
A Qualitative Study of Vulnerability-Fixing

Commits

Mouafak Mkhallalati

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

December 2019

© Mouafak Mkhallalati, 2019

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mouafak Mkhallalati

Entitled: A Qualitative Study of Vulnerability-Fixing Commits

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Tse-Hsun Chen

Examiner
Dr. Jinqiu Yang

Examiner
Dr. Nikolaos Tsantalis

Supervisor
Dr. Emad Shihab

Approved by
Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2019
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

A Qualitative Study of Vulnerability-Fixing Commits

Mouafak Mkhallalati

Security issues are a major concern in software development since the impact of ex-

ploiting security issues can be detrimental. Much of the prior work has proposed techniques

that scan for and predict security vulnerabilities. However, in-depth, qualitative studies on

software vulnerabilities are limited. Such studies can help the community better understand

the types of vulnerabilities that exist and their potential impact in order to avoid them in

the future.

Therefore, in this thesis, we present the results of studying security issues faced by

developers. Our study leverages data provided by the SAP research team, which contains

security fixing commits related to open source Java projects used by SAP and manually

curated and validated by their researchers. We study a statistically significant sample of

those commits. In particular, we collect information from the related repositories, issue

trackers, documentation and advisories with the aim to comprehend and categorize such

security issues. Also, we provide the context required to understand the issue along with

code examples extracted from each of the categories in our study.

Our findings show that the vulnerabilities commonly facing developers are related to

deserialization of untrusted data, zip slip, xml external entity processing, validation, au-

thorization, race conditions, and information exposure. The fixes required to fix those

vulnerabilities range from providing proper configuration of the used parser in the case of

XML related issues to requiring in-depth knowledge of the code and the security issue as

in vulnerabilities related to thread synchronization.

iii

Acknowledgments

To my father and mother, the two people who I owe everything in my life to. To my

father in law, a great man and a true father. I dedicate this work to you.

To my supervisor, Dr. Emad Shihab. without whom this work wouldn’t have been

possible, thank you for all the guidance and support.

To my lab mates who I had the opportunity to work with, thank you, you made this

experience more enjoyable. I wish you all the success through your journey.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction and Problem Statement 1

1.1 Thesis Contribution . 3

1.2 Thesis Overview . 3

2 Literature Review 4

2.1 Measurements and Characteristics . 4

2.2 Available Resources . 5

2.3 Security Scanning Tools . 6

2.4 Qualitative Analysis . 7

3 Methodology 10

3.1 Data Collection and Curation . 10

3.1.1 Card Sort . 11

3.1.2 Validation of the Manual Check . 12

3.2 Complexity Measurement of Vulnerability Fixes 12

3.3 Manual Categorization of Vulnerabilities . 14

4 Results 21

4.1 Complexity Measures . 21

v

4.2 Categorization . 23

4.3 Cases Analysis . 24

4.3.1 Deserialization of untrusted data (10%) 24

4.3.2 Zip Slip (9%) . 26

4.3.3 XML External Entity (XXE) Processing (17%) 28

4.3.4 Validation (27%) . 32

4.3.5 Authentication and Authorization (26%) 37

4.3.6 Race Conditions (5%) . 44

4.3.7 Information Exposure (6%) . 46

4.4 Cross Referencing with OWASP . 53

5 Implications, Summary, and Future Work 54

Bibliography 58

Appendix A 63

vi

List of Figures

Figure 3.1 An example of a straight forward commit message. 15

Figure 3.2 An example of project advisory. 16

Figure 3.3 An example of identifier in the commit message. 17

Figure 3.4 An example of related issue from external issue tracker. 17

Figure 3.5 An example related issue with hyperlink. 18

Figure 3.6 An example of checking the context of the changes. 19

Figure 3.7 An example of test case parameters. 20

Figure 4.1 Metrics (outliers eliminated) . 22

Figure A.1 Metrics (with outliers) . 63

vii

List of Tables

Table 4.1 Categories of security issues fixes with their percentages 24

Table 4.2 Cross reference the studied cases with OWASP 52

viii

Chapter 1

Introduction and Problem

Statement

Security is an important aspect of software development. Writing code that fulfills the

required functionality should not be a separate activity from securing the code. However,

studies have shown that developers focus on delivering the task in hand before thinking

about security, and may use code snippets from online sources that are easily accessible and

quickly understandable without thinking about their implications on the application security

Acar et al. (2016). The majority of these snippets do not follow secure coding practices for

the related task and may contain vulnerable code Fischer et al. (2017). Security experts

think that developers are not getting proper security education, which leads to them writing

insecure code and introducing security issues, which leads to additional cost and time to fix

the issues later in the project life and it also increases the chance that some of these issues

would slip into production Thomas, Tabassum, Chu, and Lipford (2018). In a recent survey1

70% of the surveyed developers said they think the security education they received was not

adequate for what their current positions require. and three-quarters of college-educated

respondents to the survey said they were never required to complete a single course focused

on security during higher education.

1https://www.veracode.com/sites/default/files/pdf/resources/analystreports/the-devsecops-global-
skills-survey-veracode-analyst-report.pdf

1

Writing secure code is not a trivial task, developers find it hard to correlate the task in

hand with theoretical knowledge about the issue Oliveira et al. (2014). Security scanning

tools are not a magical solution to secure the code, in fact developers not only have to

understand the concept behind the alerts from the tools Imtiaz, Rahman, Farhana, and

Williams (2019), but they also have to deal with false positives in the scanning results,

which imposes an additional usage barrier due to the increase of the cost of using these

tools Johnson, Song, Murphy-Hill, and Bowdidge (2013); Nadeem, Williams, and Allen

(2012). We should also note that focusing the efforts on after-introduction remediation of

security issues will keep us in firefighting type of solutions, and security related issues will

continue to increase even through the life time of the project Mitropoulos, Gousios, and

Spinellis (2012); Tan et al. (2014); Wen (2017).

To assist developers in battling security issues we should provide them with insights and

proper knowledge that helps them understand those problems and lower their introduction

rate. Evidently, fix rates for security issues increases with remediation coaching from se-

curity experts2, which means that once the developers have proper understanding of the

security issues, they take active measures to fix and avoid them.

To that extent, and given the two facts that 1) when fixing a security issue developers

rely on support from colleagues who faced similar issues1; Assal and Chiasson (2019), and 2)

open source is a rich knowledge source and open source communities are innovative and they

foster learning and knowledge building Hemetsberger and Reinhardt (2006); Wen (2018),

we conduct a manual study on security issues in open source projects where

we inspect the security fixing commits and aggregate additional information

from issues trackers, bug reports, advisories, and related documentation to

help studying the commits issues. Our study aims to increase the awareness

of developers and the community about security with code samples extracted

from open source projects that are commonly used and relied on. Our study

-like previous similar studies which inspect the studied issues thoroughly- is

2https://www.veracode.com/sites/default/files/pdf/resources/reports/state-of-software-security-
developer-supplement-veracode-report.pdf

2

an essential step to understand those issues and help practitioners get a better

grasp of them, it also motivates experts to look for better ways to remedy them.

1.1 Thesis Contribution

The main contributions of our study are the following:

• Thorough manual analysis of a statistically significant number of fixing commits from

open source projects and external related information.

• Categorization of the studied fixing commits, which resulted in the proposal of 7 main

categories.

• Explanation of the context of the studied security issues. For each category we provide

code examples from the fixing commits.

1.2 Thesis Overview

Chapter 2 provides the literature review and related work. In Chapter 3, we describe

our dataset and the methodology of our study. Chapter 4 shows the results of our study,

we start with a preliminary analysis of the commits, list the categories of the commits

that resulted from our analysis, we then go through each category and its subcategories to

provide the context and code of the fix. Finally, in Chapter 5, we reflect on the results of

our study and provide additional implications and suggestions based on our analysis and

list our future work directions.

3

Chapter 2

Literature Review

2.1 Measurements and Characteristics

In this section we look at previous work that studied the aspects of security issues like

metrics and other approaches that can be used to predict or characterize vulnerable code

or commits. Frank et al. Li and Paxson (2017) conducted a large scale empirical study to

compare bug fixes with security fixes. They compared them with respect to their time-

lines and the complexity of different types of patches and their impact on code bases. they

find that security fixes have less complexity than non-security fixes and longer timelines

providing attackers an opportunity to strike the software. Shin, Meneely, Williams, and

Osborne (2010) evaluated three types of metrics, namely complexity, code churn, and de-

veloper activity metrics, in order to predict vulnerability location in the source code. Their

model was mainly applied on two systems: Mozilla Firefox web browser and the Red Hat

Enterprise Linux kernel. The model could predict approximately 80% of the vulnerable

files. While these studies focused on studying vulnerabilities insights, our work focuses on

studying the characteristics of vulnerability fixes. Sabetta and Bezzi (2018) proposed a

machine-learning approach to find the security fixes commits. The approach mainly applies

NLP classification methods on the source code changes. Their approach achieved accept-

able precision and recall, 80% and 43%, respectively. Similarly, Wan (2019) proposed a

deep learning approach to find security fixing commits based on the commit messages only.

4

Their approach achieved a precision of 88%, with a recall rate of 89%. They claim that their

approach has achieved significantly better precision than state-of-the-art while improving

the recall rate by 16.8%.

2.2 Available Resources

In this section we look at previous work that studied the resources available to develop-

ers during their studies and on their job tasks and how that affects the security aspect of

the code they produce. Thomas et al. (2018) interviewed 32 security experts in a study to

examine their views on application security processes and their interactions with developers.

The majority of interviewees called for more security training for developers to provide them

with a greater awareness of security and the knowledge necessary to produce fewer security

bugs. In their study, they also indicate that finding and fixing security vulnerabilities so

late in the software lifecycle can result in costly delays and expense to applications, and

an increased likelihood that applications are not adequately secure. And that separating

security from development adds communication overhead and barriers. Acar et al. (2016)

systematically analyzed how the use of information resources impacts code security, they

held a lab study where the participants were assigned tasks to finish in a tight time limit

and unfamiliar starter code. Their finding is that real-world Android developers use Stack

Overflow as a major resource for solving programming problems, including security and

privacy relevant problems. And that other resources, such as official Android API docu-

mentation, do not provide the same degree of quickly understandable, directly applicable

assistance. They also state that Stack Overflow contains many insecure answers, and that

Android developers who rely on this resource are likely to create less secure code.

Fischer et al. (2017) studied the impact of copying code snippets from Stack Overflow

on code security. They analyzed 1.3 million Android applications and found that 15.4% of

them contained vulnerable code snippets that were very likely copied from Stack Overflow.

The authors state that code security has a complex nature, and it is very difficult to provide

ready-to-use and secure solutions for every problem. Hence, integrating a security-related

5

code snippet from Stack Overflow into production software requires caution and expertise.

Meng, Nagy, Yao, Zhuang, and Arango-Argoty (2018) conducted an empirical study

on StackOverflow posts to understand developers’ concerns on Java secure coding, their

programming obstacles, and insecure coding practices. They found that the top five most

popular programming challenges facing developers are authentication, cryptography, Java

EE security, access control, and secure communication. Among the five categories they

identified security vulnerabilities in the accepted answers of three frequently discussed top-

ics which are Cross-site request forgery (CSRF), SSL/TLS, and Password Hashing. The

authors reported security vulnerabilities in the suggested code of accepted answers on the

StackOverflow forum. Their findings reveal the insufficiency of secure coding assistance and

documentation, as well as the huge gap between security theory and coding practices.

2.3 Security Scanning Tools

A survey by Shahriar and Zulkernine (2012) presented different security scanning tools

that help to mitigate program security vulnerabilities, including program vulnerability anal-

ysis and discovery methods published between 1994 and 2010. All program analysis ap-

proaches can be categorized into three main categories: (1) Static Analysis: a given program

is analyzed based on its source code, without the need to execute it. (2) Dynamic Analysis:

a given program is analyzed by executing it with specific input data and monitoring its

runtime behavior. (3) Hybrid Analysis: a given program is analyzed with a mixture of

static analysis and dynamic analysis techniques. In addition to the aforementioned security

scanning methods, there is a different class of works that utilize techniques from the fields of

data science and artificial intelligence (AI) to address the problem of software vulnerability

scanning and discovery. This interesting class of approaches is neglected in the review of

Shahriar and Zulkernine (2012), while it has received increasing attention by the research

community in the following years (from 2011 onwards). Ghaffarian and Shahriari (2017)

presented a categorized review of this class of tools in the field of software security scanning

that utilize data mining and machine-learning techniques. One challenge for the proper

6

advancement of such tools is the lack of standard benchmarking datasets. The current

state of evaluations by researchers, where they report performance results on self-gathered

datasets, is not a reliable indicator of the proposed approaches’ success or failure. A stan-

dard benchmarking dataset that is carefully crafted by considering many different aspects

of a suitable software vulnerability dataset to provide the means for proper evaluation and

comparison of different approaches. Therefore, in our work we focus on qualitatively ana-

lyzing the vulnerability fixing issues to better understand the vulnerability issues and their

fixes, which provides a dataset that can help researchers and practitioners in the future.

2.4 Qualitative Analysis

In this section we look at previous work that manually analyzed and categorized secu-

rity issues, we note that the studies we show in this section are the only ones we found in

literature. Holzinger, Triller, Bartel, and Bodden (2016) studied exploits that break the

complex sandbox security mechanisms in Java. For their study, they collect exploits infor-

mation from various datasets. Then, they manually run the exploits to compare and cluster

their behavior in order to find out weak spots of the Java platform which are used in many

attacks. They point out that final goal of the exploits fall into three goals: Information

Disclosure (reveal sensitive system information), Full Bypass (often achieved through dis-

abling the active security manager), and Denial of service. In their work they explain inner

workings in Java (like how classloading happens and how security check happens) and how

they contribute to the security of the platform. Their results however are more interesting

to Java language maintainers and are targeted towards improving the security architecture

of Java. While our study differs from their study by focusing on security issues from the

applications side and not the languages side.

Jimenez, Papadakis, Bissyandé, and Klein (2016) studied 42 vulnerabilities impacting

the Android Operating System reported between 2008 and 2014. They build a taxonomy

of the issues causing vulnerabilities and characterize the fixes made to correct the vulner-

abilities. Their results show 8 causes of issues which are Resource Management, Data,

7

Semantic, Initialization Bug, Forget to remove debug features, Flow, Unauthorized Access,

and Insecure Protocol. The first 4 causes are related to Code, 1 related to Test and 3

related to Design, respectively. They give further details on the Code related problems by

providing 9 reasons for issues that fall under them, which are Buffer overflow, Incorrect

pointer dereference, Stack consumption, Input not verified, Serialization issue, Unprotected

use of a function, Missing/Incorrect implementation of a feature, Object not rightly cre-

ated, and Wrong initialization of data. Another study that is related to vulnerabilities in

the Android OS is by Linares-Vásquez, Bavota, and Escobar-Velásquez (2017). The goal

of their study is to investigate Android-related security vulnerabilities reported over the

history of the Android OS. They mined 660 vulnerabilities from official Android security

bulletins and information available on the National Vulnerability Database, and for their

manual analysis part they also looked at vulnerability related documents available on issue

trackers, versioning systems. They check the CVE details to identify its hierarchy (vulner-

ability type), and to identify the subsystem affected by the vulnerability. As a result, they

found the most frequent vulnerabilities affecting Android OS are related to weaknesses that

affect the memory, data handling permissions, privileges, and access control. For each of

their categories, they give an example with text description from the CVE and from the

fixing commit. They link the vulnerabilities to the subsystems affected by the vulnerabili-

ties, which are Linux Kernel, the Native libraries layer, the Applications layer, the Android

Framework, and the Hardware Abstraction Layer. The manual analysis in the study does

not focus on code snippets related to the security vulnerability. It is more geared towards

categorizing and identifying the affected components.

8

Our study is in the same direction as previous studies that analyze secu-

rity related issues. However, our study is focused on security issues from open

source Java applications, whereas previous studies focused on the Java language

or on Android OS. The dataset we start with is a collection of security fixes

from various open source Java projects. Like previous work, we extend our ini-

tial dataset with information from issues trackers, bug reports, advisories, and

related documentation. Additionally, we categorize the security issues based on

the collected information. Finally, we provide examples and code snippets in

addition to explanation of the issue and how it was fixed. Our study, like pre-

vious qualitative studies, can help the community better understand the types

of vulnerabilities that exist and their potential impact in order to avoid them

in the future.

9

Chapter 3

Methodology

In this chapter, we describe the dataset we used in our study, how we augmented our

initial dataset with the additional information required for achieving our research goal and

the process to obtain that information.

3.1 Data Collection and Curation

The main goal of this work is to qualitatively study the characteristics of security issues

and their fixes. To that aim, 1) we study the complexity of security-related fixes by looking

at a number of metrics related to the fixing commits; 2) we study the vulnerability fixing

commits along with additional information we gather related to the commit in order to

better understand the security issues facing application developers, we categorize such issues

into seven main categories; 3) we provide examples from each category to explain the

security issues and their fixes. Therefore, we have the need for collecting a dataset that

contains security fixing commits and the context of these commits.

We resort to the published dataset by SAP Security Research Ponta, Plate, Sabetta,

Bezzi, and Dangremont (2019). The dataset is collected over a period of four years. Also,

the dataset contains 205 distinct open-source Java projects, 1,282 fixing commits that cor-

respond to 624 unique vulnerabilities. The dataset is manually curated and validated by

SAP Security Research team. Also, it is publicly available as a CSV file. Each entry in

10

the file contains vulnerability id, project repository url, and commit id. Vulnerability ID is

a unique identifier of a vulnerability. Project repository url is the link to the project that

contains the vulnerability. Commit ID is an identifier of a commit that fixed the vulnera-

bility. The dataset is available under the Apache 2.0 license and it covered projects used in

SAP products. Though such projects are well-maintained and popular Java projects which

are used broadly by the OSS communities.

In our study, we examine the fixing commits, and this part is manually done at the

source code level along with many other pieces of information we collected while inspecting

the commits, and it definitely requires a significant amount of time and effort to review

and validate the examination process. Therefore, for our analysis, we selected statistically

significant sample with 95% confidence level and 5% confidence interval from the 1282 fixing

commits (i.e., 296 commits).

To make our dataset of quality (to focus on the recent security issues facing application

developers), we decided to select the 296 commits from the recent commits, i.e., commits

from 2017 and 2018, we filtered the dataset to commits in those two years and ended up

with 546 commits. Then, we randomly select the 296 commits from those filtered in the

previous step.

3.1.1 Card Sort

Card sort is a method to organize and categorize knowledge Wood and Wood (2008),

it consists of writing labels that represent the studied case, then sorting them and giving

names to the groups that indicate what the cases in that group have in common. We used

YAML1 for this task. YAML is a human friendly data serialization standard, it allows

expressing key-value pairs, lists, and nested structures which we used during our card sort

task.

We followed the card sort technique in our study. After we gathered the information

related to the studied vulnerability fix, we label the fix with short phrases that represent

the case, in this step we have multiple labels for each case, the labels in this step aim to

1https://yaml.org/

11

capture the information about the problem, the fixing code, and the solution. For example,

a commit2 from Jenkins was labeled with the following labels: ‘Form Validation’, ‘Check

Permission’, ‘Fix Empty and Trim’. Next, we sort the cases that are similar or close to each

other to become consecutive so that we can navigate them more easily. We revisited the

cases in each group multiple times to make sure that they are sorted correctly. In the next

step, we iterate the groups to see if they can be grouped under a more broad one. Then we

give a name to each one of these groups.

3.1.2 Validation of the Manual Check

To validate the manual analysis, the categories of the commits were validated by a PhD

student. The rich data required for the categorization was collected and initially validated by

the thesis author, then the cases were reviewed and revalidated by the colleague. The author

provided the 296 studied cases with the added information, labels, and categorization, and

the PhD student went through the cases and verified that the categorization of the commits

is suitable for the issues they solve. Whenever we failed to agree on a categorization, we

sit together and go over the commit information and make an agreed decision. For the

majority of the cases, there was an agreement on the classification of the vulnerability

issues. To measure the overall agreement, we use Cohen’s Kappa coefficient Cohen (1960).

The resulting value is a number between -1 and 1, where zero or negative values mean no

agreement, and values above 0.8 are considered good agreement. In our categorization,

the level of agreement was +0.93 (277 out of 296), which is considered to be an excellent

inter-rater agreement.

3.2 Complexity Measurement of Vulnerability Fixes

We start our study with a preliminary analysis of the security fixing commits. We look

at a number of metrics related to the code affected by a vulnerability. Our goal from this

analysis is to inspect how large are the changes required for the fixing commits and whether

2https://github.com/jenkinsci/jenkins/commit/d7ea3f40efedd50541a57b943d5f7bbed046d091

12

they span lots of files. We used four metrics for our analysis, and we focus on the actual

code changes in the fixing commits meaning that we exclude changes in non-code files, i.e.,

non Java files. We also exclude test files from this analysis since our goal is to find the

amount of code change required to remedy the security issue.

• The number of code-files changed: We use this metric to measure how many files

were part of the changes, we only consider code files changed in the commit (i.e. no

non-Java files and no Test files).

• The entropy: The entropy is an indicator of whether the change was focused in

a few changed files or spread across them. High values of the entropy mean that

the changes are more spread. We calculate the entropy as defined by the Shannon

Entropy formula Hassan (2009); Xia, Shihab, Kamei, Lo, and Wang (2016). Entropy

is computed as: H(P) = −

∑
k

n=1(pk ∗ log2 pk) where n: number of files changed,

pk: is the probability for file k. The probability is calculated by dividing the number

of changes in a file on the total number of lines. For example, the entropy for a

commit3 is 0.094, two code files were changed in the commit, one of them had few

changes while the other one had major changes. The entropy for another commit4 is

1.366, the commit changed four code files, and all of them contained major changes.

Minimal values of the entropy occur when one file has most or all of the changes,

and the remaining files have few changes. While maximal values of the entropy occur

when changes are similarly scattered across the files.

• The number of lines of code added by the commit: For each code file changed

in the commit, we measure the number of added code-lines that contribute to the

fixing commits.

• The number of lines of code deleted by the commit: We follow the same steps

as the previous metric. Instead of considering the number of lines of code added by

the commit, we consider the number of lines of code deleted by the commit.

3https://github.com/facebook/buck/commit/8c5500981812564877bd122c0f8fab48d3528ddf
4https://github.com/apache/struts/commit/19494718865f2fb7da5ea363de3822f87fbda264

13

We gather those metrics per commit and we analyse them to get an overview of how

much effort is required to carry on the changes made to fix a security vulnerability in our

dataset.

3.3 Manual Categorization of Vulnerabilities

To understand the security issues facing developers and how they mitigated them, we

need to have a full picture of the context of the issues in our studied projects dataset. In

order to facilitate that goal, we collected related data from various sources in addition to

the data from the commits in order to build up a detailed description of the issues and their

context.

The selected fixing commits were manually analysed with the goal of assigning a free text

describing (i) the vulnerability issue discussed and (ii) the solution (fix) proposed/adopted.,

i.e., no predetermined suggestions or information were provided. After that, we group and

categorize the information obtained for the vulnerabilities and their fixes. That said, we

use an open card sorting technique to conduct our manual analysis.

The manual analysis is done in multiple steps to gather as much related information as

available. We start by visiting the fixing commit link on GitHub and inspecting the commit

message and the changed code in the commit. Then, we look at bug reports if available,

documentation, advisories, and other external information sources that help to understand

the vulnerability issue and the fix.

During the analysis of the code changes in the fixing commits we focus on the changes

that are essential to implement the fix, a commit may have an essential change or addition

of code in one or more files and also update other files to reflect the changes like a change

in call parameters. In the examples we report in each category, we focus on the essential

changes of the commit, without going into details about the related updates that result

from the change or that are not essentially the core fix of the problem. We show the code

examples in the categories in diff format, meaning that we highlight the new code with

green and the removed code with red, code that is untouched uncolored. In cases where

14

Chapter 4

Results

4.1 Complexity Measures

We start with a preliminary analysis of the changes in the commits, we look at four

metrics which are the number of lines added per commit, the number of lines deleted per

commit, the number of code files changed, and the entropy. Figure 4.1 show boxplots of

the studied metrics. We also added the figures with the outliers plotted in the appendix,

figure A.1.

We note from the metrics values that the median number of code-files changed per

commit is (1) and the median entropy per commit is (0.15), this indicates that the changes

typically involve few code files. We also note that the median number of code lines added

per commit is (21) and the median number of code lines deleted per commit is (4), which

indicates that the number of changes needed in the fixing commit is typically small. Our

results are in line with previous results from Li and Paxson (2017), they conducted a

large-scale qualitative study of security fixes in order to characterize and compare them to

other non-security bug patches. They studied several metrics to conduct their comparison.

Among their findings, security commits overall are statistically significantly less complex

and smaller than non-security bug patches. For example, the median security commit diff

involved 7 LOC compared to 16 LOC for non-security bug fixes. Also, 70% of security

patches affected one file, while 55% of non-security bug patches were equivalently localized.

21

0 50 100 150

Additions

Value

(a) Additions

0 5 10 15 20 25 30

Deletions

Value

(b) Deletions

0.0 0.5 1.0 1.5

Entropy

Value

(c) Entropy

1 2 3 4 5 6

files_changed

Value

(d) Files_Changed

Figure 4.1: Metrics (outliers eliminated)

In summary, the metrics indicate that security fixes are more localized and have lower

footprint in their changes than other bug fixes.

In addition to the median values we were curious to inspect why the number of lines

added per commit had considerable difference between the 1st and 3rd quartile (as seen

from the plots). So we inspected commits that fixed the same security issues but had

huge difference in the value of their metrics, and we found they essentially carry the same

intended changes.

For example: a fixing commit1 related to the Deserialization of untrusted data issue has

5 code files changed, 140 added lines and 6 deleted lines, while another similar commit2

which is related to the same issue has 2 changed code files, 50 added lines and 1 deleted

line. Essentially, both of these two commits carry similar changes, which is extending the

‘ObjectInputStream’ and having a whitelist for classes allowed for deserialization.

Another example related to Zip slip reveals similar findings, a fixing commit3 has 4 code

1https://github.com/apache/logging-log4j2/commit/5dcc19215827db29c993d0305ee2b0d8dd05939d
2https://github.com/facebook/buck/commit/8c5500981812564877bd122c0f8fab48d3528ddf
3https://github.com/looly/hutool/commit/9f8a801c7b98b75ee681c0988e1a58bcfdc21756

22

files changed, 65 added lines and 17 deleted lines, and it essentially has the same changes as

another commit4 which has 1 code file changed and 5 added lines. Both commits essentially

check whether the path of the extracted file is within the path of the desired extraction

directory.

Also for XML External Entity processing issues, the commit5 has 17 files changed, 88

added lines and 11 deleted lines, while another commit6 that has similar changes has 1 code

file changed, 5 added lines and 6 deleted lines (2 of the deleted lines were blank lines), and

yet both commits have similar fixes. Both commits disable XML features like Document

Type Definition and External Entities.

We conclude from the examples that the fixing commits related to the same issues

may have slightly different metrics based on the nature of the code base in which they are

applied, hence, getting a real grip of the issues and the solutions requires more effort than

quantitative analysis. This motivated us to do further manual analysis of the fixing commits

in order to provide developers with an understanding of the common problems from the

community and the practices used to mitigate those problems and secure the underlying

applications.

4.2 Categorization

We categorized the studied commits into seven main categories with subcategories in

most of them. We explain each category in detail in the next section, table 4.1 shows the

main categories with the percentage of cases we found under that category.

As we can see in the table, Validation is the largest category, this is due to the fact that

it includes many subcategories related to wide spectrum of issues from Input Validation to

Http Headers validation and certificate validation.

Authorization issues also have large the number of cases, this category includes subcat-

egories related to the OAuth 2.0 vulnerabilities and privilege escalation.

4https://github.com/apache/hadoop/commit/65e55097da2bb3f2fbdf9ba1946da25fe58bec98
5https://github.com/apache/uima-uimaj/commit/39909bf21fd694f4fb792d1de8adc72562ead25e
6https://github.com/apache/cayenne/commit/6fc896b65ed871be33dcf453cde924bf73cf83db

23

Table 4.1: Categories of security issues fixes with their percentages

Category Percentage

Deserialization of untrusted data 10%
Zip slip 9%
XML External Entity Processing 17%
Validation 27%
Authentication & Authorization 26%
Race conditions 5%
Information Exposure 6%

The categories on Deserialization of untrusted data, Zip slip, an XML External Entity

Processing contained mainly similar issues, but as we will describe in later sections, we

found edge cases in those categories that are worth mentioning. Race conditions category

had the least number of cases in our studied commits. As we explained in section 3.1, our

studied commits represent a statistically significant number of commits from the studied

dataset, we believe the prevalence of the issues to be representative of the issues from the

studied dataset.

4.3 Cases Analysis

In the following sections we provide example cases from each category to illustrate the

security issues and their solutions. Our goal is to help developers understand those issues

and their fixes by providing code snippets from fixing commits in open source projects.

We also provide the necessary background to explain the issues and the context of the

surrounding code.

4.3.1 Deserialization of untrusted data (10%)

Serialization is the activity of turning an object to a byte stream in order to send it or

store it. Deserialization is the opposite activity of turning a byte stream to an object. There

are many formats for sending or storing the serialized object, like XML, JSON and YAML.

The problem is that if you deserialize untrusted data you might end up with malicious

code that makes your system vulnerable to Remote Code Execution. It is advised when

24

deserializing objects to check the class of the object before actually resolving it.

This is done by extending the ObjectInputStream and overriding the resolveClass method.

When you check the class of the deserialized object, you will check it against a list of allowed

classes (which is called whitelisting), or you will check it against a list of disallowed classes

(which is called blacklisting). Obviously, whitelisting is more restrictive than blacklisting

since it prevents deserialization of classes not specified in the list. The following commit

shows how to extend ObjectInputStream and override the resolveClass method, it also shows

the use of whitelisting7.

1 /** A ObjectInputStream that will deserialize only RemoteDaemonicParserState. */

2 public class ParserStateObjectInputStream extends ObjectInputStream {

3 private Set<String> whitelist;

4 public ParserStateObjectInputStream(InputStream inputStream) throws IOException {

5 super(inputStream);

6 whitelist = new HashSet<>();

7 whitelist.add(RemoteDaemonicParserState.class.getName());

8 }

9 @Override

10 protected Class<?> resolveClass(ObjectStreamClass desc) throws IOException,

→֒ ClassNotFoundException {

11 if (!whitelist.contains(desc.getName())) {

12 throw new InvalidClassException(desc.getName(), "Can't deserialize this

→֒ class");

13 }

14 return super.resolveClass(desc);

15 }

16 }

Listing 4.1: extending the ObjectInputStream

7https://github.com/facebook/buck/commit/8c5500981812564877bd122c0f8fab48d3528ddf

25

The application uses serialization to loads/saves state, it only needs to allow one class for

deserialization, hence, it whitelists RemoteDaemonicParserState.

Specifying the exact class name is not the only way to declare whitelisted or blacklisted

classes, it is also possible to specify the package name like 8, which would whitelist (or

blacklist) all the classes under that package.

Another approach is to use patterns (wildcard or regex) to specify the classes. And

in some cases we found that both whitelisting and blacklisting were used together, with

precedence given to the blacklist as in 9.

Void Deserialization

We came across an interesting special case10 in deserialization, which is the deserializa-

tion of void. void is used in Java to represent the null type, it is not possible to create an

instance of void since its constructor is private11. In x-stream project12 which is a library

to “Serialize Java objects to XML and back again”, a commit adds code to prevent the

deserialization of void. The security report mentions that having void in the input would

crash the instance and cause denial of service.

The following check is made in the added code

1 if (type == void.class || type == Void.class) {

2 ex = new ConversionException("Type void cannot have an instance");

3 }

Listing 4.2: Prevent void Deserialization

4.3.2 Zip Slip (9%)

Zip files are in some cases used as input to the application, the contents of the zip file

would be extracted to proper locations on the application server. However, some security

8https://github.com/apache/spark/commit/772a9b969aa179150aa216e9efd950e512e9d0b4
9https://github.com/apache/camel/commit/adc06a78f04c8d798709a5818104abe5a8ae4b3

10https://github.com/x-stream/xstream/commit/6e546ec366419158b1e393211be6d78ab9604ab
11https://docs.oracle.com/javase/8/docs/api/java/lang/Void.html
12https://github.com/x-stream/xstream

26

issues may arise if the paths of the files are not checked and validated prior to extraction.

The term “Zip Slip” was popularized by Snyk for this vulnerability, Snyk has identified this

issue in multiple open source application and reported the issue to the maintainers under

the name of Zip Slip13. It is also common to refer to this problem as zip path traversal.

The issue of zip slip occurs when the contents of the zip file are crafted so that they

have relative paths, meaning they have ‘..‘ in their path. Upon extracting the files -without

having the proper checks in place- this would lead to writing the files in directories that may

belong to system files, meaning they would overwrite system files or other important files.

This vulnerability may also lead to remote code execution. To protect your application

from the zip slip vulnerability, the application code should make sure that every file from

the zip would end up in the specified extraction directory before actually extracting the

files. This is done in many fixing commits by checking that the absolute path of each file

from the zip actually starts with the absolute path of the extraction directory and throwing

an exception otherwise.

The following code snippet from a commit14 in Hadoop shows the mitigation steps in

terms of code:

1 String targetDirPath = toDir.getCanonicalPath() + File.separator;

2 for(ZipEntry entry = zip.getNextEntry();

3 entry != null;

4 entry = zip.getNextEntry()) {

5 if (!entry.isDirectory()) {

6 File file = new File(toDir, entry.getName());

7 if (! file.getCanonicalPath().startsWith(targetDirPath))

8 throw new IOException("expanding " + entry.getName()

9 + " would create file outside of " + toDir);

Listing 4.3: Prevent Zip Slip

13https://snyk.io/research/zip-slip-vulnerability
14https://github.com/apache/hadoop/commit/fc4c20fc3469674cb584a4fb98bac7e3c2277c9

27

Corrupt Zip Files

Zip file format has a header that holds information about the files, the encryption

algorithm along with other information. Zip file utilities read the file as a stream of bytes,

the header information is parsed by reading chunks of the input and parsing it (done via

offset + length). A problem that may occur in zip utilities when dealing with corrupt files

is that the information in the header will not match the content of the file, and this may

lead to problems when processing the file. An example of such a case15 is found in apache

commons-compress which is a library that defines an API for working with compressed files

and archive files, the problem was that one piece of information from the header had a

long data type and was being compared to an int data type in a loop. This didn’t cause a

problem with uncorrupt zip files, but when a corrupt zip file was used for the input, the value

of long variable was larger than MAX_INT value, and the comparison would never terminate

because of int overflow. The issue was fixed by having the loop counter datatype changed

from int to long so that the overflow doesn’t happen and the loop would terminate even if

the zip file is corrupt. This kind of problem might not be common, but the awareness that

it makes us pay attention to is that testing against corrupt zip files should not be forgotten.

This is not only important to zip file utility maintainers, but also to users of these utilities.

Applications that accept zip files as input or store their information in zip files should not

miss the checks for corrupt files in their test cases.

4.3.3 XML External Entity (XXE) Processing (17%)

XML is a markup language designed to create documents that are human and machine

readable. XML is used in wide range of applications like communication protocols and

configuration files.

An XML document is made up of elements, which optionally may have attributes. The

way the elements are nested defines the XML document structure.

1 <?xml version="1.0" encoding="UTF-8"?>

15https://github.com/apache/commons-compress/commit/2a2f1dc48e22a34ddb72321a4db211da91aa933b

28

2 <thesis>

3 <author>Mouafak</author>

4 <department>Software Engineering</ department >

5 <year>2019</ year >

6 </ thesis >

Listing 4.4: XML file example

An XML document is well formed if the tags (like <thesis>, <author>) are closed and

properly nested, the attribute values must be quoted.

An XML document type definition (DTD) is declared in the DOCTYPE element. The

DTD defines the structure, elements and attributes of an XML document, and is used to

validate the XML document. The DTD can be internal (within the XML file) or external.

Lines 3 to 11 in the example above is for internal DTD, if the DTD is external, those lines

would be replaced with <!DOCTYPE thesis SYSTEM "thesis.dtd">

1 <?xml version="1.0" encoding="UTF-8"?>

3 <!DOCTYPE thesis

4 [

5 <!ELEMENT thesis (author,department,year)>

6 <!ENTITY % chapter_content "section | paragraph" >

7 <!ENTITY % section_content "subsection | subsubsection" >

8 <!ENTITY % paragraph_content "subparagraph" >

9 <!ELEMENT chapter (%chapter_content;)>

10 <!ENTITY chap1 SYSTEM "chap1.xml">

11]>

13 <thesis>

14 <author>Mouafak</author>

15 <department>Software Engineering</department>

29

16 <year>2019</year>

17 <chapters>

18 <chapter>&chap1;</chapter>

19 </chapters>

20 </thesis>

Listing 4.5: XML document with DTD

XML allows custom entities to be defined within the DTD using a syntax similar to the

following example: <!DOCTYPE mydtd [<!ENTITY myentity "my entity value">]> The previ-

ous definition means that any usage of the entity reference &myentity; within the XML

document will be replaced with the defined value "my entity value".

XML external entities are a type of custom entity whose definition is located outside of

the DTD where they are declared. The declaration of an external entity uses the SYSTEM

keyword and must specify a URI from which the value of the entity should be loaded. For

example: <!DOCTYPE mydtd [<!ENTITY ext SYSTEM "file:///path/to/file">]>

Parameter entities are entities used to group elements and attribute lists in order to

refer to them using the parameter entity. Lines 6 to 8 are examples of Parameter Entities.

A parameter entity can be distinguished with ‘%‘

XXE attacks XML external entity (XXE) attacks occur when an XML file that contains

a reference to an external entity is processed without securing the parser. XXE attacks could

lead to exposure of sensitive information if the attacker uses the URI to refer to a local file

on the system. It also could lead to denial of service attack if the URI refers to /dev/random

file which will block the execution until the file has enough data16.

Disabling XXE attacks OWASP has a document17 that explains how to prevent XXE

attacks for many parsers. They explain that “the safest way to prevent XXE is always to

16https://en.wikipedia.org/wiki//dev/random
17https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html#general-

guidance

30

disable DTDs (External Entities) completely”, which basically means that XML validation

will no longer be available to the project. In cases where it is essential to validate XML

documents, the solution would be to prevent external DTD and external entities as explained

by OWASP: “If it is not possible to disable DTDs completely, then external entities and

external document type declarations must be disabled in the way that’s specific to each

parser”. A commit18 from apache kafka shows disabling DTD for SAXParserFactory and

DocumentBuilderFactory, basically commits that fix XML issues are more or less using the

same syntax for the fixes which is disabling features in the parsers.

1 import javax.xml.XMLConstants;

3 spf = SAXParserFactory.newInstance();

4 spf.setNamespaceAware(true);

5 spf.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true);

6 spf.setFeature("http://xml.org/sax/features/external-general-entities", false);

7 spf.setFeature("http://xml.org/sax/features/external-parameter-entities", false);

8 spf.setFeature("http://apache.org/xml/features/nonvalidating/load-external-dtd",

→֒ false);

9 spf.setXIncludeAware(false);

11 dbf = DocumentBuilderFactory.newInstance();

12 dbf.setNamespaceAware(true);

13 dbf.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true);

14 dbf.setFeature("http://xml.org/sax/features/external-general-entities", false);

15 dbf.setFeature("http://xml.org/sax/features/external-parameter-entities", false);

16 dbf.setFeature("http://apache.org/xml/features/nonvalidating/load-external-dtd",

→֒ false);

17 dbf.setXIncludeAware(false);

18 dbf.setExpandEntityReferences(false);

18https://github.com/apache/karaf/commit/1ffa6d1c4555cab9737d76b49142528b57cfdfc

31

Listing 4.6: XXE Prevention For The Used Parsers

4.3.4 Validation (27%)

Validation essentially means making sure that the input does not break the application.

Many fixes of the security issues were related to validation and verification, and the related

issues span a wide spectrum. In this section we report the most common ones with examples

from the fixing commits.

Path Traversal

Applications that work with files should validate the paths of the files, whether the

application reads or writes a file based on user input, validation of the path (sometime

referred to as URI) is essential to avoid directory traversal attacks. Directory traversal

attacks happen when the path name contains a relative path “..”, which leads to accessing

files on the filesystem, or writing files in unallowed paths that may lead to overwriting

system files.

We have spotted this issue in multiple projects. Validation is done by checking that

the path doesn’t contain relative path, and may check for slashes in the path (forward

and backward slashes if the app has both windows and unix support). The following code

snippet from a fixing commit19 in apache lucene-solr adds validation of the filename

1 // Throw exception on directory traversal attempts

2 protected String validateFilenameOrError(String filename) {

3 if (filename != null) {

4 Path filePath = Paths.get(filename);

5 filePath.forEach(subpath -> {

6 if ("..".equals(subpath.toString())) {

7 throw new SolrException(ErrorCode.FORBIDDEN, "File name cannot contain ..");

19https://github.com/apache/lucene-solr/commit/3a4f885b18bc963a8326c752bd229497908f1db

32

8 }

9 });

10 if (filePath.isAbsolute()) {

11 throw new SolrException(ErrorCode.FORBIDDEN, "File name must be relative");

12 }

13 return filename;

14 } else return null;

15 }

Listing 4.7: File Path Validation

A fixing commit20 in apache camel also manages the filepath of the attached files. The

essential change in the commit is to call FileUtil.stripPath method for file names.

String fileName = FileUtil.stripPath(part.getFileName());

Looking at the added test shouldSanitizeAttachmentFileNames gives a hint on what the

stripPath method should handle

1 public static Iterable<String> fileNames() {

2 return Arrays.asList("file.txt", "../file.txt", "..\\file.txt", "/absolute/file.txt",

→֒ "c:\\absolute\\file.txt");

Listing 4.8: Test input in shouldSanitizeAttachmentFileNames test case

We look up the body of the method stripPath at the same fixing commit21 (although it

was not part of the change):

1 /**

2 * Strips any leading paths

3 */

4 public static String stripPath(String name) {

5 if (name == null) {

20https://github.com/apache/camel/commit/63c7c080de4d18f9ceb25843508710df2c2c6d4
21https://github.com/apache/camel/blob/63c7c080de4d18f9ceb25843508710df2c2c6d40/camel-

core/src/main/java/org/apache/camel/util/FileUtil.java

33

6 return null;

7 }

8 int posUnix = name.lastIndexOf('/');

9 int posWin = name.lastIndexOf('\\');

10 int pos = Math.max(posUnix, posWin);

12 if (pos != -1) {

13 return name.substring(pos + 1);

14 }

15 return name;

16 }

Listing 4.9: Inspecting the code of related file FileUtil.java

Also the following commit22 in Spring Framework deals with the same issue, it adds a

method to check for invalid paths, in this commit a fix for windows filepath checking was

added.

1 private boolean isInvalidEncodedPath(String resourcePath) {

2 if (resourcePath.contains("%")) {

3 // Use URLDecoder (vs UriUtils) to preserve potentially decoded UTF-8 chars...

4 try {

5 String decodedPath = URLDecoder.decode(resourcePath, "UTF-8");

6 return (decodedPath.contains("../") || decodedPath.contains(".."));

7 }

8 catch (UnsupportedEncodingException ex) {

9 // Should never happen...

10 }

11 }

12 return false;

13 }

22https://github.com/spring-projects/spring-framework/commit/13356a7ee2240f740737c5c83bdccdacc30603a

34

Listing 4.10: File Path Validation

Improper Validation of Certificate with Host Mismatch

Establishing a secure connection in client-server communications involves using the TLS

(Transport Layer Security) protocol, the protocol involves exchanging a set of messages

between the client and the server to acquire pieces of information necessary to establish the

secure connection. TLS is used when creating a secure http or websocket connection, and

takes place just after the TCP connection has been established.

Authenticating the identity of the server and its certificate is one of steps done in the

handshake. To verify the certificate, two steps are involved, one of them is to make sure it

is valid (through security chain), and the other one is to make sure it matches the server

name. If the later part is overlooked, a Man in the middle attack may be possible if a

malicious host (who has the valid certificate) provides data.

Many security fixing commits had to deal with the later step, which is verifying that

the hostname of the server matches the certificate.

The following code snippet from apache/activemq23 provides an example on how to

properly do hostname verification for certificate validation:

1 import javax.net.ssl.SSLParameters;

3 if (verifyHostName) {

4 SSLParameters sslParams = new SSLParameters();

5 sslParams.setEndpointIdentificationAlgorithm("HTTPS");

6 sslEngine.setSSLParameters(sslParams);

7 }

Listing 4.11: Hostname Verification

23https://github.com/apache/activemq/commit/bde7097fb8173cf871827df7811b3865679b963d

35

The lack of hostname validation was an issue in many other projects 24, 25, 26

HTTP Headers

Clients communicating with servers through the http protocol can make use of headers.

Headers are key-value pairs which contain additional information sent with the http request

or the response.

Header value validation There are predefined headers which have pre-defined roles. It

is also possible to set a new header and its value. The Range header27 is used to specify

the part(s) of the document that the server should return. It is possible to specify multiple

parts of the document to be returned in a single request. However, a security fixing commit

from Spring framework shows that it is a bad practice to skip validation of the requested

ranges. The vulnerability report28 indicates that a denial of service attack is possible due

to the lack of validation on the requested ranges.

The fixing code sets a limit on the number of requested ranges (arbitrary number), and

does additional checks to verify that the ranges don’t overlap and don’t exceed the length

of the requested resource.

The following code snippet from spring-framework project29 shows the changes in terms

of code:

1 private static final int MAX_RANGES = 100;

2 //...

3 Assert.isTrue(tokens.length <= MAX_RANGES, () -> "Too many ranges " + tokens.length);

4 //...

5 Assert.isTrue(total < length, () -> "The sum of all ranges (" + total + ") " +

→֒ "should be less than the resource length (" + length + ")");

24https://github.com/apache/tomcat/commit/2835bb4e030c1c741ed0847bb3b9c3822e4fbc8a
25https://github.com/apache/activemq/commit/bde7097fb8173cf871827df7811b3865679b963d
26https://github.com/apache/qpid-proton-j/commit/0cb8ca03cec42120dcfc434561592d89a89a805e
27https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Range
28https://nvd.nist.gov/vuln/detail/CVE-2018-15756
29https://github.com/spring-projects/spring-framework/commit/c8e320019ffe7298fc4cbeeb194b2bfd6389b6d

36

Listing 4.12: Range Header Validation

CRLF Injection CRLF are the Carriage Return and Line Feed characters, also referred

to as ‘\r \n‘. These characters are used in http communication to indicate the end of one

header and the start of the next header (single CRLF) or to indicate the end of http headers

and the start of the website content (double CRLF).

CRLF injections could lead to serious attacks based on the injected header or content. They

happen if the application input is used in the http communications directly. A commit30 in

eclipse-vertx/vert.x adds http header CRLF validation by checking header names and values

for occurrences of ‘\r‘ or ‘\n‘ characters.

The following code snippet illustrates the checks for the characters

1 public static void validateHeader(CharSequence value) {

2 for (int i = 0;i < value.length();i++) {

3 char c = value.charAt(i);

4 if (c == '\r' || c == '\n') {

5 throw new IllegalArgumentException("Illegal header character: " + ((int)c));

6 }

7 }

Listing 4.13: CRLF Validation

4.3.5 Authentication and Authorization (26%)

Authentication an Authorization are common terms in access management, authentica-

tion refers to validating the user identity while authorization has to deal with permissions

to access specific resources. Authentication takes place before authorization and involves

providing credentials to validate the user identity.

30https://github.com/eclipse-vertx/vert.x/commit/1bb6445226c39a95e7d07ce3caaf56828e8aab72

37

Authorization Vulnerability

Authorization manages user access to certain functionality or resources in the system.

Improper authorization means that the check done for restricting access to these resources

is not done properly. This leads to allowing users access to resources they shouldn’t be able

to access.

An issue in Jenkins favorite plugin allowed a user to toggle the favorites of another

user, this was possible because the user was being passed as a parameter to the toggle

favorite action and without proper checks in the code. The fixing commit31 resolved the

issue by getting the user whose favorites to toggle from the logged in user and not from url

parameters.

The code in the commit changes the code to get a user from ‘User user = jenkins.getUser(userName);’

to ‘User user = User.current();’

Another example32 from CloudFoundry User Account and Authentication Server (UAA)

allowed privileged users in one zone to perform a password reset for users in a different zone.

UAA is a multi tenant identity management service and the concept of zone id corresponds

to tenants. Zone ids are logically bound to entities managed by UAA33.

The fixing commit added zone id to String code which is the authorization code obtained

from the authorization server, it expires at specific timestamp.

1 default String zonifyCode(String code) {

2 return code + "[zone[" + IdentityZoneHolder.get().getId()+"]]";

3 }

5 default String extractCode(String zoneCode) {

6 int endIndex = zoneCode.indexOf("[zone[" + IdentityZoneHolder.get().getId()+"]]");

7 if (endIndex<0) {

8 return zoneCode;

9 }

31https://github.com/jenkinsci/favorite-plugin/commit/b6359532fe085d9ea6b7894e997e797806480777
32https://github.com/cloudfoundry/uaa/commit/bbf6751bc0d87c4a3aaf21b54e26ce328ab998b
33https://docs.cloudfoundry.org/uaa/uaa-concepts.html#iz

38

10 return zoneCode.substring(0, endIndex);

11 }

Listing 4.14: Add Zone Id to Authorization Code

OAuth 2.0 vulnerabilities

OAuth is an open standard for authorization, it is used to provide client applications

with tokens that allow them to access user information (privileged user resources) on a

service without knowing their credentials.

There are two versions of OAuth. OAuth 2.034 is the one commonly used. OAuth 2.0

specifies a set of steps required for a client to get a token. There are different flows for

OAuth 2.0, they differ based on the type of the client application and how much trust it

has35.

A typical flow of interactions to authorize a client web application would go as follows:

(1) User visits the web application and initiates the authorization process.

(2) Web application redirects user to the authorization server.

(3) User approves access.

(4) Authorization server returns authorization code to the web application.

(5) Web application exchanges the authorization code for access token.

In future communications the web application would use the access token to get access to

user data.

However, privilege escalation could happen during those steps if proper validation is

missing. We found two cases in Spring and in CloudFoundry UAA where the fixing commit

added validation for the authorization request on approval. The validation is done by

comparing the fields of the Authorization Request before and after the user approves the

34https://tools.ietf.org/html/rfc6749
35https://auth0.com/docs/api-auth/which-oauth-flow-to-use

39

request. Typically those fields should not change in the comparison. The reason for such

validation is that the lack of it would allow a malicious user to modify the authorization

request sent with the approval, which would make it possible for privilege escalation.

The following fixing commit36 from spring-security-oauth project, modifies the AuthorizationEndpoint

class by adding a method called isAuthorizationRequestModified.

The commit modifies the class method authorize by adding code to save the Authoriza-

tion Request:

1 // Store authorizationRequest AND an immutable Map of authorizationRequest in session

2 // which will be used to validate against in approveOrDeny()

3 model.put(AUTHORIZATION_REQUEST_ATTR_NAME, authorizationRequest);

4 model.put(ORIGINAL_AUTHORIZATION_REQUEST_ATTR_NAME,

→֒ unmodifiableMap(authorizationRequest));

The unmodifiableMap(authorizationRequest) is a new method defined in the class with no

access modifier, meaning that it is class and package accessible37, it basically creates an

unmodifiableSet38 for the attributes of the authorization request. The method body shows

the saved attributes:

1 Map<String, Object> unmodifiableMap(AuthorizationRequest authorizationRequest) {

2 Map<String, Object> authorizationRequestMap = new HashMap<String, Object>();

4 authorizationRequestMap.put(OAuth2Utils.CLIENT_ID,

→֒ authorizationRequest.getClientId());

5 authorizationRequestMap.put(OAuth2Utils.STATE, authorizationRequest.getState());

6 authorizationRequestMap.put(OAuth2Utils.REDIRECT_URI,

→֒ authorizationRequest.getRedirectUri());

7 if (authorizationRequest.getResponseTypes() != null) {

8 authorizationRequestMap.put(OAuth2Utils.RESPONSE_TYPE,

36https://github.com/spring-projects/spring-security-oauth/commit/623776689fdcc8047f5a908c71f348e1f172a97
37https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
38https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#unmodifiableSet(java.util.Set)

40

9 Collections.unmodifiableSet(new

→֒ HashSet<String>(authorizationRequest.getResponseTypes())));

10 }

11 if (authorizationRequest.getScope() != null) {

12 authorizationRequestMap.put(OAuth2Utils.SCOPE,

13 Collections.unmodifiableSet(new

→֒ HashSet<String>(authorizationRequest.getScope())));

14 }

15 authorizationRequestMap.put("approved", authorizationRequest.isApproved());

16 if (authorizationRequest.getResourceIds() != null) {

17 authorizationRequestMap.put("resourceIds",

18 Collections.unmodifiableSet(new

→֒ HashSet<String>(authorizationRequest.getResourceIds())));

19 }

20 if (authorizationRequest.getAuthorities() != null) {

21 authorizationRequestMap.put("authorities",

22 Collections.unmodifiableSet(new

→֒ HashSet<GrantedAuthority>(authorizationRequest.getAuthorities())));

23 }

25 return Collections.unmodifiableMap(authorizationRequestMap);

26 }

Listing 4.15: Storing authorizationRequest In Immutable Dataset

The class method approveOrDeny is modified to add the check for modification of the autho-

rization request, and would throw an exception if the fields don’t match:

1 // Check to ensure the Authorization Request was not modified during the user

→֒ approval step

2 @SuppressWarnings("unchecked")

41

3 Map<String, Object> originalAuthorizationRequest = (Map<String, Object>)

→֒ model.get(ORIGINAL_AUTHORIZATION_REQUEST_ATTR_NAME);

4 if (isAuthorizationRequestModified(authorizationRequest,

→֒ originalAuthorizationRequest)) {

5 throw new InvalidRequestException("Changes were detected from the original

→֒ authorization request.");

6 }

Listing 4.16: Verifying authorizationRequest Was Not Changed

The annotation @SuppressWarnings("unchecked") is to suppress compiler warnings for the

cast (getting the authorization request map of attributes from the model).

We found a very similar fixing commit39 in CloudFoundary UAA. It carries on the same

changes as the ones mentioned in the previous fixing commit.

Cross-Site Request Forgery Prevention

A CSRF token is used as means to prevent CSRF attacks, the token is generated on the

server and sent to the client to be used in subsequent communications.

CSRF (Cross-site request forgery) attacks are when an attacker illudes the user to make

requests that he didn’t intend (like clicking a link to change the user password with pre set

parameters by the attacker). CSRF tokens mitigate this by adding a piece of encrypted

information that is required with each request, which would make constructing a valid

request impossible without knowing the CSRF token.

A CSRF token should be generated on the server and saved against the user session. It

should be sent to the user in a hidden input field (or via headers in ajax communications).

And it should be validated on each subsequent request.

The following fixing commit40 from apache cxf adds CSRF support to the webapp, we

will demonstrate the practice using code snippets from the commit.

39https://github.com/cloudfoundry/uaa/commit/3f0730a015d10166de23b7e036743c185f0576a6
40https://github.com/apache/cxf-fediz/commit/c68e4820816c19241568f4a8fe8600bffb0243cd

42

The following snippet demonstrates the creation of the token and saving it in the user

session on the server.

1 public static String getCSRFToken(HttpServletRequest request, boolean create) {

2 if (request != null && request.getSession() != null) {

3 // Return an existing token first

4 String savedToken = (String)request.getSession().getAttribute(CSRF_TOKEN);

5 if (savedToken != null) {

6 return savedToken;

7 }

9 // If no existing token then create a new one, save it, and return it

10 if (create) {

11 String token =

→֒ StringUtils.toHexString(CryptoUtils.generateSecureRandomBytes(16));

12 request.getSession().setAttribute(CSRF_TOKEN, token);

13 return token;

14 }

15 }

Listing 4.17: Adding CSRF support to the code file

The following snippet demonstrates adding a hidden field in the html form of the client app

for the CSRF token.

1 <div class="form-line">

2 <input type="hidden" value="<%=token%>" name="client_csrfToken" />

3 </div>

Listing 4.18: Adding CSRF Token To The Form

The following code snippets shows adding the check for the CSRF token in the public

service methods, and also shows the method for checking the CSRF token against the one

43

stored in the session.

1 public RegisteredClients removeClient(@PathParam("id") String id,

→֒ @FormParam("client_csrfToken") String csrfToken) {

2 // CSRF

3 checkCSRFToken(csrfToken);

5 public Client resetClient(@PathParam("id") String id,

→֒ @FormParam("client_csrfToken") String csrfToken) {

6 // CSRF

7 checkCSRFToken(csrfToken);

9 // more methods here ...

11 private void checkCSRFToken(String csrfToken) {

12 // CSRF

13 Message message = PhaseInterceptorChain.getCurrentMessage();

14 HttpServletRequest httpRequest =

15 (HttpServletRequest) message.get(AbstractHTTPDestination.HTTP_REQUEST);

16 String savedToken = CSRFUtils.getCSRFToken(httpRequest, false);

17 if (StringUtils.isEmpty(csrfToken) || StringUtils.isEmpty(savedToken)

18 || !savedToken.equals(csrfToken)) {

19 throwInvalidRegistrationException("Invalid CSRF Token");

20 }

21 }

Listing 4.19: Adding CSRF Validation To The Routes

4.3.6 Race Conditions (5%)

A Race condition basically means that two threads are trying to access the same data,

this results in having wrong data in the threads or causing errors because of trying to

44

use the same resource. Multithreading is used in applications to maximize utilization of

the computing resources and/or to avoid blocking the application due to long operations.

Applications that make use of multithreading should organize threads access to shared

resources. This is usually done by using a synchronized block41 to surround the critical data.

However, thread synchronization is also possible by using accessible fields that represent

the processing states of the threads. This would make it possible for a thread to wait until

another thread transitions into a valid state.

A fixing commit42 from apache directory ldap api fixed a race condition that compro-

mised the application security. The problem was that a thread could use a connection that

should be secured before establishing the TLS connection, i.e. before the ssl connection

setup gets finishes. Which would result in leaking information contained in the request.

The following code was added to the connect method in LdapNetworkConnection class,

the code added a check to verify the connection is secure before using the connection, and

the check actually waits for the given timeout before returning the value of whether the

connection is secured or not (calling handshakeFuture.get method) 43, 44.

1 if (config.isUseSsl())

2 {

3 try

4 {

5 boolean isSecured = handshakeFuture.get(timeout, TimeUnit.MILLISECONDS);

7 if (!isSecured)

8 {

9 throw new LdapOperationException(ResultCodeEnum.OTHER, I18n.err(

→֒ I18n.ERR_4100_TLS_HANDSHAKE_ERROR));

10 }

41https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
42https://github.com/apache/directory-ldap-api/commit/075b70a733d7af150b3d85684149ff5f029f7fd
43https://directory.apache.org/api/gen-docs/latest/apidocs/org/apache/directory/ldap/client/

api/future/HandshakeFuture.html#get-long-java.util.concurrent.TimeUnit-
44https://directory.apache.org/api/gen-docs/latest/apidocs/src-html/org/apache/directory/ldap/client/

api/future/HandshakeFuture.html

45

11 }

12 catch (Exception e)

13 {

14 String msg = "Failed to initialize the SSL context";

15 LOG.error(msg, e);

16 throw new LdapException(msg, e);

17 }

18 }

Listing 4.20: Thread Synchronization Example

4.3.7 Information Exposure (6%)

Critical information used in the application code should not be stored in unsecure format,

an example would be user credentials and session information. Also information about the

application structure or similar kind of information should not be accessible by means of

bad application input through exceptions and stack traces.

Insufficiently Protected Credentials

Storing sensitive information in a secure form would be considered an intuitive practice

by developers nowadays, it adds an extra layer of protection so that even if the sensitive

information ends up in the hands of an attacker it would be impossible for them to make

use of it.

There are two ways to store sensitive information in a secure way, one is by using salting

and hashing, and the other is by using encryption keys. Hashing is a one-way method,

meaning that it is only possible to get the hash of the input and compare it to previously

store hash, while encryption is a two-way method which involves having the encryption

keys stored on the server. Salting is an essential practice when using hashing, it essentially

means concatenating additional values to the original value before hashing, which will make

dictionary attacks impossible to carry on especially if the salt value is not constant.

46

We found cases related to storing sensitive information in plaintext in some of the fixing

commits. This issue is not only still occurring in open source software, but also in recent

reports from big tech companies like Facebook and Google, both of which have recent

reports on storing user passwords in plaintext. A recent blog45 from Facebook mentions

that “As part of a routine security review in January, we found that some user passwords

were being stored in a readable format within our internal data storage systems”.

Google also has a recent blog46 about a similar issue “we recently notified a subset of our

enterprise G Suite customers that some passwords were stored in our encrypted internal

systems unhashed”.

There are multiple reports on plaintext storage of passwords in Jenkins plugins like Build

publisher plugin, Coverity Plugin, AWS CodePipeline Plugin, and AWS CodeDeploy Plugin.

The following code is from a commit47 fixing plaintext storage for Build publisher plugin

The changed code imports hudson.util.Secret and uses it for storing password information

instead of String.

Jenkins uses encryption (which uses two way functions to encrypt and decrypt using keys

as we mentioned before), and that’s why we see in the code that it is possible to get a

password from a secret.

1 this.secret = Secret.fromString(password);

Listing 4.21: Secure Storage Of The Password in Secret

And to get the plaintext password from the secret:

1 /*package*/ String getPassword() {

2 return secret.getPlainText();

3 }

Listing 4.22: Password Retreival From Secret

45https://newsroom.fb.com/news/2019/03/keeping-passwords-secure/
46https://cloud.google.com/blog/products/g-suite/notifying-administrators-about-unhashed-password-

storage
47https://github.com/jenkinsci/build-publisher-plugin/commit/7f80f0d7c9cd96a2d660eeb8b695297bef064059

47

Session identification values exposure

Logging is an essential practice in software development, the log is an invaluable source of

information to understand/debug issues that happen in the live environment after deploying

the application. The issue is that developers might log important information that shouldn’t

be exposed in the logs. For example, the session id is a token generated on the server and

stored on the client by means of a cookie. It is used in later communications to identify the

user. Developers may log the session id to track the user interactions with the application

during a session. However, if an attacker gets access to live logs, he could use the session

id to impersonate active users.

A fixing commit48 in Cloud Foundry UAA removed session id logging, the issue was

that the class UaaAuthenticationDetails had the following code in its toString() method

1 if (sessionId != null) {

2 if (sb.length() > 0) {

3 sb.append(", ");

4 }

5 sb.append("sessionId=").append(sessionId);

6 }

Listing 4.23: Removed Session Id From toString Method

Which means when saving the class in the audit logs, the session id would be saved.

However, if tracking the user interactions with the application is essential, a better

practice is hash the session id before logging it. This would still make it possible to track

user interactions during the session without revealing the session id to the naked eye.

Timing attacks

Storing sensitive information in a hashed format is not enough, practices used for com-

parison of the hashed values are also quite important. The comparison algorithm used to

compare the hashed values should not reveal how much of the input matches the stored

48https://github.com/cloudfoundry/uaa/commit/a61bfabbad22f646ecf1f00016b448b26a60daf

48

value. The revealed information can be used in Timing Attacks. Timing Attacks are possi-

ble if comparison of the stored hash is done byte-by-byte and the result is returned on the

first mismatch. This would allow the attacker to measure the time it takes to compare the

provided value with the stored value (from multiple attempts), and finally craft an input

that matches the stored value. The workaround for timing attacks is to use constant length

comparison algorithms that doesn’t return on the first mismatch, but rather they should

compare all bytes of the input value and the stored value and return the final true/false

comparison result based on that.

The following commit49 from eclipse/jetty.project fixes the timing attack by comparing

all bytes from the byte arrays b1 and b2 and accumulating the results of the comparison in

the boolean variable result.

1 int l1 = b1.length;

2 int l2 = b2.length;

3 if (l1 != l2)

4 result = false;

5 int l = Math.min(l1, l2);

6 for (int i = 0; i < l; ++i)

7 result \&= b1[i] == b2[i];

8 return result;

Listing 4.24: Timing Attack Mitigation

Information Exposure Through an Error/Error Message

Exceptions are used to handle runtime errors that may occur in unexpected situations

like unexpected input. Exception handling is essential to avoid crashing the application

when such errors happen and to make sure to recover the application state (like rolling

back a business transaction).

Typically, code that could lead to an exception is surrounded by a try-catch block, these

49https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea

49

blocks could have multiple catch statements ordered from the most specific exception class

(appearing first) to the most generic one. The code in a catch statement should be able

to recover from the specified expected exception. When there are resources that need to

be closed, a finally statement allows adding code that would be always executed when an

exception occurs.

Exceptions have stack trace and error message. A stack trace is the method call stack

from the point where the exception occurs to the first method invoked in the thread. The

stack trace should be used internally in the application logs to facilitate inspecting the

exception and should not be output to the user of the application.

Failing to catch the exception would result not only in crashing the application but

also in revealing the stack trace to the user, such revealed information could be used by

an attacker to compromise the system, especially since the input that could have cause the

exception may be attempted by an attacker.

An example for such a case is from eclipse/jetty.project where an intentional bad query

sent to the application might reveal the path to the resource directory of the Default-

Servlet50.

The workaround was to catch the most general exception that may arise, and to create

and throw a new exception that reports to the user that the input was invalid51.

1 catch (Throwable t)

2 {

3 // Any error has potential to reveal fully qualified path

4 throw (InvalidPathException) new InvalidPathException(pathInContext, "Invalid

→֒ PathInContext").initCause(t);

5 }

Listing 4.25: Catch and Throw Exception

As seen in the above code snippet, it is possible to supply the exception with information

that could be used to report the error to the user, in the previous snippet the additional

50https://nvd.nist.gov/vuln/detail/CVE-2018-12536
51https://github.com/eclipse/jetty.project/commit/53e8bc2a636707e896fd106fbee3596823c2cdc

50

info was the actual pathInContext info and a string "Invalid PathInContext". Exception

messages may be formatted and reported to the user of the application, however in localized

applications, these messages are also localized and reported to the user in their preferred

supported language. However, when providing such functionality, developers should make

sure that errors that don’t have a localization don’t end up reporting the full exception to

the user.

An example for such a case is from apache struts, where failing to find a localized error

message for an exception would result in reporting the whole exception info to the end user.

The fix was to use the default error key for an exception if no localized value was found52.

1 protected String buildErrorMessage(Throwable e, Object[] args) {

2 String errorKey = "struts.messages.upload.error." + e.getClass().getSimpleName();

3 if (LOG.isDebugEnabled()) {

4 LOG.debug("Preparing error message for key: [#0]", errorKey);

5 }

6 if (LocalizedTextUtil.findText(this.getClass(), errorKey,

7 getLocale(), null, new Object[0]) == null) {

8 return LocalizedTextUtil.findText(this.getClass(), "struts.messages.error.uploading",

9 defaultLocale, null, new Object[] {

10 e.getMessage() });

11 } else {

12 return LocalizedTextUtil.findText(this.getClass(), errorKey,

13 defaultLocale, null, args);

14 }

15 }

Listing 4.26: Using Default Error Key If No Localized Value Is Found

51

Table 4.2: Cross reference the studied cases with OWASP

Vulnerability
Mentioned by

OWASP

OWASP

Link

Deserialization of untrusted data X C1 (2017)

Void deserialization -

Zip slip X C2 (2017)

Corrupt zip file -

XML External Entity Processing X C3 (2017)

Path traversal X C4 (2015)

Improper Validation of Certificate with Host Mismatch X C5 (2017)

Header validation (Data validation) X C6 (2016)

CRLF injection X C7 (2018)

Authorization vulnerability X C8 (2008)

OAuth 2.0 vulnerabilities -

Cross-Site Request Forgery prevention X C9 (2017)

Race conditions X C10 (2009)

Insufficiently Protected Credentials X C11 (2009)

Session identification values exposure X C12 (2015)

Timing attacks X C13 (2017)

Information Exposure Through an Error/Error Message X C14 (2015)

52

4.4 Cross Referencing with OWASP

In this section we report the results of cross referencing the cases we studied with

OWASP. Table 4.2 shows the vulnerabilities names in our study, whether or not they are

in OWASP, and the link to their page on OWASP. Three of the cases from our study are

not mentioned by OWASP, which are void deserialization, corrupt zip file, and OAuth 2.0

vulnerabilities. However, for the later one, the OAuth 2.0 Security Best Practice mentions

validation as a mitigation for some of the described attacks.

52https://github.com/apache/struts/commit/352306493971e7d5a756d61780d57a76eb1f519a

53

Chapter 5

Implications, Summary, and

Future Work

Implications. Some of the security vulnerability issues we discussed have straight forward

solutions even though they were quite common, for example the deserialization of untrusted

data and XML External Entity processing issues have straightforward solutions that are

more likely to follow a specific structure for the solution, which as we have seen is overriding

the resolveClass method and providing a whitelist/black list for serialization, or to block

features from the XML parser in the case of XML related issues. Other solutions have less

common structure between them and require more in depth understanding of the issue and

the project structure, for example Race condition issues require a thorough understanding

of how the race condition happens, which threads are involved, and how to synchronize

them properly using the appropriate fields.

Projects that manage files (read/write) based on user input (requesting) should pay extra

attention to the paths they process. This is essentially a simple check that would prevent a

huge implication. These attacks are not hard to carry on especially with knowledge about

the application structure. This also applies to compressed files and extracting their content,

in fact creating a harmful compressed file with files that have relative paths inside it is not

a complicated task.

54

Through our study, we have seen that issues related to Improper Validation of Certificate

with Host Mismatch occurred in many different projects, even though the fix is quite simple

and does not require huge efforts to add to the code. This shows that developers focus on

delivering the required functionality without focusing on security when they are coding,

and they are not aware of the security implications of their code.

We also noticed that the nature of the project could have an implication on the types

of security issues that may occur. For example, Jenkins and UAA projects both manage

resources belonging to many users (multi-tenancy). We have seen multiple distinct issues

related to horizontal privilege escalation in these projects (which essentially mean that user

has access to other user resources), their solutions were by tying the resources more closely

to the users who should have the privilege to access them. In other words, this means that

application’s domain not only influences the best practices and structure of the application

but also the types of security issues that may occur, we hope future research will inspect

security issues from a domain-related point of view. On the other hand, some of the studied

issues are related to basic functionality that many applications could support regardless of

their domain, an example of such kind of issues is the issue related to Information Exposure

like Insufficiently Protected Credentials and Session identification values exposure. These

types of issues should be brought to the attention of all developers, and we think this

makes them a good starting point for developer education on security basics since the

functionality related to them is quite common, easy to understand, but it may not be easy

to define rules to detect them in the code using static analysis because different projects

might use different naming conventions. With the willingness to add security education to

developers’ curriculum, we think that starting with this type of issues would have a good

return on investment.

For projects that are starting out and have the luxury of deciding how to implement

the required functionality, we suggest looking into security issues that are imposed by the

usage of specific features versus their alternatives, having this kind of investigation at early

stages in the project lifetime could help you avoid security issues with low or no additional

55

development efforts. As an example, we suggest trying to avoid depending on serializa-

tion/deserialization and replacing it with a cross platform structured data representation

like JSON and YAML. Those serialization formats have libraries that facilitate working with

them in most programming languages and don’t impose the security issues that serialization

does. For XML validation we suggest moving the validation step to an upper layer in the

application code and keeping the XML parsers as secure as possible by using the proper

configuration.

Finally, we support the claim that expert developers and security experts should not be

distinct roles, development teams should have the required expertise to solve security issues

with minimum reliance on external security experts. Issues related to thread synchronization

stress this need as their solutions require an in-depth understanding of the problematic

code and the concerned threads, how they collaborate to deliver the functionality and more

importantly how to add code that puts proper constraints on their collaboration to fix the

security issue.

Summary. In our thesis, we studied security vulnerability issues and their fixing commits

from open source Java projects. Our study started from data validated by the SAP research

team. We started our study with a preliminary analysis of code metrics on the fixing com-

mits, we then demonstrated the categories of the studied commits, finally we went through

each category explaining the context of the code and how the security issue happened with

snippets from the fixing commits.

We have seen that security fixing code has a low footprint on the code base. We cat-

egorized the studied commits into seven main categories. Finally, we explained the issues

from each category. Our study aims to increase the awareness of software developers on

recent common security issues by providing the developers with code examples that they

can relate to development tasks to better understand and avoid the issues.

Future Work. Our future work will be on the following points: 1) we will conduct a

study with developers who have various expertise levels to assess how they perceive our

56

findings and the best format to present our results for maximum benefits. 2) we will look

at more aspects related to the security issues and the fixes like their lifetime, how they get

introduced to the code, whether they are fixed due to reports or as a part of other tasks, and

other related interesting aspects like assessing the expertise of the developers who introduce

the issues and the developers who fix the issues.

57

Bibliography

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M. L., & Stransky, C. (2016). You get

where you’re looking for: The impact of information sources on code security. In 2016

ieee symposium on security and privacy (sp) (pp. 289–305).

Assal, H., & Chiasson, S. (2019). ’think secure from the beginning’: A survey with software

developers. In Proceedings of the 2019 chi conference on human factors in computing

systems (p. 289).

C1. (2017). Deserialization of untrusted data - owasp. https://www.owasp.org/index.php/

Deserialization_of_untrusted_data. ((Accessed on 12/15/2019))

C10. (2009). Testing for race conditions (owasp-at-010) - owasp. https://www

.owasp.org/index.php/Testing_for_Race_Conditions_(OWASP-AT-010). ((Accessed

on 12/15/2019))

C11. (2009). Password storage · owasp cheat sheet series. https://cheatsheetseries

.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html. ((Accessed on

12/15/2019))

C12. (2015). Logging · owasp cheat sheet series. https://cheatsheetseries

.owasp.org/cheatsheets/Logging_Cheat_Sheet.html#data-to-exclude. ((Accessed

on 12/15/2019))

C13. (2017). Authentication · owasp cheat sheet series. https://cheatsheetseries.owasp

.org/cheatsheets/Authentication_Cheat_Sheet.html#compare-password-hashes

-using-safe-functions. ((Accessed on 12/15/2019))

C14. (2015). Improper error handling - owasp. https://www.owasp.org/index.php/

58

Improper_Error_Handling. ((Accessed on 12/15/2019))

C2. (2017). Test upload of malicious files (otg-buslogic-009) - owasp. https://

www.owasp.org/index.php/Test_Upload_of_Malicious_Files_(OTG-BUSLOGIC-009)

#Zip_files_path. ((Accessed on 12/15/2019))

C3. (2017). Xml external entity (xxe) processing - owasp. https://www.owasp.org/index

.php/XML_External_Entity_(XXE)_Processing. ((Accessed on 12/15/2019))

C4. (2015). Path traversal - owasp. https://www.owasp.org/index.php/Path_Traversal.

((Accessed on 12/15/2019))

C5. (2017). Transport layer protection · owasp cheat sheet series. https://

cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat

_Sheet.html#use-correct-domain-names. ((Accessed on 12/15/2019))

C6. (2016). Owasp secure coding practices checklist - owasp. https://www.owasp.org/index

.php/OWASP_Secure_Coding_Practices_Checklist. ((Accessed on 12/15/2019))

C7. (2018). Crlf injection - owasp. https://www.owasp.org/index.php/CRLF_Injection.

((Accessed on 12/15/2019))

C8. (2008). Category:authorization vulnerability - owasp. https://www.owasp.org/index

.php/Category:Authorization_Vulnerability. ((Accessed on 12/15/2019))

C9. (2017). Cross-site request forgery prevention · owasp cheat sheet series.

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery

_Prevention_Cheat_Sheet.html. ((Accessed on 12/15/2019))

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psycho-

logical measurement, 20 (1), 37–46.

Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M., & Fahl, S. (2017).

Stack overflow considered harmful? the impact of copy&paste on android application

security. In 2017 ieee symposium on security and privacy (sp) (pp. 121–136).

Ghaffarian, S. M., & Shahriari, H. R. (2017). Software vulnerability analysis and discov-

ery using machine-learning and data-mining techniques: A survey. ACM Computing

Surveys (CSUR), 50 (4), 56.

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In Proceedings

59

of the 31st international conference on software engineering (pp. 78–88).

Hemetsberger, A., & Reinhardt, C. (2006). Learning and knowledge-building in open-source

communities: A social-experiential approach. Management learning, 37 (2), 187–214.

Holzinger, P., Triller, S., Bartel, A., & Bodden, E. (2016). An in-depth study of more than

ten years of java exploitation. In Proceedings of the 2016 acm sigsac conference on

computer and communications security (pp. 779–790).

Imtiaz, N., Rahman, A., Farhana, E., & Williams, L. (2019). Challenges with responding

to static analysis tool alerts. In Proceedings of the 16th international conference on

mining software repositories (pp. 245–249).

Jimenez, M., Papadakis, M., Bissyandé, T. F., & Klein, J. (2016). Profiling android

vulnerabilities. In 2016 ieee international conference on software quality, reliability

and security (qrs) (pp. 222–229).

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why don’t software devel-

opers use static analysis tools to find bugs? In Proceedings of the 2013 international

conference on software engineering (pp. 672–681).

Li, F., & Paxson, V. (2017). A large-scale empirical study of security patches. In Proceedings

of the 2017 acm sigsac conference on computer and communications security (pp.

2201–2215).

Linares-Vásquez, M., Bavota, G., & Escobar-Velásquez, C. (2017). An empirical study

on android-related vulnerabilities. In 2017 ieee/acm 14th international conference on

mining software repositories (msr) (pp. 2–13).

Meng, N., Nagy, S., Yao, D., Zhuang, W., & Arango-Argoty, G. (2018). Secure coding

practices in java: Challenges and vulnerabilities. In 2018 ieee/acm 40th international

conference on software engineering (icse) (pp. 372–383).

Mitropoulos, D., Gousios, G., & Spinellis, D. (2012). Measuring the occurrence of security-

related bugs through software evolution. In 2012 16th panhellenic conference on

informatics (pp. 117–122).

Nadeem, M., Williams, B. J., & Allen, E. B. (2012). High false positive detection of

security vulnerabilities: a case study. In Proceedings of the 50th annual southeast

60

regional conference (pp. 359–360).

Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.-C., Cappos, J., & Zhuang, Y. (2014).

It’s the psychology stupid: how heuristics explain software vulnerabilities and how

priming can illuminate developer’s blind spots. In Proceedings of the 30th annual

computer security applications conference (pp. 296–305).

Ponta, S. E., Plate, H., Sabetta, A., Bezzi, M., & Dangremont, C. (2019). A manually-

curated dataset of fixes to vulnerabilities of open-source software. In Proceedings of

the 16th international conference on mining software repositories (pp. 383–387).

Sabetta, A., & Bezzi, M. (2018). A practical approach to the automatic classification of

security-relevant commits. In 2018 ieee international conference on software mainte-

nance and evolution (icsme) (pp. 579–582).

Shahriar, H., & Zulkernine, M. (2012). Mitigating program security vulnerabilities: Ap-

proaches and challenges. ACM Computing Surveys (CSUR), 44 (3), 11.

Shin, Y., Meneely, A., Williams, L., & Osborne, J. A. (2010). Evaluating complexity, code

churn, and developer activity metrics as indicators of software vulnerabilities. IEEE

Transactions on Software Engineering, 37 (6), 772–787.

Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., & Zhai, C. (2014). Bug characteristics in open

source software. Empirical Software Engineering, 19 (6), 1665–1705.

Thomas, T. W., Tabassum, M., Chu, B., & Lipford, H. (2018). Security during application

development: an application security expert perspective. In Proceedings of the 2018

chi conference on human factors in computing systems (p. 262).

Wan, L. (2019). Automated vulnerability detection system based on commit messages (Un-

published doctoral dissertation).

Wen, S.-F. (2017). Software security in open source development: A systematic literature

review. In 2017 21st conference of open innovations association (fruct) (pp. 364–373).

Wen, S.-F. (2018). Learning secure programming in open source software communities: a

socio-technical view. In Proceedings of the 6th international conference on information

and education technology (pp. 25–32).

Wood, J. R., & Wood, L. E. (2008). Card sorting: current practices and beyond. Journal

61

of Usability Studies, 4 (1), 1–6.

Xia, X., Shihab, E., Kamei, Y., Lo, D., & Wang, X. (2016). Predicting crashing releases of

mobile applications. In Proceedings of the 10th acm/ieee international symposium on

empirical software engineering and measurement (p. 29).

62

Appendix A

0 200 400 600 800

Additions

Value

(a) Additions

0 200 400 600 800

Deletions

Value

(b) Deletions

0 1 2 3 4

Entropy

Value

(c) Entropy

0 20 40 60 80

files_changed

Value

(d) Files_Changed

Figure A.1: Metrics (with outliers)

63

	List of Figures
	List of Tables
	Introduction and Problem Statement
	Thesis Contribution
	Thesis Overview

	Literature Review
	Measurements and Characteristics
	Available Resources
	Security Scanning Tools
	Qualitative Analysis

	Methodology
	Data Collection and Curation
	Card Sort
	Validation of the Manual Check

	Complexity Measurement of Vulnerability Fixes
	Manual Categorization of Vulnerabilities

	Results
	Complexity Measures
	Categorization
	Cases Analysis
	Deserialization of untrusted data (10%)
	Zip Slip (9%)
	XML External Entity (XXE) Processing (17%)
	Validation (27%)
	Authentication and Authorization (26%)
	Race Conditions (5%)
	Information Exposure (6%)

	Cross Referencing with OWASP

	Implications, Summary, and Future Work
	Bibliography
	Appendix

