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ABSTRACT 

 

Quantifying the Impact of Change Orders on Construction Labor Productivity 

Using System Dynamics 

Sasan Golnaraghi, Ph.D. 

Concordia University, 2019 

 

Researchers and industry practitioners agree that changes are unavoidable in construction 

projects and may become troublesome if poorly managed. One of the root causes of sub-

optimal productivity in construction projects is the number and impact of changes introduced to 

the initial scope of work during the course of project execution. In labor-intensive construction 

projects, labor costs represent a substantial percentage of the total project budget. 

Understanding labor productivity is essential to project success. If productivity is impacted by 

any reasons such as extensive changes or poor managerial policies, labor costs will increase 

over and above planned cost. The true challenge of change management is having a 

comprehensive understanding of change impacts and how these impacts can be reduced or 

prevented before they cascade forming serious problems. This thesis proposes a change 

management framework that project teams can use to quantify labor productivity losses due to 

change orders and managerial policies across all phases of construction projects. The proposed 

framework has three models; fuzzy risk-based change management, AI baseline-productivity 

estimating, and system dynamics to illustrate cause-impact relationships. These models were 

developed in five stages.  

In the first stage, the fuzzy risk-based change management (FRCM) model was developed to 

prioritize change orders in a way that only essential change orders can be targeted. In this 

stage, Fuzzy Analytic Hierarchy Process (F-AHP) and Hierarchical Fuzzy Inference System are 
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utilized to calculate relative weights of the factors considered and generate a score for each 

contemplated change. In the second stage, baseline productivity model was developed 

considering a set of environmental and operational variables. In this step, various techniques 

were used including Stepwise, Best Subset, Evolutionary Polynomial Regression (EPR), 

General Regression Neural Network (GRNN), Artificial Neural Network (ANN), Radial Basis 

Function Neural Network (RBFNN), and Adaptive Neuro Fuzzy Inference System (ANFIS) in 

order to compare results and choose the best method for producing that estimate. The selected 

method was then used in the development of a novel AI model for estimating labor productivity. 

The developed AI model is based on Radial Basis Function Neural Network (RBFNN) after 

enhancing it by raw dataset preprocessing and Particle Swarm Optimization (PSO) to extract 

significant dataset features for better generalization. The model, named PSO-RBFNN, was 

selected over other techniques based on its statistical performance and was used to estimate 

the baseline productivity values used as the initial value in the developed system dynamics (SD) 

model.  

In the fourth stage, a novel SD model was developed to examine the impact of change orders 

and different managerial decisions in response to imposed change orders on the expected 

productivity during the lifecycle of a project. In other words, the SD model is used to quantify the 

impact of change orders and related managerial decisions on excepted productivity. The SD 

model boundary was defined by clustering key variables into three categories: exogenous, 

endogenous, and excluded. The relationships among these key variables were extracted from 

the literature and experts in this domain. A holistic causal loop diagram was then developed to 

illustrate the interaction among various variables.  

In the final stage, the developed computational framework and its models were verified and 

validated through a real case study and the results show that the developed SD model 

addresses various consequences derived from a change in combination with the major 

environmental and operational variables of the project. It allows for the identification and 
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quantification of the cumulative impact of change orders on labor productivity in a timely manner 

to facilitate the decision-making process. The developed framework can be used during the 

development and execution phases of a project. The findings are expected to enhance the 

assessment of change orders, facilitate the quantification of productivity losses in construction 

projects, and help to perform critical analysis of the impact of various scope change internal and 

external variables on project time and cost. 
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1. CHAPTER ONE: INTRODUCTION 

1.1 General 

According to Statistics Canada, CAD 404 billion was invested in construction, machinery, and 

equipment in 2014; this was a slight increase of 1.4% from 2013. Of this sum, the total 

contributions of public and private investments were 89 and 315 billion dollars, respectively 

(Statistics Canada, 2014). The construction industry can be considered as one of the largest 

employment sectors, contributing a substantial amount of work to the labor market and 

accounting for a considerable share of the gross domestic product (GDP). The GDP contribution 

from construction projects in Canada reached CAD 119, 902 million dollars in April 2017 (Figure 

1.1). The graph below illustrates the construction GDP trend over the past ten years. The graph 

shows a record low of CAD 6.12 million in 1997 and the highest point of CAD 12.9 million in 

2014 (Trading Economics, 2017). 

 
Figure 1-1. GDP Construction Trend from 1997 to 2017 (Trading Economics, 2017). 

Construction projects are interesting because they are a combination of design technicality, soft 

and interpersonal management skills, business knowledge, and unique organizational 

structures, all of which represent the way people interact within projects (Ibbs and Vaughan, 

2012). Construction projects are highly dependent on skilled labor supported by a management 

team coordinating different project stakeholders whose involvement will change over the course 

of a project. Construction projects are generally fast-paced environments where owners want to 
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have the final product as soon as possible due to the value of time. This situation often leads to 

starting projects prior to having the final design. Moreover, the owners’ expectations from the 

projects change constantly because of changes in the industry and economy. Thus, these 

factors trigger the occurrence and amplify the size and the number of change orders (Hanna et 

al., 1999c).  

Change orders are an integral part of any construction project. Therefore, every construction 

contract includes clauses for managing change orders. Each change is recorded in the form of a 

change order, defined by Standard Construction Document CCDC 2 (2008) as follows: 

“a written amendment to the contract prepared by the consultant and signed by the owner and 

the contractor stating their agreement upon Change in the Work, Method of adjustment or the 

amount of the adjustment in the contract price, if any, and Extent of the adjustment in the 

contract time, if any.” Change orders are needed in order to arrive at a project as per the 

owners’ and designers’ needs. However, change orders are one of the main reasons for 

disagreements between contractors and owners. Change orders are expected to be performed 

by contractors in a timely fashion with fair compensation. It is obvious to all parties that change 

orders have a direct impact on specific tasks; however, owners neglect the ripple effect a 

change order will have on a project because it is not tangible during change order assessment. 

The direct cost of change orders is relatively easy to measure. However, contributing elements 

to change order costs, such as loss of productivity, the learning curve, and schedule conflicts, 

are more difficult to measure. Loss of productivity can be considered as one of the most 

common negative impacts of change orders and is very difficult to quantify.  

1.2. Research Motivations 

In 2015, the construction industry accounted for 7% of the GDP (Statistics Canada, 2015). The 

Canadian construction industry is therefore of central importance to the well-being of Canada’s 

economy. Although overall productivity growth was relatively unchanged in the last quarter of 

2014, the construction industry productivity trend showed a decline for the same period by -

0.7% (Statistics Canada, 2014).  

Figure 1.2 shows the labor productivity index (LPI) from 2010 to 2015 (Build Force, 2017). The 

LPI shows that the construction industry’s productivity level is higher than that of the mining, oil 

and gas, manufacturing, and business sectors. Namely, the amount of money made is more per 

person-hour than in other industries. However, it also suggests that there should be a concern if 

construction productivity levels continue to decline.  
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Figure 1-2. Labor Productivity Index, 2010-2015 (Build Force, 2017). 

Construction projects are dynamic, multi-stakeholder and-faceted in nature, and one-of-a-kind in 

terms of manufacturing production. Thus, project behaviors and outcomes are not always 

foreseeable. Contractors prepare their estimates based on the information available in contracts 

and specification documents at the time of bidding. Although owners request contractors to 

perform independent site visits and in-depth reviews of drawings and specifications, most 

contractors are not be able to do so due to limited time.  

As a project advances, changes are introduced to the project by different parties, mostly by 

owners. Project changes can be classified into two major categories: additive and deductive 

changes. Additive changes introduce a new scope to the initial scope of work, and deductive 

changes remove some segments of the initial scope. Changes that cause an increase in the 

original value of the contract are called extras, and those that cause a reduction are called 

credits (Samuels and Sanders, 2010). Regardless of their characteristics, both types of changes 

may disrupt to project progress (Ibbs, 2005). That is to say, changes may dramatically affect a 

planned project’s resources in terms of quantity and availability and may require different means 

and methods to be carried out.   

According to Schwartzkopf (2004), an increase of 5 to 10% of the total contract value should be 

anticipated in most construction projects due to additive changes. A 5 to 10% increase range in 

a 404 billion CAD dollar investment means that the direct costs of changes in 2014 were roughly 

22 to 40.4 billion CAD dollars. Changes are a constant part of any construction project. Hanna 

and et al. (2002) define change as any action that causes alterations to the initial project scope, 

delivery time, or cost of work, and as inevitable in most construction projects due to each 

project’s different characteristics and the limited resources available for planning. Lee (2007) 

defines change as “any act, incidence, or condition that makes differences to an original plan or 

what the original plan is reasonably based on.” Cushman and Myers (1999) state that changes 
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are inevitable due to the following reasons: Owner’s change requirements and/or budget 

limitations, Errors and omissions in the design, and Differing site conditions.  

However, many other factors should be taken into consideration when deciding to request 

changes to a project. It should be noted that not all requested changes are accepted (Lee, 

2007). Each project should have a proper change management system in place in which all 

changes except mandatory ones are accepted or declined based on their impact on the whole 

project. If the contractor can estimate the impact level of each requested change, s/he can then 

choose to perform only the changes with acceptable impacts; the subsequent loss of 

productivity is then calculated considering the confirmed change requests and other influencing 

factors. A change order is an official contract amendment that integrates a change into the 

original contract (Schwartzkopf, 2004). A change order may trigger a series of changes in other 

parts of the project. Changes that arise as a direct result of a requested change are called 

“Consequential changes.” Consequential changes are the outcome of a cause and effect 

domino relationship (Civitello, 1987). It is worth noting that in order to have a proper project 

change management system in place and to more precisely calculate the loss of productivity, 

consequential changes triggered by a requested change must be identified and considered 

before calculating the impact level of each requested change.  

It is noteworthy to mention that 35% of change orders are caused by Design Changes (DCs); 

thus, effective DC management is an essential element for efficient project delivery (Lee, 2007). 

BIM can provide substantial assistance in dealing with DCs due to its visualization and 

parametric modeling capabilities. Parametric modeling uses numbers and/or characteristics to 

define the behavior of a graphical object and to describe relationships among model 

components (Autodesk, 2014). As a result, parametric modeling can improve the design 

process and construction management services by refining coordination, eliminating the need 

for extra site visits, printing, and manual drawing checks. Change in a parametric element will 

cause modifications in all corresponding views and locations. Warning systems can be 

developed among a model’s components to highlight changes in any view and facilitate 

coordination (InfoComm, 2011).   

Hanna et al. (2002) state that poorly managed changes have a notably negative effect on 

project performance in terms of time and cost. Change orders may impact all project 

participants in some way. Owners and engineers may suffer from increased overall project 

costs, deviation from the agreed-upon project completion date, and uncompensated time spent 

assessing change orders. Contractors may suffer from a shortage of cash flow, delay, un-
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indemnified indirect costs, and loss of productivity. In the construction industry, the adverse 

effects of change orders on projects are widely known. However, they are difficult to quantify 

while being one of the major causes of disputes between owners, contractors, and sub-

contractors. The effects of change orders can be classified into two categories (Ibbs and 

McEniry, 2008):  

 Direct impact, that is the actual direct cost and time delay attributed to executing the 

change; and 

 Indirect impact, or the effect of a change on another unchanged scope of work.  

Quantifying direct cost and time required to execute a single change order is not difficult for 

contractors. However, precisely estimating the impact of a change on an unaffected portion of 

work is an arduous task. In order to implement a change, contractors may delay, interrupt, 

and/or execute unchanged work in a way or order different than what was initially programmed, 

which may lead to loss of productivity and increased cost (Ibbs and McEniry, 2008). 

Moselhi (1998) classifies the cost impact of change orders into two main categories for 

estimating purposes: time-related and productivity-related costs. Moselhi (1998) specifies that 

time-related costs can be quantified once a reasonable estimate of the time and cost for 

executing the work has been established. Meanwhile, productivity-related costs are challenging 

to quantify. Owners and design professionals are skeptical about approaching the issue of loss 

of productivity due to change orders, and this has increased the difficulty in estimating 

productivity-related costs. Productivity-related costs are caused by productivity losses deducted 

from the level assumed to be achievable in the baseline plan. Despite the difficulties in 

determining productivity-related costs and skeptical attitudes from owners and their agents, 

these costs are factual and could be substantial if they have to be solely absorbed by 

contractors (Moselhi, 1998). 

In order to calculate the loss of productivity, it is necessary to first define the un-impacted period 

or baseline labor productivity (BP) and identify the factors affecting construction labor 

productivity. Defining productivity in construction is not an easy task because productivity is a 

function of manageable and unmanageable factors (Ibbs et al., 2007). Productivity is defined as 

the quantitative measure of the relationship between the number of resources used and the 

quantity of output produced (Khan, 2005). Schwartzkopf (2004) defines productivity as the units 

of work completed for the units of labor used. Productivity in this research is defined as the labor 

work-hours required to produce the final product (Finke, 1997).  Productivity is a crucial element 

in determining the success and failure of any construction project. Improving productivity is not a 
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simple task due to the growing uncertainty in construction projects. Finke (1998) highlights that 

labor productivity is extremely variable, as it is determined by internal and external factors or 

conditions. Loss of productivity occurs when the actual man-hours consumed to produce the 

final product are higher than the planned man-hours. Conversely, when there is less 

accomplished work than expected, loss of productivity can be taken into account using the 

same amount of man-hours proposed in the initial estimation.  Thus, the contractor will 

experience additional costs per unit of work completed. Many factors that disrupt performance 

efficiency can affect productivity. These factors include (Schwartzkopf, 2004): Acceleration, Out 

of sequence activities, Suspension, Delays, Interference, and Change orders. 

A single factor will rarely result in loss of productivity; more frequently, multiple and concurrent 

factors, for which both parties can be held responsible, contribute to this loss (Ibbs et al., 2007). 

Therefore, it is essential that a proper method for measuring productivity loss due to change 

orders along with other influencing factors be used. This method should be able to portray 

realistic and precise relationships between multiple and concurrent influencing factors and 

policy modifications that occur during the course of a project.  As mentioned previously, change 

order ripple effect quantification is a challenging task that requires techniques and tools 

adequate in showing the contributions of change orders and management policies to loss of 

productivity.  

1.3. Problem Statement  

A high degree of uncertainty is a big part of any construction project and can result in poor 

planning, especially when accurate information is not readily and easily available. As a project’s 

scope progressively changes, the project team spends a considerable amount of time 

attempting to rectify circumstances as they occur during the course of a project (Love et al., 

2010).  Researchers and industry practitioners all agree that changes to construction projects 

are unavoidable and may become troublesome if they are not properly managed. Construction 

productivity fluctuates and is affected by several factors such as mode of employment, various 

disruptions, overall task duration, workday length, and labor composition (Khan, 2005). One of 

the root causes of productivity loss in construction projects is the number of changes introduced 

to the initial scope of work. In addition to the loss of productivity, construction project changes 

very often lead to prolonged disputes, delays in delivering the final product, and stoppages. 

Changes in a construction project pose a substantial risk for all parties; if they are poorly 

managed, they may become disagreements and reaching resolution for them will be a lengthy 

and acrimonious process. A true challenge of managing changes is the need to have a 
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comprehensive understanding of the impacts of changes and how the effects of these changes 

can be reduced or prevented before they become serious problems. Despite owners and 

contractors acknowledging the impacts of changes, a comprehensive practical change impact 

quantification method is still lacking in the current body of knowledge. Construction projects are 

highly complex due to the interdependencies between project variables and non-linear dynamic 

feedback loops. Project failure may be caused when the interaction between internal and 

external variables that affect project dynamics is neglected (Alzraiee, 2013). Accurately 

quantifying the effects of changes is indispensable to project parties and can play a significant 

role in project success or failure. Thus, possessing a sound method to illustrate the ripple effect 

of change orders accurately is beneficial to all the parties involved. The method should be able 

to demonstrate the consequences caused by change orders in combination with the managerial 

policies along with some environmental and operational factors. In other words, the result will be 

an efficient and effective framework enhanced by a robust change management system as well 

as cutting edged techniques such as Artificial Intelligence (AI) and System Dynamics (SD) 

modeling. The model will be able to accurately assess the ripple effect of changes in 

construction labor productivity during the course of the project while taking into account 

multifaceted managerial policies as well as environmental and operational influential variables.  

The dynamic nature of construction projects often causes management teams to make hasty 

decisions without necessarily first having complete insight into that decision’s negative impacts 

on other project aspects. For instance, when acceleration is requested by the owner to recover 

delays or to shorten project duration, acceleration may impact the project in different ways. 

Generally, an acceleration plan leads to the hiring of a larger workforce to increase productivity 

and thereby shorten project duration. Conversely, a larger workforce policy may cause 

congestion, which will negatively impact project productivity (Figure 1.3).  

 

Figure 1-3. Construction Project Causal Loop Diagram. 
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Love et al. (2010) state that such interactions among various factors can be illustrated by 

employing causal loop diagrams, which can clearly show the direction and type of causality 

among variables. The causal loop diagram is the foundational development block of a robust SD 

model. SD, a continuous simulation and systems thinking approach, offers the potentials and 

opportunities to develop a holistic view of a complex system. This makes it a crucial tool for 

rectifying the complications and challenges associated with quantifying the impacts of changes 

on the loss of productivity in construction projects. This research aims to improve SD modeling 

by proposing the integration of a new AI method for improving SD modeling computation 

capacity and a change management system for prioritizing elective changes as well as 

identifying considerable changes.  

1.4. Research Objectives 

The main objective of this research is to address the shortcomings associated with existing 

methods for quantifying the loss of productivity due to change order ripple effects by developing 

a computerized framework that benefits from the sustainable capabilities of SD Modeling, BIM, 

and AI techniques. The proposed framework should be able to objectively assess the loss of 

productivity claims as opposed to utilizing subjective assessment, while at the same time 

highlighting impaired productivity root causes. Also, the developed framework can be used to 

facilitate what-if analysis to determine how a project will react to different managerial policy 

states. To achieve the main objective, several sub-objectives were considered:  

1. Study various aspects of construction change orders with emphasis on their types, 

causes, cumulative (ripple) impacts on productivity and current methods available for 

change order impact quantification and their limitations; 

2. Study various aspects of construction labor productivity with an emphasis on productivity 

loss, factors significantly affecting labor productivity, and the techniques available for 

measuring productivity and loss of productivity; 

3. Study current productivity modeling with emphasis on the application of AI and Statistical 

Regression Modeling in the construction industry; 

4. Study continuous simulation modeling in the construction industry and labor productivity; 

5. Study contemporary BIM-based change management practices to develop a better 

understanding of existing methods for considering consequential changes; 

6. Develop a Fuzzy Risk-based Change Management (FRCM), which includes two main 

modules, namely “Fuzzy-based Risk Ranking System (FRR)” and “BIM model.” 
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The first stage prioritized change orders so that only essential changes would be targeted using 

FRR. The second stage employed BIM capabilities to capture the consequential changes that 

may arise from the initial requested change(s). The first two steps were integrated into the 

FRCM. The third step was to estimate baseline productivity considering environmental and 

operational variables. In this step, various techniques were used including STR, BSR, EPR, 

GRNN, ANN, RBFNN, and ANFIS to compare their results and choose the best method for 

estimating baseline productivity as the BP. Based on the statistical performance indicators of 

the applied techniques and by benefiting from the most proper ones, a novel AI technique 

(PSO-RBFNN) was proposed and developed to predict BP more precisely. This step allows the 

BP value to be estimated and used as the initial value for the proposed SD model. The fourth 

stage was the development of a causal loop diagram determining the influential variables in the 

proposed SD model. This stage assists in recognizing those variables that need to be modeled 

and assessed within the next stage. In the fifth stage, a holistic quantitative SD model was 

developed to quantify the impact of change orders and different managerial decisions in 

response to imposed change orders on baseline productivity. Change orders and management 

policies in response to change orders cannot be assessed individually; they must be considered 

in relation to each other and other variables, and a system thinking approach is needed in order 

to develop a comprehensive view of a dynamic and complex system of change orders. To 

quantify the loss of productivity and simultaneously escape mathematical complexity, given 

operational levels with too many details and a tremendous number of equations showing the 

interrelationships among variables, only change orders and different managerial policies were 

considered in the SD modeling. Furthermore, only operational and environmental factors such 

as temperature, work type, gang size, etc. were considered for estimating and quantify BP using 

the proposed PSO-RBFNN technique and historical data. By classifying key variables into three 

categories: exogenous, endogens, and excluded, the SD model boundary for quantifying the 

impact of a change order was defined. The relationships among key variables were extracted 

from the literature in this domain. To illustrate various variable interactions, a holistic causal loop 

diagram was developed. The proposed model offers a continuous simulation and systems 

thinking the approach for developing a view of a dynamic and complex system. It attempts to 

rectify the complications and challenges associated with quantifying change impact on labor 

productivity loss in construction projects. Phase III included data collection from a real 

construction industry case study. In this phase, all the components were tested against a real 

case study for proposed model validation. Phase IV discussed the limitations associated with 

the proposed model and highlighting areas for possible improvements.  
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1.6. Organization of thesis 

The dissertation is divided into eight chapters as follows. Chapter 2 presents a broad 

comprehensive literature review of change orders, including definitions, types, and causes of 

change orders, cumulative impacts, and influence on construction labor productivity as well as 

other related matters. Chapter 3 presents the methodology followed in research and a 

description of the development in each of its five phases. Chapter 4 explains in detail the 

proposed FRCM model including an FRR for prioritizing the changes and the adoption of a BIM-

based model for identifying consequential changes.  Chapter 5 explores two major technique 

categories for modeling labor productivity: Statistical Regression Modeling and AI based 

models. Based on the obtained performance of each technique to predict baseline labor 

productivity, the best techniques are selected and by benefiting from the obtained performance, 

a novel model (PSO-RBFNN) is developed and proposed to predicate the labor productivity 

more precisely. Chapter 6 covers the development of a holistic SD model designed to 

understand the complex behavior of construction projects at a strategic level over time through 

causal loops and stock-flow diagram. In Chapter 7, major components of the developed 

framework are validated by using a real case study information. Chapter 8 highlights the 

expected contributions of the research and limitations of the developed model.  
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2. CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

Changes in construction projects may cause serious disagreement between key project parties, 

client, and contractor. In construction projects, often, the magnitude of a change order is not 

uniform, or the scope of a change is not clear to all project parties; thus, these situations may 

cause delays in reaching an agreement on the resources and time required to perform a 

change. In addition, lack of awareness and knowledge in regards to the cumulative impact of 

changes in construction projects among most construction practitioners will amplify difficulties 

associated with managing changes in the construction industry.  For example, quantifying the 

loss of productivity as a result of change orders in the construction industry has been a 

challenging task, and it requires many subjective assumptions. Lee (2007) classified 

construction labor productivity studies into two major categories: (a) those focused on factors 

affecting productivity, and (b) those focused on the quantification of productivity loss due to 

certain factors or change orders. Although many scholars have made significant advances in 

the identification of factors, these studies lack consistency in naming factors, and their scope is 

poorly defined (Hafze et al., 2014; Moselhi and Khan, 2010; Moselhi and Khan, 2012; Jarkas 

and Bitar, 2012; Dai et al., 2009). The focus of the second group is mainly on a single factor and 

its effects on productivity loss, neglecting the interdependencies among factors and concurrency 

of other factors (Hanna et al., 2008; Hanna et al., 2004; Moselhi et al., 1997; Thomas, 1992; 

Abele, 1986, Thomas and Yiakoumis, 1986, Golnaraghi et al., 2018).  This group also suffers 

from data unreliability, unclear processes, and subjective assessment; therefore, their models 

are regarded as “black boxes” and appositeness (Lee, 2007). Meanwhile, Yitmen et al. (2006) 

classified researches on change order impact on labor productivity into two major groups: (a) 

studies focused on the execution phase or design and execution phases such as Moselhi et al. 

(1991a, 1998) and Leonard (1988) and (b) studies covering specific trades, such as electrical or 

mechanical work (Hanna et al., 1999a and Hanna et al., 1999b).  This chapter is divided into 

two major sections. The first section covers the concepts and the background to change and 

productivity in the construction industry. The descriptions of major terms and concepts in the 

industry such as productivity, efficiency, performance, and change are explained more in-depth 

here. The second section focuses on the concepts related to the tools and techniques for 

measuring the loss of productivity and sets the background. The first part of the chapter offers 

background on change and productivity in three main sections. Section 2.1 is a general 

overview of change and productivity concepts in the construction industry. Section 2.2 covers 
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the concept of change in construction more in-depth and covers type of changes, causes of 

changes, change impacts, cost components of changes, pricing methods, the timing of 

changes, disruption and changes, to end with change management. Section 2.3 focuses on 

productivity in the construction industry. It starts with the definition of construction labor 

productivity and is followed by how productivity is measured, factors affecting productivity, loss 

of productivity, and techniques for measuring the loss of productivity. The second part of the 

chapter includes four major sections related to the tools and techniques used in this research. 

Section 2.4 covers the definition and background of SD and its application in project 

management. Section 2.5 introduces the concept of ANNs and different type of ANNs. Section 

2.6 covers BIM and its application in change management systems. This chapter ends with 

findings, limitations, and gaps in the body of knowledge. 

2.2 Change in Construction     

As a project progresses, its scope may change due to many obvious and clear causes. Change 

unquestionably takes place during the course of a project regardless of size or complexity.  The 

Construction Industry Institute (CII, 2000) defines change as “any event which results in a 

modification of the original scope, execution time, or cost of work being inevitable on most 

construction projects due to the uniqueness of each project and the limited resources of time 

and money available for planning.” A survey conducted to identify major causes of delay for 

mega projects in Saudi Arabia by Assaf and Al-Hejji (2006) showed that only one cause of delay 

is common among all project parties (client, contractor, and consultant), changes imposed by 

the client during the construction phase. Figure 2.1 illustrates the different phases of a 

construction project and how changes can be incorporated into a contract. Changes are 

integrated into a contract using addenda prior to the bid-opening phase. During the bid-opening, 

and until the agreement has been signed, known as the bid-opening period, no changes are 

allowed. After the contract has been signed, any change orders need to be integrated into the 

contract through a change order process as outlined in the contract (Fisk and Reynolds, 2013). 

A change order is a written agreement signed by project parties. It authorizes the contractor to 

affect a modification in the terms of the contract. It should be noted that a change order does 

not always increase contract value; it is possible for a change to be in the form of credit or for 

there to be no cost increase at all. Despite the fact that change orders should always be written 

agreements, enforced by change management clauses in any construction contract, oral 

change orders are very common in construction projects.  Client and contractor action or 

inaction can waive the written change order obligation, a risky approach to managing changes.  
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Figure 2-1. Timeline of Changes by Addenda vs. Change Order (Fisk & Reynolds, 2013). 

Moselhi et al., 2005 found that clients and contractors face serious challenges due to change 

orders. However, change orders are an essential means to satisfy clients’ requirements as well 

to effectively solve issues caused by errors and omissions, construction techniques, and 

inaccurate contract documents. A change order can be classified into one of three groups 

(Hanna et al., 1999a): 1) An addition, deletion, or revision in the original scope of work; 2) A 

modification in the contract value, if any; and 3) A modification in the contract duration, if any. It 

is worth mentioning that change orders are legally enforceable in court. The different types of 

change orders will be explained in more detail in the following sections.     

2.2.1 Types of Changes 

Change orders are classified under one of seven distinct major categories that fall into the 

following categories: 

1. Bilateral Changes: The client may order a change at any time during the course of a project.  

Prior to introducing a change, the client requests the contractor to provide an estimate of the 

cost and time impact of said change. Based on the contractor’s response, the client will decide 

to initiate that change or not (Callahan, 2005). According to Civitello (1987), client-

acknowledged change orders (bilateral change orders) are the only type of changes to be 

incorporated in the client’s budget and this type is the least disputed. However, many clients 

and consultants fail to recognize or entirely reject the consequential impacts of change orders; 

instead, they simply accuse the contractors of poor planning and poor performance. 

Consequential impact costs are usually left to be absorbed by contractors or to be recovered 

through litigation, if possible.  

2. Constructive Changes: A constructive change order occurs when the clients’ or their 

representatives’ actions or inactions force the contractors to perform extra work. Gusman (1973) 

classifies constructive changes into three broad groups as follows: 1) Deficiency in drawings or 

specifications. This group forces contractors to perform extra work; 2) Contract 

misinterpretation, such as requiring a higher standard. This may cause contractors to perform 

extra work, and 3) Neglecting a valid time extension by client thereby forcing the contractor to 

meet the original baseline schedule. These cause extra costs to contractors. It is very common 
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for clients to reject or not acknowledge constructive changes. Therefore, there are usually no 

change orders for these types of changes. It is highly recommended that the contractor take the 

necessary steps to document all the events and facts that create the need for constructive 

changes; in doing so, the contractor may be able to secure compensation for constructive 

changes (Civitello, 1987).   

3. Unilateral Changes: Unilateral changes are those changes where the client requires a 

contractor to perform directed changes. Unilateral change clauses can be found in most change 

clauses. The contractor is bound by the contract to perform these changes, regardless of 

whether or not the clients have agreed to the reimbursement or if the contractor is willing to do 

it. Despite the fact that disagreement exists in any project, the clause covering unilateral 

changes is essential to the client because it allows the client to stay in charge of a project as it 

nears completion.  Clients usually include contract provisions that specify the contractor shall 

immediately comply with such directives (Richter and Mitchell, 1982).  

4. Cardinal Changes: A cardinal change is one where a client introduces excessive changes to 

a project, beyond the initial scope agreed upon at contracting phase. It should be noted that 

change procedures and costing do not include a formula to compensate for the cost of this type 

of change. Increased cost due to cardinal changes may be possible to compensate for in terms 

of quantum merit (Silberman, 2002). The concept of cardinal changes is often applied in cases 

of design defects that result in extreme changes to a project. Change magnitude and quality are 

major factors to consider when evaluating if a change is cardinal (Kuprenas, 1988). A cardinal 

change is considered a breach of contract by the client and may occur at several 

circumstances. One situation is when a client directs their contractor to perform a change 

outside of the scope agreed upon in the contract. Another is when a client introduces various or 

radical changes that cause the project to divert substantially from what was agreed upon during 

the contracting phase (Hanna and Swanson, 2007). Callahan (2005) states that the definition of 

a cardinal change may fall under one or a combination of circumstances: 1) A prolonged project 

duration compared to the initial time agreed to in project contract; 2) Higher costs for securing 

raw material; 3) Different materials are required based on the client’s post-contract 

requirements; 4) Changes in equipment or tool requirements; 5) Greater labor demands or more 

skilled laborer requirements than those projected; 6) A considerable increase in the size of the 

project; and 7) A significant increase in the quantity of items to be produced. Because a cardinal 

change is considered a breach of contract caused by the client, contractors may be released 

from their obligations as stated in the contract and allowed to be compensated for labor, 
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material, and equipment costs incurred by the project, including reasonable markup and profit 

(Callahan, 2005).   

5. Consequential Changes: Consequential changes occur as a direct result of other changes. 

In other words, they are the outcome of a domino relationship between cause and effect. The 

cost components of consequential changes are direct costs of changes, costs associated with 

rework, resequencing, etc., and impact costs (Civitello, 1987).  

6. Deductive Changes:  This type of change is under the sole control of the client. Change 

clauses usually allow the client to remove a portion of the project scope, an action known as a 

deductive change. There are several problems associated with deductive changes. First, the 

change should be limited to those changes that fall under the scope of the work as agreed to in 

the contract. Therefore, a deductive change cannot be assessed by the same principle. 

Secondly, a deductive change may be considered a violation of the obligation of good faith 

because a deductive change will affect a contractor’s profit. Finally, a deductive change may be 

considered a breach of contract if a solid explanation is not forthcoming. If a client wishes to 

delete a portion of the pre-agreed upon work, it is recommended that the client provide sound 

and concrete reasons or at least act in good faith (Sweet and Schneier, 2012).    

7. Discretionary and Mandatory Changes: Diekmann and Nelson (1985) classified changes 

into two broad groups: discretionary and mandatory changes. Discretionary changes are those 

caused by an omission in the initial scope’s definition or a variation in the owner’s requirements 

and new regulations or statues cause mandatory changes.   

2.2.2 Causes of Changes 

The causes of changes are actions and situations that contribute to or initiate a change in 

construction projects. Sun and Meng (2009) classified causes of changes into five categories: 

project-related, client-related, design-related, contractor-related, and external factors (Table 

2.1). Sun and Meng explain each category as follows: project-related causes and client-related 

causes.In project-related causes, the uniqueness and often the complex character of 

construction projects increases the probability of changes occurring during the course of a 

project.   

Client-related causes are triggered by deviation from the client’s initial requirements and 

standards and are very common, particularly in the design stage. Unrealistic contract durations 

imposed by clients, client-initiated variations, and requirement changes are the most common 

client-related causes of change. In design-related causes, a major contributor is a human error. 

Design errors and omissions are caused by architects and engineers (A/E).  
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Table 2-1. Causes of Changes Taxonomy (Sun and Meng, 2009). 

  Chan and Kumaraswamy, 1997 Hsieh et al., 2004 Wu et al., 2004 
P
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d

 

 Project construction 
complexity 

 Site safety 
considerations 

 Site restrictions 

 Very slow decision-making 
involving all project teams 

 Site security 
considerations 

 Delays in securing 
the site, equipment, 
or materials 

 Lack of communication 
between client, consultant, 
and contractor 

 Safety facilities 
reinforcement  

 Slow and/or incomplete 
information flow between 
project team members 

 Project complexity 
 

C
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n

t-
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d
 

 Client-initiated variations 
 

 Required changes 

 Unrealistic contract durations 
imposed by the client   

D
e
s

ig
n

-r
e
la

te
d

 

 Required work variations 
 Defects in design and 

planning 

 Design changes in 
response to site 
conditions 

 Design information delay 
 Errors and omissions in 

quantity estimations 

 Erroneous or 
incomplete design 
information 

 Long waiting time for the 
approval of drawings 

 Inconsistency between 
drawings and site 
conditions 

 Insufficient site 
investigation prior to 
design 

 Mistakes and discrepancies 
in design documents 

 Inadequate 
specifications 

  

C
o

n
tr

a
c

to
r-

re
la

te
d

 

 Poor site management and 
supervision 

 Inadequate planning 
 Changes in 

construction 
methods 

 Inadequate managerial skills 
 Lack of contractor 

experience 
 Poor workmanship 

 Improper control over site 
resource allocation  

 Poor scheduling 

 Inadequate contractor 
experience  

  

 Contractor deficiencies in 
planning/ scheduling the 
preconstruction stage 

 
  

E
x

te
rn

a
l 

fa
c
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rs

  Unforeseen ground 
conditions 

 Unforeseen site 
conditions 

 Legislative or policy 
changes 

   Regulation changes  Political pressure 

  
 Change in the decision-

making authority 
 Natural disasters 

 
 Unpredictable 
 weather conditions 

 Unexpected 
geological 
conditions 

 

Long waiting times for approval of drawings, citation of inadequate specifications, and design 

changes in response to site conditions are very common in this category. In contractor-related 

causes involving medium- and large-sized projects, general contractors are responsible for 

planning and managing the whole process. Poor planning and lack of management skills are the 

main causes of project change and poor performance. Poor workmanship and lack of 
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economic conditions, sociocultural factors, and any other unforeseen problems (Keane 

et al., 2010).    

Table 2-2. Change Causes (Kean et al., 2010). 

Client-related Causes 
Consultant-related 
Causes 

Contractor-related 
Causes 

(Non) party-related 
Causes 

Change of plans or scope 
(CII, 1990b) 

Change in design (Arain et 
al., 2004; Fisk and 
Reynolds, 2013) 

Lack of involvement 
in design (Arain et 
al., 2004) 

Weather conditions 
(Fisk and Reynolds, 
2013; O’Brien, 1998) 

Insufficient planning at the project 
definition stage or lack of 
involvement of the owner in the 
design phase (Arain et al., 2004) 

Errors and omissions 
(Arain et al., 2004) 

Unavailability of 
equipment (O’Brien, 
1998) 

Safety considerations 
(Clough et al. 2015) 

Owners’ financial problems 
(Clough et al. 2015; O’Brien, 
1998) 

Conflicts among contract 
documents (Ibbs et al., 
1986) 

Skills shortage 
(Arain et al., 2004) 

Change in economic 
conditions 
(Fisk and Reynolds, 
2013) 

Inadequate project objectives 
(Ibbs and Allen, 1995) 

Technology change 
(CII, 1994b) 

Financial problems 
(Thomas and 
Napolitan, 1995) 

Sociocultural factors   
(O’Brien, 1998) 

Replacement of materials/ 
procedures (Chappell and Willis, 
2013) 

Value engineering 
(Dell’Isola,1966) 

Desired profitability 
(O’Brien, 1998) 

Unforeseen problems 
(Clough et al. 2015; 
O’Brien, 1998) 

Lack of a prompt decision-making 
process (Sanvido et al., 1992; 
Gray and Hughes, 2001) 

Poor coordination 
(Arain et al., 2004) 

Differing site 
conditions; poor 
workmanship (Fisk 
and Reynolds, 2013; 
O’Brien, 1998) 

 

Obstinate nature of the owner 
(Wang, 2000; Arain et al., 2004) 

Design complexity (Arain 
et al., 2004; Fisk and 
Reynolds, 2013) 

Fast-track 
construction (Fisk 
and Reynolds, 2013) 

 

Change in specifications by owner 
 (O’Brien,1998) 

Poor working drawing 
details (Geok, 2002; Arain 
et al., 2004) 

Poor procurement 
process 
(Fisk and Reynolds, 
2013) 

 

 

Poor knowledge of 
available materials (Geok, 
2002) 

Lack of 
communication 
(Arain et al., 2004) 

 

 
Lack of required data 
(Arain, 2002) 

Lack of experience 
 

 
Ambiguous design details 
(O’Brien, 1998) 

Long-lead 
procurement (Fisk 
and Reynolds, 2013) 

 

 

Poor design 
(CII, 1990a; Fisk and 
Reynolds, 2013) 

Complex design and 
technology 
(Arain, 2002) 

 

 
Change in specifications 
(O’Brien,1998) 

Lack of strategic 
planning (Clough et 
al. 2015) 

 

Based on the analysis of the abovementioned causes, Kean et al. (2010) suggested that the 

quality of consultancy services and securing financial resources are topmost factors for the 

client in the contracting phase. The client’s approach towards the other parties also has a real 
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effect on change causes. Non-party related causes should not be neglected when considering 

risk in the contracting phase. Regardless of the causes of changes, almost all changes have 

something in common: project performance disruption. Time and cost impacts are the frequent 

direct result of poorly managed changes.  

2.2.3 Change Order Impacts 

Change orders are an essential tool for clients when managing their project, uniting their goal of 

successful project completion and rectifying unfavorable situations that may arise due to errors 

and/or omissions in the design, construction methods, or contract documents. However, change 

orders pose a negative impact on major construction project aspects such as productivity, as 

well as causing cost overruns and costly disputes (Moselhi et al., 2005). An imposed change 

may severely affect a project and jeopardize its success. The impact of any change may be 

direct or indirect and may lead to loss of productivity. The impacts of change orders on a project 

are known to industry professionals, but their quantification is not a straightforward process. The 

impacts of change orders are not only the direct costs of the additional resources required 

performing the change but also how the change interrupts the flow of unchanged work. This 

phenomenon is called the cumulative impact of change orders. The chief element of a 

cumulative impact is the effect of change orders on unchanged work. It is worth mentioning that 

the impacts of change orders are considered the cost effect on the changed and unchanged 

scope of work. A common practice in the construction industry is that clients request information 

about the cost impacts associated with any proposed changes in advance in order to decide 

whether to allow these changes or not. Contractors generally try to claim impact costs based on 

a lump sum calculation submitted upon completion of the project. This lump sum is calculated 

based on a more universal assumption of cost because impact costs cannot be isolated for a 

specific change or be estimated ahead of time due to the interdependencies of construction 

activities (Moselhi et al., 1991). The interaction among changed and unchanged components of 

work produces a synergistic impact cost that is greater than the impact cost of each individual 

change when assessed independently. Table 2.3, developed by Sun and Meng (2009), 

summarizes the change effects proposed by Manzoor Arain and Pheng (2005), Hanna (1995 

and 2005), and Bower (2000). Before explaining how the impact of change orders is quantified, 

it is important to first understand cost components and change order pricing techniques.  

2.2.4 Timing of Changes 

Although change is a tool for managing project time and cost more effectively throughout its 

course, mismanaged changes may increase the cost of projects and cause lengthy delays. 
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Change may affect many aspects of a project and become a serious and expensive problem for 

project parties. According to Ibbs (2005), one change characteristic that has not been 

adequately scrutinized is the issue of a change’s timing. Ibbs et al. (2001) state that the timing 

of a change is a key factor in determining, if a change will be favorable or unfavorable to a 

project. A suggestion at an early phase of a project’s life cycle may be beneficial, but the same 

suggestion later in the project may have a severe negative impact on cost and schedule. 

Changes issued when less than 10% of a project’s physical progress has been completed tend 

to have a less negative impact than changes in later phases. 

Table 2-3. Summary of Change Effects (Sun and Meng, 2009). 

 
Arain and Pheng Hanna Bower 

Time-related 

Delay in payment Time extension 
Time lost in stopping and 

restarting 
Material and equipment 

procurement delay 
Overtime Rework 

Logistics delay Rework 
Standing time for 
subcontractors 

Rework and demolition Re-planning 
 

Completion delay 
  

Cost-related 

Increased costs Increased costs Loss of earnings 

Increased overheads Adjustment in crew makeup 
Increased time- and material-

related charges 

Additional payments to the 
contractor 

Overtime costs Increased overheads 

 
Compensation Change in cash flow 

Productivity-
related 

Productivity degradation Schedule compression Reprogramming 

 
Out-of-sequence work Loss of rhythm 

 
Trade stacking Unbalanced gangs 

 
Over manning 

 
 

Loss of learning curve 
 

 
Multiple-shift work 

 

Risk-related 

Affected progress Acceleration Acceleration 

 
Interruption Loss of float 

 
Interference Increased sensitivity to delay 

 
Site congestion 

 

Other effects 

Poor professional relations Co-ordination problems 
Revision to project reports 

and documents 

Claims and disputes Less-qualified labor Winter working 

Poor safety conditions Loss of morale 
 

Quality degradation 
  

Damage to reputation 
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Ibbs (2005) studied 162 disputed and non-disputed projects from 93 different entities and 

measured change in absolute terms, meaning that a project’s deductive and additive changes 

were treated the same regardless of their signs. The reason for using an absolute term was that 

deductive changes, just like additive change, have the potential to affect project productivity, as 

(Equation 2.1) demonstrates:  

|𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒| = {−𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒, 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 < 0𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒, 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶ℎ𝑛𝑎𝑔𝑒 > 0                              𝐸𝑞𝑢𝑖𝑡𝑖𝑜𝑛 2.1 

Ibbs (2005) concluded that late changes were more detrimental to productivity than early 

changes. In fact, he found that late changes often resulted in a productivity ratio of less than 

1.00, a substandard rate. Later changes have a more a detrimental impact on a construction 

project since later phases are difficult to re-plan and re-schedule, resulting in the substantial 

additional rework because the project characteristics and settings have changed. Thus, with late 

changes, the advantage of the learning curve is lost and inefficiency will occur (Hanna et al., 

1999a).  Hanna et al. (1999b) proposed that the effect of a change timing on project productivity 

has a linear characteristic from inception to completion. This assumption has a major drawback; 

it neglects the ripple effect of change orders on the remaining unchanged work (Moselhi et al., 

2005). To overcome this drawback, Moselhi et al. (2005) performed an in-depth study of 33 

construction projects in the United States (US) and Canada. The first step was to plot the direct 

filed labor (DFL) hours that represent the utilization of DFL hours over the construction phases 

(Figure 2.2). In all 33 cases, the construction project durations were divided into five equal 

periods and the DFL man-hours ratio calculated for each period to show the value of the scope 

of the work expressed in man-hours. Moselhi et al. (2005) introduced a new parameter, the 

timing impact of change orders (TPi). The TPi is calculated as follows (Equation 2.2):   𝑇𝑃𝑖 = 𝐻𝐶𝑂𝑖𝑃𝐻𝑖                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2 

Where TPi is the timing impact of change orders in period i, HCOi is the actual change order 

hours during the period i, Phi is the planned hours during the period i; and i is the period when 

the change order occurs (i= 1 to 5). 

Moselhi et al. (2005) proposed that a new parameter can consider the combined impact of two 

factors: (a) the timing of a change order and (b) the magnitude of the change orders in each 

period. A prototype NN was developed to measure productivity loss by incorporating TP_i, the 

type of work (TW), and the type of impact (TI), which is either a single change order or change 

orders and one or two additional causes of productivity-related issues. In summary, “When 

evaluating change orders, regardless of their cause, the most significant factor is when the 
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change occurs” (Coffman, 1997). Although changes in the early stages of a project are less 

detrimental to project success, those changes have substantial and often unanticipated impacts 

on later project states. Thus, changes should be managed in a timely fashion to avoid their 

costly impact later in a project (Ibbs, 1997; Ibbs, 2012).    

 
Figure 2-2. Direct Manpower Loading for Analyzed Cases (Moselhi et al., 2005). 

2.2.5 Disruption and Changes 

The construction industry still faces a serious challenge in being able to identify the scope or 

magnitude of change-caused disruptions at the activity and project level. This challenge 

weakens contractors’ position in negotiating change orders, making it difficult for contractors to 

take all the necessary measures to mitigate the disruptive effects of change orders (Finke, 

1998), increasing the probability of change orders turning into claims and disputes.  

Disruption can be defined as loss of productivity, disturbances, the need for rework, idle or 

downtime caused by a lack of tools or equipment or any other reason, and interruption to the 

original work or planned construction methods causing inefficiencies (Thomas and Napolitan, 

1995). Disruption may be easily overlooked because there is no variation in the planned 

quantities or in the initial scope of the interrupted work, and the interrupted work is still utilizing 

the planned resources, means, and techniques. It should be taken into account that unchanged 

work includes the initial work scope and changes introduced previously and/or simultaneously to 

the specific change being scrutinized (Finke, 1998).  To better understand the concept of 

disruption, a disruption scenario adapted from Lee (2007) was built into Figure 2.3 to 

demonstrate how a delay in response by the client can cause different types of disruptions, such 

as congestion, errors, stop and go operations, and rework that may cause a loss of productivity. 

A full description of the example can be found in Lee’s (2007) doctoral dissertation, University of 

California, Berkeley.  As previously discussed, changes should be managed in a timely fashion 

to mitigate associated disruptions. If managers take appropriate action, a project can get back 
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course of a project.  Change management is closely tied to all project processes and functions 

that are subject to change: scope, time, cost, quality, risk, contract, resources, tools and 

techniques, schedule, and other key integrative processes (Voropajev, 1998).   

Ibbs et al. (2001) proposed a holistic project change management system (CMS) that has two 

levels, one for principles and another for the management process. Ibbs et al.’s CMS focuses 

on the first level and is structured on the following principles, applied in successive steps:  

I. Support a balanced change culture: Communication and documentation are the basic 

principles of change management. At this stage, project success factors should be 

communicated and documented among all project parties. Two concepts are introduced 

to the project team: beneficial changes and detrimental changes. It should be noted that 

the timing of a change is very important, as it can transform a beneficial change into a 

detrimental one (and vice versa) (Ibbs et al., 2001);   

II. Identify changes: The second step in effective change management is to identify 

changes in a timely fashion. Early identification makes it easier to manage changes and 

the earlier a change occurs in the course of a project, the easier it is to mitigate and 

manage its effects. As with the previous principle, good communications and proper 

documentation are very important. The project team members decide whether changes 

are “required” or “elective” (Ibbs et al., 2001);   

III. Assess each change: CMS must assess each change, i.e., a management team should 

decide to either accept or execute a change or reject it. The management team needs to 

rapidly assess high priority (required) changes to avoid costly delays. At this stage, the 

elective changes should be further analyzed to determine if they offer a considerable 

benefit to the project (Ibbs et al., 2001);    

IV. Implement changes: Implementing and tracking changes are the key reasons to have a 

change management system in place. This step requires the continuous monitoring of 

each change’s implementation. This monitoring allows the project team members to 

rectify any other problems that occur after executing a particular change (Ibbs et al., 

2001); and 

V. Assure continuous improvement: Last but not least, this principle ensures learning from 

the errors and events caused by changes.  The main purpose of this stage is to 

determine the root causes in order to enact corrective measures to rectify errors and 

reduce the need for similar changes in the future (Ibbs et al., 2001).  
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In order to integrate errors into a change management system, Lee and Pena-Mora (2005) 

developed an SD model to illustrate the error feedback processes. Their proposed method 

shows that SD can provide a holistic view of complex systems and highlight which strategies 

should be adopted to improve project performance.  

Motawa et al. (2007) developed an integrated change management system to show the major 

decisions required to execute changes and to mimic the iterative cycles of concurrent design 

and construction that arise from unforeseeable changes and their associated impacts. The 

system was developed by incorporating a fuzzy logic-based change forecasting model 

associated with SD, called Dynamic Planning and control Methodology (DPM). Their proposed 

system can be utilized for: (a) robust planning and control actions, (b) improved understanding 

of the dynamic nature of change impact feedback loops, (c) considering a reasonable allowance 

for prospective changes in a project’s planning phase, (d) identifying the cause and effect 

interactions of change events, and (e) studying the impact of change on project key parameters. 

Similar to many SD models in the literature, this system requires a more detailed study to 

establish sound mathematical relationships among project variables.   

Zou and Lee (2008) scrutinized the relationship between change management practices and 

cost performance. Using data extracted from the CII Benchmarking and Metrics database, they 

performed statistical analysis (one-way ANOVA) to highlight the efficiency of individual change 

management approach components in controlling project cost. They used linear regression 

analysis to investigate the overall usefulness of change management practices in controlling 

project change cost. Their results show that individual change management practice elements 

have different levels of leverage in helping to control project change cost. In addition, they found 

that using change management practices is truly helpful in lowering the proportion of change 

cost in project actual cost. Projects with a prepared contingency plan for critical changes, a 

systematic change justification procedure, and clear clauses in their contract on how to handle 

changes appear to have a very low chance of experiencing a significant change in planned cost 

compared to the actual project cost. Furthermore, projects typically do better in terms of project 

change cost performance when their changes are assessed against a project’s business drivers 

and success criteria. Sun et al. (2006) developed a change management tool kit that can 

provide a standard framework for supporting change management in construction projects. 

Their proposed model deals with important aspects of change management, forecasting 

change, and responding to change by rearranging workflows. However, their model has some 

shortcomings, listed below (Sun et al., 2006): 1) Additional validation trials are required prior to 

its adoption in real cases; 2) The proposed tool is not fully automatic and it requires manual user 
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input and thus increases the likelihood of human error, and 3) The proposed tool suffers from a 

lack of integration between workflow and a prediction tool.  

2.3 Construction Productivity 

The Association for the Advancement of Cost Engineering (AACE, 2004a) defines productivity 

as “a relative measure of labor efficiency, either good or bad when compared to an established 

base or norm.” Construction labor productivity is one of the most researched topics because of 

the construction industry’s substantial contribution to overall economic health. Construction 

labor productivity is also considered a good indicator for evaluating project success or failure. In 

other words, construction labor productivity has significant effects on not only the economic 

conditions of the construction industry but is also a major player in the larger economy. 

Construction labor productivity is a true reflection of the financial success of a project. The 

efforts to measure productivity loss in construction projects has led to an array of productivity 

terminology, significant discussions regarding productivity and project performance, and the 

discovery of a considerable amount of external and internal productivity factors that affect a 

construction project’s lifecycle.  

Unlike other industries, the US Bureau of Labor Statistics (BLS) is not able to publish 

productivity indices for the construction industry due to a lack of “suitable data” (Allmon et al., 

2000). The following sections offer some background information regarding productivity, 

productivity measurement techniques, factors affecting productivity, performance, loss of 

productivity, and measuring the loss of productivity with respect to the abovementioned 

concerns.   

2.3.1 Definition of Construction Labor Productivity 

Productivity is a delicate aspect of any construction projects. The Oxford Dictionary defines 

productivity as “the state or quality of being productive” or “the effectiveness of productive effort, 

especially in industry, as measured in terms of the rate of output per unit of input” (Oxford 

Dictionary, 2015). Three key elements of the concept of productivity are indicated in the 

following definitions (Yi and Chan, 2014): The state or quality of being productive is the strength 

behind construction; Effectiveness is the degree to which productive effort is utilized efficiently in 

constructing a preferred result; and Rate is a measure of output against input over a finite time 

interval. Unquestionably, the definition of productivity in construction can cause some confusion 

because of the various different ways to define it.  Strictly speaking, productivity is a component 

of cost and not a tool for measuring cost. It is not a method for estimating the cost of resources 

but is instead a quantitative assessment of the correlation among the amount of resources used 

http://www.oxforddictionaries.com/definition/english/effectiveness#effectiveness__2
http://www.oxforddictionaries.com/definition/english/productive#productive__2
http://www.oxforddictionaries.com/definition/english/output#output__2
http://www.oxforddictionaries.com/definition/english/input#input__2
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and the amount of output made (Khan, 2005). Consequently, productivity in construction is 

considered as a measure of output that is achieved by a combination of inputs. By considering 

this perspective, two concepts of measuring productivity have been summarized (Yi and Chan, 

2014): 

I. Total Factor Productivity (Equation 2.3): This is the most common measurement 

technique of construction productivity. The output is measured against all inputs, as 

shown in Figure 2.6 (Goodrum and Haas, 2002). Total Factor productivity is a very 

advantageous economic model for developing the strategy and assessing the state of 

the economy; however, it is not beneficial to contractors (Park, 2006; Thomas et. al., 

1990). It is calculated as:   𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦= 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑂𝑢𝑝𝑢𝑡(𝑢𝑛𝑖𝑡𝑠)𝐿𝑎𝑏𝑜𝑟(𝑆) + 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙(𝑆) + 𝐹𝑖𝑥𝑒𝑑 𝐶𝑎𝑝𝑡𝑖𝑎𝑙 ($)                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3 

    Where 

a. Circulating Capital: Any kind of capital that will be depleted during the course 

of a project, such as material and operating expenses, and  

b. Fixed Capital: This refers to any kind of capital that is not exhausted during the 

course of a project. 

II. Partial Factor Productivity (Equation 2.4): This is referred to as single factor 

productivity, in which output is measured against a single input or selected inputs and 

calculated as:  𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦= 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑂𝑢𝑝𝑢𝑡(𝑢𝑛𝑖𝑡𝑠)𝐿𝑎𝑏𝑜𝑟(𝑆) + 𝐹𝑖𝑥𝑒𝑑 𝐶𝑎𝑝𝑡𝑖𝑎𝑙 ($)                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4 

In most construction projects, the labor cost is 30 to 50% of total project cost (Gupta and 

Kansal, 2014). Construction is regarded as a labor-intensive industry and it can be assumed 

that labor is the governing productive resource, hence, productivity is chiefly contingent on labor 

productivity (Yi and Chan, 2014). Another misperception that can arise from construction labor 

productivity is when the ratio is based on man-hours and work accomplished. Although hourly 

outputs are very commonly used to measure labor productivity in which a single output is 

measured against a single input (Hanna et al., 2008; Thomas and Yiakoumis, 1987), they 

should not be considered as indicative of labor performance (Khan, 2005).  The following 

productivity equations (Equation 2.5) and (Equation 2.6) are the most widely used in the 

literature (Thomas et al., 1990): 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑂𝑢𝑡𝑝𝑢𝑡 ($)𝐼𝑛𝑝𝑢𝑡 (𝐿𝑎𝑏𝑜𝑟 $)                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.5 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐼𝑛𝑝𝑢𝑡(𝑙𝑎𝑏𝑜𝑟 $)𝑂𝑢𝑡𝑝𝑢𝑡(𝑀𝑎𝑛 − ℎ𝑜𝑢𝑟𝑠)           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.6 
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Figure 2-6. Factor Model of Construction Labor Productivity (Goodrum and Haas, 2002). 

There is no standard definition of productivity. In some cases, productivity can be quantified 

(Equation 2.7) by dividing the units of work produced or completed by the corresponding man-

hours spent (Ghoddousi and Hosseini, 2012):  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑢𝑛𝑖𝑡𝑠𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘𝑒𝑟𝑠           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.7 

The unit rate is another concept that is commonly used along with productivity. A unit rate is 

estimated by dividing labor costs or man-hours per output over a predetermined period of time.  

Contractors frequently focus on the performance factor (Equation 2.8) to measure productivity 

(Schwartzkopf, 2004):  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑈𝑛𝑖𝑡 𝑅𝑎𝑡𝑒 𝐴𝑐𝑡𝑢𝑎𝑙 𝑈𝑛𝑖𝑡 𝑅𝑎𝑡𝑒           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.8 

Khan (2005) offered four different viewpoints towards a definition of productivity in the 

construction project industry: 1) Client Approach: This approach focuses on the value earned for 

the dollars used. This method neglects other key factors affecting productivity such as time and 

site conditions; 2) Designer Approach: The designer’s perspective defines productivity in terms 

of the required man-hours to deliver a specific task. This approach suffers from oversight of two 

major players in a construction project, namely, the cost factor and design quality; 3) Contractor 

Approach: Productivity should be defined as the output of some type of equipment or as the 
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workforce needed to complete a unit of construction (according to the contractor’s perspective); 

and 4) Labor Approach: Here, productivity is considered as depletions and ineffectiveness on 

the job. 

2.3.2 Measuring Productivity in the Construction Industry 

Most project control systems provide a mechanism that allows contractors and clients to 

measure either their project productivity or some surrogates for productivity; project control 

systems allow on-the-job monitoring of actual productivity as compared to projected productivity. 

Many contractors measure productivity in the form of a unit rate, either in dollars or man-hours. 

Determining the unit rate is considered a surrogate measure of productivity.  

This approach for measuring productivity has some major drawbacks, some of which are listed 

below (Schwartzkopf, 2004): The working code is subject to misinterpretation; Accurate work 

hour tracking is not possible if the units are defined too narrowly or too broadly; and Error 

probability is very high if there is not a robust system for capturing data at the site level. It is very 

important to have a clear understanding of what productivity is so that contractors and clients 

can accurately measure it. The following section covers the methods widely used for measuring 

productivity in construction projects.  

2.3.2.1 Direct Methods (DM) 

There are two DMs for measuring productivity in the construction industry, the percentage of 

work units completed, and the physical units of work completed.  The percentage of work units 

completed is a straightforward approach in which productivity is measured periodically for each 

work item in the form of the percentage of work completed. This method, however, does have 

some major drawbacks. Firstly, this method does not take into account that changes are 

generally imposed during the course of a project.  Secondly, the process of defining the 

percentage completed is very subjective. Using the physical units of work completed is 

considered a more accurate approach.  

The amount of material installed is counted from time to time. Thus, this method incorporates 

the variations or changes in the scope of work quantities that occur as a project progress.  

Similar to the percentage of work unit method, this approach is subjective in how the value on 

partly accomplished work items is determined.  The major drawback of this method is that it 

requires an enormous amount of manpower and effort to track the number of units installed at 

the site level (Schwartzkopf, 2004).    
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2.3.2.2 Work Sampling (WS) 

WS is a technique that captures the time that a workforce spends in various categories of 

activities, such as direct work, transporting materials, or an idle time (Thomas, 1991). Unlike 

DM, WS does not require an extensive amount of effort. A considerable number of observations 

are made to quantify what the workers are accomplishing at any point in time. The percentage 

of observations that shows that the labor force is really performing actual work is the percentage 

of time that is productive. Applying this method to construction projects requires a very good 

understanding of what direct work actually comprises, as construction activities fall into three 

areas (Schwartzkopf, 2004): Direct work: Everyday activities that are directly related to the 

actual work in process, such as picking up tools, holding material in place, housekeeping, etc.; 

Support Work: Everyday activities that are indirectly related to the actual work being done, such 

as planning, giving instructions, supervision, etc.; and Delays: All the time in a scheduled 

workday when neither direct nor support work is being done, such as personal time, late start, 

early quitting times, etc. It should be noted that work sampling is an indirect indicator of 

productivity because the time spent on direct work does not represent a high unit rate level of 

productivity (Schwartzkopf, 2004).     

2.3.2.3 Craftsman Questionnaire Sampling (CQS) 

The CQS method was developed to measure performance and was designed with the goal of 

improving productivity. In this method, relevant data is gathered using questionnaires. This 

method provides information regarding the source of delays and the amount of rework done, 

while also encouraging the participation of the skilled workers on site. The CQS approach has 

similar procedures to those of WS. Craftsman is selected randomly to provide information 

regarding activities that have just occurred. CQS, thus, has some advantages (Chang and 

Borcherding, 1986), as it: (a) utilizes the theory of binomial distribution to assessment ratio 

delays, (b) maintains the benefits of relative straightforwardness, and (c) maintains statistical 

reliability. It is worth mentioning that CQS does not estimate productivity directly and does not 

provide direct information regarding the unit rate or output per unit of work.  

2.3.2.4 Five-Minute Rating (FMR)  

The FMR method also involves collecting samples but does not follow the same statistical 

principles as WS or CQS. FMR provides valuable information regarding the magnitude of a 

project’s delays and the effectiveness of its crew. The time required for observing a crew is 

proportional to the number of men in the crew but should not be less than five minutes. The total 

observation period is divided into intervals to monitor the performance of individual 
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crewmembers. Each tradesman involved in some form of direct work for more than 50% of that 

specific time interval will be credited for the work completed in that time.  At the end, the ratio 

between the credits achieved and the total possible credit represent each worker’s efficiency 

(Thomas and Daily, 1983). 

2.3.2.5 Group Timing Technique (GTT) 

GTT is another sampling technique for construction project evaluation. GTT uses crewmember 

observations at a static time interval; these observations are categorized based on pre-set work 

cycle elements. This technique is suitable for highly repetitive and cyclic work. A full description 

of this technique can be found in “Crew Performance Measurement via Activity Sampling” by 

Thomas and Daily (1983).    

2.3.2.6 Historical Data and References 

There are several published standard labor productivity rates for estimating costs, budgeting, 

and scheduling. The following sources are widely used in the construction industry (Khan, 

2005): RS Means – Building Construction Cost Data (US & Canada); Lansdowne’s Construction 

Cost Handbook (Canada); Hanscomb’s Yardsticks for Costing (Canada); and Craftsman’s 

Building Cost File (US & Partially Canada).  Although the above-mentioned manuals are 

valuable sources for productivity construction practitioners, some shortcomings are associated 

with them. Goodrum and Haas (2002) state that using solely the manuals may lead to 

overestimating construction costs. Despite the drawbacks associated with these manuals, there 

is still a preference for utilizing estimation manuals as a basis for predicting productivity levels.   

2.3.2.7 Other Methods 

Several high-tech methods have been utilized over the past two decades to measure 

productivity. For instance, audio-visual (AV) methods have captured construction field 

operations for the purpose of productivity analysis and productivity improvement, training and 

safety purposes, to monitor weather impact, equipment performance, and to analyze claims 

(Abeid and Arditi, 2002). AV methods are not a substitute for physical observation methods, but 

a valid supplementary method for improving and documenting them as AV methods facilitate the 

gathering and evaluating of data. These methods provide a permanent record of a project’s 

progress which may be very useful at a later stage (Noor, 1988). Kim et al. (2009) proposed a 

new system for onsite productivity measurement, Wireless Real-time Productivity measurement 

(WRITE). The developed system has some valuable features. Firstly, it does not disturb ongoing 

construction activities. Secondly, it provides a real-time measurement of construction labor 

productivity. Thirdly, the information collected can be shared by all project parties via the 
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Internet, regardless of time and distance. Xue et al. (2008) proposed a new technique for 

“Measuring Productivity of the Construction Industry in China by Using DEA-Based Malmquist 

Productivity Indices.” The proposed method utilizes the Data Envelopment Analysis (DEA), a 

well-accepted management tool. Xue uses DEA to assess the efficiency of decision-making 

units (DMUs) and circumvents any functional specification to define the connections between 

inputs and outputs. Portas and Abourizk (1997) developed an ANN model to estimate 

construction productivity for concrete formwork installation activities. Their ANN system employs 

historical data and contributions from knowledgeable construction supervisors. A three-layered 

ANN with a fuzzy output structure was adopted as the most suitable model since a considerable 

amount of input was subjective. Productivity measurement can be classified into two major 

categories, Continuous Observations and Intermittent Observations. Table 2.4 highlights the 

advantages and disadvantages associated with these two categories. 

Table 2-4. Pros and Cons of Productivity Measurement Methods (Noor, 1998). 

Measurement 
Method 

Advantages Disadvantages 

Continuous 
Observations 

1. Accurate time inputs 
2. Detailed data for analytical 

purposes 

1. Laborious and expensive 
2. Restrictive in the number of workers 

or work crews monitored 

Intermittent 
Observations 

1. Allows for the monitoring of 
many workers & work crews 

2. Less resource-intensive than 
continuous observations 

1. Prone to errors in the determination 
of true times 

2. Productivity data is in an aggregated 
format 

 

Both methods provide project participants with unbiased feedback regarding the efficiency of the 

process and the ability to rectify adverse situations. These methods are effective management 

tools to efficiently plan, coordinate, and monitor a project’s execution plan. Productivity in the 

construction industry is defined by labor productivity. Thus, productivity improvement is assured 

when wasted efforts in the work process can be identified, minimized, and/or eliminated (AACE, 

2004a).      

2.3.3 Factors Affecting Productivity  

A number of different interrelated factors affect construction labor productivity in any specific 

project.  Many studies have illustrated the effect of an explicit factor on construction labor 

productivity, such as overtime, learning curves, and congestion, but there is a marked lack of 

comprehensive studies designed to show how various interrelated factors affect construction 

labor productivity simultaneously. Even though many studies on identifying and evaluating 

factors affecting construction labor productivity are available, no comprehensive study analyzing 

the loss of productivity due to the interaction between these factors has been conducted yet 
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Newfoundland and the rest of Canada. They identified and classified major productivity factors 

into six groups: contract environment, planning, site management, working conditions, working 

hours, motivation, and other factors. The following interesting conclusions are based on Hanna 

and Heale’s (1994) study: 1) Critical plan method (CPM) planning and scheduling techniques 

have a positive impact on productivity; 2) Fixed-price contracts are more productive, while 

lowest-bid contracts have a negative impact on productivity; 3) Among site management factors, 

availability of issued for construction (IFC) drawings has the greatest effect on productivity; and 

4) Occasional overtime may have a positive effect on productivity, whereas planned overtime 

and shift work has adverse impacts on productivity. Hana and Heale (1994) indicated that site 

management factors have an undesirable influence on labor productivity. Thus, mitigating the 

negative influence of these factors may result in productivity improvement. Makulsawatudom et 

al. (2004) focused on factors affecting labor productivity in Thailand, where the construction 

industry has experienced productivity difficulties. They distributed a structured questionnaire to 

34 project managers actively involved in the Thai construction industry. The factors were ranked 

according to their level of influence and potential productivity improvement. To reinforce the 

data collected from the questionnaire, comprehensive interviews were performed with project 

managers. 23 factors in total affecting labor productivity were gathered and ranked, as shown in 

Table 2.5 (Makulsawatudom et al., 2004). Where CFI is critical factor index, and RII is relative 

importance index. 

Table 2-5. Factors Affecting Construction Labor Productivity (Makulsawatudom et al., 2004). 

Rank Factors Total CFI Score RII 
1 Lack of Material 358 0.405 
2 Incomplete Drawings 330 0.373 

3 Incompetent Supervisors 329 0.372 

4 Lack of Tools and Equipment 309 0.350 
5 Absenteeism 307 0.347 
6 Poor Communication 301 0.340 
7 Instruction Time 299 0.338 
8 Poor Site Layout 298 0.337 
9 Inspection Delay 294 0.333 
10 Rework 291 0.329 
11 Occasional Working Overtime 266 0.301 
12 Change orders 265 0.300 
13 Tools and Equipment Breakdown 261 0.295 
14 Specification and Standardization 261 0.295 
15 Interference from Other Trades and Another Crewmember 245 0.277 
16 Workers Turnover and Changing Crewmembers 233 0.264 
17 Scheduled Working Overtime 226 0.256 
18 Safety Incidents 220 0.249 
19 Poor Site Conditions 207 0.234 
20 Changing of Foremen 204 0.231 
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Ghoddousi and Hosseini (2012) conducted a survey to identify the factors that affect the 

productivity of construction projects in Iran. They claimed that the Iranian construction industry 

endeavored to take all the measures necessary to decrease costs as much as logically 

possible. Major portions of projects were assigned to sub-contractors because of the strong 

belief among contractors regarding the inefficiency of a daily workforce. Their study aimed to 

identify the factors influencing sub-contractors’ productivity by using a structured questionnaire. 

Thirty-one factors were identified and classified into seven broad categories. Table 2.6 shows 

25 out of 31 variables. 

Table 2-6. Ranking the Defined Groups and Their Factors (Ghoddousi and Hosseini, 2012). 

1. Material/Tools Rank 

Materials not delivered onsite when expected 1 

A shortage of a material in the market 2 

Lack of proper tools and equipment onsite 3 

Frequent tools/equipment breakdowns due to aging or poor maintenance 4 

2. Method/Technology Rank 

Operatives do not have the skills and experience to perform the task 1 

Use of traditional construction methods instead of modern technology 2 

Company executing project type for the first time 3 

Site is slippery or steep, imposing terrible working conditions 4 

3. Management/Planning Rank 

No construction planning or project schedule in place 1 

Tasks are not properly planned or realistically sequenced 2 

Skilled workers are not adequate on jobs 3 

Congestion and overcrowding on the site/interference among people working on the Jobsite 4 

4. Supervision Rank 

Site manager does not have the ability to train workers to perform their jobs properly 1 

Stoppages because of inspection delays 2 

Work and break frequencies and durations are not properly organized 3 

The site manager is not experienced enough to handle challenges that arise in the field 4 

5. Reworks Rank 

Work needs to be redone due to damage after the work was complete 1 

Work needs to be redone because it fails quality control inspection or testing 2 

Fabrication errors require correction in rework 3 

Work needs to be redone frequently due to the poor quality of documents, drawings or specifications 4 

6. Weather Rank 

The thermal environment is not conducive to physical work (i.e. heat, cold, humidity) 1 

7. Jobsite Condition Rank 

Inadequate water coolers and toilets, and/or no convenience store or covered rest area onsite or in 
the vicinity of the active workforce 

1 

The worksite is a considerable distance from homes or housing site 2 

Jobsite is too noisy/dusty 3 

Low level of lighting/poor ventilation/poor housekeeping/limited entrances 4 
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They focused on sub-contractor managers and their perceptions regarding the 31 factors’ 

degree of influence on productivity on a time-based criterion. They found ten main factors 

adversely affecting labor productivity in descending order as follows: 1) Use of traditional 

instead of high tech construction methods; 2) Site managers that are not knowledgeable 

regarding issues that arise in the field; 3) Lack of proper tools and equipment on site; 4) 

Operatives do not have the abilities and experience to perform their task; 5) Site managers are 

not skilled in training workers to perform their jobs properly; 6) Lack of the required materials in 

the market; 7) It is the first time a company is executing a particular type of project; 8) Materials 

do not arrive on site when they are needed; 9) Thermal environment is not comfortable (i.e. 

heat, cold, humidity); and 10) Tasks are not properly planned or realistically sequenced. It can 

be concluded that the majority of the most influential factors are all finance-related, reflecting the 

financial problems imposed on Iranian construction companies by government irregularities in 

making payments during the course of projects (Ghoddousi and Hosseini, 2012). 

Jarkas and Bitar (2012) concluded that the Kuwaiti construction industry suffers from low 

productivity. Using a structured questionnaire, they identified and ranked the relative importance 

of factors influencing labor productivity on construction projects in Kuwait. Their questionnaire 

identified 45 factors grouped into four primary groups as follows: (1) management; (2) 

technological; (3) human/labor; and (4) external.  Ten of the 45 factors were recognized as 

having the most influence on labor productivity:  1) Clarity of technical specifications; 2) Extent 

of variation/change orders during a project’s execution; 3) Level of coordination among the 

design disciplines; 4) Lack of labor supervision; 5) Proportion of work subcontracted; 6) 

Complexity of project design; 7) Lack of an incentive scheme to reduce costs; 8) Inadequate 

construction manager leadership; 9) Stringent inspection by the engineer; and10) Delays in 

responding to requests for information. Their research indicates constructability is the prominent 

concept affecting labor productivity in Kuwait. However, there is a lack of knowledge of 

constructability practices among construction practitioners in Kuwait. Hafez et al. (2014) 

performed a similar study in Egypt to identify and rank the critical factors affecting construction 

labor productivity. They identified 27 productivity factors and classified them into the following 

four groups: (a) technological, (b) management, (c) human/labor, and (d) external. Ten factors 

were shown to have the most significant negative impact on labor productivity: (1) payment 

delay, (2) poor labor skills, (3) shortage of experienced labor, (4) lack of labor supervision, (5) 

poor labor motivation, (6) overtime work, (7) lack of leadership skills among construction 

managers, (8) high humidity, (9) unclear technical specifications, and (10) high or low 

temperatures. The results of the abovementioned research are consistent with the results of 
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similar research efforts carried out in Kuwait, Iran, and Thailand (Jarkas and Bitar, 2012; 

Ghoddousi and Hosseini, 2012; Makulsawatudom et al., 2004), and are very similar to the 

results reached in the Gaza Strip (Enshassi et al., 2009). It is clear that several known and 

existing factors influence construction labor productivity.  Good planning and identification of 

these factors can mitigate their adverse impact. Using a novel holistic dynamic model in 

conjunction with a sound visualization tool could result in early identification, reduction, or 

elimination of these factors, thereby leading to an improvement in productivity.    

2.3.4 Loss of Productivity 

Loss of productivity may occur when construction labor productivity is impacted by events that a 

contractor does not have any kind of control over; hence, the contractor may be entitled to 

additional compensation. Loss of productivity claims creates exceptional challenges for the 

claimant who declares them and the defendant who defends themselves or their company 

against them. Inefficiency can be caused by various events and project parities, which means 

that determining loss of productivity attributable to a discrete event can be very problematic 

(Klanac and Nelson, 2004). The AACE list of the difficulties associated with the measurement 

and allocation of responsibility for losses in productivity includes the following (AACE, 2004b): 1) 

The events that cause a loss of productivity that an owner is held accountable for may not be 

easily detected at the beginning, unless a contractor is capable of monitoring productivity 

effectively and consistently from the early stage of a project’s execution. If written notice is not 

given to the client in a timely fashion, then the integrity of the loss of productivity claims 

becomes debatable (AACE, 2004b); 2) Real-time tracking of productivity in construction projects 

is difficult if not impossible, unless a contractor employs some sort of structured Earned Value 

Analysis (EVA) for tracking productivity. Thus, validating productivity losses with the degree of 

confidence requested by clients may be very difficult (AACE, 2004b); 3) Too-often, productivity 

losses are calculated after the fact. In other words, they are not assessed proactively. Losses 

are usually quantified during a claim preparation or a request for equitable adjustment. Thus, 

every so often a lump sum estimate can be prepared for productivity loss claims (AACE, 

2004b); 4) Some methods may result in fault-prone results and thus are not reproducible. These 

methods are therefore unreliable. It is quite possible that two methods will produce two different 

results that cannot be easily understood nor reconciled (AACE, 2004b); and 5) Establishing lost 

productivity causation(s) is challenging because contractors attempt to show that any losses are 

caused by clients (ex., due to change orders) and ask to be reimbursed. In contrast, clients try 

to justify lost productivity by using an inadequate or misleading bid process or by poor planning. 
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These two standpoints towards productivity issues in construction projects create a vicious cycle 

(AACE, 2004b). 

2.3.5 Methods in Estimating Loss of Productivity 

Quantifying loss of productivity in construction projects requires detailed answers to questions 

about many subjective assumptions on the part of contractors or claims analysts. Although the 

loss of productivity claims have been an attractive topic among professionals from industry and 

academia, no one-size-fits-all technique exists.  Meanwhile, some widely accepted techniques, 

like the Measure Mile Analysis (MMA), rarely produce consistent results.  Cost overrun due to 

loss of labor productivity is very difficult to assess; industry guidelines such as the National 

Electrical Contractors Association (NECA, 1976), the US Army Corps of Engineers (USACE, 

1979), and the Mechanical Contractors Association of America (MCAA, 1986) can be used as 

sources for estimating productivity loss. However, these guidelines are prepared by an 

organization that advocates for one side of a conflict, with an expectation of financial gain and 

often with an unclear research methodology (Ibbs and Liu, 2005b). There are, however, some 

methods available to measure the loss of productivity due to change orders and other events 

that occur during the course of a project, but these methods do not highlight what factor(s) are 

the major contributor to productivity loss.  

Lee (2007) classified these methods into three categories: traditional methods, statistical studies 

and models, and other methods. All of the existing methods currently available for assessing the 

loss of productivity, from traditional methods to more advanced ones that depend on newer 

approaches, are reviewed in the following sub-sections.  Traditional methods include MMA, 

Total Cost Method (TCM), Modified Total Cost Method (MTCM), Jury Verdict Method (JVM), 

EVA, and Industry Indices and Studies. It should be noted that some of these methods have 

been criticized due to their lack of consistency and precision. On the other hand, others are 

widely used among construction practitioners, such as the MMA. Although the MMA has been 

commonly used and accepted for loss of productivity claims presented in courts, it does have 

some shortcomings. Researchers have proposed several improvement techniques for this 

method.  For example, Ibbs and Liu (2005b) proposed an improved MMA that determines its 

reference period utilizing objective criteria. 

2.3.5.1 Measure Mile Analysis (MMA) 

The MMA was first introduced by Zink in 1986. MMA involves an assessment of the contractor’s 

productivity achieved in the course of an un-impacted period, compared to the contractor’s 

productivity on a similar task during an impacted period (Equation, 2.9). The un-impacted period 
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is also known as the reference period for productivity analysis on the same project and can be 

expressed as:   𝐿𝑜𝑠𝑠 𝑜𝑓 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦= (𝐼𝑚𝑝𝑎𝑐𝑡𝑒𝑑 𝑟𝑎𝑡𝑒 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒)∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑   𝐸𝑞𝑢𝑡𝑖𝑜𝑛 2.9 

However, it is possible to select a reference period from a different project that includes a similar 

type of work (Jones, 2001). The following guidelines should be taken into account when 

choosing an MMA (Loulakis and Santiago, 1999).  First, the work accomplished during the 

reference period should be significantly comparable in type, nature, and difficulty to the 

impacted work. Secondly, the configuration of the skill level of the crews should be comparable. 

Three major steps should be followed for calculating loss of productivity using MMA (Zink, 

1986): 1) Plot the actual man-hours spent on a project versus the percentage of work 

completed; 2) The first and last 10% should be removed from productivity data because they 

are related to “ramp-up” and “tail-out” and are not truly representative of the expected average 

productivity; and 3) A linear or non-linear portion of the productivity curve in the intermediate 

80% that represents the un-impacted work period and the most efficient rate of progress must 

be identified. There are major drawbacks associated with this method. Firstly, the reference 

period productivity must be established based on a continuous un-impacted period, a period 

which is not always readily accessible. Secondly, identifying the references periods in the MMA 

is very subjective (Ibbs and Liu, 2005b). Thus, the success of loss productivity claims prepared 

utilizing MMA depends in large part on the reliability of the selected comparable periods (Ibbs 

and Liu, 2011).  Thirdly, to quantify productivity losses using MMA, good productivity record 

booking is essential.  

Ibbs and Liu (2010 and 2005b) proposed and an improved MMA utilizing the statistical 

clustering method to overcome the bias of determining reference periods and similar workdays. 

Ibbs (2011) published a list of MMA principles utilizing a logical process for formulating and 

presenting a sound MMA method to support contractors, clients, consultants, and other parties. 

These principles are MMA Analyst Characteristics, Impacted Period, Reference Period, Loss of 

Productivity Quantification, and Loss of Productivity Presentation. In 2000, Thomas and Sanvido 

introduced the baseline concept to improve some MMA shortcomings. The baseline period is 

defined as a period of time when the contractor reaches their best productivity; this period does 

not need to be a continuous period nor must it be purely un-impacted.  In their method, the 

baseline duration should be 10% of a project’s duration. The baseline method has two 

advantages over the MMA: 1) A lower level of detail. The MMA requires a reference period free 
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of any disruptions, while the baseline method does not; and 2) Can be used in cases where no 

MMA is achievable.   

The major disadvantage is that determining exactly 10% of daily productivity is a subjective task 

and it is possible that this 10% may not represent the project’s best productivity (Table 2.7). 

Thus, the MMA is one of the preferred methods for quantifying the loss of productivity in the 

construction industry. Although MMA is widely accepted in many courts and appeal boards, 

there are some concerns regarding its consistency and reliability (Ibbs, 2011). 

Table 2-7. Comparison between the Measured Mile and Baseline Productivity (Lee, 2007). 

Measured Mile Baseline Period 

Negative impacts should be limited to 
those caused solely by the owner 

Does not need to be free of owner 
impacts 

The measured mile period should be 
a continuous period 

The baseline timeframe does not need to be 
a continuous period 

Focused on finding periods where 
there are no owner-caused impacts 

Focused on finding the best performance 
the contractor can achieve 

 
2.3.5.2 Total Cost Method (TCM)   

In quantifying the loss of productivity, some contractors prepare their cases by utilizing the TCM. 

This method is the most straightforward of the traditional methods for measuring productivity 

losses. Loss of productivity cost is calculated by subtracting the bid amount from the total cost 

of a project or by subtracting the total bid hours from the total hours billed and the result is 

multiplied by the average labor rate. This method has serious shortcomings in its assumptions. 

It assumes that the contractor does not contribute to the inefficiency problems in a project and 

that the bid estimate is 100% valid. In addition, the client is solely responsible for any 

inefficiencies, hence, all the cost overruns must be compensated by the client. In other words, 

this method does not distinguish between the various factors that cause damage. The variance 

between the actual cost and the bid cost for the entire project is presumed to be a combination 

of factors, all caused by the action or inaction of the other party. Courts and appeal boards are 

not very keen to accept this method due to the abovementioned assumptions. This method can 

only be presented in courts if all of the following four requirements are satisfied (Lee, 2007): 

Demonstrating actual losses precisely and directly is very difficult/impossible; Bid estimate is 

precise and detailed; There are real actual costs, and Contractor is not held accountable for 

cost overruns. TCM should be considered as the last resort for quantifying productivity loss 

impact cost. In other words, it may be useful to employ this method only when damages cannot 

be isolated or easily quantified based on a change-by-change or breach-by-breach basis and 

when there is not enough information available.   
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2.3.5.3 Modified Total Cost Method (MTCM) 

MTCM utilizes the inherent simplicity of the TCM approach. However, MTCM attempts to 

demonstrate that cause and effect relationships exist between the cost overrun experienced by 

contractors and the action or inaction of other parties. Thus, the success of MTCM strongly 

depends on illustrating the cause and effect dynamics (Kelleher et al., 2014). The first step in 

quantifying damages using MTCM is to adjust the contractor’s bid for any shortcomings 

disclosed during the course of a project.  In the same way, any costs that cannot be accredited 

to the other party should be deducted. Although this method is more likely to be accepted by 

courts and appeal boards because it does not have the deficiencies of the TCM, the same four 

conditions must be met by the contractors (Lee, 2007).    

2.3.5.4 Jury Verdict Method (JVM) 

JVM can be applied in cases where the causation of damage has been validated but the 

amount of damages cannot be quantified with confidence (Jones, 2001). The use of the JVM 

depends on the nature of the claims; it is particularly useful where the loss of productivity 

damages cannot be quantified due to lack of information. In these situations, a jury verdict can 

be used to determine a realistic and reasonable compensation amount for damages. Three 

conditions should be met before selecting this approach (Lee, 2007): 1) Strong evidence of 

injury; 2) Lack of a more reliable method to estimate damages; and 3) Adequate proof for a fair 

and reasonable guesstimate of the damages. The JVM may be used with other available 

techniques to quantify damages, such as engineering estimates, estimated labor hours, industry 

studies, etc. It should be noted that MTCM and MMA provide better results for calculating 

inefficiencies than the JVM because they take into account the causation of productivity losses 

(Lee, 2007; Jones, 2001).  

2.3.5.5 Earned Value Analysis (EVA) 

EVA is a common technique to measure project performance. This method incorporates a 

project’s scope, cost, and schedule performances to assess and measure overall project 

performance and progress (PMI, 2013). Because of the problems with accurately measuring 

productivity, productivity measurement can be performed using EVA. In addition, EVA can be 

considered as a vehicle for measuring the loss of productivity by comparing the impacted and 

un-impacted Cost Performance Indexes (CPI). EVA is used as a surrogate for construction labor 

productivity. It should be noted that the accuracy of data could be jeopardized if the loading 
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resources are not modified according to the changes imposed during the course of a project 

(Schwartzkopf, 2004).  

2.3.5.6 Industry Indices  

There are some industry indices available for quantifying productivity losses caused by change 

orders or other factors triggered by management policies toward change orders. Contractors 

and owners publish various manuals for quantifying the loss of productivity due to different 

factors.  These manuals do not take into account any interdependencies among factors or utilize 

several factors for the same work (Ibbs and Vaughan, 2012).  The following three guidelines are 

widely known among construction industry practitioners: i) MCAA Labor Estimating Manual 

(1994); ii) NECA Manual of Labor Units; and iii) USACE Modification Impact Evaluation Guide. 

The MCAA is one of the more popular sources for quantifying lost productivity. The manual 

provides the amount of productivity losses in the form of percentage for 16 factors that influence 

productivity (Lee, 2007). Table 2.8 shows a sample of MCAA (2016) factors that can have an 

effect on the project during the construction phase.  

Table 2-8. Sample of MCAA Factors Affecting Productivity and Range of Losses (Lee, 2007). 

Factor 

Level of Condition 

Minor Average Severe 

1 Stacking of Trades 10% 20% 30% 

2 Morale and Attitude 5% 15% 30% 

3 Reassignment of Manpower 5% 10% 15% 

4 Crew Size Inefficiency 10% 20% 30% 

5 Concurrent Operations 5% 15% 25% 

6 Dilution of Supervision 10% 15% 25% 

7 Learning Curve 5% 15% 30% 

8 Errors and Omissions 1% 3% 6% 

9 Beneficial Occupancy 15% 25% 40% 

10 Joint Occupancy 5% 12% 20% 

 

Ibbs and Vaughan (2012) state the advantages and disadvantages of MCAA manuals in their 

“Change and the Loss of Productivity in Construction: A Field Guide.”  The key advantages of 

the MCAA manual are: 1) It is easy to use and apply because of clear and concise data; 2) Data 

is generated based upon a group of experienced professionals; 3) No reference period is 

required to apply the manual’s data; and 4) Several factors can be used to quantify the 

productivity loss if the effects are combined correctly. The main disadvantages of the MCAA 

manual are: 1) Data is developed subjectively; 2) Subjective judgment should be made by the 

users to determine the level of a condition; 3) Interdependencies among factors should be taken 
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into account prior to applying multiple factors; and 4) Recognizing the impacted period of work 

may be problematic. Although it has some serious disadvantages, the MCAA manual has been 

used successfully to quantify productivity losses (Ibbs and Vaughan, 2012). In 1992, the NECA 

issued a manual similar to the MCAA’s.  According to Lee (2007), the contents of Table 2.9 

have remained the same since 1976, although the NECA manual is updated occasionally. The 

table has four major categories: building type, working conditions, general contractor, and 

electrical contractor, and all the factors affecting labor productivity are grouped under one of 

these major categories. The factors are classified into five levels according to their severity and 

productivity losses are represented as percentages (Lee, 2007). The NECA manual’s 

advantages are similar to those of the MCAA manual.  The major disadvantages of using the 

NECA manual are as follows (Lee, 2007): 1) Unknown source of data; 2) Subjectivity in 

assessing the severity of each factor; 3) The interdependencies among factors are ignored; and 

4) No clear distinction between applying factors only to the work impacted by changes or to the 

entire project. 

According to Lee (2007), a strong drawback of the NECA manual is that many of the factors 

included in the table are not suitable for clarifying and measuring the effect of changes orders. 

For example, construction type and job location are known variables from the beginning of a 

project and are not factors that can be affected by change orders. Thus, the NECA manual is 

more useful for assessing productivity at the planning phase (Table 2.9) (NECA, 1974; NECA, 

1976; NECA, 1992).  

The USACE published the “Modification Impact Evaluation Guide” in 1979. The manual covers 

four typical factors that cause inefficiency on unchanged work resulting from change orders. 

These factors were identified as disruption, crowding, acceleration, and morale and are 

described below. In a disruption, the contractor plans a project in the form of sequential 

activities leading to the completion of the project. The experienced workforce knows how the 

planned activities relate to the successful completion of the project, creating a “job rhythm.” 

Optimum productivity is achieved when there is good job rhythm. Any disruption to the job 

rhythm will influence workers on un-impacted and impacted work and may result in a loss of 

productivity. 

According to the USACE, disruptions occur when “workers are prematurely moved from one 

assigned task to another.” Figure 2.8 was developed based on the assumption of full worker 

productivity achievable in a maximum 8-hour shift. Figure 2.8 is more appropriate for the 

construction industry according to the USACE (1979). The claim is that construction workers are 
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skilled enough to execute a variety of tasks and hence they only require being re-oriented for 

new tasks rather than gaining new skills.  

Table 2-9. Factors Affecting Proactivity Based on the NECA Manual (Lee, 2007). 

Variable Factors Degree 1 
1 Max. 

% 
2 Max. 

% 
3 Max. 

% 
4 Max. 

% 
Degree 5 

5 Max. 
% 

Building Type 
 

-5 5 10 20 
 

30 

1. Construction Standard 0 1 2 4 Special 6 

2. Design Simple -1 1 2 4 Elaborate 6 

3. Floor Plan Uniform -1 0 1 2 Complex 5 

4. Occupancy Use Usual -1 0 1 1 Special 3 

5. Size - Floor Area Small -1 0 1 1 Large 2 

6. Extent of Elec. System High Dens. 0 1 1 2 Low Dens. 3 

7. Design of Elec. System Simple -1 1 1 2 Complex 3 

8. Quality of Elec. Layout Excellent -1 0 0 1 Poor 2 

Working Conditions 
 

-5 3 10 20 
 

30 

1. Job Location Close in -1 0 1 2 Out of Town 3 

2. Weather Excellent 0 1 2 4 
Extremely 

Bad 
6 

3. Working Space Large Clear -1 0 1 2 Small Clutter 3 

4. Amount of Work by Other 
Trades 

Very Little -1 0 1 2 
Very 

Congest 
3 

5. Material Storage Excellent -1 0 1 2 None 3 

6. Shop and Bench Space Excellent 0 1 2 4 None 6 

7. Material Hoisting Conditions Excellent -1 1 2 4 None 6 

General Contractor 
 

-5 5 10 20 
 

30 

1. Experience with Work Considerable -1 1 2 4 None 6 

2. Progress Maintained Excellent -2 2 4 8 Poor 12 

3. Coordinate Trades Excellent -2 2 4 8 Poor 12 

Electrical Contractor 
 

-5 5 10 20 
 

30 

1. Experience Considerable -1 1 2 4 None 6 

2. Experienced Supervision Available -2 2 4 8 None 12 

3. Experienced Workers 
100% 

Available 
-2 2 4 8 None 6 

4. Adequate Tools & Eq. Adequate -1 1 2 4 None 6 

 

However, it is difficult to justify using Figure 2.8 instead of a learning curve for quantifying 

disruption-related productivity loss (Lee, 2007). The learning curve’s effect on productivity is 

discussed in the model boundary chapter. The second typical factor that causes inefficiency on 

unchanged work resulting from change orders is crowding. If the contractor’s schedule is altered 

due to change orders, more activities may need to be accomplished simultaneously. 
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productivity. Although a large number of changes or change orders has a negative impact on 

workforce morale, quantifying the impact of morale on productivity is not possible as it requires 

assessing morale.  However, sufficient attention should be given to workforce morale because it 

plays an important role in productivity (Lee, 2007).    

2.3.6. Reliability of Traditional Methods 

These methods are classified into three major groups: project practice-based, industry-based, 

and cost-based methods. The level of effort and judicial acceptance generally increases as 

those methods with more and more certainty are employed. Figure 2.10 shows the relationship 

between the levels of required documentation, required verifiability of project data, consistency 

of methods, and the cost and proficiency of recording, preparing, and documenting the quantum 

of damages (Ibbs et al., 2007).      

 
Figure 2-10. Reliability of Lost Productivity Quantifying Methods (Ibbs et al., 2007). 

Expertise, cost, and effort will increase left to right. While the level of real-time project 

documentation will increase as more detailed methods are employed on the horizontal axis 

(Ibbs et al., 2007). The MCAA manual has been adopted and received fairly positively as 

compared to the two other studies, the NCAA and the USACE manuals, which have been 

widely rejected (Lee, 2007).  TCM and MTCM have not been broadly recognized due to the 

uncertainty of their results.   

2.3.7 Previous Researches for Quantifying Loss of Productivity 

There are several methods and techniques developed by researchers to quantify the loss of 

productivity. Table 2.10 presents a summary of the most prominent researches as well as 

recent studies that were conducted by previous researchers in chronological order. The 

information in the table below only considers the reliable studies that provided useful and 

valuable information.   
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Table 2-10. Summary of Previous Research for Quantifying Loss of Productivity. 

Author(s) Year Remarks 

Leonard 1988 Data were taken from 90 projects that were in the dispute phase. Curves were 
developed to show productivity loss to the amount of change. Applicable to 
electrical/mechanical work, civil/architectural work, and combined work of all kinds as 
well as commercial/institutional building construction and industrial construction.  

Hanna et al.  1999a Two models were developed for electrical trade and one for the mechanical trade 
(Commercial, institutional, industrial, and residential projects). 

Hanna et al. 1999b A logistic impact model for predicting the probability of a project being impacted by 
changes and a linear regression model that predicts productivity loss for impacted 
projects. 

Lee et al. 2004 A decision tree approach to classifying and quantify the cumulative impact of changes. 
Ibbs 2005 Applicable to heavy/highway, commercial, and industrial projects. A regression model 

for plotting the cumulative changes of the project in question according to the % 
complete and compare the curve with the three given curves.  Choose the closest 
curve for application, whether early, normal, or late change curve. The productivity 
index can then be read from the given graph or calculated using the equations 

Moselhi et al. 2005 A neural network for quantifying change orders impact on labor productivity. One 
improvement is the consideration of the timing impact of change orders.  

Hanna et al. 2008 A study shows the positive and negative impact of shiftwork. Productivity can be 
improved by 11% due to proper utilization of shiftwork. However, loss of productivity 
can be experienced due to shift work can reach 17% depending on the amount of 
shiftwork used 

Al-Kofahi 2016 A system dynamics model was developed to qualitatively measure the impact of the 
change in the project scope on labor productivity. The model is analyzed using 
different road construction projects.  

Moayeri et al. 2017 A BIM-based model was developed to capture the ripple effect of the owner requested 
design changes. The model calculates the impact of design changes and their ripple 
effect on a project’s total duration.  

Hanna & 
Iskandar 

2017 A regression model that predicates the cumulative impact of changes for electrical and 
mechanical construction projects. Sixty-eight impacted projects were used in order to 
quantify the cumulative impact of changes using linear regression analysis.  

Emamifar  2019 Two cascade neural network models are developed for quantifying the loss of 
productivity due to change orders, timing and without timing models.  9 variables were 
considered in developing without timing model and timing model consist of three sub-
models, namely as early, normal, and late changes.   

 

2.4 General Overview of SD Modeling Simulation 

The terms model, system, and dynamic are key components of this research’s definition of 

simulation. Before explaining the SD Modeling Simulation, it is vital that the three terms used 

extensively throughout this research be clearly defined.  What the system does mean in the 

simulation spectrum. A system is defined as “An organized, purposeful structure that consists of 

interrelated and interdependent elements (components, entities, factors, members, parts etc.). 

These elements continually influence one another (directly and indirectly) to maintain their own 

activity and the existence of the system, in order to achieve the goal of the system (Business 

Dictionary, 2015).” Shannon (1998) defines a system as a collection of interconnected elements 

that work together to achieve a specific objective. A system can be viewed as a set of 

interconnected procedures, actions, and practices developed to serve a specific task based on 

the regulations and policies (external inputs) of that system. A system is described by the set of 
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variables at a specified point in time that is called the “state”, and its behavior is determined by 

the states of the critical variables.  Meanwhile, a model is an abstraction of a group of objects, 

ideas, or real-world situations and offers a platform within which a particular situation can be 

examined and scrutinized (Ford and Sterman, 1998; Pritsker and O’Reilly, 1999).  Models 

provide information that supports the decision-making process when interpreted according to 

certain rules or conventions (Zayed and Halpin, 2001). In this research, dynamics is understood 

as the study of how a system or an element changes over time. The construction project 

environment is dynamic and relatively unstable, both internally and externally (Love et al., 

2002). A construction project may experience changes during its lifecycle and these changes 

may have substantial and volatile impacts on a project’s outcome. Simulation is defined as "the 

process of designing a model of a real system and conducting experiments with this model for 

the purposes of either understanding the behavior of the system or of evaluating certain 

strategies (within the limits imposed by a criterion or set of criteria) for the operation of the 

system" (Shannon, 1975). Simulation is often used to evaluate a set of predefined options; it 

does not produce optimum solutions for a system (Oloufa, 1993). Although the application of 

analytical techniques is more desirable than creating a simulation, the majority of practical 

systems are too complicated to model by mathematical techniques.  Thus, simulation modeling 

may be used to mimic real system behavior without the substantial cost associated with real 

situational experiments (Oloufa, 1993). The most important step in the simulation process is to 

develop a reliable simulation model that can function as a surrogate of the system under study. 

The model should be verified and validated to ensure accuracy of the simulation runs. 

Simulation models can be classified into three categories: discrete, continuous, and hybrid. 

Discrete simulation behavior is shown in Figure 2.11a. Continuous simulation behavior is 

observed constantly over time. This is performed according to a set of differential equations 

(Figure 2.11b). In a hybrid simulation, the change in the variables happens discretely, 

continuously, or continuously with discrete jumps over simulation time, as shown in Figure 2.11c 

(Pritsker and O’Reilly, 1999).   

 
Figure 2-11. Simulation Modeling Techniques (Pritsker and O’Reilly, 1999). 
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In construction projects, the dependent variables at the operation level can occur discretely, 

continuously, or as a combination of both (Alzraiee, 2013). All the existing simulation models are 

governed by the nature of the problem being modeled and the preference of the modeler.  In 

this research, SD simulation modeling is utilized to achieve the research objective. SD is a 

technique of analyzing how decisions, policies, structure, and delays are interconnected to 

influence the behavior of a system. 

2.4.1 Strategic and Operational Project Management  

Project management can be classified into two major approaches based on the main focus of 

construction project management: strategic project management and operational project 

management (Table 2.11).  Strategic management can be viewed as a combination of 

quantitative and qualitative fields. The domains of operations, logistic, and finance have been 

formalized over the past decades by management and industrial science. The real difficulties 

arise when the human dimensions of psychology, sociology, and human resource management 

are combined with the quantitative part of strategic management. Together, the quantitative and 

qualitative components of strategic management address the various organization 

requirements, including professional, technical, and strategic demands (Chinowsky and 

Meredith, 2000). Strategic project management concentrates on a single project strategy, which 

may be positioned on the systems design and offers a foundation for defining the main 

objectives (Lee et al., 2006). Project level strategic decisions are part of “strategic project 

management [which] covers decisions that are taken upfront in designing the project, and then 

the guidance provided to operational decisions that consider the longer-term impact of these 

decisions on the downstream performance of the project” (Lyneis et al., 2001).  
Table 2-11. Strategic and Operational Project Management Comparison (Schultz et al., 1987). 

Viewpoint Strategic Project Management Operational Project Management 
Level Macro Micro 
Assessment Subjective Objective 

Nature of problem Understand, one at a time Objective 
Information needed A small amount of specific information A large amount of information 
Planning horizon Long-term but varies with the problem Short-term and more constant 
Frame Covers entire scope of the project Concerned only with sub-project units 
Level of detail Broad and general Narrow and problem-specific 
Evaluation Difficult, because of generality Easier, because of specificity 
Perspective Holistic and continuous Reductive and discrete 
Focus Strategic/context Operational 

 

Operational project management is defined as “the management actions incorporated to meet a 

project’s target by adjusting the time, cost, and resources” (Lee et al., 2006). The major 

differences between strategic and operational management are that operational management is 
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based on discrete analysis and studies the effects of fluctuating time, cost, and resources in 

order to achieve the planned objectives (Lee et al., 2006).  

2.4.2 Continuous Simulation 

Continuous simulation is appropriate for systems wherein the variables can fluctuate 

continuously. In other words, the state of variables in a system changes continuously over time. 

Developing a solid causal loop diagram can be viewed as a foundational block for having a 

sound continuous simulation model. A causal loop diagram demonstrates the interactions 

among the variables in a system. Continuous simulations are based on a set of mathematical 

equations that describe the rate of change of variable state concerning time. Compared to 

discrete event simulation, continuous simulations are simpler to build and fewer data and data 

preparation is required (Helal, 2008). However, it should be noted that a mathematical 

representation of a complex system requires a tremendous amount of time and effort from the 

modeler. 

2.4.3 The SD Simulation Approach 

SD was introduced in 1965 by Forrester as a technique for modeling and scrutinizing the 

behavior of complex social systems in the industrial sector (Forrester, 1965; Forrester, 1968; 

Forrester, 1992). Traditionally, projects have been viewed as linear or as “static and closed”, 

proposing a hypothesis of firmly ordered projects that progress in well-defined, foreseeable 

stages to their completion. In the real world, projects are dynamic and adopt new plans during 

their course rather than adhering strictly to the initial one (Rodrigues and Bowers, 1996). SD is 

the appropriate tool for portraying the dynamic behavior of complex real-world systems where 

feedback loops and delays are present (Bakkila, 1996). SD has been utilized where a holistic 

view is essential and feedback loops are critical to understanding the interdependencies among 

the variables included in the system, such as those of social, economic, and environmental 

systems (Rodrigues and Bowers, 1996). 

The solutions for many real-world problems lie in system thinking. System thinking is the ability 

to see the world as a complex system, where “everything is connected to everything else” 

(Sterman, 2002). The following attributes are common among complex systems, even though 

they are counterintuitive: Constantly Changing, Tightly Coupled, Governed by Feedback, 

Nonlinear, History-Dependent, Self-Organizing, Adaptive, Characterized by Trade-Offs, 

Counterintuitive, and Policy Resistant. SD modeling includes two core concepts: Causal Loop 

Diagrams (CLDs) that represent the conceptual relationships among variables in the system 
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and Stocks-Flows Diagrams (SFDs) that describe changes in the variables’ states over time 

(Randers, 1980).  

2.4.4 The SD Modeling Process 

The first step in developing an SD model is to outline the problem as clearly as possible by 

defining the conceptual model that shows the model addresses. It is recommended to begin 

with a very simple model because, at this point, important dynamics are still under investigation. 

As the size of a model increases, its complexity increases as well. The second step is to define 

the important variables; the model should have well-defined boundaries. All the important 

variables should be listed in this step. The third step is to develop CLDs to illustrate system 

feedback. Once the CLDs have been developed, a set of mathematical equations to define the 

interactions of the model variables can be constructed. The final step is to test the model by 

adding all the components into a computer simulation to evaluate its robustness. The modeling 

and procedures involved in constructing SD models are discussed in detail in the following 

section.    

2.4.5 Overview of the SD Modeling Process 

The SD method includes five major steps for modeling a system as follows (Sterman, 2000):  

I. Problem Articulation (Boundary Selection): Considered the most important step, this is the 

foundational block of an SD model. To have a successful model, the modeler must have a clear 

understanding of the problem. A full understating of some models is often beyond human 

mental capabilities; therefore, it should be broken down into smaller systems without violating 

the holistic concept of SD. This step acts as the logical edge, providing the principles with which 

to choose what can be included or ignored in the model. In other words, all the essential 

features necessary for fulfilling the purpose of the model should be identified in this step.       

II. Formulation of Dynamic Hypothesis: After the problem has been understood and 

characterized over a proper period, the modeler should identify the contemporary theories of the 

problematic behavior. A road map is developed here, based on the initial hypotheses, major 

variables, reference modes, and other available data utilizing: Model boundary diagrams; 

Subsystem diagrams; Causal loop diagrams; Stock and flow maps; Policy structure diagrams; 

and Other facilitation tools. 

III. Formulation of a Simulation Model: This step covers the specification of the structure and 

decision rules. The estimations of variables, behavioral relationships, and initial conditions 

should be quantified at this stage.  
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IV. Testing: The model should be tested to assure its robustness. The developed model should 

be capable of satisfactorily mimicking the problem behavior and it should work accurately under 

extreme circumstances.  

V. Policy Design and Evaluation: This step is where all the possible environmental conditions 

are anticipated and designed for. To show how the model behaves given uncertainty in 

parameters, initial conditions, model boundaries, and aggregation, a sensitivity analysis should 

be implemented in this step. In addition, a what-if analysis should be performed to show the 

effect of the different policies. It should be noted that this modeling is a feedback process 

(Figure 2.12) and not a linear sequence of steps (Sterman, 2000).  

2.4.6 The Use of System Dynamics in the Construction Industry  

Construction projects are challenging to manage and plan due to the projects’ surrounding 

environments. Performance advancement over time is a result of feedback replies, many 

involving nonlinear interactions among key project variables and the accumulation of project 

progress and resources (Lyneis and Ford, 2007). Many simulation models have been developed 

to address project management issues in the construction industry by utilizing SD. SD models 

cover a variety of problems in the literature, ranging from simple models that address a single 

project to advanced models where a group of projects is represented in a single SD model.  

 
Figure 2-12. The Modeling Process is Iterative (Sterman, 2000). 

This research focuses on single SD modeling and other approaches: AI and BIM. The SD 

models in the literature vary based on the level of detail included in the model structure 

descriptions, from comprehensive model disclosure to almost none (Lyneis and Ford, 2007). 

Forrester (1993) predicted that about 20 novel SD models would be proposed to cover 90% of 

the issues that may be faced by decision-makers in enterprises. Many of the SD models studied 

5. Policy Design and Evaluation

4. Testing

3. Formulation of a Simulation Model

2. Formulation of Dynamic Hypothesis

1. Problem Articulation (Boundary Selection) 
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in this research were developed based on early Forrester models.  SD modeling is a powerful 

tool that provides the mechanism for understanding the complex structure of project 

management issues in construction projects. By utilizing SD during the lifecycle of a project, SD 

can prove a great advantage in improving system performance. It should be noted that the 

complexity of SD models increases linearly. However, integrating a number of several simple 

SD models can lead to a holistic model for a much better understanding of a complex issue 

(Forrester, 1997).  

SD modeling simulation emphasizes policy decisions included in the feedback loops rather than 

isolated decisions. Analyzing management decisions can be performed over longer time 

horizons without the difficulties of a minimum of available data. The SD models developed so far 

have covered the main project aspects, namely controlling feedback loops, ripple effects, knock-

on effects, and the rework cycle (Cooper 1993a; Cooper 1993b; Cooper 1993c). Ripple and 

knock-on effect feedbacks are characterized by nonlinear relationships.  

However, not enough research has been conducted on how the nature or the strength of these 

relationships might vary by project type (e.g. road construction vs. high-rise building 

construction) or how new techniques such as BIM can reduce the likelihood of error occurrence. 

In the following chapters, SD will be integrated with other techniques, including AI and BIM, and 

applied to a real case study.  

The causal loop diagram and the resulting stock and flow dynamic model will be portrayed and 

assessed. System dynamics modeling has been utilized in many different fields of study, 

including project management, defense analysis, and health care. In construction, It has been 

used to describe the complex relationship of a series of events resulted in costly delay and 

disruption.  System dynamics is a beneficial tool to deal with the dynamics’ convolution shaped 

by the interdependencies, feedback, time delays, and nonlinearities in construction projects. 

Table 2.12 summarize previous SD studies in the construction industry.   

2.5 Artificial Neural Network (ANN)  

The use of ANN-based systems in the construction industry began as early as the late 1980s. 

ANNs are now appreciated as strong predictive tools for recognizing patterns among input 

variables and output(s). Introduced in the 1940s, they gained attention throughout the 1960s. 

However, due to learning limitations, the earliest type of ANN was only a single layer 

perceptron. More powerful multilayer perceptions, also known as back-propagation networks, 

gained popularity in the 1980s. NNs are able to draw the relationships between inputs and 

output(s); especially when it is difficult to build a linear or nonlinear mathematical relationship.  
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Table 2-12. Summary of Previous SD Study. 

Authors Year Remarks 

Love et al. 2002 An SD model to investigating the change and rework on project management 

performance. The model shows the usefulness of monitoring project dynamics and 

developing appropriate responses efficiently to changes within the project.  

Howick and 

Eden 

2001 An SD model was developed to represents the complexity of disruption and delay 

caused by earlier project delivery in an attempt to help managers and contractors in 

decision making.  The impact of compressed delivery date on disruption & delay was 

assessed in relation to two specific and typical options: namely, pressure & overtime. 

Howick 2005 This research discusses the experience of using SD models to backing claims for 

reimbursement for time and cost overruns on large and complex projects. This paper 

examines the nature of responses to SD models by litigation audiences. These 

reactions highlight issues that the modeler faces when constructing a model. 

Eden et al. 2005 A comparison study to show the advantages of SD modeling over MMA in litigation. 

The study concludes that despite the popularity of the measured mile approach in 

litigation, its results can be untrustworthy in cases where disruptions and delays are a 

substantial part of the explanation for project late delivery and costs overruns. 

Ibbs and Liu 2005a An SD model is presented in this research as a tool that can show the relationship 

between cause and effect; that is, disruption/delay/acceleration and productivity loss.  

Lee and Pena 2005 This research presents a SD model, which focuses on the dynamics of error and 

change management, including quality management, scope management, the 

request for information process, and the decision-making process for the approval of 

changes, and their consequent detrimental impacts on project performance.  

Ibbs et al. 2007 A CLD that can be used when changes occurred in a construction project to illustrate 

the feedback loops among changes, disruptions, and loss of productivity.  

Love et al. 2010 An SD model to show the impact of rework in oil and gas complex projects. The 

model attempts to show the relationship between factors that contribute to rework.  

Alvanchi et al. 2012 An SD model for estimating the expected productivity in many different construction 

projects under the different arrangement of a working hour.  

Nasirzadeh and 

Nojedehi 

2013 An SD-based approach to model the complex inter-related structure of different 

factors affecting labor productivity is modeled using SD approach.  

Warhoe 2013 A SD model was developed based on the works of several academics works as well 

as the contributions of several experts in the construction field. The model simulates 

the workflow of labor hours in a design-bid-build project. 

Han et al. 2013 A model for showing that design errors are the main contributor to schedule delays in 

a university building project. Additionally, the case study revealed that schedule 

pressure spreads the negative impact of design errors on many other construction 

activities, even including those not directly impacted by the errors. 

AL-Kofahi 2016 A SD model is developed using Vensim Software, validated, & utilized to 

quantitatively calculate the impact of the change in the project scope on labor 

productivity. 



 

57 

 

Moselhi et al. (1991b) was a pioneer in this domain and paved the road for other researchers by 

describing the potential applications of ANNs in construction engineering and management. 

Authors developed NNs for estimating optimum mark up. Moselhi (1991b) states, “Neural 

networks attempt to model the brain learning, thinking, storage, and retrieval of information, as 

well as associative recognition.” NN applications have covered a variety of construction areas, 

such as earth-moving equipment productivity, the effects of site environmental factors on labor 

productivity, and the productivity of concrete frameworks (Karshenas and Feng, 1992; Chao and 

Skibniewski, 1994; AbouRizk and Wales, 1997; Portas and AbouRizk, 1997, Golnaraghi et al., 

2018; Golnaraghi et al. 2019). Quantifying productivity and the cost of construction under certain 

circumstances are popular topics for NN applications. Moselhi et al. (2005) developed a novel 

NN model capable of quantifying the impact of change orders on construction labor productivity. 

The function of finding a relationship between variables via NNs is known as the learning phase. 

The learning phase is controlled based on the error of the produced networks. The other NN 

function is called retrieval, which incorporates the inputs to a trained network and generates 

predictive responses. Training can be classified as either supervised or unsupervised. If the 

output is available in the data entry, the training is supervised. Else, it is considered 

unsupervised. Before considering the possibility of using NN for quantifying change order 

impacts, it is necessary to understand the basic principles of NN (Poole and Mackworth, 2010).  

2.6 Building Information Model (BIM)  

Over the past decade, considerable advancements have been made in the construction 

industry. These advancements were made possible by the introduction of BIM. BIM is defined 

as “a digital representation of the physical and functional characteristics of a facility. As such, it 

serves as a shared knowledge resource for information about a facility, forming a reliable basis 

for decisions during its lifecycle from inception onward (Smith and Edgar, 2008).  The US 

General Services Administration (GSA) defines BIM as “the entire processes of exchanging, 

reusing, and controlling of information generated during the lifecycle of a building through an 

object-oriented artificial intelligent information model” (GSA, 2006).  

The maturity level of BIM in an individual organization will influence that organization 

understands of BIM and its definition (Barlish and Sullivan, 2012). BIM is a powerful tool in the 

construction industry, one that can have a significant positive impact on productivity, efficiency, 

quality, and sustainable development. BIM is gaining the attention of construction industry 

practitioners, especially since major building owners such as the US GSA and the USACE 

require all projects involving the design and construction of facilities to include BIM (McCuen, 
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2008). The main goal of utilizing BIM is to have a holistic view of a building by encompassing 

the drawings, specifications, and details into a single-source computer platform (Krygiel et al., 

2008). In addition, BIM is a powerful tool for illustrating the interdependences among building 

elements.  BIM is much more than a database for developing models; it represents object-

oriented building design. A major advantage of utilizing BIM in project development and 

execution phases is the ability to review the constructability of the design prior to beginning 

execution (Shourangiz et al., 2011). BIM can provide information about a single element or for 

all elements in a project. BIM facilitates the integration of disjointed practices and can act as the 

catalyst for changing business processes (Aranda-Mena et al., 2009).  Khemlani (2007) 

performed a broad BIM survey that revealed that “The need for drawing production is still 

paramount, making this the top-ranking criterion for BIM solutions across all categories of firms 

and respondents.” Projects that have effectively utilized BIM show numerous benefits over 

traditionally delivered projects, such as increased design quality, improved field productivity, 

cost predictability, reduced conflicts and changes, less rework, increased fabrication, and 

reduced construction cost and duration (Staub-French et al., 2011).   

BIM can be utilized to support a variety of functions during the course of a project.  Based on 

the reviewed literature (Azhar, 2011; Ashcraft, 2008; Foster, 2008; Kreider et al. 2010; 

Montaser, 2013; Moayeri et al., 2015), some of the various BIM applications described by 

researchers are Site Data Acquisition, Design reviews and design authoring, 3D control and 

planning, 4D modeling, site utilization planning, structural analysis, energy analysis, cost 

estimation, sustainability LEED evaluation, building system analysis, space management, and 

facility management. For example, Langroodi and Staub-French (2012) developed a change 

management system in the context of a multi-disciplinary collaborative BIM environment during 

the design and construction of a fast-track project. Utilizing BIM in the change management 

process provides easy access to changed data and can provide a comprehensive view of the 

ripple effects of changes.  

A recent study carried out by the Stanford University Center for Integrated Facilities Engineering 

(CIFE) shows the benefits of BIM-based on 32 major projects (Gao and Fischer, 2008): 

Elimination of unbudgeted changes, up to 40%; Increased cost estimation accuracy; Decreased 

cost estimation process time, by up to 80%; Implementation of clash detection, leading to a 

saving of close to 10%; and reduction of overall project time of close to 7%. Applying BIM 

throughout a project lifecycle allows for more effective project management by reducing cost 

and time.  
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2.7 Findings, Limitations, and Research Gap 

The broad literature review shows that there have been several efforts to qualitatively and/or 

quantitatively evaluate change order impacts in the construction industry using different tools 

and techniques. Construction projects can be classified into their strategic and operational 

phases, so developing a holistic simulation model must consider these management decisions 

at the appropriate strategic level and with their specific characteristics. SD modeling helps to 

portray a complex dynamic system with nonlinearly interacting variables. However, the SD 

model has certain limitations related to how it approaches a real complex problem. Integrating 

SD with other techniques, such as AI and BIM, can help overcome the shortcomings associated 

with SD. AI is utilized to improve the computational aspect of SD modeling simulation. As 

mentioned previously, SD requires a tremendous amount of mathematical equations to draw the 

relationships among variables. AI helps to recognize the pattern among nontangible variables 

and their impact on construction labor productivity. BIM improves the change management 

approach during the development phase, making it possible to visualize the changes and their 

impacts during that stage, thereby leading to early detection of the cumulative impact of 

changes. Adapting these tools for analyzing change order impact in construction projects needs 

more investigation, as construction projects are unique and involve many variable interactions. 

Looking at a variety of SD models found in the literature, several shortcomings of the current 

practices in quantifying productivity losses due to construction project change orders can be 

found. The review of the existing literature on change order management model shows that: i) 

The advantages of the existing methods for quantifying productivity loss due to change orders 

and other key variables have been well-argued and established. However, there is no 

comprehensive approach that can address multifaceted policies and the precise assessment of 

the impacts of changes in construction projects; ii) Although the area of SD simulation was 

introduced in construction modeling more than three decades ago, research in this area is not 

mature enough and is still in its initial stages; iii) The advancements in SD modeling originated 

in fields other than construction. This presents some hurdles for the applicability of SD modeling 

to the construction industry, where numerous variables interact to generate project behavior. 

Therefore, the uniqueness and complexity of the construction industry must be considered; iv) 

The methods and procedures initiated to quantify change order damages are one-dimensional 

and mainly after-the-fact approaches. This contradicts the objective of this research where both 

post hoc and contemporaneous approaches should be considered to address the problems that 

arise during the course of a project due to change orders and management policy.  Given the 

above, it is clear that there is a need for an improved SD model aided by a novel AI method 
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capable of identifying consequential changes as well as prioritizing elective changes throughout 

several construction project phases.  The next chapter further draws on the gaps in existing 

research outlined here and proposes a methodology for developing an integrated change 

management model for estimating labor productivity loss due to change orders and managerial 

policies across all construction projects phases.   
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Phase I included a comprehensive review of existing studies on construction labor productivity, 

change orders, and loss of productivity found in the literature. This stage was the building block 

of this research and helped to frame the research problem statement and objectives. The 

results of the analysis phase highlighted the drawbacks of the current practice in the 

quantification of productivity loss due to change orders in the construction projects. These 

drawbacks led to a course of action, which was performed in the development phase. Phase II 

included a description of the four main components of the proposed framework. These were the 

development and implementation of FRCM including FRR and BIM, an AI model, and finally, 

Qualitative and Quantitative SD modeling. The validation phase (III) involved validating the 

developed models using a real-world case study adopted from the construction field to 

demonstrate its application. Finally, the conclusions, recommendations, limitations, and future 

improvements were described in the conclusion phase (IV).   

3.2 Phase I - Analysis Phase 

A broad literature review was performed in Chapter 2. It focused on a wide range of research in 

construction project changes and change orders, loss of productivity and its quantification, BIM, 

continuous simulations, Statistical Productivity Modeling, and AI techniques and their 

applications in construction management. The literature review concentrated first on the 

characteristics of changes in construction projects and their adverse effects on all the aspects of 

a project as well as the reaction of decisions makers to changes. BIM applications used in 

construction projects specifically in order to capture consequential changes that may arise from 

initial change(s) were investigated. The next part discussed construction labor productivity, 

identification of the influential elements/factors that cause loss of productivity, and the current 

techniques for quantifying the loss of productivity due to change orders. SD modeling as a 

continuous simulation method was investigated to calculate the loss of productivity. The model 

was discussed and analyzed from the perspective of both theory and application. Procedures 

for developing an SD model and its advantages and disadvantages were outlined. In order to 

achieve the research objectives and in order to avoid the limitations of SD modeling, 

mathematical complexity, and the tremendous number of equations, Statistical Productivity 

Modeling and AI techniques were reviewed and investigated to estimate BP. Finally, the 

shortcomings associated with current methods were described and presented in Chapter 2.  

3.3 Phase II - Model Development and Implementation  

This phase was based on the results of the previous phase. The development phase mainly 

involved the creation of different required components in terms of an integrated framework. The 
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major components of the proposed integrated framework components have been developed 

and implemented are shown in Figure 3.1. The first step in this phase was to develop a 

prototype Fuzzy Risk-base Change Management (FRCM) which included two main modules: 

namely “FRR” and “BIM model”. The first module was capable of providing guidance, as well as 

a systematic approach for prioritizing changes during the course of a project.  The second 

module was an adopted and modified BIM model to ensure that the proposed integrated 

framework will have the ability to capture any consequential changes that may arise from the 

imposed initial requested changes. The third component included developing a proposed AI 

technique so that the framework can portray the effects of influential environmental and 

operational factors on labor productivity estimation. The fourth component of the proposed 

framework included the development of a qualitative SD model representing the influential 

elements that create real project behavior. Developing a quantitative SD model that focuses on 

how policy-driven variables behave and interact with each other and how productivity will be 

impacted by those variables was the fifth component. The integrated frame in this research 

includes a holistic enhanced SD model for quantifying the loss of productivity due to change 

orders. All these components were then integrated in this phase. Each step is elaborated in 

more detail in the following Chapters 4, 5, and 6.  

3.5 Phase III – Testing and Validation of the Framework 

Phase III used a real-world case study from the construction domain. This implementation had 

three major components: data collection, applying the proposed integrated framework, and 

analyzing results. Data from a convoluted, real construction project was collected using a data 

collection process. This process included the collection of multiple forms of project data, 

including reference models and influential variables. This phase is where the proposed 

integrated framework and its application were tested and validated. The proposed framework is 

simulation-based and is almost exclusively a computer-based process. Accuracy in simulation-

based systems relies mainly on the precision of the data used to build the simulation model, as 

well as on its simulation. Validation of the proposed integrated framework and its application as 

a two-step process are as follows: a) Validation and testing of FRCM, PSO-RBFNN, and the SD 

model. The SD model was tested, and SD robustness was assured.  The validation process 

was based on Sterman’s guidelines (2000); and b) Comparing the results of the proposed 

framework against the actual project data. 
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3.6 Phase IV – Conclusion, Recommendations, and Future Work 

The closing observations on the proposed framework are stated in this phase. A comprehensive 

discussion of the challenges found, and lessons learned are explained in this section.  In 

addition, a summary of the discoveries and some potential topics for future research are 

outlined. Finally, this research ends by assessing the limitations of the proposed method and 

noting some of the most promising enhancements.  

3.7 Summary  

This chapter outlined the overall research methodology followed to achieve the research 

objective. The methodology included five phases as follows: 1) Literature review; 2) 

Development and Implementation; 3) Validation; and 4) Conclusion. The major components of 

each phase were described in a holistic view. A broad literature review of the current state of 

research was conducted as part of the analysis phase. The second phase was the development 

phase, which covered the major components of the proposed framework including FRCM 

(which consisted of FRR and BIM), an AI model, and Qualitative and Quantitative SD modeling. 

Testing and validation were conducted in the third phase using a real-world project from the 

construction industry, and the last phase encompasses presenting the findings and lessons 

learned from the research. 
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4. CHAPTER FOUR: FUZZY RISK-BASED CHANGE MANAGEMENT  

4.1 General Overview  

Changes in construction projects are often caused by vague and imprecise information at the 

early stages of the project. Potential changes taking place throughout the course of a project are 

one of the main causes of risk in construction projects. Risk has different meanings to different 

stakeholders; risk definition is contingent upon the perspective and experience of the people 

involved in the project. Consulting engineers see the risk from a technical viewpoint, while 

clients and contractors see the risk from an economic and financial perspective. The Business 

Dictionary defines risk as “The exposure to a company that arises from taking on a 

particular task. Project risk can be internal to the business, it can involve external events or it 

can stem from any other circumstances that can hamper 

the project's overall success and result in loss or embarrassment to the firm undertaking it” 

(Business Dictionary, 2016).  

One of the most important risks in construction projects is the failure to meet the initial estimate 

of the project parameters. Project parameters are usually stated as targets established for cost, 

time, quality, performance, scope, and project purpose. Thus, the likelihood of failure to meet 

planned targets may increase if changes are not managed through a formalized change 

management process. If changes are poorly managed, they can become a major cause of 

costly disputes, which is a rigorous risk contributing to project failure. Many change 

management processes and models focus on identification and recommendation for handling 

changes which are not enough to manage changes effectively during the course of a project.  In 

other words, currently available change management models mainly focus either on the change 

identification process, best practices for managing changes during a project, or the evaluation of 

change impacts on only a single project aspect. Building a robust construction change 

management model is a convoluted task because it requires a comprehensive solution that 

synchronizes all the inputs coming from the different parties concerned for managing changes. 

In this chapter, the FRCM model and its first two phases, FRR and BIM, are further elaborated. 

It is worth noting here that change and change order are two different concepts; when a change 

request is approved, it can be called a change order. Consequently, change or change request 

refers to a change that has been registered and requested but not yet approved for 

implementation, while a change order refers to a change request that has been approved for 

implementation. This chapter elucidates on the FRR that may have the potential to reduce and 

remove unnecessary changes to create a successful change management process. The 
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objectives of this chapter include proposing an FRR for change management and proposing a 

framework for this purpose.  Chapter 4 proposes a robust change management model to ensure 

that each change introduced in a project is appropriately defined, assessed, and accepted or 

rejected based on its risk ranking score prior to execution. 

4.2 Fuzzy Risk-based Change Management Model 

As Figure 4.1 demonstrates, the complex integration of various information necessary for the 

development of a sound change management model is a challenging task.   

 

Figure 4-1. Information Required for a Holistic Change Management Model. 

Changes in construction projects are inevitable. Usually, they are not well defined, and it takes 

considerable time and effort to gather all the changes information.  A change management 

model can be defined as an essential tool for cooperating internal and external factors that 

influence proposed changes. Previous research on managing changes in construction projects 

can be classified into three major groups:  

1. The first group covers processes, guidelines, and the best practices for managing 

changes (CII, 1994; Cox et al., 1999; Ibbs et. al., 2001);  

2. The second group covers the effects of a change order on a certain project aspect. For 

example, Williams (2000) tried to show the impact of safety regulation changes on a 

project by using the System Dynamic (SD) modeling technique; and 

3. The last group covers change management models. Pelton et al. (1993) developed a 

change document management system that integrates document approval and release 

procedures. Meanwhile, Hegazy et al. (1994) developed a model to facilitate design 
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coordination and management of design changes. The proposed model is capable of 

identifying the ripple effects of changes by considering dependencies among building 

elements.  Charoenngam et al. (2003) proposed a web-based change order 

management system that supports documentation practices, communication, and 

synchronization between different team members in the change order workflow. Lastly, 

Motawa et al. (2007) developed a proactive change management tool composed of a 

fuzzy logic-based change prediction system and a system dynamics model of the 

Dynamic Planning and control Methodology (DPM), which is used to assess the 

undesirable impacts of changes on construction performance. Karimidorabati et al. 

(2016) developed a three tiers automated change management model for megaprojects. 

A proper change management model should encourage positive changes which do not affect 

the project negatively and mitigate unfeasible and negative changes. It should also serve as a 

tool for managing changes by integrating various information throughout the course of a project. 

Thus, in order to develop an effective change management model that incorporates all of the 

above, the developed model has to take into consideration the following: 

1. Identifying changes (changes can be caused due to the design changes, budget shift, 

error or omission, etc.); 

2. Identifying change type (mandatory or elective); 

3. Communicating changes with all appropriate project stakeholders as early as possible 

after the change has taken place; 

4. Identifying and capturing consequential changes; 

5. Estimating the cost and time required for changes and their ripple effects prior to 

execution; 

6. Prioritizing and ranking the proposed elective changes using fuzzy-based risk ranking by 

the change originator and risk analyst;  

7. Approving or rejecting proposed elective changes by consensus among management 

team and client in an effective and timely fashion; 

8. Informing project team of any necessary actions; 

9. Facilitating the final approval and handover process by sending the client notification of 

the performed changes; and  

10. Recording lessons learned for assessing similar changes in the future. 
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This section describes the development of FRCM model, the techniques used at each stage, 

and the function of the prototype model. Assessing indirect change impacts on projects has 

become increasingly difficult; as projects grow in complexity in terms of project delivery systems 

and contract types, there is a high dependency on the professional judgment of the project 

team. The aim of the FRCM prototype model is to facilitate the change assessment process as 

well as provide accurate and comprehensive information to decision-makers. Sharing the 

lessons learned from previous projects among the project team results in informed decision-

making and can improve the change assessment process. It is highly recommended that the 

knowledge gained from previous projects regarding changes be shared with the project team 

globally and through well-established communication channels rather than by banking on 

socially built communication channels. The developed model can help the project management 

team make better-informed decisions on any proposed changes by making the lessons learned 

information formalized and easily available. For example, using the developed model, the 

project team can check whether a similar change has occurred in other projects and how that 

change assessed previously. FRCM can retrieve historical data for this purpose. The workflow 

diagram in Figure 4.2 outlines the developed change management model process. FRCM 

model contains procedures, policies, documents, and templates for assessing and managing 

changes over the lifecycle of a project. FRCM model is a tool for change management but it 

should be noted that it is the obligation of the project management team to make sure that the 

proposed changes are managed in respect to the company’s policies and procedures. Multiple 

changes to a project can increase the change management complexity; it is unrealistic to 

believe that change data can be conveyed effectively among project parties without some form 

of project management tool. The literature review findings in conjunction with the feedback of 

industry experts employed in several North American mega projects helped to identify the 

importance of having a workable construction project change management framework. 

4.2.1 Change Identification and Registry  

Since changes are an integral part of construction projects, the goal of all project parties, clients, 

designers, and contractors, is to reduce the number of changes affecting the project negatively. 

Consequently, change identification and management should begin before even the execution 

phase of a given project. Change identification is required for the implementation of an effective 

change management model. However, change identification is hard to automate, as it requires 

considerable effort to reach an intelligent proactive system. Thus, proactive change 

identification is out of the scope of this research. In the developed model, the originator of the 
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change identifies the need for a change when there is a difference between the project current 

situation and the project’s planned situation. Here, the need for a change for a given project is 

carried initiated out by the change originator based on symptoms, errors and several other 

project characteristics which may lead to project changes. The project’s contract documents 

play a significant role in this step. The originator should know the contract requirements 

conditions in terms of scope, specifications, schedule, and budget so that any deviation can be 

captured and assessed in a timely fashion.  

In this research, consequential change identification has been automated using a BIM-based 

change management model because of its strong visualization and parametric modeling 

capabilities. Utilizing BIM for the identification of consequential changes will be further explained 

in the next following sections. To keep track of changes, it is important that all changes are 

registered, along with any information essential for assessing and managing changes including 

but not limited to:  

1) Impacted areas; 2) Concerned departments; 3) Due date for approval; 4) Due date for 

execution (planned and actual start and finish dates); 5) Change description; 6) Reason for 

Change; and 7) Change Type. Several classifications for Change Type and Reason for Change 

exist in the literature. For the purposes of this research, the CII (1994) classification of change 

was adopted and includes the following:  

 Mandatory Changes: These changes are required to be implemented to meet the 

objectives and any regulatory, legal contractual, safety, and engineering requirements 

and standards. In other words, ignoring these changes will have a negative impact on 

the client’s reputation and overall project; and  

 Elective Changes: These changes can enhance the project but are not needed to meet 

project objectives. It is assumed that these changes may reduce project cost, schedule, 

or degree of complexity. It should be noted that a change at the primary phase of a 

project can be realized as an opportunity to improve the project; however, it is likely that 

these changes will diminish as the project progresses.  

As previously mentioned, changes in construction projects may occur due to many reasons 

such as unforeseen site conditions, lack of fulfillment of client’s need in project design, design 

errors, and imposed uncommon rigorous requirements by design engineer. The United States 

Pacific Command (USPACOM) uses a reason coding system for change administration and 

management facilitation (Stocks and Singh, 1999). 
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Fuzzy Risk-based  Change Management System (FRCMS)
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Figure 4-2. Proposed Change Management Model.
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contractor’s proposed change submission. The detailed estimate should include material 

quantities, labor production rates, and pricing; and 

 T&M method: T&M is based on the contractor’s actual direct costs (labor, equipment, 

materials, etc.) for implementing a change including overhead and profit mark-ups. This 

method is riskier for the client and requires more rigid controls from the client side. 

Usually, a ceiling price is agreed upon by the client and the contractor and a potential 

change cannot go over the agreed-upon price.  

It should be noted that, regardless of the agreed-upon pricing method for a change order, a 

detailed estimate must be prepared and accompany a contractor’s submission to the client. In 

order to calculate the cost of implementing a requested change, various required costs including 

Direct Field Labor (DFL) Costs, Material Costs, Equipment Costs, and Third-Party Costs have to 

be taken into consideration.  Time assessment of a requested change is as important as cost 

assessment since it is possible the project schedule will be impacted or delayed by the work 

included in executing a change order. The impact of a requested change can be absorbed by 

consuming the affected activities’ total float. On the other hand, if a change is found to be on the 

critical path of the project, the agreed-upon completion date may slip. Likewise, when it comes 

to time assessment, it is important that the owner and contractor be able to perform time impact 

analysis for a project to identify the activities impacted by a proposed change and to verify if the 

project completion date has slipped or not. The duty to mitigate damages caused by change 

orders is the responsibility of both parties (contractor and client). Thus, the timely identification 

of potential project issues and delays helps both parties establish a recovery plan to mitigate 

some or all potential delays. The method(s) of performing schedule analysis, format, and 

submittal of requested changes, the approval process, as well as the ratified fragnet schedule 

incorporation into the project should be outlined in the project contract. Several techniques are 

available for quantifying the impact of change orders on project schedule such as “Window” 

Analysis, Collapsed As-Built, Impacted As-Planned, and Time Impact Analysis (TIA). Among the 

mentioned techniques, TIA can be considered as the most common and suitable technique for 

evaluating the time-related effect of changes on the project schedule and contract duration. To 

quantify the time extension entitlement, this technique requires that the contractor prepare a 

fragnet schedule and use the updated schedule in effect at the time a change was issued. The 

complete TIA procedure and requirements are comprehensively explained in AACE® 

International Recommended Practice No. 52R-06, 2017 (AACE, 2017). The developed change 

management model does facilitate TIA implantation by providing some essential information 
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such as required man-hours, description of the change, impacted area, etc.  The effect of 

requested changes on an organization, however, is out of the scope of this research and will be 

considered as the future development of this research.    

4.2.2.2 Consequential Change Assessment 

Identifying consequential changes prior to their occurrence may help the project management 

team to manage changes more efficiently and effectively in a timely fashion over a project 

lifecycle. Consequential changes are defined as any changes which may arise as the result of a 

new change request initiation by either party (owner or contractor). Identifying consequential 

changes is not an easy task; it is not unusual in change management models that consequential 

changes be overlooked while a new requested change is being initiated. Therefore, a holistic 

change identification process for any change management model cannot be based on 

traditional methods, paper-based printouts of 2D drawings, as this does not permit all the effects 

of a requested change to be discovered. As construction projects increase in complexity, so 

identifying consequential changes and clashes between different discipline-specific models is 

becomes an onerous convoluted process. BIM software, capable of demonstrating both the 

physical and essential properties of building elements as an object-oriented model tied to a 

dynamic database and parametric modeling capability, can rectify this problem by visualizing 

the impact of a requested change on other project components. Plenty of recent research has 

highlighted the advantages of BIM in design change management (Moayeri et al., 2015 and 

Pilehchian et al., 2015). The model adopted in this research uses BIM-based software 

developed by Moayeri (2017). The software is a computational platform that allows project 

parties to leverage BIM data for increased project insight, progressive project teamwork, and 

data-driven decision-making. It should be noted that using BIM-based modeling for 

consequential change identification is recommended for design changes only. Normally, design 

changes influence project cost and time and have the capability to increase the possibility of 

conflicts among project parties. In addition, any design change, regardless of whether initiated 

by the owner or A/E may have an impact on what appears to be the unchanged project scope. 

Thus, parties should consider that change in one part of the project might trigger a series of 

changes in other unchanged parts of the project, known as “consequential changes.” Moayeri et 

al. (2015) classified design changes into four groups: adding, deducting and altering one or 

more components in the original design, as well as a combination of these categories. The 

process of using a BIM-based platform for consequential change identification is highlighted in 

the following diagram (Figure 4.5). The developed model by Moayeri has two main functions; 
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first, it finds the consequential change(s) of the design change on other project parts. Second, it 

quantifies the total impact of a change on project cost and time. The automated model is called 

“BIM-Change” and makes it possible to visualize consequential change(s). The first step in the 

“BIM-Change” software to develop a BIM model using the project’s 2D drawings for different 

disciplines and project specifications documents. This can be carried out by the virtual design 

and construction (VDC) department. At this stage, the developed model should be saved as the 

baseline BIM model. Although the contractor is responsible for checking the drawings after 

being awarded the contract, it is not unusual in the construction industry for the drawings and 

specifications at bid time to be different from the IFC drawings. It is recommended that the 

baseline BIM model be prepared based on the bid documents to help identify any overlooked 

changes and variations. The second step is to develop a modified model based on the 

requested change. The change originator should disclose all essential information to the VDC 

department for the modified version of the BIM model. Then, both the models should be 

uploaded into the “BIM-Change” software for the highlighting and identification of impacted 

components and consequential changes. Finally, in the last step, to see the difference between 

the original and changed components, the user would analyze the generated report, which 

includes all the impacted components and information about the original components. It is very 

important to mention that the BIM model should be updated regularly based on the latest 

information at different stages of the project. This process is referred to as “Statusing” in this 

research. Statusing is a term used in scheduling practice which can be adopted for BIM 

modeling. BIM model Statusing is the process of updating a BIM model with requested changes 

and new sequences to reflect the actual situation during the lifecycle of a project. BIM model 

Statusing is a fundamental step to efficient planning and is a required step for an effective 

change tracking process. The benefits of updating the BIM model on a regular basis include: 1) 

Knowledge of whether components were modified, deducted, or new components were added; 

and 2) Continually tracking changes and their consequences on project components. After 

identifying consequential changes, the next step is to determine the time and cost assessment 

of the identified consequential changes using methods explained in Section 4.2.3.1. For the 

sake of loss of productivity quantification, the impact of change orders will be measured in 

absolute terms, meaning that a project’s deductive and additive changes are treated the same 

regardless of their signs. For example, if an additive change costs X and a deductive change 

costs -X, the total amount of change considered for quantification will be 2X.  This idea was 

adopted from Ibbs (2005) and the rationale behind this idea is that a deductive change may 

have the same impact on productivity, just as an additive change might.  
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4.2.2.3 Fuzzy-based Risk Ranking Model 

As mentioned previously, the considerable volume of qualitative information with questionable 

accuracy in projects makes it prone to many changes. Much of the information available for 

change management is based on individuals thinking in terms of conceptual patterns and 

mental images rather than quantities or numbers. A robust practice of gathering the information 

that encourages necessary changes and discourages unnecessary ones is required throughout 

the project process. There are several approaches to modeling uncertainty and variations of 

subjective variables including ANN, Rule-based system, and FIS. The first two methods are not 

applicable to this research for the following reasons (Motawa et. al, 2006): 

 Any rule-based modeling requires change information in the form of precise rules. This is 

not realistic in the context of a construction project because a considerable amount of 

change information is ambiguous and not easy to quantify, making it technically close to 

impossible to assess; and 

 The ANN modeling technique relies on the “black box” and has limited capability to clearly 

identify possible causal relationships. More specifically, ANN does not provide sufficient 

detail to justify the outcomes of the ANN model.  In addition, building a robust ANN model 

requires greater knowledge regarding issues associated with ANN modeling, which may 

mask the outcome of the model such as overfitting of the training dataset.     

Considering the abovementioned reasons, FIS was found the most suitable ranking approach 

for the developed change management model. A fuzzy-based model is an effective way of 

dealing with linguistic terms and vagueness associated with changes over a project timeline. 

Change impact assessment is a complex subject shrouded in ambiguity. This difficulty stems 

from the subjective judgment and inaccurate non-numerical definition of the probability and 

degree of impact on various aspects of the project caused by changes. This approach can 

resolve some drawbacks associated with traditional methods of risk ranking and have major 

advantages over strictly numerical methods. Firstly, it allows the impacts associated with the 

change to be evaluated directly using linguistic terms. Secondly, quantitative information, along 

with ambiguous, qualitative, or imprecise information, can be used in the assessment in a 

structured manner with more flexibility in combining the impact of change and likelihood of 

impact occurrence. Therefore, a fuzzy-based risk assessment was developed to rank the 

proposed elective changes based on change consequences/impacts and the probability of their 

occurrence. Figure 4.6 shows the overall view of the developed fuzzy-based risk ranking model 

and its five major steps. 
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Figure 4-6: Fuzzy Risk-Based Ranking Model Overall View. 
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Step 1. Change Impacts Identification 

This step helps to develop a hierarchical structure for the different possible impacts of the 

change under evaluation. Since various sources of impact affect construction projects in 

different ways, this research considers the source of impacts as a key factor in their 

classification. Therefore, a three-tiered impact structure was developed in this research, as 

shown in Figure 4.7. 
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Figure 4-7: Hierarchical structure of Change Impacts. 

The hierarchical structure was built in which the impacts at Level 2 were broken into simplest 

possible attributes. The reason behind this method is the fact that allocating occurrence 

likelihood and consequence level to the lower level of attributes are reasonably more 

straightforward than to the higher-level attributes. Change impacts include Financial, 

Operational and Health, Safety, and Environmental (HSE) impacts. Because the developed 

model is a reactive change management model, at the step in which a change occurred, the 

change impacts on the project were first identified, and then the occurrence likelihood of the 

identified change impacts was estimated. In the literature review, numerous studies highlighting 

the causes and impacts of change orders in construction projects were mentioned in Chapter 2. 

With this in mind and based on the study of the most important and frequently reported sources 

of impact, and construction industry experts’ opinion, the following impact breakdown structure 

was developed (Figure 4.7).  As shown in Figure 4.7, identified impacts can be classified into 

three major groups: Financial, Operational, and Health, Safety, and Environmental (HSE) 

impacts. All the above-mentioned factors have been reported as the impacts of changes, 

although there have been occasional variations in the applied terminologies and categorizations 

by different researchers. In each project, the identified impact can be customized considering 

various conditions, project specifications etc. 



 

80 

 

The first group considers impacts on financial sources. The impacts of this group happen as the 

result of additional costs associated with proposed changes and are as follows:  1) Change in 

Cash Flow: Cash flow is of great importance to construction parties as it prevents negative 

impacts such as liquidation and bankruptcy. However, securing cash flow can be difficult due to 

uncertainties, which are an integral part of any construction project. One of the major issues in 

large-scale construction projects is the uncertainty and ambiguity surrounding projected cash 

flows during the course of a project.  According to Odeyinka and Lowe (2002), the main factors 

responsible for the deviation between projected and actual cash flow are changes to initial 

design as well as work variation. Zainudeen et al. (2010) found that the impact of design 

changes on cash flow plays a key role. Therefore, it is important that project parties secure 

additional interim finance than initially planned; 2) Increase in the overhead: Changes require 

a considerable amount of time and effort before they can be executed, as well as a solid 

processing procurer (O’Brien, 1998). The resources required to track, monitor, and execute 

changes in construction projects increase the overhead costs for all involved parties. Arain and 

Phen (2005) reported an increase in overhead costs as one of the most frequent effects of 

change orders; and 3) Increase in total project cost: The most common impact associated 

with change during the execution phase increases in project cost (CII, 1990a). Design changes 

can be considered a key factor in project cost overruns as identified by several researchers 

since design changes inevitably lead to deviation from the planned time and cost. Arain and 

Phen (2005) highlighted project cost increase as the most frequent effect of change orders. In 

the construction industry, it is common to expect a project cost increase due to multi-change 

orders during the course of a project.  In other words, change orders affect total project cost and 

indirect and direct costs. Although a contingency fund plan over any potential unfavorable risks 

associated with changes in projects, it is not unexpected that several changes in a project may 

occur and exhaust the planned contingency. The second group of impacts associated with 

changes covers operational sources. These impacts, which may happen as the result of change 

orders, are as follows: 1) Impact on Critical Path of Project Schedule: The impact of change 

orders on project schedule can also be considered as one of the more frequents impacts. Major 

changes may affect the project completion day severely, and lead to costly delays. Ibbs (1997) 

found that completion schedule delays are generally caused by changes in construction 

projects. Assef and Alhejji (2006) conducted a survey in Saudi Arabia to determine the causes 

of delay and their importance to each of the parties involved in projects – the owner, consultant 

engineer, and the contractor. The results of their study show that the most common reason for 

delay identified by all three parties is a change order. Several factors should be taken into 
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account to minimize the effect of change on project schedule such as comprehensive detailed 

design, mitigating employer-initiated changes, and complete site investigation and surrounding 

environment by project parties (Kumaraswamy et al., 1998); 2) Rework and Demolition: 

Changes may lead to rework and demolition of work in construction projects (Clough and Sears, 

1994). Changes imposed by project parties during the construction phase, or even when the 

project is substantially complete, usually lead to costly rework and delays in project completion 

(CII, 1990). The cost of rework in construction can be as high as 10 to 15% of the contract value 

(Sun and Meng, 2009). Hanna (1999b) assumed the impact of a change order to increase from 

project inception to completion. This is because changes during the inception and design phase 

of a project do not need any rework or demolition. However, changes in design during the 

construction phase may cause reworks and demolitions on the construction site. Thus, the 

timing of changes is a very important contributing factor as mentioned by Moselhi et al. (2005) 

and Ibbs (2005). As a result, the impact of a variation in design during the construction phase is 

more rigorous than in the design phase; and 3) Change in Quality. Excessive changes can 

affect project quality because contractors want to reimburse losses by doing work in the 

cheapest or quickest way possible, overlooking rules or leaving a detail behind at the expense 

of a high standard (CII, 1995). Similarly, loss of productivity may also lead to poor quality (Arain 

and Phen, 2005). As stated by Sun and Meng (2009), a change order can indirectly cause 

quality degradation due to a higher workload and the need for resequencing of work. A higher 

workload may trigger different managerial policies like working overtime or adding more shifts to 

bring the project back on track. The key impacts of these kinds of policies on labor are ethical 

issue and fatigue which results in poor quality. The third group of impacts covers the HSE 

sources and includes: 1) Safety: Changes during the construction phase may lead to employing 

new methods, additional direct field labor, varied materials, and additional equipment. Thus, 

additional safety measures are required during the construction phase. Additional resources can 

lead to a more congested area at the construction site and possibly cause safety incidents; 2) 

Health: Any changes to the initial plan should be studied carefully to avoid negative impacts on 

human existence. For example, if a new change requires performing different Non-Destructive 

Tests (NDTs) or X-Ray inspection for field welding instead of Magnetic Particle Inspection 

(MPI), this should be taken into account prior to executing the proposed change; and  3) 

Environmental: The construction industry is one of the major global contributors to natural 

resource pollution both in physical and biological ways. Sustainability is a key concept in 

developing any new construction projects. Construction projects contribute to environmental 

degradation by contributing to the loss of soil and agricultural land, forests and wild lands, and 
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air pollution. Although construction projects are crucial to all aspects of development, these 

projects should be designed and developed in a way that mitigates environmental degradation. 

By the same token, any new major changes initiated during the project lifecycle should be 

assessed with respect to environmental sustainability.  

Step 2. Weighing Scheme Using Fuzzy Analytical Hierarchy Process (F-AHP) 

A weighing scheme is essential for quantifying impact factor contributions in sub-criteria (Level 

3), towards the criteria (Level 2), and the main goal (Level 1). For example, a change can have 

a schedule impact and contribute to an increase in overhead cost but the contribution of these 

factors to overall risk ranking value would not be equal, thus a weighing scheme is required.  

The F-AHP technique was utilized in this study to quantify the degree of importance of change 

impacts at a different level of the developed hierarchy (Figure 4.7). AHP first introduced by 

Saaty and Wind (1980), was applied to integrate expert feedback regarding the importance of 

various change impacts on the project. AHP can break apart a complex problem, down from 

higher hierarchy levels to lower ones, making it much simpler. Moreover, since the expert 

evaluation of change impacts on a project includes uncertainty and vagueness, the fuzzy set 

theory developed by Zadeh (1965) was applied. Therefore, the F-AHP method, which uses 

fuzzy numbers instead of real numbers to calculate the global and local weights of criteria and 

sub-criteria of each change impact, was selected to facilitate experts’ judgments in a structured 

way (Ayhan, 2013; Lee, 2016). In this research, a survey was conducted to calculate the degree 

of importance (global and local weight) for each selected factor by experts. The questionnaire 

was distributed on March 15th, 2016 and all the responses were collected in a month. The 

questionnaire was designed on the Qualtrics data collection platform. More than 100 

questionnaires were sent out and 42 were collected from various industry experts involved in 

different mega projects in branches such as, Oil and Gas, Hydropower Dam, Mining, etc. After 

the initial analysis, four questionnaires were discarded due to incomplete information. Thus, 38 

questionnaires were used to calculate the degree of importance of various change impacts on 

a project. Years of experience and occupations of the experts are summarized in Figures 4.8 

and 4.9. After gathering general information regarding the experts such as their job title and 

years of experience, industry experts were then asked to conduct pairwise comparisons 

between main criteria and sub-criteria under each main criterion to establish the relative 

importance of these factors in affecting project objectives. More specifically, industry experts 

were asked to compare the importance of each change impact against other change impacts in 
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After the data gathering portion, F-AHP steps, as presented by Ayhan (2013), were followed. 

Industry expert replies were fuzzified by triangular numbers as shown in Table 4.3 and 

averaged using Equation 4.1: 

1

K
k

k
ij

dij

d
K




       Equation 4.1 

Where 
k

ijd indicates the kth decision maker’s preference of ith criterion over jth criterion and 

K indicates the number of experts. The average of the collected responses for the questionnaire 

is summarized in Table 4.3.   

Table 4-3. Pairwise Comparison Matrix for Financial, Operational, and HSE Factors. 

Main Criteria Financial Impacts Operational Impacts HSE Impacts 

Financial Impacts (1, 1, 1) (0.34, 0.45, 0.56) (0.43, 0.53, 0.64) 

Operational Impacts (0.32, 0.43, 0.54) (1, 1, 1) (0.33, 0.44, 0.55) 

HSE Impacts (0.24, 0.34, 0.45) (0.33, 0.44, 0.55) (1, 1, 1) 

Sub-criteria 1 Cash Flow Deficiency Increase in Overhead Project Cost 

Cash Flow Deficiency  (1, 1, 1) (0.31, 0.42, 0.53) (0.31, 0.41, 0.52) 

Increase in Overhead (0.35, 0.46, 0.57) (1, 1, 1) (0.29, 0.39, 0.50) 

Project Cost (0.35, 0.46, 0.57) (0.38, 0.48, 0.60) (1, 1, 1) 

Sub-criteria 2 Project Schedule Rework and Demolition Quality 

Project Schedule (1, 1, 1) (0.35, 0.46, 0.57) (0.39, 0.49, 0.61) 

Rework and Demolition (0.31, 0.42, 0.53) (1, 1, 1) (0.29, 0.39, 0.50) 

Quality (0.27, 0.38, 0.49) (0.38, 0.49, 0.60) (1, 1, 1) 

Sub-criteria 3 Safety Health Environment 

Safety (1, 1, 1) (0.34, 0.44, 0.55) (0.42, 0.53, 0.64) 

Health (0.34, 0.43, 0.55) (1, 1, 1) (0.42, 0.52, 0.63) 

Environment (0.24, 0.35, 0.46) (0.25, 0.36, 0.47) (1, 1, 1) 

In order to calculate the final relative fuzzy weights of each criterion, the following steps were 

followed: 

Step 1: The geometric mean of fuzzy comparison values of each criterion was calculated using 

Equation 4.2: 
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Where, ijd indicates the ith row and jth column of average comparison matrix for criteria and n 

shows the number of columns. 

Step 2: The fuzzy weights of each criterion were then be calculated. First, the vector summation 

of each ir was found, then the (-1) power of the summation vector, and the fuzzy triangular 

number replaced to make it in ascending order. Finally, each ir was multiplied by this reverse 

vector. All the steps mentioned are shown in Equation 4.3: 

1
1 2( ... ) ( , , )i i n i i iw r r r r lw mw uw        Equation 4.3 

Step 3: In this step, since iw  is still fuzzy triangular numbers, the center of the area as a de-

fuzzification method needed to be applied, as represented by the following equation:  𝑀𝑖 = 𝑙𝑤𝑖+𝑚𝑤𝑖+𝑢𝑤𝑖3                                                                          Equation 4.4  

Step 4: Considering that iM is a non-fuzzy number, it needed to be normalized as expressed 

by Equation 4.5: 𝑁𝑖 = 𝑀𝑖∑ 𝑀𝑖𝑛𝑖=1                                                                                             Equation 4.5 

All the above steps should be performed to find the normalized weights of both the main criteria 

and sub-criteria, namely as global and local weights. By multiplying each attribute weight with 

the related main criteria, the degree of importance for each attribute was calculated. Table 4.4 

shows the Global Weights, Local Weights, and Degree of Importance obtained. The table 

reveals that Financial Impacts have the highest effect in change order ranking. Operational and 

HSE impacts were ranked as the second and third key factors, respectively. It is very important 

that the consistency in the pairwise comparisons be ensured. The developed comparisons 

matrices are vulnerable to inconsistencies and mistakes in expert preference replies, thus, two 

indices, Consistency Index (CI) and Consistency Ratio (CR), need to be calculated in order to 

ensure consistency based on the developed questionnaire. First, the maximum eigenvalue 

(λmax) should be calculated as follows:  
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1) To calculate matrix J, each triangular fuzzy number should be replaced by a geometric 

average of it components in the comparison matrix; 2) The obtained comparison matrix from the 

previous step should be normalized; 3) Aggregated weight (AW) should be calculated for each 

alternative; 4) Weighted sum matrix (WSM) is calculated by multiplying AW to Matrix J; 5) Step 

4 should be divided by AW to calculate λmax for each alternative; and 6) The overall λmax is 

calculated by getting the λmax average for each alternative. 

Table 4-4. Global and Local Weights for All Parameters. 

Main Criteria 
Global 
Weight 

Sub-Criteria Local Weight 
Degree of 

Importance 

Financial 35.11% 

Cash Flow Deficiency  32.56% 11.44% 

Increase in Overhead 32.85% 11.53% 

Project Cost 34.56% 12.13% 

Operational  33.17% 

Project Schedule 34.78% 11.54% 

Rework and Demolition 32.10% 10.65% 

Quality 33.12% 10.99% 

HSE 31.72% 

Safety 34.92% 11.08% 

Health 34.77% 11.03% 

Environment 30.31% 9.61% 

After calculating the overall λmax, the CI was calculated from the following equation (Equation 

4.6), showing the consistency degree of deviation: 

𝐶𝐼 = λ max − 𝑛𝑛−1   ;                                                                   Equation 4.6 

Where, λmax=maximum eigenvalue and n=dimension of the pairwise matrix. The second index, 

CR, is defined as the ratio between CI and RI for random comparison (Equation 4.7) and it is 

shown in Table 4.5 (Saaty and Kearns, 2014):  

𝐶𝑅 = 𝐶𝐼𝑅𝐼                                                                                         Equation 4.7 

Table 4-5. Average random consistency (RI). 

Size of matrix 1 2 3 4 5 6 7 8 9 10 
Random consistency 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

CI and CR were summarized for all pairwise comparison matrices and the results can be seen 

in Table 4.6. 

Table 4-6. Consistency in Pairwise Matrices. 

Pairwise Comparison Matrix CI CR 

Q1. Main Criteria 0.004 0.008 
Q2. Financial Impact 0.002 0.004 
Q3. Operational Impact 0.047 0.091 
Q4. HSE Impact 0.003 0.006 
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After defining each criterion and sub-criteria weight, to generate a single risk score for each 

change impact at the lowest level of hierarchal structure (Level 3), the next step was to integrate 

the proposed change impact and its occurrence probability. 

Step 3. Fuzzification of Risk  

It is very clear that risk assessment is highly subjective and the process shaped by many factors 

such as management’s understanding of the project, desire to mitigate the negative impact of 

any imposed changes on the project, lessons learned from past experience, and the risk 

tolerance culture of the organization. This research proposes an FRR model for decision-

making facilitation regarding elective changes based on identified change impacts as shown in 

Figure 4.6. Many of these impacts are not easy to quantify or define due to vagueness and 

uncertainty associated with changes, as mentioned in detail in the previous sections. In addition, 

it is very common that in the complex construction projects, change impacts are described in 

linguistic terms. Therefore, to achieve a reliable and precise change risk assessment, it is 

important to have a common language defining change impacts and their occurrence likelihood 

in a project. Fuzzy set theory was used in this research to overcome the above-mentioned 

issues because it is able to effectively handle the vagueness and uncertainty associated with 

changes in construction projects. Prior to the identification of each change impact’s level of 

consequences and occurrence likelihood, several meetings were held with a senior risk analyst 

at one of the largest Engineering, Procurement, and Construction (EPC) and EPC Management 

(EPCM) firms in Canada. To further develop the occurrence likelihood and level of impact 

consequence definitions, meetings were also held with an independent risk consultant. The 

feedback received from both was taken into consideration for the development of the 

consequences and likelihood matrix based on linguistic terms. The risk matrix model is one of 

the simplest risk assessment models for ranking proposed elective changes according to their 

occurrence likelihood and consequence level of impacts. Table 4.7 presents five linguistic terms 

and their probability and consequence definitions. 

Table 4-7. Customizable Terms for Quantifying Impact Occurrence Likelihood. 

Likelihood  Likelihood Description Probability 
VH The change impact is expected to occur with absolute certainty  > 65% 
H The change impact is expected to very likely occur  35% - 65% 
M The change impact is expected to likely occur 10% - 35% 
L The change impact is expected to unlikely occur 0.1% - 15% 

VL The change impact is not expected to occur  < 0.1% 

Any organization can adopt and modify these terms, which will help in establishing similar 
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understandings for expressing the occurrence probability of change impact in an organization. 

Quantifying the potential consequence level of a change impact is an integral part of any risk 

evaluation model. Proposing a new change, quantifying all potential consequences is very 

difficult. While the consequence of change is expressed in terms of three major categories 

(Figure 4.6), the consequence level of each change impact can be expressed by linguistic terms 

as shown in Table 4.8. The values in Table 4.8 have been tailored to this research based on 

several meetings with project control professionals and a risk analyst working for mega projects 

in Canada. However, due to the dynamic nature of construction projects, the values shown in 

Table 4.8 should be modified according to project objectives and type. Table 4.9 shows the risk 

score magnitude for each impact at Level 3 by relating the consequence level with the 

occurrence likelihood. 

Table 4-8. Customizable Terms of Consequence Level Quantification. 

 

Table 4-9. Risk Matrix Rules to Determine Risk Score Magnitude. 
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After defining the occurrence likelihood and consequence level terms, this research utilized the 

basic concept of fuzzy set theory and showed how it can be used to prove the heuristic 

knowledge of the project management team. As mentioned earlier, assigning an occurrence 

likelihood and impact degree to the lowest hierarchy level is easier and more reliable than at 

higher levels (Figure 4.10). It should be noted that obtaining information for FIS could be 

accomplished with human experts or experimental data using different methods as classified by 

Jin (2012): 1) Indirect knowledge acquisition; 2) Direct knowledge acquisition; and 3) Automatic 

acquisition. Minimizing the total number of rules and their corresponding computation 

requirements is one of the most important issues in developing a FIS where the knowledge-

based rules are obtained from experts. Since the number of the rules and the complexity of FIS 

will increase exponentially with a number of variables involved in the model, a hierarchical FIS 

was proposed in this research to minimize this problem. The overall FIS was divided into a 

number of low-dimensional FIS. By utilizing this approach, the number of rules was greatly 

reduced (Lee et al, 2003). Several approaches exist to dealing with a hierarchical FIS structure. 

The approach adopted in this research was to use the output of the last layer as crisp value as 

the input of the next layer in the hierarchical FIS. The advantage of this approach is the fact that 

it will reduce the uncertainty of the new result by reducing the number of fired rules in the new 

layer but at the expense of losing uncertainty information. A FIS was developed for applying 

rule-based knowledge for mapping likelihood and consequence into a risk score. The rules are 

in the form of IF-THEN rules. The fuzzy risk matrix structure can be represented in the form of 

fuzzy rules as follows: If the likelihood is la AND level of consequence is cb THEN risk is rc, 

where la, cb, and rc are fuzzy set for likelihood, consequence, and risk outlined on the universe of 

discourse. Fuzzy rules were developed based on a combination of five occurrence likelihood 

categories and five consequence level categories according to the developed risk matrix (Table 

4.9). Thus, 25 rules were generated representing risk score magnitude categories.  

To help produce the number of rules, as previously mentioned, several interviews were held 

with a senior risk analyst and consultant. There are several fuzzy membership functions (MFs) 

out there for representing linguistic terms in the form of fuzzy numbers such as triangular or 

trapezoidal fuzzy numbers. The developed FIS uses five triangular MF (TMF) for sub-criteria 

consequence and likelihood over the range of 0-10. During this stage, fuzzy MF for different 

sub-criteria was defined by the direct method with multiple experts approach (Klir and Yuan, 

1995). The TMF was good enough to characterize most of the sub-criteria precisely. The MF 

was used to determine the degree of membership of fuzzy-based risk score to different sets 
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expressed by linguistic terms as follows: Very Low (VL), Low (L), Medium (M), High (H), and 

Very High (VH). A simple FIS was developed for aggregating consequences and likelihood 

impact using the Fuzzy Logic Designer under MATLAB 2017a. 
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Figure 4-10. Fuzzy Inference Systems General Overview. 

The developed FIS rules were established over several sessions with the risk expert. The rules 

represent expert knowledge and map the inputs to the output of the developed system. The 

Mamdani fuzzy rules system was applied to the developed FIS model. Mamdani has some 

advantages over Sugeno such as Straightforward formalization and interpretability, Acceptable 

results with comparative simple structure; and Frequently utilization for decision support 

application due to intuitive and interpretable rule-based nature., summarized as follows (Hamam 

and Georgana, 2008). The MFs for each variable along with the fuzzy IF-THEN rules were used 

to build the FIS. A conservative method for consequence and likelihood aggregation was used, 

namely as “Max” operator. “Min” was selected for implication and the centroid method selected 

for the defuzzification process. Centroid defuzzication is the most frequently used method. The 

only drawback of this method is that it is computationally challenging for complex membership 
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risk score for other impacts at Level 2 (𝑋212 𝑎𝑛𝑑 𝑋312 ) is determined. The final aggregative risk score 

for Level 1 can be quantified using the following equation:  𝑋11 = ∑ 𝑤𝑖12 ∗ 𝑋𝑖12        (𝑖 = 1,2, 𝑎𝑛𝑑3);                               3𝑖=1    Equation 4.9 

where 𝑋𝑖12  is the risk score for each Level 2 main impact obtained from Equation 4.8, 𝑤𝑖12  is the 

global weight for impacts at Level 2 obtained from FAHP, 𝑋11 is the total risk score for the 

proposed elective change, and i shows the number of Level 2 main impacts identified under a 

proposed elective change at Level 1. 

Second Approach 

Similar to the first approach and according to Figure 4.6, at this stage, the risk scores at Level 3 

sub-impacts obtained from FIS were available and used as input. The first step was to calculate 

the risk score for the main impacts of Level 2 by grouping all the sub-impact under the same 

main impact using the FIS. The sub-impacts risk score at Level 3 is considered as a triangular 

fuzzy number (TFN), which can then be mapped onto the developed FIS for the main impacts 

(Level 2 FIS). In the second step, the same method was used to aggregate the risk score of 

Level 2 which is the risk score of the main impact in order to calculate the total risk score of the 

proposed elective change at Level 1. To develop a Level 1 FIS, the steps described below were 

taken: 

1) Define the Financial, Operational, and HSE impacts using linguistic terms. Each main 

criterion was defined using TMFs that cover each main criterion universe of discourse. To 

outline the linguistic terms for each main criterion, several meetings were held with the senior 

risk analyst; 2) Develop each criterion MFs. In the course of this process, the senior risk analyst 

was consulted to define 5 MFs. Then, the TMF shape was chosen; as mentioned earlier, TMF is 

a system intuitive to expert opinion and is good enough to describe the main criteria variables 

precisely. To define each MF range, the direct method with one expert (Klir and Yuan, 1995) 

was used. 3) Capture expert knowledge after identifying the MFs for the inputs and output 

variables in order to define the relationship between the inputs and output for FIS Level 1.  

As previously shown, any fuzzy “IF-THEN” rule has two sections. The first section shows the 

different main input impact combinations, while the second part shows the output based on the 

input impact interaction. Since there are three inputs for Level 1 FIS and each input can be 

shown by using five linguistic variables, 125 rules (53) were generated to cover all possible 

combinations similar to Level 2 and 3 FIS, the centroid defuzzification approach was selected 
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be accepted, modified, or rejected. An approved change will modify the scope of work agreed 

upon in the contract. On the other hand, although a rejected change should be disregarded, it 

should be registered in the project database for the purpose of lessons learned. The approval 

process should be done in a timely fashion to avoid moving the changes to a later project time 

where they become costlier to execute. In addition, delaying requested change approval may 

lead to disputes and claims jeopardizing the completion of the project. Change approval is 

defined as an authorization made by the management team and should be considered a high 

priority. A sound change management model should be able to keep records of all existing facts 

by involving all parties. This approach helps ensure that all the information regarding changes 

will be easily retrievable at any time for future use. At this stage, the model should be able to 

notify all parties involved and track all the activities related to the imposed changes to make 

sure that changes are done according to the agreed-upon plan.   
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Figure 4-13. Overall Change Approval Process. 

4.2.4 Change Implementation 

Change implementation is a crucial step in any change management process because this is 

the main reason for a sound change management model. It is highly recommended that no work 

related to a change be conducted without written authorization. In the construction industry, it is 

not uncommon that the change is still in the approval process despite the fact that it has been 

implemented. This is because of the fast-paced nature of construction projects and the need to 
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complete the change. In this case, a change may lead to other problems and additional changes 

because the management team has not communicated with all the parties directly or indirectly 

impacted by the proposed change. It is very important that change orders be tracked as it helps 

monitor how the change is being implemented and allows the project management team to 

resolve any issues that might arise during the implementation stage. In addition, monitoring and 

tracking changes will allow the project team to capture and document crucial change information 

so any later disputes can be settled easier and the lessons learned can be used for comparable 

situations in the future. Comprehensive change information should be recorded from initiation to 

closure so that this information may be utilized to provide historical data on current and future 

projects. The graph below shows the general change implementation process (Figure 4.14).  
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Figure 4-14. Change Implementation Process General Overall View. 

4.2.5 Change Closure and Lessons Learned   

Same as for the approval process, change order closing and handover requires a formal 

procedure after a change has been executed. A client should approve a change and its 

implementation according to the agreed-upon plan and this step is required for compensation. In 

addition, post analysis of lessons learned should be recorded for future use (Figure 4.15). By 

performing Root Cause Analysis (RCA), the project management team should be able to 

identify a comprehensive list of change root causes with the HSE, Operational, and Financial 

impacts. RCA results should then be discussed with team members to avoid repeating similar 
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mistakes in future projects. RCA helps to answer three questions: 1) what happened, 2) why it 

happened, and 3) what to do to in the future to decrease the probability of issue occurrence. It is 

worth mentioning again that documenting lessons learned will help the project management 

team deal with future change issues in a proactive manner (Ibbs et al., 2001).   

4.3 Developing the FRCM Computerized Prototype  

Current practices in change management highly depend on professional judgment. The 

developed FRCM model attempts to provide decision-making support to the project 

management team by offering comprehensive information on proposed changes during the 

course of a project, from initiation, to commission, to the handover phase. Standalone 

commercial change management system software is rare. These change management systems 

are available mainly as commercial project management software modules. In addition, 

commercial software mostly focuses on information flow and record keeping and does not 

facilitate the decision-making process while accepting and rejecting changes. 
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Figure 4-15. Change Closure and Lessons Learned General Overview. 

The change management model developed here is an effective model because it: 1) Gathers 

and integrates all project and change information, contains causes, indications, bases, impacts, 
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and processes for managing changes; 2) Identifies and assesses all areas impacted by a 

change throughout the design and construction phase; 3) Automates workflow for change 

review, approval, and execution; 4) Facilitates the decision-making process by employing the 

fuzzy-based risk ranking model; 5) Informs project parties by sending notifications, reminders, 

etc. 6) Records day-to-day activities and incurred cost; 7) Facilitates claim and dispute 

resolution by keeping records of project documents such as correspondences, estimates, and 

technical documents from various electronic systems; and 8) Identifies consequential changes 

and presents data ready for performing cumulative impact analysis. The developed model has 

six major components along with several sub-components as follows (Figure 4.16):  

1. Change registry module: a) Entering project details and b) Entering change details; 

2. Change assessment module: a) Cost assessment, b) Schedule assessment, and c) 

Fuzzy-based risk assessment for elective requested changes; 

3. Consequential changes identification module; 

4. Requested change e-approval module for elective changes; 

5. Comprehensive reports regarding daily tracking of change orders; and 

6. Project dashboard module: a) Number of primary change orders in terms of elective and 

mandatory change orders, b) Number of consequential change orders in terms of E&I, 

mechanical, architectural, and structural changes, c) Number of new change orders, d) 

Number of approved elective change orders, e) Number of pending change orders, and 

f) Number of rejected change orders. 

 
Figure 4-16. General FRCM Model Architecture. 
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As mentioned earlier, the developed computerized prototype offers structured record keeping 

for project changes and helps with a better assessment of any requested changes in a 

subjective approach. This is accomplished by providing prompt access to change information 

and by utilizing a structured method to inform all concerned parties in a timely fashion of the 

change, as well as by providing a way to encourage positive and discourage negative and 

unnecessary changes. However, the developed prototype cannot be used as a replacement for 

professional judgment.  

To run the developed prototype, first, the user should log in through the graphical user interface 

(GUI) using the username and password assigned to her/him by the system administrator. This 

approach is a security feature that controls how users and the developed model communicate 

and interact. The GUI of the developed model was designed following user interface design 

principles such as ensuring appropriate visibility and pertinent consistency among various 

components, along with immediate feedback from the interface. Here, users will already profit 

from a well-developed model in a robust, aesthetically designed framework that effectively 

controls all its modules. The login window operates as the main access to FRCM model, as 

shown in Figure 4.17. It is important that different levels of access be provided to distinct types 

of users such as, internal user, contractor, sub-contractor, etc. The developed prototype has six 

modules; the modules are a key step in the effective development of prototype that meets the 

proposed methodology for managing changes. In addition, the developed prototype has 

standard features such as maximizing, minimizing, and closing the application. Figure 4.17 

illustrates the main log-in screen.  

 
Figure 4-17. FRCM Graphical User Interface (GUI). 
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4.3.1 Project Details Module 

This module is used to facilitate project data entry. PHP and MS Access databases were used 

to design a web-based platform for filling different forms. After entering the username and 

password, other modules become available to the user. The purpose of this form is to capture 

projects details used as historical data for future assessment (Figure 4.18). The first step is to 

select the project contract number from the drop-down menu, which shows all the project 

contracts numbers recorded in the database. If the project exists in the database, the remaining 

fields are automatically filled. If the project is new and the user has authorization to add new 

projects, the user needs to enter the contract number and to select the project type from the 

dropdown menu which includes Residential and Commercial; Sports Facility; Infrastructure; 

Health Care; Industrial; and Educational. After selecting project type, the user enters the project 

name into the text field along with the project description. The description should include 

comprehensive information helpful to those unfamiliar with the project. In addition, other 

essential information needs to be added to this module such as planned start and finish date of 

project, project manager information, and project schedule ID number.  

 
Figure 4-18. Project Details Modules. 
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4.3.2 Change Details Module  

After retrieving or adding project details, the change order module will be activated for the user. 

Two options are available at this point. First, the user can modify or view existing changes by 

selecting them in the “Change Order Log” and all the “Change Details” information will be 

retrieved from the change database. The second option is to add new changes and here, the 

user would need to enter the requested change information in the designated area, as shown in 

Figure 4.19.  

This module is a major component of the FRCM model and was designed to capture key 

information regarding the proposed change. The first step is to assign a change number to the 

proposed change, which is a primary key in the developed relational database. The next step is 

to select change type, mandatory or elective, from the dropdown menu. A comprehensive 

change description, as outlined in previous sections, should be added in this module. Once 

change type has been selected, it is important that the major discipline of the proposed change 

be identified, e.g. mechanical, structural, electrical, architectural, administrative, etc. Next, the 

user should select the area affected by the change such as super-structure, foundation, and 

laydown area. It is important that the proposed change be complemented with supporting 

documents. For example, if the change is based on an Engineering Change Notice (ECN), Non-

Conformity Report (NCR), or a Request for Information (RFI), these number(s) should be 

entered into the designated field. The next requirement is to determine the dates the user 

expects the change to start and finish. These dates should be entered into the model prior to 

sending the change for approval. Now, with the help of the planning department, the user 

should identify if the proposed change has a schedule impact or not. If there is a schedule 

impact, the impacted activity or activities’ ID should be added into the designated field. After 

entering the proposed change’s general information into the model, the user should select the 

cost and time evaluation tab to define required resources for performing the change in the 

change assessment module (Figure 4.19).  

4.3.3 Change Assessment Module 

This module was designed for estimating resources, time, and cost associated with the 

proposed change. The following information should be included in this module along with an 

estimate of the above-mentioned items: 1) Reference number for each line item: This number is 

a primary key for the entered item; 2) WBS code and Sub-code: These numbers should 

coincide with the WBS and sub-codes in the contract. This will help to identify which WBS item 

in the contract will be impacted by the proposed change; and 3) Description: The user needs to 
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provide a detailed description of the resources (Labor, Equipment, Material, and Subcontractor) 

needed to perform the proposed change for each line item. The change assessment module is 

comprised of four components represented as follows (Figure 4.20):  

 
Figure 4-19. Change Detailing Module. 

1) Direct Field Labor Costs: The user should quantify the number of DFL days and required 

man-hours per day for performing the proposed change. The contractor rate and mark-ups for 

the actual cost of the change order are based on the rates agreed on between the project 

parties and included as part of the project contract. Rates should include payroll burdens and 

elements that increase the cost of labor such as overtime have to be considered; 2) Material 

Costs: The cost of material is usually based on actual invoiced costs, or quoted costs that are 

received from material suppliers including an agreed-upon markup, overhead, and profit 



 

102 

 

percentage. The user can obtain this information from suppliers or from published cost guides 

such as RSMeans; 3) Equipment Costs: The equipment used for a change order can include 

rental or owned and will be the basis for estimating equipment costs. Usually, the rates for 

owned equipment are included in the contract. Rates can also be obtained from rental firms or 

estimating publications. Small tools and consumables costs are typically considered a 

percentage of total direct cost; 4) Sub-contractors: If a proposed change order needs to be 

executed by a third party, the third-party quotation or estimate should be attached to the 

detailed estimate. An additional percentage should be applied to cover supervision, 

administration, and profit. The user should include a percentage of the total direct cost as 

overhead to cover home office costs for the proposed change.  The overhead percentage 

should be agreed upon and referred to in the contract; usually, it is between 8 to 15% Profit is 

calculated as a percentage of indirect and direct cost and typically does not exceed 10%. 

Consider that quantified time and cost in the change assessment module can facilitate the time 

impact assessment. This estimate can be used to develop a fragnet schedule for the proposed 

change and measure the impact of a given change on the project schedule.  

 
Figure 4-20. Cost and Time Assessment Module. 
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4.3.4 Fuzzy-based Risk Ranking Module 

Two proposed options for ranking changes were used as part of the developed change 

management prototype. The module was developed using MATLAB. The purpose of the change 

risk score ranking is to facilitate the decision-making process by promoting positive changes 

and discouraging negative ones (Figure 4.6). This module is based on the fuzzy logic rules 

developed in Section 4.2.3, in which the user must assign fuzzy numbers to occurrence 

likelihood and consequence level of sub-criteria change impacts; these fuzzy number values fall 

within the range of 0 to 10. The module calculates three risk scores, namely: sub-impact risk 

score, main impact risk score, and final change risk score. The module also offers the option of 

manual risk score ranking, where a manager can revise a ranking score and add a justification 

for the new ranking. In addition, two proposed aggregation methods for combining the global 

and local weights estimated from FAHP and the developed FIS were included in the final 

change risk score calculation (Figure 4.21). 

 
Figure 4-21. Change Order Ranking Module. 
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The default value for global and local weights was estimated by using the F-AHP technique, as 

summarized in Table 4.4. Here, the user can also assign different weights based on change and 

project characteristics. The user can recall the default values by using the “default” button at any 

time.  

4.3.5 E-Approval of Requested Change and Early Warning Notification Module 

After the user has completed the above steps, a change order should be sent for the process of 

approval. This module includes two primary features: change notification and change approval. 

The change notification and approval processes described here were developed for a mega 

project in Canada with a value of two billion dollars. However, the developed process can be 

adapted to any project. The purpose of the developed procedures is similar to any change 

management procedure and is intended to ensure that: 1) The proposed changes are 

professionally communicated through the right channels, efficiently recorded and easy to recall 

at any time during the course of a project, and approved or rejected; 2) The proposed change 

should contain sufficient and adequate information and supporting documents for purpose of 

approval by decision-makers; and 3) The proposed change consequential impacts on other 

project components should be addressed properly. The change management notification and 

approval process are described in Figure 4.22. The process was developed in a simple and 

straightforward manner to make it logical and practical. As mentioned previously, the originator 

is responsible for change initiation, making the initial assessment, and preparing a detailed 

justification for the change. However, this is a counter-productive feature, considering the 

amount of work assigned to the originator. The developed model overcomes this drawback by 

implanting an e-approval and early warning notification system. The e-approval and warning 

system is part of the developed prototype available through the e-approval module. The e-

approval process allows the user to formalize his/her change requests according to the 

organization’s change management policy. Generally, the approval process is done manually 

and requires physical signatures on paper from one approver to another. This manual process 

is time consuming and leads to serious issues in any construction projects when “time is of the 

essence.” It is not unusual for changes in construction projects to be executed prior to the the 

completion of the approval process due to the fast-paced construction environment. With the 

proposed e-approval process, the approval time is reduced because a change order’s approval 

email is automatically sent to individuals identified as approvers within the organizational 

procedure. Figure 4.22 illustrates the general overview of the e-approval module.  
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Figure 4-22. E-approval Process Overall View. 
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Figure 4.22 shows the steps for the external approval process using Aconex document 

management software. Aconex offers many outstanding options to organizations that need 

quick access to current project documents such as BIM models, QA/QC reports, schedules, and 

more. Aconex is not a change management software; however, coupled with a robust change 

management system, it can be an advantage to any construction project. Steps 3 and 4 of 

Figure 4.22 demonstrate the external approval process. An external approval process that is 

owner-related is not within the scope of this research. The e-approval GUI is shown in Figure 

4.23. Another feature of the developed prototype which notifies the project management team 

regarding the status of changes is the early warning system. For instance, if a team member 

registers a new change request or if any major decision, approval or rejection, has been made 

to a change in progress, the model automatically sends a notification to the project management 

team regarding the new change request.  

 
Figure 4-23. E-approval Module GUI. 

4.3.6 Reporting Module 

This module produces the model output reports. The user can generate different report types to 

depict changes as per different criteria (Figure 4.24). The reports can be seen in two ways: a 
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web-page report or in PDF format, which allows the reports to be transmitted to the project 

management team via email (Figure 4.25).  

 
Figure 4-24. Reporting Module GUI. 

 
Figure 4-25. Generated FRCM Report Sample (RCO to be changed by CHR). 



 

108 

 

4.4 Developed Database 

The FRCM model includes the development of two relational databases, namely, “Project” and 

“Change” databases. The “Project” database stores general information regarding the project 

such as employees, planned and actual budget, and planned and the actual date. The “Change” 

database stores all the information required for managing and evaluating a change such as the 

reason for the change, required resources, and planned date. Upon project completion, all the 

information registered in the “Project” and “Change” databases is then transferred to the 

“Historical” database. All the databases are stored in the database server. The developed 

databases cover a well-defined change management scope to track and control individual 

change during the course of a project. Thus, the data structure is crucial to the development of a 

robust database. Entity-Relationship (ER) modeling (Chen, 1976) was used to illustrate and 

formulate project data, as shown in Figures 4.26. to 4.29. Entities, relationships, and attributes 

are three major components of an ER diagram. The entity, in relation to a database, can be 

defined as an object in a system that should be modeled by the accumulation of its related 

information. Four different relationships were used in the database design: One-to-One (1:1), 

One-to-Many (1:M), Many-to-One (M:1), and Many-to-Many (M:M). Attributes represent the 

characteristics of entities. The following different attribute types were used in the developed 

databases: single valued, multi-valued, compound/composite, simple, and derived attributes. 

Single valued attributes are those attributes that are singular for an entity, for example, a person 

cannot have more than one age value. Single valued attributes are used to identify change 

code, name, and resource. Multi-valued attributes are those attributes that can have multiple 

values for the same entity such as cost, actual hours, and material quantity. Compound or 

composite attributes can be divided into two or more attributes such as change order total cost, 

which can be divided into labor hours and material quantity costs. Derived attributes are those 

that can be derived from other stored attributes such as change percentage. In addition, each 

entity has a unique identifier known as a primary key. A primary key can be a single valued or 

compound attribute. To make sure important data was considered without any interference 

between entities and relationships, ER diagrams were developed to serve as a reference model. 

4.4.1. Project Database 

The “Project” database is one of the main databases of FRCM model and is designed to 

organize and store all general information and data captured from construction projects. The 

“Project” database was developed conceptually using 21 entities or tables (17 physical and four 

conceptual) and 22 relationships. Physical entities include “Company, Employee, User, Project, 
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Planned Budget (Labor, Material, Equipment, and Sub-contractor), Actual Cost (Labor, Material, 

Equipment, and Sub-contractor), Distribution, CContract (Client Contract), and SContract (Sub-

contractors Contract).” These entities record general information such as the name of projects, 

employees, planned budget, and actual cost for Labor, Material, and Equipment. “Labor” entity 

captures the DFL personal information. One major attribute of the “Labor” entity is the trade, 

illustrated in Figure 4.26. Trade matches the union corresponding to the labor such as 

Carpenter or Concrete Union. “Planned Budget” shows the amount of money available over a 

period to meet project objectives. “Actual Cost” shows the amount of money spent on a specific 

thing to meet the project objectives. “Distribution” shows the “Planned Budget” distribution to 

different resources and scope of work. “CContract” and “SContract” entities show the type of 

contract, contract ID #, and the total value of a contract between “Client and Contractor” and 

“Contractor and Subcontractor.” Four conceptual entities in the ER diagram are for the purposes 

of saving external information: “PStatus,” “PCondition,” “PChanges,” and “Interface.” The 

“PStatus” entity shows the project completed percentage. “PConditions” records daily site 

condition including weather conditions and site incidents. The “PChanges” entity records any 

changes that may occur during the lifecycle of a project. The “Interface” entity records any 

information related to congestion, over stacking, delay, and distribution. There is a 1:1 

relationship between “Project” and “CContract” as well as between “Employee” and “User.” This 

means that a project can only have one contract name and ID, and Client and employee can 

have only one user ID in the system. A one-to-many relation exists between several entities as 

can be seen in the ER diagram such as “Company-Project”, “Project-Planned Budget”, “Planned 

Budget-Distribution” etc. Meanwhile, the relationship between “Planned Budget” and resources 

including “Labor”, “Material”, “Equipment” and “Sub-contractor” is Many-to-Many; These 

resources can be used by other entities and these relationships are the same for “Actual Cost” 

and “Resources.” Figure 4.26 illustrates some of the attributes. The arrows in Figure 4.27 

illustrate the dependencies between entities; for example, “Project-PCondition” demonstrates 

that the “PCondition” entity is dependent upon the existence of “Project,” but “Project” is not 

contingent upon “PCondition.” Consequently, the involvement of the “Project” entity is 

considered a partial contribution, while the involvement of dependent entities is considered a 

total contribution. In the developed ER diagram, “PChanges,” “PStatus,” “Interface,” and 

“PCondition” are all weak entities. Weak entities are those which cannot be fully identified by 

their own attributes and require a foreign key in combination with their attributes to create a 

primary key. The database was developed using Microsoft Access 2017, as shown in Figure 

4.26. The Figure 4.27 show the entities and their respective relationships and attributes. 
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Figure 4-26. Project Database ER Diagram. 
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Figure 4-27. Project Database Entities and Relationships. 
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4.4.2. Change Database 

Change management highly relies on information. Optimum change management requires that 

a considerable amount of data be stored and retrieved during the course of a project. Therefore, 

the “Change” database was designed and developed to support the proposed change 

management model. All the modules mentioned in the previous sections interact with the 

“Change” database. The “Change” database is designed to store, organize, and manipulate 

captured data regarding changes; it provides queries to recall information required for reporting 

changes status for efficient change management. A “Change” database ER diagram was used 

to design and develop the database for this purpose (Figure 4.28). The “Change” database is 

considered a part of the “Project” database but is only for the purpose of tracking changes. The 

reason for the two different databases is to allow different companies the ability to adapt and 

tailor for the developed “Change” database to suit their needs. The “Change” database is 

considered an essential part of the FRCM model, used for data analysis and reporting 

purposes. The developed database includes 21 entities or tables and 22 relationships. “Project” 

entity stores all the information related to the project such as project ID number, description of 

the project, and location of the project. “Change” entity records the information regarding 

changes such as the description of the change, originator, status, and date issued. “Type” is for 

recording whether the change request is “Mandatory” or “Elective.” “Ranking Score” records 

data regarding the fuzzy-based risk ranking score as described in Section 4.2.3.  

“Staff” records all the data regarding staff assigned to the project such as name, last name, and 

ID #. “User” recodes username, password, authorization level, date of activation, status, role, 

role description, and the last login date. “CStatus” records the daily progress of change received 

during the change execution phase. Here, the administration status of a change order is 

recorded under the “Change” entity. “Estimated Cost” records estimated cost for the execution 

of the change order.  

This entity covers three main resources including Labor, Material, and Equipment as well as 

sub-contractor cost. “Actual Cost” records daily cost occurred for change orders. This entity 

captures information to generate daily Labor, Equipment, and Material report useful for 

compensation. “Consequential Change” records the information generated by VCD. 

“Reasoning” records the reasoning coding system as discussed in Section 4.2.1. The Change 

Database, as illustrated in Figure 4.28, is built by means of Microsoft Access 2017 software as 

shown in Figure 4.29.  
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Figure 4-28. Change Database ER Diagram. 
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Figure 4-29. Change Database Entities and Relationships.
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4.5 Summary 

This chapter proposed FRCM model for managing changes over the course of a project. The 

FRR model was proposed and integrated into a subjective structure for change prioritization in 

construction projects. Fuzzy logic was used to tackle vagueness using shrouded changes 

assessment linguistic expression. Fuzzy rules were developed based on several interviews with 

risk analysts employed at one of the largest EPC/EPCM engineering firms in North America. 

The relative importance of sub-change impacts and main change impacts were taken into 

account when calculating the change risk scores. An F-AHP was used for calculating relative 

importance in terms of global and local weight in order to solve the multi-criteria decision-

making dilemma for calculating the final risk score based on two proposed aggregation 

methods. The main idea behind this chapter was to provide a tool for facilitating the decision-

making process for proposed changes in a way that the integration of positive changes with the 

project is encouraged and unnecessary changes and their negative impacts on all project 

aspects are reduced as much as possible. A computerized prototype was developed to 

incorporate the above-mentioned structures and other features necessary for efficient and 

effective change management during the course of a project. Two databases were designed to 

store project and change data along with entity relationships diagrams. These databases 

provide a data sharing environment for managing changes at various stages of a project. The 

output of this chapter was then used to develop the SD model described in Chapter 6. In 

Chapter 7, a real case study is applied to the developed prototype for validation 
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identifying the un-impacted period and quantifying Baseline Productivity (BP), an ANN was 

proposed and compared against several linear and nonlinear regression models and Artificial 

Intelligence (AI) modeling techniques.  The developed models processes and procedures are 

described in the following sections.  Figure 5.2 shows a general overview of the labor model 

development processes explained in this chapter. 
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Figure 5-2. Schematic Diagram of Labor Model Development. 

5.2 Productivity Modeling 

Modeling labor productivity is challenging, as it requires the quantification of influencing factors 

affecting labor productivity and consideration of influential factors’ interdependencies. 

Productivity modeling has been a topic of interest for many researchers and the various models 

being developed today can be classified into two major groups of Statistical and AI models. 

Regression analysis is the most common statistical method for modeling labor productivity. The 

main regression analysis advantage is that the productivity model can be developed to reach 

anticipated clarification or forecasting levels with as few predictor variables as possible. 

However, for regression methods, the degree of relationship (linear and non-linear) needs to be 

selected prior to model development. In AI modeling, NN models are the most common 

methods for developing labor construction productivity. Unlike regression methods, in NN 

modeling, the degree of relationship is not a concern. In addition, NN architecture, such as the 

number of hidden layers and activation functions, plays a significant role in model accuracy. In 

this research, all modeling techniques, including the developed model shown in Figure 5.2, were 
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employed for modeling labor productivity based on the datasets gathered by Khan (2005), and 

tested for validation against a real case study. Before embarking on further elaboration of the 

productivity models’ techniques, the next section will explain the data collection process.    

5.2.1 Data Collection Background  

Over a period of 18 months, Khan (2005) performed field observations and data collection from 

two high-rise buildings located in downtown Montreal. The first was the Concordia University 

Engineering and Visual Arts (EV) building, a 17-story integrated educational complex. The EV 

building is a concrete, mainly flat slab structure with roller compacted concrete (RCC) 

construction and several typical levels with a surface of 68,000 m2. The project was constructed 

over three years. The second building is a similar structure system, a 16 stories building located 

downtown Montreal.  Over the 18 months, 221 data points were collected from both projects. 

The following table shows a sample of the data collected (Table 5.1). 

Table 5-1. Sample of Data Gathered by Khan (2005). 

T H P WS GS LP WT FL WM Productivity 

-6 41 0 3 11 37 1 17 2 1.47 
-1 58 0 3 12 42 1 17 2 1.58 
16 61 0 3 22 36 1 13 1 2.4 
-4 87 2 3.6 22 36 1 4 1 1.55 
1 60 0 5 12 42 1 17 2 1.65 

1 66 0 5 8 37 2 16 1 1.44 

2 76 0 5 9 33 2 16 1 1.51 
14 71 0 5 20 35 2 15 1 1.85 

-12.5 54 0 5.2 21 38 1 3 1 1.17 
-12.5 54 0 5.2 20 30 2 3 1 1.04 

 

As can be seen from Table 5.1, three variables in Khan’s datasets can be considered as 

qualitative. These variables needed to represented in numerical form in order to be included into 

the developed models: 1) Precipitation: Incorporated in terms of four numerical values assigned 

as: No precipitation=0, light rain=1, snow=2, and rain=3; 2) Work type: For the purposes of 

analysis, three types of work were coded as follows: Slabs= 1, walls=2, and columns=3; and 3) 

Work method: Two techniques were used at both sites as follows: Built in Place (BIP) and flying 

forms coded as 1 and 2 respectively.  

5.2.2 Descriptive Statistical Analysis 

Descriptive statistics provide a summary of the collected data. Table 5.2 shows the descriptive 

statistics of this research’s collected data. These parameters were used to calculate some 

important indices like the Standard Deviation (StDev), Standard Error of the Mean (SE Mean) 

and Mean, which help in develop of proposed model.  
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Table 5-2. Collected Data Descriptive Statistics. 

Variable Mean SE Mean StDev Min. Q1 Median Q3 Max. 

Temperature 4.08 0.81 12.03 -26.00 -4.50 3.00 14.50 25.00 

Humidity  66.34 1.05 15.67 18.00 56.00 67.00 76.50 97.00 

Precipitation 0.28 0.04 0.60 0.00 0.00 0.00 0.00 3.00 

Wind Speed 15.42 0.57 8.46 3.00 8.90 14.00 19.00 43.00 

Gang Size 16.03 0.34 5.07 8.00 11.00 18.00 20.00 24.00 

Labor Percentage 35.49 0.26 3.79 29.00 33.00 36.00 37.00 47.00 

Work Type 1.43 0.03 0.51 1.00 1.00 1.00 2.00 3.00 

Floor Level 11.38 0.25 3.75 1.00 10.00 12.00 14.00 17.00 

Work Method 1.44 0.03 0.50 1.00 1.00 1.00 2.00 2.00 
Productivity 1.57 0.02 0.35 0.82 1.31 1.51 1.79 2.53 

 

5.3 Statistical Productivity Modeling 

In this research, three different regression analysis methods were used to model construction 

labor productivity based on the collected data as follows:1) Best Subsets Regression (BSR); 2) 

Stepwise Regression (STR); and 3) Evolutionary Polynomial Regression (EPR).   

Regression analysis is a statistical technique used to forecast and explain the causal 

relationship between input and output variables. In regression analysis, the output variable is 

named as the response variable and input variables are known as predictor variables. The 

response variable is expressed as a function of the predictor variable(s). Figure 5.3 displays 

regression modeling development. 
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Figure 5-3. General Overview of Statistical Productivity Modeling. 
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5.3.1 Best Subsets Regression Modeling  

The first technique employed under regression analysis is Best Subset (BSR), an exploratory 

modeling technique that searches for all possible models that can be developed with the given 

data to then finally introduce the best candidates (Minitab17, 2018). The best result will be 

identified based on the performance criteria of R squared, Adjusted R squared, Predicted R 

squared, Mallows Cp, and Mean Square Error (MSE). It should be noted that BSR is not 

suitable for modeling cases with a large number of variables since in these cases, finding the 

best combination of predictor variables will take more computational time. In this study, nine 

predictor variables as shown in Table 5.1 were used to predict labor productivity.  

The BSR analysis presents only the five best models for each number of predictors based on 

the value of the R2. For example, Minitab shows the two regression models include one-

predictor models with the highest R2 values, followed by the two two-predictor models with the 

highest R2 values, and so on. Thus, 41 models were developed using Minitab 17. 

“Vars” represents the number of predictor variables included in each model. Predictor variables 

used in each model are specified by an “X.” In Minitab, the five best models are shown for each 

number of predictors except the model that includes all the predictor variables. The best model 

was selected based on the following criteria:  

a) The model should have the highest R2 and adjusted R2 among the other models, b) The 

model should have the smallest MSE, and c) The model should have Mallows' Cp close to the 

number of predictors in the model including the output variable (constant). It is recommended 

that the adjusted R2 over R2 be used for comparing models with different numbers of terms. 

Table 5.3 shows the model selected based on the criteria above. 

Table 5-3. Selected Best Subsets Model. 

Performance Indicators Value 

No. of Predictors 8 (T, P, WS, GS, LP, WT, FL, WM) 

R squared 48.70 

Adjusted R squared 46.80 

Mallows Cp. 8.1 

Mean Square Error (MSE) 0.258 

 

Subsequent to the parameter selection step, the following linear regression equation was 

obtained: 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐯𝐢𝐭𝐲 = 2.17368 + 0.0163662𝑇 − 0.0559208𝑃 − 0.00772945𝑊𝑆 − 0.0106864𝐺𝑆 − 0.00810366𝐿𝑃− 0.0160492𝑊𝑇 + 0.0037892 𝐹𝐿 + 0.0792147𝑊𝑀                                               𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟓. 𝟏  
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value among other predictor variables. The next predictor is added only if it has the smallest p-

value less than Alpha-to-Enter. After adding the second predicator, the significance level of the 

first predictor is reassessed if entering the second predicator has an impact on the significance 

level of the first predictor variable. The first predictor is removed if the significance level of the 

first predictor is greater than 0.15. A similar step is repeated for adding other predictor variables. 

It should be noted that the process will stop if no predictor has a t-test P-value less than 0.15. 

Subsequent to the predictor variables selection step, the following linear regression model is 

made (Equation 5.2): Productivity =  0.312 +  0.507T −  0.185WT −  0.106P −  0.177WS −  0.113GS −  0.0848LP +  0.0497WM                                                                                                                 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟓. 𝟐 

Two variables, humidity and floor level, were removed from the regression equation due to 

having a p-value greater than 0.15. Table 5.4 shows the statistical performance indicators of the 

developed model using STR analysis.  

Table 5-4. Stepwise Regression Model. 

Performance Indicators Value 

No. of Predictors 7 (T, P, WS, GS, LP, WT, WM) 

R squared 48.60 

Adjusted R squared 46.90 

Mean Square Error (MSE) 0.151 

 

5.3.3 Evolutionary Polynomial Regression  

EPR is a non-linear regression method classified as a grey box method based on designed 

model expressions for the given dataset.  Figure 5.5 shows the EPR taxonomy in contrast with 

other modeling techniques. Mathematical modeling can be classified into three groups based on 

the mathematical structure understanding and the level of prior information required (Giustolisi 

and Savic, 2006): 1) White box models, where the mathematical structure is transparent, the 

variables and parameters have physical meaning, and parameters are well identified; 2) Grey 

box models, which are conceptual models whose mathematical structure is built based on 

conceptualization or physical insight, but parameter assessment is needed by using data; and 

3) Black box models, data-driven or regressive models where the relationship among 

parameters and variables is unknown and should be estimated. Unlike AI modeling, EPR does 

not depend on large datasets for model development and EPR provides a model expression for 

defining the relationship between predictor variables and output. Like other modeling 

techniques, expert knowledge should accompany the EPR technique so as to validate if the 

produced mathematical model and correlations between utilized inputs and output are practical. 
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The EPR was developed by Giustolisi and mainly applied to environmental case modeling 

(Giustolisi and Savic, 2006; Giustolisi et al., 2008; Doglioni et al., 2008). In a nutshell, the theory 

behind EPR can be explained as follows: 1) An evolutionary procedure based on Genetic 

Algorithm (GA) for exploring model structure; and 2) Linear regression step based on least 

squares (LS) method for calculating model coefficients.  
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Figure 5-5. EPR Flow Chart (Doglioni et al., 2008). 

In the beginning, EPR software was developed in MATLAB environment and later, the software 

was launched on the Excel platform. Results can be presented in Scatter or Cartesian plot 

formats. In this research, EPR was able to create several symbolic expressions that can 

forecast labor productivity based on the given dataset gathered by Khan (2005) for two high-rise 

buildings. The best expression of labor productivity will be selected based on observed fitness 

and equation parsimony. Observed data fitness is measured by the value of R2 and MSE. In 

addition, the number of terms and factors in each expression should be at a minimum to fulfill 

the equation parsimony requirement and computational time for generating the best expression 

(Berardi et al., 2008).    

There are seven expression structures available for defining the relationship between input 
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variables and the output variable. Structure selection is contingent upon modeler prior 

knowledge about the problem that needs to be modeled (Giustolisi and Savic, 2006). Equations 

5.3 to 5.9 show the expression structures developed in EPR software: 

 𝑌 = 𝑎0 +∑ 𝑎𝑗. (𝑋1)𝐸𝑆(𝑗,1)𝑚𝑗=1  . . . (𝑋𝑘)𝐸𝑆(𝑗,𝑘). 𝑓((𝑋1)𝐸𝑆(𝑗,𝑘+1)) …  𝑓((𝑋𝑘)𝐸𝑆(𝑗,𝑘+2) )                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.3   𝑌 =  𝑎0 +  ∑ 𝑎𝑗𝑚
𝑗=1  . 𝑓((𝑋1)𝐸𝑆(𝑗,1) … (𝑋𝑘)𝐸𝑆(𝑗,𝑘) )                                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.4 

𝑌 = 𝑎0 + ∑ 𝑎𝑗. (𝑋1)𝐸𝑆(𝑗,1)𝑚
𝑗=1  . . . (𝑋𝑘)𝐸𝑆(𝑗,𝑘). 𝑓((𝑋1)𝐸𝑆(𝑗,𝑘+1)) … (𝑋𝑘)𝐸𝑆(𝑗,𝑘+2) )                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.5 

𝑌 = 𝑙𝑜𝑔( 𝑎0 +  ∑ 𝑎𝑗𝑚
𝑗=1  . 𝑓((𝑋1)𝐸𝑆(𝑗,1) … (𝑋𝑘)𝐸𝑆(𝑗,𝑘) ) )                                                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.6 

𝑌 = 𝑒𝑥𝑝( 𝑎0 +  ∑ 𝑎𝑗𝑚
𝑗=1  . 𝑓((𝑋1)𝐸𝑆(𝑗,1) … (𝑋𝑘)𝐸𝑆(𝑗,𝑘) ) )                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.7 

𝑌 = 𝑠𝑖𝑛( 𝑎0 + ∑ 𝑎𝑗𝑚
𝑗=1  . 𝑓((𝑋1)𝐸𝑆(𝑗,1) … (𝑋𝑘)𝐸𝑆(𝑗,𝑘) ) )                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.8 

𝑌 = 𝑡𝑎𝑛( 𝑎0 + ∑ 𝑎𝑗𝑚
𝑗=1  . 𝑓((𝑋1)𝐸𝑆(𝑗,1) … (𝑋𝑘)𝐸𝑆(𝑗,𝑘) ) )                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.9 

 

Where, f(x) in the first three equations can be selected by adjusting the field “Inner Function” 

accordingly and can represent no function, logarithm, exponential, tangent hyperbolic, or secant 

hyperbolic, 𝑋𝑘 is the kth explanatory variable, ES is the matrix of unknown exponents to be 

defined by the modeler, 𝑎𝑗 is unknown polynomial coefficients, m is the number of polynomial 

terms, and 𝑎0 is the bias term. When making the symbolic expressions, if EPR cannot find a 

suitable combination of terms including f(x), it discards this function (Giustolisi et al., 2006). The 

output is rounded off to the closest figure if Modeling Type is selected as the classification; as 

such, statistical regression modeling should be carefully chosen in situations where the real 

number is available as a dependent variable. Dynamic regression is available for time series 

models. The data was normalized prior to the application of EPR software, wherein the inputs 

and output were set between 0 and 1. EPR software allows the number of terms in every 

equation in each run to be determined. Exponent nomination should be specified by the 

modeler, but it should be noted that zero needs to be included in the matrix of exponents to 

make EPR capable of removing non-influential variables as much as necessary when predicting 

the output. The nomination value can be positive or negative, wherein the positive and negative 
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values characterize the direct and inverse relationship among predictor variables and their 

amounts show their importance. The default values for the nomination are -2, -1.5, -1, -0.5, 0, 

0.5, 1, 1.5, and 2 (Giustolisi and Savic, 2006). As mentioned above, the GA technique is utilized 

to identify near optimum model structure. The global search for model structure near optimum is 

performed by way of standard GA. GA is based on Darwinian evolution and starts with the 

generation of a set of results known as a population of individual parameters. The parameters 

being enhanced are coded using “chromosomes.” In typical GAs, binary codes are used to build 

chromosomes; however, in EPR, an integer coding system is employed to identify candidate 

exponents’ vector location. EPR uses the following GA parameters (Giustolisi and Savic, 2006): 

1) Multiple-point crossover (Spears and De Jong, 1991); 2) Single point mutation; 3) Ranking 

selection based on the normalized geometric distribution; and 4) Termination criterion as a 

function of chromosome length, number of polynomial terms j, and the number of inputs k in the 

matrix X. 

A detailed explanation of a typical GA was presented in Section 3.3.4.1. EPR regression 

methods can be based on LS method or non-negative LS will generate the expression with only 

a positive value of 𝑎𝑗 unknown as polynomial coefficients. EPR returns several expressions 

based on model accuracy and parsimony. Model parsimony is implemented by optimizing one 

of the following options: 1) The number of terms Min (𝑎𝑗, SSE); 2) The number of independent 

variables Min (𝑋𝑖, SSE); or 3) Both strategies: the number of terms and independent variables 

(𝑎𝑗,𝑋𝑖 SSE). SSE is the sum of squared estimate of errors. The above-mentioned options 

can be selected in the optimization strategy scroll down box of the EPR model software. Lastly, 

training and testing datasets were defined as follows:1) X tab is for defining input; 2) Y tab is for 

defining the training output; 3) XV tab is for the testing input; and 4) YV tab is for testing output. 

EPR outcome is presented in five different forms for each model as an Excel file, EPR fitting 

criteria, Pareto, Symbolic expressions, and Scoter plot. The Excel file includes nine separated 

tabs as follows: Models, Y_EPR, Graphs, Train_data, Test_data, EPR-Setting, and 

Y_EPR_test. The following indexes in the “Models” tab were computed using the following 

equations (Equations 5.10 – 5.14): 

 𝐵𝐼𝐶 = (1 + 𝑑 log 𝑁𝑁 ) . 𝑆𝑆𝐸                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.10 𝐹𝑃𝐸 = (1 + 𝑑/𝑁1 − 𝑑/𝑁) . 𝑆𝑆𝐸                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.11 𝐴𝐼𝐶 = (1 + 2 𝑑𝑁) . 𝑆𝑆𝐸                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.12 
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𝐺𝐶𝑉 = ( 𝑆𝑆𝐸(𝑁 − 𝑑)^2)                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.13 

𝐴𝑉𝐺 = 100. 1𝑁 ∑ (𝑆𝑆𝐸𝑌𝑖 )  𝑁
𝑖=1                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.14 

 

BIC is the Bayesian Information Criterion and the model with the lowest BIC is preferred. The 

Final Prediction Error (FPE) criterion measures model quality by simulating the situation where 

the model is tested on a different data set. AIC is the Akaike Information Criterion which 

estimates the relative information lost by a given model. Thus, the less information a model 

loses, the higher the quality of that model. Generalized Cross Validation (GCV) estimates the 

performance of the model based on new data (Liew, 2004). AVG is the Average of the Sum of 

Squared Errors (SSE) where N is the number of samples and d is the number of independent 

variables. The Y_EPR and Y_EPR_test tabs display the training and testing set outputs for all 

generated models.  

The generated graph tab shows predicted outputs as well as actual observations. Coefficient of 

Determination (CoD) and SSE expression and the values are also shown. The next two tabs 

include the train and test data. The subject of these two tabs is the same as the EPR software 

file X, Y, XV, and YV tabs. The EPR-Setting tab shows the EPR software tab in the current run 

of that file. In addition, the Y_rec and Y_V_rec tabs contain data reconstructed by EPR for 

training and test sets, respectively (Giustolisi et al., 2011). EPR produces a fitting criteria 

diagram, where the horizontal axis represents the number of terms in each produced 

expression, while the vertical axis shows the different criteria normalized value (i.e. SSE, BIC, 

MSE, FPE, AIC, GCV, CoD, and AVG).In each run, for each regression testing and training 

model, EPR develops numerous scatter plots. The horizontal axis shows the value of predicted 

productivity, while the vertical axis represents actual productivity (experimental data). At the top 

of the graph, CoD and AVG are shown as well as the function structure. In addition, a Pareto 

Graph is developed by EPR, where the horizontal axis demonstrates the 1-CoD value and the 

vertical one shows the number of considered factors in each model percentage of Xi =(d/N). 

The Pareto grid shows the developed models as points in the graph. The models that can meet 

the EPR model selection criteria are shown as a red circle. The number of variables is the 

minimum and the R2 (CoD) value is the maximum necessary to meet the requirements for 

parsimony and model fitness, respectively. Several numbers of symbolic expressions were 

generated based on the dataset size and level of complexity. EPR produces models for 

predicting output based on either one or several predictor variables; it can develop Multi Input 

Single Output (MISO) and/or Single Input Single Output (SISO) models. It is noteworthy to 
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mention that, by using linear interpolation to find missing data points, the model can be 

developed using an incomplete historical dataset. However, linear interpolation accuracy in 

reconstructing data points is subject to questions.  

5.3.3.1 EPR Optimal Structure  

In the early years, EPR methodology was mainly used for hydrological modeling by its 

developers and more recently, used to model sewer pipe failures and water distribution network 

deterioration (Giustolisi and Savic 2006, Giustolisi et al. 2007, Doglioni et al. 2008, Berardi et. 

al. 2008, Rezania et al. 2008, Xu et al. 2011). Thus, EPR capabilities and its outstanding 

performance in different civil engineering disciplines make it a viable candidate for labor 

productivity modeling. Since this model has not historically been used for modeling construction 

labor productivity, software settings need to be set using a trial and error approach. In this 

model, the EPR setting was changed to identify the optimal setting for datasets available for 

modeling labor productivity. A specific combination of structure and function was carefully 

chosen at each setting during the EPR process. The level of EPR model output accuracy at 

each setting was evaluated based on the fitness function. Table 5.5 shows the different setting 

results as well as the CoD (or R2) and the SSE of training dataset values for each setting. 

For simplicity, in all the analyses, the number of terms was set to 3 and the range of potential 

exponents was selected as values between -2 and 2 with a 0.5 incremental step. As mentioned 

earlier, it is recommended that a zero value be included for discarding those variables not 

beneficial to the model. EPR analyses with these settings were performed on a personal 

computer with an i7 dual core 2.6 GHz processor with 8 GB of memory.     

Table 5-5. Different EPR Setting Scenarios. 

Setting Options Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 

Expression 
structure 

Y=sum(ai*X1
*X2*f(X1)*f(X

2))+ao 

Y=sum(ai*X1*X2*f(
X1*X2)))+ao 

Y=sum(ai*X1*X2*f(
X1*X2)))+ao 

Y=sum(ai*X1*X2*f(X
1*X2)))+ao 

Y=sum(ai*X1*X2*
f(X1)*f(X2))+ao 

Inner Function Logarithm Logarithm Exponential Tangent Hyperbolic Exponential 
Modelling Type STR STR STR STR STR 

Number of Terms 3 3 3 3 3 
Optimization 

Strategy 
Min(aj,Xi,SS

E) 
Min(Xi,SSE) Min(Xi,SSE) Min(Xi,SSE) Min(Xi,SSE) 

R2 or CoD 70.34% 72.94% 56.51% 61.07% 77.15% 
SSE 0.037 0.034 0.054 0.049 0.029 

 

Table 5.5 shows that Setting 5 produced more accurate results when compared to the other four 

settings. Of the five settings, Setting 5 had the highest CoD at 77.15% and the lowest SEE, at 

.029. Thus, Setting 5 became the foundational block for analyzing the effect the EPR models’ 

number of terms has on predicting labor productivity. Accordingly, nine scenarios were planned 
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based on the EPR models’ number of terms. The number of terms increased from one to nine, 

nine identifying a parsimonious model with an acceptable accuracy based on Setting 5, as well 

as less computational time.  

Figure 5.6 shows model accuracy based on each developed models’ number of terms (blue 

line) and computational times (green line). It can be seen from Figure 5.6. that, generally, 

increasing the number of EPR terms increases computational time while not necessarily 

increasing prediction accuracy. It should be noted that the application of these terms also leads 

to more convoluted relationships for mathematical modeling. 

Scenario 4 and 9 show better results than other scenarios. Scenario 4 has a CoD of 78.99% 

with a computational time of 1140 seconds and Scenario 9 shows an accuracy of 79.29%, with 

a computational time of 3269 seconds. Although Scenario 9 seems to be a bit more accurate, 

the computational time and complexity model of Scenario 4 is superior and thus, this scenario 

was chosen.  

 
Figure 5-6. Number of Terms, Accuracy, and Computational Time of EPR Models. 

 

5.3.3.2 Modeling Labor Productivity Using EPR  

Based on the data of the two high-rise buildings and based on Scenario 4, 17 symbolic 

expressions were generated to predict construction labor productivity for formwork activity. 

Table 5.6. shows these expressions along with R-Squared scores. On the right side of the 

symbolic expression, T, H, P, WT, GS, LP, WS, and FL represents temperature, humidity, 
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precipitation, work type, gang size, labor percentage, wind speed, and floor level, respectively. 

As discussed earlier, the best model should be selected from all the expressions based on 

model fitness and parsimony. Model number (no.) 17 was selected as the best one with the 

highest R-Squared value, even though nine models have acceptable R-Squared scores (Table 

5.6). Accuracy indexes such as SSE, BIC, MSE, FPE, AIC, and GCV are shown in Table 5.7. 

The results in Table 5.7 show that model no. 17 also had the minimum values in all indexes. 

This observation confirms that this model is the most promising one in predicting the output.  

Table 5-6. Symbolic Expressions for Labor Productivity and Related R-Squared. 

No. Symbolic Expression R2 
1 Productivity = 0.60084T0.5 35.24 
2 Productivity = -0.12253WT0.5 + 0.6659T0.5 44.77 
3 Productivity = -0.12508WT0.5 - 0.15269P0.5 + 0.69021T0.5 48.99 
4 Productivity = -0.13121WT0.5 + 0.45488P0.5ln(P0.5) + 0.69821T0.5 50.16 
5 Productivity = 0.7018T + 1.8681T2GS ln(FL0.5/T) 52.55 
6 Productivity = -0.0053635ln(WT0.5) + 0.70415T + 2.8636T2GS2ln(FL0.5/T0.5) 62.35 
7 Productivity = -0.0045577ln(WT0.5) + 0.83771T + 2.6083T2GS2ln(GS0.5FL0.5/T0.5) 65.28 
8 Productivity = -0.0045854ln(WT0.5) - 0.23854WS2 + 0.91234T + 2.9959T2GS2ln(GS0.5FL0.5/T0.5) 69.74 
9 Productivity = -0.0054308ln(WT0.5) - 0.17177WS2 + 1.1674T1.5+ 5.6197T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 72.72 

10 Productivity = -0.0026134ln(WTP0.5) - 0.19911WS2 + 1.0633T1.5+ 5.1662T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 75.19 

11 
Productivity = -0.0026134ln (WT0.5P0.5/ GS0.5) - 0.14358FL2 + 1.1496T1.5+ 
5.5971T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 

76.02 

12 
Productivity = -0.0037617ln (WT0.5P0.5/ GS) - 0.19092WS0.5FL2 + 1.1626T1.5+ 
5.7435T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 

76.67 

13 
Productivity = -0.0031238FL0.5ln (WTWS0.5P/ GS) - 0.23383FL2 + 1.1972T1.5+ 
5.8289T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 

77.66 

14 
Productivity = -0.002759T0.5ln (PWT/ GS1.5) - 0.42887TWS0.5FL2 + 1.1678T1.5+ 
5.7299T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 

78.27 

15 
Productivity = -0.0021802T0.5ln (PWT1.5H0.5/ GS1.5) - 0.43625TWS0.5FL2 + 1.1791T1.5+ 
5.7401T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 

78.39 

16 
Productivity = -0.0021802T0.5ln (P0.5WT/ GS1.5) - 0.74371THWS0.5FL2 + 1.281T1.5+ 
6.5279T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 

78.72 

17 
Productivity = -0.0042494H0.5T0.5ln (P0.5WT/ GS) – 1.0983THWS0.5FL2 LP0.5+ 1.281T1.5+ 
6.1584T2GS2FL0.5ln(GS0.5FL0.5/T0.5) 

78.99 

 

Table 5-7. Performance Indexes for Two High-Rise Buildings Downtown Montreal Dataset. 

Model: SSE BIC MSE FPE AIC GCV AVG 

Model_1 0.0811 0.0835 0.0816 0.0821 0.0820 0.0005 13.9252 
Model_2 0.0692 0.0732 0.0700 0.0708 0.0708 0.0004 13.0164 
Model_3 0.0639 0.0695 0.0650 0.0661 0.0661 0.0004 12.8015 
Model_4 0.0624 0.0679 0.0635 0.0646 0.0646 0.0004 12.7083 
Model_5 0.0594 0.0629 0.0601 0.0608 0.0608 0.0003 12.1327 
Model_6 0.0472 0.0513 0.0480 0.0488 0.0488 0.0003 11.0896 
Model_7 0.0435 0.0473 0.0443 0.0450 0.0450 0.0003 10.5903 
Model_8 0.0379 0.0423 0.0388 0.0397 0.0396 0.0002 9.9132 
Model_9 0.0342 0.0382 0.0350 0.0358 0.0357 0.0002 9.3314 

Model_10 0.0311 0.0347 0.0318 0.0325 0.0325 0.0002 8.9783 
Model_11 0.0300 0.0336 0.0307 0.0314 0.0314 0.0002 9.0113 
Model_12 0.0292 0.0326 0.0299 0.0306 0.0306 0.0002 9.0154 
Model_13 0.0280 0.0313 0.0286 0.0293 0.0293 0.0002 8.7077 
Model_14 0.0272 0.0304 0.0279 0.0285 0.0285 0.0002 8.6894 
Model_15 0.0271 0.0302 0.0277 0.0283 0.0283 0.0002 8.5980 
Model_16 0.0267 0.0298 0.0273 0.0279 0.0279 0.0002 8.7010 
Model_17 0.0263 0.0294 0.0269 0.0275 0.0275 0.0002 8.5511 
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Figure 5.7 on the next page shows the Pareto graph of the symbolic expressions produced 

based on the dataset. The arrow in the Pareto graph highlights Model no. 17. The horizontal 

axis shows the value of one minus R2 and the vertical axis represents the number of considered 

factors in each model. The normalized dataset was randomly divided into two subsets; namely, 

as training and testing datasets. A number of 177 (80%) samples were selected for training 

purposes and 44 samples were considered as the testing dataset. Testing samples were not 

included in the model during development.  

 
Figure 5-7. Dataset Pareto Model for Two High-Rise Buildings 

Figure 5.8 shows actual productivity based on the given dataset and the predicted value using 

model no. 17, represented by the following mathematical equation (Equation. 5.15): Productivity =  −0.0042494H^0.5T^0.5ln (P^0.5WT/ GS) –  1.0983THWS^0.5FL^2 LP^0.5 + 1.281T^1.5 +  6.1584T^2GS^2FL^0.5ln(GS^0.5FL^0.5/T^0.5)                                Equation. 5.15     
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The blue line shows actual productivity values against the EPR predicted productivity values 

(red line) using Equation 5.15. An acceptable prediction pattern was attained between the 

experimentally gathered values and the EPR predicted values.   

 

 
Figure 5-8. Actual vs. Predicted Productivity for Training Dataset Using Model No. 17. 

After the training, the trained EPR model performance was validated using the testing dataset 

not utilized as a part of the model development process. The purpose of this step was to study 

the trained model’s aptitudes so as to generalize training to situations that have not appeared 

throughout the training step. In order to validate the trained EPR models’ capability over the 

testing dataset, Equation 5.15 was used to predict labor productivity curves with the results 

shown in Figure 5.9. 

 
Figure 5-9. Actual vs. Predicted Productivity for Testing Dataset Using Model No. 17. 

Figure 5.9 shows that when using the testing dataset, the predicting model does not show a 

strong prediction pattern between actual data and the EPR developed predicted data. It should 

be noted that the EPR process requires some subjective judgment based on the analyst’s 
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experience instead of being purely based on mathematical criteria (Rezania et al., 2008). In this 

research, EPR was used for the first time for labor productivity modeling. It is possible that some 

subjective judgments will lead to improved EPR results. More experimentation is needed from 

other researchers using EPR for productivity modeling. Because EPR shows better 

performance than the two other regression techniques, a sensitivity analysis was performed in 

the next section.  

5.4 EPR Sensitivity Analysis 

A sensitivity analysis was performed to identify the variables’ effect on predicted productivity. 

The factor value under analysis was changed while the rest of the variables maintained the 

initial value. Figure 5.10 and Table 5.8 show the effect of changing all productivity input 

variables. In this figure, the vertical axis represents productivity value and the horizontal axis 

shows normalized variables’ value. Since each variable has its own unit, the horizontal axis was 

plotted by means of normalized value from 0.01 to 1. This graph was made for two purposes as 

follows: a) To understand the interdependencies between productivity and its input variables; 

and b) To identify the most sensitive independent variables. For a better picture of each variable 

effect, each variable actual values were tabulated below normalized values. The results show a 

strong relationship between temperature and gang size as inputs and labor productivity as the 

output. The effect of temperature on productivity has been well documented (Abele, 1986; 

Thomas and Yiakoumis, 1987; Moselhi,1997; Moselhi, 2005; Lee, 2007). Meanwhile, gang size 

trends show overmanning issues; increasing the number of workers within the same trade can 

lead to productivity loss. Although it is possible that gang size can increase rates of production 

by eliminating overtime problems such as fatigue, it is possible that it will lower productivity due 

to congestion and less direct supervision.  

 
Figure 5-10. EPR Sensitivity Analysis for a Two High rise Buildings Dataset. 
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It should be noted that there is an improvement in productivity at the last 30% of the variation in 

gang size but the amount of improvement is not substantial when compared to gang size. A 

detailed discussion of overmanning can be found in Chapter 2.   

Table 5-8. Actual values of the parameters. 

Parameter Actual values of the parameters 

T (C) -25.5 -20.9 -15.8 -10.7 -5.55 -1 4.65 9.75 14.85 19.95 25.05 
H 18.79 25.9 33.8 41.7 49.6 57.5 65.4 73.3 81.2 89.1 97 
P 0.03 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 

WS 3 7 11 15 19 23 27 31 35 39 43 
GS 8 10 11 13 14 16 18 19 21 22 24 
LP 29 31 33 34 36 38 40 42 43 45 47 
WT 1 1 1 2 2 2 2 2 3 3 3 
FL 1 3 4 6 7 9 11 12 14 15 17 

WM 1.01 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
 

Floor level trends are shown in Figure 5.12 and Table 5.8 exhibit interesting behavior as well. 

There is an obvious inverse relation between floor level and productivity for the first 50% of the 

variation in floor level, which can be caused by the learning curve factor. As Khan (2005) has 

mentioned, the floor level variable is the only variable which synchronizes with project start. 

Therefore, it is the only variable that can gradually incorporate the effects of learning. 

Productivity shows improvements after workers pass the learning curve phase. Humidity and 

labor percentage trends are very similar and have an inverse relation with productivity, i.e. an 

increase in humidity or labor percentage causes a decrease in productivity. Low humidity 

percentages have a positive impact on productivity; however, passing beyond a certain humidity 

level will impact labor productivity negatively. Labor percentage can contribute to labor 

productivity negatively if the ratio of labors to the skilled workers is higher than the norms of the 

industry for a task.  

In other words, there should be a specified optimal labor percentage in the crew for supporting 

skilled work otherwise overall productivity is adversely impacted. For example, in a hydropower 

dam under construction in Northeast Canada, the optimum labor percentage value for formwork 

activities was estimated between 25 to 30% of a crew. Any more or less than this was proven to 

impact formwork productivity negatively. Despite the overall changes in productivity trends in 

this sensitivity analysis, changes in work type and precipitation values show an inverse 

relationship; this change can be ignored due to low change amounts.  

5.5 Regression Modeling Techniques Comparison  

Having applied the different regression techniques on the given dataset and quantified their 

basic performance indicators, it is beneficial to recapitulate the results and present some 

performance assessments. In this research, the application of each three techniques explained 
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previously was performed and tested against the datasets of two high-rise buildings related to 

formwork operation. A summary of the best achieved results for each of the three techniques is 

presented in Table 5.9. 

Table 5-9. Performance Results Comparison. 

Technique R-Squared MSE Time (Sec) Number of Variables 
BSR 0.468 0.258 ~2 8 
STR 0.486 0.258 ~2 7 
EPR 0.523 (test) 0.057  1140 8 

 

From this comparison, the following remarks can be concluded: 1) EPR regression produces 

higher accuracy and lower MSE than BSR and STR; 2) BSR and STR techniques have shown 

very close performance regarding R-squared and MSE; 3) EPR has the highest computational 

time as compared to the two other techniques because EPR datasets were divided into training 

and testing datasets for modeling. However, whole datasets were applied on BSR and STR. 

The number of variables used in the productivity model is very close, seven to eight variables; 

4) Since none of the regression techniques achieved high accuracy, it is surmised that 

abovementioned techniques are not suitable for the given datasets; and 5) It is possible that 

data preprocessing and studying the behavior of the given datasets before applying these 

techniques may result in more accurate models.     

 5.6 Artificial Intelligence (AI) Approach 

AI has provided more powerful tools for the construction industry over the past decades. 

Several AI molding techniques have been employed in the construction industry such as expert 

systems (ES) and NN. A considerable part of construction industry problems is in the form of 

analogy-based problems such as last-minute bids, design under pressure, etc. Thus, NN 

techniques as compared to other conventional practices are more appropriate in modeling 

construction industry problems that demand analogy-based resolutions (Moselhi et al., 1991a). 

There are four major steps for modeling analogy-based problems using NN: i) Gathering 

historical data, ii) Building and configuring the relevant network, iii) Initializing weights and 

biases; and iv) Training and validation step. In this research, four types of NN were applied for 

modeling labor productivity. These were Back Propagation, RBF, GRNN, and ANFIS. In 

addition, a novel NN with unique features was proposed for achieving a model with higher 

accuracy for predicting labor productivity. A detailed explanation of all the modeling techniques 

used, along with the proposed model, will be discussed in the following sections.  
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5.6.1 NN Productivity Modeling Using Backpropagation 

In this section, ANN was applied to model labor productivity. NN is mostly used for unknown 

function approximation. As described in the literature review, a key ANN feature is its learning 

ability. It can be trained by historical datasets to find the accurate relation between inputs and 

outputs as well as predicting the output(s) for new inputs. In this research, ANN models were 

developed, trained, validated, and tested in MATLAB 2017a with 221 data points. The dataset 

was randomly divided into 80 and 20% groups, used for training and testing results, 

respectively. Several ANN models were developed, different in three aspects: number of 

neurons in a hidden layer which varies between five and 100, random groups of datasets, and 

the number of hidden layers varying between one and two. A Bayesian Regularization (BR) 

algorithm was used for data training. BR is commonly used in noisy and small problems. The 

algorithms attempted to minimize the sum of the squared errors by updating the network’s bias 

and weight. Training sets were used to adjust the network structure based on the associated 

errors until the best structure was reached. Validation sets were utilized to measure network 

generalization capabilities and to pause training when generalization stopped improvement. 

After training, testing sets provided an independent network performance index. For each ANN 

model, trials were performed to reach the lowest error. Model performance was assessed based 

on R-squared and MSE developed through MATLAB coding according to the following 

equations, where “ti” is the target value while “oi” is the output value: 𝑅2 = 1 − ∑ (𝑡𝑖 − 𝑜𝑖)2𝑖∑ (𝑡𝑖 − 1𝑛 ∑ 𝑡𝑖𝑖 )2𝑖              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.16 

𝑀𝑆𝐸 = 1𝑛 ∑(𝑡𝑖 − 𝑜𝑖)2𝑖                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 5.17 

 

The CoD (R-squared) is often used in statistical analysis since it is easy to calculate and 

understand. It fluctuates among [0, 1] and evaluates the percentage of total differences between 

estimated and target values with respect to the average. Several ANN with the different number 

of neurons and hidden layers were developed to find the best model for identifying labor 

productivity. The number of hidden layers varied between one and two and models were trained 

by five, ten … 100 neurons. Considering the differences in the number of the neuron and hidden 

layer, 32 different models were developed, and their results compared. Figures 5.11 and 5.12 

display the effect of the number of neurons on the CoD for one and two hidden layers. As can 

be seen in Figure 5.11, the R2 are mostly between 90-100% for the training phase and 70-90% 

for the testing phase. The model with one hidden layer and 50 neurons shows maximum 
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accuracy. For two hidden layers models, the model with 20 neurons in each layer showed the 

best performance in predicting labor productivity. Increasing the number of hidden layers 

resulted in better performance but this takes more computational time and does not change 

model accuracy in any significant way. In this research, the maximum number of neurons that 

could be considered in the ANN model was 60 due to extreme computational time and 

insignificant improvement to model accuracy. MSE value was the smallest in the models with 

two hidden layers and 20 neurons and one hidden layer and 50 neurons (Figures 5.13 & 5.14). 

Model performances were assessed based on R2 and MSE, as summarized in the following 

Figures.

 
Figure 5-11. R2 values of ANN models using BP 

algorithm with 1 HL. 

 
Figure 5-12. R2 values of ANN models using BP 

algorithm with 2 HL. 

 

Figure 5-13. MSE Values of ANN Models with 

Respect to Number of Neurons 1HL.  

 
Figure 5-14. MSE Values of ANN Models with 

Respect to Number of Neurons 2HL. 
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It should be mentioned that no performance index was available during the validation phase 

while the given datasets were trained by the BR algorithm because the algorithm does not 

validate data and the datasets were randomly divided only into trained and test datasets. As can 

be seen from the model comparisons in Table 5.10 and Table 5.11, the final model was the one 

with two hidden layers and 20 neurons, which showed the acceptable accuracy for identifying 

labor productivity with lowest computational time. The model has MSE and R2 performance 

value indices of 0.023 and 0.900, respectively. Therefore, this model was considered for 

comparison with the ANIFS model in the next sections.  

Table 5-10. Performance Indices for Models with One Hidden Layer. 

Neurons 5 10 15 20 25 30 35 40 45 50 70 90 100 
MSE 0.014 0.014 0.017 0.012 0.015 0.014 0.017 0.015 0.030 0.008 0.012 0.019 0.012 

MSE train 0.010 0.004 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.005 0.004 0.001 0.001 
MSE test 0.03 0.06 0.08 0.06 0.08 0.07 0.08 0.08 0.06 0.024 0.04 0.10 0.06 

R2 0.88 0.88 0.86 0.90 0.88 0.88 0.88 0.88 0.82 0.94 0.90 0.86 0.90 
R2 train 0.92 0.96 0.98 0.98 1 0.98 0.98 0.98 1 0.96 0.96 1 1 
R2 test 0.77 0.59 0.47 0.51 0.46 0.62 0.25 0.59 0.56 0.79 0.65 0.56 0.61 

 

Table 5-11.  Performance Indices for Models with Two Hidden Layers. 

Neurons 5 10 15 20 25 30 35 40 45 50 60 

MSE 0.0162 0.0096 0.1264 0.0215 0.0545 0.0384 0.0212 0.1264 0.0183 0.0184 0.0096 
MSE train 0.0055 0.0022 0.1242 0.0200 0.0008 0.0000 0.0000 0.1267 0.0005 0.0008 0.0007 
MSE test 0.0665 0.0446 0.1369 0.0230 0.1071 0.1193 0.1213 0.1251 0.1024 0.1010 0.0518 

R2 0.874 0.887 0.249 0.900 0.660 0.760 0.863 0.262 0.859 0.868 0.925 
R2 train 0.958 0.962 0.272 0.954 0.994 1 1 0.288 0.996 0.994 0.994 
R2 test 0.480 0.481 0.162 0.700 0.112 0.232 0.537 0.156 0.509 0.481 0.616 

 

The error histogram of the final model with two hidden layers and 20 neurons is presented in 

Figure 5.15. It can be seen from the bars that most of the errors oscillate between -0.55 and 

0.75 in all the training and testing phases. The concentration of errors was 0.003, which is a 

small error for prediction. The R2 value was 95.41% in training dataset, which shows that the 

outputs are very close to target values. The R2 value for testing was 70%, proof that the model 

is able to predict 70% of future outcomes accurately. 

 
Figure 5-15. Error Histogram for final model. 
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5.6.2 General Regression Neural Network (GRNN) 

GRNN, first proposed by Donald F. Specht in 1990, is often used for nonlinear function 

approximation. It has a special linear and radial basis layer which makes it different from radial 

basis networks. GRNN is a NN model that mimics nonlinear relations between a target variable 

and a set of predictor variables. GRNN falls into the class of probabilistic NNs and requires less 

training samples in comparison to a backpropagation NN. The GRNN main advantage is that 

since available datasets for developing NNs are not usually sufficient, probabilistic NNs will be 

more attractive for modeling. In other words, GRNN can solve any function approximation 

problems in case insufficient data is available in abbreviated time. In GRNN, the target value of 

the predictor is achieved by considering the weighted average of the values of its neighboring 

points. The target variable distance of neighbors plays a key role in predicting target value. 

Neighboring points close to target points have a greater impact on target value; distant points, 

on the other hand, are not influential as much as close neighbor points. The radius base 

function is used for calculating the level of influence of neighboring points (MathWorks, 2018). 

As mentioned, GRNN is able to build a model with a relatively small dataset and has the 

capability to handle outliers (Yip et al., 2014). There are two main disadvantages associated 

with GRNN relative to other techniques; it needs considerable calculation to evaluate new points 

and it is not able to ignore unrelated inputs itself and needs major algorithm modifications. 

Consequently, this method is not a choice for problems with a substantial number of predictor 

variables. The GRNN algorithm can be enhanced by advancing GRNN in two of the following 

ways (Specht, 1991): 1) Using clustering versions of GRNN; and 2) Using parallel calculations 

to take advantage of GRNN structure characteristic. In addition to the abovementioned 

drawbacks, GRNN models can be large due to having one neuron for each training row. For 

developing the GRNN model, DTREG was utilized; thus, after the model was constructed, 

DTREG provided an option for facilitating the removal of unnecessary neurons from the model. 

By removing unnecessary neurons, the computational time is reduced, and it becomes possible 

to improve model accuracy (DETRG, 2018). DTREG was utilized, along with three criteria 

available for guiding the removal of neurons, in order to select the best possible model: 1) 

Minimize error. Removing neurons as long as removing a neuron will cause the model error to 

increase the above minimum found; 2) Minimize the number of neurons. Removing neurons will 

stop until the model error goes beyond model error with all the neurons; and 30 limit the number 

of neurons to a certain number. Removing neurons until the number of neurons set by the user 

is met.  Some other features of the DTREG GRNN model are as follows:  
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1) Single sigma for the whole model: This is the simplest and fastest model type as it relies on a 

single sigma value for all points. Sigma is a value for determining the radial base function 

spread; 2) Sigma for each variable: This option will calculate the sigma value for each predictor 

variable in the model; 3) Sigma for each variable and class: This option calculates the sigma for 

each predictor variable and for each target category; and 4) Kernel function type: The kernel is a 

similarity function and controls how the influence of a point declines as the radius from the point 

increases. DTREG provides two types of kernel functions: 1) Gaussian: A Gaussian function 

causes the influence of a point to decline according to the value (height) of a Gaussian 

distribution centered on the point. The equation of the Gaussian function is:                     f(x) =  1√2πσ e(−x22σ2)                           Equation 5.18 

2) Reciprocal: The influence of the point decreases as a linear function of the distance from the 

point.  The developed GRNN model accuracy was compared against other models’ by using the 

same dataset. Eighty percent of the dataset was selected randomly as the training set, which 

corresponded to 177 input-output pairs. Twenty percent of the data was kept unused for testing, 

which corresponded to 44 input-output pairs. Note that all techniques used for modeling labor 

productivity in this study used the same training and testing dataset for a proper comparison 

approach. In addition, the Gaussian kernel function type was selected as it is the best function 

among other kernel functions and a single sigma for the whole model was selected to reduce 

computational time. Using a trial and error approach to select the best model, three models 

were developed based on three options provided by the software: remove unnecessary 

neurons, minimize error, and the constant number of neurons. Table 5.12 summarizes various 

statistical indices for the developed models.  

Table 5-12. Performances Indices for GRNN. 

Performance index 
# of 

Neuron 
R2 

Train 
R2 Test 

MSE 
Train 

MSE 
Test 

RMSE 
Train 

RMSE 
Test 

MAE 
Train 

MAE 
Test 

Minimize error 107 0.877 0.647 0.0148 0.0675 0.1218 0.2599 0.0791 0.168 

Minimize number 
of neurons 

34 0.758 58.70 0.017 0.071 0.131 0.267 0.098 0.178 

Number of 
neurons 

10 0.648 0.511 0.042 0.082 0.206 0.286 0.147 0.216 

 

The best GRNN model was found to have 107 nodes with an R2 value of 54.73%, which is 

higher than the two other approaches. Other information extracted from the selected model was 

as follows: 1) Optimal value of Sigma = 0.7154881 and 2) Analysis run time:  01:07.24.  
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5.6.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS is used in various engineering fields such as environmental engineering, civil 

engineering, electrical engineering, etc. (Ying and Pan, 2008; Subasi et al., 2009, Alashary et 

al., 2009). ANFIS utilizes a hybrid learning algorithm which can model the relationship between 

predictor variables and respond variables based on expert knowledge by using NN capabilities; 

it represents expert knowledge in the form of fuzzy if-then rules with the approximation of 

membership functions from given predictors and response datasets. Fuzzy logic handles the 

vagueness and uncertainty associated with the system being modeled whereas the NN provides 

model adaptability. By combining the learning abilities of a NN with the reasoning capacities of 

fuzzy logic into a unified platform, ANFIS can be considered as an enhanced predication tool in 

comparison with a single methodology one. ANFIS can adjust MF parameters and linguistic 

rules directly from NN training capabilities with respect to refining model performance.  

ANFIS is able to capture expert knowledge regarding a nonlinear system and its behavior in a 

qualitative model without quantitative descriptions of the system. Fuzzy Interference System 

(FIS) is a knowledge interpretation technique based on the concept of fuzzy set theory, fuzzy 

“IF-THEN” rules, and fuzzy reasoning, where each fuzzy rule characterizes a state of the 

system. ANFIS TOOLBOX (Figure 5.16) uses a Sugeno FIS for a structured approach to 

generate fuzzy rules by using a given dataset (Negnevitsky, 2005).  

To develop labor productivity using the ANFIS TOOLBOX, the following steps were taken:  

1) Load data for training and testing phases from file or workspace. Training and testing data 

are matrices with ten columns where the first nine columns contain data for each FIS predictor 

variable and the last column contains the response data. It should be noted that the same 177 

data points were used for training and the other 44 for testing purposes;  

2) Generate FIS model structure by choosing the subtractive clustering technique. Subtractive 

clustering technique is faster than grid partitioning and with the satisfactory result for justifying 

use. Thus, subtractive clustering was selected, and its parameters are presented in Figure 5.17. 

Based on the selected parameters of subtractive clustering, 63 clusters were detected as the 

most suitable MF number. It should be noted that the number of clusters and MFs are equal;  

3) Select one of two ANFIS TOOLBOX methods provided for training the MF. These include BP 

and the hybrid method. In this research, the hybrid method was selected because it generates 

better results than backpropagation. The hybrid method includes backpropagation and least 

squares for MF parameter estimation, backpropagation for estimating input MF parameters, and 

least square for output MF parameters; and  
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4) Set training epochs and tolerance, which work as the stop criteria for training. The training 

process will be terminated if one of these conditions is met.   

 
Figure 5-16. GUI of ANFIS in MATLAB 2017a. 

 
Figure 5-17. Subtractive Clustering Parameters. 

ANFIS parameters were selected to reach higher accuracy with less computational time. Table 

5.13 shows the selected model parameters.   

Table 5-13. ANFIS Parameters for Modeling Labor Productivity. 

ANFIS Parameters 

Number of Input Variables 9 

Training Data Points 177 

Testing Data Points 44 

Number of Layers 5 

Operator Subtractive 

Number of Membership Functions (MF) 63 

MF Type Bell shape 

Transfer Function of Output Layer Linear 

Training Algorithm Hybrid 

Error Tolerance 0 

Number of Epochs 100 
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The model reaches a training MSE of 0.00024 after 100 epochs. Figure 5.18 show the predicted 

daily productivity against corresponding actual values.  

 
Figure 5-18. Actual vs. Predicate Value Using ANFIS. 

Table 5.14 summarizes the dataset various statistical indices using the developed ANFIS 

model. 

Table 5-14. Statistical Indicators of Developed ANFIS Model. 

R 0.81 
R-Squared Train 0.89 
R-Squared Test 0.66 

MSE Train 0.01 
MSE Test 0.02 
MAE Train 0.017 
MAE Test 0.097 

RMSE Train 0.114 
RMSE Test 0.146 

5.7 Proposed PSO-RBFNN for Modeling Productivity  

In this section, an overview of used machine learning algorithms in the proposed model is 

presented. In the previous studies, different machine learning techniques employed for 

modeling productivity, all of which have their pros and cons. For instance, linear regression 

algorithm usually takes pairs of inputs and labels and tries to fit a function in such a way that the 

difference between the data pairs and all the points on the function is minimized. Although this 

technique is easy to implement, it only looks at linear relationships between dependent and 

independent variables. In addition, the discussed methods are highly dependent on the quality 

of the dataset, and those models cannot be used for all the challenges associated with 

unbalanced datasets. There is a need to propose a robust productivity model which is able to fit 

the given dataset behavior and proposes enough generalizability. Since in the construction 

datasets, there is much nonlinearity involved, NN prediction outperforms algorithms such as 

linear regression. This is mainly because NN can leverage between subtle changes in data and 

structural components. Technically, NN consists of interrelated neurons placed over different 
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layers, which generates output(s) for a given input(s) fed to the network. To be able to extract 

components that have shown critical effects in the process of prediction, NN maps the input 

data from raw Euclidean space to some interrelated representation space known as layers. This 

effect can be approximated via a loss function which NN tries to minimize. Loss function 

functionality biases the weights towards minimized loss. NN generally consists of three main 

layers: input, hidden, and output. Learning how to map the input layer to the output layer is 

called training and is accomplished by the hidden layer. NN can be categorized concerning its 

architecture, number of epochs, minibatch, loss function, momentum, batch-normalization, 

weight-normalization, etc. Epochs are the feeding cardinality of each input sample to the 

network, and minibatch is referred to the breakdown size of each training sample. Momentum is 

the regularization scheme for better controlling the weights of the network. Batch-normalization 

is the process of normalizing each minibatch using a normal distribution. Weight-normalization 

is the process of normalizing the weight vectors to reduce the discrepancies among all the 

weight values. Choosing a proper network architecture with special settings is challenging and 

completely dependent on input type and task, either classification or regression. Utilizing a NN 

with simple architecture is desirable rather than having a convoluted multilayer neural network.  

The simplicity of NN architecture will lead to less computational time and application flexibility.  

Thus, RBFNN is selected to model labor productivity. RBFNN is a powerful artificial neural 

network that has been applied with success to many engineering areas due to advantages 

associated with its algorithm. RBFNN was selected as the basis for this developed model due to 

the following advantages: 

1. RBF is a kind of NN, and its main difference with regular NN is representing the given 

input data as a statistical distribution (mainly Gaussian) and continuing the process of 

training with parameters of the chosen distribution;    

2. Less computational time (both in training and in test) as compared to other techniques 

due to its simple topological structure (Jain et al., 2011). RBFNN structure simplicity can 

be considered its main advantage over ANN. As explained in the ANN section, the 

numbers of neurons in each hidden layer, as well as the number of hidden layers, play a 

significant role in model accuracy. However, increasing the number of neurons and 

hidden layers will increase both model complexity and computational time;    

3. From the generalization point of view, RBFNN can respond well to patterns which are 

not used for training. This is a significant advantage over the ANFIS modeling technique. 

In RBFNN, the rules can be defined based on the functions that adapt themselves to the 

test dataset variability. In other words, the generated rules are as flexible as needed to 
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the data. Expectation-Maximization is to replace the missing variable parameters and also to 

consider the latent variables in the input data.  Moreover, resampling operation is employed to 

augment the prepared dataset and increase the generalizability of the trained model. 

5.7.1.1 Expected Maximization  

Expectation maximization (EM) is a method that uses consecutive guesses to approximate the 

maximum likelihood function. The EM algorithm is a way to obtain maximum likelihood 

estimates for model parameters when data is partial, has missing data points, or has overlooked 

latent variables. Two processes were included in each EM iteration as follows (Gupta and 

Yihua, 2011):  

1. E-step. In this step, the missing data were assessed given the dataset and current 

estimate of model parameters (Equation 5.19):  

                          x(m) = arg  maxx∈X(y) p(x|y, θ(m))                    Equation 5.19  

2. M-step. In this step, the likelihood function was maximized under the hypothesis that the 

missing data is known. The missing quantified data from the previous step was used as 

a replacement for the actual missing data (Equation 5.19 to 5.20):  

                           θ(m+1) = arg  maxθ∈Ω p(x(m)|θ)                      Equation 5.20 

Table 5.15 summaries the notation for Equation 5.19 and 5.20.  

Table 5-15. Notation Summary. 

X Support of X (closure of the set of x where p(x|θ) > 0) 
p(y |θ) Density of y given θ; also written as p(Y = y |θ) 
X(y) Support of X conditioned on y (closure of the set of x where p(x| y,θ) > 0) 
θ(m)∈Ω mth estimate of θ 

x Complete data 
y Given observation 

θ ∈ Ω Parameter(s) to estimate, Ω is the parameter space 

 

The abovementioned steps are repeated until stability is reached. In this research, EM was 

used because EM is the process of leveraging low-frequency values, which have a more 

significant share in the data balance distribution in the proposed model. It is essential to keep 

the data distribution around its mean since it is likely to guarantee the stability of the generated 

model. 

5.7.1.2 Normalization   

Normalization is the process of quantizing input data into a bounded interval (e.g. [0,1]) with 

respect to a distribution (usually normal distribution). Normalization is a method for suppressing 

high frequency (HF) data. HF data usually contains distortions, which can lead to system 

weakening. In addition, the NN technique modeling values should be in the same range to avoid 



 

146 

 

having an ill-conditioned model. Normalization can ensure stable convergence of weight and 

biases NN models. Normalization can be applied to different types and sorts of models. The 

process of normalizing data in this model followed a Gaussian distribution with specific values 

for mean and variance. One common normalization method is to apply normal distribution with 

mean and variance equal to zero and one, respectively. For most of the given dataset, this 

approach worked well. However, herein, a normal-like distribution with a threshold on its 

parameters (mean and variance) was applied (Equation 5.21). These values were computed by 

applying expectation-maximization on the given dataset and by attempting to minimize the 

following function (Roweis and Zoubin, 2001): 𝑧 = 𝑥 − μσ                                                                                                                                               Equation 5.21 

Equation 5.22 minimizes the weighted difference between the approximated function 𝑓 times its 

occurrence probability for a small bias value equal to 𝜇. By minimizing this function, the stability 

criteria for each zone was computed to increase the sensitivity of this value to the locality axiom 

mentioned before. The following formula (Equation 5.23) also minimizes the valid value for 

perturbation. In other words, the dataset is being forced to be abiding by a specific tolerance. 

This is useful since it can provide a robust variance around 𝜇.   minμ ‖f(x + μ)p(x + μ) − f(x)p(x)‖                                                                                    Equation 5.22 minσ ‖x − σ‖ + σ(1 − p(x))                                                                                                   Equation 5.23 

5.7.1.3 Resampling of Dataset  

One of the practical ways to improve NN model resiliency against unknown data is by 

resampling the dataset. It is essential to mention that resampling has nothing to do directly with 

the trained model and is categorized as a preprocessing step before training. Resampling can 

be categorized as the following (Oppenheim, 2005): 1) Upsampling: The up-sampling approach 

is to increase the sampling rate by an integer factor. For example, upsampling by factor 2 

means to fill in the missing value between two consecutive data points using interpolation 

(Figure 5.21). In simple terms, upsampling is the dataset augmentation process using the 

locality principle. As can be seen from Figure 5.20, the data dimensions are augmented by a 

coefficient which usually is an integer. This coefficient refers to the scale of the augmentation, 

and if the coefficient is 2, it means that the data will be augmented in double and the empty 

generated space will be filled by average local values. Upsampling can be done in many 

different formats like bilinear or bi-cubic; and 2) Downsampling: The down-sampling approach is 

to decrease the data sampling rate by an integer factor. For example, downsampling by factor 2 

means to preserve only every second sample (Figure 5.21). The down-sampling process is the 
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For input ⃗p, the output of the RBF network is given by Equation 5.24: y(⃗x)=  ∑ 𝑤𝑘φ(‖𝑥𝑗 −𝑐𝑖‖𝑛𝑘=1  ,                                              𝑖 = 1,2 … , 𝑛                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.24   

Where (⃗𝑥) is the 𝑖th output, 𝑤𝑘 is the connection weight from the 𝑘th hidden unit to the 𝑖th 

output unit, and ‖𝑥𝑗 −𝑐𝑖‖ denotes the Euclidean norm. The RBF activation function has various 

form. However, the Gaussian function is typically selected, and such an RBF network is usually 

termed the Gaussian RBF network. 

Therefore, the net input to the radial basis function is the vector distance between its weight 

vector w and the input vector x, multiplied by the bias 𝑏 (the ‖dist‖ box in this figure accepts the 

input vector p and the single row input weight matrix and produces the dot product of the two). 

Usually, the Gaussian function is used as RBF and regularized by a center and width and the 

Euclidean distance between the input vector x𝑗 and the radial basis functional center is 

calculated by Equation 5.25: 𝜑(𝑥𝑗 − 𝑐𝑖) = exp (− 12𝜎𝑖2  ‖𝑥𝑗 − 𝑐𝑖‖2)          𝑖 = 1,2, … , 𝑚                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.25 

  

In this function, ‖𝑥𝑗 − 𝑐𝑖‖ is Euclidean norm; xj is the 𝑗th input vector; 𝑐j is the center of 𝑖th basis 

function with the same dimension of x𝑗; 𝜎𝑖 is the 𝑖th neuron radial basis function width 

parameter; 𝑖 is the number of hidden layer nodes; 𝑗 =1, 2, . . . , m; 𝑗 is the number of input 

vectors; and 𝐽 is the total number of input vectors. In the proposed architecture, a Gaussian 

function is used as the activation function. So, the linear function output is shown in Equation 

5.26. 

y(⃗x) = ∑ 𝑤𝑖 exp (− 12𝜎𝑖2  ‖𝑥𝑗 − 𝑐𝑖‖2)𝑘
𝑖=1                                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.26 

Where 𝑤𝑖 is the connection weight between the hidden layer and output; Oi is the output value of 

the 𝑖 th node. Thus, it can be seen that the center 𝑐𝑖, width parameter 𝜎𝑖, and the connection 

weight 𝑤𝑖𝑙 are very important parameters that affect the accuracy of prediction. In the training 

process of the RBFNN, for each neuron’s weighted input, the distance between the input vector 

and the relative weight vector is calculated. The RBFNN configuration is presented as a 

minimization goal function. The variables to consider are the number of hidden layer nodes, the 

center locations 𝑐𝑖, width 𝜎𝑖, and the connection weights 𝑤𝑖. In this research, particle swarm 

optimization (PSO) algorithm is employed as a training method to search for the optimum 

parameters c𝑖, 𝜎𝑖, and 𝑤𝑖𝑗 that minimize the difference between real and predicted matrices of 

the productivity parameters. After each iteration, the network’s error is determined, and if the 
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error goal is not met, the next neuron is added, and this operation is iterated until the error goal 

is achieved, or the maximum number of neurons is reached.  

 

5.7.3 Particle Swarm Optimization Algorithm (PSO) 

The particle swarm optimization (PSO) was inspired by birds’ behavior and developed by 

Kennedy and Eberhart (1995).  PSO operates as an evolutionary algorithm that generates a 

random population of probable solutions, which are called particles. The particles movement 

direction over the available search space is directed by the best-recognized positions of each 

particle, 𝑝best, and the global best position found during the movement of the swarm, 𝑔best 

(Kennedy and Eberhart, 1995). The position of each particle 𝑖 in the search space introduces 

values of the optimization problem variables. The objective function, 𝐹, of the optimization 

problem is evaluated for the position of each particle in the search space. The best-known 

positions of each particle, 𝑝best𝑖, is the position that gives the best value of the objective function 

and the particle position that has the best evaluation of the objective function in the population is 

the global best position, 𝑔best. Technically, PSO uses a swarm of particles or feasible solutions 

which move over the available solution space to find the optimum solutions. In this study, PSO 

provides the final analysis of the hyperparameters of RBFNN (Perng et al., 2014). Figure 5.23 

shows the flowchart of the optimization process of RBFNN with PSO and the steps are 

explained as follows:  

Step 1: Initialize the population with N particles and all particles velocities and positions.  

Step 2: Evaluate fitness value for each particle.  

Step 3: If the current fitness is not greater than previous pBest then the fitness value should be 

evaluated again for each particle.  

Step 4: If the current fitness is greater than previous pBest then set best of pBest and gbest. 

Step 5: Update Particles velocity and position 

Step 6: If criterion is not met or maximum iteration is not reached, then go to Step 2. 

Step 7: Stop if criterion is met or maximum iteration is reached. 

Step 8: Obtain the optimum parameters of the RBFNN. 

For each dimension of the search space, the particle’s velocity depends on the positions of the 

best-known solutions, 𝑝best𝑖 and 𝑔best, and the current position. For each iteration, 𝑛, the velocity 

in each dimension is calculated by using Equation 5.27 (Lee and El-Sharkawi, 2008): 𝑉𝑖𝑑𝑛+1 = 𝑤𝑉𝑖𝑑𝑛 + 𝑐1𝑟1(𝑃𝑖𝑑𝑛 − 𝑋𝑖𝑑𝑛 ) + 𝑐2𝑟2(𝑃𝑖𝑑𝑛 − 𝑋𝑖𝑑𝑛 )                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.27 
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Where 𝑋𝑖𝑑𝑛+1 and 𝑉𝑖𝑑𝑛+1 are position and velocity in the current iteration, respectively. When the 

particle moves to the new position, the objective function evaluates iteratively. The process 

continues until the maximum number of iterations is reached, or the convergence criterion of the 

objective function is fulfilled. The position which optimizes the value of the objective function of 

the problem is achieved by the movement of the particles through the search space. In this 

research, the objective function which determines the RBFNN performance is represented by 

MSE (Equation 5.29): 𝑀𝑆𝐸 = 1𝑚 ∑(𝑘𝑖 − 𝑘̂𝑖)2        𝑛
𝑖=1                                                                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.29 

Where 𝑘𝑖 and 𝑘̂𝑖 are actual and predicted normalized permeability coefficient vectors, 

respectively, and 𝑚 is the total number of data sets. 

5.8 Model Evaluation and Implementation 

There is no standard approach to calculate the number of nodes in the hidden layer. Therefore, 

trial and error approach is started with minimum number of nodes in hidden layer to train the 

network. The training process must terminate if the training is performed many times, does not 

reach the specified training duration or the network does not converge to a predetermined 

accuracy.  As a consequence, the number of hidden nodes should be added gradually. The 

training process continues until a satisfactory result is reached. As a result of this approach, the 

number of hidden nodes is determined as 47.  Considering the numbers of input and output 

neurons as 9 and 1, the PSO-RBFNN architecture is 9-47-1. 

The proposed PSO-RFBNN is implemented on a prepared dataset and evaluated with a real-

world case study. The swarm population size is set to 45, and each particle in the algorithm 

represents the variables of ci, σi, and wij. In the first step, the input data is modified by the 

introduced preprocessing operations. The input data space span is limited from 0 to 1, and RBF 

center ci is constrained in the range of [0, 1]. Based on the conducted experiments, the width σi 

are considered in the range of [1, 45], and the connection weights wij are constrained in the 

range of [0, 100]. As mentioned in the previous section, regarding the defined range of 

parameters, particle swarm is initialized randomly.  

Then PSO start processing based on each step of the flowchart presented in Figure 5.23. The 

maximum iteration number is defined as 100 iterations and mean squared error less than or 

equal to 0.0001 is defined as the stop criterion. In addition, the PSO parameters are set up to: 𝜔max = 0.99, 𝜔min = 0.4, 𝑥min = -10, 𝑥max = 10, and Vmax = 20. The PSO-RBFNN processes 

used to build the standalone software was done using MATLAB.  
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It should be noted to avoid the local minima problem, ring topology is utilized. Ring topology 

means that each particle is influenced only by particles in its own neighborhood. Each section of 

the software will be discussed in detail in the following section. The comparative results of 

proposed PSO-RFBNN model and regular RBFNN on the test data set are presented in Table 

5.16.   

       Table 5-16. Comparative Performance Indicators of RBFNN and PSO-RBFN. 

Model R R2 MSE RMSE MAE 

RBFNN - Train 0.905 0.811 0.015 0.103 0.081 

RBFNN - Test 0.818 0.673 0.045 0.213 0.151 

PSO RBFNN - Train 0.985 0.969 0.004 0.064 0.036 

PSO RBFNN - Test 0.944 0.891 0.019 0.116 0.139 

 

Figures 5.24 and 5.25 shows the predicted daily productivity against corresponding actual 

values for train and testing datasets. 

 
Figure 5-24. Actual vs. Predicted Values for Training Dataset. 

 
Figure 5-25. Actual vs. Predicted Values for Testing Dataset. 
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PSO algorithm is utilized for determining RBF neural network parameters, c𝑖, 𝜎𝑖, and 𝑤𝑖𝑗. This 

algorithm compares the MSE of different networks and it chooses the neural network with 

minimum MSE. Results show that PSO algorithm can be used as an alternative way in selecting 

network.  

5.8 AI Modeling Techniques Comparison  

After having applied the different AI techniques and the developed PSO-RBFNN on the given 

dataset and quantified their statistical performance indicators, the results were analyzed, and 

their performance was assessed. In this research, the application of each of the five techniques 

described previously was achieved and tested against Khan’s datasets retrieved from two high-

rise buildings related to formwork operation. The performance of PSO-RBFNN is compared with 

ANN, GRNN, ANFIS, and RBF. The results are shown in Figures 5.26 and 5.27 and the details 

of comparison are recorded in Table 5.17. 

Table 5.17 shows that the proposed PSO-RBFNN has less testing MSE and a more compact 

structure than the other algorithms. Moreover, the testing time and the training time of the PSO-

RBFNN are least than that of the other algorithms. The results of PSO-RBFNN further show that 

the PSO algorithm is more suitable to optimize RBFNN to achieve better results than the other 

algorithms. The proposed PSO-RBFNN is a more suitable and effective method than the other 

neural networks for predicting labor productivity with the given dataset. 

 
Figure 5-26. Comparison R2 for Different Algorithms 
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Figure 5-27. Comparison MSE for Different Algorithms. 

From this comparison, the following can be concluded: 

 PSO-RBFNN shows the highest R-squared in testing phase followed by ANN, RBFNN, 

ANFIS, and GRNN; 

 ANN shows the highest R-squared in training phases followed by PSO-RBFNN, RBFNN 

ANFIS, and GRNN; 

 GRNN is the least accurate technique among the other techniques for the given dataset 

in both training and testing phases;  

 PSO-RBFNN has the lowest MSE among other techniques in training and testing 

phases followed by ANN; and   

From Figures 5.27 and 5.28, it can be concluded that PSO-RBFNN has the best performance 

among other techniques. Moreover, the developed models were compared based on statistical 

performance indicators as shown in Table 5.17. Figures 5.27 and 5.28 show the outcome 

comparisons of all the AI-based models developed and discussed in this chapter. As can be 

seen in Figure 5.28, the RBFNN shows superior performance both in the training and testing 

phase. Another substantial result is that the developed model error is very close in both the 

training and testing phases. This demonstrates that the developed model shows good 

performance from generalization (Figure 5.31).  

The model avoids both training data underfitting, which corresponds to high statistical bias and 

training data over-fitting, which corresponds to high statistical variance. Although the ANFIS 

shows considerable results in terms of generalization, ANIFS has lower accuracy as compared 

to the PSO-RBFNN. Thus, it can be concluded that the PSO-RBFNN model performs better in 

predicting labor productivity for the given dataset. 
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Table 5-17. Comparison of Statistical Performance Indicators for Different Algorithms. 

 Technique R2 Train R2 Test R2 MSE Train MSE Test MSE 

ANN 0.954 0.701 0.906 0.0086 0.02 0.014 

GRNN 0.88 0.64 0.760 0.0148 0.0675 0.041 

ANFIS 0.89 0.66 0.775 0.01 0.02 0.015 

RBF 0.81 0.67 0.740 0.0105 0.0475 0.029 

PSO-RBF 0.969 0.891 0.93 0.004 0.019 0.011 

5.9 Summary 

This chapter discussed construction labor productivity modeling using three regression 

techniques and four AI techniques and as well as a proposed model based on RBFNN. A 

dataset for two high-rise building was adopted from Khan’s (2005) study for developing 

productivity models. This chapter can be summarized into three main sections, outlined below.  

The first section outlined modeling labor productivity using BSR, STR, and EPR techniques. 

Among these regression models, EPR had a clear edge in terms of performance in comparison 

to the two other techniques. EPR is a non-linear stepwise regression method and does not need 

large datasets for model development. In addition, EPR provided an expression for the selected 

model to define the relationships between predictor variables and output. Although EPR has 

gained more attention and has been applied to different engineering areas due to its powerful 

ability to provide expression and genetic algorithms, to date, the technique has not been utilized 

for modeling labor productivity. Thus, expert knowledge and judgment were accompanied with 

the EPR technique to validate if the produced mathematical model and correlations between 

utilized predictor variables and response variable were realistic and practical. The second 

section covered the AI-based modeling techniques, namely ANN, GRNN, RBF, and ANFIS. The 

same dataset as in the previous section, was used to develop four labor productivity models 

employing the AI-based techniques. The developed ANN model showed much stronger 

performance in comparison to the other three techniques. An extensive trial and error approach 

were conducted to find the optimum ANN model architecture. Thus, an ANN model with two 

hidden layers with 20 neurons at each layer was selected. Although this technique shows 

acceptable performance, the black box is the main drawback of this approach. The third section 

covers a proposed AI-based model for modeling labor productivity. The developed model 

attempts to improve labor productivity prediction accuracy and shows reliable performance from 

the point of generalization due to having the training and testing errors close to each other. The 

developed model was based on the RBFNN technique, which was augmented by applying 

some data processing techniques such as expectation-maximization, normalization, and the 
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resampling of raw datasets for enhancing the given dataset. Also, the developed model 

benefitted from PSO for optimizing RBFNN parameters as well as networks, which can be very 

useful for generalization. Finally, the developed model output was used as input for the 

developed SD model described in Chapter as baseline productivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

158 

 

6. CHAPTER SIX: SYSTEM DYNAMICS MODEL FOR QUANTIFYING LOSS OF 

PRODUCTIVITY  

6.1 General Overview 

Construction projects are extremely convoluted, highly dynamic, involve multiple feedback 

processes, have non-linear relationships, and include both hard and soft data. The high 

frequency of changes in conjunction with the increasing complexity of construction projects has 

shown that traditional project management tools are not capable of capturing the full picture of 

project management’s strategic issues. Traditional project tools such as CPM and EVA have 

helped project management teams address the operational problems within a project. 

Meanwhile, SD modeling technique has provided more strategic and holistic views regarding the 

advantages and side effects of managerial policies. In other words, SD provides a more holistic 

view of the projects and enables to focus on the managerial policies and human factors that 

drive the project outcome. Furthermore, client-imposed changes may lead to costly ripple 

effects which can be a source of delay, disruption along with loss of productivity during the 

course of a project. To the best of my knowledge, at present, there is no mental model capable 

of quantifying the ripple effects of imposed changes or allocating responsibility for delay and 

disruption. In general, construction projects suffering from the “90% syndrome”, where changes, 

reworks, and mistakes are kept until the end of the project. This issue necessitates costly 

rework, overtime, hiring new workforce, schedule pressure, removing parts of project scope, 

and degrading quality (Sterman, 1992).     

This chapter covers the use of SD for modeling the impact of managerial policies and changes 

on labor productivity in heavy construction projects. The SD was employed in this research due 

to its capability of modeling elements and their interconnections in terms of a system using 

Causal Loop Diagrams (CLDs) and Stock Flow Diagrams (SFDs). CLDs and SFDs are a way of 

practicing systems thinking. In fact, system thinking goes beyond cause-effect relationships and 

consists of all the apparent and obscure surrounding variables in a complex system. CLDs can 

better generate a multidimensional loss of productivity model providing a more complete 

understanding of the relationships among construction project progress, changes and 

managerial decisions. In addition, SD has proven to be an effective analytical tool for 

quantitative assessment of complex problems, both hindsight and foresight approaches.  

The results generated by the SD were compared with the ones obtained from Measured Mile 

Analysis (MMA) which is considered as a widely recognized and accepted technique for 

quantifying the loss of productivity as well as Leonard and Ibbs regression models. In the 
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proposed model, the main sources of productivity loss were identified and CLDs and SFDs used 

to model complex behavior of construction project dynamics that neither Discrete Event 

Simulation (DES) nor Agent Based Modeling (ABM) can provide. DES is an event driven 

simulation which focuses on modeling certain processes at their operational level. On the other 

hand, ABM is useful for modeling behavioral characteristics and offers some descriptive 

understanding of the collective behavior of agents following sets of rules (Atef, 2015). As 

mentioned in Chapter 2, SD is useful because of the following reasons:  

1. The system behavior follows a nonlinear pattern which is influenced by feedback loops;  

2. The need to see the whole picture of the system rather than focusing on the individual 

elements;  

3. Ability to explore the impact of different and multiple disruption events on productivity; 

and  

4. Validates the CLDs in numerical terms and against the reference model at any stage of 

the project.  

For developing an SD model and approximating the model parameters, it is highly 

recommended that all sources of information (such as the advantage of Controlled and 

uncontrolled experiments, Statistical information, Case studies, Expert knowledge, Stakeholder 

knowledge, Physical laws and Personal intuition) are taken in to account (Al-Kofahi, 2016). The 

following sections provide an overview of SD concepts, its modeling elements, and present the 

developed SD model. It should be noted that SD model is used for quantifying the impact of 

managerial decision on labor productivity. In other words, SD will provide a holistic view at the 

strategic level of construction projects.   

6.2 Casual Loop Diagrams (CLDs) 

CLDs are at the core of SD modeling. In a complex system, there are circular relationships 

between cause and effect that control the behavior of a system. Whereas the loss of productivity 

is a complex system consisting of various apparent and obscure influencing variables, to 

understand the behavior of this system, it is crucial to recognize the cause and effect 

relationships generating closed loops and to determine their boundary. CLDs allow project 

management teams to have better understating of the potential consequences of decisions and 

actions illustrated by feedback loops within the system. CLDs, including variables and causal 

links, show conceptual feedback structures of a system and are easy to understand. Two types 

of system can be presented by CLDs: closed system and open system. In SD, a closed system 
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is one in which the causes generating the behavior of interest lie within the system. A closed 

system still is open in the sense that it can receive inputs from outside the boundary. 

Relationships or loops in CLDs can be either positive or negative. Positive loops are a series of 

causal connections that show a self-reinforcing process and create augmented results. In other 

words, a positive link shows that the dependent variable is directly relative to the cause, so that 

when the cause increases or decrease the dependent variable shows the same behavior. On 

the other side, a negative link (balancing feedback loop) designates that the dependent variable 

is inversely related to the cause, so that when the cause increases or decrease the dependent 

variable shows the opposite behavior. Therefore, feedback loops can be defined as a series of 

interconnected variables in which when a variable of this loop is varied, this variation circulates 

through the loop resulting in a variation to the initiating variable. A variation in initiating variables 

can cause two different states reinforcing a (positive) feedback loop or balancing a (negative) 

feedback loop. A reinforcing loop strengthens the original process, while a balancing loop 

stabilizes the original process (Atef, 2015). A system governed by negative feedback loops is 

expected to be at the state of equilibrium and resistance to perturbations within the system as 

well as to actions for improving project outcomes. Meanwhile, in a system controlled by positive 

feedback loops, it is possible to have a high degree of unsteadiness in which any actions or 

events may lead to major variations in project outcomes. For example, Figure 6.1 shows a 

simple project management CLD which is a negative feedback loop. If productivity is impaired 

and drops below planned productivity, schedule pressure will increase. Thus, schedule pressure 

will lead to the implementation of an overtime plan by the project management team, which will 

increase productivity and reduce schedule pressure. The main advantage of building CLDs is 

the fact that different mental models regarding the same issue can be captured and compared. 

In the case of loss of productivity, project parties can disagree on how productivity is impaired; 

this is because project parties often have diverse mental models of the system where the 

problem is implanted (Kim, 1992).  

 
Figure 6-1. Simple CLDs. 
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6.3 Stock Flow Diagrams (SFDs) 

After developing CLDs, an SFD was developed and fundamental mathematical equations 

among variables that constitute the structure of the model were added. SFDs along with CLDs 

are two central concepts of SD. Stock is the representation of variables with accumulation and 

flows represent variables that cause the accumulations (rates of accumulation). The value of 

stock variables fluctuates during simulation through variations of its inflow and outflow variables. 

Therefore, stocks let decisions to be made and flows show changes in the system under study. 

Figure 6.2 shows the symbols of an SFD. 

 
Figure 6-2. Stock Flow Diagrams Notation. 

6.4 Problem Identification 

Change orders are the only constant of construction projects and these changes may affect 

labor productivity adversely. Change orders lead to the need to hire more workers to improve 

productivity to meet key project milestones, resulting in project cost increase. However, hiring 

more workers might not improve productivity as expected because the relationship between 

change orders, managerial policies, and labor productivity are not tangible and not well 

understood. This chapter emphasizes the impact of change orders and managerial policies on 

labor productivity, the importance of quantifying productivity loss, and linking this loss to main 

causes.  In the next sections, the developed SD model components will be explained in detail.           

6.5 Model Boundary Identification  

Prior to the generation of CLDs, the main variables contributing to the loss of productivity were 

identified. The behavior of the system was created inside a limited boundary during the 

feedback processes in the SD model. The extent of the model is summarized by the model 

boundary which categorizes the key factors by identifying endogenous, exogenous, and 

excluded variables. The model boundary shows the variables used in the SD model and used to 

study the sub-system’s feedback, as shown in Tables 6.1 and 6.2. A set of exogenous variables 

is shown in Table 6.2 which was the input to the developed SD model, allowing the dynamic 

behavior of endogenous variables to be modeled. These tables summarize the scope of the 
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model by presenting the important endogenous and exogenous variables which enable 

exploring the behavior patterns created by the mathematical rules among them and learning 

how the behavior of a system may change if those rules are changed. An exogenous variable is 

an independent variable that is external to the SD model. A variation in an exogenous variable 

can cause change or impact on endogenous or dependent variables. In other words, the values 

of exogenous variables are not affected directly by the system (Sterman, 2000).  Endogenous 

variables are the most crucial factors among all model factors in a cause and effect structure 

whose value is dependent on the states of other variables in the system. Endogenous variables 

typically reflect the procedures embedded in systems. Examples of such variables in 

construction projects are fatigue, required overtime, error, and quality. On the contrary, 

exogenous variables are external factors that are undefined by the model’s feedback 

mechanism. These variables’ value, in the cause and effect structure, is determined 

independently from the states of other variables in the system. Therefore, the system’s internal 

interactions do not affect the exogenous factors. Examples of exogenous variables are planned 

project duration and baseline productivity. Excluded variables are beyond the scope of the 

developed model and have no substantial effect on the model representation. Consequently, 

they were not considered in the developed model; however, excluded variables should be 

included in the system if they tend to influence the model. It is essential to recognize the 

necessary and unnecessary variables in the model and include or exclude them accordingly; 

otherwise, redundant variables in a system can create chaos in the development of a 

comprehensive model.     

Table 6-1. Model Exogenous Variables. 

No Variable Names 

1 Baseline Productivity  
2 Baseline Quality 
3 Mean Time to Approve Changes 
4 Initial Quantity of Work  
5 Mean Time to Discover Nonconformity Report (NCR) 
6 Average Time to Detect Defect 
7 Relative Quality of New Hires 
8 Quality of Overtime Manpower 
9 Standard Workweek 

11 Overtime Policy 
14 Time to Hire  
15 Learning Curve Rate 
16 Planned Manpower  
17 Average Hourly Cost 
18 Number of Week Overtime 
19 Actual Crew Size  
20 Optimum Crew Size  
21 Target Delivery Time 
22 Number of Disruption Days 
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Table 6-2. Model Endogenous Variables. 

No Variable Names 
1 Quality 
2 Productivity 
3 Percentage of Changes 
4 Loss of Productivity 
5 Rework Discovery Rate 
6 Discovered rework 
7 Feasible Accomplishment rate 
8 Minimum Time to Accomplish Work 
9 Maximum Accomplishment Rate 

10 Potential Work Rate 
11 Additional Manpower Required 
12 NCR Generation Rate 
13 Impact of Overtime and New Hires on Quality 
14 Quality of Overtime Workforce 
15 Effect of Overtime on Productivity 
16 Impact of Learning Curve on Productivity 
17 Number of New Hires 
18 Additional Workforce Required 
19 Cumulative Work to Be Done 
20 Remaining Quantity of Work to Be Done 
21 Quantity of Work Completed 
22 Work Accomplished Rate 
23 Effect of Learning Curve on Productivity 
24 Current Manpower Level 
25 Cumulative Labor Cost 
26 Overmanning 
27 Crowding 
28 Identified Changes 
29 Approved Changes 
30 Completed Changes 

 

6.6 Modeling Assumptions  

In this section, the proposed SD model development is explained stepwise. “Remaining 

Quantity of Work to Be Done” and “Quantity of Work Completed”, which are linked by “Work 

Accomplished Rate”. When starting to accomplish work, “Remaining Quantity of Work to Be 

Done” begins to drop from its initial value while “Quantity of Work Completed” variable starts to 

increase from its initial value of zero. 

The rate at which “Remaining Quantity of Work to Be Done” reduces and the “Quantity of Work 

Completed” accumulates is determined by the variable “Work Accomplished Rate”. The 

following equations demonstrate the dynamics of the basic accomplishment model: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑡𝑜 𝐵𝑒 𝐷𝑜𝑛𝑒= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑡𝑜 𝐵𝑒 𝐷𝑜𝑛𝑒−  ∫ (𝑊𝑜𝑟𝑘 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒)𝑑𝑡                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.1𝑇
0  
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and, 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 = 0 + ∫ (𝑊𝑜𝑟𝑘 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒)𝑑𝑡                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.2𝑇
0  

Where, T is the duration conveying the process during which “Remaining Quantity of Work to Be 

Done” is tended to zero and “Quantity of Work Completed” is tended to “Initial Quantity of Work 

to Be Done”. Equations 6.1 and 6.2 were solved numerically by employing Euler or Rungi-Kutta 

Numerical Integration methods in Vensim software (Ventana System, 2018).    

6.6.1 Rework and Quality Feedback Loops  

The aforementioned model assumes that the work is accomplished under perfect conditions and 

nonconformity was not generated as the work progresses. However, nonconformities are 

always generated as a part of project advancement and captured by QA/QC in the form of 

nonconformity report (NCR). NCR shows the amount of rework and repair in a construction 

project.  

In addition, percentage of NCR in construction projects shows the quality of accomplished work. 

Therefore, the previous model needed to be modified to include a loop for rework (Aiyetan and 

Das, 2014). According to the Australian Construction Industry Development Agency (CIDA), 

rework can be defined as “doing something at least one extra time due to non-conformance to 

the requirements” (CIDA, 2001).  

Repair is considered to include rework, as it is a process of restoring a nonconforming 

characteristic to a satisfactory condition even though the item may not still match to the agreed 

requirement in drawings and specifications. Rework may lead to schedule slippage and cost 

overrun being the source of many project management challenges (Ballard et al., 2001; Lyneis 

and Ford: 2007).  

It should be noted that at each iteration during the simulation, “Quantity of Work Completed” 

contains both defect free work and defected work (Figure 6.3). The defected work must be 

considered as rework and sent back to “Remaining Quantity of Work to Be Done”.  

To attain a more realistic model, two more variables needed to be added to the SD model: NCR 

Generation Rate and Rework Discovery Rate. Therefore, Equation 6.1 was modified to reflect 

the effect of rework generation loop, as can be seen in Equation 6.3 and 6.4. 
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Figure 6-3. Impact of Rework Feedback Loop. 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑡𝑜 𝐵𝑒 𝐷𝑜𝑛𝑒= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑡𝑜 𝐵𝑒 𝐷𝑜𝑛𝑒 + 𝑅𝑒𝑤𝑜𝑟𝑘 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒−  ∫ (𝑊𝑜𝑟𝑘 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒)                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.3𝑇

0  

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑= ∫ (𝑊𝑜𝑟𝑘 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒)𝑇
0− (𝑁𝐶𝑅 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒)                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.4 

The following Equations were included for quality dependent variables (Equation 6.5 to 6.8): 𝑊𝑜𝑟𝑘 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒=  𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 ∗ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦                                  𝐸𝑞𝑢𝑎𝑖𝑡𝑖𝑜𝑛 6.5 𝑁𝐶𝑅 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 (1 − 𝑄𝑢𝑎𝑙𝑖𝑡𝑦)       𝐸𝑞𝑢𝑎𝑖𝑡𝑖𝑜𝑛 6.6 𝑅𝑒𝑤𝑜𝑟𝑘 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 =  𝐷𝑖𝑠𝑐𝑜𝑣𝑟𝑒𝑑 𝑅𝑒𝑤𝑜𝑟𝑘𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝑇𝑜 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟 𝑅𝑒𝑜𝑤𝑟𝑘 + 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐷𝑖𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙   𝐸𝑞𝑢𝑎𝑖𝑡𝑖𝑜𝑛 6.7 

𝑈𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑟𝑒𝑑 𝑅𝑒𝑜𝑤𝑟𝑘 = ∫ (𝑁𝐶𝑅 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 − 𝑅𝑒𝑤𝑜𝑟𝑘 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒) 𝑑𝑡  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.8𝑇
0  

Construction quality is a function of several variables. In this research, quality is defined as the 

percentage of accomplished work at each iteration that conforms to the completed work 
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according to the required specifications. The part of work that did not meet project specifications 

was considered a defect resulting in rework. As can be seen from Figure 6.4, factors affecting 

the quality are as Baseline Quality, Overtime Work, New Hires Learning Curve, and Relative 

Quality of New Hires. 

 
Figure 6-4. Impact of Quality Feedback Loop. 

Baseline Quality is an exogenous variable that defines the quality of work considered in the 

initial estimate of the project. It should be noted that Quality is an endogenous variable whose 

behavior is contingent upon the two factors presented in Figure 6.4. Equation 6.9 shows the 

effect of New Hire and Overtime on Quality: 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑄𝑢𝑎𝑖𝑙𝑖𝑡𝑦∗ 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑁𝑒𝑤 𝐻𝑖𝑟𝑒𝑠 𝑎𝑛𝑑 𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝑜𝑛 𝑄𝑢𝑎𝑙𝑖𝑡𝑦                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.9 

6.6.2 Productivity Feedback Loops  

As mentioned in Chapter 2, productivity can be defined in several ways. For example, 

productivity is the amount of work accomplished to the amount of resources spent such as time 

or money. In this research, productivity is expressed as a ratio between output quantity and 

input quantity. Productivity behavior can be influenced by several factors such as Overtime, 

Learning Curve of New Hires, Overmanning, Trade Stacking, Temperature, and Humidity. All 

these variables have a negative impact on productivity. For more clarification, it should be noted 

that the abovementioned variables are somehow connected to an acceleration plan in 
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Association (NCEA). According to the NCEA study, labor productivity will decrease when 

the temperature goes above 27ºC and below 4ºC, and at relative humidity rates above 

80%, especially for high temperature. This means that humidity becomes a significant 

factor affecting labor productivity when combined with either very high or very low 

temperature (Koehn and Brown, 1985).  In this research, Kohen and Brown’s dataset 

was used, which is a combination of NECA (1974) and Grimm and Wagner (1974) 

datasets for showing the impact of temperature and humidity on labor productivity, as 

shown Table 6.5.   

Table 6-5. Productivity as a function of temperature and relative humidity. 

 
Relative Humidity (%) 

Temp. (F) 5 15 25 35 45 55 65 75 85 95 
-20 0.28 0.27 0.25 0.22 0.18 0.13 0.05 0.05 0.05 0.05 
-10 0.44 0.43 0.42 0.4 0.38 0.34 0.29 0.21 0.1 0.1 
1 0.59 0.58 0.57 0.56 0.54 0.52 0.49 0.44 0.36 0.23 
10 0.71 0.71 0.7 0.7 0.69 0.67 0.65 0.62 0.58 0.5 
20 0.81 0.81 0.81 0.81 0.81 0.8 0.79 0.77 0.75 0.71 
30 0.9 0.9 0.9 0.9 0.9 0.89 0.89 0.89 0.88 0.87 
40 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 
50 1 1 1 1 1 1 1 1 1 1 
60 1 1 1 1 1 1 1 1 1 1 
70 1 1 1 1 1 1 1 1 1 1 
80 1 1 1 1 1 0.99 0.98 0.96 0.95 1 
90 0.95 0.95 0.94 0.93 0.92 0.9 0.88 0.85 0.82 0.93 
100 0.81 0.81 0.8 0.79 0.77 0.74 0.71 0.67 0.61 0.78 
110 0.58 0.58 0.58 0.57 0.55 0.51 0.47 0.41 0.32 0.54 
120 0.58 0.28 0.28 0.28 0.25 0.21 0.15 0.07 0.07 0.21 

Note, productivity is an endogenous variable, but BP is an exogenous variable. BP was 

quantified using the developed model proposed in Chapter 5. Equation 6.13 shows the effect of 

abovementioned variables on productivity (Equation 6.13): 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑃𝑒𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦∗ (1 + 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐶𝑢𝑟𝑣𝑒 𝑜𝑓 𝑁𝑒𝑤 𝐻𝑖𝑟𝑒𝑠 + 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒+ 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑂𝑣𝑒𝑟𝑚𝑎𝑛𝑛𝑖𝑛𝑔 + 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔 + 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 & 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦)                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.13 

Equation 6.13 is supported by Thomas et al., (1990) who developed a conceptual model for 

forecasting loss of productivity considering various influencing factors illustrated in Equation 

6.14. Their model was based on field observation and actual empirical data. Loss of productivity 

was measured against undisturbed productivity or BP by considering both factors affecting 

productivity and their relative occurrence frequencies. The occurrence frequency represents the 

probability of occurrence of factors influencing productivity. By considering the frequency of 
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these factors, albeit some of these factors may have severe impacts, the frequency of these 

factors is less. On the other hand, the factors with low impact may have a high frequency.  

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑃𝑒𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ (1 + ∑ 𝑓𝑖𝑅𝑖𝑛
𝑖=𝑛 )                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.14 

Where, 𝑓𝑖 is the relative frequency of factor i, 𝑅𝑖 is the relative average impact of factor I and 𝑛 is 

the number of factors included in the model. In this research, influencing factors’ frequency of 

occurrence was not included in the SD model. The occurrence frequency needs more 

investigation and is out of the scope of this research. The final developed productivity feedback 

loop is illustrated in Figure 6.8. 

 
Figure 6-8. Productivity Feedback Loop. 

6.6.3 Hiring Feedback Loops 

Hiring feedback loops and equations are discussed in this section. As mentioned in the previous 

section, an increase in the workforce amount is one of the acceleration techniques. Figure 6.9 
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shows the hiring feedback loop; the shadow variables were used to simplify the graphical 

presentation of the developed SD model.  

 
Figure 6-9. The Hiring Feedback Loop. 

The number of New Hires was calculated by the following equation: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑒𝑤 𝐻𝑖𝑟𝑒𝑠 =  ∫ (𝐻𝑖𝑟𝑖𝑛𝑔 𝑅𝑎𝑡𝑒) 𝑑𝑡        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.15𝑡
0  

As mentioned before, the learning curve can have a positive effect on the newly hired 

manpower getting familiar with the project. As new hires gain enough experience (Rate of 

Learning Curve), they can be considered as experienced manpower. Equation 6.15 was 

modified to reflect the positive effects of the learning curve, as shown in Equation 6.16):       

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑒𝑤 𝐻𝑖𝑟𝑒𝑠 = ∫ (𝐻𝑖𝑟𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 − 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐶𝑢𝑟𝑣𝑒)𝑑𝑡     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.16𝑡
0  

Where, Hiring Rate is equal to the following equation (Equation 6.17):  

𝐻𝑖𝑟𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 =  𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑎𝑛𝑝𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇𝑖𝑚𝑒 𝑡𝑜 𝐻𝑖𝑟𝑒                          𝐸𝑞𝑢𝑎𝑛𝑡𝑖𝑜𝑛 6.17 
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By including change order feedback loops, the “Quantity of Work Completed” will be higher than 

“Initial Quantity of Work to Be Done” during the course of a project. As mentioned before, the 

difference is the number of changes that are critical to quantify the loss of productivity and the 

cost associated with it. The following equations were used to determine the number of change 

orders as shown in Figure 6.10. Equations 6.22 – 6.27 were used to define scope change 

orders feedback loops. 

𝐼𝑑𝑒𝑛𝑡𝑓𝑖𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒𝑠=  ∫ (𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑇
0− 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐴𝑝𝑝𝑟𝑜𝑎𝑣𝑎𝑙) 𝑑𝑡                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.22 

 
Figure 6-10. Changes Orders Feedback Loops. 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐶ℎ𝑎𝑛𝑔𝑒𝑠= 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∗ 𝑊𝑜𝑟𝑘 𝑃𝑒𝑟𝑐𝑣𝑖𝑐𝑒𝑑 𝑡𝑜 𝐵𝑒 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.23 𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 𝑂𝑟𝑑𝑒𝑟𝑠=  ∫ (𝑅𝑎𝑡𝑒 𝑜𝑓 𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙𝑇

0− 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑 𝑅𝑎𝑡𝑒) 𝑑𝑡                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.24 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙 = 𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝑡𝑜 𝐴𝑝𝑝𝑟𝑜𝑣𝑒 𝐶ℎ𝑎𝑛𝑔𝑒                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.25 
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𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 =  ∫ (𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑 𝑅𝑎𝑡𝑒)𝑇
0 𝑑𝑡                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.26 

𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑 𝑅𝑎𝑡𝑒= 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∗  𝑊𝑜𝑟𝑘 𝐴𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑 𝑅𝑎𝑡𝑒          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.27 

Where, “Mean Time to Approve Change” and “Frequency of Changes” were calculated using 

the developed model discussed in Chapter 4. After calculating the Loss of Productivity amount, 

Loss of Productivity Cost was calculated as follows: 

𝐿𝑜𝑠𝑠 𝑜𝑓 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐶𝑜𝑠𝑡 =  ∫ (𝐿𝑜𝑠𝑠 𝐻𝑜𝑢𝑟𝑠 𝑟𝑎𝑡𝑒𝑇
0 ) 𝑑𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑢𝑟𝑙𝑦 𝐶𝑜𝑠𝑡     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.28 

𝐿𝑜𝑠𝑠 𝐻𝑜𝑢𝑟𝑠 𝑅𝑎𝑡𝑒 =  𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ∗ 𝐴𝑣𝑎𝑒𝑎𝑟𝑔𝑒 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑣𝑖𝑡𝑦    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.29 

Loss of Productivity Cost was included in the developed SD model as shown in Figure 6.11. 

 
Figure 6-11. Cumulative Cost of Loss of Productivity. 

6.6.5 Management Disruptions Feedback Loops 

It is well known among construction industry practitioners and academia that any kind of 

disruptions may affect labor productivity but quantifying the impact of disruption is extremely 

difficult. Little research is available on quantifying the impact of delays, interruptions, and 

disruptions on labor productivity based on empirical data. Disruption Index (DI) introduced in 

1995 by Thomas and Oloufa is a measure of the extent to which a project was disrupted. It is 

calculated using Equation 6.30: 
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 MDI =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝐷𝑎𝑦𝑠 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠 ∗ 100                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.30 

Based on Thomas and Oloufa’s study, the following curve was developed which shows the 

decline in Performance Factor (PF) as DI increase (Figure 6.12). PF was calculated as follows 

(Equation 6.31): 

𝑃𝐹 =  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.31 

Thomas and Oloufa’s study looked at the ripple effect of disruptions. The ripple effect of 

disruptions is considered as a situation where disruptions effects are rigorous and the impact of 

those affects the work outside the disrupted area. The ripple effect of disruptions was quantified 

using the following equation (Equation 6.32): 𝑃𝐹 = 1.19 − 0.94(𝑀𝐷𝐼)1.05                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.32 

The ripple effect of disruption was included in the developed SD model as shown in Figure 6.12.  

 
Figure 6-12. Impact of MDI on Productivity. 

In this research, the number of disruption days was considered as the number of days the 

project experienced changes, overtime, shiftwork, and acceleration. Equation 6.33 was modified 

to include new factors included in the developed SD model as follows (Figure 6.13): 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ (1 + 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦+ 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐶𝑢𝑟𝑣𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 + 𝑂𝑣𝑒𝑟𝑚𝑎𝑛𝑛𝑖𝑛𝑔 + 𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦+ 𝑇𝑟𝑎𝑑𝑒 𝑆𝑡𝑎𝑐𝑘𝑖𝑛𝑔 + 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 𝑂𝑟𝑑𝑒𝑟𝑠 𝑜𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦+ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑀𝐷𝐼  )                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.33 

6.7 Model Calibration  

Prior to using the model to simulate the dynamics of various scenarios, the model was 

calibrated with data from the real case study. The data used for calibration was a 48500.027m2 

formwork installation with the planned duration close to seven years or 350 weeks and planned 
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productivity of 25 hours per square meter. This means the job required around 1.2 million hours 

to be completed. “Work Perceived to Be Accomplished” included changes and rework. Table 6.7 

shows the settings of the developed model variables which were considered as the baseline 

model. Figure 6.14 demonstrates the outcome of the simulations, the S-curve of the baseline 

model. The “Remaining Work to Be Done” started with the “Initial Quantity of Work” value of 

1,200,000 hours required for installation of 48500.027m2 over 350 weeks. Figure 6.15 shows 

the “Quantity of Work Completed” which increased from its initial value of 0 to 1,200,000 hours. 

Table 6-7. Baseline Model Values. 

No. Variable Name Baseline Value 
1 Baseline Productivity  25 Hours per M2 
2 Baseline Quality 80% 
3 Project Complexity 0.6 
4 Initial Quantity of Work 1,200,000 Hour 
5 Time for Disposition Approval  140 Hours 
6 Average Time to Detect Defect 20 Hours 
7 Mean Time to Approve Changes 140 Hours 
8 Standard Workweek 70 Hours/Week 
9 Actual Crew Size 22 Persons 

10 Optimum Crew Size 18 Persons 
11 Planned Manpower 85 Persons 
12 Time to Hire 14 Days 
13 Learning Curve 5% (Minor) 
14 Mean Time to Gain Experience 30 Days 
15 Turnover Factor 10% 
16 Temperature 40F 
17 Humidity 5% 
18 Frequency of Changes 1% 
19 Average Hourly Cost 120$/Hour 

 

Figures 6.16 to 6.18 show the “Identified Changes”, “Approved Changes”, and “Completed 

Changes” generated by the baseline model. Figure 6.18 shows “Completed Changes” value for 

104000 hours. Therefore, the “Percentage of Changes” generated in the baseline model was 

about 9%. Figure 6.19 shows how the “Work Perceived to Be Accomplished” increased from 

zero to 1,400,000 hours, which included “Initial Quantity of Work”, “Discovered Rework”, and 

“Completed Changes”.   

It should be noted that “Work Perceived to Be Accomplished” was greater than “Initial Quantity 

of Work” as a result of several factors, including “NCR Generation Rate”, “Rework Discovery 

Rate”, and “Quality”. For showing the impact of “Quality” on the “NCR Generation Rate”, the 

“Baseline Quality” changed from 80 to 100%. Therefore, the “Remaining Work to Be Done” with 

perfect quality would take 267 weeks, 87 weeks earlier than the baseline case. 
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Figure 6-13. Complete Developed SD Model. 
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Figure 6-14. Remaining Work to Be Done. 

 
Figure 6-15. Quantity of Work Completed. 

 
Figure 6-16. Identified Changes. 

 

Figure 6-17. Approved Changes. 
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Figure 6-18. Complete Changes. 

 
Figure 6-19. Work Perceived to Be Accomplished. 

 

Figures 6.20 and 6.21 show the 87 weeks difference between the assumed “Perfect” 

and “Baseline” quality cases for “Quantity of Work Completed” and “Remaining Work to 

Be Done”.  Figure 6.22 shows a comparison of the “Work Perceived to Be 

Accomplished” for the perfect quality and baseline quality cases. The figure shows that 

in the “Perfect Quality” case, “Work Perceived to Be Accomplished” was reduced by 

100,000 hours which is the number of Completed Changes and Rework generated. This 

test was conducted to calibrate the developed model and show model robustness.  

 

 
Figure 6-20. Baseline Quality vs. Perfect Quality. 
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Figure 6-21. Quantity of Work Completed for Prefect and Baseline Quality. 

 

Figure 6-22. Work Perceived to Be Accomplished for Prefect and Baseline Quality. 

 

6.8 Model Validation 

Validation is the most important part of SD simulation modeling. Any simulation-based 

models cannot be approved unless the model has passed the tests of validation (Martis, 

2006). Sargent and Balci (2017) state that “validation is concerned with whether the 

model adequately represents a system for the model’s purpose”. A model should be 

assessed for its usefulness rather than its absolute validity and rejecting a model 

because it fails to repeat a precise duplication of the past data is inadequate 

assessment. In other words, a model cannot have absolute validity, but it should be valid 

for the purpose for which it is developed (Martis, 2006). Validation does not exactly 

explain how a model can improve the relationship between the predicted results and the 

actual data. The essential purpose of validation includes identification of error and 

uncertainty in a qualitative model and quantification of numerical error in a quantitative 

model by comparing predicted results and actual data. SD validation means the validity 

of its configuration including the performance its casual loop as initial design. The 

validation process requires subjective and expert judgement. Validation for SDs should 
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look at system behavior and focus on key time patterns rather than discrete data points 

(Barlas, 1996). The developed model was validated by comparing the predicted results 

against the project data regarding “Quantity of Work Completed” in the form of a physical 

percentage of complete. R-squared and adjusted R-squared were calculated using 

Equations 6.34 and 6.35 in order to compute the correlation between developed model 

output and project output:  

𝑅2 = 𝐶𝑂𝑉𝐴𝑅(𝑃𝐷𝑎𝑡𝑎, 𝐴𝐷𝑎𝑡𝑎) 𝑆𝑇𝐷𝐸𝑉 (𝑃𝐷𝑎𝑡𝑎) ∗ 𝑆𝑇𝐷𝐸𝑉 (𝐴𝐷𝑎𝑡𝑎)                Equation 6.34 

Where PData is predicated data calculated by the developed model and Adata is actual 

data from the case study.  

𝑅𝐴𝑑𝑗2 = 1 − (1 − 𝑅2)(𝑛 − 1)𝑛 − 𝑘 − 1                                         Equation 6.35 

Where n is the number of points in the dataset and k is the number of variables in the 

developed model.  Figure 6.23 and Table 6.8 show the results of simulation including all 

the variables. As can be seen, the model can reproduce project data regarding “Quantity 

of Work Completed” with high accuracy. R2 and adjusted R2 for the developed model 

were 99.30 and 99.15%, respectively, the MAE 0.969 and MSE 0.02, and RMSE 0.14. 

 
Figure 6-23. Validation Results of Baseline Model. 
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      Table 6-8. Sample of Validation Data Set for Baseline Model. 

 

6.9 Impact of Change Orders with Different Variables on Developed Model 

Behavior 

Models should be tested for extreme conditions to check the robustness of the 

developed model. It is useful to understand the behavior of the developed model and 

how the model functions under all probable realistic states. The model should perform in 

an accurate and realistic manner no matter how intense the inputs forced on the 

developed model may be (Sterman, 2000). 

The amount of change orders on productivity was considered between 6 to 10% and 

was combined with the other variable effects outlined in this section in order to study 

model behavior. After calibrating the developed model, the model was used to study the 

impact of different variables on the developed model under extreme conditions. In this 

test, different values were given to the selected models’ variables and the generated 

behavior compared with the behavior of a real system. As an example of extreme 

conditions, the model was run by assuming 40% overmanning along with the entire 

simulation. The model behavior was compared to the real system, as shown in Figure 

6.22. The developed stock-flow diagrams of the previous sections were based on expert 

knowledge, previous literature, and the person experienced gained from over fifteen 

years working on several mega projects. The values assumed for the variables of the 

model were based on existing project information and existing knowledge found in the 

literature.  

6.9.1 Impact of Quality on the Developed Model 

In this section, the impacts of Quality on NCR generation, “Discovered Rework”, and the 

consequent impacts on productivity were tested by simulating the model for 60, 70, and 

80% (baseline) values of “Quality”. Figure 6.24 shows the impact of Quality on 

“Remaining of Work to Be Done” for three different values of “Baseline Quality”. S-

% Complete Cumulative % Complete Cumulative Error ABS Squared Error

0 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000000

1 0.061% 0.061% 0.160% 0.160% -61.966% 61.966% 0.383973

2 0.035% 0.096% 0.098% 0.258% -62.978% 62.978% 0.396617

3 0.015% 0.111% 0.105% 0.363% -69.499% 69.499% 0.483005

4 0.114% 0.224% 0.112% 0.475% -52.775% 52.775% 0.278517

5 0.097% 0.321% 0.118% 0.593% -45.889% 45.889% 0.210580

6 0.291% 0.612% 0.125% 0.718% -14.778% 14.778% 0.021839

7 0.011% 0.623% 0.131% 0.849% -26.639% 26.639% 0.070966

8 0.191% 0.813% 0.137% 0.986% -17.498% 17.498% 0.030617

9 0.170% 0.984% 0.143% 1.128% -12.826% 12.826% 0.016450

10 0.209% 1.193% 0.148% 1.277% -6.550% 6.550% 0.004290

11 0.296% 1.489% 0.154% 1.430% 4.118% 4.118% 0.001695

Actual SD Model Stat
Week
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curves shows the decrease rates of “Remaining of Work to Be Done” as work progress. 

Thus, Figure 6.24 shows that the decrease rates of “Remaining of Work to Be Done” for 

80% Quality were the highest and 60% the lowest. A 60 and 70% values for Quality led 

to needing more time to deliver the project. 582 weeks were needed for 60% Quality and 

435 weeks for 70% Quality. Figure 6.25 shows the “Identified Changes” generated at 

three Quality levels. It can be seen from the Figure 6.25 that 60% generates the highest 

“Identified Changes” about 142,000 hours, followed by 70% Quality with 116,000 hours, 

while 80% Quality generated the lowest changes at 104,000 hours.  

 

Figure 6-24. Impact of Quality on Remaining Work to Be Done. 

 

 

Figure 6-25. Impact of Quality on Identified Changes. 

 

Figure 6.26 shows the “Productivity” values for the three Quality cases. It can be seen 

from Figure 6.26 that a Quality of 60% generates the highest “Productivity”, followed by 

70% Quality 

60% Quality 

80% Quality (Baseline) 

80% Quality (Baseline) 

60% Quality 

70% Quality 
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70%, while 80% generates the lowest “Productivity” value. For a 60% Quality value, the 

productivity value will reach the maximum of 34 hrs./m2 and loss of productivity occurring 

during three cases. 

 
Figure 6-26. Impact of Quality on Productivity. 

 

Table 6.9 shows the maximum and minimum productivity value for three different cases. 

 

Table 6-9. Productivity Values for Different Quality Values. 

 
Productivity (Hrs/M2) 

Quality Value Maximum Minimum Average 

60% 35.5 29.8 33.18 
70% 31.3 28.3 30.0 
80% 27.4 25.0 26.3 

Figure 6.27 shows “Loss of Productivity” caused by a Quality of 60 and 70%. Sixty 

percent of Quality shows project productivity is influenced more severely than with 70%. 

Table 6.9 shows the maximum, minimum, and average loss of productivity value.  

 

Table 6-10. Loss of Productivity Values for Different Quality Values. 

Loss of Productivity 
Quality Value Maximum Minimum Average 

60% 42% 19% 35% 

70% 25% 13% 20% 

80% 10% 0% 5% 

It can be seen from Table 6.10 that 60% Quality generates a maximum loss of 

productivity value of 35% on average, followed 70% Quality with 20% loss of 

productivity. In addition, the project experienced 5% loss of productivity. The cumulative 

costs of the loss of productivity associated with three cases of Quality are shown in 

80% Quality (Baseline) 

70% Quality 

60% Quality 
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Figure 6.28. Table 6.11 demonstrates the cumulative cost of for a 60, 70, and 80% 

Quality.   

Table 6-11. Loss of Productivity Cumulative Labor Cost for Three Quality Cases. 

Quality Cumulative Labor Cost 

60% CAD                           14,610,000 
70% CAD                             4,580,000 
80% CAD                                336,500 

 

 

Figure 6-27. Loss of Productivity Caused by Different Quality Values. 

 

 

Figure 6-28. Cumulative Loss of Productivity of Cost for Three Quality Cases. 

6.9.2 Impact of Overmanning on the Developed Model 

In this section, the impact of “Percentage of Overmanning” was considered for the 

developed model’s major variables by simulating the model for different values of 

“Overmanning”. Values for “Percentage of Overmanning” of 10, 20, and 30% were 

considered. Figures 6.29 and 6.30 show “Productivity” and “Loss of Productivity “ and 

60% Quality 

70% Quality 

80% Quality 

60% Quality 

70% Quality 

80% Quality 
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“Loss of Productivity Cost” for the three different cases, as shown in Table 6.12. Figure 

6.29 shows “Productivity” for “Percentage of Overmanning” at 10, 20, and 40%.  

Table 6-12. Three Different Scenarios for “Percentage of Overmanning”. 

 
Case 1 Case 2 Case 3 

Actual Crew Size 20 22 26 
Optimum Crew Size 18 18 18 

Percentage of Overmanning ~10% ~20% ~40% 

A look at the curve for 10% of overmanning (green line) shows fewer increases than 

20% (red line) and 40% (blue line). In addition, the project experienced delays due to 

loss of productivity as can be seen in Figure 6.30. Table 6.13 summarizes the 

productivity achieved under the three “Percentage of Overmanning” cases. 

Table 6-13. Productivity Value for Different Percentage of Overmanning. 

 
Productivity (hrs./M2) 

Percentage of Overmanning Maximum Minimum Average 

10% 27.74 25.31 26.61 
20% 28.32 25.82 27.17 
40% 29.13 26.51 27.96 

 

 
Figure 6-29. Impact of Overmanning on Productivity. 

 
Figure 6-30. Loss of Productivity Due to Overmanning. 

10% Overmanning 

20% Overmanning 

40% Overmanning 

10% Overmanning 

20% Overmanning 

40% Overmanning 
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Figure 6.30 shows “Loss of Productivity” due to Overmanning. Based on the achieved 

productivity, “Loss of Productivity” reached 6, 9, and 12% under 10, 20, and 40 

“Percentage of Overmanning” percentages, respectively (Table 6.14).  

Table 6-14. Loss of Productivity for Different Percentage of Overmanning. 

Loss of Productivity 
Percentage of Overmanning Maximum Minimum Average 

10% 11% 1% 6% 
20% 13% 3% 9% 
40% 16% 6% 12% 

Figure 6.31 shows the impact of the cumulative loss of productivity cost for three cases 

of Overmanning. The cumulative loss of productivity cost for 10% Overmanning (green 

line) was CAD 492,200 dollars and increased to CAD 834,400 dollars for 20% (red line). 

Forty percent Overmanning increased the loss of productivity cost to CAD 1,438,000 

dollars (blue line). 

 
Figure 6-31. Cumulative Loss of Productivity Cost for Three Overmanning Cases. 

 

6.9.3 Impact of Temperature and Humidity on the Developed Model 

In this section, the impact of Temperature and Humidity for three different cases were 

analyzed to study the behavior of the developed model. Humidity value for three cases 

was assumed to be 85% for the convenience of simulation. Table 6.15 shows the 

Temperature values for different cases.  

Table 6-15. Three Different Cases for Temperature and Humidity. 

 
Case 1 Case 2 Case 3 

Temperature (ºF) 70º 80 90 
Humidity 85% 85% 85% 

10% Overmanning 

20% Overmanning 

40% Overmanning 
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Figure 6.32 shows the “Effect of Temperature and Humidity” on “Productivity”. A look at 

the graphs demonstrates that “Productivity” declines as “Temperature” rise. It should be 

noted that “Humidity” plays a major role when combined with very high or very low 

temperatures. Table 6.16 shows Productivity values at a variety of relative Temperature 

and Humidity rates. It can be seen that the Productivity value doubled for 120ºF 

temperature and 85% Humidity. Table 6.17 and Figure 6.33 show Loss of Productivity 

for three different Temperature and Humidity cases. 

Table 6-16. Productivity Value for Different Temperature and Humidity. 

 
Productivity (Hrs./M2) 

Percentage of Overmanning Maximum Minimum Average 

Case 1 (70ºF,85%H) 27.38 25.00 26.26 
Case 2 (80ºF,85%H) 28.63 26.25 27.51 
Case 3 (90ºF,85%H) 31.89 29.50 30.76 

 

Table 6-17. Loss of Productivity due to Temperature and Humidity. 

Loss of Productivity 
Percentage of Overmanning Maximum Minimum Average 

Case 1 (70ºF,85%H) 10% 0% 5% 
Case 2 (80ºF,85%H) 15% 5% 10% 
Case 3 (90ºF,85%H) 28% 18% 23% 

Figures 6.33 shows loss of productivity and Figure 6.34 displays the Cumulative Loss of 

Productivity cost for three cases of Temperature and Humidity. The Cumulative Loss of 

Productivity costs for 70ºF (green curve) were CAD 336,500 dollars and increased to 

CAD 1,187,000 dollars CAD for 80ºF (red curve). 80ºF shows that the loss of productivity 

cost was CAD 6,033,000 dollars (blue curve).  

 
Figure 6-32. Impact of Temperature and Humidity on Productivity. 
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80º Temperature  
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Figure 6-33. Loss of Productivity Due to Temperature and Humidity. 

 

 
Figure 6-34. Cumulative Loss of Productivity Cost for Temperature and Humidity Cases. 

6.9.4 Impact of Learning Curve on the Developed Model 

In this section, the “Effect of Learning Curve on Productivity” was analyzed using three 

different cases as indicated in Section 6.4. The negative effect of the learning curve was 

considered and the value of inefficiency considered based the complexity of the job as 

follows (MCAA, 1994): 1) Case 1: Minor Learning Curve Effect; 2) Case 2: Average 

Learning Curve Effect; and 3) Case 3: Severe Learning Curve Effect. Figure 6.35 shows 

achieved productivity under different cases of the learning curve. Under minor learning 

effect, productivity (green curve) had the following values: 1) Maximum: 28.63 Hrs./M2 – 

15% Loss of Productivity; 2) Minimum: 26.25 Hrs./M2 – 5% Loss of Productivity; and 3) 

Average: 27.51 Hrs./M2 – 10% Loss of Productivity. The red curve in Figure 6.35 shows 

achieved productivity under average learning curve effect.  The following value was 

extracted for average learning curve effect: 1) Maximum: 31.14 Hrs./M2 – 25% Loss of 

Productivity; 2) Minimum: 28.75 Hrs./M2 – 15% Loss of Productivity; and 3) Average: 

90º Temperature  

80º Temperature  

70º Temperature  

70º Temperature  

80º Temperature  

90º Temperature  
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30.01 Hrs./M2 – 20% Loss of Productivity. The blue curve in Figure 6.35 represents 

productivity under Severe Learning Curve Effect. Under Severe Learning Effect, 

productivity followed these values:1) Maximum: 34.89 Hrs./M2 – 40% Loss of 

Productivity; 2) Minimum: 32.50 Hrs./M2 – 30% Loss of Productivity; and 3) Average: 

33.76 Hrs./M2 – 35% Loss of Productivity. Figures 6.36 shows Loss of Productivity and 

Figure 6.37 show Loss of Productivity Cumulative Cost for three different learning curve 

cases. The Cumulative Loss of Productivity Cost for minor learning curve effect (green 

curve) was CAD 1,137,000 dollars and increased CAD 4,570,000 dollars for the average 

learning curve effect (red curve). Severe learning curve effect Loss of Productivity Cost 

was CAD 13,880,000 dollars (blue curve).  

 
Figure 6-35. Impact of Learning Curve on Productivity. 

 

 
Figure 6-36. Loss of Productivity Due to Learning Curve. 
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Figure 6-37. Cumulative Loss of Productivity Cost for Learning Curve. 

6.9.5 Impact of Crowding on the Developed Model 

As mentioned previously, crowing can affect productivity negatively. Three different 

scenarios were considered in this section as follows: 10, 20, and 40%of Crowding.  

Figure 6.38 shows the productivity pattern under three different scenarios. The green 

curve shows productivity reached under 10% of Crowding scenario as 27.03 Hrs./M2 on 

average. Under 20% of Crowding (red curve), productivity reached 29.29, 26.88, and 

28.16 Hrs./M2 for maximum, minimum, and average, respectively. The blue curve 

represents productivity under 40% of Crowding. Under this percentage, productivity 

reached as high as 31.66 Hrs./M2, while 29.25 Hrs./M2 as the lowest value reached 

(Table 6.18). 

 
Figure 6-38. Impact of Crowding on Productivity 

Table 6-18. Productivity Values for Different Crowding Cases. 

 
Productivity (Hrs./M2) 

Percentage of Crowding Maximum Minimum Average 
10% 28.16 25.75 27.03 
20% 29.29 26.88 28.16 
40% 31.66 29.25 30.53 

Minor Learning Effect 

Average Learning Effect 

Sever Learning Effect 

10% of Crowding 

20% of Crowding 

40% of Crowding 
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Figures 6.39 and 6.40 show Loss of Productivity and associated cumulative cost. Table 

6.19 shows the Loss of Productivity values under three crowding scenarios. Ten percent 

of crowding results in 8% of Loss of Productivity on average with the Cumulative Cost of 

CAD 802,600 dollars, as shown in Figure 6.41 (green curve).   

Table 6-19. Loss of Productivity due to Crowding. 

Loss of Productivity 
Percentage of Crowding Maximum Minimum Average 

10% 13% 3% 8% 
20% 17% 8% 13% 
40% 27% 17% 22% 

Twenty percent of crowding (red curve) led to 13% Loss of Productivity with a 

Cumulative Cost of CAD 1,864,000 dollars. A 22 percent Loss of Productivity (blue 

curve) was caused by 30% of Crowding with a Cumulative Cost of CAD 5,613,000 

dollars. Table 6.20 summarize the Loss of Productivity Cumulative Cost.   

Table 6-20. Loss of Productivity Cumulative Labor Cost for Three Crowding Cases. 

Percentage of Crowding Cumulative Labor Cost 
10% CAD                                802,600 
20% CAD                             1,864,000 
40% CAD                              5,613,000 

 
 

 
Figure 6-39. Loss of Productivity Due to Three Crowding Cases 

6.9.6 Impact of Management Disruption on the Developed Model 

In this section, the impact of management disruption will be analyzed for three different 

scenarios. Three scenarios were assumed as follows: 

 Case 1: 20% of Management Disruption;  

 Case 2: 30% of Management Disruption; and 

 Case3: 40% of Management Disruption.  

10% of Crowding 

20% of Crowding 

40% of Crowding 
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Figure 6-40. Cumulative Loss of Productivity Cost for Three Crowding Cases 

Figure 6.41 demonstrates Productivity values under the three-abovementioned 

Management Disruption scenarios. The green curve shows the Productivity value under 

20% of Management Disruption and red and blue curves shows productivity under 30 

and 40%, respectively. Under 20% Management Disruption (green curve), the maximum 

productivity value was 27.00 Hrs./M2. 

 
Figure 6-41. Impact of Management Disruption on Productivity. 

24.59Hrs/M2 was the minimum value and the average productivity was 25.87 Hrs./M2. 

The red curve represents Productivity under 30% Management Disruption. Productivity 

under this scenario reached a high of 29.30 Hrs./M2 and 29.25 Hrs./M2 was the lowest 

point, with 25.87 Hrs./M2 as the average (Table 6.21).  

Table 6-21. Productivity Values for Different Management Disruption Cases. 

 
Productivity (Hrs./M2) 

Management Disruption Maximum Minimum Average 
20% 27.00 24.59 25.87 
30% 29.20 26.79 27.99 
40% 31.44 29.13 30.28 

10% of Crowding 

20% of Crowding 

40% of Crowding 

20% of MD 

30% of MD 

40% of MD 
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Figures 6.42 and 6.43 show Loss of Productivity and associated Cumulative Cost. Table 

6.22 displays the Loss of Productivity under three management disruption scenarios. 

Twenty percent of management disruption results in 8% Loss of Productivity on average 

with a Cumulative Cost of CAD 188,700 dollars, as shown in Figure 6.43 (green curve).   

Table 6-22. Loss of Productivity due to Management Disruption. 

Loss of Productivity 

Management Disruption Maximum Minimum Average 

20% 8% 0% 4% 

30% 17% 8% 13% 

40% 27% 17% 22% 

 

 

Figure 6-42. Loss of Productivity Due to Three Management Disruption Cases 

 

Figure 6-43. Cumulative Loss of Productivity Cost for Management Disruption 

Thirty percent Management Disruption (red curve) led to 8% Loss of Productivity on 

average with Cumulative Cost of CAD 1,883,000 dollars. A 13% Loss of Productivity on 

average (blue curve) was caused by 40% Management Disruption with Cumulative Cost 

20% of MD 

30% of MD 

40% of MD 

20% of MD 

30% of MD 
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of CAD 5,579,000 dollars. Table 6.23 summarizes the Loss of Productivity Cumulative 

Cost.   

Table 6-23. Loss of Productivity Cumulative Labor Cost for Management Disruption. 

Management Disruption Cumulative Labor Cost 
20% CAD                                 188,700 
30% CAD                              1,883,000 
40% CAD                              5,579,000 

 

6.9.7 Impact of Overtime on the Developed Model 

In this section, the impact of Overtime will be analyzed for three different scenarios. 

Three scenarios were assumed as follows: 

 Case 1: 25% of Overtime;  

 Case 2: 50% of Overtime; and 

 Case3: 75% of Overtime.  

Figure 6.44 demonstrates Productivity values under the three-abovementioned overtime  

scenarios. The green curve shows the Productivity value under 25% of Overtime 

Disruption and red and blue curves shows productivity under 50% and 75%, 

respectively. Under 25% Overtime (green curve), the maximum productivity value was 

28.7 Hrs./M2. 

 

 

Figure 6-44. Impact of Overtime on Productivity. 

26.30 Hrs/M2 was the minimum value and the average productivity was 27.5 Hrs./M2. 

The red curve represents Productivity under 50% Overtime. Productivity under this 

75% Overtime 

50% Overtime 

25% Overtime 
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scenario reached a high of 29.70 Hrs./M2 and 27.30 Hrs./M2 was the lowest point, with 

28.50 Hrs./M2 as the average (Table 6.24).  

Table 6-24. Productivity Values for Different Management Disruption Cases. 

 
Productivity (Hrs./M2) 

Overtime Maximum Minimum Average 
25% 28.70 26.30 27.50 
50% 29.70 27.30 28.50 
75% 30.90 28.50 29.70 

Figures 6.45 and 6.46 show Loss of Productivity and associated Cumulative Cost. Table 

6.25 displays the Loss of Productivity under three overtime scenarios. Twenty five 

percent of overtime results in 10% Loss of Productivity on average with a Cumulative 

Cost of CAD 1,216,515 dollars, as shown in Figure 6.43 (green curve).   

 

Figure 6-45. Loss of Productivity Due to Three Overtime Cases 

 

 

Figure 6-46. Cumulative Loss of Productivity Cost for Overtime 

75% Overtime 

50% Overtime 
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Table 6-244. Loss of Productivity due to Overtime. 

Loss of Productivity 

Overtime Maximum Minimum Average 

25% 15% 5% 10% 

50% 19% 9% 14% 

75% 24% 14% 19% 

Fifty percent overtime (red curve) led to 14% Loss of Productivity on average with 

Cumulative Cost of CAD 2,315,364 dollars. A 19% Loss of Productivity on average (blue 

curve) was caused by 19% Overtime with Cumulative Cost of CAD 4,206,175dollars. 

Table 6.26 summarize the Loss of Productivity Cumulative Cost.   

Table 6-25. Loss of Productivity Cumulative Labor Cost for Overtime. 

Overtime Cumulative Labor Cost 
25% CAD                                 1,216,515 
50% CAD                                 2,315,364 
75% CAD                                 4,206,175 

 

6.10 Combined Impact of Different Variables on Developed Model 

In the previous sections, the impact of different variables along with change orders was 

studied by simulating a model for different Management Disruption, Crowding, Learning 

Curve, Temperature and Humidity, Overmanning, and Quality values. In this section, the 

combined impact of these variables on the productivity of the developed model is 

investigated. Determining numerical values of the impact of combined variables can be 

carried out by varying any constant directly affected productivity. Therefore, sensitivity 

analysis is performed to understand the range of behavior of the developed model. The 

SD model was developed using Vensim software which uses the Monte Carlo simulation 

in performing sensitivity analysis. For this research, a sensitivity analysis was performed 

to assess the combined impact of Management Disruption, Crowding, Learning Curve, 

Temperature and Humidity, Overmanning, and Quality along with Change Orders. The 

model was run with all the constant variables set to baseline values, then the impact of 

the factors under consideration analyzed using Random Uniform Distribution (RUD). 

RUD, also known as a rectangular distribution, is a distribution that has constant 

probability (Figure 6.47).   
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Figure 6-47. Probability Density Function and Cumulative Distribution Function. 

The number of iterations was set to 100 for each sensitivity analysis run. The following 

combination of the above-mentioned variables was considered for the sensitivity 

analysis: Run 1 - Crowding and Management Disruption; Run 2 - Crowding and Learning 

Curve; Run 3 - Temperature and Humidity and Crowding; Run 4 - Temperature and 

Humidity and Leaning Curve; Run 5 - Overmanning and Crowding; Run 6 - 

Overmanning and Leaning Curve; Run 7 - Quality and Leaning Curve; and Run 8 - 

Crowding, Learning Curve, and Management Disruption. 

Run – 1: Sensitivity analysis was performed to analyze the effect of crowding and 

management disruption using RUD for crowding rate from 0 to 50% as well as for 

management disruption. Figures 6.45 to 6.47 show the confidence boundaries for all 

potential output values of the variables including productivity, loss of productivity, and 

the cumulative loss of productivity cost, respectively. The sensitivity analysis results 

illustrate that the highest value for productivity was ~37 hrs./m2, which is a worst-case 

scenario and the lowest productivity was ~20 hrs./m2, as the best-case scenario, as well 

as the average productivity of ~27 hrs./m2 (Figure 6.48). For loss of productivity, the 

outer bounds of uncertainty (100%) show that the project experienced close to 45% loss 

of productivity and the average loss of productivity for this run was 25% (Figure 6.49). 

The cumulative loss of productivity cost for the worst-case reached ~ 21,000,000 dollars 

and the average cumulative loss of productivity cost was ~ 3,190,000 dollars (Figure 

6.50).      
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Figure 6-48. Run 1 - Productivity Sensitivity Analysis. 

 

Figure 6-49. Run 1 - Loss of Productivity Sensitivity Analysis. 

 

Figure 6-50. Run 1 - Cumulative Loss of Productivity Cost Sensitivity Analysis. 

Since all the performed sensitivity analysis follows the same procedure, so the output 

values of the variables including productivity, loss of productivity, and the cumulative 

loss of productivity cost related to each Run (Run 2-8) are summarized in Table 6.27 

and 6.28. 
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6.11 Summary  

This chapter discussed modeling loss of productivity using SD by considering the effect 

of change orders and other contributing factors such as overtime, learning curve, 

overmanning, crowding, temperature and humidity, and quality on the loss of 

productivity. The developed SD model was calibrated and validated using a real data of 

mega structure, which is a massive concrete structure. The statistical performance 

indicators of the developed model shows acceptable values. After, the developed model 

was validated under an extreme values test for each contributing variable to loss of 

productivity. The extreme test reveals that Quality, Severe Learning Curve, and 

Temperature and Humidity are major contributors to Loss of Productivity followed by 

Crowding, Management Disruption, Average Learning Curve, Overmanning, and Minor 

Learning Curve (Figure 6.51). In the last step, a combination of contributing variables 

using sensitivity analysis function built-in Vensim software was examined.  

 

Figure 6-51. Maximum Value of Loss Productivity Generated Under Extreme Test. 
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Table 6-26. Sensitivity Analysis Summary (Run 1-4). 

Run# Run 1 Run 2 Run 3 Run 4 

Description 

Crowding (0%-50%) & 

Management Disruption 

(0%-50%) 

Crowding (0%-50%) & 

Learning Curve (5%-

30%) 

Temperature (30ºF-

120ºF) & Humidity (30%-

80%) & Crowding (0%-

50%) 

Temperature (30ºF-120ºF) 

& Humidity (30%-80%) & 

Learning Curve (5%-30%) 

Productivity 

Max. 20 hrs./m2 25 hrs./m2 25 hrs./m2 27 hrs./m2 

Ave. 27 hrs./m2 32 hrs./m2 31.25 hrs./m2 33.75 hrs./m2 

Min 37 hrs./m2 40 hrs./m2 50 hrs./m2 52 hrs./m2 

Loss of 

Productivity 

Max. 45% 55% 95% 95% 

Ave. 25% 32% 26% 35% 

Cumulative 

Loss of 

Productivity 

Cost 

Max. 21,000,000 CAD 30,000,000 CAD 100,000,000 CAD 100,000,000 CAD 

Ave. 3,190,000 CAD 7,500,000 CAD 12,500,000 CAD 25,000,000 CAD 
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Table 6-27. Sensitivity Analysis Summary (Run 4-8). 

Run# Run 5 Run 6 Run 7 Run 8 

Description 
Overmanning (0%-50%) 

& Crowding (0%-50%) 

Overmanning (0%-50%) 

& Learning Curve (5%-

30%) 

Quality (0%-50%) & 

Learning Curve (5%-

30%)  

Crowding (0%-50%) & 

Learning Curve (5%-30%) 

& Management Disruption 

(0%-50%) 

Productivity 

Max. 25 hrs./m2 35 hrs./m2 28 hrs./m2 24 hrs./m2 

Ave. 31.25 hrs./m2 36 hrs./m2 33 hrs./m2 31.25 hrs./m2 

Min 35 hrs./m2 40 hrs./m2 35 hrs./m2 40 hrs./m2 

Loss of 

Productivity 

Max. 45% 60% 40% 69% 

Ave. 25% 35% 35% 33% 

Cumulative 

Loss of 

Productivity 

Cost 

Max. 22,000,000 CAD 35,000,000 CAD 14,000,000 CAD 43,000,000 CAD 

Ave. 7,500,000 CAD 15,000,000 CAD 6,000,000 CAD 10,000,000 
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awarded to a prime contractor on or about November 2013 by the owner for the 

constructing related structures of the concrete infrastructure (Figure 7.2).   

  
Figure 7-2. Concrete Infrastructure and Related Structures. 

 

In this section, a major change is studied and how this change can be assessed using 

the FRCM developed in Chapter 4.  

7.2.1. Joined Cover System Project Overview 

The prime contractor proposed a change to their initial construction methods to carry out 

the concreting of the intake and powerhouse in a controlled environment by building a 

temporary shelter above the powerhouse area. Labeled the Cover System (CS), this 

temporary shelter was expected to be a crucial part of the construction methods and 

plan implemented by the prime contractor (Figure 7.3). The prime contractor awarded 

construction of the CS on December 2013 to a subcontractor with a stipulated 

subcontract price of CAD 17,666,401 dollars before taxes for procurement, fabrication, 

and erection of the CS steel structure, as well as the installation of the roof and wall 

cladding. To carry out the CS, the initial work schedule of the subcontractor was seven 

months, from March 2014 to September 2014, including the mobilization and 

demobilization periods. However, the contract was only signed by the involved parties in 

May 2014 due to design modifications by the prime contractor. The subcontractor 
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submitted an updated work schedule reflecting the new dates for the erection of the steel 

structure from June 2014 to December 2014, duration less than seven months. The 

subcontractor started their work in July 2014. The late start of work was due to the 

delays in the finalization of foundations and site preparation by the prime contractor. 

 
Figure 7-3. Schematic View of the CS Steel Structure. 

The stipulated price contract was changed to a cost-plus contract as agreed by the 

involved CS project parties and the work agreed to be completed no later than March 

2015, with a total of 110,000 direct hours and 15,000 supervision hours. It was also 

planned that half of CS, including an additional temporary exterior wall not part of the 

original scope of work would be finished no later than December 2014. However, since it 

appeared that this proposal was never agreed upon by all the parties, this resulted in an 

unsigned change order. The contractor terminated the contract by mid-December 2014 

when it became clear that the construction of CS would result in an hours and cost 

overrun.  

7.2.2. Integrated Cover System Execution Plan 

Designed as a temporary heated shelter, CS was planned to allow the prime contractor 

a controlled environment to execute the construction of the powerhouse and intake year-

around. Located above the future powerhouse, the CS was a steel structure rectangular 

building designed to house 18 overhead cranes for hoisting and handling of materials 

during the construction of the powerhouse. Divided into four units, as shown in Figure 

7.4, the CS was designed to corresponding to the four generating units of the future 

powerhouse.  
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Figure 7-4. Erection Sequence of the CS. 

The erection was planned by the subcontractor to take place close to one of the four 

tower cranes by Unit 1 and Service Bay (SB). The structural steel would be erected for 

each unit in numerical order. To start the process, enough concrete foundations and 

anchors needed to be completed by the prime contractor and handed over to the 

subcontractor. Figure 7.4 shows that each unit represents a construction schedule 

phase and that each work phase includes two different principal activities which were 

carried out by specific trades, structural steelwork, and insulation and cladding work. The 

structural steelwork mainly consisted of the erection of structural steel material such as 

columns, beams, trusses, struts, and vertical bracings as well as the erection of 

overhead cranes. These activities were planned to be carried out by ironworkers. The 

second main activity consisted of the installation of insulation and cladding on the roof 

and the walls of CS. The ironworkers were responsible for preassembling the roof and 

installing the roof deck. This activity was the prerequisite to the installation of the roof 

deck and to the insulation and cladding work (Figure 7.5). 

 
Figure 7-5. Roof Deck Preassembly. 

In addition to the erection, insulation, and cladding, the subcontractor had to: 1) provide 

all the connection detailing, shop, and erection drawings; 2) fabricate the structural steel 
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as designed by the designer for the prime contractor; and 3) supply and install all girders 

and rails for 18 overhead cranes. 

Before the start of the subcontractor’s work, the prime contractor was responsible for 

delivering the concrete foundations, complete with anchor bolts installed and expected to 

supply a 300 ton and a 200-ton crawler crane, plus an 80 ton all-terrain telescopic crane 

with qualified operators. In addition, the prime contractor was responsible for supplying 

18 overhead cranes, as well as all site office trailers for the subcontractor (Figure 7.6). 

During the construction of the CS, three changes in the scope of work were issued as 

follows: 

 
Figure 7-6. CS Construction. 

1. Change Order # 1: The prime contractor modified the subcontractor scope of 

work by adding a temporary wall between Units 2 and 3. This temporary wall was 

meant to close the first half of the CS while the subcontractor would be working 

on Units 3 and 4. The value of this change order was CAD 1,200,000 dollars and 

increased the steel structure quantity by 250 metric tons and the quantity of 

insulation and cladding by 5,000 square meters. However, the temporary wall 

could not be executed due to the design issue and it was replaced by cables and 

tarps and did not incorporate any structural steel support. This wall executed in 

December but collapsed under the wind load.  

2. Change Order # 2: Related to additional insurance requirements. 

3. Change Order # 3: This change order changed the payment mechanism of the 

contract between parties. In addition, the subcontractor estimated that about 

125,000 man-hours were required to finish the work (110,000 man-hours direct 

labor and 15,000 man-hours of supervision). It should be noted that these hours 

included all the losses of time that had occurred since the beginning of the 
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project and included provisions for winter conditions. This change order also 

modified the subcontractor’s scope of work by adding reception bays, snow 

barriers, and the low roof that had to be completed at the same time as Unit 4. 

These new elements increased the steel structure quantity by 600 ton and the 

quantity of insulation and cladding by 6,000 square meters. The change order 

was drafted by the prime contractor according to the new milestones and man-

hour estimates and was sent to the subcontractor on November 2014. However, 

the subcontractor was no longer willing to sign off on the estimated man-hours 

and milestones proposed by the prime contractor. Although this change order 

was revised for multiple times, parties could not come to an agreement. Finally, 

the subcontractor signed a revised change order, but this document did not 

represent the same milestone and man-hours required to complete the work. The 

subcontractor planned to finish up to Unit 3 of the ICS (Units 1, 2, and 3) by 

March 2015 and Unit 4 completion would depend upon further negotiation with 

the prime contractor. The subcontractor also considered completing CS with 

201,000 hours (186,000 man-hours of direct labor and 15,000 supervision 

hours). The prime contractor never signed this change order.  

 

7.2.3. Overview of Issues 

During the execution of the proposed change (CS), project parties experienced several 

major issues. These issues can be classified into three major categories as follows: 

 Schedule impact: As mentioned earlier the subcontractor’s schedule had been 

modified several times due to the following reasons: differing site conditions, 

delay in foundation and site preparations, and delay in the delivery of the prime 

contractor equipment. Because of the issues the subcontractor could not 

progress at their planned rate before September 2014. The prime contractor 

confirmed that the delay in completion of foundations had an impact on the 

subcontractor start of work and progress in the early stages of work.  

 Operation impact: The operation of the subcontractor was lower than expected. 

This situation generated delays in the erection of the structural steel and in the 

insulation and cladding activities. The loss of productivity was caused due to: 1) 

weather: downtime hours occurred due to snowstorm and icy rain as well as the 

hours the cranes were down because of wind above the regulated specifications; 
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increased manpower. Newcomers must go through a period of learning during 

which they must familiarize themselves with the work.  

Table 7-2. Health and Safety Performance Indicators. 

Health and Safety Performance No. at Termination 

H
S

E
 

In
d

ic
a

to
rs

 Number of First Aid Incidents 43 
Number of Medical Aids 3 

Number of Lost Time Injuries (LTI) 0 
Number of Modified Work Cases 35 

Number of Property Damage Incidents 57 
Number of Near-Miss Incidents 19 

 
7.2.4 Applying Fuzzy Risk-based Change Management System 

In this section, the developed model in Chapter 4 is applied using the above-mentioned 

case study. Although this case study contains a considerable amount of data in regard to 

delaying events, some important information related to certain key major issues was not 

available. Since retrieving information is a time-consuming process and the project had 

already been completed, some assumptions were made: 

1. Change identification stage is not necessary because this change is already 

identified; and  

2. It is assumed that there are no consequential changes. 

The first step was to register the project information as well as information related to the 

identified change. The purpose of this step was to capture projects details used as 

historical data for future assessment. The project details should include enough 

information regarding the project scope of work. In addition, other essential information 

needed to be added to this module such as the planned start and finish date of the 

project, project manager information, and project schedule ID number.  

The next step was to enter the information regarding the change. This module is a major 

component of the FRCM model and is designed to capture key information regarding the 

proposed change. First, any change needs to have an identification number, which is a 

primary key in the developed relational database. The next step was to select change 

type which is an elective change for execution purpose (Figure 7.8). 
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Figure 7-8. Change Details 

The third step was the change assessment module which is designed for estimating 

resources, time, and cost associated with the proposed change. This step is explained in 

detail in Chapter 4 section 4.3.3. Table 7.3 is created based on the available actual 

information in the case study. 

Table 7-3. CS Manhours and Cost. 

  
Hours Cost 

No. Indirect Cost 
Sheet-metal 

Workers 
Ironworkers All 

Sheet-
metal 

Workers 
Ironworkers All 

1 Mobilization 597 1194 1791 $     74,642 $     149,283 $     223,925 

2 Health & Safety 358 717 1075 $     44,785 $      89,570 $     134,355 

3 Quality Control 0 4777 4777 $           - $     310,510 $     310,510 

4 Superintend 2866 4013 6879 $   415,605 $     581,847 $     997,452 

5 Demobilization 239 239 478 $     25,080 $      25,080 $      50,159 

6 Direct Hours 40618 69382 110000 $5,889,628 $10,060,372 $15,950,000 

7 Total 44679 80321 125000 $6,449,739 $11,216,662 $17,666,401 
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The next step was to develop the FRRM. After the above-mentioned steps were 

completed, the case study was analyzed through the second approach proposed for 

determining risk score. For this step, two experts in the risk domain were consulted for 

quantifying impact level and consequence probability for each impact as mentioned in 

Section 4.2.3.3, step 3. Figure 7.9 shows the sample of calculation sheet as 

demonstrate in MATLAB for the lowest level of hierarchy (Level 3).  

 
Figure 7-9. Sample of Lowest Level of Hierarchy Calculation 

Table 7.4 shows the results of the likelihood and impact of the lowest level of the 

hierarchy. The experts identified the score for this change that may have an influence on 

the project without sharing with them the actual data.  

Table 7-4. Score of Lowest Level of Hierarchy. 

Level 3 ID Likelihood Impact Score 
Change in Cash flow 6.5 8 7.9 
Increase Overhead 5 3 5.6 

Direct Cost 7 8 8.4 
Project Schedule 5 4 6.5 

Rework and Demolition 5 4 5.5 
Quality 2.5 2.5 2.5 
Safety 3.5 4 5 
Health 0 0 0 

Environment 2 3 3 
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Once the value of consequence and probability were identified, these values were used 

as inputs for the interim level of the hierarchy. Figure 7.10 shows a sample calculation 

sheet as demonstrated in MATLAB for the interim level of hierarchy (Level 2). For each 

interim level criteria, three values were needed. For example, the value for cash flow 

deficiency, increase in overhead, and an increase in total project cost should be 

calculated from the previous level in order to calculate Financial Impact value.   

 
Figure 7-10. Sample of Interim Level of Hierarchy Calculation. 

Table 7.5 shows the score for the interim level of the hierarchy. These values express 

the score of proposed change regarding Financial, Operational, and HSE aspect. 

Table 7-5. The Score of Interim Level of Hierarchy. 

Level 2 ID Level 3 ID Level 3 Score Level 2 Score 

Financial 
Change in Cashflow 7.9 

8 Increase Overhead 5.6 
Direct Cost 8.4 

Operational 
Project Schedule 6.5 

6.45 Rework and Demolition 5.5 
Quality 2.5 

HSE 
Safety 5 

5 Health 0 
Environment 3 
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After the interim level score was calculated, the outputs of the interim level were mapped 

on the final FIS where the final FIS is defined in MATLAB, as shown in Figure 7.11 to 

calculate the total risk score of the proposed change, the final FIS only needed the 

values for the Financial, Operational, and HSE.  

 

Figure 7-11. Total Risk Score. 

The total risk score of the proposed change was calculated as shown in Figure 7.12. 

Financial, Operational, and HSE scores were 8, 6.45, and 5, respectively and the total 

score was 7.57. The above steps for calculating the total score is encapsulated in the 

FRRM, as shown in Figure 7.12. The result shows that CS is considered as a risky 

change. However, the risk associated with CS was not considered by the partners. As 

can be seen, the proposed model could be helpful in assessing the risk of change 

orders.     
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Figure 7-12. Result of the Fuzzy-based Risk Ranking. 

7.3 Forecasting Labor Productivity Case Study 

This section examines the validity of the developed PSO-RBFNN model using data 

collected from the concrete structure data to verify its applicability in predicting labor 

productivity for formwork. To gather the required data for validating the developed 

model’s applicability, extensive data for input was collected from daily reports, progress 

reports, and daily weather reports. These documents were studied to extract weather-
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related data (such as Wind Speed, Precipitation, Humidity, and Temperature), and work-

related data (the data related to Work Type and Method). Work Type is related to the 

different types of structural members such as Slabs or Piers. The Work Method covers 

the different types of formwork used in this project. Formwork was divided into major 

techniques as follows: 1) built-in Place forms which are the traditional wooden forms; 2) 

climbing formwork (crane-climbing), which is the formwork displaced upwards with the 

help of crane; and 3) labor-related data, which is the data related to Gang Size in terms 

of number of persons. Labor percentage is the percentage of labor (helper) in a crew.  

Project information is related to the number pours per area, shown in Table 7.6.  A total 

of 783 data instances were collected for installation of formwork, as shown in Table 7.7.  

For each data collection instance, the above-mentioned data were documented.  The 

dataset is divided into training and testing datasets based on 80 and 20 percentage.  In 

other words, 626 data points for training dataset and 157 data points for testing dataset.  

The daily weather information, temperature, humidity, wind speed, and precipitation 

were gathered from the Environment and Climate Change Canada (ECCC) website.  

This historical data tool provides the option of acquiring precise data (ECCC, 2019). 

Table 7.8 shows the daily weather report gathered from ECCC. After gathering the data 

from the different resources, the data was compiled to a spreadsheet format as input for 

the developed PSO-RBFNN model in Chapter 5 (Table 7.9). 

 

Table 7-6. Number of Pours per Area. 

Area Number of Pour 

Centre Transition Dam 88 
North Service Bay 34 
North Transition Dam 29 
Separation Wall 45 
South Service Bay 140 
South Transition Dam 326 
Unit 1 - Intake 163 
Unit 1 - Powerhouse 94 
Unit 1 - Tailrace / Draft T Outlet 91 
Unit 2 - Intake 163 
Unit 2 - Powerhouse 93 
Unit 2 - Tailrace / Draft T Outlet 94 
Unit 3 - Intake 163 
Unit 3 - Powerhouse 93 
Unit 3 - Tailrace / Draft T Outlet 90 
Unit 4 - Intake 173 

Unit 4 - Powerhouse 109 
Unit 4 - Tailrace / Draft T Outlet 94 

Others 40 
Grand Total 2122 
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Table 7-7. Sample of Installed Formwork Installed per Day. 

Date FW 
Qty. 

Date FW Qty. Date FW 
Qty. 

Date FW 
Qty. 

Date FW 
Qty. 

Date FW 
Qty. 

14-Jun-14 6.232 3-Dec-14 276.23 5-May-15 305.26 28-Jun-15 97.73 18-Aug-15 65.66 14-Oct-15 97.52 

10-Jul-14 2.856 5-Dec-14 159.06 7-May-15 159.06 29-Jun-15 243.9 20-Aug-15 71.51 15-Oct-15 71.09 

19-Aug-14 122.7
5 

8-Dec-14 148.81 8-May-15 116.7 30-Jun-15 383.21 22-Aug-15 285.63 16-Oct-15 295.6 

21-Aug-14 80.48 10-Dec-14 73.1 9-May-15 315.81 1-Jul-15 464.98
5 

23-Aug-15 142.53 17-Oct-15 183.33 

24-Aug-14 159.4
7 

13-Dec-14 73.08 10-May-15 122.03 2-Jul-15 463.88 25-Aug-15 93.52 18-Oct-15 54.94 

9-Sep-14 159.4
7 

15-Jan-15 159.06 11-May-15 145.21 3-Jul-15 184.75 26-Aug-15 59.58 19-Oct-15 121.22 

11-Sep-14 112.1
76 

18-Jan-15 160.91 12-May-15 146.2 4-Jul-15 479.8 27-Aug-15 189.05 20-Oct-15 85.34 

12-Sep-14 168.6
9 

21-Jan-15 148.37 13-May-15 159.06 5-Jul-15 84.84 28-Aug-15 191.64 21-Oct-15 241.49 

16-Sep-14 57.12 22-Jan-15 160.91 14-May-15 305.26 6-Jul-15 214.39 29-Aug-15 413.412 22-Oct-15 154.48 

17-Sep-14 42.78 31-Jan-15 159.06 17-May-15 157.81 8-Jul-15 543.44 30-Aug-15 302.28 25-Oct-15 74.97 

23-Sep-14 82.46 3-Feb-15 133.34 18-May-15 146.2 9-Jul-15 271.79 31-Aug-15 370.78 26-Oct-15 449.67 

24-Sep-14 138.2
7 

9-Feb-15 150.44 19-May-15 249.57
5 

10-Jul-15 209.34 1-Sep-15 506.76 27-Oct-15 165.96 

26-Sep-14 13.19
5 

10-Feb-15 159.06 20-May-15 110.51 11-Jul-15 395.9 2-Sep-15 133.85 28-Oct-15 109.62 

28-Sep-14 54.26
4 

14-Feb-15 157.81 21-May-15 135.46 12-Jul-15 240.33 3-Sep-15 406.22 29-Oct-15 225.93 

3-Oct-14 56.03 23-Feb-15 159.06 22-May-15 354.46 13-Jul-15 207.2 4-Sep-15 194.19 30-Oct-15 175.5 

5-Oct-14 138.2
7 

26-Feb-15 97.68 24-May-15 353.87 14-Jul-15 117.68 5-Sep-15 44.96 31-Oct-15 362.45 
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Table 7-8. Daily Weather Report. 

Date Temp (°C) Humidity Total Precipitation (mm) Wind Speed(km/h) 

1/1/2014 -35.4 67% 0 <31 
1/2/2014 -36.1 65% 0 39 
1/3/2014 -33.4 67% 0 48 
1/4/2014 -26.7 73% 4.8 61 
1/5/2014 -23.8 84% 0 <31 
1/6/2014 -18.3 85% 0 61 
1/7/2014 -16.5 80% 0 57 
1/8/2014 -24.2 69% 0 69 
1/9/2014 -25.4 69% 0 48 
1/10/2014 -17.1 76% 0 37 
1/11/2014 -9.7 86% 0 39 
1/12/2014 -8.7 90% 0 46 
1/13/2014 -6.5 88% 0 39 
1/14/2014 -3.3 93% 0 37 
1/15/2014 -10.4 85% 0 41 
1/16/2014 -19.7 84% 0 <31 
1/17/2014 -20.1 86% 0 <31 
1/18/2014 -14.5 90% 0 <31 
1/19/2014 -17.3 90% 0 39 
1/20/2014 -16.7 88% 0 41 
1/21/2014 -19.5 80% 0.5 52 
1/22/2014 -20.6 78% 0 37 
1/23/2014 -27.2 75% 0 41 
1/24/2014 -30.4 75% 0 <31 
1/25/2014 -24.6 80% 0 32 
1/26/2014 -14.3 89% 0  
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Table 7-9. Sample of Prepared Data Sheet for PSO-RBFNN Developed Software. 

T H P WS GS LP WT FL WM 

20 50 0 8 20 30 1 14 1 

11 44 0 13.4 15 33 2 11 1 

11 94 1 37 8 38 1 12 2 

13 70 0 18 12 33 1 10 2 

14 38 0 18 19 32 1 12 1 

6 75 0 18 22 37 1 16 2 

-6.5 56 0 10.5 21 33 2 7 1 

-9 76 0 18 11 37 1 14 2 

-12 81 0 31 11 37 1 14 2 

-4.5 48 0 14.1 19 33 1 7 2 

-0.5 53 0 7.5 22 36 2 5 1 

21 61 0 18 18 33 2 16 1 

23 86 0 11 23 35 2 12 1 

2 63 0 23 9 33 2 16 1 

15 67 0 14 19 37 2 15 1 

21 63 0 16 20 30 1 12 2 

21 75 0 8 21 33 1 15 2 

7 65 1 31 11 37 1 10 2 

-4.5 48 0 14.1 20 30 2 7 1 

5 72 0 21 8 37 2 16 1 

-5 90 3 26 11 37 1 13 2 

-1 93 1 14 11 37 1 13 2 

-7 41 0 7.9 20 30 1 8 2 

-3 90 3 39 9 33 2 13 1 
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After implementing the data preprocessing steps discussed earlier, the input data was 

prepared to be fed to the model. For the PSO model, the swarm population size was set 

to 50, with each particle in the algorithm representing variables of ci, σi, and wij. The input 

data space span was limited to 0 to 1 and RBF center ci constrained in the range of [0, 

1]. Also, the width σi was considered in the range of [1, 50] and the connection weights 

wij constrained in the range of [0, 100]. Therefore, given the defined range of parameters, 

the particle swarm was initialized randomly. The maximum iteration number was defined 

as 100 iterations and MSE less than or equal to 0.0001 was defined as the stop criterion. 

To evaluate the performance of the proposed PSO-RBFNN, the prediction error was 

evaluated against the actual prediction. Thereby, historical data were divided into two 

groups with most of the data residing in the proposed model training set and the 

remaining in the testing set. As mentioned in the previous sections, this research utilized 

MSE as an error predictor. Table 7.10 shows the performance evaluation results of the 

proposed model. 

Table 7-10. Performance evaluation results of the PSO-RBFNN model. 

Performance Indicators Value 
R2 Train 0.8514 
R2 Test 0.8354 
MSE Train 0.0196 
MSE Test 0.02003 
RMSE Train 0.140 
RMSE Test 0.144 
MAE Train 0.094 
MAE Test 0.107 

 

Next, the trained model was validated against the actual data of the case study. The 

predicted BP, which was used in the calculations by the project team, was considered as 

25 hrs./m2.  Using the proposed model, productivity was predicted as 26.7 hrs./m2 for the 

same job.  Therefore, the model performed better in predicting BP and may improve 

calculation accuracy.  Table 7.11 presents the comparative predicted productivity by the 

project team and the proposed model. It should be noted that 25 hrs./m2 is used during 

execution phase of the project.  

Table 7-11. Comparative predicted productivity. 

 Productivity (hrs./m2) Error% 
Baseline Productivity 25 - 
Proposed model 26.7 6.8% 
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7.4 Loss of Productivity Quantification Case Study 

After validating the BP and change order assessment, the developed SD model in 

Chapter 6 was employed for quantifying the effect of change orders on labor 

productivity. In addition to change order impact, the developed model defined and 

quantified the impacts of other influencing factors on labor productivity, namely as 

temperature and humidity, learning curve, overtime, crowding, and management 

disruption. ICS information was analyzed using the developed model to quantitatively 

measure the impact of the change order in the project on labor productivity. The project 

was analyzed using the developed SD model, as well as Leonard and Ibbs models. The 

results obtained from the three models were compared and the conclusions extracted.  

7.4.1 Quantifying Loss of Productivity Using Ibbs and Leonard Models   

The ICS change orders man-hours value were 125,000 hours, which increased the 

scope of work by 10.5% due to the modification to the construction methods. Ibbs and 

Leonard models were employed in this section to analyze the impact of CS change order 

on labor productivity. Referring to Figure 7.13, change order percentage was plotted to 

Leonard’s graphical models and the productivity value loss was ~12%.        

 
Figure 7-13. Quantifying Loss of Productivity Using Leonard’s Model. 

It was assumed that there was a major contributing factor to the loss of productivity, 

overtime impact, along with the CS change order due to employing the available 

manpower on extended overtime. Thus, loss of productivity was 21%, as shown in 

Figure 7.13. In addition, the existence of two major contributing factors was assumed 

such as overtime and temperature and humidity, and loss of productivity was around 

28%. As can be seen from Figure 7.14, three options were available for quantifying the 

loss of productivity, normal early, and late curves.  The late curve shows a 20% loss of 
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productivity. The normal curve shows a 10% loss of productivity and early changes 

shows a 3% loss of productivity.   

 
Figure 7-14. Quantifying Loss of Productivity Using Leonard’s Model. 

It should be noted Ibbs’ model does not consider the effect of other contributing factors 

in the loss of productivity quantification. Table 7.12 summarize the loss of productivity 

quantification using Leonard and Ibbs models. Furthermore, Leonard and Ibbs models 

cannot apportion loss of productivity to other major contributing factors to loss of 

productivity. Using Ibbs and Leonard models requires an experienced user in order to 

utilize the right curve. As such, these models should be used as a last option.  

Table 7-12. Quantifying Loss of Productivity Using Ibbs and Leonard Models. 

 Leonard Ibbs 

 Change Change +1 Change +2 Late Normal Early 
Loss of Productivity 12% 21% 28% 20% 10% 3% 
Planned Man-hours 178,285 hrs. 
Loss Hours 21,394  37,439  49,919  35,657  17,828  5,348  
Percentage of Error 20% 40% 87% 33% 33% 80% 
Actual Man-hours 205,022 hrs. 
Actual Loss of Productivity 15% 
Actual – Planned Man-hours 26737 hrs. 
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7.4.2 Quantifying Loss of Productivity Using Measured Mile Analysis   

To do a comprehensive analysis of project documents, which are not easily available all 

the time, the MMA is required. Contractor's progress and productivity analysis reports 

were reviewed and analyzed for impacted and unimpacted productivity, as shown in 

Figure 7.15.  

 
Figure 7-15. Quantifying Loss of Productivity Using MMA. 

As shown in Figure 7.15, the distance between the yellow line and the black line 

represents the loss of productivity due to change order. Based on the unimpacted 

period, it can be seen that the contractor’s best performance on site was 59% of BP for 

the unimpacted period.  This value is the MMV, as well as the value used to compare the 

SD model result against it. Impacted productivity was 0.41 of BP. Thus, loss of 

productivity was 18% (59%-41%). The percentage of error is equal to 20% (18%-

15%)/15%.  

7.4.3 Quantifying Loss of Productivity Using Developed SD Model   

Figure 7.15 presents clearly that contractor's laborers were working inefficiently even 

prior to the issuance of a change order. Using the developed SD model, the reason 

behind this inefficiency can be explained by calculating the expected labor productivity 

on site after factors that might affect labor productivity such as temperature and 

humidity, crowding, change order, and learning curve effects were introduced (Figure 

7.16).  
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Figure 7-16. Time (Week) vs. Productivity. 

The analysis shows an average loss of productivity of 16.4% due to crowding, learning 

curve, temperature and humidity, as well as a change order. The average loss of 

productivity was equal to 8.4% (2.1 hrs.  /m2) and the difference should be apportioned 

to the other contributing factors.  As more new resources were assigned to the project, 

labor productivity was impacted by 3.7% (0.925 hrs.  /m2) due to learning curve.  Less 

than 2% (0.5 hrs.  /m2) of loss in productivity was attributed to temperature and humidity, 

as well as 2.8% (0.7 hrs.  /m2) to crowding as more resources were assigned to the 

project (Figure 7.17).  
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Figure 7-17. Value of Contributing Factors to Loss of Productivity. 

 

7.4.4 Comparison of Different Techniques in Quantifying Loss of Productivity  

The four techniques explained above are compared and discussed in this section. Table 

7.13 and Figure 7.18 summarize the previous techniques.  

Table 7-13. Summary of Previous Techniques. 

 Actual Leonard Ibbs MMA SD 

LOP 15% 12%-28% 3%-20% 18% 16.4% 

% Error 20%-87% 33%-80% 20% 9.3% 

 

Figure 7-18. Comparison of Different Techniques Results 
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As can be seen from Table 7.13 and Figure 7.18, the SD model is capable of producing 

more accurate results in comparison to the other techniques.  In addition, the SD model 

can allocate loss of productivity to all contributing factors. Using Leonard and Ibbs 

models can lead to over- or under-estimating the value of productivity loss. Leonard’s 

model is not applicable for change orders at less than 10%. In addition, Leonard’s model 

takes into consideration the impact of a change order along with two other contributing 

factors in lump sum number. Ibbs model takes into consideration the effect of a change 

order as well as the timing of change order. However, Ibbs model does not take into 

consideration the effect of other contributing factors.  

7.5 Summary 

This chapter presented the developed framework application for quantifying the loss of 

productivity due to a change order using a real-world case study of a massive concrete 

structure in Canada. To validate the applicability of the developed models and their 

accuracy, the FRRM was used in the change management section to see its applicability 

in highlighting the benefit of encouraging positive changes and discourage negative 

changes. In the second validation process, the PSO-RBFNN was used to predict and 

estimate labor productivity, which can be used as a baseline value for the SD model of 

the last component.  Finally, the SD model was used to quantify the loss in productivity 

due to change orders and other contributing factors such as crowding, learning curve 

effect, and Temperature and Humidity. The validation of the developed framework major 

components was conducted successfully at all three stages and the result shows that 

the proposed framework solidly accomplished all its intended purposes, ranking change 

orders, predicted productivity, and quantifying the loss of productivity. It should be noted 

that the current developed system must be utilized as a supplementary tool, not as a 

comprehensive substitution for a qualified expert. 
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8. CHAPTER EIGHT: SUMMARY and CONCLUSIONS 

8.1 Summary and Conclusions 

Current change management systems are not comprehensive and practical enough for 

quantifying the real impact of change orders and other managerial decisions including 

overtime, acceleration, and new hires on labor productivity. Although in most cases, 

contractors and clients recognize the impact of changes on productivity, they neglect the 

ripple effect a change order will have on a project because it is not tangible during 

change order assessment. This study proposed a change management framework for 

quantifying labor productivity loss due to change orders and managerial policies 

throughout all phases of construction projects. The proposed framework consists of 

three major models: (1) FRCM, (2) AI-based model, and (3) SD model. 

The FRCM was developed to accept or decline the requested change orders except 

mandatory ones considering their impact on the project and consequential changes that 

they might result in. FRCM includes several main modules. The main module includes a 

Fuzzy Risk Ranking System (FRRS) to prioritize change orders. In this stage, (F-AHP 

was utilized to calculate the relative importance weight to be used in prioritizing 

requested change orders. By estimating the impact level of each requested change, only 

changes with acceptable impacts would be confirmed and performed. In addition, a BIM 

model was adopted and modified to capture the consequential changes that may arise 

from initial change(s). This consisted of four main steps: (1) 3D project model 

development (baseline model), (2) modified 3D model development including the 

primary requested changes, (3) comparison of baseline and modified model, and (4) 

report generation based on the comparison to group the changes.  

A novel AI-based model (PSO-RBFNN) was developed to calculate BP considering 

environmental and operational variables. The estimated BP was used as the initial value 

for the next developed model, the SD model. AI was applied to overcome some SD 

limitations including mathematical complexity, difficulties in identifying the relationship 

among variables, and inability in considering variables at the operational level. Thus, 

only strategic level variables, including change orders and managerial policies, were 

considered in SD modeling. 

Finally, a novel SD model was developed to quantify the impact of change orders and 

different managerial decisions in response to imposed change orders on the expected 
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productivity during the lifecycle of a project. The developed SD model was calibrated 

and validated using a real case study of a massive concrete structure data and 

acceptable results were obtained. The developed framework was validated through 

several case studies and the results show that the various consequences derived from a 

change in combination with the major environmental and operational variables of the 

project were identified and analyzed successfully. The proposed framework could help 

the project team identify and quantify the cumulative impact of change orders on labor 

productivity (productivity loss) in a timely manner and facilitate the decision-making 

process. The final SD model, which was fed by the other developed models, could 

provide decision-makers with an opportunity to explore possible cost-effective 

intervention policies and examine a number of scenarios.  

8.2 Research Contribution 

The contributions of this research are:  

1. Development of an FRCMS as a tool that can aid in facilitating the decision-

making process for proposed changes and encourages the integration of 

positive changes and reduces unnecessary changes and negative impacts on 

all project aspects as much as possible. The novel combination of FRR and 

BIM, alongside other modules (Change Identification, Change Registry, Final 

Approval, Change Implementation, and Change Closure), make the 

developed model a comprehensive change management platform for 

decision-makers. Two databases were designed to store project and change 

data along with entity relationships diagrams. These databases provide a 

data-sharing environment for managing changes at various stages of a 

project. Software was developed to incorporate the above-mentioned 

modules and other features necessary for efficient and effective change 

management during the course of a project as well. 

2. The development of a novel AI-based model for estimating BP. First, the AI-

based model can improve baseline labor productivity prediction accuracy and 

shows reliable performance from the point of generalization due to having the 

training and testing errors close to each other. BP helps to quantify the 

precise value of the loss of productivity due to the owner caused changes. 

The model predicts the best possible productivity that can be achieved by a 

contractor, which is BP. Second, it also improves SD modeling computation 
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capacity by reducing the need to establish the number of mathematical 

equations indicating the relationships among variables, making the SD model 

smaller, less complex, and more comprehensible to construction 

practitioners. 

3. The development and implementation of an automated SD model to 

demonstrate the consequences caused by change orders in combination with 

the managerial policies along with some environmental and operational 

factors. The SD model is able to accurately assess the ripple effect of 

changes on construction labor productivity during the course of the project, 

while taking into account multifaceted managerial policies as well as 

environmental and operational influential variables.  The developed SD model 

takes into account the man-hours and quantity installed.  The productivity 

shows fluctuation due to different quality values as well as learning curve. 

Thus, including installed quantity in the analysis allows for quality and 

learning curve to be applied to the loss of productivity quantification. The 

developed model can take into account the non-linear behavior of 

construction projects.  In other words, the developed model takes into 

account non-linear relationships between different factors affecting labor 

productivity are taken into consideration while developing the quantitative 

model.    

8.3 Limitations 

The limitations of the developed research framework are as follows: 

1. For FRCMS, proactive change identification is hard to automate, as it 

requires considerable effort to reach an intelligent proactive system. So the 

developed FRCMS model is a reactive change management model that 

scrutinizes and ranks requested elective changes based on their impact risk 

score;  

2. Interdependencies among criteria are not considered in developing Fuzzy 

Risk Ranking System;   

3. The developed AI model was trained and tested on datasets of two high-rise 

buildings related to formwork operation. Thus, other datasets related to other 

activities are required to generalize the model for a construction project;  



 

235 

 

4. The developed SD model, it was constructed based on limited number of 

unstructured interviews.  More interviews are needed to improve and expand 

the SD model and enhance its structure. 

5. The developed SD model was tested and validated using one case study. 

Further validation is needed to measure its performance on other case 

studies; and 

6. More variables should be studied and included in developing the SD to 

analyze its impact on loss of productivity.  

8.4 Future Work 

The following are some recommendations for future work: 

1. Developing a proactive change management system;  

2. Generating datasets related to other operations except formwork 

installation to perform an analysis to determine the underlying factors 

affecting labor productivity and quantify the loss of productivity in building 

construction; 

3. Validating SD model using more case studies to indicate its performance; 

and  

4. Performing more interviews to obtain additional experts’ knowledge to 

improve and expand the SD model and enhance its structure. 
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