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Abstract

High-Level Analysis of the Impact of Soft-Faults in

Cyberphysical Systems

Marwan Ammar, Ph.D.

As digital systems grow in complexity and are used in a broader variety of safety-

critical applications, there is an ever-increasing demand for assessing the dependabil-

ity and safety of such systems, especially when subjected to hazardous environments.

As a result, it is important to identify and correct any functional abnormalities and

component faults as early as possible in order to minimize performance degradation

and to avoid potential perilous situations. Existing techniques often lack the ca-

pacity to perform a comprehensive and exhaustive analysis on complex redundant

architectures, leading to less than optimal risk evaluation. Hence, an early analysis

of dependability of such safety-critical applications enables designers to develop sys-

tems that meets high dependability requirements. Existing techniques in the field

often lack the capacity to perform full system analyses due to state-explosion limita-

tions (such as transistor and gate-level analyses), or due to the time and monetary

costs attached to them (such as simulation, emulation, and physical testing).

In this work we develop a system-level methodology to model and analyze the

effects of Single Event Upsets (SEUs) in cyberphysical system designs. The proposed

methodology investigates the impacts of SEUs in the entire system model (fault tree

level), including SEU propagation paths, logical masking of errors, vulnerability to

specific events, and critical nodes. The methodology also provides insights on a sys-

tem’s weaknesses, such as the impact of each component to the system’s vulnerability,

as well as hidden sources of failure, such as latent faults. Moreover, the proposed

methodology is able to identify and categorize the system’s components in order of

criticality, and to evaluate different approaches to the mitigation of such criticality

(in the form of different configurations of TMR) in order to obtain the most efficient

mitigation solution available.
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The proposed methodology is also able to model and analyze system components

individually (system component level), in order to more accurately estimate the com-

ponent’s vulnerability to SEUs. In this case, a more refined analysis of the component

is conducted, which enables us to identify the source of the component’s criticality.

Thereafter, a second mitigation mechanic (internal to the component) takes place, in

order to evaluate the gains and costs of applying different configurations of TMR to

the component internally. Finally, our approach will draw a comparison between the

results obtained at both levels of analysis in order to evaluate the most efficient way

of improving the targeted system design.
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Chapter 1

Introduction

Cyber-physical systems (CPS) are a new class of embedded Information and Com-

munication Technologies (ICT) systems. These systems require tight integration of

computing, communication, and control technologies to achieve performance, stabil-

ity, reliability, efficiency and robustness in physical systems targeting many applica-

tion domains. Embedded systems have been successfully employed in almost every

aspect of our daily lives, ranging from medical devices, buildings, mobile devices,

robots, transportation, and energy systems. Such applications impose requirements

that are among the most challenging for CPSs being designed today. Furthermore,

advancements in technology are likely to increase the complexity of these CPSs even

more, with systems required to perform more functions while being smaller in size.

Combined with tight time, cost, and design constraints, these factors contribute to

making the development of CPSs a major technical challenge. In addition, many

CPSs are critical in nature, and they must be highly dependable, even in unknown

and hostile environments. This requires powerful methods for failure detection, diag-

nosis, and recovery to ensure correct system operation. For instance, the failure rate

per chip has been reported to increase 100-fold from the 180nm to the 16nm CMOS

technology node [111]. Exponential growth in the number of transistors per chip with

time has brought tremendous progress in the performance of semiconductor devices;

however, it may also increase the device’s vulnerability to some types of radiation.

State-of-the-art verification techniques that investigate the unreliability of safety-

critical CPSs are very costly, time consuming, and inefficient. In industry, the verifi-

cation of CPSs is mainly conducted at high level through simulation based techniques,
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or at low level through hardware testing. Simulation based techniques are less than

optimal, since they rely on the generation of input vectors, which means that the

full verification of a complex design is generally unattainable. Moreover, the short-

comings of these techniques are made evident in scenarios where exceptional or low

probability events (e.g., failure caused due to non-functional sources) have to be eval-

uated. For example, despite all the testing and certification that medical devices are

submitted to, there are several reports of death induced by pacemaker malfunctions.

Reportedly, these malfunctions have originated from the unforeseen effects of external

radiation originated in MRI machines, x-rays, and even cosmic ray exposure during

a commercial flight [58, 111]. The main challenge in the analysis of CPSs comes from

the fact that these systems are very complex, since they comprise several sub-systems

and sub-components. The verification of such systems requires the analysis of the

vulnerability of all the sub-components and sub-systems individually, as well as the

analysis of the interactions between them. Safety-critical systems are often time-

critical. Thus, the safety of these systems depends on their ability to correctly collect

and process data with real-time requirements. Specification and verification of timing

constraints further adds to the complexity of the system. Therefore, efficient ways

to analyze these complex systems are of decisive importance. Furthermore, a new

methodology which integrates different analysis techniques of this type of systems is

required. This methodology must be able to accommodate all the sub-components of

the system, and the synergies between them, at different levels of abstraction.

Due to the previously mentioned complexity and composition of cyber-physical

systems, the efficient and effective design of distributed multi-scale systems is still

an unsolved problem. The design process of these systems must encompass heteroge-

neous components, often uncertain in specification, their interconnections, and their

relationship to the environment. The dynamic of all these elements is critical to

the reliability of the system. Technology advances further increase the challenges to

the design process, adding the possibility of placing significantly more functionality

into products, but also increasing interconnectivity at the risk of unwanted system

interactions. Currently in the industry, overdesign is the most used path for safe

system design and deployment. However, due to the reasons explained above, this

approach is rapidly becoming intractable and it will soon reach its saturation point.

Furthermore, some critical CPSs are required to operate with very tight power, area,
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and cost constraints. Medical implants, for example, are required to be very small

and to have very low power consumption, in order to operate within the patient’s

body for extended periods of time. To obtain reliable CPSs without excessive overde-

sign, we need a rigorous methodology for system-level functional verification that is

able to: 1) Provide guarantees of performance and reliability against the require-

ments, even is extremely harsh environments. 2) Produce scalable, fast and cheap

verification environments for complex CPS. 3) Exploit analytical tools and techniques

to determine design choices and ensure robust system performance. 4) Achieve these

goals through the coordinated execution of a prescriptive, repeatable, and measurable

process. These points are further elaborated below, in Section 1.3.

1.1 Motivation and Problem Formulation

The failure of a critical CPS can be due to different classes of uncertainties, such as

manufacturing defects, aging, end of life failures, and transient faults. An example

of the existing reliability analysis of CPSs is the analysis of the impact transient

faults due to external radiation have on implantable devices. Radiation are of special

interest in critical CPSs as they keep occurring even if these systems are otherwise

fault-free and defect-free, in which case such systems could wrongly be expected to

have a 0-failure rate. Due to the criticality of many CPSs, the most accepted way

of evaluating their vulnerability to the effects of radiation is through a process called

dynamic radiation testing [82]. This method consists in exposing the target system to

a radiation flux and counting the number of errors observed. However, this method

is very expensive and time-consuming, since any change in the application requires a

new dynamic test. Alternative methods have emerged, with the goal of reducing the

time and cost constraints associated with dynamic radiation ground testing. These

techniques are mostly based on system vulnerability analysis through emulation and

simulation [17]. However, current techniques are not able to scale to the complexity

of these systems. Moreover, such analysis normally consumes large amounts of time

and requires full details of the design structure and of the characteristics of the fault.

In other words, with detailed circuit level techniques, normally required for detailed

modeling, this type of analysis would be intractable at the chip level and is only

tractable at the cell level (for hundreds of transistors at most) to get a certain level
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of accuracy. Moreover, the verification of CPSs requires accurate fault and system

models, as well as the use of comprehensive methods of analyzing the impact of

faults in each of the components. This is only possible with an analysis method

that works at several levels of abstraction. However, it is unlikely that the existing

single verification techniques will suffice at every level. A collection of techniques

with suitable integration of the results is required.

There has been much interest in developing formal verification frameworks to ver-

ify the correctness of the implementation of CPSs, at different abstraction levels.

These formal verification techniques are very efficient in providing guarantees about

the model correctness, as well as locating corner-cases and hard-to-find bugs. For

example, different formal verification frameworks were developed to verify the im-

plementation of pacemaker’s systems. In the work proposed by [66, 75, 76, 131], a

model-based framework for the automatic verification of the functionality of cardiac

pacemakers was developed. The authors developed a detailed model of a basic dual

chamber pacemaker. This model is constructed based on the timed automata (TA)

of each of the pacemaker sub-components. Moreover, in this work, the authors have

developed a TA of the heart behavior. The functionality of the pacemaker model

has been verified using statistical model checking. However, existing formal-based

techniques are designed to detect implementation bugs in the CPS (i.e., identification

of functional errors) [121, 122]. In other words, such techniques assume that the CPS

always operates in an error free environment. Therefore, with these techniques, it

is not possible to detect non-functional faults, such as radiation-induced soft-errors.

These errors are often generated when a sensitive area of a CPS is hit by a strong

enough flux of external ionizing radiation, such as X-rays and Gama-rays. These

external radiation fluxes may change the output of a transistor for a short period of

time, which, in turn, may the value stored in a state element. This event is known as

a Single Event Upset (SEU).

1.1.1 Radiation Ground Testing

The traditional and most direct approach to evaluate the SEU vulnerability of a

system (i.e., an application running in a processor) is through a process called dynamic

radiation ground testing [26, 133]. This method consists in exposing the target system

to a radiation flux and counting the number of errors observed. The outcome is
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computed in the form of a parameter known as the dynamic cross section (σ), which

is defined as the ratio between the number of errors observed at the output of a

design configured into the SRAM-based FPGA, divided by the fluence of hitting

particles [116]. A problem with that metric is that any change in the application

requires a new dynamic test, thus resulting in a very expensive and time-consuming

method. Alternative methods for SEU estimation have emerged, with the goal of

reducing the time and cost constraints associated with dynamic radiation ground

testing. In [16, 117, 135], the authors introduce a method of injecting SEUs at random

time intervals through emulation, by making use of an interrupt routine to alter

values within the processor’s internal registers and memory. Fault injection through

emulation is also used in the direct memory access SEU emulation method [55], where

a dedicated hardware component, controlled externally, selects the time instant and

the bit to be altered in the memory. This approach is further explored in [56, 57],

where the SEU injection is performed through probabilistic models of the system,

with the goal of estimating the system’s time to failure (TTF) and time to recover

(TTR). However, this technique still requires emulation in order to obtain certain

system rates which the model is built upon (i.e., coverage factor, error factor, and

failure factor).

1.1.2 Radiation Testing through Simulation

Another branch of SEU estimation techniques focus on fault injection through sim-

ulation, which is usually done by injecting faults at logical or electrical levels [48,

64, 83, 85]. The advantage of these techniques is the high level of control over the

fault injection scenarios, since the user has free access to the entirety of the system

and the timing of the injections is very accurate. However, emulation and simulation

based techniques have severe drawbacks. Disregarding the considerable time required

to simulate or to emulate a scenario of thousands of injected faults [17], both ap-

proaches are limited in terms of accuracy. This problem arises due to the fact that

these techniques are not exhaustive (only consider a small subset of the possible fault

injection scenarios) [84].
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1.1.3 Radiation Testing through Formal Verification

Recently, the use of formal based techniques to analyze soft errors at logical and higher

abstraction levels has been proposed, such as the work done in [15, 23, 101]. These

techniques provide new insights into the vulnerability of digital designs to SEUs.

This is mainly because they are exhaustive and not limited by the number of test

vectors as in simulation based techniques. However, at logical abstraction level, these

techniques suffer from the state explosion problem [65]. Therefore, it is expected for

these techniques to be more efficient at higher abstraction levels, such as system-level.

The need to take the complete digital system design into consideration for quanti-

tative safety analysis has led to the widespread acceptance of Fault Trees (FTs). FTs

are top-down graphical representations of various combinations of lower level events

that may cause the system to reach a top level failure (i.e., system failure) [138].

Fault Tree Analysis (FTA) can provide insightful information to designers regarding

the reliability of their systems, such as how is their system most likely to fail and what

are the most efficient ways to make it safer. However, the traditional way of conduct-

ing FTA is either through paper and pencil proof or through computer simulation

techniques, which are inefficient and prone to inaccuracy. The most prominent use of

FTA in the literature is by converting the system’s FT into a Boolean function and

simulating that function with different low level component failure rates [35, 51, 124].

However, these approaches are also costly in time and resources. This is mainly due

to the fact that their modeling of FT is limited to the Boolean representation, which

may exponentially increase the resource requirements to reach the desired results.

1.2 Thesis Objectives

Since the vast majority of techniques found in the literature rely heavily on low-

level testing (i.e., after manufacturing) the main scientific objectives of this thesis

are to provide practical frameworks to evaluate and improve CPS reliability at early

stages of development and to reduce the complexity of the reliability analysis while

improving the accuracy of the results. Due to technological limitations, however, the

work presented in this thesis is limited to the analysis of the main processing units of

CPSs. Namely, this thesis seeks to provide answers for the following questions:
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� Q1: How to accurately model a CPS processing unit, at high-level of abstrac-

tion?

� Q2: How to abstract the SEU propagation behavior observed at transistor level

at high-levels of abstraction?

� Q3: How to efficiently utilize formal verification methods to model and analyze

SEU vulnerability at high-levels of abstraction?

� Q4: How to utilize formal verification methods to evaluate and to propose im-

provements to the system design?

� Q5: How to measure the vulnerability of complex designs, at high-level, without

losing the accuracy provided from the low-level analyses?

� Q6: Is it possible to improve scalability while preserving accuracy ?

1.3 Thesis Contributions

In this work, I propose and develop a solution to the aforementioned issues found

in the literature. A multi-phased cross-layer methodology is proposed to compute

an accurate early estimation of a design’s vulnerability to errors. This methodology

is also able to identify and isolate the most critical components of the design, and

to pinpoint the most efficient ways to mitigate the design’s weaknesses through the

implementation of architectural mitigation, such as TMR. The methodology is also

able to investigate the source of a component’s vulnerability and to propose the im-

plementation of redundancy inside of the critical component, if that option is deemed

to be the most beneficial. This is achieved by investigating the dependability results

obtained from the Fault Tree Abalysis (FTA) and the component-level analysis of a

design. This work includes the construction of a library of models of FT gates and

relationships, as well as a library of models of component-level elements (i.e., regis-

ters, ALU, logic gates, etc.). Much like classes in an object-oriented language, these

libraries can be used to generate any FT diagram and any component-level descrip-

tion needed. The analysis of these elements is performed through Probabilistic Model

Checking (PMC) and Stochastic Model Checking (SMC), both of which provide au-

tomatic investigation of the design at multiple levels of detail. To the best of our
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knowledge, the above capabilities are not shared by any other existing vulnerability

estimation technique. Furthermore, those capabilities will allow us to provide a more

comprehensive study of the system and its vulnerability to the designers, before the

system is manufactured.

The analysis methodology proposed in this thesis follows cross-layer approach, with

the purpose of improving the scalability and efficiency of the modeling as well as of the

analysis of the reliability of CPSs. The methodology is composed by two core phases:

the fault-tree analysis phase and the component-level analysis phase, as depicted in

Figure 1.
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Figure 1: Overview of the Proposed Framework

1.3.1 Fault-Tree Analysis Phase

At the highest level of abstraction, the design’s vulnerability is evaluated through

FTA. The objective of this phase is to conduct an analysis on the complete system

design. This provides an estimation of the probabilistic failure rates of the system,

the probabilistic failure rates of each individual component, the fault propagation

rates between different components (i.e., how different components impact each other

as well as how they impact the overall system vulnerability), and the most relevant

9



causes of failure to be considered. This phase include the following steps:

� First, a fault tree of the design is generated from the high-level system speci-

fications. This can be done either manually or through special tools, such as

the tool introduced in [99], which is able to synthesize the fault tree of a design

from its SysML model representation [61]. At this stage, each component of the

system is treated as a black box.

� Next, the probabilistic model of the fault tree is constructed from the fault tree

diagram representation. This fault tree model is constructed in the language

of the probabilistic model checker to be used (in this case, PRISM). The fault

tree model is build from our existing libraries of FT gates and relationships.

� A set of properties is derived from the system specifications, denoting how the

system is expected to perform.

� With the fault tree model and the properties ready, probabilistic model checking

is performed in order to evaluate the design’s vulnerability to faults, as well as

the impact of each component to the system vulnerability.

� The impact of each component to the vulnerability of the system is recorded in

a library called Component Contribution Matrix (CCM).

� If the system’s estimated vulnerability is below the accepted threshold, the anal-

ysis stops. However, if the system’s vulnerability is higher than the threshold,

a new step is performed, in which the most critical components of the system

are identified within the CCM.

� Next, the components classified as the most critical are isolated and a study is

performed on them with the goal of identifying the best TMR configuration to

help mitigating the component’s vulnerability.

� The final step in this phase is to record the impact of the different TMR configu-

rations on each critical component, and to update the fault tree model with the

most efficient TMR configuration, followed by a new analysis with probabilistic

model checking.
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Many different modeling and analysis advancements have been incorporated in

the fault-tree analysis phase of the proposed methodology. The problem tackled in

this phase encapsulates questions Q1. Q2, Q4 and Q5, presented in Section 1.2. The

contributions of this work to the state-of-the-art are the following:

1. Investigate the impact of different stochastic models on the analysis

of a system: The modeling methodology is applied to a case study of a solar ar-

ray mechanical system. Next, multiple experiments are conducted on the same

system, first by modeling it using Discrete-Time Markov Chain (DTMC) to

model known environment scenarios where the probabilistic distribution of the

system’s behavior is known, and then using Markov Decision Process (MDP) to

model the non-deterministic behavior of the system when subjected to unknown

environments. These analyses have led to the following publication:

C1: Ammar, M., Hoque, K.A., Ait Mohamed, O. Formal analysis of fault

tree using probabilistic model checking: A solar array case study. In Annual

IEEE Systems Conference (SysCon 2016).

2. Investigate system vulnerability to soft-faults and how to efficiently

mitigate it: Redundant architectures, such as Triple Modular Redundancy

(TMR), are broadly used as alternatives for fault tolerance, in order to improve

the reliability of safety-critical systems. However, the type and placement of

the redundant architecture may have a significant impact on the outcome. The

experiments that I have conducted demonstrate that redundancy may have neg-

ative impacts on the system, in some cases. To avoid issues, an early-analysis

is required to determine the type and location of the fault mitigation option.

This analysis resulted in the following publication:

C2: Ammar, M., Bany Hamad, G., Ait Mohamed, O., Savaria, Y. Effi-

cient probabilistic fault tree analysis of safety critical systems via probabilistic

model checking. In Forum on Specification and Design Languages (FDL 2016).
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3. High-level modeling and vulnerability analysis of complex real sys-

tems over time: Fault-trees are an excellent tool to investigate fault propa-

gation in the system, identifying the ways in which the system is most likely to

fail. However, most FTA approaches are not suitable for safety-critical analy-

sis, since current FT modeling techniques cannot capture sequences of actions.

Moreover, the binary representation of FTs is not adequate for systems with

complex state-spaces. Finally, FTA is unable to predict the state of the system

over a period of time. To solve these shortcomings, I have proposed e new

fault-tree paradigm entitled Temporal-Dynamic Fault Trees (TDFTs). I have

proposed a new analysis method, based on stochastic model checking, and new

FT gate models that evolve over time and that are sensitive to temporal events,

such as SEUs. The proposed modeling and analysis advance the state-of-the-

art, allowing the power and efficiency of FTs to be used in predictive system

evaluation, as well as in significantly more accurate vulnerability assessment to

soft-errors. These advances have resulted in the following publications:

C3: Ammar, M., Bany Hamad, G., Ait Mohamed, O. and Savaria, Y.,

2018, December. Reliability Analysis of the SPARC V8 Architecture via Fault

Trees and UPPAL-SMC. In 2018 25th IEEE International Conference on Elec-

tronics, Circuits and Systems (ICECS) (pp. 437-440). J1: Ammar, M.,

Bany Hamad, G., Ait Mohamed, O., and Savaria, Y. Towards an Accurate

Probabilistic Modeling and Statistical Analysis of Temporal Faults via Tempo-

ral Dynamic Fault-Trees (TDFTs). IEEE Access Volume 7, page(s): 29264 –

29276 DOI:10.1109/ACCESS.2019.2902796, 2019.

1.3.2 Component-Level Analysis Phase

In this phase, the analysis of vulnerability is focused on each individual component

that forms the system design. Unlike the fault tree analysis phase, where the compo-

nents were treated as black boxes, in this phase each component is further elaborated

and analyzed based on its internal architecture. The goal of this phase is to identify

the sources of the component’s vulnerability and to study the most efficient ways to

internally mitigate that vulnerability. This phase include the following steps:
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� Obtention of the component’s behavior description. For example, if the com-

ponent to be analyzed is an Arithmetic Logic Unit (ALU), we must obtain

information about it’s architecture, what operations it performs, what is it con-

nected to, etc.

� Next, a library of system operations is built. Much like classes in an object

oriented language, this library contains models of the operations (subcompo-

nents) that serve as the building blocks for the component to be analyzed, such

as logic gates, adders, multipliers, etc.

� Based on the component’s behavior description, operations from the library

of system operations are instantiated in order to construct the model of the

component at system-level.

� Once the model is ready, an exhaustive fault injection analysis is conducted in

order to identify any weaknesses in the component.

� The component, subjected to fault injections, is verified against a set of prop-

erties derived from the system specifications. This verification process is done

through probabilistic model checking with PRISM. With this analysis, the im-

pact of each fault injection scenario is obtained.

� Next, with the results obtained through the probabilistic analysis, the limit of

the component’s availability is estimated.

� If the availability of the component does not meet the preestablished perfor-

mance metrics, TMR mitigation is applied to the most critical subcomponents.

In this case, the model is updated to reflect the changes, and an evaluation of

the mitigation overhead is conducted. Then, the probabilistic analysis process

is repeated.

� If the availability of the component meets the preestablished performance met-

rics partially (i.e., the component passes the test but some of its subcomponents

do not), fault mitigation must be applied to the critical components and the

model must be reevaluated, restarting the fault injection process.

� If all the availability metrics are met (component overall, and all the subcom-

ponents), the phase ends and the results are reported.
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� Finally, an additional step takes place, in which the mitigation proposed by

each of the phases is compared and the most efficient solution is chosen.

The problems addressed by this phase of the methodology are encapsulated in

questions Q1. Q2, Q3, Q5 and Q6, presented in Section 1.2. The advancements

achieved by the proposed techniques are the following:

1. Investigate the impact of soft-errors at system-level using PMC: The

proposed system-level approach consists in modeling the system to be tested

with all its components and their expected logical behaviors. Then, the fault-

injection points are identified and the fault propagation paths are obtained by

counter-example generation with PMC. Subsequently, the analysis performed

consists in the probabilistic evaluation of several vulnerability metrics, such as

Mean Time to Failure and Mean Time To Recover. These metrics are evaluated

for each individual type of fault in the system. Furthermore, the analysis com-

putes of the contribution of each component of the system to a failure. This

idea generated the following publications:

C4: Ammar, M., Bany Hamad, G., Ait Mohamed, O., Savaria, Y., Ve-

lazco, R. Comprehensive vulnerability analysis of systems exposed to SEUs via

probabilistic model checking. In IEEE European Conference on Radiation and

Its Effects on Components and Systems (RADECS 2016).

J2: Ammar, M., Bany Hamad, G., Ait Mohamed, O., Savaria, Y. System-

Level Analysis of the Vulnerability of Processors Exposed to Single-Event Upsets

via Probabilistic Model Checking. IEEE Transactions on Nuclear Science. 2017

Sep;64(9):2523-30.

B1: Ammar, M., Bany Hamad, G., Ait Mohamed, O., Savaria, Y. (2018).

System-Level Modeling and Analysis of the Vulnerability of a Processor to Single

Event Upsets (SEUs). Velazco R, McMorrow D, Estela J. Radiation Effects on

Integrated Circuits and Systems for Space Applications.: (pp. 13-38), Springer,

2019. DOI: 978-3-030-04660-6 2.

2. Application-based analysis of the impact of soft-errors on a CPS us-

ing PMC: To provide a better estimation of CPS vulnerability, not only the
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hardware but also the software (application) must be considered in the anal-

ysis. Based on my component-level modeling approach for fault injection and

generation of fault propagation paths, I have proposed a new analysis technique

to perform PMC on an application execution trace. For each instruction, the

propagation of SEUs is modeled as a Continuous-Time Markov Chain (CTMC),

based on the hardware’s microarchitecture. From these models, a full estima-

tion of the fault propagation probabilities and latency through each instruction

is computed. Furthermore, this model allows the analysis of fault propagation

probabilities through the entire program execution. This analysis resulted in

the following publications:

C5: Bany Hamad, G., Ammar, M., Ait Mohamed, O., and Savaria, Y.

System-Level Characterization, Modeling, and Probabilistic Formal Analysis of

LEON3 Vulnerability to Transient Faults. In IEEE European Conference on

Radiation and Its Effects on Components and Systems (RADECS 2018).

J3: Bany Hamad, G., Ammar, M., Ait Mohamed, O., and Savaria, Y. New

Insights Into Soft-Faults Induced Cardiac Pacemakers Malfunctions Analyzed

at System-Level Via Model Checking. IEEE Access. PP. 1-1. 10.1109/AC-

CESS.2018.2876318, 2018.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 briefly discusses the most relevant SEU vulnerability analysis techniques

in the literature.

In Chapter 3, the formal verification methods and tools utilized in this thesis to model

and analyze the propagation of SEU at high-level abstraction are introduced.

Chapter 4 explains the basics of FT modeling and analysis with PMC. The introduced

PMC-based methodology for FTA modeling is easily expandable with state-efficient

models that are modular and constructed by parallel composition. The modeling

methodology is applied to a case study of a solar array mechanical system, first using
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Discrete-Time Markov Chain (DTMC) to model known environment scenarios where

the probabilistic distribution of the system’s behavior is known, then using Markov

Decision Process (MDP) to model the non-deterministic behavior of the system when

subjected to unknown environments. This work focuses on evaluating and character-

izing fault propagation in FTs.

Chapter 5 first introduces a technique, based on FTA and PMC, to evaluate fault

mitigation through triple modular redundancy. This approach consists of model-

ing the behavior of each FT gate as a probabilistic automaton (PA). Thereafter, a

Markov Decision Process (MDP) model of the system’s FT is obtained by the parallel

composition of all the PAs that compose the FT. In the analysis step, a Component

Contribution Investigation (CCI) is performed. The CCI consists in the evaluation of

the contribution of the failure of each subcomponent to the system’s failure. Based

on the obtained data, the impact of different types of TMR is evaluated, determining

the best location and TMR configuration for the system under analysis.

Chapter 6 presents a new system-level approach to compute an accurate estimate of a

processor’s vulnerability to SEU propagation. The propagation of SEUs is modeled as

a Continuous-Time Markov Chain (CTMC). Furthermore, probabilistic model check-

ing is utilized to exhaustively estimate the impact of SEUs on the system’s behavior.

The proposed CTMC model is analyzed for different SEU injection scenarios and

different bit-flip rates. Such analysis is capable of producing an accurate estimation

of different reliability metrics, such as Mean Time to Failure (MTTF), Mean Time to

Recover (MTTR), and the probability of failure for each SEU injection scenario in the

system’s subcomponents. Finally, the chapter shows how the proposed probabilistic

system-level analysis can also investigate the optimal self-repair rate required in the

system to obtain the desired level of availability.

Chapter 7 introduces a new DFT approach to compute an accurate estimation of

a system’s vulnerability to soft-faults in complex real-world systems, using a new

modeling of FT gates that is based on the Priced-Timed Automata theory. The

chapter discusses the modeling of FTs of complex systems and it is centered around a

case-study of the 32-bit SPARC V8 integer pipeline. The analysis is fully automatic,
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conducted through stochastic model checking, with UPPAAL-SMC. The analysis pre-

sented consists in the estimation of the probability of each type of Trap Exception

(TE) to occur in the targeted architecture, as well as the impact of individual registers

to the overall reliability of the processor, and the probability of failures over time.

Chapter 8 proposes a new fault tree modeling paradigm, to capture the impact of

temporal events in systems, called Temporal Dynamic Fault Trees (TDFTs). The

proposed TDFTs are utilized to model fault propagation in complex systems while

conserving the characteristics and dependencies between different temporal events,

soft-faults, and permanent faults. This chapter also introduces a new analysis ap-

proach utilizing stochastic model checking with UPPAAL-SMC, which, combined

with efficient modeling, is able to circumvent the state-explosion problem that is in-

herent to other model-checking approaches. The analysis proposed in this chapter is

able to evaluate the impact of temporal faults in systems, as well as to estimate the

reliability and availability of the system over extended periods of time.

Chapter 9 provides a general discussion about the present work, which has been

detailed in Chapters 4 through 8, and finally Chapter 10 summarizes this thesis and

proposes some directions for future work.
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Chapter 2

Literature Review

The modeling and analysis of SEU relevant faults and their mitigation for dependabil-

ity analysis is an active research area. The most common approach to evaluate the

SEU vulnerability of a system is through a process called dynamic radiation ground

testing [26, 134]. This method consists in exposing the target system to a radiation

flux and counting the number of errors observed. The outcome is computed in the

form of a parameter known as the dynamic cross-section (σ), which is defined as the

ratio between the number of errors observed at the output of a Design Under Test

(DUT), divided by the fluence of hitting particles [116]. A problem with that metric

is that any change in the application requires a new dynamic test, thus resulting in

an expensive and time-consuming method.

Alternative methods for SEU estimation have emerged, with the goal of reducing

the time and cost constraints associated with dynamic radiation ground testing. In

[117, 135], the authors introduce a method of injecting SEUs at random time intervals

through emulation, by making use of an interrupt routine to alter values within the

processor’s internal registers and memory. Fault injection through emulation is also

used in the direct memory access SEU emulation method [55], where a dedicated

hardware component, controlled externally, selects the time instant and the bit to be

altered in the memory. This approach is further explored in [56, 57], where the SEU

injection is performed through probabilistic models of the system, with the goal of

estimating the system’s time to failure (TTF) and time to recover (TTR). However,

this technique still requires emulation in order to obtain certain system rates which the

model is built upon (i.e., coverage factor, error factor, and failure factor). Another
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branch of SEU estimation techniques focus on fault injection through simulation,

which is usually done by injecting faults at logical or electrical levels [64, 83, 85].

The advantage of these techniques is the high level of control over the fault injection

scenarios, since the user has free access to the entirety of the system and the timing of

the injections is very accurate. However, emulation and simulation based techniques

have severe drawbacks. Disregarding the considerable time required to simulate or to

emulate a scenario of thousands of injected faults [17], both approaches are limited

in terms of accuracy. This problem arises due to the fact that these techniques are

not exhaustive, but rather reliant on input vectors [84]. These approaches are also

reliant on detailed models of the DUT, which are not always available.

Recently, the use of formal based techniques to analyze soft errors at logical and

higher abstraction levels has been proposed, such as the work done in [23]. These

techniques provide new insights into the vulnerability of digital designs to SEUs. This

is mainly because they are exhaustive and not limited by the number of test vectors

as in simulation based techniques. In formal techniques, the user starts out by stating

what output behavior is desirable and then lets the formal checker prove or disprove

it. In other words, given a property, formal verification exhaustively searches all

possible input and state conditions for failures. However, at logical abstraction level,

these techniques suffer from state explosion (i.e., exponential growth in the number

of states of the model) [65]. Therefore, it is expected for these techniques to be more

efficient at higher abstraction levels, such as system-level.

In recent years, a number of works related to fault tree analysis of SEUs has

emerged. In [14] a tool for fault tree analysis is presented, called DFTCalc, which

is capable of modeling fault trees via compact representations. That work uses the

stochastic technique to perform the analysis of dependability properties. The ad-

vantage of DFTCalc is a more expressive syntax for FTD, but it cannot check the

correctness and completeness of fault trees. Moreover, an important difference is that

their work does not include the possibility of fault masking, whereas in our work this

important phenomenon is taken into account. The work presented in [6] gravitates to-

wards theorem proving, using HOL4 and higher-order logics to analyse safety-critical

systems through FTA by formalizing the gates of a fault tree and conducting FTA-

based failure analysis. However, a model checking approach has several advantages

over theorem proving, such as being systematically exhaustive, fully automated, and
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more time efficient. However, FTA analysis of SEUs is very limited in the literature,

mostly limited to post-error analyses.

20



Chapter 3

Background Information

3.1 Fault Tree Analysis

The fault tree analysis method was developed in 1962 by Bell Telephone Laboratories

and it is a widely used method for risk assessment, mainly in the area of avionics,

nuclear and chemical industries [138]. FTA follows a deductive approach, which

means that it starts from an undesirable general event in order to find the origins of

said event. In the context of FTA, the general event is known as the top event, from

which the fault tree branches out vertically. The top event is defined as the failing

point of a system in operating conditions, whether those conditions are considered

normal or abnormal. A single fault tree can be used to analyse one single top event,

which can then be fed into another fault tree as a bottom event. Bottom events are

the ones at the very bottom of the fault tree, independent from any other events,

and, assuming the FTA is performed following a quantitative evaluation, these events

receive fault probabilities that will dynamically spread through the rest of the tree

during the analysis. The elements of a Fault Tree and their graphical representations

are summarized in Table 2.

Other elements compose the fault tree, such as conditioning events, which are specific

restrictions applied to a logic gate within the fault tree, like a mode of operation or a

sequence of other events that serve as a prerequisite to its activation. These events can

prevent or enforce the activation of a node or a gate, according to the circumstances.

An external event is an event expected to occur and it is not considered as a fault;

as such it may or may not affect the FTA. Lastly, an undeveloped event is an event
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Table 1: TMR configurations and Respective FTs
Figure Event Type Description

Component na System component

Bottom Event na Basic event that may lead to a failure

AND Gate Static The output is true if all inputs are true

OR Gate Static
The output is true if at least one input is

true

Combination Gate Dynamic The output is true if n inputs are true

Priority AND Gate Dynamic
The output is true if all the inputs become

true in a specific sequence

Inhibit Gate Dynamic
The output is true if the single input

becomes true in the presence of an enabling
condition

Spare Gate Dynamic
The output is true if the component and all

its spares fail

about which insufficient information is available or which is of no consequence to the

system. Normally these events are overlooked and have no real impact over the FTA.

In recent years, a number of works related to fault tree analysis has emerged. In [14]

a tool for fault tree analysis is presented, called DFTCalc, which is capable of model-

ing fault trees via compact representations. That work uses the stochastic technique

to perform the analysis of dependability properties. The advantage of DFTCalc is a

more expressive syntax for FTD, but it cannot check the correctness and completeness

of fault trees. Moreover, an important difference is that their work does not include

the possibility of fault masking, whereas in our work this important phenomenon is

taken into account. The work presented in [6] gravitates towards theorem proving,

using HOL4 and higher-order logics to analyse safety-critical systems through FTA

by formalizing the gates of a fault tree and conducting FTA-based failure analysis.

However, a model checking approach has several advantages over theorem proving,

such as being systematically exhaustive, fully automated, and more time efficient. In

[124], authors propose the use of Binary Decision Diagrams (BDD) to perform quan-

titative analysis in fault trees. Their method improves the accuracy of the calculated

failure rates of bottom events over simulation techniques. It consists of converting

the FTD into a format compatible with Shannon’s decomposition, allowing the failure

rates to be accurately calculated. The binary decision diagram approach is extended

to qualitative FTA analysis, in [125], where BDDs are employed to evaluate minimal

cutsets of a fault tree without creating probabilistic inaccuracies like in the conven-

tional qualitative analysis techniques.
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3.2 Triple Modular Redundancy

One of the most important architectural patterns used in safety engineering is the

Triple Modular Redundancy (TMR) [4, 70, 79, 93]. The idea of TMR consists in

triplicating a module that is considered critical in order to guarantee a correct be-

havior of the system. As shown in Figure 2 [33], the input is replicated to each copy

of the module M, and the output is provided to a voter V whose role is to propagate

the value that is in accordance with the majority of M outputs. The impact of a

Triple Modular Redundancy approach is to increase the reliability when compared

with a single module. In other words, the main goal is to decrease as much as possi-

ble the gap with respect to a perfect (faultless) component. This concept drives the

evaluation of redundant architectures.

Figure 2: Example of TMR Applied to a Generic Component

Redundant architectures exploiting Triple Modular Redundancy (TMR) are broadly

used to obtain fault tolerant safety-critical systems. In the literature, the utilization

of formal methods to analyze these architectures is rather limited. In [? ] the be-

havior of a single TMR is formalized through Communicating Sequential Processes

(CSPs). The work in [152] uses Uppaal model checker to analyze a timed automata

model of a TMR system design. Both techniques are limited to a single system and

do not consider multi-staged TMRs. In [33, 34], the fault tree of a redundant sys-

tem is modeled and analyzed through Satisfiability Modulo Theories (SMTs), giving

an estimation of the reliability gain across different TMR configurations. The main

problem of these approaches is the amount of redundancy required to perform the

analysis. Furthermore, their proposed modeling has the same limitation as previous

approaches because they also rely on boolean representation. Due to the increased

23



cost and physical size constraints, the main challenge of implementing fault tolerance

through TMRs is knowing where in the system to apply the redundancy and knowing

which TMR configuration is the most beneficial to the overall reliability.

3.3 Probabilistic Model Checking

Probabilistic model checking is a formal verification technique, derived from regular

model checking, applied on systems that present a random or probabilistic behavior,

like real life applications, where the resulting models usually contain a very large

number of states. It would be very impractical for the user to explicitly model every

state and transition of these applications. The power of model checkers comes from

the exhaustive nature of the analysis they perform. The model checker is capable of

traversing all reachable states in the model in order to generate a solution. One of the

most notable features of this technique is not only being able to receive probabilities

as an input but also to return probabilities as output. Given that a perfect, bug-free

system is something near impossible to achieve, probabilistic model checking allows

the user to work with tolerance percentages rather than absolute values.

Examples of the use of probabilistic model checkers are widely found in the lit-

erature. In [145] the authors assess the feasibility of using model checking for veri-

fication of Unmanned Aircraft Systems (UAS) in civil airspace. The authors begin

by modeling simple UAS systems into the SPIN tool and then refining the model

by incorporating probabilities and using probabilistic model checking with PRISM.

Lastly, they model the UAS using the autonomous agent language Gwendolen and

compare and contrast the various approaches. The work in [72] uses PRISM tool

and language to perform the formal modeling and verification of RAM related prop-

erties on satellite systems, using Erlang distribution to improve discrete time delays

in CTMC by approximating nonexponential holding times with intermediate states

based on a phase type distribution.

3.3.1 PRISM Model Checker

PRISM [91] is a free, open source probabilistic symbolic model checker developed at

the University of Birmingham. It works with its own high-level modeling language,

based on the Reactive Modules formalism [7], which is written in form of state-based
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modules, each composed by a set of guarded commands. PRISM uses Binary Decision

Diagrams (BDD) (Binary Decision Diagrams) and Multi-Terminal Binary Decision

Diagrams (MTBDD) [88] to construct and compute the reachable states of even very

large probabilistic models.

PRISM is a very flexible tool to work with probabilistic real-life models as it

allows for the specification of probabilities inside the model and in the properties.

Additionally the software will inform what’s the probability of given property failing

after the verification. PRISM allows for step-by-step simulation where the user may

chose which variables on the system he wants to manipulate as well as their initial

values. The simulation may be guided, where the user manually selects the next

step to be taken, or random, where the user selects the number of random steps the

program should simulate. The tool supports a wide range of model analysis methods

and it features a very efficient implementation, making use of a symmetry reduction

technique [89] to help mitigate state-space explosion. PRISM works by creating a

probabilistic model of the system and computing its reachable states. The model

checking is done by dynamically creating graph-based computations [97] in order

to reach a numerical solution (based on linear equation systems and optimization

problems).

3.3.2 UPPAAL-SMC

UPPAAL is a toolbox for verification of real-time systems, represented by a network

of timed automata, extended with integer variables, structured data types, and chan-

nel synchronization. For the efficient analysis of probabilistic performance properties,

UPPAAL-SMC proposes to work with Statistical Model Checking (SMC). SMC works

by monitoring some simulations of the system, and then use statistical results (in-

cluding sequential hypothesis testing or Monte Carlo simulations) to decide whether

the system satisfies some property with a sufficient degree of confidence. The mod-

eling formalism of UPPAAL-SMC is based on a stochastic interpretation and an

extension of the Timed Automata (TA) formalism used in the classical model check-

ing version of UPPAAL. For individual TA components, the stochastic interpretation

replaces the non-deterministic choices between multiple transitions enabled by proba-

bilistic choices (that may or may not be user-defined). Similarly, the nondeterministic
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choices of time delays are refined by probability distributions, which at the compo-

nent level are given either uniform distributions in cases with time-bounded delays

or exponential distributions in cases of unbounded delays [46].

An illustrative example of the UPPAAL formalism is given by the PTA in Fig.

34. In this example and through the rest of this paper, the weight annotations

on locations and edges are ignored and defaulted to “1”. For Fig. 34, the delay

distribution determined by the upper and lower paths to the END state is given by

sums of uniform distributions, where X ≥ 2 (green label) is the guard of the transition

(i.e., minimum time), and X ≤ 4 (purple label) is the invariant distribution (i.e.,

maximum time delay) of the transition. The stochastic choice that determines which

path will be taken is represented by a forked transition, where each path is weighted

accordingly. In the example, the weights of each path are either 1
6

or 5
6
. Finally, an

update may be performed during each transition (blue labels). Therefore, the END

location in the example is reachable within the interval X = [4, 12].

Figure 3: Illustrative Example of the UPPAAL Formalism. Reproduced from [46].
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Chapter 4

Article I: Formal Analysis of Fault

Tree using Probabilistic Model

Checking: A Solar Array Case

Study

Authors: Marwan Ammar, Khaza Anuarul Hoque, Otmane Ait Mohamed

Abstract: Fault Tree Analysis (FTA) is a widespread technique used to assess the

reliability of safety-critical systems. The traditional way of conducting FTA is either

through paper and pencil proof or through computer simulation techniques, which

are inefficient and prone to inaccuracy. In this paper, we propose the use of proba-

bilistic model checking to automatically analyze fault trees of safety-critical systems.

Our methodology consists in the probabilistic formalization of the gates used in a

fault tree to a Discrete-Time Markov Chain (DTMC) and a Markov Decision Process

(MDP), and the subsequent probabilistic verification using PRISM tool to quantita-

tively analyze the system. To illustrate the proposed approach we perform the fault

tree analysis of a solar array system, used as power source for the DFH-3 satellite.

The results show that harsh thermal environment is the main cause of system failures.
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4.1 Introduction

Fault Tree Diagram (FTD) is a top-down graphical model of a system, which repre-

sents all paths and events that may lead to failure within that system [138]. Events

in FTDs are nodes, connected through logic gates in such a way that an error in one

of the bottom nodes can propagate to the higher level nodes and reach the top-level

event, compromising the functionality of the entire system. Fault Tree Analysis (FTA)

is the study of such diagrams in order to discover and assess the effect of undesirable

events or faults [138]. FTA allows safety and reliability engineers to better understand

how the system can fail, identifying the best possible ways to make it safer, as well as

the system’s event rates. FTA is commonly used in the aerospace industry for both

hardware and software [138] as means for investigating a system’s modes, potential

faults occurrences with their causes, and to quantify their contribution to system un-

reliability in the course of product design. Traditionally, FTA is based on simulation

techniques [96, 114, 138], with the main techniques being: Monte-Carlo simulation,

Quasi-Monte-Carlo method, time-sequential simulation, and discrete event simulation

[53]. Assessing the causes and the probability of a punctual failure occurrence in the

system using simulation-based techniques is very costly, since each failure condition

must be evaluated separately, one at a time, creating a very large state-space and

requiring tremendous effort to analyze the whole scope of the system.

An alternative to avoid the aforementioned problem is the use of Probabilistic

Model Checking(PMC). PMC is a formal verification method that designates a col-

lection of techniques for the automatic analysis of reactive, finite state concurrent

systems. This technique has several advantages over simulation. Notably, probabilis-

tic model checking is an exhaustive, accurate, efficient and completely automated

verification technique [20], providing a comprehensive and reliable solution for fault

tree analysis. In this work, we propose a PMC-based methodology for FTA modeling,

using PRISM language [1]. Added to the inherent advantages of PMC listed above,

PRISM’s modularity allows for easily expandable, state-efficient models. The model-

ing methodology is applied to a case study of a solar array mechanical system [147],

first using Discrete-Time Markov Chain (DTMC) [106] to model known environment

scenarios where the probabilistic distribution of the system’s behavior is known, then

using Markov Decision Process (MDP) to model the non-deterministic behavior of

the system when subjected to unknown environments.
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Our goal is to provide a way for developers to evaluate the weaknesses of their

systems. Through PMC properties, our approach can be used to ascertain not only

correctness, but also quantitative measures such as performance and reliability, with-

out the time and intensive processing required by simulation techniques. This work

focuses on evaluating the dynamics of fault propagation in FTDs, and we observe

that the lowest levels in the tree are the most positively affected by fault masking,

events connected to multiple gates are especially unreliable in non-deterministic en-

vironments (MDP), and that events connected to AND gates are more affected by

non-determinism than events connected to OR gates.

The following section presents some important background information about

PMC, the PRISM tool and FTA. Section 4.3 considers related works. In Section

5.3.1 we describe our modeling approach. In Section 5.4 we demonstrate the applica-

tion of our proposed methodology, performing the analysis on a solar array FTD and

Section 5.5 concludes the paper with some future research directions.

4.2 Preliminaries

4.2.1 Probabilistic Model Checking with PRISM

Probabilistic model checking is a formal verification technique derived from regular

model checking and applied on systems that present a random or probabilistic be-

havior, like real life applications, where the resulting models usually contain a very

large number of states. This technique can deal with a wide range of quantitative

measures; the results show an exact figure of the property being verified, usually in

parts-per-hundred; it can be fully automated, provides an exhaustive analysis of the

model, and it is very efficient. PMC works with several model types and temporal

logic specification languages. In this paper we use DTMC and MDP as the model

types and Probabilistic Computation-Tree Logic (PCTL) as the property specification

language. In [60] DTMC is defined as a tuple D=(S, s,P,L) where S is a countable

set of states, s ∈ S is an initial state, P : S ×S → [0, 1] is a transition probability

matrix such that
∑

s′∈ s P (s, s′) = 1 for all s ∈ S, and L : S → 2AP is a labeling

function mapping each state to a set of atomic propositions taken from a set AP.

An MDP is defined in [60] as a tuple M = (S, s, αM, δM,L) where S is a finite set of

states, s ∈ S is an initial state, αM is a finite alphabet, δM : S × αM → Dist (S) is
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a (partial) probabilistic transition function and L : S → 2AP is a labelling function

mapping each state to a set of atomic propositions taken from a set AP. As such, the

MDP is a stochastic system where all the decisions are made in a non-deterministic

manner.

To complete the model checking process, we specify properties using a probabilistic

extension of CTL temporal logic called PCTL. PCTL can be used with both DTMC

and MDP models, working at discrete time domain. The main difference is that

using PCTL over MDP model requires to extend the P[](probability query) operator

with the min and max operators. As such, each path formula is evaluated in a best

or worse case scenario [12]. Below are two illustrative examples with their natural

language translation:

1. DTMC - P>0.8 [¬ a
⋃

b] - “The probability of a being false until b is true is

bigger than 0.8.

2. MDP - Pmin [ F (a > 0)
⋃
¬ b] - “What’s the minimum probability that

eventually a will be bigger than zero until b is false.

We perform PMC with PRISM [1], a free, open source probabilistic symbolic

model checker. It works with its own high-level modeling language, written as state-

based modules. Each module is composed by a set of guarded commands. PRISM

supports a wide range of model analysis methods and it features a very efficient im-

plementation, making use of multiple model checking engines (based on BDDs and

their extensions). These engines enable PRISM to handle models with up to 108

states. The model checking is done by dynamically creating graph-based computa-

tions [100] in order to reach a numerical solution based on linear equation systems and

optimization problems. PRISM also features advanced algorithms such as symmetry

reduction and abstraction refinement. The syntax of the PRISM language as well as

some examples will be given in Section 5.3.1.

4.2.2 Fault Tree Analysis

The fault tree analysis method was developed in 1962 by Bell Telephone Laboratories

and it is a widely used method for risk assessment, mainly in the area of avionics,

nuclear and chemical industries [138]. FTA follows a deductive approach, which means
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that it starts from an undesirable general event in order to find what circumstances

may lead to that event. In the context of FTA, the general event is known as top

event, from which the fault tree branches out vertically. The top event is defined

as the failing point of a system in operating conditions, whether those conditions

are considered normal or abnormal. A single fault tree can be used to analyse one

single top event, which can then be fed into another fault tree as a bottom event.

Bottom events are the ones at the very bottom of the fault tree, independent from any

other events, and, assuming the FTA is performed following a quantitative evaluation,

these events receive fault probabilities that will dynamically spread through the rest

of the tree during the analysis. The elements of a Fault Tree and their graphical

representations are summarized in Table 2.

Table 2: Elements of a Fault Tree
Token Element Description

Top or Intermediary Event System or component failure

Bottom Event A basic initiating fault event

Conditioning Event
Specific condition or restriction that can apply

to any gate

External Event Event that is normally expected to occur

Undeveloped Event
Event that’s not further developed due to lack

of importance or knowledge

AND Gate The output is true if all inputs are true

OR Gate The output is true if at least one input is true

Combination Gate The output is true if n inputs are true

Exclusive OR Gate
The output is true if exactly one of the inputs

is true

Priority AND Gate
The output is true if all the inputs become

true in a specific sequence

Inhibit Gate
The output is true if the single input becomes
true in the presence of an enabling condition

4.3 Related Works

PRISM model checker has several application domains, specially for safety critical

systems. In [145] the authors assess the feasibility of using model checking for ver-

ification of Unmanned Aircraft Systems (UAS) in civil airspace. The authors begin

by modeling simple UAS systems into the SPIN tool and then refining the model

by incorporating probabilities and using probabilistic model checking with PRISM.
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Lastly, they model the UAS using the autonomous agent language Gwendolen and

compare and contrast the various approaches. The work in [72] uses PRISM tool to

perform the formal modeling and verification of RAM related properties on satelite

systems, using Erlang distribution to improve discrete time delays in CTMC by ap-

proximating nonexponential holding times with intermediate states based on a phase

type distribution.

In recent years, a number of works related to fault tree analysis has emerged. In

[14], DFTCalc tool for fault tree analysis is presented. It is capable of modeling

fault trees via compact representations and the dependability analysis is performed

using stochastic techniques. DFTCalc allows modelling of most FTD constructs but

it cannot check the correctness and the completeness of fault trees. Moreover, an im-

portant difference is that their work does not include the possibility of fault masking,

whereas in our work this important phenomenon is taken into account. The work

presented in [6] gravitates towards theorem proving, using HOL4 and higher-order

logics to analyse safety-critical systems through FTA by formalizing the gates of a

fault tree and conducting FTA-based failure analysis. However, a model checking

approach has several advantages over theorem proving, such as being systematically

exhaustive, fully automated, and more time efficient. In [124], authors propose the

use of Binary Decision Diagrams (BDD) to perform quantitative analysis in fault

trees. Their method improves the accuracy of the calculated failure rates of bottom

events over simulation techniques. It consists of converting the FTD into a format

compatible with Shannon’s decomposition, allowing the failure rates to be accurately

calculated. The binary decision diagram approach is extended to qualitative FTA

analysis, in [125], where BDDs are employed to evaluate minimal cutsets of a fault

tree without creating probabilistic inaccuracies like in the conventional qualitative

analysis techniques.

All these works exemplify the versatility and importance of fault tree diagrams

and their relevance for assessment of safety-critical systems related to diverse areas.

The research presented in this paper is different than what is found in the related

work because on top of formalizing the various gates of a fault tree, allowing for the

representation of virtually any system, we introduce a modeling technique that is

state-efficient and easily scalable. In addition, our modeling can handle both quan-

titative and qualitative analysis, with a simple change in the PCTL properties being
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verified.

4.4 Modeling

In this section we show how the fault tree diagrams are modeled in PRISM. Our

emphasis is on AND and OR gates, since those are the types of gates present in the

case study, presented in Section 5.4. The fault-masking mechanic adds a probability of

fault mitigation inside the gates, which are designed to allow easy system composition

with a reduced number of state transitions. The modeling of the other FTA gates

follow a similar approach but are not included in this paper due to space constraints.

Since the DTMC and the MDP modeling approaches are similar in PRISM, we will

focus our explanation on the DTMC modeling, with graphical representations and a

detailed explanation of each gate’s state transitions in Subsections 4.4.1 and 4.4.2.

It is important to note that the main difference between DTMC and MDP is that

in DTMC, in each state, the successor state is determined by a discrete probability

distribution, whereas in MDP, in each state, the successor state is determined by a

nondeterministic choice between several discrete probability distributions.

MDP model, in each state S, the successor state is decided in two steps: the first

step is non-deterministic and the second step is random, according to the probability

distribution of the transition matrix. The DTMC model only has one step, which is

the random probabilistic step.

x
Z=X.Y

Y

(a) AND gate

C=A+B
A

B

(b) OR gate

A

B

C
D  

F  

E 

(c) 2-gate Example

Figure 4: Fault Tree Gates

4.4.1 Modeling of an AND Gate

The AND gate is defined as follows:

Definition 1: Given two inputs X and Y and their output Z, connected through

an AND gate, output Z becomes true if and only if X and Y are true. Figure 14(a)
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is a representation of an AND gate. The AND modeling in PRISM follows these

assumptions:

1. All the inputs to the AND gate represent events, each of which have a probability

of being triggered.

2. Only one input can trigger at a time.

3. If one of the inputs of the AND gate is triggered then the other will be given

an additional probability of triggering.

4. Before an output is generated, there is a certain probability that the fault will

be masked.

The model of the AND gate can be defined formally as a finite transition system

(S, s, P, L), where S is the set of states S = (S0, S1, S2, S3), s is the initial state

s = S0, P is a transition probability matrix, Pij, such that Ps,S1 = (p1), Ps,S2 = (p2),

PS1,S3 = (p3), PS1,S4 = (p5), PS2,S3 = (p4), PS2,S4 = (p5) and L : S → 2AP is a labeling

function, mapping states with properties of interest, where L(S3)=propagate. The

DTMC model of the AND gate is shown in Fig. 5.

S0

S1

S2

S3 S4

p1

p2

p3

p4

p5

p5

Figure 5: 2-input AND gate DTMC

Starting from an initial state S0(X=0, Y=0) the next state can either be S1(X=1,

Y=0) or S2(X=0, Y=1), with probabilities p1 and p2, respectively. At this point, the

system can either move to S3(X=1, Y=1, Z=1), with probability p3 or p4, signifying

fault propagation, or the system can move to S4(X=0, Y=0, M=1), with probability

p5, signifying fault masking. The model in Fig. 5 is then encoded into PRISM. A

PRISM command is a tuple cmd = (act, guard, rate, action) following the format

[<act>] <guard> → <rate> : <action>;, where act is an action label, guard is

a predicate over a variable, rate is a numerical evaluation referent to the probability of
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an action and action is a set of n variable updates that will translate into transitions

in the model. Fig. 6 shows the PRISM representation of the AND gate. Please note

that variable M stands for masking and variable and indicates if the module is idle

(and=0), waiting for first input (and=1) or waiting for second input (and=2).

module and_gate

[]( and=1)&(X=0)&(Y=0)&(M=0)&(Z=0) ->p1:(X’=1)&(and ’=2)

+p2:(Y’=1)&(and ’=2);

[](X=1)&(Y=0)&(M=0) ->p5:(M’=1)&(X’=0)+p3:(Y’=1)&(Z’=1);

[](Y=1)&(X=0)&(M=0) ->p5:(M’=1)&(Y’=0)+p4:(X’=1)&(Z’=1);

endmodule

Figure 6: PRISM modeling of an AND gate

4.4.2 Modeling of an OR Gate

The OR gate, seen in Figure 14(b), is defined as:

Definition 2: Given two inputs A and B and their output C, output C becomes

true if any of the inputs A or B are true.

The modeling process takes into consideration the following assumptions:

1. All the inputs to the gate represent an event, each of which have a probability

of being triggered.

2. Only one input can trigger at a time, after which no other input can trigger.

3. Before an output is generated, there is a certain probability that the fault will

be masked.

We formally define the OR gate as a finite transition system (S, s, P, L), where S

is the set of states S = (S0, S1, S2, S3), s is the initial state s = S0, P is a transition

probability matrix, pij, such that Ps,S1 = (p6), Ps,S2 = (p7), PS1,S3 = (p8), PS2,S3 =

(p9), PS1,S4 = (p10), PS2,S4 = (p10) and L : S → 2AP is a labeling function, mapping

states with properties of interest, where L(S3)=propagate. The OR gate DTMC model

is shown in Figure 7.

From an initial state S0(A=0, B=0) the next state can either be S1(A=1, B=0)

or S2(A=0, B=1) with probabilities p6 and p7 respectively. At this point, the system

may either move to S3(A=0, B=0 and C=1), with probabilities p8 or p9, signifying
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Figure 7: 2 input OR gate DTMC

fault propagation, or to S4(A=0, B=0 and M=1), with probability p10, signifying

fault masking. The OR gate model is then encoded into PRISM as shown in Fig. 8.

The or variable is equivalent to the and variable, previously explained.

module or_gate

[](or=1)&(A=0)&(B=0)&(M=0)&(C=0) ->p1:(A’=1)&(or ’=2)

+p2:(B’=1)&(or ’=2);

[](A=1)&(C=0)&(M=0) ->p5:(M’=1)&(A’=0)+p3:(A’=0)&(C’=1);

[](B=1)&(C=0)&(M=0) ->p5:(M’=1)&(B’=0)+p4:(B’=0)&(C’=1);

endmodule

Figure 8: PRISM modeling of an OR gate

4.4.3 Sample Modeling of a 2-Gate System

To illustrate the modeling process of a fault tree using our modular approach (pre-

modeled gates in PRISM), we provide an example using a simple two gates fault tree

with three inputs A, B, E, and one output F. A, B and E are bottom events. D is

an intermediary event and F is the top event for this example, as shown in Figure

14(c).The assumptions listed in Sections 4.4.1 and 4.4.2 are also applicable for this

example, with two additions:

1. There exists one additional module twogate, in the PRISM code, that serves as

a control module, where the order of the gates in the system can be specified.

2. The system starts at the OR gate, where inputs A and B each have a probability

of triggering.

3. Output C becomes input D as it enters the AND gate.

4. Input E has a chance of being triggered after the output C propagates, following

our AND gate assumptions.
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In this small example, we illustrate how to use the gates, defined in the previous

sections, as building blocks to construct more complex fault tree diagrams. Fig. 9

shows the DTMC model of the two-gates example.

S1

S2

S3

S4 S7S0

S5

S6

p1

p2

p3

p4

p5

p5

1

1 p5
p6

Figure 9: 2-gate DTMC

From state S0, the system is initialized and moves to S1. In S1 the system can go to

S2 or S3 with probabilities p1 or p2. From S2 or S3, the system can go to S7, with

probability p5, signifying masking, or to S4, signifying propagation of the OR gate.

The output of the OR gate serves as one of the inputs of the AND gate, thus the

system moves to S5. In S5, if input E is triggered and the output propagates, the

system moves to state S6, otherwise the system moves to S7, signifying masking. The

two-gates model is encoded in PRISM as shown in Fig. 10.

module twogate

[] or=0 -> (or ’=1);

[] c=1 -> (c’=0)&(d’=1);

endmodule

module or_gate

[](or=1)&(a=0)&(b=0)&(m=0)&(c=0) ->p1:(a’=1)&(or ’=2)

+p2:(b’=1)&(or ’=2);

[](a=1)&(c=0)&(m=0) ->p5:(m’=1)&(a’=0)+p3:(a’=0)&(c’=1);

[](b=1)&(c=0)&(m=0) ->p5:(m’=1)&(b’=0)+p4:(b’=0)&(c’=1);

endmodule

module and_gate

[]( and=1)&(d=0)&(e=0)&(m=0)&(f=0) ->p6:(d’=1)&(and ’=2)

+p7:(e’=1)&(and ’=2);

[](d=1)&(e=0)&(m=0) ->p5:(m’=1)&(d’=0)+p8:(e’=1)&(f’=1);

[](e=1)&(d=0)&(m=0) ->p5:(m’=1)&(e’=0)+p9:(d’=1)&(f’=1);

endmodule

Figure 10: PRISM modeling of the 2-gate example

It is important to note that all variables are declared globally, with starting value

of zero. The variable declarations are suppressed in Fig. 10 for space constrains. The

module twogate controls the flow of the system. In the first line of the module, the

or variable sets the starting point of the system, activating the OR gate. The second

line of the module takes the output of the OR gate, C, and channels it to the input
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of the AND gate, D. The modules above can be used to build a fault tree diagram,

in any desired configuration, by PRISM’s module renaming feature.

4.5 Case Study

To show the applicability of our approach, we perform a quantitative analysis on

the solar array case study, taken from [147]. We will present the obtained analytical

results and a possible solution to improve reliability. Solar arrays are one of the most

important components of any satellite mission, as they generate power for all other

components of the satellite. The arrays are usually in a folded position during the

launch phase of the satellite, becoming unfolded once the satellite is fully deployed in

space. The goal of this component is to have the solar array aimed at the sun at all

times in order to maximise power generation for the satellite. Fig. 11 shows the fault

tree diagram of the mechanical components in the solar array. A detailed description

of each component can be found in [147].

x24Level 1

Level 2

Level 3

Level 4

x19

x1

x3 x4 x5 x6 x3 x7 x8 x3
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+ + + +

+

+

x14

x2 x15 x16 x17 x3 x9 x10 x11 x12 x13 x18

x20 x21 x22 x23

Figure 11: Solar Array Fault Tree

The top event X24 represents the failure of the solar array system. Intermediary

events X19, X20, X21, X22 and X23, in the second level of the tree, represent the

possible causes of failure in the solar array. At the third and fourth levels, X1, X2,

X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, and X14 are the bottom events,

that can cause a failure in events X19, X20, X21, X22 and X23. The solar array
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fault tree was modeled first, as a DTMC and then, as an MDP. We reiterate that the

choice of those types of Markov chain was motivated by the need to verify the sys-

tem in a known and predictable environment as well as in an unknown environment.

Every bottom event in the fault tree has a probability of being triggered and such a

probability is based on the truth degree values specified in Table 3 [147]. For the sake

of simplicity, we assume that only one bottom event can trigger at a time, with the

exception of X4 and X5, since those events are connected to an AND gate and thus

both must be triggered to model the behavior of fault propagation. All other events

in the tree are connected through OR gates. The objective of the experiment is to

assess and compare the likelihood of faults originated at the different bottom events

of the tree to reach the top event X24 causing a system failure. It is important to

note that bottom event X3 is connected to multiple gates in the system. This makes

X3 the most important bottom event in the tree since it has the highest probability

of triggering a fault in another node. The model is encoded in PRISM following

the approach specified in Section 5.3.1. The output of each logical gate has intrinsic

probability of fault masking which, in the real world, means a non-destructive failure

or a transient fault, which the system is able to detect and fix by itself, continuing its

normal operation. The probabilities of fault masking are the same for all gates of the

model. We performed our analysis using two different values for masking probabili-

ties, 5% then 10%. However, since the model is parametric, any other value can be

easily evaluated. The probabilities of each bottom event to reach a system failure are

evaluated by verifying PCTL properties in PRISM, for both the DTMC and MDP

models. The property for a node Xa, connected to an OR gate, is defined in PCTL

as follows:

Property 1: Pmax =? [(F Xa = 1)& (F X24 = 1)] - “What is the maximum proba-

bility that eventually Xa will trigger and eventually the fault will propagate to X24,

causing a system failure”.

The property for two nodes Xb and Xc, connected to an AND gate, is written as

follows:

Property 2: Pmax =? [(F Xb = 1)& (F Xc = 1)&(F X24 = 1)] - “What is the
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maximum probability that eventually Xb will trigger and eventually Xc will trigger

and eventually the fault will propagate to X24, causing a system failure”.

We use DTMC in the first experiment to assess the probability that a failure orig-

inated in a bottom event will reach the top event and the results are presented in

Table 4.

Table 3: Fault Probability of Bottom Events
X1 X2 X3 X4 X5 X6 X7
4% 6% 10% 4% 6% 4% 8%
X8 X9 X10 X11 X12 X13 X14
6% 8% 3% 5% 8% 8% 8%

Table 4: Top Event Failure Probability(DTMC)
Event 5% Mask 10% Mask Event 5% Mask 10% Mask

X1 0.0361% 0.0324% X8 0.0514% 0.0437%
X2 0.0541% 0.0486% X9 0.0722% 0.0648%
X3 0.0868% 0.0749% X10 0.0270% 0.0243%
X4 0.0342% 0.0291% X11 0.0451% 0.0405%
X5 0.0021% 0.0018% X12 0.0722% 0.0648%
X6 0.0021% 0.0018% X13 0.0722% 0.0648%
X7 0.0685% 0.0583% X14 0.0685 0.0583%

The second set of experiments is conducted using MDP, to add non-determinism into

the model. The scenarios are evaluated in the same manner as the DTMC experiment

and Table 5 summarizes the result.

Table 5: Top Event Failure Probability(MDP)
Event 5% Mask 10% Mask Event 5% Mask 10% Mask

X1 0.0361% 0.0324% X8 0.0514% 0.0437%
X2 0.0541% 0.0486% X9 0.0722% 0.0648%
X3 0.0902% 0.0810% X10 0.0270% 0.0243%
X4 0.0342% 0.0291% X11 0.0451% 0.0405%
X5 0.0041% 0.0034% X12 0.0722% 0.0648%
X6 0.0041% 0.0034% X13 0.0722% 0.0648%
X7 0.0685% 0.0583% X14 0.0685 0.0583%

After comparing the results, it becomes clear that the increased probability of masking

is considerably more effective for errors occurring in the lower layers of the fault tree.

It is notable that while most results are the same for DTMC and MDP, they do

differ in X3, X5 and X6. The observed reason for these differences lies in the non-

determinism present at the core of an MDP. OR gates are simple because one error

is enough to trigger an output and a chance of propagation to the next node thus,

according to out modeling assumptions, the path from bottom to top event becomes

more linear and has less room for randomness. For an AND gate the scenario is

different because the output generation and propagation depends on faults that occur
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on two bottom events concurrently. As such, there are multiple ways the error scenario

can play out (input 1 before input 2, input 2 before input 1, input 1 but not input 2

and so forth), thus opening more possibilities for non-determinism.

It is also of importance that event X3 is connected to multiple OR gates at the

same time, alowing for non-determinism. Another very important observation is that

the drop in system failure rate between 5% and 10% masking in the AND gates of

the MDP model was 17.07%, which is the biggest gain in reliability observed in this

experiment. Although the overall reliability of AND gates is greater in the DTMC

model, the reliability gain of those gates is higher in the presence of non-determinism.

Our analysis shows that the main causes of system failures in the solar array are

components X3, X9, X12, and X13. Remarkably, the bottom events that generate all

the above failures are located in the second layer of the fault tree and are connected

through OR gates. As an additional experiment, we take the number one cause of

system failure listed above (bottom event X3 propagating through OR gate to X21 )

and we run a test in a hypothetical scenario where we add system redundancy and

replace the OR gate with an AND gate, as seen in Fig. 12. Since X21 and X24 are

connected through an OR gate, we ignore all other connections to that gate.

X3

X3

X9

X21 X24

Figure 12: Redundancy Test

In such hypotetical scenario, the drop in system failure would be of 99.2%, using a

DTMC model and a masking rate of 10%. At the end of these experiments, it is

clear that the best way to improve the reliability of a fault tree, and consequently the

system that the tree is based on, is to place the most critical nodes under AND gates,

preferably with system redundancy, and to place such critical nodes further down in

the tree.

4.6 Conclusion

The accuracy of the failure assessment is of utmost importance in safety-critical en-

vironments, where a system error may lead to catastrophic outcomes. In this paper,

we have proposed a methodology for accurately performing fault tree analysis using
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probabilistic model checking. The technique consists of modeling the logic gates in

a fault tree diagram into DTMCs and MDPs that are encoded into the probabilistic

model checker PRISM. The methodology is, then, used to conduct a probabilistic

analysis on a solar array fault tree diagram, focusing on the likeness of a single fault

to propagate and cause a top event failure. A comparison is shown between the

results of both Markov chain models, with an analysis conducted on those results,

pointing out the FTD’s critical points. Building upon the methodology presented

in this paper, a few other elements can be added to make for more complex FTA

scenario, such as the introduction of time and concurrency of events.
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Chapter 5

Article II: Efficient Probabilistic

Fault Tree Analysis of Safety

Critical Systems via Probabilistic

Model Checking

Authors: Marwan Ammar, Ghaith Bany Hamad, Otmane Ait Mohamed, Yvon

Savaria

Abstract: The cost and complexity involved in the development of critical systems

encourage the use of reliability assessment techniques as early in the design cycle

as possible. Existing techniques often lack the capacity to perform a comprehensive

and exhaustive analysis on complex redundant architectures, leading to less than

optimal risk evaluation. This paper addresses the aforesaid weakness by 1) proposing

a new probabilistic modeling of Fault Tree gates and their composition as Markov

Decision Process; 2) developing a new formal-based technique to perform an in-depth

verification of the system’s reliability. This technique makes use of the expressiveness

of fault trees and the power of probabilistic model checking in order to investigate

the best Triple Modular Redundancy partitioning and configuration of a system.

The presented approach greatly improves the overall scalability with respect to other

techniques, while also improving the accuracy of the results. For example, we can

provide probabilistic failure rates for a chain of 100 redundant components in little
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over 1 second.

5.1 Introduction

Ensuring the proper functionality of safety-critical systems is of utmost importance

and, as such, dealing with faults at early stages of development has become increas-

ingly important. To this end, many techniques for fault analysis and fault tolerance

have been developed. In this context, Fault Trees (FTs) have gained widespread

acceptance for quantitative safety analysis. FTs are top-down graphical represen-

tations of various combinations of lower level events that may cause the system to

reach a top level failure (i.e., system failure). Fault Tree Analysis (FTA) can provide

insightful information to designers regarding the reliability of their systems, such

as how is their system most likely to fail and what are the most efficient ways to

make it safer. Traditionally, FTA is performed by converting the system’s FT into

a Boolean function and simulating that function with different low level component

failure rates [30–32, 35, 51, 124, 138]. However, these approaches are costly in time

and resources. This is mainly due to the fact that their modeling of FT is limited to

Boolean representation, which exponentially increases the resource requirements to

reach the desired results.

Redundant architectures, such as Triple Modular Redundancy (TMR), are broadly

used as alternatives for fault tolerance, in order to improve the reliability of safety-

critical systems. In the literature, the utilization of formal methods to analyze these

architectures is rather limited. In [? ] the behavior of a single TMR is formalized

through Communicating Sequential Processes (CSP). The work in [152] uses Uppaal

model checker to analyze a timed automata model of a TMR system design. Both

of these techniques are limited to a single system and do not consider multi-staged

TMRs. In [33, 34], the fault tree of a redundant system is modeled and analyzed

through Satisfiability Modulo Theories (SMTs), giving an estimation of the reliabil-

ity gain across different TMR configurations. These approaches present new problems

due to their intrinsic modeling approach, namely the amount of redundancy required

to perform the analysis. Furthermore, their proposed modeling has the same limita-

tion as previous approaches because they also rely on boolean representation.

44



Due to the increased cost and physical size constraints, the main challenge of im-

plementing fault tolerance through TMRs is knowing where in the system to apply

the redundancy and knowing which TMR configuration is the most beneficial to the

overall reliability. In order to address the above mentioned issues, a new formal prob-

abilistic FTA methodology is proposed. This work is distinct in the following ways:

1) A new probabilistic modeling of FTs is introduced. This approach consists of mod-

eling the behavior of each FT gate as a probabilistic automaton (PA). Thereafter, a

Markov Decision Process (MDP) model of the system’s FT is obtained by the parallel

composition of all the PAs that compose the FT. 2) A recursive formal probabilis-

tic analysis of the MDP model of the FT is proposed. This is achieved by utilizing

the efficiency of Probabilistic Model Checking (PMC) techniques. In this analysis, a

Component Contribution Investigation (CCI) is performed. The CCI consists in the

evaluation of the contribution of the failure of each subcomponent to the system’s

failure. 3) A new methodology to recursively evaluate the impact of TMR on the

reliability of the system. The goal of this technique is to determine the best TMR

partitioning and configuration for a system. The impact of the application of different

TMR configurations on each critical subcomponent is investigated. This process is

repeated until the resultant system reliability falls below the desired system failure

rate.

The proposed methodology is experimentally evaluated on different system ar-

chitectures, including the ones analyzed in [33, 34], demonstrating clear advantages.

Our methodology is more scalable and provides approximately 80 times of speed-

up. For example, the technique proposed in [33] fails to analyze a chain of 10 TMR

components. The technique proposed in [34] is able to analyze a chain of 140 TMR

components in 110 seconds, while our approach can analyze the same chain in less

than 1.5 seconds. Our methodology significantly widens the possible analyses of TMR

architectures. As well as evaluating the best TMR configuration (like in [33, 34]) our

methodology can determine the optimal TMR partitioning and the impact of TMR

at different FT levels.

The rest of this paper is structured as follows. In Section 5.2, the most relevant

related works are discussed. In Section 5.3, we present the proposed methodology. In

Section 5.4, we describe the experiments and report the main results. In Section 5.5,

we draw some conclusions and discuss future work.
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5.2 Related Work

Fault tree analysis (FTA) is a widely used method for risk assessment, mainly in

the area of avionics, nuclear, and chemical industries [138]. FTA follows a deductive

approach, which means it starts from an undesirable general event in order to find

the origins of said event. In the context of FTA, the general event is known as

top level event (TLE), from which the fault tree branches out vertically. The top

event is defined as the failing point of a system in operating conditions, whether

those conditions are considered normal or abnormal. Basic events are the ones at the

very bottom of the fault tree, called low level events(LLE), independent from any

other events. A quantitative FTA is performed by assigning fault probabilities to the

bottom events which will dynamically be distributed through the rest of the tree. The

relationship between fault tree events is expressed using relational constructs called

logic gates, such as AND and the OR gates.

In [124, 125] quantitative and qualitative FTA techniques are proposed, respec-

tively. These techniques consist of converting the FT into a format compatible with

Shannon’s decomposition (i.e., boolean formulas). Thereafter, the proposed analysis

is performed on the FT boolean formula to generate fault configurations that can

cause system failure. The problem with these approaches lies in the boolean repre-

sentation which limits their expressiveness of the system’s behavior. For instance,

it is not possible to trace the source of the error without performing step-by-step

comparison between the faulty and the reference models of the system. The works

in [31] and [30] focus on the analysis of dynamic FTs. The FTs are represented as

cause-effect diagrams known as Bayesian networks The analysis is performed through

the Galileo tool [128], which performs FTA through the use of DIFTree algorithms.

A model-based safety assessment approach to analyze redundant components is

proposed in [33]. In this technique, SMT solvers are utilized to generate all fault

configurations that can lead to a system failure. This technique is an improvement

(in terms of speed and accuracy) over traditional reliability analyses [70? ], which

utilize manual algorithms. However, the problem with the approach proposed in [33]

lies in the amount of overhead it requires to generate the model. This is mainly due

to the need to incorporate a reference and a redundant model of each subcomponent.

Moreover, the redundant model of the subcomponents, must be duplicated, with

one added multiplexer between each duplicated items, to allow fault injection. As
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such, this modeling approach is very costly, with serious scalability issues due to

the complexity and the size of the final SMT model. According to [33], with such

modeling approach, even the most efficient SMT solvers cannot handle a chain of

more than 10 TMR components.

An attempt to address the scalability issues of [33] is presented in [34], where

the complexity is reduced through predicate abstraction. This technique replaces the

reference and the redundant models with their abstracted versions to allow larger

systems to be modeled. However, even if the behavior of the models is preserved,

another problem arises with [33, 34]. Generating all possible fault configurations

that may lead to a system failure is impractical. According to [33], a chain of 100

TMR components can have 26×100 possible fault configurations. An SMT solver can

only generate a subset of these possible fault configurations (i.e. the obtained system

failure rate will be underestimated).

5.3 Proposed Methodology

In this section, the proposed probabilistic fault tree analysis of redundant architec-

tures is introduced. The flow chart of the proposed methodology is shown in Fig.

13. We start from a system-level model, in which a system is composed of inter-

connected hardware components. This system-level model must be provided by the

designer in a general-purpose modeling language, such as SysML [61]. The failure

rate of each component is characterized from the system-level specification. From the

SysML model, a fault tree of the system is automatically synthesized using the tool

proposed in [99]. Subsequently, a formal MDP model of the system’s FT is obtained

through the parallel composition of the PAs of the FT gates. A library of the PAs

of the FT gates is modeled a priori and each gate can be instantiated as needed.

In this work, the composition of the MDP model of the FT is done automatically

through the probabilistic model checker PRISM. The next step is to exhaustively

analyze the generated MDP model in order to evaluate the maximum probability of

the TLE (i.e., compute the system’s failure rate), in the presence of all LLEs. This

is done by performing probabilistic model checking of the following property: “What

is the maximum probability that eventually TLE will be true (i.e. system will fail)”.

According to the specification and based on the criticality of the system, a threshold
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for an acceptable failure rate is defined. If the computed failure rate is above the

expected threshold, then an exhaustive analysis of the fault tree is required. In this

case, we perform a Component Contribution Investigation (CCI) which is an exami-

nation of the impact of the failure of each subcomponent to the system failure. This

is done by verifying the following property: “What is the maximum probability that

if component A eventually fails, the TLE will eventually fail”

For each system, a Component Contribution Matrix (CCM) is created. The CCM is

a library that records the impact of the failure of each subcomponent to the system’s

failure probability. Subsequently, the proposed methodology investigates the effects

of applying TMR on the critical components (based on the system’s CCM) of the

system. If the system’s failure rate is above the desired threshold, the CCI is repeated

and the CCM is updated. The previous steps are repeated until the system satisfies

its specification. In the next subsections, we explain in detail the proposed modeling

and analysis.

System-level 
Model

Synthesis of the 
Fault Tree

Generate MDP 
model

Investigate System 
failure rate

>failure_thr
Component
Contribution 
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Library of 
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Library 
Components 
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TMR the most 
critical component

Update Fault 
Tree
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Figure 13: Main Steps of the Proposed Methodology

5.3.1 Probabilistic Modeling of Fault Trees

In fault trees, the set of events that might lead to a top level event failure is defined in

a top-down manner and connected using FT gates. In order to accurately model the

fault dependencies in FT, our approach focuses on the formalization and modeling of
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the probabilistic behavior of FT gates. The general probabilistic model (automaton)

of any FT gate is expressed in Definition 1.

Definition 1: Given a FT gate with a set of inputs X and an output Z, connected

through a certain logic (such as AND, OR). The probabilistic automaton (PA) of this

gate can be formally defined as a finite transition system as follows:

� S, a finite set of states;

� s is the initial state s = S0;

� δ ⊆ (S × S), a set of transitions between the states;

� Fr, a set of components failure rates;

� π : δ(S × S) → (λ, 1 − λ), a transition function assigning probability λ ∈ Fr
for each transition.

Example: Given two input events X and Y and their output Z, connected

through an AND gate, output Z becomes true if and only if X and Y are true. Two

examples of the PAs of one static and one dynamic gates are depicted in Fig. 14. For

the static AND gate (see Fig. 14(a)), starting from an initial state S0(X=0, Y=0,

Z=0) the next state can either be S1(X=1, Y=0, Z=0) or S2(X=0, Y=1, Z=0), with

probabilities p1 and p2, respectively. At this point, the system can either move from

S1 or S2 to S3(X=0, Y=0, Z=1), with probability p2 or p1, respectively, signifying

fault propagation, or stay in S1 or S2, with probabilities 1-p1 or 1-p2. A dynamic

gate is modeled in the same manner, but with an added degree of complexity due

to the priority constraint. A Priority AND (PAND) gate model (see Fig. 14(b))

starts at state S0(X=0, Y=0, Z=0). The model may move to S1(X=1, Y=0, Z=0)

with probability p1, or to S2(X=0, Y=1, Z=0) with probability p2. If the model is

at S1 and the priority of X is higher than the priority of Y, and event Y happens,

the next state will be S3(X=1, Y=1, Z=1), with probability p2. If the model is at

S1 and the priority of Y is higher than the priority of X, and event Y happens, then

the next state will be S2, with probability p2. Lastly, if the model is at state S2 and

the priority of Y is higher than the priority of X, and event X happens, the model

moves to S3, with probability p1. If the model is at S2 and the priority of X is higher

than the priority of Y, and event X happens, the model will move to state S1 with

probability p1.
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Figure 14: Example of Fault Tree Gate Automata

Due to space constrains, only the PAs of the AND and PAND gates are shown

in Fig. 14. However, a list of all the FT gates that we have modeled and a brief

description of their behavior can be seen in Table 6. After the PAs of the gates in

the FT are modeled, the MDP of the FT is constructed. In this work, the MDP

definition developed in [90] is adapted. An MDP is defined as a finite transition

system (S, s, A, P, L,Steps) as follows:

� S, a finite set of states;

� s is the initial state s = S0;

� A is a set of actions (i.e., LLEs);

� AP is a set of atomic propositions;

� L : S → 2AP is a labelling function that provides, to each state s ∈ S, a set

L(s) of atomic propositions;

� Steps : S×Act→ Dist(S) is the (partial) transition probability function, with

Dist(S) denoting the set of all discrete probability distributions over S.

The MDP, as defined previously, is a stochastic system where all the decisions

are made in a non-deterministic manner. At each state, a non-deterministic choice is

done from a finite set of possible actions by parallel synchronization (‖S) of the PAs

(MMDP = {PA1 ‖S PA2 ‖S . . . ‖S PAn}). Subsequently, the function Steps ran-

domly chooses the successor state according to the probability distribution Steps(s, a).
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The choice of MDP over other types of Markov models, such as the Discrete-Time

Markov Chain (DTMC), lies in the fact that real life systems experience nondeter-

ministic behavior due to the concurrency between components operating in parallel.

Concurrency can be found when an event leads to several different errors (i.e., im-

pacts several subcomponents) in the system. A DTMC model, in this case, divides

the probability of failure equally over all the affected subcomponents. However, this

behavior is not realistic. The MDP implementation of the aforementioned event will

result in a completely random distribution choice, thus reflecting more accurately a

real environment. An example of this can be seen in Fig. 15, where the effects of

non-deterministic (i.e., MDP) versus probabilistic (i.e., DTMC) distribution on the

TLE failure rate (1 − Rsys) of the solar array system of the DHF-3 satellite [147] is

investigated. The solar array FT can be seen in Fig. 15(a). It can be observed from

the results (shown in 15(b)) that the choice of model (MDP or DTMC) does not in-

fluence the computed failure rates when the events only affect a single subcomponent

(e.g., X2 and X7 ). On the other hand, an event that affects several subcomponents

(e.g., event X3 directly affects subcomponents X15, X17, X18, and X21 ) will have

its impact on the system’s failure underestimated, in the DTMC model.

It is important to mention that our probabilistic modeling approach takes full advan-

tage of the concept of FT modularity [138], which means that a fault tree of a big

system can be broken down into smaller sub trees. These smaller fault trees can then

be analyzed separately, and the result of this analysis is fed back to the original FT.

Table 6: Modeled FT gates

Gate OutputCondition
AND Gate All inputs are true
OR Gate At least one input is true

Inhibit Gate
In the presence of a trigger event, one other input

must become true

Functional Dependency
When the trigger event occurs, the dependent basic

events are forced to occur
Combination Gate At least n inputs are true
Exclusive OR Gate Exactly one input is true

Priority AND (Sequence
Enforcing) Gate

The inputs must become true in a specific sequence

Cold Spare Gate
The primary input becomes true, followed by the cold

spare inputs in the correct sequence
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Figure 15: Modeling FT as MDP versus DTMC

5.3.2 Modeling of TMR

The assessment of the impact of the optimal redundant architecture configuration

is of great importance to the development of safety critical systems. Redundancy is

commonly applied to components deemed essential to the system’s correct function-

ality. TMR is a broadly diffused architectural pattern for component redundancy

[4, 54, 95, 129], which consists in triplicating a critical component and feeding each

copy’s output to a majority voter. The voter evaluates each component’s output and

returns the value computed by the majority. Applying TMR to the whole system is

very costly and might not be required based on the system’s criticality level. More-

over, the efficiency of a TMR is dependent on the reliability of each component and

TMR voter, as well as on the TMR configuration.

The proposed methodology determines the optimal TMR partitioning (where the

TMR is required in the system) and the best TMR configuration to be used. Starting

from identifying the best partition, the most critical component, according to the

system’s CCM, is singled out. Following this, the system’s failure rate is evaluated

for each TMR configuration. This process is repeated for all critical components until

the desired system failure rate is achieved, as shown in Fig. 13.

Through our modeling, component redundancy can be applied in two ways: 1) the

sub FT, of which the critical component is the TLE, is triplicated within the system

FT and the new analysis is performed. 2) the sub FT of the critical component is

extracted from the system FT, triplicated, and analyzed separately. The numerical

results of the analysis are then fed back to the system FT, as transfer in events. The
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Table 7: TMR configurations and Respective FTs

a

                 M11

                 M12

                 M13

               V

M11 M12 M11 M13 M12 M13 V1

b

                 M31

                 M32

                 M33                V2

               V1

M31 M32 M31 M33 M32 M33 M31 V1 M31 V2V1 V2

c

                 M41

                 M42

                 M43                V3

               V1

               V2

M41 M42 M41 M43 M42 M43 V1 V3 V2 V3V1 V2

first way involves increasing the size of the MDP model and, consequentially, the

state space. However, the second way reduces the size of the model and increases

the efficiency of the verification, while retaining the accuracy. This is achievable

through FT modularity [138], combined with the proposed probabilistic modeling,

which allows FTs to be divided into sub FTs without losing any properties. Therefore,

throughout this work, the second method is applied.

In this work, all TMR configurations were analyzed, but for space constraints we

only present the most commonly used ones. Table 7 shows the main three TMR

configurations and their equivalent fault trees. The 1-voter and 2-voters TMR con-

figurations can have different sub-configurations depending on how these TMRs feed

their output to the next stage. For instance, a 1-voter TMR can have its output

driven by only the voter, or by a combination of the voter output and the copies of

the component. The number of outputs of a TMR and their origin are taken into

account when building the equivalent FTs. As can be seen in the 2-voters TMR ex-

ample, element M31 has more impact to the TLE than elements M32 and M33, due

to the fact that it is the singled-out element. Another modeling option that impacts

the analysis of redundant systems is the uniformity of failure rates of the TMR copies

of the component. Failure rates can be uniform or non-uniform, meaning that the

triplicated components can have either the same or different failure rates. The same

principle applies to TMR arrangement, where a 2-voters TMR chain can feature ho-

mogeneous or non-homogeneous arrangement of voters at different stages, as seen in

Fig. 16. The variation in the system reliability due to all the above mentioned TMR
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design options is discussed in detail in Section 5.4.

5.4 Experimental Results

The proposed methodology is fully automated on the top of the well known proba-

bilistic model checker PRISM [91], a free, open source probabilistic symbolic model

checker, based on the reactive modules formalism [7]. The probabilistic automata

of the fault tree gates (similar to Fig. 14) are modeled as PRISM modules. Each

module is composed of a set of commands. A PRISM command is a tuple cmd =

(act, guard, rate, action) following the format [<act>] <guard> → <rate>: <action>,

where:

� act is an action label used for synchronization of the different levels of an FT;

� guard is a predicate over the inputs of the FT gates;

� rate is the probability of occurrence of a FT event;

� action is a set of n updates that will translate into transitions in the FT.

Afterwards, an MDP model of the system is automatically generated by PRISM. The

failure rate of the system is investigated by verifying a set of Probabilistic Computa-

tion Tree Logic (PCTL) properties over the MDP model. The maximum probability

of a system failure can be obtained by verifying the following property:

PCTL 1 : Pmax =? [(F TLE = 1)]

                 M11

                 M12

                 M13                V12

               V11                  M21

                 M22

                 M23                V22

               V21                  M31
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                 M33                V32

               V31

Stage 1 Stage 2 Stage 3

(a) Homogeneous 2-voters TMR chain
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(b) Non-homogeneous 2-voters TMR
chain

Figure 16: Example of different TMR arrangements
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The contribution of the failure of a component to the system failure (i.e., CCI) is

obtained by verifying the following property:

PCTL 2 : Pmax =? [(F comp = 1)& (F TLE = 1)]

The experiments have been performed on a machine with an Intel Core I5-4200U

CPU and 8 GB of RAM. To show the applicability of our approach, different sizes of

TMR chains are analyzed. This experiment is done with chains of n length, with 1, 2

and 3 voters, considering different TMR combinations. The length of the chain varies

from 10 to 100 components. Fig. 17(a) shows the CPU time consumed to construct

the MDP model and to perform the proposed analysis. Due to the efficiency of the

proposed modeling, we were able to analyze a chain of 100 TMR components in little

over 1 second. Fig. 17(b) brings the memory consumption for chains of different sizes.

Fig. 17(c) depicts the relationship between the total number of states in the model

and the length of the chain. As evidenced by the results, the resource consumption

is small and grows linearly with the size of the chain. For example, a chain of 100

components is verified in less than 1 second and consumes less than 0.02 MB of

memory. This is achieved through our efficient modeling approach, which virtually

eliminates the problem of state explosion [132].

The second experiment consists in investigating the impact of the TMR configura-

tions on system reliability. The analyses are performed on networks of 10 components

(after applying TMR) connected in series, where we vary the failure rate of compo-

nents and voters. In this experiment, we consider a uniform failure distribution (i.e.

the triplicated version of each component have the same failure rate). Moreover, it is

assumed that all the components feature the same TMR configuration. The results,

depicted in Fig. 18, lead to the following observations: 1) when the failure rate of the

voter (1−Rv) is high and the failure rate of the component (1−Rm) is low (see Fig.

18 (c,d)), the best TMR configuration is the one which employs two voters. This is

mainly because that configuration reduces the impact of the failure of the voters by

taking into consideration the low failure rate of the components. 2) When the failure

rate of the voter is low and the failure rate of the components is high (see Fig. 18 (a)),

the best TMR configuration is one voter, as the reliability provided is very similar

to the other configurations but without the area and power overhead resultant from

voter redundancy. From Fig. 18 (a,b) we can conclude that when the components
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Figure 17: Results of Investigating the Proposed Methodology’s Scalability

have high failure rates, the performance of two and three voters configurations is

similar, and they outperform one voter configuration as the failure rate of the voter

increases.

We further investigate TMR chains, considering non-uniform failure distributions

(i.e., the triplicated components have different failure rates). To perform this analysis,

it is assumed that the triplicated components are physically separated, thus they may

be affected differently by environmental conditions (i.e. extreme heat, radiation, etc.).

As such, we randomly increase the failure rate of one component (referred to as critical

component) within each TMR.

Through the analysis of Fig. 19 (TMR3v) it is evidenced that the TMR with

three voters is the best choice for nearly all situations. This happens because all

components are “shielded” by the voters at all stages of the chain, thus the occurrence

of a component failure is always masked. Three-voter TMRs are, however, the most

costly option in terms of area and power. From the results of our analysis of TMRs of

two voters, depicted in Fig. 19 (TMR2v), it can be observed that the homogeneous

chain of two-voter TMRs is particularly sensitive to non-uniform failure conditions,
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Figure 18: TMR chain with uniform failure rates

especially if the critical component is the singled out one. This is due to the fact

that a failure in the singled out component feeds directly into the next singled out

component until it reaches the system outputs and cause the system failure. This

phenomenon can be seen in Fig. 16(a), where the failure of M12 carries over to M22,

and subsequently to M32, and so on. Our results demonstrate that this weakness can

be mitigated with the use of non-homogeneous chains of two-voter TMRs. As seen

in Fig. 16(b), the configuration of the voters is changed from stage to stage. A fault

originated in M12 propagates to M22 but it is masked by the voters V21 and V22.

This is evidenced by Fig. 19 (TMR2v2), where significant improvement can be seen

when compared to homogeneous chains.

Lastly, we perform analyses on the HSCOM subsystem of the HERMES Cubesat

Satellite, responsible for primary high speed communications [28] and on the solar

array system of the DFH-3 satellite. The fault tree of the HSCOM subsystem is shown

in Fig. 20. Due to the lack of exact component failure rates in the design specification,

all bottom events are assigned the same failure rate of 5.0× 10−3. Transfer in events

(X15 and X19) have probabilities of failure equal to 1 × 10−2 each. Subsequently, a

CCI is performed on the model and the results are reported in the CCM.
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Figure 19: Variation in the system failure rate due to non-uniform distribution

Fig. 21(a) presents a comparison of the impact of TMR (1 and 3 voters) on

the different components of the system. It can be observed that the most critical

component in the system is X16, so we further investigate it. X16 is the top event of

a sub FT composed by gates B and A. We will call the sub fault tree as BA. Upon

further inspection on BA, it was observed that the most critical component in BA is

X8. Thus a TMR is applied to X8. Fig. 21(b) contrasts the original system failure

rate (no TMR) with the updated failure rate after applying TMR to each component

in the system. To show the versatility of the approach, a similar set of experiments

is performed on the solar array FT of the DFH-3 satellite, shown in Fig. 15(a). The

solar array experiment follows the same steps described in the HSCOM experiment,

with the difference that we use the actual failure rates of the FT components, obtained

from [147]. A comparative result of the effectiveness of TMR on each component of

the solar array is presented in Fig. 22(a). The impact of applying TMR on each

component to the failure rate of the system is depicted in Fig. 22(b). It can be

observed through the analysis that the impact of TMR on a multi-level structure FT

is not straightforward, when compared to linear structures (chains of TMRs). This is

mainly because the impact is not only dependant on the failure rates of components

and voters, but also on the structure of the FT. This means that the same TMR

configurations may have different levels of impact when applied to different FTs of

different systems.
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Through our analysis, it is also observable that within the same sub tree, tripli-

cating lower level events is more efficient, compared to higher level events. This can

also be seen in Fig. 21(b), where the impact of applying TMR on X8 or on X16 is

practically the same. This is very insightful, as the area and power overhead resulting

from triplicating X8 is much smaller than the overhead generated from triplicating

X16 (see Fig. 20).
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Figure 22: Solar Array TMR Results

Throughout the experiments it is observed that although the implementation of

TMR usually impacts the system positively, the choice of the best TMR configuration

is heavily dependant on the characteristics of the system and on the environment

where the system is deployed. Fig. 18 shows that, in controlled environments (i.e.,

the triplicated versions of the component have the same failure rates), two-voters

TMR provides the best reliability. In unknown environments that might influence

the system in unpredictable ways (i.e., the triplicated versions of the component have

different failure rates), the three voters TMR configuration is always the best choice,

assuming that the failure rate of the voters is always smaller than the failure rate of

the components.

5.5 Conclusion

In this paper, an efficient probabilistic modeling and analysis of fault trees is pro-

posed. A new probabilistic approach for modeling fault trees was developed. These

model as used to construct the MDP model of system fault tree. Next, the efficient

PMC (i.e., PRISM) is utilized to perform the proposed exhaustive analysis. The

proposed technique is extended to perform a recursive probabilistic analysis of TMR

architectures. This technique is used to investigate the best TMR partitioning, config-

urations, and the impact of implementing TMR at the different levels of the system’s

FT. Our results demonstrate that the proposed methodology has great potential as
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it is more scalable, orders of magnitude faster, and it provides better quality results

when compared with contemporary techniques [33, 34]. For instance, the proposed

technique is able to analyze a chain of 140 TMR components in less than 1.5 seconds.

Also, our proposed methodology provides a more accurate system failure rate esti-

mation in the presence of TMRs in contrast to other techniques ([33, 34]) can only

investigate a subset of all possible fault configurations of large systems.
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Chapter 6

Article III: System-Level Analysis

of the Vulnerability of Processors

Exposed to Single-Event Upsets

via Probabilistic Model Checking

Authors: Marwan Ammar, Ghaith Bany Hamad, Otmane Ait Mohamed, Yvon

Savaria

Abstract: Due to current technology scaling trends, digital designs are becoming

strongly susceptible to space radiation effects. These effects can cause unwanted

single event upsets (SEUs) in any state element. This paper presents a new sys-

tem level model of SEUs propagation through processors as a Continuous-Time

Markov Chain (CTMC). Moreover, probabilistic formal techniques (such as prob-

abilistic model checking) are utilized to exhaustively estimate the impact of SEUs on

the system behavior. The proposed CTMC model was analyzed for different SEU

injection scenarios and different bit-flip rates. Results demonstrate that the proposed

approach can provide an accurate estimation of different reliability metrics, such as

Mean Time to Failure (MTTF), Mean Time to Recover (MTTR), and the probability

of failure for each SEU injection scenario in the system’s subcomponents. Further-

more, the proposed probabilistic system-level analysis was utilized to investigate the

optimal self-repair rate required in the system to obtain the desired level of reliability.
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Results demonstrate that in comparison with existing simulation techniques for fault

impact evaluation, the presented approach can provide consistent results while being

orders of magnitude faster in terms of CPU time.

Index Terms: Single event upsets (SEUs), system-level analysis, probabilistic model

checking (PMC), PRISM model checker, continuous-time Markov chain (CTMC),

mean time to failure (MTTF), mean time to recover (MTTR).

6.1 Introduction

With advances in technology, micro-electronic systems are becoming more vulnerable

to soft errors induced by Single Event Upsets (SEUs). An SEU is defined as a change

in the state of one or more memory elements inside a system [116]. This change

in state can often be harmlessly fixed if detected by the system. However, the non-

detection of such event may hinder the system in some cases, which may lead to critical

consequences in safety-critical applications, such as space missions and avionics.

The traditional and most direct approach to evaluate the SEU vulnerability of

a system (i.e., an application running in a processor) is through a process called

dynamic radiation ground testing [26, 134]. This method consists in exposing the

target system to a radiation flux and counting the number of errors observed. The

outcome is computed in the form of a parameter known as the dynamic cross-section

(σ), which is defined as the ratio between the number of errors observed at the output

of a Design Under Test (DUT), divided by the fluence of hitting particles [116]. A

problem with that metric is that any change in the application requires a new dynamic

test, thus resulting in an expensive and time-consuming method.

Alternative methods for SEU estimation have emerged, with the goal of reducing

the time and cost constraints associated with dynamic radiation ground testing. In

[117, 135], the authors introduce a method of injecting SEUs at random time intervals

through emulation, by making use of an interrupt routine to alter values within the

processor’s internal registers and memory. Fault injection through emulation is also

used in the direct memory access SEU emulation method [55], where a dedicated

hardware component, controlled externally, selects the time instant and the bit to be

altered in the memory. This approach is further explored in [56, 57], where the SEU
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injection is performed through probabilistic models of the system, with the goal of

estimating the system’s time to failure (TTF) and time to recover (TTR). However,

this technique still requires emulation in order to obtain certain system rates which the

model is built upon (i.e., coverage factor, error factor, and failure factor). Another

branch of SEU estimation techniques focus on fault injection through simulation,

which is usually done by injecting faults at logical or electrical levels [64, 83, 85].

The advantage of these techniques is the high level of control over the fault injection

scenarios, since the user has free access to the entirety of the system and the timing of

the injections is very accurate. However, emulation and simulation based techniques

have severe drawbacks. Disregarding the considerable time required to simulate or to

emulate a scenario of thousands of injected faults [17], both approaches are limited in

terms of accuracy. This problem arises due to the fact that these techniques are not

exhaustive, but rather reliant on input vectors [84]. In simulation-based verification,

the mind-set is to first to generate input vectors and then to derive reference outputs.

Simulating a vector can be seen as verification through input space sampling. This

means that unless all points are sampled, there exists a possibility that an error

escapes verification.

Recently, the use of formal based techniques to analyze soft errors at logical and

higher abstraction levels has been proposed, such as the work done in [23]. These

techniques provide new insights into the vulnerability of digital designs to SEUs. This

is mainly because they are exhaustive and not limited by the number of test vectors

as in simulation based techniques. In formal techniques, the user starts out by stating

what output behavior is desirable and then lets the formal checker prove or disprove

it. In other words, given a property, formal verification exhaustively searches all

possible input and state conditions for failures. However, at logical abstraction level,

these techniques suffer from state explosion (i.e., exponential growth in the number

of states of the model) [65]. Therefore, it is expected for these techniques to be more

efficient at higher abstraction levels, such as system-level.

In this paper, a new approach to compute an accurate estimate of a system’s

vulnerability to soft errors is introduced. The propagation of SEUs is modeled as

a Continuous-Time Markov Chain (CTMC) based on probabilistic model proposed

in [57]. The analysis of the obtained model is performed using Probabilistic Model

Checking (PMC) [19]. PMC is a fully automatic and exhaustive technique that has
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been successfully employed in a large scope of application domains, such as commu-

nication and multimedia protocols, security and power management. The proposed

system-level approach focuses on modeling the system details related to the SEU prop-

agation path through the processor rather than its logical behavior. Subsequently,

the analysis performed consists in the probabilistic evaluation of the Mean Time to

Failure (MTTF), the Mean Time To Recover (MTTR), and the expected system

availability in different SEU injection scenarios. The obtained results are compared

with values reported in [56]. Additionally, the case study reported in [118] is also

modeled using the proposed approach. The analysis consists in the computation of

the contribution of each component of the system to a failure. The obtained results

demonstrate that comparing with existing simulation techniques, the proposed ap-

proach provides consistent results while being orders of magnitude faster. Moreover,

the approach is very versatile, allowing the execution of customizable tests, where the

user can stipulate the inputs and the expected outcome, and the model automatically

investigates the results.

The rest of the paper is organized as follows. Section 6.2 discusses the steps taken

to generate the proposed Markov model of SEU propagation over time. Section 7.4

offers an overview of the adopted probabilistic modeling for the instruction cycle of

processors (fetch, decode, and execute), including the self-repair scenario. In Sec-

tion 6.4, the implementation of the proposed CTMC model in PRISM is introduced.

Section 10.2.6, explains the experiments and results obtained, and Section 10.2.7

concludes by summarizing the main contributions of this work and the results.

6.2 Markov Modeling of Self-Repair Systems

In this subsection, we utilize the model introduced in [9], where the behavior of a

fault-tolerant micro-electronic system subjected to the effects of ionizing radiation is

defined. This model is adapted from the one proposed in [57]. At a certain time t, a

system exposed to SEUs can operate in one of three states (F0, F1, and F2), as shown

in Fig. 23 [9]. The probability that the system is in state Fi at time t is denoted

by PFi
(t). The system is said to be in state F0 when operating error-free. When

an SEU triggers an error which is promptly detected, the system moves to state F1.

The system remains in this state for the amount of time required to recover from the

error, usually through a reset signal that restarts the control unit and restores correct
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functionality. After being restored, the system moves back to state F0. In the case of

an error that is not detected within the time limit, the system moves to state F2. It

will remain in this state until the error is detected, at which point the system moves

to state F1, and finally back to state F0. As such, the probability distribution of

future states of a system exposed to SEUs depends only upon the present state and

not on the sequence of events that preceded it, which characterizes a Markov model.

The time interval in which the system stays in state F0 before the occurrence of an

error is known as time to failure (TTF). Similarly, the amount of time spent in state

F2 before eventually going back to state F0 is called time to recover (TTR). Since a

system in state F1 immediately detects the error and performs the restoration cycle,

the amount of time spent in that state is negligible when compared to the time spent

in other states, thus the time interval in which the system is in state F1 is ignored in

the remainder of this paper.

F2

F1

F0

State

t

Figure 23: Time Progression of a Fault-Tolerant Micro-Electronic System Exposed
to SEUs [9]

Based on the discussion above, the probability distribution of PF0(t) and PF2(t) can

be obtained. Starting with PF0(0) = 1 and PF2(0) = 0 (i.e., no errors at t=0 ), the

probability of the system being at PF0 at time t + δt (see Eq. (1)) is given by the

addition of two mutually exclusive probabilities: 1) The system is in state F0 and

the SEU is detected. 2) The system is in F2 and the error is detected after the time

limit. The probability of the system being at PF2 at time t+ δt (see Eq. (2)) is given

by the addition of two mutually exclusive probabilities: 1) The system is in state

F2 and the error is not detected. 2) The system is in state F0 and the SEU is not

detected within the time limit. In Eq. (1) and (2), PD is the probability that the

SEU is detected, PND is the probability that the SEU is not detected, and δt is a
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time increment.

PF0(t+ δt) = PF0(t) · PD(δt) + PF2(t) · PD(δt) (1)

PF2(t+ δt) = PF2(t) · PND(δt) + PF0(t) · PND(δt) (2)

The probability of an error being detected by the system is given by Eq. (3),

where Ninj is the total number of SEUs injected, Ndet is the number of SEU that

can be detected by the system, and T is the amount of time in which the system is

exposed to SEUs.

PD(δt) = 1− (
Ninj

T
− Ndet

T
)δt (3)

Next in this paper, the concepts discussed here are used to formalize a self-repair

system as a Markov model, and to perform a study of the impact of SEU on the

behavior of processors through model checking.

S0S0

S1S1

S2S2

S3S3

F1F1 S4S4
S5S5

S6S6

F2F2 F3F3

S7S7

S8S8

A) Fetch Cycle B) Decode Cycle C) Execute Cycle

λm 1 λprop3

Figure 24: Proposed Probabilistic Model of SEU Propagation Through a Processor
Instruction Cycle.

6.3 Proposed Probabilistic Modeling of SEUs Prop-

agation in Processors

The execution of each instruction follows an instruction cycle composed of three

phases: the fetch and decode phases, which are handled by the control path, and

the execute phase, which is handled by the data path [37]. This instruction cycle

is carried by the micro-operations that are performed during each of the different

phases. This work considers a processor design that can access N bytes of memory.
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Each instruction is a word of length n bits, consisting of an operation code of length

nop, and an address of length nadr, where n = nop + nadr. This processor has a

programmer-accessible register, labelled accumulator (AC ), of size n. In addition to

AC, this processor has other registers needed to perform the internal operations fetch,

decode, and execute. The registers are the following:

� Data Register (DR): n-bit register which receives instructions and data from

memory.

� Address Register (AR): register of size nadr bits, which supplies an address to

memory.

� Program Counter (PC): register of size nadr bits, which contains the address of

the next instruction to be executed.

� Instruction Register (IR): register of size nop bits, which stores the opcode

portion of the instruction code fetched from memory.

Fetch 1 Fetch 2 Fetch 3 Decoding AND 1

JMP

ADD 1 ADD 2

AND 2

AR PC DR M
PC PC+1

IR DR[7..6]
AR DR[5..0]

PC DR[5..0]

DR M AC AC^DR

DR M AC AC+DR

Figure 25: Instruction Cycle Example

Following is an explanation of the SEU propagation through the instruction cycle

after causing a bit-flip in one of these registers (PC, DR, AC, IR, and AR). To

illustrate the processor’s modeling process, a small processor is considered, which can

access 4 bytes of memory. Each instruction is a word consisting of a 2-bit operation

code and a 6-bit address. This example assumes registers of the following lengths:

DR: 8-bits; AC: 8-bits; AR: 6-bits; PC: 6-bits; IR: 2-bits. Three possible instruction

codes are considered, shown in Table 8. The instruction code 11 represents an invalid

operation. A possible progression of the processor’s instruction cycle is shown in Fig.

25.
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6.3.1 Fetching Phase

This phase consists in obtaining an instruction from the memory and storing it in

the appropriate registers. First, the contents of the program counter are stored in

the address register (fetch 1 ). Next, the control unit reads the instruction from the

memory. The control unit asserts a READ signal which causes the memory to output

the requested data, which is stored in the DR, followed by incrementing the PC (fetch

2 ). Finally, the control unit copies the higher-order bits of the DR to the IR and

the lower-order bits of the DR to the AR (fetch 3 ). The SEU propagation in the

fetching phase is shown in Fig. 63(a). Starting from state S0, which represents an

error-free fetching, the following possible causes to originate an error in this phase

are considered:

� SEUs affecting the PC - This event may take place after the PC register is

updated, following the fetch 1 phase. An SEU-induced error in the PC register

can alter the address of the next instruction, which may result in wrong or

invalid operations. The transition from state S0 to state S1 (wrong or invalid

PC) represents the effect of SEU causing a bit-flip in the PC register. The rate

λpc indicates the probability of occurrence of an SEU-induced error in the PC

register, which will result in a faulty state (F1 ) with probability 1, since all

further operations will be performed on incorrect data.

� SEUs affecting the memory - This event may take place during the fetch 2

phase, resulting in an alteration in the data accessed from the memory and

stored in the DR register. The transition from state S0 to state S2 represents

the effect of SEU causing a bit-flip in the memory. The rate λm indicates the

probability of a bit-flip in the memory, which results in a faulty state (F1 ) with

probability 1.

� SEUs affecting the DR - This event may take place after the fetch 3 phase,

when the contents of DR are accessed in order to populate the IR and the AR

Table 8: Operations
Instruction Instruction Code Operation

ADD 00XXXXXX AC ← AC + M[XXXXXX]
AND 01XXXXXX AC ← AC ∧ M[XXXXXX]
JMP 10XXXXXX GOTO [XXXXXX]
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registers. The transition from state S0 to state S3 represents the effect of SEU

causing a bit-flip in the DR register. The rate λdr indicates the probability

of a bit-flip in the DR register, which can directly cause an alteration in the

operation to be performed, or an alteration on the data, resulting in a faulty

state (F1 ) with probability 1. The occurrence of SEUs in the DR register may

also lead to invalid values being stored in the IR and AR registers (i.e., an

invalid operation in the case of the IR, or an invalid or out-of-bounds address

in the case of the AR). These phenomena have a probability of detection, which

is represented by the transition from state F1 to state S0, with rate λinv.

The absence of SEU-induced errors during the fetch phase is represented by the

transition from state S0 to state S4, with probability λs2.

6.3.2 Decoding Phase

After fetching the instruction from the memory, the control unit must determine

which operation has to be performed. The value in the instruction register determines

which execute routine is invoked. The state diagram in Fig. 25 represents this as a

series of branches from the end of the fetch routine to the individual execute routines.

The SEU propagation in the decoding phase is shown in Fig. 63(b). The following

possibilities as causes of error in this phase are considered:

� SEU propagating from fetch: The error generated by an SEU during the fetch

phase will propagate to the decode phase. This is represented by the transi-

tion from state F1 (fetch error) to state F2 (decode error), with probability

λprop. This propagation may happen when the effects of an SEU result in the

occurrence of a valid yet erroneous instruction in the affected register.

� SEUs affecting the IR: The transition from state S4 to state S5, with probability

λir, represents the occurrence of SEUs causing bit-flips in the IR register. This

event may have two possible outcomes: 1) the bit-flip may alter the operation

stored in the IR register to an invalid operation. In this case, the transition

from state S5 to state S0 takes place, with probability λir inv. This signifies

an operation reset, after the system identifies the invalid operation stored in

the IR register; 2) the bit-flip may alter the operation stored in the IR register

to another valid operation. In this case, the transition from state S5 to faulty

state F2 takes place, with probability 1− λir inv.
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� SEUs affecting the AR: The transition from state S4 to state S6, with probabil-

ity λar, represents the occurrence of SEUs causing bit-flips in the AR register.

This event may also have two possible outcomes: 1) the bit-flip may alter the

value of the AR register to an invalid or out-of-bounds memory address. In this

case, the system is able to identify the error and the reset transition, from state

S6 to state S0, takes place with probability λar inv; 2) the bit-flip may alter

the value of AR to another valid memory address. In this case, the transition

from state S6 to state F2 takes place, with probability 1− λar inv.

The absence of SEU-induced errors during the decode phase is represented by the

transition from state S4 to state S7, with probability λs1.

6.3.3 Execution Phase

The last step of the instruction cycle is the execution of the decoded instruction,

performed by the data path. At this phase, the data and the operation have been

already fetched and decoded and are ready to be processed by the ALU. For multi-

operand execution such as the ADD and AND as shown in Fig. 25, first one of the

operands is fetched from the memory and must be stored in the AR (ADD1, AND1 ).

Then, the data path performs the logical operation between the content of the AR and

the content of the accumulator (AC). The result is stored in the AC, overwriting the

previous value (ADD2, AND2 ). Then, the execution phase terminates and the next

fetching phase begins. Alternatively, the single-operand executions such as JUMP

(JMP in Fig. 25) operation is much simpler. It is implemented by fetching the

address to which the processor must jump and copying it into the program counter.

The error propagation in the execution phase is shown in Fig. 63(c). The following

possibilities as causes of error in this phase are considered:

� SEU propagation from decode phase: It is considered that an SEU that was

not detected during the decoding phase will be processed during the execution

phase. This is represented by the transition from state F2 to state F3 (execution

error), with probability λprop2. This generally means that the wrong operation

was performed, or that the operation was performed on the wrong data. This

SEU may also be logically masked in the data path. This is represented by the

transition from state F2 to state S7 with probability 1− λprop2.
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� SEUs affecting the AC : The transition from state S7 to state S8, with probabil-

ity λac, represents the occurrence of SEU in the AC register. As with previous

registers, this event may have two possible outcomes. 1) the bit-flip in the AC

register results in the output of erroneous data, as shown in the transition from

state S8 to state F3, with probability λprop3. 2) this SEU may be logically

masked, which is represented by the transition from state S8 to state S7, with

probability 1− λprop3

The rate of a bit-flip due to SEUs in a register depends on the size of the register and

static cross-section of each bit. Therefore, the rates in Fig. 63 are different for each

register. It is also important to note that having an SEU at different registers has a

different impact on the system behavior. In other words, the fail states in Fig. 63 (F0,

F1, F2) will have different repercussions in different failure scenarios. For example,

the bit-flip in the PC will most probably lead to wrong operation and wrong data,

while a bit-flip in the DR register can only affect either the operator or the operand

of the instruction.

6.3.4 Self-Repair Routine

In this work, it is assumed that the processor under test is equipped with a self-

repair mechanism. The behavior of the self-repair routine of this processor can be

represented as the finite-state machine (FSM) shown in Fig. 26. From an error-

free operation state R0, the processor moves to state R1 after the occurrence of an

SEU. At that point, the processor performs a fault detection routine. If the error

is detected, then it will be fixed with probability λ repair. The processor moves to

state R0 (i.e., resuming error-free operation). From state R1, if the error could not

be fixed within a certain time limit, the processor moves to state R2. The system

eventually fixes this type of errors at the output by invoking a reset routine, which

returns the system to state R0.

6.4 Proposed Formal Modeling and Analysis in

PRISM

The modeling is done by generating different probabilistic automata (PA) to describe

the behavior of SEUs propagating through the different registers, as well as the logic
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Faulty state

Wrong Output

Error-Free State

Figure 26: FSM of the Self-Repair Routine [9]

unit. The processor’s CTMC model is obtained by the parallel composition of all the

PAs. The state transition probabilities are obtained by incorporating equations (1),

(2), and (3) into the CTMC model. The propagation of SEUs through the processor

is modeled as a CTMC, expressed in Definition 1.

Definition 1: A stochastic process {X(t) : t ≥ 0} with discrete state space

S is called a continuous-time Markov chain if for all t ≥ 0, s ≥ 0, i ∈ S, j ∈ S,

P (X(s+ t) = j|X(s) = i, {X(u) : 0 ≤ u < s}) = P (X(s+ t) = j|X(s) = i) = Pij(t),

where Pij(t) is the probability that the chain will be in state j, t time units from now,

given it is in state i now.

The analysis of the processor’s CTMC is done in PRISM (Probabilistic Symbolic

Model Checker) [91], a well established tool for formal modeling and verification of

stochastic systems. A PRISM model is formed by basic constructs called modules,

each designed to express a specific behavior, much like sub-components of a system.

The state of each module is given by a set of finite ranged variables. The global state

of the model is determined by the evaluation of the values of the module variables.

Each module is composed of a set of commands, expressed in the format [<act>]

<guard> → <rate>: <action>, where:

� act is an action label used for synchronization of the different modules of the

system;

� guard is a predicate over the operations performed in the system’s modules;
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� action is a set of n updates that will translate into operations being executed

in the modules.

� rate is the probability of occurrence of an action;

The commands are interpreted in a way that if the guard is satisfied, then the module

is allowed to perform the corresponding transition with the associated rate. PRISM

also allows the use of Markov reward structures. Reward structures are a way of

extending a Markov chain by adding a reward rate to each state. This mechanism

allows the modeling of variables that record the rewards accumulated with time. In

this paper, the analysis of the system is performed by verifying a set of Continuous

Stochastic Logic (CSL [19]) properties over the generated CTMC model. These prop-

erties can be used to obtain the probabilities of reaching a certain state in the model,

as in (12), or to evaluate the expected value of a variable over a certain amount of

time through reward structures, as in (5).

P=?[F(bit n = seu & out = seu)]] (4)

Which is interpreted as: “what is the probability of eventually having a SEU in bit n

that will eventually propagate to the output?”.

R{“ctl detected”} =? [(C < T )]] (5)

Which is interpreted as: “what are the accumulated rewards gained from reaching a

state where an error has been detected in the control path during time T?”.

6.5 Experimental Analysis

In this section, the results of the analysis of a general accumulator-architecture proces-

sor at the system level are presented and discussed. The analysis has been performed

on PRISM 4.3.1, running on a machine with an Intel Core I5-4200U CPU and 8 GB of

RAM. In this work, the experiments were performed under the following assumptions:

� The considered analyses of SEUs occur in the PC, DR, AR, IR, and AC regis-

ters. Each register is 32-bit wide, and all bits from the registers have the same

probability of being flipped. The processor has other special purpose registers,
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such as the Stack Pointer (SP), Global Pointer (GP), Frame Pointer (FP), Re-

turn Register (RA), and Zero (always has the value 0). These special purpose

registers are not considered in this analysis.

� At the system level, the exact flip rate of a bit due to SEUs is not obtainable

because the hardware implementation of the system is not yet available. There-

fore, it is assumed that the target system has a static cross-section per bit of

6.7× 10−15cm2/bit.

� The rate at which the processor detects and recovers from errors depends on the

adapted repair technique. Therefore, the repair rates used are an estimation.

The goal of the first experiment is to measure the impact of bit-flip injections on

the different registers of the system. This is done to obtain the average expected time

until failure, defined as Mean Time to Failure (MTTF), or the time from the injection

of the SEU until the system reaches a fail state. For this purpose, SEUs are injected

in each register separately in order to evaluate the MTTF. The results are shown in

Fig. 27, where Invalid Operation indicates the MTTF of an error that will lead to an

invalid operand. Valid but Wrong Operation is the MTTF of an error that generates

a wrong but valid operator (i.e., change from addition to jump). Lastly, Wrong Data

indicates the MTTF of an error that will lead to a wrong operand. It is important

to note that higher values of MTTF contribute positively to the system’s reliability,

since this means that the system stays in a non-faulty state for a longer period of

time before an error occurs.

It can be observed that the expected MTTF varies for different registers. For

example, the MTTF of all the SEU injection scenarios in the DR is less than the

MTTF of the corresponding injection scenarios in the PC. Moreover, it is noticeable

that bit-flips affecting the operator of an instruction always result in lower MTTF

compared to bit-flips that cause errors on the operands. This indicates that bit-flips

propagating through the control path are more critical. This is mainly due to the

fact that bit-flips that alter any of the bits dedicated to the identification of the

operator will often result in invalid or wrong operators. If the operator is invalid, the

system will detect the error immediately and it will reset the instruction, resulting in

a low MTTF. If the operator is altered to a valid but wrong operation, it is assumed

that the system will immediately enter a fail state, also resulting in low MTTF, but
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the wrong operation is still carried out by the system. However, if an SEU alters

one of the operands, it is not yet considered as a failure. This is because such SEU

can be logically masked in the data path as explained in the execution phase of the

instruction cycle, in Section 6.3.3. Therefore, such SEU will not be detected until the

wrong output is generated.
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Figure 27: Mean Time to Failure
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Figure 28: Mean Time to Recover

In the second experiment, the starting assumption is that the processor has failed

(i.e., a bit-flip has been detected) and an analysis of the average time needed to re-

sume the correct operation is performed. This is defined as Mean Time To Recover
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(MTTR). From this definition, it can be concluded that lower values of MTTR con-

tribute positively to the system’s reliability, since this means that the system spends

less time in a non-functional state. From the results in Fig. 28, it is observed that the

location where the bit-flip occurs has a significant impact on the MTTR. The MTTR

value for an SEU inducing an Invalid Operation is low, since the operation reset is

triggered immediately after the system detects the presence of the invalid operator.

It can be observed that the MTTR value for an SEU inducing a Wrong Data error

is also low. This is caused due to the fact that the wrong data error is not identified

by the system during the instruction cycle. This error is identified after the result is

generated. At that point, the system determines that the result is wrong and imme-

diately performs a reset operation. It is interesting to note that the Valid but Wrong

Operation error has the highest MTTR observed in the experiments. This can be

explained by the fact that from the moment at which the wrong but valid operator is

generated, the system is considered to be faulty. In other words, the operation has to

be completed and the result has to be generated before the system is able to identify

the error and perform a reset. Therefore, it can be concluded that SEUs inducing

Valid but Wrong Operation errors are the most critical when considering MTTR.

Through the results obtained in the two previous experiments, it is possible to com-

pute the limit of the availability function of the system as time tends to infinity,

defined as the steady state availability (SSA). The SSA is given by MTTF
MTTF+MTTR

and

it is automatically computed for each SEU injection scenario, as shown in Fig. 29.

It is important to note that a higher SSA effectively means a safer system over time.

A safer system is one with the higher MTTF (i.e., the system operates for a longer

period) and lower MTTR (i.e., the system spends less time in a non-functional state).

Thus, it can be concluded from the results that SEUs which induce the generation of

valid but wrong operators are the most critical ones, since these are the SEUs that

lead to the lowest SSA values. It can also be observed that SEUs that affect data bits

are relatively the least harmful to the system, since a wrong operand can still produce

a correct result due to the masking effects. This is evidenced by the fact that Wrong

Data has the highest SSA across all different registers. The Invalid Operation errors

can be considered to be of average criticality, since despite having a low MTTF, they

also have a low MTTR.
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Figure 29: Steady State Availability

The premise of the fourth experiment is to take advantage of the proposed proba-

bilistic system-level analysis to obtain the required self-repair rate of the system for

different SEU-induced bit-flip rates. The parameters of this experiment are:

1) The failure rate of the system due to SEUs should be kept below a certain thresh-

old. In this experiment, this threshold is considered to be equal to 1.5× 10−16.

2) Each register has an SEU-induced bit-flip rate that increases over time, between

the values of 2.0× 10−15 and 7.0× 10−15.

In this experiment, for each bit-flip rate due to SEUs, an investigation of the re-

quired self-repair rate in each of the analyzed registers in order to keep the system’s

reliability above threshold is performed. The results of this experiment can be ob-

served in Fig. 30, where each line shows the relation between the SEU bit-flip rate

in a register and the required self-repair probability. While these results may seem

trivial at first (a higher bit-flip rate requires a higher self-repair probability), the

experiment succeeds in showing one of the strong points in the proposed approach.

For any given radiation scenario stipulated by a designer, the proposed model is ca-

pable of giving the optimal repair rate required for the system to remain within the

predefined threshold of reliability.

In order to estimate the accuracy of the results provided by the proposed model, an

additional experiment has been performed. This experiment compares data obtained

from the work in [57] with data obtained from the proposed model, under the same

conditions. The experiment is summarized in Table 9. For each test scenario (Sc.1,

Sc.2, Sc.3), the rates for errors detected (PD), errors not detected (PND), and errors
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Figure 30: Vulnerability of Different Registers

detected at the output (Ndet) are taken from [57] and used to build a custom test

environment, as shown previously in Section 6.2, through Equations (1), (2), and (3).

In this experiment, it is assumed that all SEU injections occur in the PC register. In

[57], for each scenario, two values are given for the MTTF and for the MTTR. The

first value is obtained through emulation testing, shown in Table 9 under Emulation.

The second value, obtained through simulation at RTL-level, is shown in the table

under Simulation. The results obtained by the model proposed in this paper are

reported in the table under Proposed Technique. From the table, it can be seen that

the results obtained when injecting SEUs in the PC register with the proposed system-

level model are very consistent with those obtained with the RTL model introduced

in [57]. For instance, in Sc.1 the MTTF and MTTR reported in [57] differ from our

results by 1.48% and 1.61% respectively. Similarly, the differences obtained in Sc.2

are of 1.89% and 2.01% for the MTTF and the MTTR, respectively. Finally, the

differences obtained in Sc.3 are of 2.21% and 2.46% for the MTTF and the MTTR,

respectively. This is remarkable as, in our case, faults are injected at each bit of the

PC register, whereas in [57], faults are injected as bitflips in memory. Thus the two

experiments are not equivalent and differences should not be interpreted as modeling

errors. Note also that SEUs injected in other registers with our method lead to

other MTTR and MTTF values for which no comparable results are available in [57].

Furthermore, it is not clear that injecting faults in memory could reflect the MTTR

and MTTF that we compute (see Fig. 28, 27, 29, and 30). This is not surprising as

our method has a much better controllability and observability of the internals of our
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model that methods such as [57].

Table 9: MTTR and MTTF in Different Techniques
MTTF (seconds) MTTR (seconds)
[57] Proposed

Technique
[57] Proposed

TechniqueEmulation Simulation Emulation Simulation
Sc. 1 77.8 77.3 76.7 105.8 106.8 104.1
Sc. 2 64.5 64.7 63.3 82.9 83.7 81.3
Sc. 3 64.5 64.4 63.0 62.8 63.9 61.2

Table 10: AVR ATmega103 Analysis Comparison
Contribution to Microcontroller Failure

AnalysisTime
Register

File
ALU PC IR

Internal
SRAM

Data
Bus

Proposed
Technique

22.2% 24.5% 20.3% 18.7% 14.3% - 3.2 Seconds

[118] 23.8% 26% 19.85% 17.16% 13.41% 10.21% 4 hours

The final experiment conducted seeks to demonstrate the efficiency of the proposed

approach when compared to existing fault injection through simulation techniques.

Fault injection through simulation requires huge computational power and time and

it is a common occurrence for such techniques to take several days to conclude the

analysis, depending on the parameters and the complexity of the analyses. Our work

tries to provide an answer to this problem, by introducing a very fast and resource-

friendly approach to fault-injection experiments. In addition to the proposed system

level probabilistic abstraction, this improvement in processing time is possible thanks

to two main factors: 1) The number of fault injection scenarios required to estimate

the system vulnerability to SEUs is reduced: in large systems, many faults injected

at different bits may explore the same propagation paths. Traditionally, the faults

are injected into the system and the results are monitored. In other words, the design

is treated as a black box [17]. However, the proposed methodology grants us a higher

level of control over the fault injections. Thus, all redundant fault propagation paths

can be reduced to optimize the number of cycles required to analyze all faults in

the system. 2) The time required to analyze each injection scenario is reduced as

the proposed probabilistic model is heavily optimized for state-space reduction. This

is achieved by analyzing the fault propagation paths originating from each injection

scenario and deactivate nodes that have no impact on the analysis. For example,

during the analysis of faults injected at the Decode Cycle, the states of the components

that are part of the Fetch Cycle have no impact on the outcome. This results in a
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technique that is several orders of magnitude faster than fault injection approaches

based on simulations. The work in [118] presents a technique for reducing CPU time

to perform simulation-based fault-injection experiments in complex System on Chips

(SoCs). The goal of this final experiment is to draw a direct comparison with the

results and analysis time required by the technique introduced in [118]. This was

done by applying the concepts of the proposed technique to model and analyze the

core of the AVR microcontroller ATmega103 [3], and comparing the data obtained

from the work in [118] with data obtained from the proposed model, under the same

conditions. In this experiment, we have injected faults at different points during

the ATmega103’s instruction cycle in order to reproduce the injection scenarios used

in [118], and to estimated the contribution of different subcomponents to produce

a failure in the microcontroller. The results in Table 16 show that the proposed

technique provides consistent results while being orders of magnitude faster.

6.6 Conclusion and Future Work

This paper presents a novel approach for dependability estimation of fault tolerant

systems exposed to SEUs, based on probabilistic model checking. This approach

seeks to overcome the limitations of emulation and simulation-based techniques, by

providing a fast and exhaustive analysis of the effects of soft-errors in the system.

The experimental evaluation conducted is able to accurately quantify the impact of

SEUs on the different registers considered and through the different paths of error-

propagation in each SEU injection scenario. The obtained results are used to provide

an estimate of a processor mean time to failure and mean time to recover values. Then,

these values are used to compute an estimation of the steady-state availability of the

system, or the limit of the system’s availability over time. Finally, a dynamic test

scenario is presented, where the technique is able to estimate the required self repair

capabilities of the system in order to maintain its failure rate under a predetermined

threshold. Future work may analyze more complex processors, as well as different

architectures and different types of transient errors.
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Chapter 7

Article IV: Reliability Analysis of

the SPARC V8 Architecture via

Fault Trees and UPPAL-SMC

Authors: Marwan Ammar, Ghaith Bany Hamad, Otmane Ait Mohamed, Yvon

Savaria

Abstract: This paper proposes a system-level dynamic fault tree approach to model,

analyze, and estimate the vulnerability to soft-faults of the 7-stage pipelined SPARC

V8 integer unit. A preliminary analysis of the architecture is used to derive a dynamic

fault tree diagram which is modeled as a priced-timed automaton. The assessment

of the architecture’s vulnerability to radiation effects is obtained through fault tree

analysis, showing consistent results with radiation and simulation tests.

7.1 Introduction

The cost and the complexity involved in the development of safety-critical systems are

a prime motivator to the use of reliability assessment techniques as early in the design

cycle as possible. Existing techniques often lack the capacity to perform a comprehen-

sive and exhaustive analysis on complex architectures exposed to Single Event Upsets

(SEUs), leading to the necessity of conducting expensive ground tests that are not

able to fully characterize the system’s vulnerabilities. An SEU is characterized by an
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unforeseen change of state in one or more elements within the system memory. That

change of state is known as a soft-fault, and it can often be detected and corrected

by safety measures designed in the system. However, failing to detect the presence

of soft-faults may have catastrophic consequences, especially in environments where

safety is paramount.

In recent years, as the demand for fast, flexible and reliable techniques have in-

creased, many alternative methods for soft-fault estimation have emerged. Among

the most popular techniques in the literature is the fault tree analysis (FTA). The

FTA method is widely used for risk assessment, mainly in the area of avionics, nuclear

and chemical industries [138]. Dynamic Fault Trees (DFTs) [49, 138] are an extension

of static fault trees that cater to complex functional dependencies between system

components, such as priority, order of occurrence, triggering, and spare component

management. Recent literature such as the work in [120] propose extensions to the

conventional boolean FTA in order to take sequence dependencies into account for

qualitative and probabilistic analyses without state-space transformations. This al-

lows for modelling of event sequences at all levels within a fault tree. The analysis

of uncertainty over time is the focus in [10], in which a FTA technique has been in-

troduced to accurately model the effects of SEUs in non-deterministic environments,

with the use of probabilistic model-checking and Markov Decision Processes (MDPs).

This paper introduces a new DFT approach to compute an accurate estimation of

a system’s vulnerability to soft-faults, using the 32-bit SPARC V8 integer pipeline as

a case-study. The fault propagation paths in the targeted architecture are obtained

from the SPARC V8 architecture manual [74] by applying the technique introduced

in [11]. Subsequently, the fault propagation paths have been combined in order to

obtain a representative FT of the SPARC V8 integer pipeline, through the use of the

Behaviour-Based Method [112]. Next, a new modeling of FT gates is proposed, using

the Priced-Timed Automata theory. Finally, a fully automatic FTA is performed

with the use of UPPAAL-SMC model checking. The analysis performed consists in

the estimation of the probability of each type of Trap Exception (TE) to occur in the

targeted architecture, as well as the impact of individual registers to the overall relia-

bility of the processor, and the probability of failures over time. The obtained results

are compared with radiation and simulation tests, showing remarkable consistency

with radiation and simulation tests.
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7.2 Existing Fault Analysis of SPARC V8

Extensive literature exists on the verification of the SPARC V8 architecture, which is

mainly performed through simulation and radiation testing. Radiation testing, such

as the work in [127] are very important in characterizing this architecture’s vulnerabil-

ity when exposed to total ionizing dose. In [29] the authors use software handlers that

enable the classification of the types of crashes, and the measured crash cross-sections

are compared with those predicted by fault injection simulation. This demonstrates

that the data extracted from radiation tests may be used to conduct predictability

experiments at a higher-level. However, these techniques are extremely costly and

rather limited in their coverage, since it is virtually impossible to test or simulate for

all possible scenarios. On the other hand, regular system-level approaches (such as

FTs) are often bound to simplistic analyses due to a lack the expressiveness resultant

from the high-levels of abstraction employed. To address these shortcomings, we pro-

pose a new time-enhanced modeling approach to FT gates. The proposed modeling

enhances each of the gates with multiple clocks that may keep track of the duration of

each fault individually, as well as global clocks that enable the analysis of the impacts

of faults over time.

7.3 Modeling the SPARC V8 Pipeline as DFT

In order to conduct the proposed analysis, we must first generate a fault tree of

the SPARC V8 integer pipeline. We have adopted an analytical approach for the

generation of fault trees for complex systems, known as the Behaviour-Based Method

[112] for the FT generation. This approach considers faults as behaviours, and fault-

tree gates as operations on those behaviours. The behavioural patterns of the system

under the effects of SEUs have been obtained by applying the method previously

introduced in [11]. By applying these techniques to the SPARC V8 7-stage pipeline,

and based on the structural information available in the SPARC V8 architecture

manual [45, 74], the fault tree of the integer pipeline is constructed, as shown in Fig.

31. The fault tree is divided into 7 levels, each representing a stage of the pipeline.

A more detailed explanation of how the FT was obtained, as well as the reasoning

for the FT gates used is given in the following subsections.
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7.3.1 General Considerations and Assumptions

Before discussing how the FT mapping has been done, it is important to present some

of the general considerations and assumptions used in this work. Firstly, it is assumed

that the outputs of the fault tree gates are also susceptible to soft-faults. For example,

the probability of failure (λ) of “inst” is given by (λ iCache OR λ PC OR λ inst).

Secondly, we assume that the events in the fault tree (circles and rectangles) do not

represent components but rather the occurrence of a soft-fault on the component

[112]. For example, the element Reg. File means that a soft-fault has occurred in

the component register file. Therefore, each event in the fault tree has a probability

of failing due to soft-faults. Such probability is estimated through the equation:

σdevice = σff × Nff × (1 − α), where σcomponent is the cross section of the device,

σff is the intrinsic cross section of the flip-flop mapped on the design, Nff is the

number of flip-flops, and α is the masking of the device [29]. Unlike conventional

logic gates, the inputs and outputs of FT gates are probabilities related to the set

operations of Boolean logic. For example, the AND gate represents the assumption

of the combination of independent events (i.e., the intersection of the input event

sets). On the other hand, the OR gate represents the assumption that the inputs

are mutually exclusive events (i.e., the union of the input event sets) [138]. An

important consideration is that some FT behavior has been slightly altered. For

example, the register inst connects directly to three other registers (i.e., imm, rfa, or

rd) through different transitions. Based on which bit of register inst is affected by

the SEU, a different fault propagation path may take place. This decision is taken

probabilistically.

7.3.2 System Level Fault Abstraction

This subsection details how each of the SPARC V8 pipeline stages have been mapped

into a FT. This mapping has been based on extensive research on fault injection and

propagation experiments in the literature, as well as in technical reports and in the

SPARC V8 architecture manual.

Instruction Fetch (FE): In this stage, the PC register is read and the instruction

is fetched from the instruction cache (iCache). Therefore, in this stage, a soft-fault

may originate from the PC or from the iCache. This relationship is represented in the

proposed FT as gate G1, which is an OR gate connected to the basic events iCache
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Figure 31: DFT of the 7-stage integer pipeline of the SPARC V8

and PC. Additionally, Soft-faults in the nPC components may be propagated to the

EX stage of the pipeline.

Decode (DE): In this stage, the instruction (inst) is decoded. A soft-fault that

occurs in the inst register can non-deterministically propagate the error to one of three

registers: imm, rfa, or rd. Each of these registers will, in turn, activate a different

fault propagation path. Register imm may propagate to the Execute stage. Register

rd may propagate to the RA stage and register rfa can be non-deterministically

propagated to adr 1 or to adr 2.

Register Access (RA): During the register access stage, operands are read from

the register file or from internal data bypasses. In our model, a soft-fault at this stage
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(either direct or propagated) may firstly affect the registers adr 1 or adr 2. These

registers, along with the rd register from the DE stage, are inputs to the OR gate

G2. A soft-fault in the inputs of gate G2 may propagate to the Reg. File component.

It is important to note that the Reg. File component may propagate the soft-fault

to either dt 1 or dt 2. According to [74], a soft-fault in adr 1 may only propagate

to dt 1. Similarly, a soft-fault in adr 2 may only propagate to dt 2. Therefore, the

Reg. File component and its children are considered special cases, deviating from

the previously mentioned general assumption since the choice of propagation path is

always deterministic.

Execute (EX): During this pipeline stage, the logical and shift operations are per-

formed. For memory operations (such as JMPL), the address is generated. In this

stage, soft-faults originated from the imm, dt 2, or branch addr. may propagate to

component op 1 through the OR gate G3. Similarly, soft-faults originated from the

dt 1 or branch addr. may propagate to component op 2 through the OR gate G4.

Furthermore, soft-faults in op 1, op 2, or pc may propagate to the result register.

Memory Access(MA): Data cache is read or written in the memory at this stage.

In the proposed FT, an error in this stage may arise either from a soft-fault in the

result or in the branch addr. registers. This is modeled with OR gate G6, which may

propagate the soft-fault from either of those registers.

Exception (XC): In this pipeline stage, traps and interrupts are resolved. In the

proposed FT, OR gate G7 may propagate soft-faults coming from the d cache or from

the result. At this level of the FT, our model computes the probabilities of each of the

different traps, based on the probability of soft-faults in the instructions performed

and the paths taken.

Write-Back (WB): The result of any ALU, logical, shift, or cache operations are

written back to the register file. The value of the xc result register is generated during

this pipeline stage.

7.3.3 PTA Model Composition

The modeling formalism of UPPAAL-SMC is based on a stochastic interpretation

and extension of the Timed Automata (TA) formalism used in the classical model

checking version of UPPAAL. For individual TA components, the stochastic inter-

pretation replaces the non-deterministic choices between multiple enabled transitions
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by probabilistic choices. Similarly, the nondeterministic choices of time delays are

refined by probability distributions, which at the component level are given either

uniform distributions in cases with time-bounded delays or exponential distributions

(with user-defined rates) in cases of unbounded delays. These structures are defined

as Priced-Timed Automata (PTA).

In order to accurately model the fault dependencies in the proposed DFT, our

approach focuses on the formalization and modeling of the probabilistic behavior of

FT gates and events over time. To achieve this, we define each FT gate as a PTA

model, where a state (l, ν) ∈ L × Rχ
≥0 such that ν |= inv(l). In any state (l, ν),

there is a nondeterministic choice of either making a discrete transition or letting

time pass. A discrete transition can be made according to any (l, g, p) ∈ P , with

current state l being enabled and zone g is satisfied by the current clock valuation ν.

The probability of moving to location l′ and resetting all clocks in X to 0 is given by

p(X, l′). The option of letting time pass is available only if the invariant condition

inv(l) is satisfied while time elapses. The complete model of the desired FT can be

obtained by synchronizing the inputs and outputs of the required FT gates, therefore

composing the full FT diagram. As an example, Fig. 32 shows the PTA of a possible

configuration of the OR gate with two inputs. In the case of the x input, it may fail

at any time with probability px. At which point, the variable x becomes 1. The fault

in x then propagates to the output of the gate, setting out to 1. The same logic also

applies to the y input.

Figure 32: Sample of an OR Gate PTA

7.4 Stochastic Soft-fault Analysis with UPPAAL

In this section, we present and discuss the results of our analysis of the fault tree

of the SPARC V8 pipeline (Fig. 31). For this analysis, the proposed FT has been
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modeled in Uppaal-SMC, where a PTA model of each of the FT gates has been

generated. The model of the FT is then obtained through the parallel composition

of all the gate models. The proposed PTA models in Uppaal rely heavily on two

aspects: 1) As previously mentioned, the probabilities used for the failure rates in the

model are derived from the cross-section values reported in [29]; 2) The proposed DFT

models are constructed specifically for the verification of a microchip. This means

that the PTAs of each gate of the FT have certain configurations that accommodate

the particularities of such system. For example, exit rates in the models are set to

1. This forces the tool to evaluate each state at every unit of time (clock-cycle).

Furthermore, each register has an internal clock that tracks the amount of time that

the soft-fault is active, as well as a global clock that estimates the average propagation

times in the FT. This feature is extremely valuable for the modeling of soft-faults,

since it allows the model-checker to verify the model with different time parameters

in each verification instance. For example, the expected propagation time of a fault

greatly impacts its probability to cause a failure in the system.

Figure 33: Probability of Trap Exceptions in different approaches. Simulation and
radiation test results are reproduced from [29]

This experiment has the objective to determine the probability of an SEU to

rise a trap exception in the pipeline of the processor. Moreover, the proposed anal-

ysis can identify the type of trap exception that has occurred. With the FT pro-

posed in Fig. 31 and following the behavior detailed in the SPARC V8 manual [74],
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the proposed model is able to estimate the probability of occurrence of the follow-

ing trap exceptions: instruction access exception, data store error, illegal instruction,

data access exception, and mem address not aligned. All other types of trap excep-

tion are classified under Others. The probabilities used in the proposed analysis are

derived from cross-section metrics published in [29]. The analysis has been evaluated

over 3800 iterations, with a confidence level of 95%. The results show that approx-

imately 41% of all injected faults have been captured as trap exceptions. Fig. 48

shows a break down of each of the identified errors. For validation, the obtained

results (shown under Proposed FTA) are compared with the results reported in [29]

(shown under Radiation Test and Simulation). It can be observed that the results

estimated by the proposed analysis show remarkable similarity with the values ob-

tained by the of the Radiation Test and Simulation techniques. This shows that the

proposed analysis can be a viable option for early analysis of microprocessor designs,

as it is an inexpensive, fast, and highly customizable alternative to other adopted

methods.

Table 11: SPARC V8 Probability of Failure Over Time
Prob. of TE

(million hours)
Prob. of Error
(million hours)

Prob. of Undetected Errors
(million hours)

SPARC V8
Pipeline

0.133 0.268 0.097

The proposed FTA can be customized to evaluate other metrics, such as the esti-

mated time before a failure, the failure rate over time, and the impact of soft-errors

on different components. As an example, Table 16 shows the probability of trap ex-

ceptions over time, the probability of detected errors over time, and the probability of

undetected errors over time. Although relatively small, the probability of undetected

errors in the system may represent a serious issue in certain conditions, where the

system is expected to operate without maintenance. Our analysis shows that the

biggest contributors to the occurrence of undetected errors are the nPC register (27.2

% of cases), the rfa register (22.3 % of cases), and the d cache (19.3 % of cases). The

access to this kind of information early in the development cycle means that possible

points of vulnerability are easier to detect and quicker to fix, resulting in increased

productivity at lower costs.
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7.5 Conclusion and Future Work

Vulnerability to soft-errors is a major concern for micro-electronic systems exposed to

radiation. This paper proposes a probabilistic verification approach for vulnerability

estimation of the SPARC V8 architecture, when it is exposed to soft-errors. This

approach seeks to overcome the limitations of emulation and simulation-based tech-

niques, by performing fault tree analysis through stochastic model checking, which

provides an accurate and exhaustive estimation of the effects of soft-errors in the sys-

tem. The modeling experiments that were conducted produced results that are very

consistent with previously reported radiation ground testing. The proposed approach

is also able to accurately estimate metrics such as the impact of different bit flips on

the system’s dependability measurement, and availability over time. Future work will

seek to expand the analysis domain by integrating multiple layers of abstraction in

order to produce even more accurate results.
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Chapter 8

Article V: Towards an Accurate

Probabilistic Modeling and

Statistical Analysis of Temporal

Faults via Temporal Dynamic

Fault-Trees (TDFTs)

Authors: Marwan Ammar, Ghaith Bany Hamad, Otmane Ait Mohamed, Yvon

Savaria

Abstract: Fault Tree (FT) is a standardized notation for representing relationships

between a system’s reliability and the faults and/or the events associated with it.

However, the existing FT fault models are only capable of portraying permanent

events in the system. This is a major hindrance since these models fail to reflect

accurately the other classes of faults, such as soft-faults, which are often temporary

events that usually disappear after the source of the interference is no longer present.

This paper proposes a new fault tree modeling paradigm, to capture the impact of

temporal events in systems, called Temporal Dynamic Fault Trees (TDFTs). TDFTs

are utilized to model the characteristics and dependencies between different temporal

events, soft-faults, and permanent faults. These features are integrated to the pro-

posed probabilistic models of the temporal gates, which are modeled as Priced-Timed
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Automata (PTA). This paper also proposes a new FT analysis methodology, based on

Statistical Model Checking (SMC), designed to circumvent the state-explosion prob-

lem that is inherent to other model-checking approaches. The proposed analysis is

able to evaluate the impact of temporal faults in systems, as well as to estimate

the reliability and availability of the system over extended periods of time. The ex-

periments reported in this paper demonstrate the versatility and scalability of the

proposed approach. For instance, the results display the impact that temporal events

may have in a digital system. Our observations indicate that while regular soft-fault

analyses tend to underestimate metrics such as system reliability, TDFT analysis

shows remarkable consistency with radiation testing, with differences of under 2%, in

the conducted analysis.

Index Terms: Fault Tree, Temporal Events, Radiation effects, Single-Event Ef-

fects, Statistical Model-Checking, Formal verification, System-Level Analysis, Relia-

bility, Availability

8.1 Introduction

Fault tree analysis (FTA) is a prominent fault diagnosis technique which has gained

widespread acceptance for quantitative safety analysis. A fault tree consists of a

diagram which represents the failure of the top level event (TLE) according to the

failure of basic events based on the relationships between them. The objective of

FTA is to provide insightful information to designers regarding the reliability of their

systems by identifying the ways in which the system is most likely to fail and thus

showing the most efficient ways to make the system safer. In the literature, FTs are

often classified as either static or dynamic, based on the dependency relationships

between their respective components and events. Examples of such dependencies can

be event priority, sequence, spare behavior, etc. With the introduction of dynamic

gates [30, 137, 143], the relationship between the events and components of a fault

tree have changed into a dynamic one, in which the outcome becomes dependent on

the order and the number of occurrences of basic events. Further development into

dynamic gates has led to the development of fault trees with temporal requirements
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[142, 144, 146]. These fault trees extend the dynamic gates to include tighter se-

quence requirements for the events. However, the inclusion of temporal constrains in

these approaches greatly limits the analysis process. Traditionally, FTA is performed

through simulation techniques [119], with tools based on techniques such as Monte-

Carlo simulation, time-sequential simulation, and discrete event simulation [52, 113].

Analysis of large systems using these techniques can often be overwhelming for the

tool since simulation-based analysis relies on input space sampling. This means that

unless all possible points are sampled, there exists a possibility that an error is not

detected by the analysis.

In recent years, many formal-based approaches for the analysis of dynamic fault

trees have emerged [13, 47, 119, 139]. These approaches (detailed in Section 8.2)

solve most of the limitations of simulation techniques, achieving fast and efficient

FTA. However, current FTA approaches are not suitable for safety-critical analysis,

since current FT modeling techniques cannot capture sequences of actions (such as

how many times has event 1 occurred before event 2) and state history. Moreover, the

binary representation (working or failed state) of FTs is not adequate for systems with

complex state-spaces. For example, conventional fault tree events start as inactive and

may become active according to a probability rate. Once an event becomes active,

it will remain active throughout the rest of the analysis. This behavior makes it

impossible to represent the occurrence of transient faults (i.e., faults that may appear

or disappear from the system due to the effects of external sources of interference,

such as radiation and heat) with existing fault-tree gates. This is due to the absence

of suitable fine-grain management of time in conventional fault-tree structures [104].

This paper proposes the modeling of a new type of dynamic fault trees with strict

behavioral and temporal requirements, hence referred to as Temporal Dynamic Fault

Trees (TDFTs). TDFTs are primarily targeted towards the analysis of temporal

events, such as radiation effects and heat. However, the TDFT gates are flexible

enough to be configured for the analysis of most FT systems. The work in this paper

is distinct from the literature in the following ways: 1) The proposed TDFTs are

fault trees that capture temporal events, state history and sequences of actions. We

present and explain the models of each TDFT gate, formulated as Priced-Timed Au-

tomata (PTA). Thereafter, the complete model of the fault tree is obtained through

the parallel composition and synchronization of the PTAs of all the required gates.
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2) Each of the gates in the fault tree is extended with a unique clock which, along

with a global system clock, enables precise time tracking and management. This

allows the proposed model to accurately represent temporal faults, which are only

active for a certain amount of time [103]. It also enables the verification of other

temporal properties, such as the time required for a specific event to manifest itself

in the system. 3) An analysis methodology is introduced, utilizing FT modularity

and sequential hypothesis testing in order to decrease time and resource requirements

while maintaining a high confidence level for the results. This is combined with Sta-

tistical Model-Checking (SMC), which provides statistical evidence for the satisfaction

or violation of the specification.

The aforementioned distinctions are demonstrated through a comparative study,

derived from verifying the estimated system reliability obtained with conventional

FTs versus the new TDFT model. The proposed TDFT analysis is experimentally

evaluated on different scenarios in order to assess its impact on the different types of

fault tree gates and to demonstrate its versatility. Finally, the proposed methodol-

ogy is used to analyze the 7-stage integer pipeline of a Leon-3 microprocessor. The

obtained results are compared with radiation and simulation tests from the litera-

ture [29]. Our results demonstrate that regular FTA methods are inadequate for the

analysis of systems that are exposed to temporal faults. The rest of this paper is

structured as follows: In Section 8.2, some of the most relevant related works are

briefly discussed. In Section 8.3, we explain a few preliminary concepts that are key

to the development of this work. Section 8.4 introduces the proposed modeling of

the TDFT gates, and the SMC-based analysis methodology. In Section 8.5, several

experiments are presented. These experiments have the goal of demonstrating the

main differences and advantages introduced by the proposed methodology. Finally,

in Section 8.6, we draw some conclusions and discuss future works.

8.2 Related Works

FTA is an extremely important field of research. Being the focus of many groups

during the past decade, FTA has evolved into one of the de facto techniques for

early analysis of critical systems. Walker and Papadopoulos [144] first suggested ex-

tending static FTs with Priority-AND, Priority-OR, and Simultaneous-AND gates.
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These gates enable a fault tree to enforce temporal dependencies between events. The

works in [13, 139] present very robust formal approaches to DFT analysis, based on

Input/Output-Interactive Markov Chains (I/O-IMCs) and stochastic model checking.

The work in those papers apply modularization approaches and compositional aggre-

gation techniques, along with heavy reduction algorithms, to formally analyze DFTs

with model checking. These techniques are built around the Galileo formalism [128],

which greatly limits the expressiveness of the analyzed models. For example, neither

approach is able to handle self-repairable systems or any dependencies between gates

or events that have not been pre-programmed in the tools.

In recent years, several techniques have been proposed to extend DFTs in ways

to offer more flexible temporal dependencies between its faults and events. In [120],

the author proposes an extension of the conventional boolean FTA in order to take

sequence dependencies into account for qualitative and probabilistic analyses without

state-space transformations. This allows modeling of sequences of events in all levels

of the fault tree. The analysis of uncertainty over time is the focus in [81]. This

work uses the Pandora tool and fuzzy logic in order to predict and capture different

sequences of dependent dynamic events over time. The authors use their method

to combine probabilistic data and fuzzy set theory with Pandora TFTs to enable

dynamic analysis of complex systems with limited or absent exact quantitative data.

Peng et al. [109] use a timed FT extension method applied to a railway maintenance

system in order to identify which faults are likely to occur first and, therefore, must

be eliminated more urgently. This method can estimate the time required for railway

maintenance and thereby improve maintenance efficiency, and reduce risks.

All these techniques have in common the attempt to introduce new dependencies

between the different components and events of dynamic fault trees. However, they

lack the expressiveness required for a robust analysis of the impact of failures over time

in a dynamic environment. The work presented in this paper further augments fault

trees, by combining and extending dynamic, repairable and temporal fault trees. The

proposed fault tree models are able to capture the randomness of fault testing, where

a significant event (i.e., radiation) may occur non-deterministically. Furthermore, this

event may be permanent, intermittent, or it may be active for a variable unknown

amount of time.
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8.3 Preliminaries

8.3.1 The UPPAAL Formalism

UPPAAL is a toolbox for verification of real-time systems, represented by a network

of timed automata, extended with integer variables, structured data types, and chan-

nel synchronization. For the efficient analysis of probabilistic performance properties,

UPPAAL-SMC proposes to work with Statistical Model Checking (SMC). SMC works

by monitoring some simulations of the system, and then use statistical results (in-

cluding sequential hypothesis testing or Monte Carlo simulations) to decide whether

the system satisfies some property with a sufficient degree of confidence. The mod-

eling formalism of UPPAAL-SMC is based on a stochastic interpretation and an

extension of the Timed Automata (TA) formalism used in the classical model check-

ing version of UPPAAL. For individual TA components, the stochastic interpretation

replaces the non-deterministic choices between multiple transitions enabled by proba-

bilistic choices (that may or may not be user-defined). Similarly, the nondeterministic

choices of time delays are refined by probability distributions, which at the compo-

nent level are given either uniform distributions in cases with time-bounded delays

or exponential distributions in cases of unbounded delays [46].

An illustrative example of the UPPAAL formalism is given by the PTA in Fig.

34. In this example and through the rest of this paper, the weight annotations

on locations and edges are ignored and defaulted to ”1”. For Fig. 34, the delay

distribution determined by the upper and lower paths to the END state is given by

sums of uniform distributions, where X ≥ 2 (green label) is the guard of the transition

(i.e., minimum time), and X ≤ 4 (purple label) is the invariant distribution (i.e.,

maximum time delay) of the transition. The stochastic choice that determines which

path will be taken is represented by a forked transition, where each path is weighted

accordingly. In the example, the weights of each path are either 1
6

or 5
6
. Finally, an

update may be performed during each transition (blue labels). Therefore, the END

location in the example is reachable within the interval X = [4, 12].

8.3.2 Fault Tree Analysis

The fault tree analysis (FTA) method is a widely used method for risk assessment,

mainly in the area of avionics, nuclear and chemical industries [137]. FTA follows
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Figure 34: Illustrative Example of the UPPAAL Formalism. Reproduced from [46].

a deductive approach, which means that it starts from an undesirable general event

in order to find what circumstances may lead to that event. In the context of FTA,

the general event is known as the top event, from which the fault tree branches out

vertically. The top event is defined as the failing point of a system in operating

conditions, whether those conditions are considered normal or abnormal. Bottom

events are occurrences that may lead to a component failure. As such, fault tree

models are characterized as graphical representations of system failures, in terms of

the system’s components. Standard fault tree models are defined as combinatorial

models, composed by static gates (mainly AND and OR gates) and basic events.

Combinatorial models can only handle combinations of events and not the order of

occurrence of such events, thus are not able to represent complex systems adequately.

Dynamic fault trees (DFTs) extend standard fault trees to allow the representation

of more complex relationships between basic events, such as functional dependencies,

priority, and order of occurrence.

8.4 Proposed TDFT Modeling and Analysis Method-

ology

A constant among existing FTA techniques is that the failure of a basic event cannot

be reverted (i.e., when a basic event changes from the normal state to the fail state,

it will remain in the fail state forever) [39]. However, it has been noted in the liter-

ature that basic events (i.e., events that may lead to the failure of a component) are

not always permanent. This fact may heavily impact the results of fault analyses,

especially in systems exposed to nondeterministic environmental interferences, such

as radiation, heat, and cosmic rays [5, 80, 84]. In a previous work related to mal-

function in pacemakers exposed to ionizing radiation [21], we have demonstrated that
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these radiation-induced malfunctions vary from a simple temporary abnormality to

complete system malfunction. The analyses in [21] have indicated that a simple tem-

porary bit-flip (which, according to technical reports, is a common occurrence) may

cause the pacemaker to behave erroneously and even endanger the life of a patient,

in some cases.

The approach proposed in this paper overcomes this FTA limitation by introducing

the sensitivity to Temporal Basic Events (TBE) to the fault tree gates (i.e, events

that may appear for a limited amount of time and then disappear if certain conditions

are met). This enables a more accurate representation of the environmental hazards

that the system may be exposed to, as well as for the tracking of faults which may

only manifest after thousands of cycles. Moreover, the proposed models are capable of

estimating the probability of fault occurrence in systems exposed to temporal events

of varying duration.

In order to accurately model the fault dependencies in FTs, our approach focuses on

the formalization and modeling of the probabilistic behavior of FT gates and events

over time. In this section, we show the modeling of temporal FT gates. The general

probabilistic model (automaton) of a FT gate is expressed in Definition 1, adapted

from [87].

Definition 1. Given a TDFT gate with a set of inputs Y and an output Z, connected

through a certain logic (such as AND). The priced-timed automaton (PTA) of this

gate can be formally defined by a tuple A = (L,L0, χ, Act, P,L), where:

� L is a finite number of states.

� L0 is the initial state.

� χ is a finite set of clocks.

� Act is a finite set of actions over L.

� inv: L→ ζ(Y ) is an invariant condition.

� P is a probabilistic transition function L× ζ(Y )×Dist(2Y × L).

� L : L → 2AP is a labeling function assigning atomic propositions to different

states.
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In the PTA defined above, a state (l, ν) ∈ L × Rχ
≥0 is characterized such that ν |=

inv(l). In any state (l, ν), there is a nondeterministic choice of either making a

discrete transition or letting time pass. A discrete transition can be made according

to any (l, g, p) ∈ P , with current state l being enabled and zone g is satisfied by the

current clock valuation ν. The probability of moving to location l′ and resetting all

clocks in Y to 0 is given by p(Y, l′). The option of letting time pass is available only if

the invariant condition inv(l) is satisfied while time elapses. Based on this definition,

following we explain in detail the proposed models for each TDFT gate.

8.4.1 Proposed Probabilistic Model of the Temporal AND

Gate

The probabilistic AND gate can be modeled as a temporal gate because of the tight

dependency between the output and the inputs. As stated previously, the output

is only generated if all inputs occur. However, in the case of temporal faults, input

events need to happen at the same time to cause the top level fault. For example,

let us imagine a component that fails in the presence of external heat (event x ) AND

radiation (event y). Let us assume a scenario where external heat is applied to the

component for a certain amount of time, after which the heat source is dissipated. Let

us also assume that the component has time to return to its regular temperature before

it is affected by external radiation. In this case, since both events have happened at

different points in time, the requirements for component failure have not been met.

d(X)min d(X)max

+∞

d(Y)min d(Y)max +∞

0

0

Figure 35: Possible Time Window of a TAND output

In the proposed Temporal AND gate (TAND), each of the basic events connected

to the gate (X and Y in this example) is tied to two attributes: the probability of
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the event occurring and the duration of the event. The derivation of the TAND rule

is the following:

� Duration of the Event: It is assumed that the time duration of a basic event

is a random variable d selected from an interval [0, ..., N ], where N ∈ R ≥ 0 .

After an amount of time equal to d has passed, the basic event ceases to exist in

the system. The basic event may re-occur according to the specified probability

rate, in which case the duration of the event may be different.

� Temporal Condition: As is the case with regular AND gates, the output Z

occurs only if all the inputs (X and Y ) occur. However, in the TAND gate, the

output is only generated when the duration of both inputs intersect. In other

words, both inputs must be active at the same time. As illustrated in Fig. 35,

the time interval in which the output of the TAND gate may be generated is

given by:

Z = [d(X)min, d(X)max]
⋂

[d(Y )min, d(Y )max] (6)

Where [d(X)min, d(X)max] and [d(Y )min, d(Y )max] are the intervals in which events X

and Y are active.

Figure 36: Example of a 2-Input Leaf TAND Gate

Fig. 36 shows a possible configuration of a Leaf TAND gate with two inputs.

A leaf gate (or bottom gate) is any gate that has only basic events as inputs. An

example of the possible flow of a Leaf TAND gate with two inputs is as follows: State

S0 signifies the absence of faults. From there, the model can transition through two

symmetrical paths, where either event may happen (i.e., x or y). Let us assume
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Figure 37: Example of a Simple Fault tree

that event y occurs, with probability py. In this case, the automaton moves to state

S2 and an update is performed by the function fail y(), which resets the clock ty,

determines the type of the event ky (ky == 0 signifies permanent fault, and ky == 1

signifies temporal fault) and the maximum duration dy (in time units) of the event.

At this point, the automaton may return to state S0, if ky == 1 and ty > dy, or it

may proceed to state S3, with probability px. If event x happens, the update fail x()

resets clock tx and sets the value of kx, moving the automaton to state S3. In this

scenario, state S3 may transition back to state S2, if tx > dx and kx == 1, or it

may transition to state S4, broadcasting the output to the next gate. The same flow

applies to the top path of the automaton, when event x occurs first.

Figure 38: Example of a 2-Input Variant TAND Gate

To demonstrate how a FT is constructed with the proposed automata, a simple

example is given. Let us consider the FT shown in Fig. 37. This FT has instances of

two possible configurations of the 2-Input TAND gate. Gate G2 is a leaf TAND gate,

since all of its inputs (x and y) are basic events. The automaton of this gate flows

as described above (Fig. 36), producing output z. Let us now consider the gate G1

from Fig. 37. Gate G1 is a variant of the leaf TAND gate, employed in cases where

one of the inputs of the gate is also the output of another gate. The PTA of gate

G1 is shown in Fig. 38. Although gate G1 receives two inputs, w and z, the input z

102



is not an event, but rather the output of gate G2. Therefore, gate G1 only receives

one basic event as input (event w). The flow of this automaton is the following: if w

== 0 (i.e., event w is inactive), then w may happen with probability pw. If event w

happens, an update is performed by the function fail w(), which resets the clock tw,

determines the type kw and the maximum duration dw of event w. The transition

takes the system to state S1. In state S1, the automaton will wait for event z, which

can be received through a synchronization channel (channel a, in this example). If

the system is in state S1 and event z occurs (i.e., w == 1 and z == 1 ), then a

transition to state S2 takes place. Alternatively, if the system is in state S1 and the

conditions kw == 1 (i.e., temporal fault) and tw > dw (i.e., duration of the fault

has expired) are met, then the automaton goes back to state S0. When state S2 is

reached, the output of the gate is produced and communicated to the next level of

the FT via synchronization.

For conciseness, the discussions for the other gates will focus on the leaf variant,

since it displays the full functionality of the gate and any required variants can be

derived from the leaf automaton. It must also be noted that all behavioral patterns

in the proposed timed automata are enforced with the use of variables, either through

guards, updates, synchronization, or declarations, as exemplified above. Therefore,

our use of invariants in the models has the sole goal of allowing the automaton to

stay in any state indefinitely (i.e., invariant set to 1). This is important, since the

propagation delay of the different inputs and gates throughout the fault tree is un-

known, especially when temporal and permanent faults coexist in the same fault tree.

Our experiments have shown that wrong results and often verification errors are gen-

erated when the automata are not allowed to hold a state indefinitely. Similarly, our

experiments have shown that the presence of exponential exit rates is required in

states where a clock is manipulated. Our results have suggested that different values

of exponential exit rates have little impact on the verification, as long as the value

is consistent across all states. For this reason, we have adopted the policy of setting

the value of the exponential exit rate to 1 in all states where it is required.

8.4.2 Proposed Probabilistic Model of the Temporal OR Gate

The OR gate is modeled as a temporal gate to better represent the propagation

delay that exists in real systems. The concept of the proposed leaf Temporal OR
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Figure 39: Example of a 2-Input Leaf TOR Gate

(TOR), shown in Fig. 39, is relatively simple, compared with other temporal gates:

assuming two temporal events ( x and y ) connected to a TOR gate, where each

event has a given probability of failure, the occurrence of either event can generate an

output in the gate. However, due to the propagation delay of the modeled component

(represented in Fig. 39 by the variables mx and my), the output is not generated

immediately. Therefore, the output is only generated if the duration of the fault is

longer than the propagation delay, but smaller than the maximum duration of the

fault (variables dx and dy). The output of the gate is communicated to the next

layer of the FT through a synchronization channel. The derivation of the TOR gate

follows the same rules as the TAND gate with regards to the duration of the events.

The temporal condition for this gate is given by the equation:

Z = [(d(X)min, d(X)max] | [d(Y )min, d(Y )max] (7)

8.4.3 Proposed Probabilistic Model of the Temporal FDEP

gate

The Functional Dependency (FDEP) gate is a dynamic gate composed of a trigger

input event and one or more dependent basic events. If the trigger event occurs, the

dependent events automatically become unavailable. While the trigger event is not

in a failed state, the dependent events behave like regular events (i.e., the dependent

events may fail independently from the trigger event). The FDEP gate does not have
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Figure 40: Example of a TFDEP Gate

a direct output, however, a functional dependency may be attached to any other

gate in the fault tree, altering its behavior. The behavior of the probabilistic FDEP

assumes that a dependent event y (such as the output of a gate) may happen with

probability py. However, if the trigger event x occurs, with probability px, then event

y is forced to happen as well.

The main issue with the regular modeling of the FDEP gate is that the temporary

occurrence of the trigger event compromises the system permanently. Let us take the

example of another electrical component. Let us consider the absence of electricity to

power up the component as the trigger event and the failure of the component as the

dependent event. It may be the case that an external interference causes the trigger

event to occur, and therefore causes the component to cease function. However, it may

also be the case that the trigger event disappears after a certain amount of time (i.e.,

the power is restored). In this scenario, the system may still function. The proposed

Temporal FDEP (TFDEP) gate (Fig. 40), models the behavior of a temporal trigger

event x. From state S0, event x may occur with probability px, moving the automaton

to State S1. From state S1, the automaton may go back to state S0 if tx > dx and

kx == 1. In this case, event x has no observable effect in the FT. Alternatively, from

state S1, the automaton may transition to state S2. This transition sends a message

(a! ) which immediately causes all other events that are associated to the TFDEP

gate to fail. Furthermore, from state S2, if the conditions tx > dx and kx == 1

are satisfied, the automaton may move back to state S0. When this transition takes

place, another message is sent (b!), which may override the effects of the first message

(a!). The temporal condition of an TFDEP dependency relationship is given by the

equation:

Z = [d(X)min, d(X)max] | [d(Y )min, d(Y )max]
⋂

[d(W )min, d(W )max] (8)
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Where x is the trigger event, and y and w are two dependent events.

Figure 41: Example of a 2-Input Leaf TPAND Gate

8.4.4 Proposed Probabilistic Model of the Temporal PAND

gate

As with the other FT gates, the PAND gate logic may also be susceptible to tem-

porary faults. To illustrate this, let us consider the case of a backup system with

two components in a standby configuration, with component A being the primary

component and component B in standby. If component A fails, then the electrical

switch (which can also fail) activates component B. Thus, the system will fail if com-

ponent A fails and the switch fails, or if component A fails then component B fails

subsequently. In this scenario, the events must occur in the specified order. However,

it is possible for the switch or component B to fail without causing a system failure,

if component A never fails. Moreover, it is possible that the electrical switch fails to

switch due to a temporary fault. In this case, the switching action might take place

immediately after the temporary fault exits the system.

In the proposed leaf variant of a Temporal PAND (TPAND) gate with two inputs

(Fig. 41), starting from state S0 and assuming temporary event x is the primary

event, a failure only happens if event x fails before event y. The failure of event

x moves the automaton to state S1. From state S1, event x may disappear from

the system, returning to state S0, or event y can happen, with probability py. The

occurrence of event y transitions the automaton to state S3, where event y may
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Figure 42: Example of a 2-of-3 Leaf TComb Gate

disappear (returning to state S1 ) or the output may be generated, which transitions

the model to state S5. If event y happens first, the model moves to state S2. From

state S2, event y may disappear, which causes a return to state S0, or event x may

occur, which causes a transition to state S4. Finally, from state S4, if event y expires,

the automaton moves to state S1. Alternatively, if event x expires, the automaton

moves back to state S2. As with the other gates, the output of the TPAND is

communicated to the next gate via synchronization message (message a!, for example).

The temporal condition for the output of the TPAND gate is given by the equation:

Z = [d(X)min, d(X)max]
⋂

[d(Y )min, d(Y )max]⇐⇒ d(X)min ≤ d(Y )min (9)

8.4.5 Proposed Probabilistic Model of the Temporal COMB

Gate

The Combinational gate (COMB) is a special case of the AND gate. A COMB gate

is composed by three or more inputs and one output. The output occurs if M-of-N

inputs occur. In other words, the combination gate allows the designer to specify the

number of failures within a group of inputs that is required for the top level event to

occur. By observing the examples given in the previous gates, especially the TAND

and TPAND gates, it becomes clear how the combinational gate can be augmented

into Temporal Combinational (TCOMB) gate. A possible configuration of a leaf 2-

of-3 model of the TCOMB gate is illustrated in Fig. 42. As usual, state S0 of the

automaton signifies no faults. From state S0, three symmetrical paths may be taken,
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Figure 43: Main Steps of the Proposed Methodology

representing the probabilities of failure of the three inputs of the gates. Let us take

event x as an example. From S0, event x may happen with probability px. This

transition triggers the function fail x(). This function is responsible for a plethora

of variable updates. If the variable count is equal to zero, which is the case since

this is the first transition in the model, function fail x() will set the clock associated

to state S1 (clk1 ) to zero, the variable d 1 will be set to the maximum duration of

event x, and variable k1 will be set to the value of kx. Finally, function fail x()

will increment the variable count and set variable x to 1. After all these updates,

the automaton is in state S1. From this state, event x may expire if the conditions

clk1 > d1 and k1 == 1 are met. In this case, the function timeout() takes place. If

function timeout() occurs from state S1 (i.e., count == 1 ), all variables are reset,

returning the automaton to state S0. Alternatively, from state S1, maintaining the

assumption that event x has already occurred, event y can happen, with probability
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py, or event z can happen, with probability pz. Let us assume that event z takes

place. In this case, the automaton calls the update function fail z(). Since variable

count is equal to one, the update function will set the clock clk2 to zero, the variable

d 2 will be set to the value of dz, and the value of k2 will be set to the value of kz.

The function also increments the variable count and sets variable z to one. With

the automaton in state S2 and variable count equal to 2, the transition to state S3

may happen, broadcasting the output through channel a, in this example. However,

from state S2, if the conditions clk2 > d 2 and k2 == 1 are met, the automaton may

transition back to state S1, which triggers the update function timeout(). If timeout()

is called from state S2 (i.e., count == 2 ), the most recent event is reset (in the case

of this example, z ), and the variable count is decremented.

The temporal condition used for the output of the TCOMB gate is a variant of the

one used in the TAND gate. Therefore the temporal condition is omitted to avoid

redundancy.
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8.4.6 Proposed Analysis Methodology

This subsection introduces the proposed analysis methodology. The flow chart of the

proposed methodology is shown in Fig. 43. We start from a system-level specification

model, in which a system is composed of interconnected components. This specifica-

tion model must be provided by the designer in a general-purpose modeling language,

such as SysML [61]. The failure rate of each component is characterized from the sys-

tem specification. From the SysML model, a fault tree of the system is obtained using

an automatic synthesis tool, such as the one proposed in [99]. Subsequently, a formal

PTA model of the system’s FT is obtained through the parallel composition of the

PTA models of the TDFT gates. These gate models exist in a UPPAAL gate library

(shown as Models lib. in Fig. 43) that can be imported into any statistical model-

checking tool with support to UPPAAL’s XML format. The next step is to evaluate if

the reliability of the system under analysis is within the acceptable threshold defined

by the specification. This evaluation is performed in UPPAAL-SMC by using Wald’s

sequential hypothesis testing [141]. This test computes a proportion r among n runs

that satisfy the defined property. Given two possible hypothesis, a and b, the value

of r will eventually cross log(β ÷ (1 − α)) or log((1 − β) ÷ α) with probability 1,

where α and β are the probabilities of accepting hypothesis a or b, respectively [46].

The properties generated for the hypothesis testing and for the model checking steps

are in the form of full weighted Metric Interval Temporal Logic (MITL) queries. An

example of such query is given below:

Pr[bound;N ](max : expr) (10)

where bound defines the constraint on the number of runs. N gives the number of

runs explicitly, and expr is the expression to evaluate. It is worth noting that these

properties are analyzed for a certain confidence interval, which controls the number

of iterations processed by the tool. If the probability of failure in the system is within

the allowed threshold, no further analysis is conducted. However, if the probability

of failure is above the allowed threshold, the proposed methodology moves into the

refinement evaluation step. The goal of this step is to identify if there exists a certain

configuration of the fault tree under analysis that satisfies the evaluated query. To

this end, first, the critical path of the TDFT is identified (i.e., the sub-tree that has

the highest probability of failure). Then, the leaf gates of the critical path are tested
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with different instances of temporal events with different durations. For example, a

gate that has only permanent faults may be changed so that one or more of its events

may become temporal. Thereafter, these temporal events may be tested over different

duration intervals.This analysis can generate a very a detailed quantitative report,

that has the objective of showing the system designers of the exact vulnerabilities of

the system, and which parameters have a greater impact to the system’s criticality.
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Figure 45: Modular FT Analysis of the Binary Hypercube Architecture

8.5 Experimental Results

In this section, the results of the analyses of the failure probabilities of different fault

tree gates and systems with and without the presence of temporal faults are presented

and discussed. Furthermore, different experiments are presented, with the purpose of

demonstrating a different aspect of the proposed TDFT methodology. The analyses

have been performed on UPPAAL-SMC version 4.1.19, running on a machine with

an AMD Ryzen 1800X CPU and 32 GB of RAM.

8.5.1 Unreliability Evaluation Over Time

It is important to illustrate the behavioral difference between a TDFT gate and a

regular FT gate. This experiment evaluates the probability of failure of a single TDFT

gate due to temporal faults and the progression of this failure over time compared with

a regular FT gate. Fig. 44 illustrates the behavior of different TDFT gates and their

corresponding regular gates. The failure rate of all basic events in this experiment
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is assumed to be equal to 0.1. Fig. 44(a) shows the results obtained from the AND

gate and from the TAND gate. Fig. 44(b) shows the unreliability progression of

the PAND and TPAND gates. Finally, Fig. 44(c) shows the results obtained by

computing the unreliability of the FDEP and TFDEP gates, connected to a regular

AND gate through a trigger relationship. It can be observed that the unreliability

probabilities obtained with the regular FT gates are greatly overestimated. This

happens because, as discussed previously, basic events that occur in a regular gate

are permanent. However, basic events occurring in a temporal gate may have a limited

duration, in which case a failure is only triggered if the required events happen during

the same time window.

8.5.2 Scalability of the Proposed TDFT Analysis

One of the major weaknesses of regular FTA methods based on model-checking is

the size limitation that is imposed on the analysis. For example, probabilistic model

checking of FTs over time is very demanding and often cannot be handled by model-

checking tools such as PRISM, MRMC and Storm. The proposed TDFT method

circumvents this limitation in two distinct ways: 1) As previously mentioned (Fig.

43), the proposed TDFT analysis takes advantage of a technique called Statistical

Hypothesis Testing (SHT) [141]. SHT is a method of statistical inference where two

statistical data sets are compared, or a data set obtained by sampling is compared

against a synthetic data set from an idealized model. In other words, the model may

be evaluated against a query (i.e., is the estimated availability of component x > 0.9

? ). The outcome of this evaluation is either true or false. This method may be

used to guide the analysis process by minimizing the expected resource consumption.

2) Unlike most model-checking techniques, the proposed TDFT methodology applies

full FT modularity without the need to partition the original model into its sub-trees.

This can be done by simply editing a command line, responsible for instantiating the

models, in the UPPAAL system declarations.

The main objective of the second experiment is to demonstrate the applicability of

the proposed approach on large systems. This experiment is also used to showcase the

discrepancy between the results obtained with the proposed TDFTs against regular

probabilistic FTA analysis, in scenarios where temporal faults are considered. The
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Table 12: Estimated Availability of Component T1 After 100 Seconds. Failure rate
of basic events is assumed to be 0.05. Temporal events are assumed to last up to 3
seconds.

Temporal
Gate

Components
X9 X10 X11 X12 X13 X14 T1

Regular
FTA

n/a 0.0135 0.0001 0.833 0.0001 0.9023 0.0135 0.9652

TDFT
G4 0.9328 0.0001 0.997 0.0135 0.9994 0.0135 0.99997
G7 0.0135 0.0001 0.833 0.933 0.9896 0.0135 0.99893
G9 0.0135 0.0001 0.833 0.0135 0.902 0.932 0.998

fault trees used in this experiment can be seen in Fig. 45. Fig. 45(a) shows a top-

level fault tree model that is adapted from the case study developed in Dugan et al.

[50]. Components T1 (Fig. 45(b)) and T2 (Fig. 45(c)) are external events to the

top-level FT. This experiment is conducted in three separate steps. In each step,

two different models of the fault trees are built. The first model (DFT model) uses

regular probabilistic FT gates, while the second model (proposed TDFT model) uses

the temporal gates proposed in this paper. Both FT models are analyzed separately.

In the case of the TDFT model, whenever an event is triggered in a temporal gate,

a random choice is made to determine if the event is permanent or temporal. This is

done to test the scalability of the models, as temporal events are more complex to be

resolved. In the case of the DFT model, all events are considered permanent upon

occurrence. It is worth mentioning that for the purposes of this paper, the results of

the different iterations of the hypothesis analyses are omitted, for clarity.

Table 13: Estimated Availability of Component T2 After 100 Seconds. Failure rate
of basic events is assumed to be 0.05. Temporal events are assumed to last up to 3
seconds

Temporal
Gate

Components
Y6 Y7 T2

Regular
FTA

n/a 0.088 0.534 0.885

TDFT
G1 0.9986 0.534 0.99934
G2 0.0879 0.9964 0.9973

The first step in this experiment is the analysis of component T1. The extended

FT of component T1 is shown in Fig. 45(b). To illustrate the impact that temporal

events may have in the analysis, this goal of this experiment is to consider a single

temporal gate in the FT and to compute the impact of that temporal gate on the

estimated availability of the system. Table 12 shows the estimated availability at the

different system components when the events of gates G4, G7, or G9 are considered
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Table 14: Estimated Availability of the Binary Hypercube System After 100 Seconds.
Temporal events are assumed to last up to 3 seconds

Temporal
Gate

Components
P Q K R TLE

DFTCalc n/a 0.998 0.9993 0.996 0.99994 0.851
Regular

FTA
n/a 0.998 0.9994 0.996 0.99993 0.862

TDFT

G11 0.99992 0.99996 0.996 0.99993 0.9984
G12 0.99996 0.99995 0.996 0.99993 0.9986
G13 0.998 0.9994 0.99998 0.99996 0.991
G14 0.998 0.9994 0.996 0.9999991 0.9985

temporal. In this experiment, it is assumed that the failure rate of the basic events (X1

- X8 ) is 0.05, the duration of temporal basic events is 3 seconds, and the estimated

availability is computed over a period of 100 seconds. For example, let us consider the

cases where gates G4 or G7 are temporal. It can be seen in Fig. 45(b) that gate G4

impacts the results of components X9, X11, X13, and T1. On the other hand, gate

G7 impacts components X12, X13, and T1. For each case, the results in the table

quantify the impact of these gates on each of the components, compared to analyses

that only consider permanent events. For example, if we were to classify the system

in the terms of the Five Nines standard [110], and assuming that the input events of

gate G4 are temporal, a regular FTA would classify this system (availability of T1 )

as One Nine (1N), whereas the TDFT analysis would rightfully classify it as Four

Nines (4N). This means that in this hypothetical scenario, the regular FTA would

greatly underestimate the availability rating of this system. This, in turn, would mean

that the design team would have to spend more resources than necessary in order to

increase the rating of the system to the Five Nines (5N) standard (i.e., availability

= 0.999995, or the system is available for 99.999% of the time).

Next, we perform a similar analysis on the extended FT of component T2, shown

in Fig. 45(c). For this experiment, the assumptions used for component T1 also

apply. The results are presented in Table 13, for the regular and temporal analyses.

A different analysis is performed for each of the lower-level gates to assess the impact

of temporal events on those gates as well as their impact on the top event. In the last

step of this experiment, we utilize the partial results in Tables 12 and 13 to analyze

the fault tree of the Hypercube system (in Fig. 45(a)). The failure rates for the basic
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events of this fault tree (A - J ) are assumed to be equal to the failure rate of T1.

Table 14 shows an estimation of the availability of the different components of T1,

after 100 seconds. In the table, Regular FTA shows the results obtained with regular

FT analysis. For comparison and validation, the row DFTCalc of the table shows the

results obtained through FTA using the DFTCalc tool [13], which is a well-known

tool for dynamic fault tree analysis. In the TDFT analysis rows, we report the results

obtained with the proposed TDFT models, with both temporal and permanent faults

considered. Similarly to the previous steps of the analysis, each of the lower-level gates

was analyzed individually to evaluate the effect of temporal events, as well as their

impact to the top-level event. The results shown, for Regular FTA and DFTCalc,

demonstrate a near parity between the values obtained. However, the table also

shows that the presence of even a single source of temporal faults may drastically

alter the estimated results of the analysis. This demonstrates the importance of the

proposed methodology in environments where temporal faults may occur, since this

difference cannot be detected with regular FTA. It is noticeable that the type and

location of the temporal gate may drastically change the results obtained at the TLE.

For example, gate G11 directly impacts the outcome of gates G12, G14 and G16.

In other words, increasing or decreasing the availability rating associated to gate

G11 has direct effects on the outputs of all other gates that G11 is connected to.

Therefore, as seen in Table 14, the effects of a single gate may ripple through the FT

generating significant differences in the estimated results.

Table 15: Estimated Reliability of the Pressure Chamber System After 100 Seconds.
(Fault=X in the table refers to the time duration of the fault, with X being units of
time.)

(1 - Probability of Explosion)
Fault=1 Fault=3 Fault=5 Fault=7 Fault=10

Proposed
TDFT

0.99997 0.9975 0.9911 0.9827 0.9635

TFT 0 0.69 0.69 0.69 0.69
Regular

FTA
0.06 0.06 0.06 0.06 0.06
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Figure 46: Temporal Fault Tree of the Pressure Chamber Case-Study

8.5.3 Comparison between TDFTs and Temporal Fault Trees

(TFTs)

As previously discussed in Section 8.2, other techniques have tried to integrate tem-

poral constraints to fault tree analysis. One of the most expressive techniques in the

literature is the Temporal Fault Trees (TFTs) formalism, introduced in [108]. The

analysis in [108] assigns time constraints to the propagation of the bottom events of

the tree. The examples of such time constraints, shown in Fig. 46, are Forpast and

Within. Forpast indicates that the event must be active for a minimum amount

of time before propagating (e.g., Forpast 3 indicates that the bottom event must be

active for 3 units of time before propagating in the system). Similarly, Within in-

dicates that the bottom event must occur within a certain time-frame (e.g, Within

3 signifies that the event must happen before 3 time units have passed, in order to

propagate in the system). In this subsection, we present a direct comparison between

the TDFT and TFT techniques, by adapting the Pressure Chamber fault tree (Fig.

46) from [108] and comparing the obtained results. The system depicted in the figure

shows a series of events and conditions that may lead to an explosion in the system.

Starting from the bottom-most events, the failure of the pressure sensor for over 3

116



units of time together with the absence of an open valve command within the same 3

time units, generates an error where the computer was supposed to open the pressure

valve but fails to do so (gate G1 ). Alternatively, the system may experience a valve

sensor failure, which, if it lasts more than 3 time units, generates a valve failure. If

the valve fails or if the computer fails to open the valve, an error is generated, since

the valve did not open to release the building pressure (gate G2 ). If the valve cannot

be opened and the system experiences high pressure in the chamber for over 3 time

units, an explosion occurs (gate G3 ).

For the TDFT analysis, the conditions Forpast and Within have been modeled

with leaf TOR gates, where the conditions Forpast and Within are enforced by ad-

justing the guards of the output transition of the TOR gate. Gates G1, G2 and G3

are regular TDFT gates. The comparison of the results of the TFT analysis with

the proposed TDFT analysis are presented in Table 15. From the table, it can be

seen that while the TFT technique is definitely an improvement over regular FTA,

the results obtained by the former are rather limited. In the example (Fig. 46), the

expected duration of the fault events is 3 seconds. Therefore, if the duration of the

faults is less than 3 seconds, the probability of failure is equal to zero. Furthermore, if

the duration of the faults is equal or greater than 3 seconds, the probability of failure

is always the same. Based on this fact. The table shows that unlike other approaches,

the results provided by the TDFT analysis can provide a distinct estimation for each

considered fault duration.

8.5.4 Failure Estimation of the SPARC V8 Architecture with

TDFTs

Having established the differences between the proposed TDFT analysis and the regu-

lar probabilistic FTA in the previous experiments, the final experiment demonstrates

the importance of the proposed approach to fault analysis. This is done by analyzing

the fault tree of the integer pipeline of the Leon-3 processor and comparing the ob-

tained results to radiation testing and simulation. In order to obtain the FT of the

Leon-3 integer pipeline, we have adopted an analytical approach for the generation of

fault trees for complex systems, known as the Behaviour-Based Method [112]. This

approach considers faults as behaviours, and fault-tree gates as operations on those

behaviours. By applying this technique to the Leon-3 7-stage pipeline, and based on
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Figure 47: DFT of the 7-stage Integer Pipeline of the SPARC-V8 Architecture

the structural information available in the SPARC V8 architecture manual [45, 74],

the fault tree of the integer pipeline is constructed, as shown in Fig. 47. The fault

tree is divided into 7 levels, each representing a stage of the pipeline. For this exper-

iment, the probabilities used for the failure rates in the model are derived from the

cross-section values reported in [29].

The goals of this experiment are first to determine the probability of a crash

error in the processor pipeline, which raises a trap exception. Secondly, to determine

the probability of each type of trap error generated over a period of time. To this

end, the probabilities of soft-error events utilized in our model are derived from the

cross-section values obtained through the radiation bombardment of a LEON3 design
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Figure 48: Probability of Trap Exceptions in different approaches. Simulation and
radiation test results are reproduced from [29]

conducted and published in [29]. Furthermore, the work in [29] also contains a fault-

injection simulation experiment. These results have been used in this paper for set-up

and validation purposes.

In this analysis, the proposed FT model has been evaluated through over 3800

iterations, reaching a confidence level of 95%. The confidence level can be further

increased if more iterations are considered. Each iteration computes the estimated

probability of system failure, assuming multiple soft-errors may happen at any given

time. Through our results, we estimate that approximately 41% of all errors orig-

inating from soft-faults were captured as trap exceptions. Based on the modeled

fault tree, and following the functionality described in the SPARC-V8 manual [74],

the proposed model is able to estimate the probability of occurrence of the following

types of trap exceptions in the SPARC-V8 pipeline:

� instruction access exception: A blocking error exception causes the instruc-

tion to be unavailable.

� data store error: An error exception that occurs during a data store to mem-

ory.

� illegal instruction: An attempt to execute an instruction with an invalid
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Table 16: SPARC-V8 Probability of Failure Over Time
Prob. of TE

(million hours)
Prob. of Error
(million hours)

Prob. of Undetected Errors
(million hours)

SPARC-V8
Pipeline

0.027 0.056 0.004

opcode.

� data access exception: An error exception that occurs on a load/store data

access.

� mem address not aligned: A load/store operation that generates an im-

proper memory address, according to the instruction.

� Others: All other types of trap exceptions.

Out of the 41% of soft-faults captured as trap exceptions, Fig. 48 shows the

probability of each exception type to occur. In order to validate the proposed model,

we have compared the obtained probabilities (Proposed FTA) to the ones reported in

[29] (Radiation Test and Simulation). It can be seen that the values obtained with

the proposed FTA are consistent with the values of the radiation test.

The proposed analysis can also be used to assess other metrics, such as the estimated

time before a failure, the failure rate over time, and the impact of soft-errors on

different components to the vulnerability of the system. Table 16 shows an estimation

of the probability of trap exceptions over time, the probability of detected errors over

time, and the probability of undetected errors over time. Although relatively small,

the probability of undetected errors in the system may represent a serious issue in

certain conditions, where the system is expected to operate without maintenance.

Our analysis shows that the biggest contributors to the occurrence of undetected

errors are the nPC register (22.5 % of cases), the rfa register (19.7 % of cases), and

the d cache (17.3 % of cases).

8.6 Conclusion

This paper presents a new modeling and analysis approach to accurately compute

the availability of systems exposed to temporal faults. Regular probabilistic fault

tree models calculate the probability of failure under the assumption that every fault

120



is permanent. However, in the real world, sources of interference (such as heat and

radiation) can be intermittent. Therefore, their impact on the behavior of digital

circuits (especially self-repair systems) may be only temporary. TDFTs are intro-

duced to capture such phenomena, providing an unprecedented level of precision and

customization to fault tree analysis of soft-faults. The results presented in this paper

illustrate the versatility of the proposed methodology and the level of accuracy ob-

tained in comparison with other FTA approaches. Future work includes the further

extension of TDFT gates in order to analyze latent faults and rare events in systems

affected by temporal faults.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This thesis set out to introduce a new method of modeling and analyzing the vulner-

ability of cyberphysical systems at early stages of the design cycle. As shown in the

previous sections, this work is composed by two interconnected yet independent fault

analysis techniques (i.e., through fault tree analysis and system-level analysis). Each

of these techniques has distinct advantages and weaknesses.

From the fault tree analysis perspective, it is possible to perform a study of fault

propagation which encapsulates the whole system, as complex as it may be, due to the

high level of abstraction. This allows us to better understand the system’s behavior as

well as how that behavior can be altered in the presence of faults. This is important

because understanding and predicting the most likely sources of faults in the system

allows us to propose efficient design improvements to reduce the vulnerability to such

faults. However, the high level of abstraction is also the weakness of fault tree analysis,

since the lack of details may cause the proposed mitigation technique to be less than

optimal. Another weakness of FTA is that fault trees are generated manually from

the system specifications (usually written in English language), which can be a source

of inaccuracies.

On the other hand, the system-level component step of the analysis is able to

provide a detailed view of how faults propagate within the system, focusing on each

individual component and its internal building blocks. This allows us to identify the
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sources of vulnerability with a finer level of detail, which may lead to the implemen-

tation of more efficient fault mitigation solutions. The finer level of detail in this

abstraction also enables us to extract fault propagation paths that may have been

missed in the formulation of the fault tree, in order to enhance the system model.

However, this step of the analysis is unable to provide system analysis over time due

to the added complexity of the models.

This work has combined these two high-level techniques, for the first time, into

one multi-level verification methodology. As demonstrated in the body of this thesis,

our methodology is capable of improving the accuracy of the high-level verification

process, while providing the flexibility to move across different abstraction levels. To

achieve this goal, results of the more detailed component-level analysis are used to

characterize the CPS sub-components. Then, these results are utilized to perform

analysis of the whole system at FT-level. The combination of these approaches also

improves the scalability and efficiency of the modeling as well as the verification.

Namely, at each stage in the modeling hierarchy, an appropriate level of abstraction

may be used to propagate the effects of errors to the next higher level. For example,

the FTA step can be used to identify the critical components of a system (as a

reminder, components in a fault tree are seen as black boxes). Next, the system-level

analysis is performed in these components, and a detailed fault propagation graph is

extracted. Finally, the fault propagation graph can be added to the fault tree of the

system, replacing the black box of the component, in order to improve the accuracy

of the model. In this hypothetical scenario, we are able to bypass one of the major

weaknesses of FTA (the lack of details due to the high level of abstraction), without

increasing the complexity of the model to prohibitive sizes. A second and more

direct application of this concept is to evaluate different mitigation techniques at the

different levels of abstraction, in order to find the most efficient solution. This level

of iterative analysis is not attainable using conventional fault analysis techniques.

Aside from identifying the points of vulnerability in the system, one of the main

challenges of the proposed methodology has been to evaluate and propose the optimal

solution for the mitigation of the vulnerability. Through our work, we have identified

many behavioral patterns pertaining to each fault analysis path. For example, we

have identified the most common fault propagation paths in FTs, as well as the most

efficient ways to decrease the vulnerability of the components in those paths. However,
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in order to fully explore the vulnerability of a system, it is required to implement a

connectivity channel between the different levels of abstraction. The implementation

of this communication channel has been very challenging, seeing how it connects

models at different levels of abstraction. In order to achieve this, we have modeled the

CPS at system-level and FT-level. The fault-mitigation assessment is then conducted

by comparing the results of similar mitigation techniques at multiple fault-injection

points and establishing which abstraction-level produces the most efficient outcome.

Furthermore, our research has shown that the study of fault propagation in dy-

namic environments requires an analysis over time. For example, the effects of ioniz-

ing radiation over a circuit cannot be accurately modeled over a discrete-time model.

The reason for this is that the incidence of radiation particles is a highly dynamic

phenomena. Ionizing radiation may or may not be present, the flux of particles may

change, the affected area of the circuit may change, and the presence of latent faults

has to be considered. These events can only be accurately considered in an analysis

over time. To account for this, we have proposed the concept of temporal fault tree

analysis. This type of temporal FTs can support temporal and permanent proba-

bilistic events. This analysis also provides full compatibility between FT-level and

system-level models.

9.2 Future Work

Dependability analysis is one of the most important phases in the design flow of

complex systems. In addition to increasing the designer’s confidence in the design, an

early analysis may also reduce the associated financial cost, required time and overall

design effort. By introducing a versatile high-level approach, this thesis lays the

foundation for a promising cross-layer approach for the early dependability analysis

of CPS vulnerable to the effects of SEUs.

Since the current techniques in the literature are mostly deemed impractical and

cannot be adapted for real CPS systems, future works should seek to provide practical

frameworks to evaluate and improve CPS reliability and reduce the complexity of the

reliability analysis while improving the accuracy of the results. These goals can be

further divided into the following sub-objectives:
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� New fault models for a variety of aggressors: Study the impact of dif-

ferent possible system failures classes based on the source aggressor. Different

fault models should be considered for each type of aggressor in CPS, including

different external types of radiation and transistor aging. Furthermore, new

fault models should be proposed to characterize the impact of cyber-attacks on

the reliability of the underlying telecommunication networks of the CPS. These

fault models may vary according to the CPS application, criticality, environ-

ment, and design constraints. Moreover, the collective impact of different types

of faults at each stage of the design cycle should be evaluated.

� Compositional multilevel and cross-layer modeling: Compositional ver-

ification is an important approach for verifying complex systems consisting of

several interacting components. In this project, new methods to perform com-

positional verification should be investigated based on the concept of multilevel

and cross-layer verification. In this approach, when a component is integrated

into the system, it is verified against its timing and interface (i.e., interaction

with other components) specifications. To achieve this, formal techniques for

generating and checking both interfaces and invariants are required. Further-

more, this project should investigate analyses of unknown components at early

stages of the design cycle. High-level and low-level methods may be utilized

to handle detailed CPSs with different granularity, guaranteeing reliability and

robustness of the system obtained by integrating incompletely specified compo-

nents is a challenge for compositional verification. This should allow providing

guarantees of performance and reliability validated against the requirements,

while achieving acceptable cost and time-to-market objectives.

� New formal based analysis algorithms: Based on the target fault models,

new formal based analysis solutions should be proposed, starting from the theory

to real life CPS implementation. The proposed algorithm should be based on

a collection of formal techniques that are suitable for each different level of

abstraction. The verification of the proposed models may be achieved through

the specification of suitable liveness and safety properties. The ability to ground

such analysis on accurate abstraction of detailed physical implementation as

well as the ability to exhaustively analyze complex systems with suitable formal

methods are unheard of and will represent ground-breaking contributions.
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� Scalable architectures for complex CPS: There is a tradeoff between the

minimum number of hardware components to use and maximum reliability in a

CPS. Individual components affect directly system reliability. CPS architecture

should be specified with respect to software/hardware components and their

inter-relationship. Therefore, system reliability must be assessed based on the

reliability of components and their connections. Since cost is one of the major

consideration in realizing a robust CPS architecture, ideally the component

count should also be minimized. This can lead to exploiting new design choices

for CPSs which are resource efficient while maintaining reliability. A set of

analytical and formal tools (such as Stochastic Model Checking (SMC) and

Satisfiability Modulo Theories (SMTs)) may be utilized through the coordinated

execution of a prescriptive, repeatable, and measurable process.
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Chapter 10

Applications

10.1 New Insights Into Soft-Faults Induced Car-

diac Pacemakers Malfunctions Analyzed at

System-Level Via Model Checking

Authors: Ghaith Bany Hamad, Marwan Ammar, Otmane Ait Mohamed, Yvon

Savaria

Abstract: Progressive shrinking of CMOS device sizes has permitted reductions

in power consumption and miniaturization of electronic devices. In parallel, mod-

ern pacemakers implemented with advanced technologies have proved to be more

sensitive than earlier models to soft-errors induced notably by external radiations.

Traditionally, the analysis of the impact of soft-faults, like those induced by Single

Event Upsets (SEUs), on the behavior of pacemaker devices, has been carried out

by dynamic radiation ground testing and clinical observations. However, these tech-

niques are expensive. They can only be done very late in the design cycle, after the

design is manufactured and in part after it is implanted. This paper presents a new

model-based analysis of the impact of Soft-Faults (SFs) on the behavior of cardiac

pacemakers at system-level. It is performed by: 1) introducing a new Probabilistic

Timed Automata (PTA) model; 2) verifying this model against a set of functional

properties to ensure it meets its specifications under normal conditions; 3) applying a

new methodology to inject SFs at a certain time in the PTA model of the pacemaker
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and to verify their impact on the pacemaker’s behavior is introduced; and 4) identi-

fying different scenarios for Soft-Faults (SFs) that may lead to malfunction including

Oversensing, Undersensing, and Output Failure. The reported formal modeling is

done in PRISM and the analysis is done with the Storm model checker.

10.1.1 Introduction

The rate at which pacemakers are implanted is increasing on a global scale, with more

than 700,000 new pacemakers implanted worldwide each year [102]. These devices

operate at a very low voltage to reduce their power consumption and to improve their

battery life. Moreover, the input nodes in a pacemaker are very sensitive, since the

behavior of the system relies on capturing the intrinsic electrical signals of the heart.

Therefore, the sensors of a pacemaker are very susceptible to environmental interfer-

ences. In order to achieve the high level of reliability required by these safety-critical

systems, the design of the pacemaker must feature different protective measures, such

as shielding in hermetic metal cases, signal filtering, inference rejection circuit, and

bipolar leads [25]. With such measures, a pacemaker is protected against the every-

day sources of electromagnetic radiation, such as cell phones, microwave ovens, and

articles surveillance equipment, i.e., these sources are no considerable threat to the

functionality of the pacemaker. However, sometimes these devices need to operate in

a hostile environment (high density of radiation) that can lead to soft-faults which

can then induce soft-errors. For these devices, there are two main environments under

which they are more affected by soft-errors:

� Radiation based treatment or exams in hospitals: in such case, the pa-

tient is exposed to high-density external radiations. Several accounts of deaths

in pacemaker patients due to Magnetic Resonance Imaging (MRI) were reported

by the Food and Drug Administration (FDA) [111]. Another example of a hos-

tile environment in hospitals is the radiotherapy treatment of cancer [150].

� Latitude and altitude: Soft-Faults (SFs) due to high-energy protons and

neutrons vary with both latitude and altitude. For example, while traveling in

an airplane, the density of high-energy protons can be 100-800 times worse than

at sea-level. Electrical reset was observed during air travel due to SFs [58].
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In the literature, work related to the analysis of the sensitivity of implantable

cardiac devices to soft-errors is rather limited. Most of the existing techniques (such

as [18, 36, 58, 71, 130, 149–151]) are based on dynamic radiation ground testing. This

analysis provides a very accurate estimation of the vulnerability of the pacemaker.

However, it is very complex, expensive, and time-consuming. Therefore, there is a

growing need to analyze and estimate the impact of soft-errors due to soft-faults on

high-level models of such systems.

For this application, the methodology proposed in this thesis is used to introduce

a novel methodology to quantitatively analyze the vulnerability of pacemakers to

soft-errors induced by soft-faults in system-level models. This work is distinct from

previous works in the following ways:

� A new modeling of the behavior of the Dual Chamber, Pacing, and Sensing

(DDD) pacemaker, at the system-level, is proposed. In this model, the be-

havior of each sub-component is modeled as a Probabilistic Timed Automaton

(PTA). This is a key aspect of reliable fault analysis since probabilistic, non-

deterministic behavior often arises in the presence of soft-faults and component

errors. Moreover, we created a catalog of properties based on the DDD pace-

maker specification and previous formal analyses of pacemakers in the literature.

The correctness of the composite model is proved by verifying it against all these

properties using Probabilistic Model Checking (PMC).

� A new formal probabilistic analysis of the impact of soft-faults on the behavior

of the DDD pacemaker is proposed. The goal of this analysis is to provide

full insight into the affected components, injection time, and the impact of

SFs on the pacemaker behavior during each Window Of Vulnerability (WOV).

This is achieved by extending the PTA of each component of the pacemaker

model in order to allow fault injection and to include stochastic transitions that

represent soft-fault propagation. The proposed technique enables quantitative

investigation of SFs propagation for each injection scenario through verification

of the extended pacemaker model against a set of Probabilistic Computation

Tree Logic (PCTL) properties using probabilistic model checking. With this ap-

proach, different possible WOVs of the cardiac cycle have been identified. Each

WOV is defined as the time interval within which a soft-fault at one component
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of the pacemaker might impair its behavior. Then, for each WOV, we investi-

gate the impact of a soft-fault on the pacemaker and on the proper behavior of

the heart. If the injected soft-fault results into an observable soft-error, then we

identify its impact on the cardiac cycle when it is injected and on the follow-

ing cycles. Thereafter, we link the observed behaviors based on these injection

scenarios with the pacemaker malfunction behaviors which were reported in

the literature as part of radiation experiments or clinically in patient’s records.

As it is explained later, a soft-fault can lead to undesirable events, such as

Oversensing, Undersensing, and Output failure in the pacemaker.

Existing Observations of the Impact of Soft-Faults on Pacemakers

Following, we summarize the main findings in the literature on the impact of external

radiations on the behavior of implantable cardiac pacemakers. For further informa-

tion, the reader is referred to several reviews in the literature (such as [150], [149],

[148]) that provide full details of these results. In the literature, the presence of

soft-errors due to SFs in pacemakers was proven by:

1. Clinical observations : In these approaches, data collected from implanted pace-

makers are analyzed. The reported results in [36] evaluate the incidence of SFs

induced by cosmic neutron radiation in a large population of patients with car-

diac implants. Other clinical observations (similar to the work done in [58])

demonstrate that the high density of cosmic radiation during air travel is linked

to the electrical reset identified in the cardiac devices implanted in multiple pa-

tients. Moreover, different malfunctions were observed in pacemakers implanted

in patients who suffer from cancer and have been treated by radiotherapy [71],

[126]. This kind of analysis is very time consuming and only possible after

pacemakers are implanted and operating in the patient’s body.

2. Dynamic radiation ground testing : With this approach, accelerated device test-

ing is performed under different radiation fluxes (such as [36, 71, 130, 151]).

The goal of this analysis is to replicate the observed behavior obtained from

patient data and to test the vulnerability of different pacemaker models. This

approach is very accurate and enables the testing of the device when exposed

to a specific radiation intensity in a highly controlled environment. However,
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the procedure is very expensive and only possible at post-silicon level (i.e., after

the pacemaker is fully manufactured).

Both clinical observations and dynamic radiation ground testing show that the

impact of SFs on the behavior of the pacemaker can be classified into three groups:

1) minor errors which do not impact the system and are only recorded in the data log

of the device; 2) moderate reset, not requiring correction by the programmer; and 3)

electrical reset, requiring full reprogramming of the device. Based on these results, it

is evident that SFs present a real challenge to the reliability of pacemakers. However,

existing analysis techniques are resource hungry, time-consuming, and require the

pacemaker to be fully manufactured or even implanted.

Formal Modeling and Analysis of the Functionality of the Pacemakers

Pacemakers are safety-critical devices of which faulty behaviors can cause harm or

even death. There has been much interest in developing formal verification frame-

works to verify the correctness of pacemakers implementations, at different abstrac-

tion levels. Existing techniques can be classified into two categories: formal based

techniques (such as [66, 75, 76, 131]) and testing based techniques (such as [77, 78]).

Formal verification techniques are very efficient in providing guarantees about the

pacemaker model correctness, as well as locating corner-cases and hard-to-find bugs.

In [66], the authors propose a formal specification of a pacemaker using the Z

model into Perfect Developer [43]. Thereafter, based on the pacemaker specification,

the correctness of the generated model was verified using the ProofPower-Z theorem

prover. Tuan et. al [131] proposed the modeling of the different operating modes of a

pacemaker as a Real-Time System (RTS) formal model. This model was then verified

against a number of safety and correctness properties as well as timed constraints

using the PAT model checker.

In the work proposed by [75, 76], a model-based framework for the automatic veri-

fication of the functionality of cardiac pacemakers was developed. The authors devel-

oped a detailed model of a basic dual-chamber pacemaker. This model is constructed

based on the timed automaton [8] (TA) of each of the pacemaker’s sub-components.

Moreover, in this work, the authors have developed a TA of the heart behavior. The

functionality of the pacemaker model has been verified using UPPAAL [24].
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In [38], a quantitative functional verification algorithm for implantable pacemak-

ers is proposed by connecting the MATLAB model of the heart, introduced in [42],

and the TA model of the pacemaker in PRISM, proposed by [76]. The analysis is per-

formed by combining both models (after exporting the PRISM model to MATLAB)

and verifying the pacemaker according to its specifications.

These techniques are designed to detect bugs in the pacemaker implementation

(i.e., identification of functional errors). In other words, such techniques assume that

the pacemaker always operates in an error-free environment. Therefore, with these

techniques, it is not possible to detect or analyze the impact of non-functional faults

such as soft-faults. The work presented in this experiment tries to bridge the gap

between high-level functional design verification and physical radiation testing, by

providing a technique to perform a high-level analysis of the vulnerability of pace-

makers, in hostile environments, at a very early stage of the design cycle.

10.1.2 Probabilistic Model Checking (PMC) & Storm

In this work, we use Storm [47], a powerful probabilistic symbolic model checker. It

employs efficient algorithms and data structures to reduce the number of states and

optimize the size of the state-machine to be solved. In addition, Storm supports dif-

ferent implementations of Markov chains, namely discrete-time and continuous-time

Markov chains and Markov Automata. It also supports a wide range of probabilis-

tic temporal logic to specify the properties to be verified such as PCTL, PCTL*,

and Continuous Stochastic Logic (CSL) [19, 41]. Storm supports several types of

input such as PRISM, JANI, GSPNs, DFTs, cpGCL, however, in this work, all the

models are built in PRISM language [92]. In PRISM, a model is formed by basic

constructs called modules, each designed to express a specific behavior, much like

sub-components of a system. The state of each module is given by a set of finite

ranged variables. The global state of the model is determined by the evaluation of

the values of the module variables.

10.1.3 Steps of the Proposed Pacemaker Analysis

We propose a unified verification methodology to investigate, at the system-level, the

impacts of soft-faults on the behavior of the DDD pacemaker model. As shown in
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Figure 49: Main Steps of the Proposed Analysis of a Pacemaker

Fig. 49, this methodology comprises the following two main phases:

Phase 1: Model construction and functional verification: this phase starts

by extracting the specification and constructing a system-level model of the pacemaker

main components. Thereafter, the model of the pacemaker is constructed based on

the PTA of the sub-components. This model is verified against a set of functional

properties to ensure its correctness.

Phase 2: Soft-fault impact analysis: this phase operates over the model

built and verified in phase 1. Based on the pacemaker behavior, different possible

SF injection scenarios are identified. In order to analyze the impact of each SF, for

each scenario, the models of the pacemaker’s sub-components and of the heart were

modified to build the required fault propagation environment. The observed results

are characterized and compared with the reported results from the dynamic radiation

ground testing and/or Clinical observations.
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10.1.4 Behavior of the DDD Pacemaker

The DDD pacemaker consists of five main components, defined as event-triggered

timing cycles. The timing cycles communicate with each other through broadcasting

channels, shared variables and events. In order to provide optimal hemodynamic

benefit to the patient, dual-chamber pacemakers strive to mimic the normal heart

rhythm. This pacemaker acts on demand, taking appropriate actions in reaction to

what is happening inside the person’s heart, at any given time. Following, we explain

the behavior of the main components of the DDD pacemaker. In this pacemaker, the

Lower Rate Interval (LRI) is the rate at which the pacemaker will pace the atrium

in the absence of intrinsic atrial activity. Similar to single-chamber timing, the lower

rate can be converted to a lower rate interval or the longest period of time allowed

between atrial events. The LRI component is responsible for measuring the heartbeat

rate and keeping it above a defined minimum value. The PTA of the LRI component

is shown in Fig. 50(A). According to this figure, the LRI component monitors the

ventricular sensing, ventricular pacing, and atrial sensing events. The clock of the

component is reset after a ventricular event is sensed. If no atrial event is sensed

within a certain amount of time, the LRI component triggers an atrial pacing (after

TLRI − TAV I).
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Figure 50: TAs of the Components of the DDD Pacemaker
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The time that a DDD pacemaker is required to wait between a sensed or paced

atrial event and a ventricular event is called the Atrio-Ventricular Interval (AVI).

This behavior is implemented by the AVI component. Fig. 50(B) depicts the PTA

of the expected behavior of the AVI component. As shown in this figure, the AVI

component sets the longest interval between an atrial and a ventricular event. After

the occurrence of an atrial event, if no ventricular event is sensed within a certain

time (TAV I), a ventricular pacing is performed. Correlatively, the Upper Rate Interval

(URI) is defined as the upper activity rate i.e., the minimum time delay between

consecutive sensor-indicated ventricle events. The URI component implements this

behavior and its PTA is shown in Fig. 50(C).

The Post-Ventricular Atrial Refractory Period (PVARP) is the period of time

after a ventricular pace or sense, when the atrial channel is in a refractory state. In

other words, the occurrence of atrial senses during this period is identified by the

pacemaker but do not initiate the A-V interval (AR). This behavior is implemented

by the PVARP component, with its PTA depicted in Fig. 50(E). The purpose of

the PVARP component is to avoid premature atrial contractions. This inhibits the

beginning of an irregular A-V interval, which would cause the pacemaker to pace

at a higher than desired rate. Similarly, the Ventricular Refractory Period (VRP) is

designed to avoid restarting the V-A interval due to a noise wave. This behavior is

performed by the VRP component. Fig. 50(D) depicts the PTA of this functionality.

As shown in Fig. 50, ventricular sensed events, occurring in the noise sampling

portion of the ventricular refractory period, are identified but will not restart the

V-A interval.

10.1.5 PTA Modeling & Functional Analysis of Pacemaker

In subection 10.1.4, the main components of the DDD pacemaker (LRI, AVI, PVARP,

and VRP) are described as PTAs. As explained before, the functionality of each of

these components is mainly controlled by the tight synchronization with the other

components. In these PTA, the behavior of the real-time system is controlled through

a finite set of clocks χ. The values of these clocks range over the domain R≥0 (i.e.,

non-negative real numbers). A function ν : χ → R≥0 is referred to as a clock valua-

tion. The set of all clock valuations is denoted by Rχ
≥0. For any ν ∈ Rχ

≥0, t ∈ R≥0,

and X ⊆ χ, we use ν + t to denote the clock valuation which increments all clock
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Table 17: Results of the verification of the functional properties of the pacemaker
Verified Property Testing Result

Component Time
AVI AVI.1 Pmax =? [F (V P = 1)&(V S = 0)] ≥ TAV I Pass

AVI.2 Pmax =? [F (V P = 1)] ≥ TURI Pass
AVI.3 Pmax =? [F (V P = 1)] < TURI Pass
AVI.4 Pmax =? [F (V P = 1)] < TAV I Pass
AVI.5 Pmax =? [F (V S = 1)&(V P = 0)] ≤ TAV I Pass
AVI.6 Pmax =? [F (V S = 0)&(V P = 1)] ≥ TAV I Pass

LRI LRI.1 Pmax =? [F (AP = 1)] < TLRI − TAV I Pass
LRI.2 Pmax =? [F (AS = 0)&(AP = 1)] ≥ TLRI − TAV I Pass
LRI.3 Pmax =? [F (AS = 1)] ≤ TLRI − TAV I Pass
LRI.4 Pmax =? [F (AS = 1)&(AP = 0)] ≤ TLRI − TAV I Pass
LRI.5 Pmax =? [F (AS = 0)&(AP = 1)] ≥ TLRI − TAV I Pass

PVARP PVARP.1 Pmax =? [F (AR = 1)] ≤ TPV ARP Pass
PVARP.2 Pmax =? [F (AS = 0)] ≤ TPV ARP Pass
PVARP.3 Pmax =? [F (AS = 1)] ≥ TPV ARP Pass

VRP VRP.1 Pmax =? [F (V RP = 1)&(V S2 = 1)] ≤ TV RP Pass
VRP.2 Pmax =? [F (V RP = 1)&(V P2 = 1)] ≤ TV RP Pass
VRP.3 Pmax =? [F (V RP = 0)&(Idle3 = 1)] ≥ TV RP Pass

values in ν by t, such that ν(X) + t. We use ν[X := 0] for the clock valuation in

which clocks in X are reset to 0. The set of clock constrains over χ, denoted ζ(X) is

defined inductively by the syntax:

ζ ::= true|x ≤ d|c ≤ x|x+ c ≤ y + d|¬ζ|ζ ∧ ζ

where x, y ∈ χ and c, d ∈ N. The clock valuation ν satisfies the clock constraint

ζ(X), denoted by ν |= ζ, if and only if X resolves to true after substituting each clock

X ∈ χ with the corresponding clock value ν(X).

Definition 2. A probabilistic timed automaton is defined by a tuple A = (L,L0, χ, Act, P,L ),

where:

� L is a finite number of states.

� L0 is the initial state.

�
χ is a finite set of clocks.

� Act is a finite set of actions over L.
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� inv: L→ ζ(X) is an invariant condition.

� P is a probabilistic transition function L× ζ(X)×Dist(2X × L).

� L : L → 2AP is a labelling function assigning atomic propositions to different

states.

In a PTA, a state (l, ν) ∈ L× Rχ
≥0 such that ν |= inv(l). In any state (l, ν), there is

a non-deterministic choice of either making a discrete transition or letting time pass.

A discrete transition can be made according to any (l, g, p) ∈ P , with current state l

being enabled and zone g is satisfied by the current clock valuation ν. The probability

of moving to location l′ and resetting all clocks in X to 0 is given by p(X, l′). The

option of letting time pass is available only if the invariant condition inv(l) is satisfied

while time elapses.

The PTA for each component is represented as a separate PRISM module. In

order to accurately construct a system-level model of the pacemaker, the parallel

composition of the PTAs of the subcomponents is required. The proposed method-

ology introduces the soft-fault (SF) injection module. This module is responsible

for injecting, tracking, and synchronizing SFs across all other components, during

the analysis when a fault is injected. Furthermore, the addition of the SF injection

module requires significant alterations to all other modules of the pacemaker. The

main challenge is to ensure that these additions and new components do not impact

the core functionality of the pacemaker device, as stated in its specifications. There-

fore, the proposed PTA model is verified against a catalog of functional Probabilistic

Computation Tree Logic (PCTL [27]) properties obtained from an extensive review of

the literature. The verified set of properties are shown in Table 17. These properties

were asserted using the probabilistic model checker Storm, which provides a unique

trade-off between performance and modularity, the supported solvers, and a wide

range of supported modeling languages. These properties are defined based on the

timing requirements of the pacemaker to verify: (i) whether the pacemaker rectifies

any abnormal heart behavior by providing necessary pacing, and (ii) that the pace-

maker does not induce anomalous heart behaviors by providing unnecessary pacing

to the heart. We confirmed that the verified properties exhaustively verify the be-

havior of the pacemaker with existing analysis such as [123], [76], [38]. This analysis

proves that our model correctly implements the functionality of the pacemaker. It
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is important to note that, in this analysis, no faults were injected through the fault

injection component. As shown in Table 17, for each component, a set of properties

are verified to validate its timing requirements. The timing under which the property

is verified is shown in the fourth column. The verified properties in Table 17 are the

following:

� AVI.1: A ventricular pacing can only happen if no ventricular event is sensed

within TAVI.

� AVI.2: A ventricular pacing can only happen at a time which is equal or greater

than TURI.

� AVI.3: There is no reachable state where a ventricular pacing happens before

the TURI time finished.

� AVI.4: There is no reachable state where a ventricular pacing happens before

the TAVI time interval finishes.

� AVI.5: If a ventricular sensing happens, a ventricular pacing will not occur.

� AVI.6: If no ventricular sensing is detected within the expected time, a ven-

tricular pacing will occur.

� LRI.1: An atrial pacing event will never take place while test before the TLRI-

TAVI time interval finishes.

� LRI.2: If an atrial sensing is not detected within the time limit, an atrial pacing

will take place.

� LRI.3: An atrial sensing may happen if test time is less or equal to TLRI-TAVI.

� LRI.4: If an atrial sensing happens, an atrial pacing will not take place.

� LRI.5: If an atrial sensing does not happen within the expected time, an atrial

pacing will take place.

� PVARP.1: An atrial event happening during the time frame t ≤ TPVARP

will be considered as an AR.

� PVARP.2: No atrial sensing will happen over time t ≤ TPVARP.
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Figure 51: Proposed Formal Analysis of Soft-Faults Propagation

� PVARP.3: An atrial sensing may only happen when the time is greater than

TPVARP.

� VRP.1: A ventricular sensing will not happen if time is lesser than TVRP.

� VRP.2: A ventricular pacing will not happen if time is lesser than TVRP.

� VRP.3: Component VRP will stop filtering ventricular signals when the time

is greater than TVRP.

10.1.6 Non-functional Analysis of the Pacemaker Vulnerabil-

ity to Soft-Faults

In this subsection, we present a system-level injection and analysis mechanism repli-

cating the effects of soft-faults on the behavior of the pacemaker during the A-V cycle.
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A new formal analysis is proposed to model and analyze each of the SF scenarios, as

well as to provide new insights on the affected component, injection time, and the

impact on the pacemaker behavior. The main components of the proposed analysis

are shown in Fig. 51. In this analysis, the pacemaker model proposed in subection

10.1.5 is extended to incorporate the impact of SFs.

Soft-Fault Classification

One of the main objectives of this work is to propose a vulnerability analysis of the

DDD pacemaker to temporal faults at the system-level. At such high level, most of the

details of the system’s hardware implementation are abstracted and not yet available.

Consequently, details of the sources of the vulnerability and their characteristics are

not defined. In order to address these issues when modeling and analyzing temporal

faults, soft-faults were introduced. A soft-fault is an abstract high-level view of any

single temporal fault that can impact the pacemaker behavior for one cardiac cycle

or more. Based on our review of the literature, soft-faults in pacemakers are mainly

induced by ionizing radiation, which can be classified into two categories: 1) Total

Ionizing Dose Effects (TIDs); and 2) Single-Event Effects (SEEs) [148], [150]. TIDs

occur due to the charge accumulation in the oxide layers of the device. The oxide

layers suffer from degradation if the radiation exposure is above a certain threshold

(normally between 10-50 Gy (Gray units)). These levels of exposure are common

in medical treatments such as radiotherapy, x-rays, and fluoroscopy. It is reported

in several papers (e.g., in [148], [150]) that Implantable Cardiac Devices (ICDs) be-

come increasingly sensitive to temporal errors over time (i.e., soft-faults). On the

other hand, SEEs occur due to exposure to high concentrations of high Linear En-

ergy Transfer (LET) particles, depositing sufficient charge to disturb normal circuit

operation. Unlike total dose effects, single-event effects are ubiquitous. Thus, their

significance to device reliability is of greater importance. Recent ground radiation ex-

periments and clinical observations show that the most relevant sources of soft-faults

are Single-Event Upsets (SEUs), usually originating from cosmic radiation, electro-

magnetic interference, or radiotherapy. Other types of single-effects are reported in

the literature to have a negligible probability of occurrence [148], [150].

In the proposed modeling and analysis, soft-faults are introduced into the pace-

maker model by adding two input nodes to the pacemaker model, namely AS SF and
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VS SF. These inputs carry the SF signal i.e., it is possible to distinguish between the

native (AS and VS ) and faulty (AS SF and VS SF ) events. AS SF indicates the

presence of an SF at the atrial input node of the pacemaker. VS SF indicates the

presence of an SF at the ventricular input node of the pacemaker. In our model, the

pacemaker reacts to AS SF and VS SF as it reacts to AS and VS, respectively. As

explained before, all the components of the pacemaker are synchronized based on the

timing requirements of the pacemaker. It is important to note that in this analy-

sis, it is assumed that the SFs are initiated outside the pacemaker. In other words,

SFs are propagating through the main inputs (AS, VS ). This can be justified due to

the unavailability of a physical implementation of the pacemaker in this system-level

analysis.

Formal Modeling and Analysis of Soft-Faults

In order to investigate the SF propagation, we extended the models of each compo-

nent to include stochastic transitions representing SF propagation. This is achieved

through the SF Injection Element (SIE), which interrupts the communication be-

tween the pacemaker and the heart. The SIE component tracks and processes the

native AS and VS signals based on the desired injection scenario. Another purpose

of the SIE component is to generate either AS SF and V S SF to derive the desired

injection scenarios, as shown in Fig. 51. However, our focus is the analysis of the

pacemaker model. Thus, an abstract model of the heart is used to cover only the

desired behaviors. Our heart model is based on a simple synchronous communication

protocol. The model is pre-programmed to release signals after a certain amount of

time has passed, and to verify if the correct signals were received within a pre-defined

threshold. For each scenario in our analysis, the models of the heart and of the SIE

are slightly tweaked to produce the desired inputs for the pacemaker. For example,

to produce the desired inputs for Sce.1, the heart model is assumed to function nor-

mally (cyclic generation of AS and VS signals). However, the SIE is programmed to

eventually inject an AS SF signal in the pacemaker. This injection happens after the

native VS event, but prior to the next native AS event. Other scenarios may require

different setup, such as Sce.4. In this scenario, the heart model is assumed to fail to

produce an AS event, after a few cycles. When this happens, the SIE immediately

injects an AS SF signal in the pacemaker. Modifying the heart and SF models in
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Table 18: Results of the verification of the non-functional properties related to the
impact of SFs on the pacemaker

Scenario Injection Time Previous Events Verification Time Verified PCTL Property Result Situation illustrated
in figure

Sce.1 Tinj < TPV AB VS=1
Tver > Tinj Pmax=? [F (AS SF=1)] 1

Fig. 6
Tver > TLRI − TAV I Pmax=? [F (AS=1)] 1

Sce.2 Tinj > TPV AB VS=1
Tver < TPV ARP Pmax=? [F (AS SF=1) ] 1

Fig. 7Tver < TPV ARP Pmax=? [F (AR=1)] 1
Tver > TLRI − TAV I Pmax=? [F (AS=1)] 1

Sce.3 Tinj < TURI VS=1
Tver < Tinj Pmax=? [F (VS SF=1)] 1

Fig. 8Tver > TURI Pmax=? [F (VS=1)] 1
Tver < TURI Pmax=? [F (AS=1)] 1

Sce.4 Tinj < TV RP VP/VS=1
Tver < Tinj Pmax=? [F (VS SF=1)] 1

Fig. 9
Tver > TLRI − TAV I Pmax=? [F (AS=1)] 1

Sce.5 Tinj > TPV ARP VS=1
Tver > Tinj Pmax=? [F (AS SF=1)] 1

Fig. 10Tver <= TAV I Pmax=? [F (VS=1)] 0
Tver >= TAV I Pmax=? [F (VP=1)] 1

Sce.6 Tinj < TAV I AS=1
Tver < TAV I Pmax=? [F (VS SF=1)] 1

Fig. 11Tver <= TLRI − TAV I Pmax=? [F (AS=1)] 0
Tver >= TLRI − TAV I Pmax=? [F (AP=1)] 1

Sce.7
TPV ARP < Tinj

VS=1
Tver >= Tinj Pmax=? [F (AS SF=1)] 1

Fig. 12< TLRI − TAV I
Tver <= TLRI − TAV I Pmax=? [F (AP=1)] 0

Sce.8 Tinj <= TAV I AS=1
Tver >= Tinj Pmax=? [F (VS SF=1)] 1

Fig. 13
Tver >= TAV I Pmax=? [F (VP=1)] 0

this way greatly facilitates the conduct of the experiments.

The modeling is done by generating the PTA of each component presented in

subection 10.1.5. Each PTA is then represented as an individual PRISM module.

For the purpose of our experiments, the pacemaker model is synchronized to a very

simplistic heart model. Our heart model is a two-steps process that will generate one

of two signals at different time delays. These time delays are defined based on the

A-V cycle time delays used in [2]. The PTA of the system is obtained by the parallel

composition of all PTAs of all the components of the pacemaker and the heart.

Table 18 shows the library of properties used to verify the different SF injection

scenarios in different components. The second column depicts the time at which the

SF is injected. The previous conditions under which the SF is injected are specified

in the third column. These conditions indicate which component in the pacemaker is

active and the next expected action. The fourth column shows the time in which the

pacemaker model is verified against the desired properties. The properties verified

in each injection scenario are reported in the fifth column. The sixth column shows

the maximum probability of the verified event occurring, ranging from 0 to 1 (where

1 means 100% probability). The corresponding timing diagram of each scenario is

shown in the last column of the table.

Fig. 52 illustrates an abstract view of the different SFs injection scenarios analyzed

in this work. In each sub-figure, the default state is represented by two concentric
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(A) AVI Component Subjected to SFs (B) PVARP Component Subjected to SFs

(C) VRP Component Subjected to SFs

(D) LRI Component Subjected to SFs
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Figure 52: Effects of SFs on the Pacemaker Components

circles. The red arrows entering the components show the SF injection states in

the system. Finally, the red states and transitions show which subcomponents are

impacted by the SF injection. Fig. 52(A) depicts the scenario where an SF may be

injected while the AVI component operates in the AVI state. The effects of such

SFs are verified as shown in Table 18 (identified as Sce.6 and Sce.8 ). Such SF may

be interpreted by the system as a native VS signal. In other words, the component

may erroneously identify the SF as a native ventricular activity. This event causes

the state of the component to change to idle. However, this SF can have different

effects on the behavior of the pacemaker, which are detailed in subection 10.1.7. In

the case of Sce.6, after the pacemaker senses an AS from the heart, the SIE injects

an SF at a random time before TAVI. In this scenario, we verified three properties.

With the first property, we verify that the injected SF is eventually received by

the pacemaker and recognized as a native VS. The second property verifies that

after the SF is received, the pacemaker resets its clock and waits for a time interval

TLRI − TAV I, but no AS is sensed within that time interval. The third property
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verifies that the pacemaker erroneously releases an atrial pacing (i.e., wrong atrial

pacing due to oversensing). Similarly, in Sce.8 the SIE injects an SF at a random

time before TAVI, once the pacemaker senses an AS. In this scenario, we first verify

that the injected SF is received by the pacemaker and recognized as a native VS. The

second property verifies that after the SF is received, the pacemaker does not release

the required ventricular pacing.

Another possible scenario that was analyzed is the injection of an SF in the AVI

component at the ventricular input (VS SF) after a native VS is sensed (i.e., during

TURI). In this case, the AVI component operates in WaitURI state. This is shown

in Table 18 and Fig. 52(A) as Sce.3. The pacemaker model is verified against three

properties. With the first property, we verify that the incidence of SF is perceived

by the pacemaker during time interval TURI. The second property is designed to

verify that the next ventricular event is only received after time interval TURI. With

the last property, we verify that the next atrial event (AS) is sensed within the time

interval TURI after the native VS.

The PTA in Fig. 52(B) shows the two effects that SFs may produce on component

PVARP, identified by Sce.1, and Sce.2. In Sce.1, after the pacemaker senses a native

VS, the SIE randomly injects an SF at the atrial input (AS SF) during the time

interval TPVAB (while the PVARP component at state PVAB). The injection of

this SF is shown in Table 18. First, we verify that the injected SF is received by

the pacemaker at the specified time. The second property allows us to verify that

this SF has no impact on the system. This is done by checking that the next atrial

event is correctly sensed by the pacemaker (i.e., no change in the A-V timings).

In Sce.2, the SIE injects the SF at AS SF2 after VS is sensed (i.e., during time

interval TPV AB < T < TPV ARP ). The first two properties check if the injected

SF is received by the pacemaker and characterized as a native AR event. The last

property is used to verify that this SF does not affect the timing of the pacemaker.

This is achieved by ensuring that the next AS event occurs within the time period

TLRI − TAV I as expected. Fig. 52(C) shows the effect of injecting an SF at the

VRP component. In this scenario (Sce.4), after a native VS or VP event, the SIE

injects an SF at a random time within the time interval TVRP. In order to verify

this scenario, the first property is used to check that the injected SF is received by

the pacemaker at the specified time. The second property verifies that the SF is
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completely masked by validating that the next AS is sensed within the TLRI-TAVI.

Finally, the PTA in Fig. 52(D) shows the scenarios where an SF is injected at the

LRI component, represented by Sce.5 and Sce.7. In Sce.5, after a VS is sensed, the

SIE randomly injects an SF at AS SF within the time interval TV ARP < Tinj <

TLRI − TAV I. By verifying the properties for this scenario as shown in Table 18,

we observed that this SF can be sensed by the pacemaker as a native AS. Next, we

verify that the pacemaker component resets its internal clock and proceeds to wait for

the VS signal, (i.e., the pacemaker has erroneously transitioned to the ASed state),

breaking the A-V cycle synchronization. As shown in the result of the verification of

the second property of scenario Sce.5, the occurrence of the SF causes the pacemaker

to ignore the VS signal. In the last property, we verify that the pacemaker eventually

applies an erroneous VP on the heart. In Sce.7, after a VS is sensed, the SIE randomly

injects an SF at AS SF. Similarly to Sce.5, this SF is injected within the time interval

TV ARP < Tinj < TLRI−TAV I. However, this SF has a different impact, which is

verified as shown in Table 18. The first property confirms that this SF has been sensed

as a native AS. The second property validates that such SF prevents the pacemaker

from releasing the required AP.

10.1.7 New Insights on Possible Pacemaker Malfunctions In-

duced by Soft-Faults

In the previous sections, we introduced a system-level analysis approach designed to

provide a high-level view of several possible scenarios that may lead to pacemaker

malfunctions. Each of these high-level scenarios can be mapped to different occur-

rences of low-level faults. In this subsection, based on the results of the analysis

introduced in subection 10.1.6, and on the behavior of the pacemaker explained in

subection 10.1.4, the observed pacemaker malfunctions are mapped to physical-level

analysis results reported in the literature. These reports may originate from sev-

eral different sources of errors at lower-level such as SEUs and Multiple-Bit Upsets

(MBUs). Based on these reports and on our analysis results, different Windows Of

Vulnerabilities (WOVs) are investigated. A WOV is defined as the time interval in

which an SF at one component can impair the behavior of the pacemaker. For each

WOV in the cardiac cycle, if the SF results in an observed soft-error, then we identify

its impact on the cardiac cycle where it is injected and in the future cycles. For all
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these scenarios, the results of our analysis are characterized. Furthermore, we have

researched the literature to identify if the observed behaviors are reported in clinical

observations and/or as results of dynamic radiation ground testing of pacemakers. In

the next subsections, we explain all the SFs injection scenarios, which are classified

into a given subsection based on their eventual impacts. Following are some general

considerations pertaining to all scenarios:

� The impact of each SF scenario (Fig. 53 to 60) is demonstrated for two cardiac

cycles, as seen from the pacemaker.

� Native heart events (atrial sensing (AS) and ventricular sensing (VS)) are identi-

fied in the figures by solid black pulses, where the peaks represent atrial activity

and the valleys represent ventricular activity.

� Dotted pulses represent missing or masked cardiac events or pacing events.

� Red pulses represent either SF-induced events or pacing events (atrial pacing

(AP) or ventricular pacing (VP)) which are results of the injected SF.

� The “Without SF” timeline shows the expected natural progression of the car-

diac cycles in the pacemaker.

� The “With SF” timeline shows the progression of the cardiac cycles in the

pacemaker side after the SF has affected the system.

SF-Induced Pacemaker Oversensing

Oversensing is a phenomenon in which the pacemaker inappropriately recognizes ex-

ternal electrical signals and noise as native cardiac activity, and pacing is inhibited.

Normally, the main sources of oversensing are large P or T waves, skeletal muscle ac-

tivity, and lead contact problems. Moreover, it is reported in [140] that most common

sources of electromagnetic interference (such as cellular phones) may cause pacemaker

oversensing. SF-induced oversensing may lead to a disruption in the pacemaker cycle,

causing undesired behavior. Through clinical tests, Hurkmans et al. [73] has reported

that ionizing radiation can cause different functional inconsistencies due to sensing

interference in implantable cardiac pacemakers, even leading to complete loss of func-

tion in some cases. We were able to identify the following SFs scenarios which can

lead to oversensing, based on commonly adopted pacing modes, described in [115]:
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1) SF at Aget during TPVAB: As explained in subection 10.1.4, the PVARP

component operates in the refractory period TPVAB to prevent the recognition of

electrical signals (generated from P or T waves, skeletal muscle activity or lead contact

problems) as a native cardiac activity. Additionally, an SF which is injected at input

node Aget at time that is less than TPVAB is also considered as refractory noise.

Therefore, the impact of the oversensing of such SF will be natively masked, as

shown in Fig. 53.
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TPVARP

SF

TPVAB

TPVABTAVI

TPVARP
TPVABTAVI

With SF

Without 

SF

TPVARP
TAVI TPVAB

Figure 53: Timing Diagram of SF at Aget During TPVAB

2) SF at Aget before TVARP: An oversenseing can happen in the second refrac-

tory period of the PVARP component. However, this SF will be masked if it arrives

before TPVAB interval at the PVARP component. Another oversensing scenario that

was considered happens if the input node Aget is affected by an SF during the period

of time after TPVAB but before TVARP (i.e., TAV I < T < (TLRI − TAV I)). As

shown in Fig. 54, this SF will be characterized as an Aget event which is then fed

to the pacemaker as an AR event. In this case, the SF does not directly impact the

pacemaker behavior, but it can impact the efficiency of the diagnosis algorithms.

3) SF at Vget during TURI and TVRP: Fig. 55 shows a scenario where multiple

SFs occur during time interval T < TURI. In this scenario, we assume that all the

SFs induce ventricular sensing signals in the system. Since the URI component limits

the ventricular pacing rate in the system, all ventricular oversensing induced by SFs

during TURI are masked by the pacemaker. Therefore, such SFs do not have any

impact on the pacemaker behavior. Similarly, Fig. 56 shows a scenario where multiple

SFs are injected during time interval T <= TV RP . During this time interval, the
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Figure 54: Timing Diagram of an SF at Aget During TPVARP

SFs are interpreted as refractory noise waves and are masked by the system.
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Figure 55: Timing Diagram of the Impact of SF During TURI

4) SF at Aget after TVARP: Another possible oversensing scenario is when an SF

is injected at input node Aget at a time after TVARP. This SF can have an impact

on the pacemaker behavior. This SF will be characterized as an actual AS event.

As shown in Fig. 57, once this SF is characterized as an AS, then the pacemaker

resets the clock and starts waiting for a VS, for a time interval of TAVI. This SF

will have two implications: 1) it can mask the actual AS that is released from the
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Figure 56: Timing Diagram of the Impact of SF During TVRP

heart during TAVI. Shortly after this SF, the real atrial event occurs but it will be

filtered because the pacemaker is expecting a ventricular event after T=TAVI ; and 2)

it will impact the behavior of the pacemaker for the next A-V cycles. This happens

after the pacemaker waits for the time TAVI without the heart releasing the VS.

Therefore, the pacemaker will have to release a ventricular pacing (VP). This pacing

is not required in the normal operation and will affect the cardiac cycle and may lead

to an arrhythmia, among other issues.
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Figure 57: Timing Diagram of SF-Induced Oversensing

5) SF at Vget within TAVI: Fig. 58 depicts a possible SF injection scenario

that can lead to oversensing at the input node Vget within TAVI. In this scenario,

after an atrial sensing or pacing event, the pacemaker is affected by an SF which is
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interpreted as a ventricular sensing before the real ventricular events happen in the

heart. After the time period T = TLRI − TAV I, the pacemaker will be expecting

to sense an atrial event. The absence of the atrial sensing, due to the fact that the

system’s clock is ahead of time, will cause the pacemaker to perform an erroneous

atrial pacing, followed by another ventricular pacing as shown in Fig. 58.
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Figure 58: Timing Diagram of SF-Induced Oversensing

SF-Induced Pacemaker Undersensing

Undersensing is the failure to sense, and it occurs when the pacemaker fails to rec-

ognize spontaneous myocardial depolarization. In other words, the pacemaker fails

to sense native cardiac activity. One possible scenario of an SF-induced undersens-

ing is shown in Fig. 59. In this scenario, an SF is injected during time interval

TPV ARP < T < (TLRI − TAV I). This SF is interpreted by the pacemaker as an

atrial sensing. However, in this scenario, the SF occurrence causes the atrial activity

to pass undetected. The issue is further aggravated since the pacemaker registers

this SF as a AS signal and starts waiting for the ventricular event at the VS signal.

After the time period TAVI, a ventricular pacing is erroneously applied. Therefore,

the pacemaker sends an inappropriate pacing pulse to the heart. Clinically, this is

normally recognized by the generation of unnecessary pacing signals and can lead to

skipped beats or palpitations, among other cardiac issues [140]. Several malfunctions

related to pacemaker sensing are described in [107].
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Figure 59: SF-Induced Undersensing

SF-Induced Output Failure

Output failure of a pacemaker occurs when an expected pacing stimulus is not gen-

erated. In the literature, multiple causes of output failure are identified including

oversensing (subsection 10.1.7), pacemaker runaway, lead displacement, and electri-

cal interference. In Fig. 60, we construct a scenario where the incidence of an SF

produces an electrical signal that is interpreted by the pacemaker as an early ventricu-

lar sensing. These effects have been reported by different researchers in the literature,

in works such as [73] and [115]. Output failure due to an ionizing radiation is a major

concern, especially in devices with low battery charge (e.g. low battery voltage due

to overdue pacemaker replacement [107]). An example of this phenomenon is shown

in Fig. 60. In this example, the injected soft-fault will prevent the pacemaker from

generating the necessary ventricular pacing. Furthermore, this SF will impact the

pacemaker behavior in the next cycles. For instance, the pacemaker will be expecting

an atrial event after time TLRI-TAVI and the pacemaker performs an atrial pacing

on the heart when the AS is not sensed. Thus, the pacemaker will apply the pacing

to the wrong heart chamber.

10.1.8 Conclusion

In this paper, we proposed a new methodology for quantitative and automated verifi-

cation of the impact of SFs on the behavior of the DDD pacemaker at the system-level.

The correctness of PTA implementation is proven through model checking of a set of
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Figure 60: Output Failure due to Missed Ventricular Pacing

PCTL properties, defined based on the specifications and in agreement with the liter-

ature. We introduced a new approach to inject soft faults at certain time windows in

the pacemaker model and construct an extended PTA model of the SF propagation.

The proposed modeling and analysis were performed using the Storm probabilistic

model checker. New insights on the SEU-induced malfunctions of pacemakers, such

as oversensing, undersensing, and output failure are provided. The results of this

analysis can be very useful towards improving the tolerance of the DDD pacemaker

to soft-faults, by providing the necessary insight to help mitigating detected malfunc-

tions.

10.2 System-Level Characterization, CTMDP Mod-

eling, and Analysis of Computing Systems

Reliability Applied to the LEON3 Processor

Authors: Ghaith Bany Hamad, Marwan Ammar, Otmane Ait Mohamed, Yvon

Savaria

Abstract: Reliability analysis of application failures due to soft errors has become

a significant concern for designers of embedded systems. The probability of these
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application failures due to soft errors in microprocessors is directly related to the

fault propagation path and its lifetime in the internal registers and memories. Using

fault injection to evaluate the robustness of a given application program is very time-

consuming, even when emulation is used, as several executions of the application are

required. To improve productivity and decrease costs, the application vulnerability

should be evaluated as early as possible in the development cycle. Moreover, the

analysis time should be kept at the minimum. This paper presents new advances in

the reliability assessment of computing systems, by introducing a new technique that

addresses the combination of both software and the target hardware. To achieve this

goal, we introduce a Continuous-Time Markov Decision Process (CTMDP) model-

ing, analysis, and estimation of the LEON3 processor’s vulnerability to Single Event

Upsets (SEUs). At the system level, the proposed technique provides new insights

into SEU propagation probabilities and latency. The results of the instruction based

analysis are then utilized to better estimate the application vulnerability. With the

proposed technique system-level insights are obtained into the application criticality

presented by fault lifetime and probability. Results demonstrate that the proposed

approach is able to quantify the fault propagation latency and to characterize the crit-

icality of each of the internal registers in different applications. The results also show

that the proposed approach offers a speed-up of up to 19 times over comparable tech-

niques and is up to 1042 times faster than the best reported fault injection techniques.

10.2.1 Introduction

The progressive shrinking of devices in advanced processing technologies has made re-

liability one of the major concerns in the design of embedded systems [98]. Hardware

systems can be affected by faults caused by physical manufacturing defects, envi-

ronmental disturbances (e.g., radiations and electromagnetic interference), or aging-

related phenomena. Soft-errors, induced by transient errors, are a growing issue,

which degrades the reliability of embedded systems. These transient errors, such as

Single Event Upsets (SEUs), can lead to undesirable changes in the state of one or

more memory elements, which can propagate in the system causing soft-errors. When

a soft-error reaches the software layer of the system, it can corrupt data, instructions

or the control flow [105]. These errors may hinder system reliability by changing

153



the correct software execution or prevent the execution of an application leading to

abnormal termination or application hang. Therefore, the behavior of a system in

the p]resence of SEUs needs to be thoroughly investigated. Moreover, it is crucial

to identify as early as possible the application criticality due to low-level hardware

errors. The focus of this work is to investigate the vulnerability of safety-critical

applications to faults affecting vulnerable components in microprocessors.

In the literature, there exist different methods to evaluate the reliability of complex

systems such as the LEON3 processor, which has been widely used in automotive,

multimedia systems (such as mobile phones and wireless), and other low-end and

high-end applications [62]. At post-silicon stage, the reliability analysis of this system

is done through dynamic radiation ground testing [133], [26]. In this approach, the

target hardware is built and then it is exposed to different radiation fluxes based

on the target analysis and system hardware. Thereafter, the number of soft-errors

is counted to estimate the dynamic cross section (σ), which refers to the number of

errors that occur in an area of a processor which executing an active load over time.

Static cross section refers to the number of errors that occur in an area of an in active

processor.

This approach was tested on different implementations of the LEON3 processor.

For instance, in [94], different experiments were performed on a LEON3 processor

to evaluate the σ under different setups, such as radiating different components of

LEON3 to determine which functionality has most upsets and which would require the

most mitigation in a radiation environment. The main problem with this approach is

that it is very expensive and time-consuming. This is mainly because it requires the

system to be fully fabricated, and hence any change in the application or hardware

will require a new full radiation testing to get accurate failure rate results.

In order to reduce the time and cost associated with dynamic radiation ground

testing and provide a high-level estimation vulnerability to soft-errors of some system,

different simulation and emulation fault injection methods have been proposed. These

methods provide better controllability and observability than radiation testing since

the user has access to the entirety of the system (injection site) and possible injection

timing. In emulation fault injection, specific hardware can be built to inject these

faults. For example, in [55], the direct memory access SEU emulation component

selects the time and the bit to be altered in memory. The testing of LEON3 through
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fault injection has been introduced in several works [44], [67], and [69]. Different

FPGA-based frameworks are proposed in [69], to analyze the impact of SEUs on

LEON3 and the expected time to recover. In [44], a platform with fault injection

capability named LEON3 ViP is proposed. In these techniques, different faults are

injected in the desired state elements of the LEON3 architecture, described in the

HDL language. Then, the effects of these transient faults are observed by monitoring

the system or comparing its outputs with a golden version of the system. However,

emulation and simulation require a large amount of time to simulate or to emulate

a scenario of thousands of injected faults [17]. In order to reduce the simulation

time, the system is usually tested over a subset of test vectors, which reduces the

results accuracy. Furthermore, these techniques require low-level implementation of

the system (RTL implementation and lower). Recently, new techniques, such as [40],

[105], have been introduced to analyze the expected fault lifetime in applications

executed on the LEON3. These techniques succeed in reducing the analysis time

over fault injection. However, along with the fault lifetime, the criticality of a fault

is directly related to its propagation paths and probabilities in the application trace

and in the hardware components.

Recently, formal methods have been adapted to model and analyze the impact

of SEUs at the system level. Such high-level analysis provides new insights into

the system reliability at an early stage of the design cycle. For example, in [11],

a Continuous-Time Markov Chain (CTMC) model was proposed to compute fault

propagation probabilities in a self-repairable system consisting of a small pipeline

processor. This model targeted the analysis of SEUs in a three-stage pipelined unit.

We present two techniques based on fault propagation probabilities and lifetime

analysis targeting both hardware and software levels of abstraction:

� The first technique (represented by Phase 1 in the methodology) investigates

faults affecting the internal pipeline registers of the LEON3 processor. This

technique starts with hardware characterization to identify all the registers in-

volved in the computation of each type of instruction. A probabilistic model

of SEUs propagation probability and lifetime from each vulnerable site in the

microarchitecture pipeline to the output of the instruction is proposed. To the

best of our knowledge, this is the first time such CTMDP models are proposed.

Based on the instruction models, the vulnerability of each type of instructions
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is evaluated. This analysis identifies at what cycle instruction related informa-

tion is stored in a given register, and is, therefore, able to identify the most

critical registers. A new probabilistic model of SEU propagation through the

LEON3 architecture is proposed. For each instruction, the propagation of SEUs

is modeled as a Continuous-Time Markov Decision Process (CTMDP) based on

the hardware microarchitecture of the LEON3. The proposed CTMDP models

extend the work done in [57], [22], [9]. A library of CTMDP models for each

instruction type in LEON3 is constructed. Based on these models, a full estima-

tion of the fault propagation probabilities and latency through each instruction

is computed.

� The second technique (represented by Phase 2 in the methodology) investigates

the lifetime of the variables of the program running on a LEON3 processor. A

CTMDP model of the fault propagation through a sequence of instructions

based on an application trace is proposed. This model is used to evaluate

system reliability through a probabilistic approach, without the necessity of

extensive fault injections. Thus, the proposed technique allows the analysis of

fault propagation probabilities at the application level. This analysis provides

new insights into fault lifetime expectancy.

The combination of these two techniques yields a powerful proposed system-level

methodology, which is fully automated using the LLVM compiler, scripting, and Prob-

abilistic Model Checking (PMC). The proposed methodology was validated on differ-

ent case studies and for different workloads. The obtained results demonstrate that

there can be a significant variance in the fault latency, register criticality and lifetime,

and fault propagation probabilities between different workloads.

10.2.2 Main Steps of the Proposed Framework

The purpose of the proposed methodology is to provide a high-level estimation of the

application vulnerability to SEUs. This vulnerability is estimated by evaluating two

factors: 1) the failure probability due to the injected faults; 2) the fault lifetime. The

main steps of the proposed method are shown in Fig. 61. The analysis is performed

is done in two phases:
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Figure 61: The main steps of the proposed methodology.

� Phase 1: Instruction based characterization, SEUs probabilistic modeling, and

analysis.

� Phase 2: Application based SEUs propagation modeling and analysis.

Phase 1 starts with a high-level representation of the pipeline microarchitecture.

The registers involved in the computation are identified. The instruction type is

found with respect to the opcode. Each instruction type is associated with a model

specifying the registers involved at each stage of the pipeline for a correct execution.

This will be illustrated in subsection 10.2.3. For each cycle and pipeline stage, the

instruction models are used to update a global list of ”live” and ”dead” registers.

Next, a probabilistic model of SEUs propagation from each vulnerable site in the

microarchitecture pipeline to the output of the instruction is proposed. Based on the

instruction models, the vulnerability of each type of instructions is evaluated. This

analysis identifies at what cycle instruction related information is stored in a given

register, and is, therefore, able to identify the most critical registers. The criticality

of a register is computed by summing contributions from all the cycles in which this
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register is active. Details of these steps are explained in subsection 10.2.3.

int k;
int l;
l -= k;
printf(“%d”, l);

Source Code

int k;
int l;
l -= k;
printf(“%d”, l);

Source Code
%k = alloca i32
%l = alloca i32

%3 = load i32* %k
%4 = load i32* %l
%5 = sub i32 %3, %4
Store i32 %5, i32* %l
%6 = load i32* %b
%7 = call i32 @printf(i32 %6)

LLVM IR Code

%k = alloca i32
%l = alloca i32

%3 = load i32* %k
%4 = load i32* %l
%5 = sub i32 %3, %4
Store i32 %5, i32* %l
%6 = load i32* %b
%7 = call i32 @printf(i32 %6)

LLVM IR Code

Figure 62: Example of C++ to LLVM Conversion

In Phase 2, the application based vulnerability analysis starts with the source code

in C++. From the C++ code, we use the LLMV compiler framework to generate the

intermediate representation (IR) code of the program. The IR provided by LLMV

is a virtualized instruction-set and its syntax is similar to assembly language. A

simple example of this process can be seen in Fig. 62. We then analyze the LLMV

IR code and extract an execution trace, which includes relevant processes, such as

loading from memory, storing in memory and arithmetic operations. A probabilistic

modeling of the LLMV IR is proposed and automated with the PRISM language

and an in-house developed parser. This model takes into account microarchitecture

behaviors such as fast-forwarding. This model will be analyzed for SEUs propagation

at different variables as shown in Fig. 61. In such system-level analysis, trade-offs

can be made on the modeling of each instruction between accuracy and performance.

The purpose of the application level analysis is to estimate the criticality of different

variables during the program execution. This is achieved by estimating the lifetime

of a fault that is injected in this variable and the propagation probabilities of this

fault, this done through the following methods:

� Lifetime based criticality evaluation: This estimation is obtained by measuring

the average lifetime of the variables (variables that stay alive longer tend to

be more critical). In this work, the lifetime of the variable starts once a value

is written to this variable and stays alive in the system until the last read

operation performed in the injected fault. To achieve that, the application is

first compiled into LLVM IR, however, this representation does not contain the

exact timing information of the execution of each LLVM instruction. Therefore,

we consider that each LLVM IR is executed within one clock cycle. This means
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a counter is used to assign a time for each instruction in the target program

trace. After that, the time at which the target variable is written with the

fault, any time this variable is read, and the time at which this variable is

overwritten are extracted. These times are used to estimate the lifetime of the

target variable by evaluating the times between the write and last read. The

approach of annotating the LLVM IR and the assumption that each instruction

is executed within one clock cycle are adapted from literature as the work done

in [40, 86, 105]. Although this assumption does not reflect reality, as different

instructions have different execution times, it serves as an abstract baseline to

indicate how long a variable stays alive in comparison to other variables.

� Markov reward based criticality estimation: In this method the reward is as-

signed to each variable on this system. If a fault is injected into any of a

variable then its reward is reset, this reward is then incremented at each read

operation(load). At the end of the analysis the reward of all variables will be

evaluated to provide a measure of their criticality.

10.2.3 Instruction Based Characterization, Modeling, and

Analysis

Characterization of Radiation-Induced Soft-Errors

Ionizing radiation may impact the potential on electrical nodes of micro-electronic

devices, causing them to forcefully change states. The amount of ionizing particles

traversing the device’s sensitive area is computed based on the flux intensity of par-

ticles per square centimeter per second. If these transient radiation events transfer

enough energy, then an SEU (i.e., a bit-flip in a memory cell) or a transient fault in the

combinational circuitry of the device may be generated. At this stage, the SEU may

propagate through different states but does not necessarily generate a system failure.

In fact, most generated SEUs will be masked by different masking mechanisms. These

masking mechanisms are related to SEU propagation path, system current state, and

fault characteristics (e.g., injection time, site). Thus, only a subset of the faults intro-

duced in a system will result in errors. A percentage of these errors can be detected

by the system within a certain time limit, which is defined as the system’s coverage

factor. In this work, in order to accurately estimate the SEU vulnerability of different
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variables in an application, details of the microarchitecture specification, technology

node and SEU behavior are taken in consideration. The proposed high level analysis

investigates the vulnerability of each variable by checking the SEU propagation prob-

abilities to different states and the lifetime of the different variables. The lifetime of

a variable is defined as the time period starting when an SEU is injected in a register

until the time when this SEU is masked or becomes inactive (i.e., it no longer affects

the system’s behavior). This can be characterized by the set of states in which the

variable is active, including the state where the variable is defined, every following

state in which the variable is used as an operand of another operation, and all the

states on the path between the definition state and the usage state [63].

Microarchitecture-Based Characterization

The proposed analysis introduces a characterization of the instruction set of a target

microprocessor based on its microarchitecture specifications. The purpose of conduct-

ing this characterization is to identify the registers involved in the different steps of

the required computation. The instruction type is found with respect to the opcode.

Each instruction type is associated to a model, which specifies which registers in

the integer unit’s pipeline are involved, during the normal execution of the target

instruction, as well as different fast-forwarding cases [86]. Based on the string of

instructions that needs to be executed, this approach identifies which registers are

involved and the appropriate execution path for each instruction is selected. This

enables an accurate high-level estimation of the lifetime of the inject faults.

For example, considering the LEON3 pipeline, the characterization of the arithmetic

operation multiplication (MUL) includes:

� DECODE INST register (decode stage)

� RFO DATA1 and RFO DATA2, RD CTRL (Register Access stage)

� R E OP1 and R E OP2 (Execute stage)

� R M RESULT (Memory access stage)

� R X RESULT (Exception stage)

� R W RESULT (Write Back stage)
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Similarly, other possible characterization of the MULimm instruction where R A IMM

register will be active instead of RFO DATA2. While this modeling stage is depen-

dent on the target processor, it is a step that needs to be done only once and that

can be easily adapted to a new target.
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Figure 63: Proposed Probabilistic Model of SEU Propagation Through a the Proces-
sor Pipeline in an ADD Instruction

Instruction-Based Markov Modeling

The LEON3 processor implements the full SPARC V8 standard [62], including hard-

ware multiply, divide, and multiply-accumulate instructions. SPARC is a CPU in-

struction set architecture derived from RISC. The pipeline of the IU of the LEON3

consists of seven pipeline stages structured according to the Harvard architecture.

Based on the instruction type, with respect to the opcode, a probabilistic model

of SEU propagation through the registers involved at each stage of the pipeline is

proposed. This instruction-specific model includes the probabilistic details of the

propagation path and the impact of an SEU on the operation/functionality of the

instruction. For each type of instruction (e.g., ADD, ADD Imm, MUL), a model is

constructed to account for the different use of the pipeline registers. For instance,

the ADD instruction uses different pipeline registers than the ADD Imm instruc-

tion. Therefore, the possible fault propagation paths in these two instructions are

not equivalent. The fault propagation paths of all considered instruction types have

been obtained through the generation of counterexamples in our model-checking and

modeled, in a library, as Markov chains. An illustrative example of the ADD instruc-

tion model is shown in Fig. 63. Starting from state S0 (error-free fetching), at the
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fetching stage an SEU affecting the PC can alter the address of the next instruction,

which may result in wrong or invalid operations. This is shown in Fig. 63 in the

transition from state S0 to state F1 (wrong or invalid PC) with a rate λpc, which

indicates the rate of occurrence of an SEU-induced error in the PC register. More-

over, in the fetching stage, an SEU affecting the icache can result in an alteration

in the data accessed from the memory and stored in the instruction register. This is

represented in Fig. 63, in the transition from state S0 to state S1 with rate λicache,

which indicates the rate of a bit-flip in the memory. In the decode phase, an SEU

can affect the instruction register which is represented in Fig. 63 with the transition

from state S2 (error-free state) to state S4. This transition can be done with rate

λinst. Such SEU can cause an error in the decoded data for any of the operands or

operation. In the register-access phase, an SEU can propagate from the decode phase

to data1 (transition from state S4 to state S8 with rate λDT 1) or data2 (transition

from state S4 to state S7 with rate λDT 2). Moreover, an SEU can propagate from

the decode phase to the write address (RD CTRL) (transition from state S4 to state

F2 with a rate equal to λRD ctrl). Moreover, an SEU can affect any of the registers

at the RA phase. This is represented by the transitions from S5 (error-free state) to

F2, S7, and S8 as shown in Fig. 63. In the execute stage, an SEU can propagate

from the decoding phase causing execution of the wrong operation or execution of the

right operation on the wrong data. This case is represented by the transitions from

either S10, S11 to F3 with rates equal to λprop2 and λprop2, respectively. In this

case, the SEU may be logically masked in the data path. An error in the results of

the execution phase propagates to the following stages (MA, XC, WB). Moreover, an

error can be injected at the MA, XC, WB stages, resulting in an error in the stored

data in the memory.

10.2.4 Fault Injection and Analysis Through CTMDP

SEUs are random events, which means that they may occur at any point or time

during the execution of a program. Moreover, the effects of SEUs may branch through

different areas of the system with different propagation probabilities, which further

increases the complexity of the analysis. Thus, accurately modeling the effects that

SEUs may have in a system is a challenging task. It has been demonstrated in our

previous work that the analysis of the vulnerability to SEUs using Markov Decision
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Figure 65: Probabilistic Model of SEU Propagation Through a Sequence of Instruc-
tions Based on the Target Application.

Process (MDP) [10] and CTMC [9, 11] models can offer accurate results in some

cases. MDP models can capture the behavior of SEU events since they permit both

probabilistic and non-deterministic choices. However, MDP models cannot be used

to evaluate system vulnerability over time, since MDPs do not take into account the

influence of the transition time between the states. On the other hand, CTMC models

are not able to capture the non-deterministic aspect inherent to SEUs.

To address these limitations, we propose the modeling, fault injection, and anal-

ysis using the Continuous-Time Markov Decision Process (CTMDP) formalism. In

comparison to MDPs, CTMDPs are able to better model the decision-making pro-

cess for a system that has continuous dynamics, such as the incidence of random

events over time. A CTMDP model can be defined as a tuple {S, S0, (A(i), i ∈
S), q(j|i, a), r(i, a)}, where the state space S is a finite set of fully observable states of

the system. S0 is the initial state in S. A(i) denotes a family of measurable subsets

of actions applicable in i ∈ S. The expression q(j|i, a) is the transition rate function

of state j after performing action a ∈ A(i) in state i, which can satisfy q(j|i, a) ≥ 0
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and i 6= j. Finally, r(i, a) ∈ R is a reward function such that r(i, a) is the immediate

reward for being in state i with action a.

In this work, we utilize Probabilistic Model Checking (PMC) [19], which is a formal

verification technique that can be applied to systems with stochastic behavior [59]. It

does not only provide a Yes/No answer on whether a property holds, but PMC can also

quantify the probability (min/max) of satisfying the property. Moreover, PMC can

provide counter-examples for each particular case of property violation. The PMC

tool utilized is the PRISM Model Checker [92], which is an efficient probabilistic

symbolic model checker that employs efficient algorithms and data structures, such

as Binary Decision Diagrams (BDDs). A model in PRISM is composed of several

constructs called modules. Each module expresses a specific behavior, similar to sub-

components in a system. The state of each module is decided by a set of finite-ranged

variables, and the global state of the model is determined by the evaluation of the

values of the module variables. Each module is composed of a set of commands,

expressed in the format [<act>] <guard> → <rate>: <action>, where:

� act is an action label used for synchronization of the different modules of the

system;

� guard is a predicate over the operations performed in the system’s modules;

� action is a set of n updates that will translate into operations being executed

in the modules.

� rate is the probability of occurrence of an action;

If a guard is satisfied, the command is executed. Each command corresponds to

one or more state transitions, which may be probabilistic and/or non-deterministic.

Furthermore, the analysis can be enriched with the use of Markov reward structures.

Reward structures extend the Markov model by incorporating a reward rate to certain

actions. This mechanism, with variables that record rewards accumulated with time,

enhances the analysis by providing an estimation of the most critical states in the

model. Reward structures are also crucial for the lifetime estimation of SEUs. A

simple example of lifetime estimation in our model is shown in Fig. 64. The figure

shows two SEU injections (SEU writes) at two different variables, k and l, at different

times. At the time of the injection, w, the reward count associated with each variable
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is reset, and the value of the global reward count is stored. The fault stays latent in

the system until the time of the first read of each variable (r). At the time of the first

read, and at every subsequent read, the reward count is incremented. Eventually, if

another write is performed on the variable, the value of the global reward count is

stored again, and we assume that the fault has been overwritten and the value of the

reward count of the variable is reset. By doing this, we can estimate the total lifetime

of the fault (difference between the stored global reward values), the time between

fault injection and first read, and the average time between reads. These metrics are

obtained by verifying a set of Continuous Stochastic Logic (CSL [19]) properties over

the CTMDP models as follows:

PS0(♦0,TSn) (11)

Which evaluates the bounded probability of reaching state Sn within time interval

[0, T ].

10.2.5 Application Based SEU Modeling and Analysis

In order to fully understand the real impact of an SEU at the software level, the esti-

mation of its latency and propagation probabilities at the hardware level are essential.

To evaluate these probabilities, the details of the hardware microarchitecture and the

workload that is running on the processor are required. In our proposed analysis, the

details pertaining to the hardware microarchitecture are included in the library of the

instruction-based models, explained in Section 10.2.3. On the other hand, the details

related to SEU propagation through a sequence of instructions are extracted based

on the application.

This work introduces a CTMDP model of the fault propagation in an application.

An abstract view of this model is shown in Fig. 65. This model is constructed

based on the type of the instructions, the LEON3 pipeline microarchitecture, and

the memory map. Starting from the instruction where the SEU is injected (I 1 )

the SEU propagation probability is evaluated to the next instructions based on their

dependencies. In order to model the different paths for fast forwarding mechanism,

after each instruction, a decision is made on the dependencies. If the forwarding is

not needed then the faulty result is written in the register file or memory. In this case,

the following instructions will be affected by this fault only, if they use the corrupted
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data from the memory/register file before it is over-written. If forwarding is required

then the faulty result is forwarded to the next instructions. For example, as shown

in Fig. 65, if a fault at I 1 can then be forwarded to I 2, I 3, or I 4. On the other

hand, the proposed model takes into consideration the impact of SEUs injected into

the memory. This model is based on the probability that an SEU can change the

data in the memory. If this is the case, the target probabilistic model of this address

moves to the fault state (indicating wrong data). This model of the memory address

will move to the error-free state (good) when another instruction which is error free

overwrite this address. During this period the fault is considered as latent. Before the

faulty data is overwritten, any other instructions reading this address will be affected

by the fault.

In Phase 2, similar to Phase 1, we utilize the PRISM model checker to automate

model analysis. Each instruction is expressed as PRISM modules to specify the

behavior explained before. The state of each module is decided by a set of finite-

ranged variables which are controlled by the flow of the LLVM instructions defining

the application. In each instruction, based on the fault flow, the probability of the

fault propagation to the output of this instruction is evaluated. Moreover, the lifetime

of the propagating fault is updated and traced based on Markov reward structures. In

this model, lifetime estimation starts with the instruction where the fault is injected.

The value of the global reward variable is recorded and incremented for the transitions

where the fault is active and not flushed from the system. In the analysis stage, the

reward value is used to determine the relative amount of time that the SEU was alive

in the application. Similar to the instruction based analysis, the application based

analysis is conducted by verifying a set of CSLs properties over the CTMDP models.

An example of such CSL property is given below:

PI 1(♦0,T In) (12)

This expression evaluates a bound on the probability that a fault, that is injected at

instruction I 1, to eventually reach instruction I n within time interval [0, T ].

10.2.6 Experimental Results

In this subsection, we present and discuss the results of the proposed analyses which

have been performed on a machine with an Intel Core I5-4200U CPU and 8 GB of
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RAM. The instruction and application-based CTMDP models explained previously

are formulated and analyzed in PRISM 4.4 [92].

The average size of the formal models is around 7.6 million states and the average

model construction time is around 8.1 seconds. It is assumed that all the registers

and the memory are exposed to a flux of radiation. However, different bits may

have different bit-flip probabilities. The proposed analysis consists of identifying

unintended bit-flips and measuring their impact on system reliability. In order to

obtain an accurate verification environment, we utilize the results reported in [68]

to study the impact of bit-flips in different workload configurations. It is important

to note that the number of instructions in a LEON3 workload is prohibitively large

(in the order of tens of hundreds of millions of instructions), and a full trace of the

program execution is rather useless for the problem being investigated (i.e., fault

propagation and latency). Therefore, in order to efficiently estimate these metrics,

we analyze a representative subset of each workload execution trace.

As an example of such analysis, the first experiment investigates the impact of

different SEU injections in different LEON3 workloads. In this experiment, it is

assumed that the bit-flip rate in all the bits is the same, however, the probability of

SEU in a register may vary according to how many bits are used in the instruction.

For instance, in the NOP instruction, only 5 out of 32 bits are used. Table 19 shows

the failure propagation rates in different workloads. It is observed that different

workloads have different SEU propagation characteristics (i.e., error rates). This

happens because each workload applies its own algorithm for memory mapping and

memory access. Therefore, different workloads are expected to have different fault

propagation and fault latency metrics. It is observed that workloads which have

similar memory mapping algorithms are expected to have similar fault propagation

behaviors (i.e., latency and memory mapping). For example, the percentage of latent

errors is much higher in the AES workload. This happens because the memory

allocation algorithm of AES adopts a progressive-write method, which means an

overwrite is less likely to happen. Therefore, a fault in the memory will remain latent

for a longer time. This analysis consumed 477.9 Kb of memory and took 7.4 seconds

to perform.

Following up on the results discussed previously, the second experiment consisted

in computing the average fault propagation latency in the different workloads. This
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Table 19: Application Based Analysis of Fault Propagation
Workload

Subset
Rate of

Masked Errors
Rate of
Failure

Rate of
Latent Faults

QSort 70.5 12.78 17.22
CRC32 72.2 17.4 10.4

AES 27.66 43.2 29.14

was done by estimating the average fault propagation latency inside the integer unit

(i.e., from the moment of the occurrence of the SEU in the registers until the moment

when the SEU is written in the memory). The average fault latency in memory is

also evaluated. This latency is computed from the time when the SEU is written in

the memory until it is overwritten. These results were obtained with the use of a

Markov reward model and the standard probabilistic distribution of CTMDPs. To

calculate the passing of time, it is assumed that every state transition in the model

corresponds to a one-time unit. This approach is not able to determine the number

of clock cycles that the fault remains in the system, but it provides a quantitative

baseline in which the studied workloads may be evaluated. The results in Table 20

show that the expected latency of faults in the memory in AES is significantly higher

than in the other considered workloads. This finding coincides with the results in

Table 19, which show that AES has a higher probability of latent fault. These results

also indicate that the relationship between the average fault propagation latency and

the average fault latency in memory is inversely proportional. This analysis consumed

630.2 Kb of memory and took 9.3 seconds to be performed.

In this work, the criticality of a fault is measured at different levels. In the

instruction based analysis, the criticality of each fault is evaluated by the lifetime of

this fault. These results are then used to better estimate the total criticality of each

fault at each vulnerable site throughout the application. This is done by summing

all register lifetimes in all the instructions in which that register is active. This total

lifetime is divided by the number of execution cycles necessary to run the application.

Similar methods for evaluating the application criticality can be found in other works

Table 20: Average Fault Propagation and Fault Latency.
Workload

Subset
Avg. Fault Propagation

Latency
Avg. Fault Latency

in Memory
QSort 802 5362

CRC32 613 8536
AES 459 27081
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Figure 66: Criticality Evaluation of the LEON3 Pipeline Registers (CRC Benchmark).
Injection and Chibani 2014 results reproduced from [40]

such as [40]. An example of this analysis is shown in Fig. 66. This figure depicts

the criticality of the internal registers of the integer pipeline considering the CRC

application. It can be observed that based on the flow of the application registers

have different criticalities. For instance, for this application op 1 and imm registers

are more critical than op 2. Fig. 66 shows a comparison between fault injection

and predictive lifetimes obtained with the technique proposed in [40] for the CRC

computation. The fault injection results are based on the experiment done in [40].

As the proposed approach is based on conducting system-level analyses, it is ex-

pected to have some margin of over- or under-approximation. Based on the results in

Fig. 66, it can be observed that a very good correlation is obtained for all registers

Table 21: Analysis Time for Criticality Evaluation

Benchmark
Fault Injection

(minutes)
Chibani et al.

(minutes)

Proposed
Methodology

(Seconds)

Speed-Up
(Injection)

Speed-Up
(Chibani et al.)

CRC 380 10 37 616 16.2
SHA 690 14 44 941 19
AES 670 15 46 873 19.5
FFT 820 17 52 946 19.6

JPEG 990 18 57 1042 18.9

169



between our prediction and the fault injection results. Furthermore, Table 21 sum-

marizes the required amount of time to perform the criticality analysis on different

applications, compared with the same metric provided by the experiments in [40]. It

can be observed that the proposed approach provides speed-ups of up to 1042 times

over fault injection and up to 19 times over the technique in [40].

10.2.7 Conclusion

This paper presents a new methodology to assess the reliability of computing systems

which takes into consideration both software and the target hardware details. New

CTMDP based modeling and analysis of the LEON3 instructions vulnerability to

SEUs are proposed. The results of the instruction based analysis are then character-

ized and then utilized to better estimate the application vulnerability. The proposed

modeling and analysis are fully automated using PRISM. Results of the analysis of

different types of workloads demonstrate new insights on the fault lifetime and prop-

agation probabilities through the LEON3 are provided at high-level. The proposed

methodology allows the designers to evaluate the criticality of different components

and variable in the hardware and the application, respectively. It is faster than ex-

isting techniques (speed-up of up to 19 times over the technique in [40] and 1042

times over the best previously reported fault injection techniques). This allows itera-

tions without requiring any specific set-up development or dedicated equipment. The

accuracy of the proposed methodology is comparable to statistical fault injections.

The provided precision is sufficient to identify the most critical flip-flops or execution

cycles.

Further works include combining our results with data extracted from radiation

testing, in particular, the application cross section (σAP ), to obtain an accurate high-

level estimation of the system’s sensitivity. Furthermore, based on the results of the

proposed analysis, designers could either add redundancy at hardware or software

levels.
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