrix is duplicated into 4 copies which undergo

separate 1ˆ 1 convolutions to obtain a new matrix with a new set of feature vectors for 4 times the

original number of points. These feature vectors are then passed to additional 1 ˆ 1 convolutional

layers (erroneously referred to as “fully connected layers” in [4]), which convert the feature vectors

into point coordinates. This gives a new point cloud patch with 4 times the original number of

points.

There are two loss functions which are combined to form the optimization objective during

training. The first is the Earth Mover’s Distance [102], which is the sum of all distances between

corresponding points of two sets of points, for the bijective mapping that minimizes this sum (this

requires creating ground truth data with the same number of points, so that one can have a bijection).

The Earth Mover’s Distance is not differentiable, which is a requirement for a neural network loss

function. However, Fan et al [103] have provided code for a differentiable approximation of the

Earth Mover’s Distance along with the implementation of their method.

Besides the Earth Mover’s Distance, the neural network also needs to minimize a repulsion loss.

This acts as a regularizer to prevent newly generated points from clumping together and instead

encourage them to spread out evenly. For an output point and one of its nearest neighbors, the

repulision loss for the pair of points is ´re´r2{h2

, where r is the distance between the two points

and h “ 0.03 is a parameter for controling the decay of the repulsion with distance.

24

2.2.4.2 EC-Net

EC-Net [5] is a minor extension of PU-Net which attempts to improve point cloud upsampling near

sharp edges. The authors manually annotated sharp edges onto 3D meshes from the ShapeNet [104]

dataset, as well as other undisclosed sources. These edges are then used to train the network to

estimate the distance of generated points to sharp edges. An additional loss function is added to

encourage points near edges to lie closer to sharp edges, by minimizing their estimated distance to

edges. (In practice, we were not able to reproduce results with sharp edges such as those in the

paper, since the paper does not provide enough details on the steps to reproduce their result figures

from the output point clouds.) The complete network architecture is shown in Figure 5, with the

edge-related components being the main differences from PU-Net.

2.2.4.3 3PU

3PU [6] is the most recent state-of-the-art method for point cloud super-resolution. The authors

report performance superior to PU-Net, EC-Net and the older Edge-Aware Resampling (EAR) [99]

technqiue, which does not use machine learning. The idea behind 3PU is to progressively train a

neural network to upsample a point cloud up to 16 times the original resolution, with a neural network

containing 4 “upsampling units” that double the number of points. Each upsampling unit focuses

on upsampling one particular level of detail, i.e. either the input point cloud itself or the output

of one of the previous upsampling stages. The higher-resolution upsampling units are initially kept

frozen during training, and then progressively activated one by one. Figure 6 shows the structure

of one upsampling unit. It extracts a hierarchical set of features from an input point cloud patch

and duplicates them to perform super-resolution, much like PU-Net. However, the details of the

implementation are not identical to PU-Net and PointNet++.

Figure 6: Illustration of an upsampling network unit in 3PU (image by Wang et al [6]).

25

As we have seen in this chapter, machine learning has never been used for sharp feature detection

or recovery in 3D point clouds. Our methods presented in the following chapter (Chapter 3) are

therefore the first to attempt sharp feature detection using machine learning. The state-of-the-

art point cloud super-resolution techniques do use deep learning, but they share certain inherent

limitations (see Section 6.1.1). In Chapter 5, we propose a completely new method which is free of

these limitations, while also providing more accurate results and better computational efficiency.

26

Chapter 3

Methods for Sharp Edge

Reconstruction

This chapter describes the methods we have developed for sharp edge reconstruction in 3D point

clouds [7, 10]. Section 3.1 describes how machine learning can be used to compute a sharpness field

for a point set surface. Since we find that certain edges are not fully captured by this method,

we evaluate different neighborhood representations and neural network architectures to improve

sharpness field computation in Section 3.2. Finally, we describe feature-aware smoothing algorithms

and other applications of the sharpness field in Section 3.3.

3.1 Sharpness Field Computation

The reconstruction of sharp edges in scanned objects presents an inherent challenge. Sharp edges

are discontinuities in the normal field of the surface of an object. This means that electromagnetic

rays received from the scanned object are extremely unlikely to have reflected off a sharp edge.

Therefore, we can be certain that in a point cloud of a scanned 3D object, none of the points lies

exactly on a sharp edge. This means that edges of the object cannot be accurately reconstructed

by fitting lines or curves to edge points. Nevertheless, there have been previous attempts to detect

edge points by posing the problem as one of binary classification of points into points near edges

and points away from edges (see related work in Section 2.2.2). These have the obvious limitation

that they cannot localize sharp features that lie between sampled points in the point cloud.

27

We propose an alternative approach to detecting sharp edges in point clouds. Rather than

classifying individual points in the point cloud, we define a scalar field called the sharpness field

over the underlying surface defined by the point cloud. The goal of the sharpness field is to have

an explicit sharp feature representation which is defined over a continuous domain, allowing one to

localize sharp features at any point on the underlying surface of a point cloud. As we shall see in

Section 3.3, computing a sharpness field has a number of applications which stem from the ability

to find the locations of sharp edges accurately. Section 3.1.1 defines the sharpness field and provides

further details. In order to provide a continuous domain for the sharpness field, we typically use a

proxy surface, which is an MLS approximation of the underlying surface of the point cloud. Since

MLS projections can be accomplished by many methods, and they are heavily used in this chapter,

Section 3.1.2 explains the method we use for all MLS projections.

The sharpness field for a given point set can be computed by feeding local neighborhoods of the

point set to a machine learning model, which outputs scalar values of the sharpness field at the center

of each neighborhood. This amounts to an implicit representation of the sharpness field, i.e. the field

is represented by a combination of the point cloud and the trained machine learning model. Section

3.1.3 goes into further detail on how to frame sharpness field computation as a machine learning

problem. Section 3.1.4 describes a method for passing point cloud neighborhood information to a

machine learning model, which we found to work best with convolutional neural networks (CNNs).

The results and evaluation of other machine learning models are given in Section 4.1.

3.1.1 Definition of the sharpness field

In order to define the sharpness field, we must first clarify the scope of the “sharp edges" considered

in our work. We consider the sharp edges of a 3D shape to be discontinuities in the normal field of

a surface. These discontinuities form a graph whose edges are smooth curves joining corners of the

shape. The sharpness field is a scalar field defined over the surface of the shape. It takes the value

1 at edge points or corners, and quickly tapers linearly to 0 at a certain scale-dependent distance

from the the nearest point with value 1. Edge and corner points are thus local maxima and ridges

of the sharpness field.

Since we are dealing with point clouds, we do not have an explicit representation of the shape,

but instead a set of points sampled by a scanning device. This scanning device may have introduced

some noise into the measurements. If the sampling of the points is roughly uniform, we can use

28

the sampled points to obtain a smooth Moving Least-Squares (MLS) surface approximation of the

underlying surface, which we call the proxy surface of the point cloud. The proxy surface serves

as an approximate continuous domain for the sharpness field in the absence of the ground truth

continuous surface.

The proxy surface is smooth, unlike the original surface, which has sharp edges. However, we

shall see that its role as the domain of the sharpness field still enables the localization of sharp

features. This is because every point on the proxy surface can be regarded as the MLS projection of

a point on the original noiseless shape. We can therefore identify the locations of the original edges

by locating points that project to local maxima or ridges of the sharpness field computed on the

proxy surface of an input point cloud.

In our experiments, we choose to have the sharpness field taper to 0 at a distance of 4δ from the

nearest local maximum, where δ is the median distance between a point and its nearest neighbor in

the point cloud. δ gives us an approximate measure of the sampling density of the point cloud.

3.1.2 Moving Least-Squares projection

Algorithm 1 Algorithm for Moving Least-Squares Projection

procedure ĎMr(p̃, rN, P̃) Ź Input: center point, normal, point cloud with normals
sp Ð p̃ Ź Projected point position
sN Ð Ñ Ź Projected point normal
for i Ð 1 to 5 do Ź Optimization iterations

xavg Ð 0 Ź Weighted average of neighbors of sp
Navg Ð 0 Ź Weighted average of normals of neighbors of sp
wsum Ð 0 Ź Sum of weights of neighboring points
for x,N in P̃ where x P Bpsp, rq do Ź Loop over neighbors of sp

w Ð exp

´
´ }x´sp}2

2pr{3q2

¯

wsum Ð wsum ` w

xavg Ð xavg ` wx

Navg Ð Navg ` wN

end for

xavg Ð
xavg

wsum

Navg Ð
Navg

}Navg}

sp Ð sp ` rpxavg ´ spq ¨ NavgsNavg
sN Ð Navg

end for

return sp, sN
end procedure

We compute the projection of a point onto the proxy surface using Algorithm 1, which is adapted

from Section 4.2 of the list of methods for computing MLS projections compiled by Alexa et al [58].

29

This algorithm requires an approximate oriented normal to be known at every point of the input

point cloud. This is not a major constraint, since unoriented normals can easily be estimated using

principal components analysis or deep learning approaches [105, 2], after which they can be oriented

using the well-established method proposed by Hoppe et al [106].

The parameter r is variously called the smoothing radius, kernel radius or search radius. The

standard deviation of the Gaussian function used to weight neighboring points is given by r{3. Since

the Gaussian function is already negligibly small at three standard deviations from the mean, we

do not consider neighboring points outside this radius when computing weighted averages. A large

smoothing radius implies a large standard deviation for the Gaussian function, which will lead to a

very coarse and smooth approximation of the underlying surface.

We use a small kernel radius r “ 3δ for MLS projections onto the proxy surface. The purpose

of using MLS for the proxy surface is merely to provide a continuous domain, so we keep the kernel

radius as small as possible to avoid losing important features due to smoothing. At the same time,

the radius should be large enough that it includes at least one neighboring point for all points in

the point cloud.

3.1.3 Machine learning approach to sharpness computation

Machine learning approaches to computing a sharpness field for a point cloud require the following

components:

1. A dataset of shapes with ground truth sharpness fields, used for training a machine learning

model.

2. An appropriate machine learning model which can learn from the available training data and

generalize to previously unseen data.

3. A method of representing the local neighborhood of a point in a point cloud, which can be fed

as input to the machine learning model.

We experimented with several different machine learning models for computing the sharpness

field, including both “deep” models such as neural networks, as well as “shallow” models such as

gradient boosting machines and random forests. Qualitative and quantitative comparisons for the

different machine learning models are given in Section 4.1.2.

30

These shapes are represented as meshes instead of point clouds, since this makes it easy to

compute ground truth sharpness fields using dihedral angles. Every mesh is remeshed to have a large

number of vertices, so that the set of vertices may be treated as a dense point cloud representation

of the shape. Each mesh contains around 3,000 to 12,000 points, yielding a total of around 40,000

points. Note that the mesh connectivity does not play any role when computing the sharpness field

at testing time. It is only used for generating training and validation data, and for rendering results.

Each of the five models has its coordinates normalized to the range r´1, 1s. They are also remeshed

to make all edge lengths approximately 0.04, while preserving sharp edges, using the remeshing

algorithm of Surazhsky et al [107], as implemented in the software Graphite 2. This is how we

ensure that our training data is a densely and uniformly sampled set of points.

To generate the ground truth sharpness field, we search for every edge in each mesh whose

adjacent faces make an angle greater than 30 degrees, and mark the vertices of the edge with

sharpness value 1. For the cone and the icosahedron, it is necessary to manually connect a few

gaps in the sharpness field after the automated marking. We then extend the sharpness field to

neighboring vertices while tapering the sharpness value based on the approximate geodesic distance,

as mentioned in Section 3.1.1. The remaining vertices are assigned a sharpness value 0.

With the five aforementioned ground truth training models, we generate two additional sets of

five models with two different levels of noise (random perturbation along the normal direction by

1.5δ or 3δ). This gives us a training set with a total of around 120,000 training examples, each

containing a single point neighborhood and a single sharpness value.

As we shall see in later sections, the aforementioned set of training data is sufficient to train

machine learning models for sharpness field computation for our normal angles neighborhood rep-

resentations (Section 3.1.4).

3.1.4 Sharpness field computation using normals sampled on a radial grid

Although our input is a point cloud, the original 3D shape from which the points were sampled

is assumed to be a closed 2D surface. Therefore it makes sense to define a local neighborhood

representation which captures the local curvature of the neighborhood. A radial grid centered at

the center of a given neighborhood would make for a useful neighborhood representation, especially

since a grid-like structure effectively parametrizes the local neighborhood so that it can be treated as

Euclidean data. Masci et al have used a similar radial grid in their proposed extension of convolution

32

Figure 8: Example of points sampled in a 30 ˆ 30 radial grid on a proxy MLS surface.

to manifolds [41]. However, the method they use for unfolding the grid is only applicable to meshes.

We therefore define a novel unfolding algorithm which unfolds a radial grid consisting of 30 ˆ 30

uniformly spaced points over an MLS surface. We can see an example of this radial grid in Figure

8. Since the points are sampled from an MLS surface, we can easily obtain the normal at each point

as well. The details of this unfolding procedure are given in Section 3.1.4.1.

This radial grid allows us to define a neighborhood representation as follows: we compute the

unsigned angle between each sampled normal and the normal at the center of the radial grid. This

gives us an input representation consisting of 900 angles, which is invariant to global translation

and global scaling of the point cloud, but not to global rotation. One approach to making the

representation rotation-invariant is to sort the angles in each ring (row) of the radial grid in ascending

order. This is the approach we used in [7]. Figure 9 shows a visualization of this representation

for different kinds of neighborhoods. Another approach to rotation invariance is to shift the burden

of rotation invariance onto the neural network by randomly performing cyclic permutations of the

spokes (columns) of the radial grid during training. This effectively augments the training data.

We feed this collection of 900 angles to the convolutional neural network shown in Figure 10.

This type of neural network architecture is often seen in 2D image processing. We are able to use

it for our non-Euclidean local neighborhoods thanks to the parametrization provided by the radial

33

Figure 9: Local neighborhood representation of 30 ˆ 30 sorted angles for three points selected from
the fandisk point cloud: (L to R) a point on a corner, a point on a sharp edge and a point on a
smooth patch. The top row of each image is the innermost ring of the radial grid. Each row is sorted
in ascending order. For clearer visualization, we colorize the values with blue being the minimum,
red being the maximum and white being halfway in between.

Figure 10: CNN architecture used in Section 3.1.4

34

grid. Although it seems reasonable to constrain the output of the network to the range r0, 1s, which

is the range of values taken by the sharpness field, we found in practice that we obtained smoother

sharpness fields by not applying a sigmoid activation function at the end to explicitly constrain the

output to this range. We use the mean squared error between the predicted and target sharpness

values as the loss function for training.

3.1.4.1 Radial grid unfolding algorithm

Algorithm 2 Radial grid unfolding algorithm

procedure Unfold(p̃, rN,R, ni, nj) Ź Input: center point, normal, radius of grid, number of
radial divisions, number of angular divisions

sp, sN Ð ĎMrpp̃q

t1, t2 Ð arbitrary tangent and bitangent for normal rN
for j Ð 1 to nj do

θ Ð 2π
nj

pj ´ 0.5q

T0 Ð I

T1 Ð I
sG0j , sN0j Ð sp, sN
for i Ð 1 to ni do

x Ð R
ni

pi ´ 0.5q

rGij Ð p̃ ` x ¨ pcos θ ¨ t1 ` sin θ ¨ t2q
sGij , sNij Ð ĎMrpTi´1 ¨ rGijq
if i ą 1 then

Ti Ð Ti´1 ¨ protation by the angle between sNi´2,j and sNi´1,j , about the axis defined
by the point sGi´2,j and the vector sNi´2,j ˆ sNi´1,jq

end if

end for

end for

return all sGij and sNij Ź Output: grid points sGij and their normals sNij on sSr

end procedure

The algorithm shown above takes a point p̃ from the input point cloud and yields a set of ni ˆnj

points on a radial grid of geodesic radius R, sampled on the proxy surface sSr. The proxy surface

is an implicit MLS surface, computed with a smoothing kernel of radius r. The proxy surface is

defined by the projection operator ĎMrpx̃q, which takes a point x̃ near the proxy surface and maps

it to a point and its corresponding normal on the proxy surface.

The basic idea behind the algorithm is to first generate radial grid points rGij in the tangent

plane of the center point p̃, and then move outward along each spoke j, deforming the spoke so

that it lies on the proxy surface. This cannot be done simply by projecting each rGij using ĎMr, as

the Euclidean distances between the points rGij would not be preserved as geodesic distances after

projection. Instead, at each spoke point i we compute a cumulative rigid transformation Ti, which

35

moves the following spoke point close to its desired location on sSr before applying ĎMr to make it

snap to the proxy surface. This is done by approximating the deformation of the previous points on

the spoke as a sequence of rotations centered on previous points (see Algorithm 2 for details).

In practice, we set r “ 3δ and R “ 8δ. As mentioned in Section 3.1.1, δ is our measure of

the scale of a point cloud, and is defined as the median distance between a point and its nearest

neighbor. The smoothing radius r is meant to be small, so as to avoid smoothing important features.

Its only purpose is to facilitate the resampling of the proxy surface performed in Algorithm 2. As

shown in Figure 11, the algorithm is reliable for moderate levels of noise, where the proxy surface

does not have too much high-frequency noise.

The resulting sharpness fields can be found in Section 4.1.1 (page 66).

36

3.2 Representations and Models for Sharpness Field Compu-

tation

Using the methods described in the previous section, we have obtained the results given in Section

4.1 (page 65). These results validate that our normal angles neighborhood representation, along

with CNNs, can be used for sharpness field computation. However, this formulation is insufficient

to compute the sharpness field in some cases, such as certain types of curved edges. This can be

seen clearly for the blade model, as shown in Figure 32 (page 72). We believe that this is because

important geometric information is lost over the course of the steps involved in computing the normal

angles neighborhood representation. We can plainly see that there are several steps involved where

geometric information can be lost:

1. Using neighboring points to compute projections onto an implicit Moving Least-Squares surface

(the proxy surface).

2. Resampling the proxy surface to create a radial grid.

3. Discarding the positions of radial grid points in favor of the normals at these points.

4. Computing unsigned angle differences between these normals and the normal at the center of

the radial grid.

In this section, we investigate other neighborhood representations that can be used for sharpness

field computation. These neighborhood representations are devised by progressively rolling back the

aforementioned steps, so as to preserve more geometric information:

1. In Section 3.2.1, we generate a heightmap from the radial grid instead of using the normals at

grid points. We feed these heightmaps to a standard CNN. Since we are still using the radial

grid, rotation invariance can be achieved in the same manner as for the unsorted normal angles

mentioned in Section 3.1.4.

2. In Section 3.2.2, we leave aside the radial grid entirely, and instead generate a Cartesian

heightmap from the neighboring points. This requires applying newer convolutional neural

network architectures to achieve rotation invariance, including harmonic networks [9] and

spatial transformer networks [15].

38

Figure 12: Wedge models with different sharp feature profiles for additional training examples,
inspired by Figure 7 in [8].

3. In Section 3.2.3, we experiment with passing the raw coordinates of neighboring points to a

neural network. Since this neighborhood representation is completely lacking in structure, it is

incompatible with convolutional neural networks. Therefore we must use the new PointNet [1]

architecture and its multi-scale variant, PCPNet [2]. Note that both of these architectures

internally contain 3D spatial transformer networks in order to achieve invariance to affine

transformations.

Having more geometric information in the local neighborhood representation necessitates a

greater variety of training data. We therefore added the wedge shapes shown in Figure 12 to the

training dataset. These shapes contain new types of edges at the junctions of concave and convex

curved sheets, which do not exist in the original training dataset. It is worth noting that simply

adding these shapes to the training data did not show any improvement in performance using the

method described in Section 3.1.

3.2.1 Radial grid heightmaps

The radial grid described in Section 3.1.4 can be easily used to generate a heightmap by calculating

the signed distance of each of the 900 points on the grid to the local tangent plane of the point at the

center of the grid. Some examples of this type of heightmap are visualized in Figure 13. Unlike in a

Cartesian heightmap, the radial axis represents geodesic distance and not Euclidean distance. This

type of heightmap restores some of the information lost by using only the angles between normals,

but it cannot distinguish between a smooth S-shaped curve and a sharp U-shaped bend.

For this type of neighborhood representation, we can use the same CNN architecture described in

39

Figure 13: Visualization of radial heightmaps (with a blue-white-red color map). (L to R) A point
on a corner, a point on a sharp edge and a point on a smooth patch.

Section 3.1.4. One difference is that each convolutional layer is followed by batch normalization. The

main change required in training is to randomly perform cyclic permutations of the spokes of the grid

during training in order to enable the network to learn rotation invariance. We also experimented

with enforcing permutation invariance using average pooling, similar to how PointNet [1] achieves

permutation invariance using max pooling. The resulting sharpness field showed zigzag patterns

around edges, without the desired smoothness that we expect of the sharpness field.

3.2.2 Cartesian heightmaps

The high computational cost of performing 900 MLS projections per input point necessitates a

batched GPU implementation of the radial grid computation. This reduces the flexibility of the

training process and makes it harder to perform data augmentation. With these limitations in mind,

Figure 14: Visualization of the Cartesian heightmaps described in Section 3.2.2 (with a blue-white-
red color map). (L to R) A point on a corner, a point on a sharp edge and a point on a smooth
patch.

40

we adapted the heightmap generation algorithm from Roveri et al [39]. Compared to the radial grid,

these heightmaps are more conventional because they use a Cartesian coordinate frame, and do not

follow the curvature of the surface. Instead, all neighboring points in a spherical neighborhood of a

point in the point cloud are projected onto the local tangent plane, and their signed distances are

interpolated with a Gaussian kernel when discretizing the heightmap image. Unlike Roveri et al, we

uniformly scale the spherical neighborhood by the reciprocal of the search radius. This affects the

height values by reducing dependence on the size of the search radius. We also make use of the fact

that we have oriented normals available at each input point, by culling back-facing neighbor points

so that they do not contribute to the heightmap.

We now describe the heightmap generation method in detail. The heightmap is assigned a size

of k ˆ k pixels, where we select k “ 64. The side of the heightmap corresponds to a length of 2r

in the space of the input shape, where r is the search radius used to collect nearest neighbors from

the point cloud. The local coordinate frame of the neighborhood is centered on a particular point

p of the point cloud, which has a corresponding oriented normal n. The horizontal and vertical

directions of the local frame are given by an arbitrary tangent t and its corresponding bitangent

b “ n ˆ t.

A random set of neighboring points (limited to 1024) is chosen from within the search radius r.

Neighbors with back-facing normals are omitted. After centering the neighbors by subtracting p, the

neighborhood is then scaled by a factor of 1{r. These points are then projected orthogonally onto

the plane containing the point p with normal n, which is also the plane of the heightmap image. For

each pixel in the heightmap image, we compute the corresponding pixel center in the local coordinate

frame of the neighborhood. We then compute the intensity of each pixel as the weighted average of

the signed distances of nearby projected points from their original positions. When computing this

weighted average, the unnormalized weights have a Gaussian falloff wi “ expp´
d2

i

2σ2 q, where di are

the distances of the projected points from the pixel center in the image plane (we set σ “ 5r{k).

The weights are normalized by dividing them by
ř

wi. A constant value 1 is added to all projection

distances, so that the value 0 is reserved for unoccupied pixels.

Deep learning frameworks typically rely on building directed acyclic graphs of computations that

operate on tensors with compatible dimensions. Resorting to conventional programming techniques

such as loops when defining neural network architectures often results in significantly downgraded

performance, when compared to using tensor operations. These tensor operations are highly op-

timized to exploit parallel computing (e.g. SIMD instructions, multiple CPU cores and GPUs).

41

Therefore, in order to be able to compute neighborhood representations online during neural net-

work training, it is important to have an algorithm which can be easily implemented using the tensor

operations provided by deep learning frameworks. Unlike the radial grids described in previous sec-

tions, the Cartesian heightmaps that we use here satisfy this requirement. One caveat is that there

must be a limit on the number of neighboring points passed to the heightmap generation algorithm

(which is why we set a limit of 1024 neighbors). Otherwise, collections of neighboring points from

multiple neighborhoods cannot be combined into a single tensor for parallel computation. Following

Roveri et al, we make a random choice of the neighbors when the number of neighbors exceeds this

limit. Figure 14 shows examples of these heightmaps.

Since these heightmaps use Cartesian coordinates instead of polar coordinates, a wider variety

of deep learning techniques from the field of 2D image processing can be applied. We found that

these heightmaps did not give better results when used with a conventional CNN. This could be due

to the fact that, with Cartesian coordinates, rotation of the heightmap no longer corresponds to a

simple cyclic permutation of the columns of the heightmap. We therefore experimented with two

newer neural network architectures which are more suited to address the rotation issue: harmonic

networks [9] and 2D spatial transformer networks [15].

3.2.2.1 Using harmonic networks

The first of these architectures is the harmonic network proposed by Worrall et al [9]. Harmonic

networks are an analog of convolutional neural networks which constrain kernels to belong to a

family of circular harmonic functions Rprqeipmφ`βq, where r and φ are the spatial polar coordinates

of feature maps, m P Z is a user-specified parameter called the rotation order of the kernel, and

Rprq and β are learned parameters. When the input 2D image is rotated by an angle θ about its

center, the convolution of the input with such a kernel maintains the same magnitude, while being

rotated in the complex plane by mθ. The m values of harmonic convolution layers are therefore

chosen so that there is no net rotation of the input at the final harmonic convolution layer. This

gives a rotation-equivariant convolutional neural network. Worrall et al also proposed equivalents

for pooling, batch normalization and ReLU activation. We use the network architecture shown in

Figure 15, which was used in [9] for classifying rotated MNIST handwritten digits. The differences

in our case are (1) the network has a single output, and (2) it is trained with mean squared error

loss.

42

Figure 15: Harmonic network architecture used in Section 3.2.2 (reproduced from [9]). Red boxes
are harmonic convolutions and blue boxes are average pooling. The two rotation order “streams"
are combined by summing.

43

3.2.2.2 Using spatial transformer networks

The second architecture we experimented with is the addition of a spatial transformer network

(STN) [15] to a regular CNN architecture. During training, the STN learns to transform the input

so as to allow the subsequent layers to pay attention to the most important portion of the input.

The STN contains a localization network which generates a set of 6 parameters defining a 2D affine

transformation. This affine transformation is used to transform a sampling grid, which resamples

the input image. The complete network architecture is shown in Figure 16. In Figure 17, we show

examples of heightmaps before and after transformation by our trained STN. Note that, as in Section

3.2.1, every convolution layer is followed by batch normalization. We used strided convolutions

instead of max pooling layers to improve performance, as recommended by Springenberg et al [24].

We also use the swish activation function [23] instead of ReLU. The structure of the localization

network in the STN is the same as that of the outer network, but with 8 kernels per convolutional

layer and 6 final outputs.

Figure 16: Network architecture with the STN, used in Section 3.2.2. The localization network has
the same structure as the outer network.

44

Figure 17: Visualization of Cartesian heightmaps before and after transformation by the spatial
transformer network in Figure 16. The localization network learns to transform the input image to
allow the subsequent layers to focus on the most salient features.

45

3.2.3 PointNet-based approaches

Rather than using heightmaps, we can feed machine learning models an even more basic form of a

point cloud neighborhood — the raw 3D coordinates of the points in the neighborhood. This is an

important alternative to devising Euclidean representations of 3D point clouds for usage with neural

networks, which was shown to be feasible using the recently published PointNet [1] neural network

architecture. An explanation of PointNet is given in Section 2.1.2.1 (page 10).

Since PointNet is meant to operate globally on point clouds with a fixed number of points,

some additional work is necessary to adapt it to operate on local point cloud neighborhoods. This

motivated the developement of PCPNet by Guerrero et al [2] (explained in Section 2.1.2.2 on page

12). We adapt the basic training procedure of Guerrero et al to use PointNet for sharpness field

computation, while also adding a significant amount of data augmentation.

In our training procedure, we use the PointNet architecture for global classification, with one

output scalar. Although this architecture was originally meant for binary classification, it can serve

just as well for estimating a real-valued quantity if we train it to minimize mean-squared error instead

of binary cross-entropy loss. The input we give the network is not the entire point cloud, but simply

128 neighboring points within a certain radius of a single input point. This allows us to compute

the sharpness field at the local level, one input point at a time. The neighborhood presented to

the network is first translated and scaled so that the original input point is at the origin, and the

neighborhood radius is 1. If there are fewer than 128 points within the neighborhood radius, the

remaining slots are filled with zeroes, while if there more than 128 then a random subset is chosen.

The training data for the PointNet and PCPNet experiments were the 8 shapes in Figure 7 (page

31) and Figure 12 (page 39). We also used the following data augmentation steps during training:

• The neighborhood radius is randomly chosen between 2δ and 9δ.

• The points are randomly perturbed by values in the range r´0.3δ, 0.3δs along their respective

normals.

• The points are randomly rotated about the center of the neighborhood.

• The neighborhood is uniformly scaled again by s “ 2γ , where γ is a random number in r´1, 1s.

• The entire neighborhood is subject to a single random translation sampled from the cube

r´0.1sδ, 0.1sδs3.

46

We also attempted to use the multi-resolution PCPNet for sharpness field computation. As input,

it takes multiple sets of nearest neighbors, chosen from different neighborhood sizes. We did not

use the single-resolution PCPNet because its sole innovation over PointNet, the quaternion spatial

transformer network, is not relevant to directionless quantities such as the sharpness field. Note that

it is not advisable to use the accompanying code of Guerrero et al [2] as-is, because the neighborhood

radii are expressed as fractions of the diagonal of the axis-aligned bounding box. This leads to poor

results for point clouds with bounding box shapes not seen during training. We therefore modified

the code to use radii in terms of our δ value defined in Section 3.1.1. In our experiments, we used a

multiresolution PCPNet with three patch radii, where the smallest and largest radii correspond to

the smoothing kernel radii we typically use for computing the proxy surface and the feature-aware

smoothing method respectively: 3δ, 5δ and 8δ.

The corresponding results and discussion can be found in Section 4.2.3 (page 78).

47

3.3 Applying the Sharpness Field

In this section, we describe how the sharpness field can be applied to feature-aware smoothing of noisy

point clouds. This allows one to have a complete procedure for removing noise from point clouds, as

shown in Figure 18. Feature-aware smoothing refers to noise removal that uses explicit knowledge of

sharp feature locations to avoid losing these sharp features during the noise removal process. This

is in contrast to implicit feature-preserving noise removal algorithms such as RIMLS [16]. Such

methods seek to preserve sharp features with no explicit knowledge of these sharp features.

Sections 3.3.1 and 3.3.2 describe several methods that we have devised for feature-aware smooth-

ing using a computed sharpness field. The most attention is given to the method presented in Section

3.3.2, where we propose a smoothing method that uses an anisotropic Gaussian kernel to preserve

sharp edges. This is our most successful smoothing algorithm. It allows removing large amounts of

noise with a large smoothing radius parameter, while still preserving sharp edges. It also produces

points lying on sharp edges more accurately than implicit smoothing methods.

Some of the smoothing methods given in Section 3.3.1 rely on first obtaining explicit discrete

representations of the shape using the sharpness field. Although these were not incorporated into

our most successful smoothing algorithm, we have described them here because they are still of

interest. Potential future applications include segmentation of surfaces in computer vision, or reverse-

engineering of CAD models from point clouds of scanned objects. Section 3.3.3 describes an approach

to segmenting the point cloud into smooth surface patches using the sharpness field. Section 3.3.4

describes methods that use the sharpness field to generate an explicit graphical representation of

the sharp edges of a shape.

Most of our methods presented here have been published [7, 10].

Figure 18: Procedure for noise removal from a point cloud using a sharpness field.

48

3.3.1 Feature-aware smoothing using barriers and patches

The methods described in Sections 3.1 and 3.2 give us a sharpness field defined over the proxy

surface of an input point cloud. We describe here a method to accomplish feature-aware smoothing

of the point cloud using the computed sharpness field, in order to remove noise while preserving

sharp edges.

The loss of sharp features in regular MLS smoothing is due to performing weighted averages of all

neighboring points and their normals within a certain search radius. This average includes neighbors

which should not contribute to the average. For example, points near a sharp edge contribute to

the weighted averages computed on both sides of the edge, which causes these points to be drawn

inwards, roughly towards the centroid of the neighborhood. This leads to a smooth, curved edge

and a slight reduction in the volume of the shape. Therefore, in order to maintain the sharpness of

the edge, we should exclude neighbors that lie on the opposite sides of a sharp edge when computing

these weighted averages.

Excluding neighbors which are on the opposite side of nearby sharp features will inevitably

result in the projected point moving away from the sharp feature, which means that no points

will be projected onto a sharp edge or crease. This is natural, since the underlying surface is

not differentiable on its sharp edges and creases. Thus a polynomial approximation such as MLS

will never capture these points where the surface is not differentiable. Instead, we must develop a

post-processing method which will either add these points or move nearby points onto the edges.

We describe here several approaches to excluding unwanted neighboring points from the weighted

averages, by making use of an already computed sharpness field.

3.3.1.1 Smoothing using local barrier planes

In this method, when projecting a point to the smoothed surface, we make a list of all of its edge

neighbors, which are the neighbors whose sharpness field value is above a certain threshold. If a

nearby edge exists within the smoothing radius, we then try to find a plane such that one of its

half-spaces contains the neighbors which we wish to include in the weighted average. One possible

approach to this is to take the plane which is parallel to both the average normal of the edge neighbors

and the line which best fits the edge neighbors, and which contains the centroid of the edge neighbors.

The best-fitting line for the edge neighbors can be found by computing the covariance matrix of the

positions of the edge neighbors, centered at their centroid. The best-fitting line is then the line

49

Figure 19: Smoothing result using local barrier planes (Section 3.3.1.1). Smoothing is performed
with a smoothing radius of 8δ on the fandisk model with 3δ normal noise added. Note the artifacts
in areas where there is more than one edge in the smoothing radius.

passing through the centroid and parallel to the eigenvector of the covariance matrix corresponding

to the largest eigenvalue. As can be seen from Figure 19 (page 50), this method works quite well

to smooth the surface around sharp edges. However, the presence of more than one sharp edge in

the same neighborhood still presents some difficulties. This occurs near corners, as well as between

parallel sharp edges which are close together. In such cases, one cannot fit just one line to the edge

neighbors.

3.3.1.2 Smoothing using an edge graph with barrier planes

As mentioned earlier, even if neighboring points which are across an edge from the point to be

projected are properly excluded from the weighted average, this will not help us to have points

which actually lie on the edges. Instead of relying entirely on post-processing to solve this problem,

we could simply tackle it directly by generating an explicit graphical representation of the sharp

features from the sharpness field. The procedure for generating this edge graph is described in

Section 3.3.4. The points on the edges of the edge graph should also possess normals. After applying

50

feature-aware smoothing, points near edges could simply be moved to the nearest edge of the edge

graph. Alternatively, new points can be directly synthesized on edges of the edge graph.

The edge graph can be used to perform smoothing in a similar manner to the local barrier planes

mentioned in Section 3.3.1.1. In that method, we have one barrier plane per input point for excluding

unwanted neighbors from the weighted average. This has some limitations such as not being able

to handle regions with multiple edges or corners. Having an edge graph provides us an easy way to

overcome these limitations. The edge graph can have barrier planes associated with each vertex, or

with each edge (we investigated both approaches). When projecting a given point to the smoothed

surface, one can find the barrier planes of neighboring vertices or segments of the edge graph, and

use these to check if neighboring points should be included in the weighted average.

Since we can have multiple segments of the edge graph inside the neighborhood of the input point,

there can be multiple barrier planes available for each point to be projected. Therefore we have to

choose how to handle weighted averages when there are multiple barrier planes in the neighborhood.

A simple approach is to treat all barrier planes equally. We can either include a point if it is on the

same side as the current point for all nearby barrier planes (similar to logical AND), or for at least

one of them (similar to logical OR). Either option will result in some points being wrongly excluded

or included if the current point is near a zigzagging portion of the edge graph, but we found in

practice that the logical AND gave better results. At this point, the results are already better than

those for the previous local barrier plane method in Section 3.3.1.1. However, there is still scope for

improvement near corners.

The method described above performs satisfactorily in areas where the smoothing radius contains

segments of two different edges of the edge graph, or in areas where the current point is surrounded

on multiple sides by segments belonging to the same graph edge. However, at corners in the surface

there are usually 3 edges of the edge graph which converge at one point. The edge at the far side of

the corner will contain barrier planes that should not be considered, as they could cause legitimate

neighbor points to be excluded. Therefore we need a way to distinguish between barrier planes

belonging to different edges. This can be done by numbering each edge using a simple algorithm

that traverses each segment of the graph between graph vertices. Now, when looking for the nearby

points on the edge graph, we can choose to include only barrier planes belonging to the 2 nearest

graph edges. This method improves results, but still has trouble excluding irrelevant edges when

more than 3 edges are in the smoothing radius.

If the normals of the barrier planes are consistently oriented along each graph edge, one can also

51

Figure 20: Example of a barrier mesh.

improve the classification of neighbor points for a given edge by changing the criterion for inclusion

of a neighboring point to the following: for each nearby graph edge, the signed distance from the

current point to the barrier plane of the nearest point on the edge should have the same sign as the

signed distance of the neighboring point to the barrier plane of the nearest point to the neighbor

point on the edge graph.

We can also generate a triangular mesh called the barrier mesh by extruding each segment of

the edge graph in the direction of the normal and in the opposite direction of the normal. The

projection operator will then find all triangles of the barrier mesh within the smoothing radius and

only include neighbors which are on the same side of every neighboring triangle as the point being

smoothed. This approach has the advantage of giving us more flexibility to prevent barrier planes

from exerting an influence too far from the edge graph. Figure 20 shows an example of a barrier

mesh.

Figure 21 (page 53) shows the result obtained using barrier planes obtained from an edge graph.

It is a clear improvement over the results obtained in Section 3.3.1.1, especially between parallel

sharp edges and convex corners. However, there are still some artifacts near concave corners.

52

Figure 21: Smoothing result using barrier planes obtained from an edge graph (Section 3.3.1.2).

3.3.1.3 Smoothing using segmented patches

Segmenting the point cloud into patches, as described in Section 3.3.3, provides an easy method

to exclude unwanted neighbors from our weighted average. In most cases, we can simply exclude

neighbor points which do not belong to the same patch as the current point. This means that we

usually no longer need an explicit representation of edges when trying to classify a neighbor point

after patch segmentation. However, it is possible to have edges which are partially inside a patch,

but do not divide it into two separate patches. The points on either side of such edges will belong

to the same patch. These correspond to edges of the edge graph which do not belong to any loop

of the graph. Neighbor points which are on the opposite side of such graph edges must therefore be

excluded from the weighted average.

Figure 22, shows the smoothing result obtained on the blade model using the segmentation and

edge graph shown in Figure 54 (page 95). The result is an improvement over the results of Section

3.3.1.2, because it does not show significant artifacts near concave corners (as seen in Figure 21 on

page 53).

53

Figure 22: Smoothing result using patches obtained by flood-fill segmentation (Section 3.3.1.3).

3.3.2 Feature-aware smoothing using an anisotropic Gaussian kernel

This section describes an approach to feature-aware smoothing which is different from all the methods

described in Section 3.3.1 because it eliminates the need to construct discrete representations of

sharp edges such edge graphs or barrier planes. Instead, it makes better use of the smoothness of

the sharpness field by constructing anisotropic Gaussian kernels that are shaped by the sharpness

field. We also describe an application uniquely made possible by the sharpness field: a method to

place points accurately on sharp edges after smoothing. The methods in this section have been

published [7, 10].

3.3.2.1 Method overview

For the weighted average, instead of the usual isotropic 3D Gaussian kernel based on Euclidean dis-

tance, we define an anisotropic 2D smoothing kernel whose cross-sections are 1D Gaussian functions

of the geodesic distance. The standard deviation of each of these 1D Gaussians is constrained so

that the kernel reduces to a negligible value at a neighboring sharp edge, if any. In practice, we dis-

cretize the kernel by constructing the same radial grid described in Section 3.1.4. The algorithm for

constructing the grid is identical to that described in 3.1.4.1, except that the previously computed

sharpness values are also interpolated for each point on the grid.

Figure 23 shows an example of such a radial grid for the neighborhood of a point on the fandisk

model. We will use this neighborhood to explain the creation of the anisotropic Gaussian kernel.

54

Figure 23: Example of a radial grid near multiple sharp edges on the fandisk model. The cyan-
colored points are local minima of the sharpness field along each spoke of the grid, i.e. barrier
points.

Note that the point shown in this example is near multiple sharp edges.

Each spoke of the grid corresponds to a 1D Gaussian kernel. By traveling outward along each

spoke, we can determine where it crosses a local maximum of the sharpness field, if any. Figure 24

shows graphs of the sharpness field values along each spoke of the radial grid. The point before the

maximum (or the last point, if there is no edge on the spoke) becomes the barrier point of the spoke.

We can see the barrier points of each spoke in Figure 23.

The standard deviation of the Gaussian kernel of each spoke is adjusted to be one-third of the

geodesic distance to its barrier point. At this point, we have effectively determined the shape of the

anisotropic smoothing kernel, subject to errors due to discretization. Figure 25 shows an example

of the shape of the anisotropic Gaussian for the same neighborhood used in Figure 23.

For our smoothing computation, we need to use the anisotropic kernel to compute a weight for

each neighboring point in the original point cloud, based on its geodesic distance to the current input

point. To make computation more efficient, we first compute weights for each point on the radial

grid, since we already know both their geodesic distances as well as the shape of the anisotropic

kernel along each spoke (shown in the left half of Figure 25). Weights of points beyond the barriers

are set to 0. We then triangulate the radial grid and project each neighbor point to the nearest

triangle of the radial grid. Barycentric interpolation can then be used to interpolate the weight of

55

each neighbor point. Figures 26 (b) and (c) show the neighbor weights of a given input point, with

and without the radial grid superimposed (this is the same neighborhood shown in Figure 23, but

the sharpness field is not shown to improve visibility).

The weights now obtained can be used to perform a weighted average of neighboring points and

normals, which yields an accurate normal for points near edges. However, it does not automatically

yield points which lie on the edges. To accomplish this, we can make use of the fact that the accurate

normals give us the correct local tangent plane of points near edges. We clone points near edges,

and iteratively move the clones in their local tangent planes by small steps, ascending the gradient

of the sharpness field. Note that the sharpness field is defined on the proxy surface, and therefore

at each step, every candidate destination point is projected onto the proxy surface to determine its

sharpness value. We stop moving each point in the tangent plane when its projection on the proxy

surface has reached a local maximum of the sharpness field.

The following section gives further details on the weight computation portion of the smoothing

algorithm.

3.3.2.2 Smoothing weight computation algorithm

Our feature-aware smoothing algorithm performs a weighted average of the neighbors of a given

point in the input point cloud, to obtain its new position and normal. This requires computing

weights for all neighboring points within a specified radius R. In order to avoid the difficulty of

tracing geodesic lines along the proxy surface sSr from the input point to every neighboring point,

we reuse the radial grid computation algorithm described in Section 3.1.4.1. The only difference is

that in this version, the MLS projection operator ĎMr also provides an interpolated sharpness value

in addition to the point and normal on the proxy surface. This gives us a grid of ni ˆ nj points

sGij and sharpness values ssij sampled on the proxy surface. The radial grid structure means we can

easily compute the approximate geodesic distance from the center to each grid point. This allows us

to easily compute weights for every grid point, as shown in Algorithm 3. We typically set smin “ 0.6.

Once we have the weights wij for the grid points, we then triangulate the grid. For example,

sp, sG11 and sG12 form one triangle, while sG11, sG21 and sG22 form another. This gives us a set

of njr2pni ´ 1q ` 1s triangles. For each neighbor point, we compute the barycentric coordinates

pλa, λb, λcq of its projection onto the plane of each triangle, along with the perpendicular distance.

We then find the closest triangle, formed by sGaiaj
, sGbibj and sGcicj , which contains the projection

and is no further than 2δ from the neighbor point. This allows us to interpolate the weight of the

58

Algorithm 3 Weight computation on the radial grid

procedure ComputeWeights(sGij , ssij , p̃, ni, nj , smin) Ź Input: grid points, sharpness values of
grid points, center point, number of radial divisions, number of angular divisions, min sharpness
value for local maximum

sp, s0 Ð ĎMrpp̃q
for j Ð 1 to nj do

ssmax Ð ss0 Ź sharpness value at barrier
imax Ð 0 Ź index of barrier point
for i Ð 1 to ni do Ź first pass, to find the local maximum

if ssij ą maxpsmin, ssmaxq then

ssmax Ð ssij
imax Ð i

end if

end for

δ Ð 1

3
dimax

d0 Ð 0
sG0j Ð sp
for i Ð 1 to ni do Ź second pass, to compute the weights

di Ð di´1 `
›› sGij ´ sGi´1,j

›› Ź approximate geodesic distance from center
if 1 ď imax ď i then

wij Ð 0 Ź at or beyond the barrier point
else

wij Ð expp´
d2

i

2δ2
q

end if

end for

end for

w00 Ð 1

return all wij Ź smoothing weights for grid points
end procedure

59

neighbor point as λawaiaj
` λbwbibj ` λcwcicj . However, if any of the three weights is 0, we set the

weight of the neighbor to be 0 as well, since it is beyond the barrier.

Once the weights of each neighbor have been computed, they are normalized and used to perform

weighted averages of the neighbor points and their normals. The input point is finally displaced by

the projection of the average point onto the average normal.

3.3.3 Segmentation into patches

We can use the sharpness field to segment the surface into patches using a variant of the well-known

flood-fill algorithm [108]. A kd-tree is constructed from the point cloud, to allow efficient nearest

neighbor queries. We pick a random seed point and add its unvisited nearest neighbors within a

certain radius to a queue. These points will all be assigned the same patch ID. Points in the queue

are processed one at a time in the same manner, which effectively performs a breadth-first search

that expands radially. However, the neighbors are not added to the queue if the sharpness field takes

a value above a certain threshold at some of the neighbors. These points will have to be handled

later. When the queue is empty, a new patch ID and a new seed point are chosen. This procedure

is repeated until all points have either been assigned a patch, or they are too close to edges to be

handled immediately. The complete algorithm is shown in Algorithm 4. Note that the point cloud

P is treated as a set of pairs ppi, siq of point positions and their computed sharpness values.

There can be several methods to assign patch IDs to points near edges. The simplest method is

to perform nearest-neighbor interpolation of the patch IDs. Figure 53 on page 95 shows an example

of this technique applied to the fandisk model. An alternative approach is to use the edge graph

described in Section 3.3.4 to create a barrier mesh, which gives a precise boundary between patches.

Rays can then be cast from each edge point to its nearest neighbors; the patch ID of the neighbor

will only be copied if the ray does not intersect the barrier mesh. Figure 54 on page 95 shows an

example of this technique applied to the blade model, along with the corresponding barrier mesh.

In practice, the method we found to work best was to reuse the neighbor weights calculated in

Section 3.3.1 for feature-aware smoothing. A weight of zero for a neighbor point implies that it does

not belong to the same side of all nearby edges. Therefore, a point and one of its neighbors can be

reliably determined to belong to the same patch if their weights with respect to each other are both

non-zero.

60

Algorithm 4 Algorithm for flood-filling a patch number

procedure floodfill(i, k, r, t, P) Ź Input: index of seed point, patch number, search radius,
threshold, point cloud with sharpness values

Q Ð tiu Ź Queue of points to visit
Mark i as visited
while Q is not empty do

a Ð dequeue Q1 from Q Ź Set current point index
set patch of a to k

N “ tppj , sjq in P where pj P Bppa, rqu Ź Neighbors of pa

for ppj , sjq in N do Ź First pass, to make sure there are no points near edges
if sj ą t then

continue the while loop
end if

end for

for ppj , sjq in N do Ź Second pass, to add unvisited neighbors to the queue
if j is not visited then

Mark j as visited
Enqueue j in Q

end if

end for

end while

end procedure

3.3.4 Edge graph extraction

In Section 3.1.1, we mentioned that we are interested in shapes whose sharp edges form a network

of curves which intersect at corners. We have developed an algorithm for generating an explicit

graphical representation of this curve network, which we call the edge graph. We can use a computed

sharpness field to generate an edge graph by connecting the locations of ridges of the sharpness field.

Figure 55 on page 96 shows an example of an edge graph generated from the sharpness field computed

for the fandisk model (shown in Figure 27 on page 67).

The algorithm traverses the sharpness field in a manner similar to a depth-first search. The

basic idea is to select a starting point and move to an unvisited neighboring point which is selected

according to some heuristics. The newly selected point is connected to the previously selected point

in the graph. This process is repeated again at the newly selected point until the selected point has

no suitable unvisited neighbors. Then a new starting point is selected according to certain criteria,

and the traversal resumes. The algorithm terminates when no suitable starting point can be found

after reaching a dead end. Algorithm 5 shows the basic structure of the algorithm. We elaborate

further on some parts of the algorithm below.

61

Algorithm 5 Algorithm for generating an edge graph

1: procedure traverse(P , rn, rv) Ź Input: point cloud, neighborhood radius, radius for marking
visited points

2: G Ð tu Ź Edge graph
3: while true do Ź loops as long as suitable starting points exist for growing graph edges
4: p Ð starting point chosen from P Ź (see Sec. 3.3.4.1)
5: if no suitable starting point then

6: break

7: end if

8: p0 Ð p Ź Save the starting point for later
9: while true do Ź loops as long as the current graph edge can be extended

10: N Ð set of unvisited points sampled around p within radius rn Ź (see Sec. 3.3.4.2)
11: if |N | “ 0 then

12: break

13: end if

14: n Ð most suitable neighbor in N Ź (see Section 3.3.4.3)
15: Add line segment l connecting pp, nq to the edge graph
16: Mark points in P within radius rv of line segment l as visited
17: if n “ p0 or n is a corner point then

18: break

19: end if

20: end while

21: end while

22: return the edge graph G

23: end procedure

3.3.4.1 Choice of starting point

Before beginning traversal of the sharpness field, we first find all corner points of the shape in the

point cloud. To do this, we first identify all points in the point cloud which are near corners. This

can be done by building a 3 ˆ 3 covariance matrix for every point in the point cloud, using all

neighboring points having a sharpness value above a threshold. Points near corners can then be

identified as points for which the two largest eigenvalues of the covariance matrix are close in value

(indicating that it is not easy to fit a line to neighboring points near edges). Points near corners are

then clustered based on their positions, based on a specified maximum cluster radius. The centroid

of each cluster is then taken to be the position of a corner.

When we need to choose a starting point for traversing edges, we choose a corner point with

unvisited neighboring points whose sharpness value is above a threshold. Knowing the corner points

in advance also has another advantange: we can stop extending the current edge when we encounter

a corner, by extending the edge to connect to the corner point (line 17 of Algorithm 5). Of course,

not all shapes with sharp edges have corners (e.g. cylinders). If no corners remain, we choose the

unvisited point with the highest sharpness field value as the starting point.

62

3.3.4.2 Sampling candidate points for extending a graph edge

When sampling the neighborhood of the current graph point to obtain candidates for extending

the graph edge, it would be easy to simply take unvisited points from the input point cloud within

a certain radius. However, this causes the graph edge to zigzag if the point cloud is not sampled

sufficiently densely. Ideally, we would like the edges of the graph to exactly follow the ridges of the

sharpness field, without being restricted to points in the point cloud. This can be accomplished by

sampling candidate edge points on the proxy surface. We do this by sampling points on a radial grid

of geodesic radius rn around the current edge point, using the same algorithm described in Section

3.1.4 on page 35.

We also interpolate the sharpness value and the visited state at each of the sampled points. Since

the points we are sampling are not from the point cloud, it is harder to mark portions of the surface

as visited. We get around this hurdle by treating the visited state as a number in r0, 1s instead of a

binary value. When marking regions as visited, we assign a visited value of 1.0 to points in the point

cloud within a certain radius rv of the path traveled between the current point and the previous

point on the current graph edge (this is a capsule-shaped region). If the radius rv is too large, parts

of the sharpness field will never be visited, and if it is too small, the algorithm might retrace edges

which it has previously covered. After interpolating the visited state for a point on the radial grid,

we threshold it to return to a binary value.

3.3.4.3 Choosing the next point to add to the current edge

The next point to visit is chosen from among the unvisited points on the radial grid. The new point

on the edge graph is also assigned the same normal as the chosen radial grid point. We typically

choose the candidate point with the highest sharpness field value as the next point to add to the

current graph edge. However, if one of the candidate points is a corner point or the starting point

of the graph edge, this candidate takes priority, because it allows completion of the edge.

3.3.4.4 Post-processing the edge graph

Once the edge graph has been generated, some post-processing operations are needed to ensure that

it can be used with the smoothing described in Section 3.3.1.2. Since most of the edge graph lies on

the proxy surface, the edge graph points must first be backprojected so that they lie closer to the

target surface. To do this, we find the offset of every point in the point cloud from its projection

63

on the proxy surface. We then interpolate these offsets for points of the edge graph, using Gaussian

interpolation based on Euclidean distance. These offsets are then used to translate each edge point

along their normals (the normals were obtained in Section 3.3.4.3). This brings the edge graph close

to the target surface.

The edge graph also needs to be smoothed, since a smooth edge graph greatly improves the

performance of barrier plane-based methods in Section 3.3.1.2. This is done using a smoothing

algorithm similar to Algorithm 1 (page 29). The main difference is that on each iteration, we move

the point in the average tangent plane instead of along the average normal. This effectively removes

zigzag patterns from the edge graph, while minimizing shrinking.

In this chapter, we have seen a number of methods for computing the sharpness field for a given

point cloud. We have also described applications of the sharpness field to feature-aware smoothing,

edge graph generation and smooth patch segmentation. The following chapter presents the results

we obtained using the methods described in this chapter, for both sharpness field computation as

well as the applications of the sharpness field.

64

Chapter 4

Results and Discussion: Sharp Edge

Reconstruction

This chapter details the results we obtained for sharpness field computation and sharpness field

applications using the various methods described in Chapter 3. Section 4.1 discusses the results

obtained using the sharpness field computation method described in Section 3.1. We also evaluate

the performance of different machine learning models for sharpness field computation using the

same input representation in Section 4.1.2. Section 4.2 describes the results obtained using the local

neighborhood representations and neural network architectures described in Section 3.2, which were

implemented for the purpose of improving upon the results in Section 4.1. Section 4.2.4 also includes

a quantitative comparison of all methods for sharpness field computation described in Chapter 3.

Section 4.3 describes the results obtained for the different sharpness field applications from Section

3.3, including feature-aware smoothing, smooth patch segmentation and edge graph extraction. The

results shown here have been published [7, 10].

4.1 Sharpness Field Computation Using Normal Angles

Section 4.1.1 summarizes the results we obtained using the sharpness field computation method

described in Section 3.1. We have also experimented with using the same normal angles local neigh-

borhood representation with other machine learning models besides CNNs. Section 4.1.2 compares

the performance of different machine learning models for sharpness field computation.

65

4.1.1 Sharpness field results

We have tested our trained neural networks on four shapes:

1. The well-known fandisk model, appropriately resampled. It is a synthetic CAD model of

a mechanical part, which means that we can compute a ground truth sharpness field for

evaluation purposes.

2. The blade model, which is a 3D scan of a mechanical part containing measurement noise.

3. Our 3D scan of a landline phone keypad, made using a high-resolution laser 3D scanner.

4. Our 3D scan of the facade of a wooden house model, also captured using the laser scanner.

With the basic CNN architecture from Figure 10 (page 34) and the normal angles neighborhood

representation from Section 3.1.4, we are already able to obtain a usable sharpness field. In Figure

27, we can see the sharpness fields computed after adding different levels of synthetic noise in

the normal direction to the fandisk model. Naturally, some subtle creases cannot be completely

identified, depending on the level of noise. Figure 28 shows the computed sharpness fields for the

two 3D scans — the blade model and our scanned phone keypad. We can see that most of the sharp

edges are fully captured.

We have also experimented with avoiding the sorting step when generating the 900 angles, by

shifting the burden of rotation invariance onto the neural network, as mentioned earlier. As can be

seen from Figures 30 and 31, this produces results similar to Figures 27 and 29, although the results

vary a bit between training runs.

We can see from Figure 32 that the curved edges in the middle of the blade model are not

captured at all. This cannot be explained by noise in the point cloud, and points to a shortcoming

of either the neighborhood representation or the neural network model. We shall see in Section 4.2

that other representations can enable us to capture these edges as well. Quantitative evaluation for

sharpness field computation on curved edges is given in Section 4.2.4.

66

Figure 29: Sharpness field results obtained using 30 ˆ 30 sorted normal angles for the house model.

69

Figure 31: Sharpness field results obtained using 30 ˆ 30 normal angles, without sorting, for the
house model.

71

4.1.2 Comparison of machine learning models

We have performed a quantitative evaluation of our sharpness field computation method for different

machine learning models. We use the sorted 900 angles neighborhood representation described in

Section 3.1.4, since this representation is compatible with all the machine learning models. To

create ground truth data for evaluation, we designed an ideal sharpness field for the fandisk model

(Figure 33). This model has points clearly located on sharp edges, as well as a variety of different

types of sharp features. The validation set also includes the 3 wedge shapes shown in Figure 12

(page 39). The wedge shapes were not part of the training set in our evaluation. We automatically

marked edges with sharpness value 1 based on the angle between their adjacent faces, and then

diffuse the sharpness value to nearby points, with the sharpness value diminishing linearly to 0 with

distance. The quality metric we use for evaluating the sharpness field is the mean square error of

the sharpness value at each point. Mean square error is a standard metric for real-valued quantities

such as sharpness field values.

We see from Table 1 that convolutional neural networks (CNNs) have a slight advantage over

other machine learning models in the quantitative comparison. We can also see from the results

obtained on the blade model (Figure 34) that qualitatively, the CNN does a better job of capturing

creases.

Model Fandisk Wedges
Linear Regression 0.015019 0.044839
Linear SVM 0.009747 0.017954
Random Forest 0.006219 0.005651
Gradient Boosting 0.010869 0.008251
CNN 0.005976 0.005275

Table 1: Comparison of error in the sharpness field for different machine learning models

73

Figure 33: Ground truth sharpness field of the fandisk model.

Figure 34: Comparison of gradient boosting, random forests and convolutional neural networks
(CNNs). a,d) Gradient boosting results. b,e) Random forest results. c,f) CNN results.

74

4.2 Representations and Models for Sharpness Field Compu-

tation

Section 4.2.1 presents the sharpness field computation results using radial grid heightmaps and

CNNs, as described in Section 3.2.1. Section 4.2.2 shows how we obtain improved results over those

in Section 4.1 by using Cartesian heightmaps in combination with harmonic networks and spatial

transformer networks, as described in Section 3.2.2. Section 4.2.3 contains the sharpness field results

obtained using PointNet and PCPNet, as described in Section 3.2.3.

Section 4.2.4 presents a quantitative evaluation of all evaluated neighborhood representations

and neural network models for the case of curved edges. This includes analysis of how the scale of

the neighborhood affects the accuracy of the computed sharpness field. The results in this section

have been published in [10].

4.2.1 Radial grid heightmaps

The training process initially showed instability from one epoch to the next, resulting in an output

value range much larger than r0, 1s, which kept expanding over the course of training. We improved

the stability of the training by adding a sigmoid activation layer at the end of the network, which

essentially constrains the output range to r0, 1s. The results obtained were still not satisfactory

because we did not obtain a smooth field (Figure 35). However, the network did seem to be gen-

eralizing to the curved creases of the blade model, which was an encouraging sign for the overall

approach of using heightmaps.

75

Figure 35: Sharpness fields obtained using a CNN trained on radial grid heightmaps, as described
in Section 3.2.1.

4.2.2 Cartesian heightmaps

The two network architectures that used Cartesian heightmaps — the harmonic network and the

CNN with a spatial transformer network — gave similar results to the CNN with the normal angles

as input (Section 3.1.4) in most respects, except that they were also able to capture the curved edges

in the blade model, as shown in Figure 36. These results were obtained with a neighborhood radius

of 3δ. An additional result for the wooden house facade is shown in Figure 37.

Figure 36: Sharpness fields computed for the blade model using Cartesian heightmaps. (L to R)
Using an ordinary CNN, using a harmonic network, and using a CNN with a spatial transformer
network.

76

Figure 38: Sharpness field results obtained at concave corners, using a CNN with a spatial trans-
former network. L: after 12 epochs. R: after 2,000 epochs.

Figure 36 also illustrates that the curved edges of the blade model are not detected by an ordinary

CNN, and that we need either harmonic convolutions or the STN to obtain an improvement over

the normal angles representation.

For the fandisk model, we observed a gap in the sharpness field on concave edges leading towards

corners (Figure 38). After over 2,000 epochs of training, the STN+CNN network eventually learned

to fill this gap, albeit in a manner which does not maintain the continuity of the field. The Cartesian

heightmap representation therefore appears to have disconnected subsets near concave corners.

4.2.3 PointNet-based approaches

Examples of sharpness fields obtained using PointNet are shown in Figure 39. We can see that in

the case of PointNet, the computed sharpness field is comparable to the results we obtained with

the normal angles (Figures 27 and 28 on page 67). The curved edges of the blade model are not

distinctly captured, although the computed sharpness field value is around 0.5 along these edges.

The results we obtained using the multi-resolution PCPNet are shown in Figure 40. Surprisingly,

the computed sharpness field is noisy around sharp edges, and visibly lacks the local monotonicity

property that we seek. The curved edges of the blade model are also not captured. This is likely

because the multi-resolution neighborhood representation requires a greater variety of training data,

in which the data is diverse at multiple neighborhood scales. The lack of such variety in our training

data causes PCPNet to overfit the training set.

78

4.2.4 The effect of scale on sharpness computation

In Chapter 3, we have listed a total of 7 approaches to computing the sharpness field of a point

cloud. Our motivation for experimenting with different neighborhood representations and models

in Section 3.2 was to improve computation of the sharpness field on the curved edges of the blade

model. Therefore we have performed a numerical evaluation of all 7 approaches for computing the

sharpness field on these curved edges. We also analyze how the scale of the neighborhood affects

the performance of each method.

4.2.4.1 Half-pipe model

The blade model is a 3D scan of a real-world object, which naturally lacks points lying on sharp

edges. Therefore, one cannot compute a ground-truth sharpness field for the blade model, even by

using the mesh connectivity. In order to perform a fair comparison of the various methods on such

a shape, we have designed the half-pipe model shown in Figure 41. The shape was constructed by

extruding a circular arc along a larger circular arc. This model is meant to resemble the curved

depression in the blade model, with the key difference being that it has points which lie on sharp

edges. This allows us to compute a ground-truth sharpness field using dihedral angles, just as we

did for the training data. We chose the name because of its resemblance to half-pipes in children’s

playgrounds.

4.2.4.2 Comparative evaluation on the half-pipe model

For each technique, we have computed the sharpness field on the half-pipe model using 16 neigh-

borhood sizes in the range 2δ to 17δ. This enables us to assess the performance of the models

at different scales. The error metric at each scale is the squared difference between the computed

sharpness field and the ground truth sharpness field.

Model Min Mean Std. Dev.
CNN, sorted angles 293.3 354.7 36.8
CNN, unsorted angles 111.0 270.3 122.7
CNN, heightmap 386.1 416.1 14.4
Harmonic Net, heightmap 189.0 296.4 66.1
CNN + STN, heightmap 151.3 215.4 42.9
PointNet (single-res) 321.8 390.3 53.2
PCPNet, multi-res 395.5 418.9 18.2

Table 2: Comparison of total squared error in the sharpness field for the half-pipe model, using
different methods presented in this Sections 3.1 and 3.2.

81

Model/Scale (times δ) 2 3 4 5 6 7 8 9
CNN, sorted angles 418 418 401 336 308 293 302 328
CNN, unsorted angles 418 418 415 413 405 379 328 265
CNN, heightmap 392 399 414 408 386 413 413 417
H-Net, heightmap 426 324 234 192 189 212 250 279
CNN+STN, heightmap 263 151 206 337 273 213 210 204
PointNet (single-res) 375 336 322 325 334 339 353 369
PCPNet, multi-res — — 423 406 397 395 400 406

Table 3: Comparison of total squared error in the sharpness field for the half-pipe model, using
different methods presented in Chapter 3. Scales 2δ to 9δ.

Model/Scale (times δ) 10 11 12 13 14 15 16 17
CNN, sorted angles 351 357 355 365 369 356 360 359
CNN, unsorted angles 219 203 183 149 121 111 131 168
CNN, heightmap 417 423 425 429 437 429 433 422
H-Net, heightmap 294 308 319 328 336 342 350 357
CNN+STN, heightmap 199 188 190 193 195 197 211 216
PointNet (single-res) 386 405 426 441 455 459 462 458
PCPNet, multi-res 415 425 433 440 443 443 — —

Table 4: Comparison of total squared error in the sharpness field for the half-pipe model, using
different methods presented in Chapter 3. Scales 10δ to 17δ.

83

4.3.2 Quantitative evaluation of feature-aware smoothing

We have quantitatively evaluated our feature-aware smoothing method by comparing the smoothed

fandisk point clouds to the ground truth fandisk mesh. The sharpness fields used for computing

these results are the same as those given in Section 4.1. Table 5 shows the results obtained for three

levels of noise: 1.5δ, 3δ and 4.5δ. We evaluate the smoothing results based on three metrics:

1. Distance of each point in the smoothed point cloud to the ground truth mesh (D2M).

2. Hausdorff distance (HD): the maximum distance between a point on the ground truth mesh

and its nearest neighbor in the smoothed point cloud.

3. Chamfer distance (CD) [103]: the mean distance between a point on the ground truth mesh

and its nearest neighbor in the smoothed point cloud.

The results obtained using our method are clearly superior to those obtained using the state-of-

the-art RIMLS method, with the sole exception of the maximum distance to the ground truth mesh

for large amounts of noise. We found this discrepancy to come from a small number of points with

false positive sharp edges, due to the neural network model being thrown off by high noise levels

in regions of large curvature. One notable point about our results is that the mean distance to the

ground truth mesh and the Chamfer distance are superior to those of RIMLS. This suggests that in

addition to preserving sharp edges, there is less change in the volume of the shape when using our

method. This is in contrast to many traditional smoothing methods that shrink the shape, as well

as RIMLS, which expands the shape in order to compensate for shrinkage.

The distance to the ground truth mesh is visualized in Figures 51 and 52. We can see from the

heatmaps that the errors of our method are concentrated along sharp edges which were obscured by

noise. On the other hand, the larger errors of RIMLS are found around all concave corners, some

edges and even in some smooth regions between sharp edges.

Model
D2M

HD CD
Min Max Mean Std. Dev

1.5δ noise, Ours 0 3.86E-03 2.23E-04 2.82E-04 3.86E-03 2.30E-04

1.5δ noise, RIMLS 0 7.91E-03 6.39E-04 6.33E-04 7.91E-03 6.24E-04
3δ noise, Ours 0 11.06E-03 3.17E-04 3.46E-04 5.37E-03 3.28E-04

3δ noise, RIMLS 0 7.09E-03 6.50E-04 5.96E-04 5.78E-03 4.59E-04
4.5δ noise, Ours 0 12.98E-03 4.37E-04 4.92E-04 8.80E-03 4.45E-04

4.5δ noise, RIMLS 0 7.42E-03 7.20E-04 6.45E-04 9.99E-03 7.57E-04

Table 5: Quantitative comparison of our feature-aware smoothing method with RIMLS.

93

4.3.3 Segmentation into patches

The results shown here were explained in Section 3.3.3 (page 60).

Figure 53: The fandisk model, after segmentation into patches using the ground truth sharpness
field from Figure 33 (page 74). Points near edges were assigned to the nearest patch.

Figure 54: The blade model, after segmentation into patches using both the computed sharpness
field from Figure 28 (page 68), as well as a barrier mesh generated from the edge graph (that was
generated from the computed sharpness field).

95

4.3.4 Edge graph extraction

The results shown here were explained in Section 3.3.4 (page 61).

Figure 55: An edge graph generated for the fandisk model, using the computed sharpness field shown
in Figure 27 on page 67.

96

In this chapter, we have seen that deep learning is an effective tool for sharpness field computation.

In particular, the sharpness field can be computed accurately for a large range of neighborhood scales

by feeding Cartesian heightmaps to a CNN equipped with a spatial transformer network. We then

showed that the sharpness field could be used to reconstruct sharp edges using our feature-aware

smoothing algorithm. Sharp edges are a particularly challenging type of fine feature to reconstruct,

as they arise from discontinuities in the normal field of a surface. This necessitates treating sharp

edges as a special case of fine features, as we have done so far. In the following chapter, we treat

reconstruction of fine features as a point cloud super-resolution problem. This a more general

problem, which expands the scope of the fine features that we seek to reconstruct beyond merely

sharp features.

98

Chapter 5

Feature Preservation Through Point

Cloud Super-Resolution

The feature-aware smoothing technique described in Chapter 3 allows us to preserve sharp edges

while smoothing a point cloud, including by moving smoothed points directly onto sharp edges.

However, the fundamental reason why previous reconstruction methods fail to reconstruct fine fea-

tures is due to undersampling of regions of the surface with fine details. Therefore, we need to

consider another broad approach to reconstructing fine features, by performing super-resolution of

a given point cloud, to obtain a denser and more detailed point cloud.

Ultimately, the goal is to reconstruct a more detailed surface representation (such as a mesh)

from the high-resolution point cloud. Therefore, we are more concerned with the quality of the

reconstructed surface than the properties of the high-resolution point cloud. For example, we need

not be overly concerned about the sampling evenness of the high-resolution point cloud as long as

it does not negatively affect surface reconstruction. After all, if a higher-resolution surface can be

reconstructed, a point cloud with desirable properties such as evenness can be obtained by simply

resampling the reconstructed surface.

In Section 2.2.4, we have already described related work in point cloud super-resolution. The

state-of-the-art methods all perform super-resolution of subsets of input point clouds called “patches”,

using neural network architectures based on PointNet++. This approach has certain inherent lim-

itations (see Section 6.1.1). Our method is altogether different from previous methods and avoids

these limitations.

99

In this chapter, we describe our novel method for point-cloud super-resolution by domain trans-

lation of the local heightmaps described in Section 3.2.2. This domain translation allows us to

obtain more densely sampled local neighborhoods for each input point, thereby obtaining a denser

point cloud. Section 5.1 describes the current state-of-the-art technique for domain translation,

which uses Generative Adversarial Networks (GANs). We apply this technique in our point cloud

super-resolution method, which is described in Section 5.2.

For point clouds with an already-computed sharpness field, the same point cloud super-resolution

technique of ours can be adapted to perform super-resolution of the computed sharpness field as

well. This is described in Section 5.3.

The material in this chapter and Chapter 6 has been accepted for publication [12].

5.1 GANs for domain translation

Generative adversarial networks (GANs) are a class of neural network generative models introduced

by Goodfellow et al in 2014 [25]. Previous neural generative models such as variational autoencoders

(VAEs) sought to minimize ℓ1 or ℓ2 loss when modeling the probability distribution of a set of data.

GANs, on the other hand, seek to minimize an adversarial loss, which represents how “realistic” a

generated sample appears.

GANs are composed of two sub-networks:

• a generator, Gpzq : Rm Ñ R
n, which attempts to generate realistic samples that appear to

be sampled from the distribution of the n-dimensional training data. Different samples are

generated for different noise vectors z P R
m. Typically, m ăă n.

• a discriminator, Dpyq : Rn Ñ r0, 1s, which attempts to classify data samples as real or fake.

Dpyq is the probability that y is genuinely sampled from the training dataset, and not artificially

generated by the generator.

The objective of the GAN training is given by the following adversarial loss function:

LGAN “ EyrlogDpyqs ` Ezrlogp1 ´ DpGpzqqs (7)

The generator and discriminator effectively play a minimax game, which ideally converges to

a Nash equilibrium during training. At this point, the trained generator is able to generate data

100

samples which are sufficiently realistic to fool the trained discriminator. The trained generator is

given by:

G˚ “ arg min
G

max
D

LGAN pG,Dq (8)

The GAN formulation described above provides a generative model which generates data samples

which realistically appear to be sampled from a particular domain of data. This has been used, for

instance, to randomly generate realistic-looking photos of non-existent celebrities, after training on

a dataset of photos of celebrities. However, it does not provide any way to control the generated

data samples. This limits the utility of the basic GAN architecture.

GANs become truly useful when they are extended to include some form of supervision or control

over their learning process. The most popular GAN application is in domain translation, that is,

translating a data sample from one domain to another structurally similar domain. This began with

the seminal work Isola et al [17] on using conditional adversarial networks for translating between

image domains given a training set of paired examples. For example, their work is able to translate

images of street maps into plausible satellite images of the same terrain, as well as between sketches

of shoes and plausible photorealistic images of shoes corresponding to the sketches.

This quickly led to more work on unpaired image translation [27], as well as image translation

between more than two domains [28]. There have also been attempts to bring GAN-based domain

translation methods to other domains such as natural language text [29], audio [30] and voxel-based

3D data [31].

The basic idea behind paired image-to-image translation using GANs is to modify the generator

and discriminator to be conditioned on an input image, x. This leads to a modified GAN objective:

LGAN “ Ex,yrlogDpx, yqs ` Ex,zrlogp1 ´ DpGpx, zqqs (9)

In addition, it is typical to add a simple ℓ1 loss to the objective, in order to improve the quality

of the low-frequency information in the resulting image:

Lℓ1 “ Ex,y,z | y ´ Gpx, zq |1 (10)

The trained generator is given by:

G˚ “ arg min
G

max
D

LGAN pG,Dq ` λLℓ1pGq (11)

101

where λ is a weighting coefficient for the ℓ1 loss.

In practice, the noise vector z is introduced implicitly by random dropout of neurons with 50%

probability. Furthermore, the discriminator used for image-to-image translation does not attempt

to classify the entire input image as real or fake, but rather classifies individual patches (referred to

as a PatchGAN architecture by Isola et al [17]).

Now that we have reviewed how GANs can be used for domain translation, we can see how

this domain translation method can be used, not for image translation per se, but for point cloud

super-resolution.

5.2 Super-resolution of point clouds using domain translation

The key idea behind our method is that super-resolution of point cloud neighborhoods can be reduced

to an image-to-image translation problem between two kinds of local heightmaps (examples shown

in Figure 57):

1. Sparse heightmaps, which are sampled from point clouds. By “sparse”, we mean that not all

pixels in the heightmap are occupied. This follows naturally from the fact that point clouds

have gaps between points. In practice, we also set an upper limit on the number of points

contributing to a sparse heightmap, which makes our method more robust while also speeding

up computation of the sparse heightmaps. Therefore, they are also sparse in the conventional

sense that there are Op1q points represented in the heightmap.

2. Dense heightmaps, which are sampled from meshes. Since the mesh is typically defined ev-

erywhere in a neighborhood, we can obtain a heightmap by casting rays onto the mesh. It

is worth noting that this raycasting approach can easily be modified to obtain other kinds of

local “maps”, such as scalar or vector fields defined over the mesh.

In this section, we first explain how these two types of heightmaps are generated (Section 5.2.1).

We then show how our overall approach has additional benefits for estimating normals (Section

5.2.2).

102

then compute the intensity of each pixel as the weighted average of the signed distances of nearby

projected points from their original positions. The unnormalized weights have a Gaussian falloff

wi “ expp´
d2

i

2σ2 q, where di are the distances of the projected points from the pixel center in the

image plane (we set σ “ 5r{k). A constant value 1 is added to all projection heights, so that the

value 0 is reserved for unoccupied pixels. As shown in Section 5.3, the same approach can also be

used to generate a sparse map, not for height, but for a scalar field.

5.2.1.2 Dense heightmap generation

Given a point on a surface represented by a mesh (which need not be a vertex), and its corresponding

normal, we can use raycasting to generate a dense heightmap. We first transform the center of each

heightmap pixel to the coordinate space of the mesh. We can do this because we know the local

tangent frame, as mentioned earlier. From each pixel center, we shoot two rays in opposite directions

perpendicular to the tangent plane. If both rays intersect the mesh, we choose the nearer intersection

point. The intensity of the pixel is the signed distance of the pixel center to the intersection point,

or a fixed large value in the event that neither ray intersects the mesh. These raycasting operations

are parallelized efficiently on the CPU using the Embree raycasting framework [109]. Embree also

provides us with the intersected triangle ID and the Barycentric coordinates of the intersection point.

This additional information can be used to interpolate scalar or vector fields previously computed

on the vertices of the mesh, in order to generate other kinds of dense local maps.

5.2.2 Prediction of normals

The regular grid structure of a heightmap provides us the additional benefit that it allows easy

computation of normals at each point on the heightmap. Given a dense heightmap, we can use

backward differences to estimate gradients in the tangent and bitangent directions. This gives us

the approximate normal at each point as the direction of the vector p Bh
Bx ,

Bh
By ,

2r
k

q. This approximate

normal map proved to be sufficient for our purposes, although it could also be refined using a neural

network.

5.2.3 Point cloud super-resolution

We trained our GAN on a set of 90 meshes of statues obtained from SketchFab. These meshes

were generated by 3D-scanning statues of people and animals (Figure 58). Training details such as

104

Figure 58: Examples of training models from SketchFab.

hyperparameters are given in Section 5.2.4. For evaluation, we have procured 16 additional meshes

of statues. All ground truth meshes have several hundred thousand vertices.

For point cloud super-resolution, we randomly sample a fixed number of points from a test mesh

using Poisson disk sampling (using the implementation available in the VCG library [110]). Figure

59 shows an example of sampling these points. Normals for these points are estimated using PCA,

based on 30 nearest neighbors.

After generating sparse 64ˆ64 heightmaps for these sampled points using the method described

in Section 5.2.1.1, we use our trained model to suggest a plausible dense 64 ˆ 64 heightmap. Given

the search radius as well as the normal and tangent vectors used to obtain the sparse heightmap,

we can easily transform pixels of the dense heightmap back into points in the space of the original

point cloud. Note that since the conditional GAN is transforming heightmaps at the local level with

no global information, we do not expect the extremities of the newly generated heightmap to be

accurate. However, we can still obtain a high density point cloud simply by taking points from an

8 ˆ 8 or 16 ˆ 16 square in the middle of the generated heightmap.

We experimented with different combinations of heightmap search radius, size of the central

square, and stride (a stride of 2 implies taking every alternate row and column). Note that δ is the

median distance between a point and its nearest neighbor in the input point cloud, which we use as

105

5.2.4 Training details

In this section, we provide additional details on training the GAN used in our experiments.

5.2.4.1 Generator architecture

The generator used in our GAN has a U-Net architecture [111]. This is an encoder-decoder ar-

chitecture in which the image is first progressively downsampled and then upsampled, with skip

connections between mirrored layers of the encoder and decoder. These skip connections allow fea-

tures of the image at different scales (such as edges) to be more easily transferred to the output image

during image translation [17]. Following Isola et al [17], our generator uses strided convolutions [24],

leaky ReLU [112] activations in the encoder portion, as well as instance normalization [113] in all

inner layers of the network and dropout regularization [114] in the innermost layers, in order to

improve training performance. Our network contains the following layers:

1. 4 ˆ 4 convolution, stride 2, 64 kernels, leaky ReLU(slope“ 0.2)

2. 4 ˆ 4 convolution, stride 2, 128 kernels, instance norm., leaky ReLU(slope“ 0.2)

3. 4 ˆ 4 convolution, stride 2, 256 kernels, instance norm., leaky ReLU(slope“ 0.2)

4. 4ˆ 4 convolution, stride 2, 512 kernels, instance norm., leaky ReLU(slope“ 0.2), 50% dropout

5. 4ˆ 4 convolution, stride 2, 512 kernels, instance norm., leaky ReLU(slope“ 0.2), 50% dropout

6. 4 ˆ 4 convolution, stride 2, 512 kernels, leaky ReLU(slope“ 0.2), 50% dropout

7. 4 ˆ 4 transposed convolution, stride 2, 512 kernels, instance norm., ReLU, 50% dropout

applied to concatenated output of layers 5 and 6.

8. 4 ˆ 4 transposed convolution, stride 2, 512 kernels, instance norm., ReLU, 50% dropout

applied to concatenated output of layers 4 and 7.

9. 4 ˆ 4 transposed convolution, stride 2, 256 kernels, instance norm., ReLU

applied to concatenated output of layers 3 and 8.

10. 4 ˆ 4 transposed convolution, stride 2, 128 kernels, instance norm., ReLU

applied to concatenated output of layers 2 and 9.

108

11. 4 ˆ 4 transposed convolution, stride 2, 64 kernels, instance norm., ReLU

applied to concatenated output of layers 1 and 10.

12. 2x upsampling

13. 4 ˆ 4 convolution with bias, stride 1 with zero padding, 1 kernel, Tanh

5.2.4.2 Discriminator architecture

Our discriminator uses the PatchGAN architecture proposed by Isola et al [17], which is itself based

on the discriminator in the Markovian GAN architecture [115]. This architecture classifies individual

patches of the input image as real or fake, instead of classifying the image as a whole. This effectively

restricts the scope of the adversarial loss function to high-frequency features in small patches of the

image, while relying on a separate ℓ1 loss for low-frequency features. The network layers are as

follows:

1. 4 ˆ 4 convolution with bias, stride 2, 512 kernels, leaky ReLU(slope“ 0.2)

2. 4 ˆ 4 convolution with bias, stride 2, 1024 kernels, instance norm., leaky ReLU(slope“ 0.2)

3. 4 ˆ 4 convolution with bias, stride 2, 2048 kernels, instance norm., leaky ReLU(slope“ 0.2)

4. 4 ˆ 4 convolution, stride 1 with zero padding, 1 kernel, linear activation

We use a patch size of 8 ˆ 8 for our heightmap domain translation experiments. For scalar field

domain translation (Section 5.3), we obtained better results with 16 ˆ 16 patches, therefore layer 3

is omitted.

5.2.4.3 Training hyperparameters

We have trained our GANs using the Adam [116] optimization algorithm. The following hyperpa-

rameters are identical for both the generator and the discriminator:

batch size “ 16

learning rate “ 3 ˆ 10´4

momentum: β1 “ 0.5, β2 “ 0.999

109

The discriminator loss is the mean squared error of classifying each patch as real or fake. The

generator has to maximize the discriminator loss, while also minimizing the ℓ1 error of the predicted

image. The ℓ1 error is given a weight of 10 for heightmap domain translation, and 0.5 in the case of

scalar field domain translation.

5.3 Super-resolution of the sharpness field

Our method also has the potential for using the conditional GAN to predict values of a scalar

or vector field corresponding to the dense heightmap at a given point. As an example, we show

an application to the sharpness field defined in Chapter 3. The feature-aware smoothing method

described in Chapter 3 is mainly concerned with the ridges of the field, which are scale-invariant.

This makes it simple to apply our GAN to locally predict the value of the sharpness field of a point

cloud, as shown in Figure 61 (page 111). If values of the sharpness field are pre-computed for the

low-resolution point cloud, we can obtain a sparse image of the sharpness values simultaneously

with the sparse heightmap (top row of Figure 61). By obtaining ground truth sharpness fields on

meshes, we can then train a separate conditional GAN to predict the values of the sharpness field

corresponding to all points of the dense heightmap (middle row of Figure 61).

In order to predict values of the sharpness field at the output points from our super-resolution

method, we trained a separate GAN to predict sharpness field values at the output points, using the

same training procedure and data augmentation as the heightmap super-resolution GAN. The only

difference is that we obtained better results with a larger patch size of 16ˆ 16 for the discriminator.

The training data is a set of meshes of simple geometric shapes, whose sharpness fields are computed

using dihedral angles as described in Section 3.1.3.1. We then pre-computed the sharpness field of

the blade point cloud (80K points) using the CNN with a spatial transformer, which was the best

performing method across different scales in Section 4.2.4. We then perform 16x super-resolution

using the even mode.

The results are presented in Section 6.3 (page 124).

110

Chapter 6

Results and Discussion: Point Cloud

Super-Resolution

In this chapter, we show our super-resolution results obtained using the method described in Section

5.2. These results are compared with the state-of-the-art methods EC-Net [5] and 3PU [6].

We refer the reader back to Section 2.2.4 (page 22) for a description of the state-of-the-art

approaches to point cloud super-resolution. These methods are all based on deep learning but

do not incorporate domain translation or heightmaps. Reviewing these methods is important for

understanding how our method differs from the state of the art, and introduces the methods that

we compare with in this chapter. Section 6.1.1 (page 121) also explains the disadvantages of these

methods, resulting from the fact that they are based on PointNet++.

Section 6.1 gives a qualitative comparison of the results, while Section 6.2 has a quantitative

comparison using standard metrics. Finally, Section 6.3 shows a simple example of sharpness field

super-resolution, as described in Section 5.3.

The results in this chapter have been accepted for publication [12].

6.1 Comparison with recent work

Examples of our super-resolution results are shown in Figures 62 to 64. The meshes are recon-

structed using screened Poisson surface reconstruction [53]. Note that there were no post-processing

operations such as smoothing in any of our figures. In Figures 62 and 63, we can see that our

112

method is able to reconstruct fine details such as facial features from a sample of only 5000 points.

Figure 64 shows an extreme example where we upsample a set of only 625 points, while still being

able to reconstruct features such as the wings on the helmet. For comparison, we show the corre-

sponding result using the method described in a concurrent work, informally called 3PU [6] (code

is provided by the authors). This method has already been shown to be superior to state-of-the-art

approaches such as EC-Net [5] and PU-Net [4]. All three of these methods are ultimately based on

PointNet++ [3], therefore they do not make use of local heightmaps. Additional results are given

in Figures 65 and 66.

During our experiments on extremely low resolution point clouds, we naturally found that differ-

ent random samplings of 625 input points for the same testing mesh give slightly different resulting

meshes. We have performed an experiment to assess the variation in results for different random

samplings, whose results are shown in Figure 67. We find that our method produces consistent

results across different random samplings. We can see from the same figure that 3PU produces less

consistent results. Figure 67 omits examples where PCA failed to give good enough normals for the

3PU point cloud, resulting in failure of the screened Poisson reconstruction. Our method provides

normals for output points, so no additional normal estimation step is required. Furthermore, our

normals have never caused screened Poisson reconstruction to fail in our experiments.

Figure 68 shows additional 16x upsampling results on point clouds obtained from depth cameras.

This includes both our own depth scans obtained using Kinect v2, as well as a point cloud of a kitchen

obtained from the ScanNet [11] dataset. These results show that our GAN trained on statues can

generalize to some extent to upsampling point clouds from depth cameras. However, it tends to

treat signficant amounts of noise in depth images as features to be upsampled.

113

6.1.1 Disadvantages of PointNet++-based super-resolution

It is also worth noting that all super-resolution methods based on PointNet++ share certain weak-

nesses:

1. They are not invariant to permutations of the point cloud. This is because they all rely on

farthest-point sampling as an initial step for their neural networks [117].

2. They rely on large and complicated neural network architectures, which affects the compu-

tational efficiency. For example, the ScanNet example in Figure 68 took only 3 minutes to

upsample with our method, as opposed to 214 minutes for 3PU.

3. They do not perform well in regions with unusually dense sampling. This is because after

the farthest-point sampling step, K-nearest neighbors are taken as representatives of the local

neighborhood. Therefore, regions of high density will result in too many neighbors that are

very close to the center point, thus giving a skewed picture of the local neighborhood.

6.2 Quantitative evaluation

We evaluate our super-resolution results quantitatively based on three metrics:

1. Distance of each point in the high-resolution point cloud to the ground truth mesh (D2M).

2. Hausdorff distance (HD): the maximum distance between a point on the reconstructed mesh

and its nearest neighbor on the ground truth mesh:

max

ˆ
max
pPP

min
qPQ

}p ´ q}2,max
qPQ

min
pPP

}p ´ q}2
˙

(12)

3. Chamfer distance (CD) [103]: the mean distance between a point on the reconstructed mesh

and its nearest neighbor on the ground truth mesh:

1

2

˜
1

|P |

ÿ

pPP

min
qPQ

}p ´ q}2 `
1

|Q|

ÿ

qPQ

min
pPP

}p ´ q}2

¸
(13)

We used Meshlab [67] to automate computation of all three metrics. The Hausdorff distance and

Chamfer distance can be computed simultaneously by first randomly sampling a large number of

points from the vertices, edges and faces of one mesh. The number of points sampled is equal to the

121

Mode D2M HD CD

Smooth – 5000 points 3.42E-04 3.24E-02 1.03E-03

Even – 5000 points 3.96E-04 3.48E-02 1.42E-03
Superdense – 5000 points 5.89E-04 3.35E-02 1.37E-03
Smooth – 2500 points 4.00E-04 3.66E-02 1.53E-03

Even – 2500 points 4.38E-04 4.08E-02 2.11E-03
Superdense – 2500 points 8.39E-04 4.00E-02 2.25E-03
Smooth – 625 points 1.16E-03 5.20E-02 3.86E-03

Even – 625 points 1.10E-03 5.03E-02 5.25E-03
Superdense – 625 points 2.93E-03 5.81E-02 6.23E-03

Table 6: Quantitative comparison of our three modes for super-resolution of input point clouds with
5000, 2500 and 625 points. Note that the superdense mode produces 256 times the number of points.

Size of point clouds D2M HD CD

>300K: 5000 points 3.42E-04 3.24E-02 1.03E-03

5K: 5000 points 8.04E-04 3.26E-02 1.30E-03
625: 5000 points 1.17E-03 3.38E-02 1.54E-03
>300K: 2500 points 4.00E-04 3.66E-02 1.53E-03

5K: 2500 points 9.63E-04 3.72E-02 1.90E-03
625: 2500 points 1.46E-03 3.96E-02 2.17E-03
>300K: 625 points 1.16E-03 5.20E-02 3.86E-03

5K: 625 points 1.09E-03 5.04E-02 4.32E-03
625: 625 points 1.97E-03 5.54E-02 4.58E-03

Table 7: Comparison of using different point cloud sizes when training: all mesh vertices (over 300K
points), 5000 points sampled using Poisson disk sampling, or 625 points. The resulting metrics are
compared for input point clouds with 5000, 2500 and 625 points.

number of vertices on the sampled mesh (several hundred thousand). We then find the mean and

maximum distances between these points and the nearest vertices on the other mesh. Pairs of points

are discarded if their separation is greater than 5% of the diagonal of the bounding box. The above

procedure is then repeated in the opposite direction, giving us two maximums and two means. The

Hausdorff distance is the maximum of the two maximums and the Chamfer distance is the mean of

the two means (this differs slightly from the definition of Chamfer distance given by Fan et al [103],

who take the sum of the means, since they are mainly interested in minimizing Chamfer distance as

a loss function). Note that for performing screened Poisson reconstruction on the results of other

methods, we estimate normals using PCA based on 30 nearest neighbors. This is not necessary for

our method, since we obtain normals from the dense heightmap as mentioned in Section 5.2.2.

In Table 6, we compare the results for the three modes for sampling our dense heightmaps, as

defined in Section 5.2.3. We first consider the smooth and even modes, which both produce 16 times

the number of input points. Although the smooth mode produces the best reconstructed mesh,

122

Method D2M HD CD

EC-Net – 5000 points 3.42E-04 6.30E-02 3.89E-03
3PU – 5000 points 2.91E-04 3.63E-02 1.32E-03
Ours – 5000 points 3.42E-04 3.24E-02 1.03E-03

EC-Net – 2500 points 6.56E-04 6.57E-02 5.80E-03
3PU – 2500 points 3.16E-04 4.86E-02 2.13E-03
Ours – 2500 points 4.00E-04 3.66E-02 1.53E-03

EC-Net – 625 points 1.85E-03 5.84E-02 8.12E-03
3PU – 625 points 1.31E-03 5.55E-02 4.96E-03
Ours – 625 points 1.16E-03 5.20E-02 3.86E-03

Table 8: Quantitative comparison of 16x super-resolution between EC-Net, 3PU and our smooth
mode for point clouds with 5000, 2500 and 625 points.

it is noteworthy that the even mode is not far behind, and even surpasses the smooth mode for

very low resolution point clouds. Those seeking to apply our method to obtain a point cloud, and

not a mesh, have a choice between using our even mode, or alternatively performing Poisson disk

sampling on the mesh produced using our smooth mode. The superdense mode, which produces 256

times the number of input points, suffers a bit when it comes to the distance to the ground truth

mesh. However, it is not far behind the other modes when it comes to the Hausdorff and Chamfer

distances.

A unique feature of our method is that we can obtain good results on low resolution point clouds,

even after training on high-resolution point clouds. Our training meshes are very dense, and each

has over 300 thousand vertices. They can also be randomly downsampled to a lower resolution

such as 5000 or 625 points during training. We therefore investigate how different resolutions of

the training point clouds affect the super-resolution results. After all, the resolution of the training

point clouds does affect the variety of sparse heightmaps that will be seen during training. Table 7

shows that using the entire set of mesh vertices during training usually produces the best results.

Even in the case where the testing point clouds have 625 points, it is a GAN trained on a higher

resolution (5000 points) which gives the best results. This is likely due to a combination of two

factors: i) we use raycasting to obtain our ground truth heightmaps, and ii) we randomly sample

only 100 points from each local neigborhood to contribute to the sparse heightmap, thereby making

our domain translation more robust.

Table 8 compares the surfaces reconstructed by applying screened Poisson reconstruction on the

results of our domain translation approach, versus other recent methods. We choose the smooth

mode for comparison, since it produces 16x super-resolution, and it produces the most accurate

123

reconstructed meshes. We compare our work with the results obtained using EC-Net [5], which is

the most recently published point cloud upsampling work. We also compare with a concurrent work

by Wang et al [6] (code released under the name “3PU”), which claims better results than previous

work for 16x sampling. In order to compare results for 16x upsampling for EC-Net, we apply 4x

upsampling with EC-Net twice in succession, as recommended by Yu et al in their correspondence

with Wang et al [6]. We can see that our results are clearly superior to those of EC-Net. Even when

compared to the very recent 3PU method, our results are superior in terms of Hausdorff distance

and Chamfer distance, while still being competitive in terms of the D2M metric.

6.3 Super-resolution of the sharpness field

The results we obtained (Figure 69) show that our GAN gives a sharpness field with similar properties

to a sharpness field computed from scratch on the point cloud after super-resolution. Furthermore,

the entire super-resolution procedure along with the sharpness field estimation takes around 7 min-

utes, compared to 20 minutes if the sharpness field is recomputed from scratch after super-resolution.

The combination of the dense heightmap, the normal map and the sharpness field together provide

all the information necessary for downstream methods to accurately reconstruct the surface along

with sharp features. We have included this example for its curiosity value. We believe that our

domain translation approach to super-resolution has the potential for extension to other scalar fields

and vector fields.

124

Chapter 7

Conclusion

This thesis is a compilation of our research on reconstructing fine features in 3D point clouds using

deep learning. As previously mentioned, “fine features” refers to features whose scale is comparable

to or smaller than the separation between points of the point cloud. For example, sharp edges can

be considered as fine features, since they can never be captured by scanning devices that produce

point clouds.

We have introduced the novel concept of a sharpness field, defined on the underlying surface of

a point cloud, which enables us to localize sharp edges even in the gaps between points in the point

cloud. The sharpness field can easily be computed on polygonal meshes using dihedral angles. This

allows us to design ground truth data for training machine learning models to compute sharpness

field values in point clouds. We have built a training dataset consisting of over 100K points, whose

neighborhoods contain different levels of noise. These points were sampled from a carefully designed

set of 8 shapes, which contain a sufficiently large variety of edges and corners for learning sharpness

field computation. We also designed a representation for point cloud neighborhoods which enables

feeding these neighborhoods to machine learning models. This representation consists of the angular

deviations of normals sampled on a 30 ˆ 30 geodesic radial grid centered at the input point. We

have found that this machine learning approach allows us to compute a sharpness field using several

different machine learning models, including gradient boosting machines, random forests and CNNs.

Our evaluation in Section 4.1.2 shows that CNNs performed the best out of the evaluated machine

learning models. The computed sharpness field is observed to be smooth and accurat for complex

shapes not seen in the training data. However, certain curved edges, such as those in the blade

model, require more work, going beyond the methods explored in Section 3.1.

126

In order to fully capture these curved edges, we systematically rolled back the processing steps

involved in generating the local neighborhood representation, in order to preserve progressively

greater amounts of geometric information in the neighborhood representation. These neighborhood

representations are more “raw” than our original neighborhood representation, while also possessing

important spatial relations within them. We therefore need to feed them to deep learning models,

such as CNNs, harmonic networks, spatial transformer networks and PointNets. After extensive

evaluation (Section 4.2.4), we have shown that curved edges can be captured reliably by feeding

Cartesian heightmaps to a CNN with an added spatial transformer network.

This sharpness field can be used to denoise point clouds while preserving sharp edges, using our

feature-aware smoothing algorithms. The most effective feature-aware smoothing algorithm that

we have developed uses an anisotropic Gaussian kernel in a variant of MLS projection (Section

3.3.2). The shape of the kernel is adjusted so that it does not cross sharp edges (local maxima

or ridges of the sharpness field). We have seen that point clouds denoised with our feature-aware

method are as smooth as those denoised using the feature-agnostic RIMLS method [16], while

having sharper edges. We have also presented algorithms that use the sharpness field to generate an

explicit graphical representation of sharp edges (Section 3.3.4), as well as to segment a point cloud

into smooth patches (Section 3.3.3).

Besides sharp edge reconstruction, our research also extends to general fine feature reconstruction

in point clouds. This has been accomplished by our unique method for point cloud super-resolution

that uses conditional generative adversarial networks (GANs) for domain translation of local neigh-

borhoods. This is an innovative application of GAN-based image translation, and is a rare instance

where image translation is applied with the aim of obtaining quantitatively accurate results. This

is in stark contrast to typical image translation applications, such as translating between photos,

sketches, satellite images and street maps. In our work, heightmaps sampled from low-resolution

point clouds are “translated” into dense heightmaps sampled from triangle meshes. Pixels from

the dense heightmap can then be transformed back into 3D points, giving a point cloud which is

denser by a certain factor (e.g. 16 times or 256 times). This dense point cloud contains important

fine details that greatly improve the accuracy of the surface reconstructed using screened Poisson

surface reconstruction. This has allowed us to obtain super-resolution results far superior to the

state-of-the-art method published in late 2018 [5]. Even when compared to the concurrently devel-

oped 3PU method [6], our super-resolution results can be seen to reconstruct more fine details from

low-resolution point clouds. The superiority of our method is particularly noticeable for very sparse

127

point clouds with just 625 points. We have also shown that our super-resolution method produces

more consistent results than 3PU, as our results do not vary as much for different random samplings

of points from the same shape. Furthermore, our method is far more computationally efficient for

large point clouds than 3PU, and is not subject to the inherent weaknesses of methods based on

PointNet++ (Section 6.1.1). Another unique feature of this super-resolution method is that it can

easily be modified to upsample a precomputed scalar field, such as the sharpness field. In the case

of the sharpness field, this is more computationally efficient than recomputing the sharpness field

from scratch for the upsampled point cloud.

In order to extend our current work, we would require a larger dataset of CAD models. This

would provide two advantages: (1) ground truth data for large-scale quantitative evaluation of

sharpness field computaion methods. (2) large amounts of training data for training deeper neural

network models. These models should ideally be represented as parametric surfaces in which the

borders between surface patches are sharp edges. Using parametric surfaces instead of triangular

meshes for training data would enable dynamically resampling points for training. It would also

remove any ambiguity in the ground truth locations of sharp edges stemming from dihedral angles.

There is also more scope for involving deep learning in our feature-aware smoothing algorithm. In

future work on point cloud super-resolution, we hope to expand our method for scalar field super-

resolution to support scale-dependent scalar fields such as mean curvature, as well as vector fields.

We also envisage training the super-resolution GAN to compute these fields directly, instead of using

a precomputed field.

128

Bibliography

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D

classification and segmentation,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 652–660, 2017.

[2] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra, “PCPNet: Learning local shape

properties from raw point clouds,” in Computer Graphics Forum, vol. 37, pp. 75–85, 2018.

[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learn-

ing on point sets in a metric space,” in Advances in Neural Information Processing Systems

(NeurIPS), pp. 5099–5108, 2017.

[4] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-Net: Point cloud upsampling

network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 2790–2799, June 2018.

[5] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “EC-Net: an edge-aware point set con-

solidation network,” in Proceedings of the European Conference on Computer Vision (ECCV),

pp. 386–402, September 2018.

[6] Y. Wang, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung, “Patch-based progressive

3D point set upsampling,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 5958–5967, 2019.

[7] P. Raina, S. Mudur, and T. Popa, “MLS2: Sharpness field extraction using CNN for surface

reconstruction,” in Proceedings of Graphics Interface 2018, GI 2018, pp. 66–75, Canadian

Human-Computer Communications Society, 2018.

[8] C. Weber, S. Hahmann, and H. Hagen, “Sharp feature detection in point clouds,” in Shape

Modeling International Conference (SMI), 2010, pp. 175–186, IEEE, 2010.

129

[9] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow, “Harmonic networks:

Deep translation and rotation equivariance,” in Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), vol. 2, 2017.

[10] P. Raina, S. Mudur, and T. Popa, “Sharpness fields in point clouds using deep learning,”

Computers & Graphics, vol. 78, pp. 37–53, 2019.

[11] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “ScanNet: Richly-

annotated 3D reconstructions of indoor scenes,” in Proc. CVPR 2017, pp. 5828–5839.

[12] P. Raina, T. Popa, and S. Mudur, “Fine feature reconstruction in point clouds by adversar-

ial domain translation,” in Proceedings of Graphics Interface 2020, GI 2020, p. To appear,

Canadian Human-Computer Communications Society, 2020.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional

neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[15] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer networks,” in Advances

in neural information processing systems, pp. 2017–2025, 2015.

[16] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving point set surfaces based on

non-linear kernel regression,” in Computer Graphics Forum, vol. 28, 2009.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional

adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), pp. 1125–1134, 2017.

[18] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent provably optimizes over-

parameterized neural networks,” in International Conference on Learning Representations,

2019.

[19] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of

COMPSTAT’2010, pp. 177–186, Springer, 2010.

[20] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 9446–9454, 2018.

130

[21] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks.,” in Aistats, vol. 9, pp. 249–256, 2010.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” in International Conference on Machine Learning, pp. 448–456, 2015.

[23] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” in Proc. In-

ternational Conference on Learning Representations (ICLR), Workshop track, 2018.

[24] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all

convolutional net,” in International Conference on Learning Representations (ICLR), workshop

track, 2015.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing

systems, pp. 2672–2680, 2014.

[26] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath,

“Generative adversarial networks: An overview,” IEEE Signal Processing Magazine, vol. 35,

no. 1, pp. 53–65, 2018.

[27] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using

cycle-consistent adversarial networks,” in Proceedings of the IEEE International Conference

on Computer Vision (CVPR), pp. 2223–2232, 2017.

[28] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified generative

adversarial networks for multi-domain image-to-image translation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8789–8797, June 2018.

[29] Z. Yang, Z. Hu, C. Dyer, E. P. Xing, and T. Berg-Kirkpatrick, “Unsupervised text style trans-

fer using language models as discriminators,” in Advances in Neural Information Processing

Systems (NeurIPS), pp. 7298–7309, December 2018.

[30] S. Huang, Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse, “TimbreTron: A WaveNet

(CycleGAN (CQT (audio))) pipeline for musical timbre transfer,” in International Conference

on Learning Representations (ICLR), p. To appear., May 2019.

131

[31] N. Dehmamy, L. Stornaiuolo, and M. Martino, “Vox2Net: From 3D shapes to network sculp-

tures,” in NeurIPS Workshop on Machine Learning for Creativity and Design, December 2018.

[32] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep

representation for volumetric shapes,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1912–1920, 2015.

[33] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and multi-view

CNNs for object classification on 3D data,” in Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE, 2016.

[34] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu, “High-resolution shape completion using

deep neural networks for global structure and local geometry inference,” in Proceedings of

IEEE International Conference on Computer Vision (ICCV), 2017.

[35] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional neural net-

works for 3D shape recognition,” in Proc. IEEE ICCV, pp. 945–953, 2015.

[36] H. Huang, E. Kalogerakis, S. Chaudhuri, D. Ceylan, V. G. Kim, and E. Yumer, “Learning local

shape descriptors from part correspondences with multiview convolutional networks,” ACM

Trans. Graph., vol. 37, pp. 6:1–6:14, Nov. 2017.

[37] Y. Liao, S. Donné, and A. Geiger, “Deep marching cubes: Learning explicit surface representa-

tions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 2916–2925, 2018.

[38] B. Yang, W. Luo, and R. Urtasun, “PIXOR: Real-time 3D object detection from point clouds,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7652–

7660, 2018.

[39] R. Roveri, A. C. Öztireli, I. Pandele, and M. Gross, “PointProNets: Consolidation of point

clouds with convolutional neural networks,” in Computer Graphics Forum, vol. 37, pp. 87–99,

Wiley Online Library, 2018.

[40] R. Roveri, L. Rahmann, A. C. Oztireli, and M. Gross, “A network architecture for point cloud

classification via automatic depth images generation,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 4176–4184, 2018.

132

[41] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic convolutional neural

networks on riemannian manifolds,” in Proceedings of the IEEE international conference on

computer vision workshops, pp. 37–45, 2015.

[42] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning shape correspondence with

anisotropic convolutional neural networks,” in Advances in Neural Information Processing

Systems, pp. 3189–3197, 2016.

[43] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein, “Geometric

deep learning on graphs and manifolds using mixture model CNNs,” in Proc. CVPR, vol. 1,

p. 3, 2017.

[44] N. Verma, E. Boyer, and J. Verbeek, “FeaStNet: Feature-steered graph convolutions for 3D

shape analysis,” in CVPR 2018-IEEE Conference on Computer Vision & Pattern Recognition,

2018.

[45] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia, “Deformable shape completion with

graph convolutional autoencoders,” in CVPR 2018-IEEE Conference on Computer Vision &

Pattern Recognition, 2018.

[46] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “A papier-mâché approach

to learning 3D surface generation,” in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 216–224, June 2018.

[47] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. J. Guibas, “Learning representations and

generative models for 3D point clouds,” in Proc. International Conference on Learning Repre-

sentations (ICLR), IEEE, 2018.

[48] Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet: Point cloud auto-encoder via deep

grid deformation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 206–215, June 2018.

[49] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, and C. Silva, “State

of the art in surface reconstruction from point clouds,” in Eurographics STAR reports, vol. 1,

pp. 161–185, 2014.

[50] F. Cazals and J. Giesen, “Delaunay triangulation based surface reconstruction,” in Effective

computational geometry for curves and surfaces, pp. 231–276, Springer, 2006.

133

[51] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and

T. R. Evans, “Reconstruction and representation of 3D objects with radial basis functions,” in

Proceedings of the 28th annual conference on Computer graphics and interactive techniques,

pp. 67–76, ACM, 2001.

[52] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in SGP, vol. 7, 2006.

[53] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,” ACM Transactions on

Graphics (ToG), vol. 32, no. 3, p. 29, 2013.

[54] R. Campos, R. Garcia, and T. Nicosevici, “Surface reconstruction methods for the recovery of

3D models from underwater interest areas,” in OCEANS 2011 IEEE - Spain, pp. 1–10, June

2011.

[55] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Point set surfaces,”

in Proceedings of the Conference on Visualization’01, pp. 21–28, IEEE Computer Society, 2001.

[56] D. Levin, “The approximation power of moving least-squares,” Mathematics of Computation

of the American Mathematical Society, vol. 67, no. 224, pp. 1517–1531, 1998.

[57] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Computing and

rendering point set surfaces,” IEEE TVCG, vol. 9, no. 1, pp. 3–15, 2003.

[58] M. Alexa and A. Adamson, “On normals and projection operators for surfaces defined by point

sets,” in Proceedings of the First Eurographics conference on Point-Based Graphics, pp. 149–

155, 2004.

[59] D. Levin, “Mesh-independent surface interpolation,” in Geometric modeling for scientific visu-

alization, pp. 37–49, Springer, 2004.

[60] R. Kolluri, “Provably good moving least squares,” ACM Transactions on Algorithms (TALG),

vol. 4, no. 2, p. 18, 2008.

[61] Z.-Q. Cheng, Y.-Z. Wang, B. Li, K. Xu, G. Dang, and S.-Y. Jin, “A survey of methods for

moving least squares surfaces.,” in Volume Graphics, pp. 9–23, 2008.

[62] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” in ACM TOG, vol. 26, p. 23,

ACM, 2007.

134

[63] Y. Lipman, D. Cohen-Or, and D. Levin, “Data-dependent MLS for faithful surface approxi-

mation,” in SGP ’07, (Aire-la-Ville, Switzerland), pp. 59–67, Eurographics Association, 2007.

[64] S. Fleishman, D. Cohen-Or, and C. T. Silva, “Robust moving least-squares fitting with sharp

features,” ACM TOG, vol. 24, no. 3, pp. 544–552, 2005.

[65] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-preserving mesh smoothing,”

in ACM Transactions on Graphics (TOG), vol. 22, pp. 943–949, ACM, 2003.

[66] P. J. Huber, Robust statistics. Springer, 2011.

[67] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia, “MeshLab:

an open-source mesh processing tool,” in Eurographics Italian Chapter Conference (V. Scarano,

R. D. Chiara, and U. Erra, eds.), The Eurographics Association, 2008.

[68] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher, “Geometric surface smoothing via

anisotropic diffusion of normals,” in Proceedings of the conference on Visualization’02, pp. 125–

132, IEEE Computer Society, 2002.

[69] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE

Transactions on pattern analysis and machine intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[70] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,” in ACM transactions on

graphics (TOG), vol. 22, pp. 950–953, ACM, 2003.

[71] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in ICCV, vol. 98,

p. 2, 1998.

[72] X. Sun, P. L. Rosin, R. Martin, and F. Langbein, “Fast and effective feature-preserving mesh

denoising,” IEEE transactions on visualization and computer graphics, vol. 13, no. 5, pp. 925–

938, 2007.

[73] Y. Zheng, H. Fu, O. K.-C. Au, and C.-L. Tai, “Bilateral normal filtering for mesh denoising,”

IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 10, pp. 1521–1530,

2010.

[74] L. He and S. Schaefer, “Mesh denoising via L0 minimization,” ACM Transactions on Graphics

(TOG), vol. 32, no. 4, p. 64, 2013.

135

[75] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via l 0 gradient minimization,” in ACM

Transactions on Graphics (TOG), vol. 30, p. 174, ACM, 2011.

[76] U. Pinkall and K. Polthier, “Computing discrete minimal surfaces and their conjugates,” Ex-

perimental mathematics, vol. 2, no. 1, pp. 15–36, 1993.

[77] S. Gumhold, X. Wang, and R. MacLeod, “Feature extraction from point clouds,” in Proceedings

of 10th international meshing roundtable, vol. 2001, 2001.

[78] M. Pauly, R. Keiser, and M. Gross, “Multi-scale feature extraction on point-sampled surfaces,”

in CGF, vol. 22, pp. 281–289, 2003.

[79] J. Cao, S. Wushour, X. Yao, N. Li, J. Liang, and X. Liang, “Sharp feature extraction in point

clouds,” IET image processing, vol. 6, no. 7, pp. 863–869, 2012.

[80] T.-T. Tran, V.-T. Cao, S. Ali, D. Laurendeau, et al., “Automatic method for sharp feature

extraction from 3D data of man-made objects,” in Computer Graphics Theory and Applications

(GRAPP), 2014 International Conference on, pp. 1–8, IEEE, 2014.

[81] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on

systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[82] J. Nie, “Extracting feature lines from point clouds based on smooth shrink and iterative thin-

ning,” Graphical Models, vol. 84, pp. 38–49, 2016.

[83] D. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo, “Fast and robust edge extraction in unorganized

point clouds,” in Digital Image Computing: Techniques and Applications (DICTA), 2015,

pp. 1–8, IEEE, 2015.

[84] S. Fu and L. Wu, “Feature line extraction from point clouds based on geometric structure of

point space,” 3D Research, vol. 10, no. 2, p. 16, 2019.

[85] C. Weber, S. Hahmann, H. Hagen, and G.-P. Bonneau, “Sharp feature preserving MLS surface

reconstruction based on local feature line approximations,” Graphical Models, vol. 74, no. 6,

pp. 335–345, 2012.

[86] M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial

networks,” in International Conference on Learning Representations (ICLR), April 2017.

136

[87] H. Narayanan and S. Mitter, “Sample complexity of testing the manifold hypothesis,” in Ad-

vances in Neural Information Processing Systems, pp. 1786–1794, 2010.

[88] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár, “Amortised map inference

for image super-resolution,” in International Conference on Learning Representations (ICLR),

April 2017.

[89] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier GANs,”

in Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2642–

2651, JMLR. org, 2017.

[90] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, “StackGAN: Text

to photo-realistic image synthesis with stacked generative adversarial networks,” in Proceedings

of the IEEE International Conference on Computer Vision, pp. 5907–5915, 2017.

[91] S. Reed, Z. Akata, H. Lee, and B. Schiele, “Learning deep representations of fine-grained

visual descriptions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 49–58, 2016.

[92] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv preprint

arXiv:1701.07875, 2017.

[93] H. Zhang, V. Sindagi, and V. M. Patel, “Image de-raining using a conditional generative

adversarial network,” IEEE transactions on circuits and systems for video technology, 2019.

[94] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-

nition,” arXiv preprint arXiv:1409.1556, 2014.

[95] T.-W. Hui, C. C. Loy, and X. Tang, “Depth map super-resolution by deep multi-scale guidance,”

in European conference on computer vision (ECCV), pp. 353–369, Springer, 2016.

[96] Y. Wen, B. Sheng, P. Li, W. Lin, and D. D. Feng, “Deep color guided coarse-to-fine con-

volutional network cascade for depth image super-resolution,” IEEE Transactions on Image

Processing, vol. 28, no. 2, pp. 994–1006, 2019.

[97] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consolidation of unorganized point

clouds for surface reconstruction,” ACM transactions on graphics (TOG), vol. 28, no. 5, p. 176,

2009.

137

[98] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-free projection for

geometry reconstruction,” in ACM Transactions on Graphics (TOG), vol. 26, p. 22, ACM,

2007.

[99] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang, “Edge-aware point set

resampling,” ACM transactions on graphics (TOG), vol. 32, no. 1, p. 9, 2013.

[100] S. Wu, H. Huang, M. Gong, M. Zwicker, and D. Cohen-Or, “Deep points consolidation,” ACM

Transactions on Graphics (ToG), vol. 34, no. 6, p. 176, 2015.

[101] W. Zhang, H. Jiang, Z. Yang, S. Yamakawa, K. Shimada, and L. B. Kara, “Data-driven

upsampling of point clouds,” Computer-Aided Design, vol. 112, pp. 1–13, 2019.

[102] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image

retrieval,” International journal of computer vision, vol. 40, no. 2, pp. 99–121, 2000.

[103] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3D object reconstruction

from a single image,” in Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), pp. 605–613, 2017.

[104] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,

S. Song, H. Su, et al., “ShapeNet: An information-rich 3D model repository,” arXiv preprint

arXiv:1512.03012, 2015.

[105] A. Boulch and R. Marlet, “Deep learning for robust normal estimation in unstructured point

clouds,” in Computer Graphics Forum, vol. 35, pp. 281–290, Wiley Online Library, 2016.

[106] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface reconstruction

from unorganized points, vol. 26. ACM, 1992.

[107] V. Surazhsky and C. Gotsman, “Explicit surface remeshing,” in Proceedings of the 2003 Eu-

rographics/ACM SIGGRAPH symposium on Geometry processing, pp. 20–30, Eurographics

Association, 2003.

[108] S. Torbert, Applied computer science. Springer, 2016.

[109] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree: A kernel framework for

efficient CPU ray tracing,” ACM Trans. Graph., vol. 33, pp. 143:1–143:8, July 2014.

138

[110] “VCG library.” http://vcg.isti.cnr.it/vcglib/index.html, 2004. Accessed: 2019-03-08.

[111] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical

image segmentation,” in International Conference on Medical image computing and computer-

assisted intervention, pp. 234–241, Springer, 2015.

[112] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convo-

lutional network,” CoRR, vol. abs/1505.00853, 2015.

[113] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingredient

for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[114] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from overfitting,” The Journal of Machine Learning

Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[115] C. Li and M. Wand, “Precomputed real-time texture synthesis with markovian generative

adversarial networks,” in European Conference on Computer Vision, pp. 702–716, Springer,

2016.

[116] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[117] J. Yang, Q. Zhang, B. Ni, L. Li, J. Liu, M. Zhou, and Q. Tian, “Modeling point clouds with self-

attention and gumbel subset sampling,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 3323–3332, 2019.

139

