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ABSTRACT

A Machine Learning Approach for Optimizing Heuristic Decision-making

in OWL Reasoners

Razieh Mehri-Dehnavi, Ph.D.

Concordia University, 2019

Description Logics (DLs) are formalisms for representing knowledge bases of

application domains. The Web Ontology Language (OWL) is a syntactic vari-

ant of a very expressive description logic. OWL reasoners can infer implied

information from OWL ontologies. The performance of OWL reasoners can

be severely affected by situations that require decision-making over many

alternatives. Such a non-deterministic behavior is often controlled by heuris-

tics that are based on insufficient information. This thesis proposes a novel

OWL reasoning approach that applies machine learning (ML) to implement

pragmatic and optimal decision-making strategies in such situations.

Disjunctions occurring in ontologies are one source of non-deterministic

actions in reasoners. We propose two ML-based approaches to reduce the

non-determinism caused by dealing with disjunctions. The first approach is

restricted to propositional description logic while the second one can deal

with standard description logic.

The first approach builds a logistic regression classifier that chooses a

proper branching heuristic for an input ontology. Branching heuristics are

first developed to help Propositional Satisfiability (SAT) based solvers with

making decisions about which branch to pick in each branching level.

The second approach is the developed version of the first approach. An

SVM (Support Vector Machine) classier is designed to select an appropriate
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expansion-ordering heuristic for an input ontology. The built-in heuristics

are designed for expansion ordering of satisfiability testing in OWL reason-

ers. They determine the order for branches in search trees.

Both of the above approaches speed up our ML-based reasoner by up to

two orders of magnitude in comparison to the non-ML reasoner.

Another source of non-deterministic actions is the order in which tableau

rules should be applied. On average, our ML-based approach that is an SVM

classifier achieves a speedup of two orders of magnitude when compared to

the most expensive rule ordering of the non-ML reasoner.
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Chapter 1

Introduction

1.1 Motivation

With an ever-increasing flow of data on the web, it is important to give both

meaning and structure to its content. Semantic Web enables this task by using

ontologies. Ontology languages are used to describe the web in a form that

is understandable by machines. Depending on the context and usage of data,

ontology languages are categorized into logic, graph, and frame-based [31].

The Web Ontology Language (OWL) is based on Description Logic (DL).

Description logic represents the application domain in the form of con-

cepts and relationships between those concepts. DL ontologies consist of

two levels: TBox and ABox. TBox describes the terminology of the applica-

tion domain and ABox contains individual assertions.

DL or OWL reasoners are types of engines used to deduce new facts from

the existing knowledge in ontologies. Reasoners are employed to facilitate

machines’ works with ontologies. They help to infer implicit information

from ontologies by performing different reasoning tasks such as ontology
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consistency, class satisfiability, hierarchical classification of named classes,

query related tasks, etc. Speeding up the process of such reasoning tasks

has always been a popular topic in the description logic community. Hence,

a large amount of research has been devoted to the design of tableau opti-

mization techniques for OWL reasoners in order to accelerate these reasoning

tasks.

Tableau optimization techniques are categorized into different categories

based on their purposes. These categories are Preprocessing, Satisfiability,

TBox, ABox, and Nominals (refer to Section 2.3). Preprocessing makes the

reasoning process much faster by simplifying axioms in input ontologies.

Optimization techniques for satisfiability testing help with reducing the cost

of tableau-based reasoning caused by non-determinism. TBox optimization

contains the classification of concepts since the speed of reasoning can be

improved by having a hierarchy relation of concepts. ABoxes are often large

and applying optimization techniques such as breaking them into smaller

ABoxes could have a drastic impact on the speed of reasoners. Nominals as

special concept names are often very difficult to handle for reasoners and can

make the reasoning process very slow; applying optimization techniques can

avoid such slowness in the reasoning process.

Many of the tableau optimization techniques have a heuristic nature, mean-

ing they require proper decision-making. Often, these optimization tech-

niques employ non-deterministic rules due to the use of tableau algorithms.

Not only non-deterministic rules such as disjunction exist in these techniques;

but some of these techniques encounter other non-deterministic actions such

as choosing between different algorithms or different combinations of rules.
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For example, the ToDo list technique (refer to Section 2.3) controls the appli-

cation of expansion rules. The optimal heuristic order for applying rules in

ToDo list will have a great impact on reasoning speed. Moreover, in the liter-

ature review of this thesis, we investigate and gather other possible sources of

tableau optimization techniques that in our opinion require heuristic decision-

making (refer to Section 3.2).

1.2 Objective

Heuristic-guided optimization techniques in OWL reasoners are designed to

be set manually (by a human). Therefore, they could slow down or speed

up reasoners dramatically when encountering different ontologies. Each on-

tology has unique features that makes it different from other ontologies, i.e.,

each heuristic has a different impact on different ontologies. Hence, learn-

ing the right setting for heuristics when dealing with various ontologies can

greatly improve these techniques.

Machine learning (ML) improves the decision-making process of opti-

mization techniques in reasoners. Machine learning uses different algorithms

and strategies to build models. Later, those models are used for predicting

the proper action to take while making decisions in reasoners. To the best

of our knowledge, machine learning techniques have never been integrated

into OWL reasoners to deal with uncertain situations involving rules.

To fulfill our purpose, a machine learning model can be built to select

the right heuristic in these optimization techniques. The learning-derived

model is built based on features computed and extracted from ontologies.

Therefore, the manual fine-tuning of heuristics for these reasoners can be
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replaced by a new ML-based approach implementing automatic fine-tuning

of heuristics to make the right choice.

1.3 Contribution

The basic DLALC [41] forms the core of most DL languages and OWL.ALC

contains as language elements conjunction, disjunction, negation, existential

and universal quantification. A tableau algorithm for ALC contains various

tableau rules. One of these rules is non-deterministic and deals with dis-

junctions, i.e., it decides which disjunct from a selected disjunction should

be added to the current tableau. OWL reasoners typically apply various

optimization techniques for selecting a disjunct with the goal to speed up

reasoning by decreasing the size of the remaining search space. Many of

these techniques are based on heuristics. A similar problem consists of deter-

mining the best order of rule applications to maximally speed up reasoning.

Such a decision is usually based on heuristics, e.g., to determine whether the

disjunction or the existential rule should be applied next. While heuristics-

based optimization techniques are employed to make decisions in such situa-

tions, there does not yet exist an ML-based approach that controls automatic

decision-making in such uncertain situations.

Our ML-based approaches for these uncertain situations encountering

ontologies are based on an independent systematic analysis of heuristics to

uncover ontology patterns and their associated features that are relevant for

each specific optimization technique.

In this thesis, we focus on three of the tableau optimization techniques

that require proper decision-making:
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• Semantic Branching: Among the many optimization techniques, seman-

tic branching (refer to Section 2.3.2) is directly affected by the non-

determinism caused by disjunctions. In this case, we intend to make

the selection process for disjunctions more effective by applying an ML-

based approach. Our approach, which is introduced in Section 4.3.1, is

based on the selection of a proper branching heuristic for each input

ontology.

• Heuristics for Choosing Expansion-Ordering: Further, we consider yet an-

other optimization technique that contains expansion ordering heuris-

tics with potential for improvement (refer to Section 2.3.2). This tech-

nique finds the proper order of disjuncts in disjunction expressions of

ontologies. OWL reasoners have different built-in expansion-ordering

heuristics developed for this purpose where the reasoner will select

from them. An ML-based approach, which is introduced in Section

4.3.2, helps to find the right expansion-ordering.

• Ordering the Application of Expansion Rules: Another optimization tech-

nique that provides room for enhancement is called ToDo list or order-

ing of expansion rules (refer to Section 2.3.2). With ToDo list mechanism,

one can arrange the order of applying different rules by giving each a

priority. Our ML-based approach, which is introduced in Section 4.4,

finds the right priority for each rule.
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1.4 Structure of this dissertation

This dissertation is organized as follows:

• In Chapter 1, we introduced the motivation and objective of this thesis.

• Chapter 2 contains the preliminaries of description logic and tableau

optimization techniques, as well as the required background knowl-

edge on machine learning that is required to understand this thesis.

Later, a brief overview of ontology features is given as well.

• Chapter 3 presents the literature review. We first propose the source

of non-deterministic actions in tableau optimization techniques. Later,

the related work and contributions of this thesis are discussed.

• In Chapter 4, the ML-based solutions developed by us to aid with decision-

making situations in OWL reasoners are explained in detail. For each

approach, the experiments and results are followed.

• Chapter 5 presents the conclusion and future work.
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Chapter 2

Preliminaries and Theoretical

Background

2.1 Introduction

This chapter provides relevant background for understanding this thesis. In

Section 2.2, the main concepts of description logic are provided. That also

includes the tableau-based reasoning procedure. In Section 2.3, most of the

tableau optimization techniques that are designed for OWL reasoners are cat-

egorized and explained in detail. In Section 2.4, the background information

on machine learning required for this thesis is given. This includes logistic

regression, SVM, as well as feature engineering techniques. Finally, a brief

overview of the categories of ontology features is given in Section 2.5.
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2.2 Description Logic

Description logic (DL) is a logic-based knowledge representation language

that is used to describe the knowledge of a domain and infer entailed knowl-

edge from given knowledge. To build such a knowledge base, description

logic uses as terminologies Concepts, Roles, and Individuals.

• Concepts describe a class of objects that share similar characteristics,

e.g., the concept Man contains all individuals who are a man.

• Roles are binary relationships between individuals, e.g., role hasChild

could be a relationship between two individuals where one is an in-

stance of the concept Parent and the other is an instance of the concept

Child.

• Individuals stand for objects or instances of classes, e.g., Josh could be

an instance of the concept Parent meaning Josh is a parent.

Based on the concept language used to describe the composition of con-

cepts and roles, different rules are employed, e.g., negation (¬), conjunction

(u), disjunction (t), universal value restriction of roles (∀), and existential

value restriction of roles (∃). For example, consider the concept expression:

Female u ≥ 2 hasChildu ∀hasChild.Female

that describes females who have at least two children and all of their chil-

dren are females. Three parts are combined through conjunction. The first

part includes individuals who belong to the concept Female, the second part

describes individuals connected to at least two individuals via the hasChild
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role (using an at-least number restriction) and the third part describes indi-

viduals (∀) that are connected via the hasChild role only to individuals of the

class Female.

Description logic introduces various languages that permit specific rules

in their syntax. To support our main point in this thesis, we only focus on

ALC, which can be extended by various concept constructors. For instance,

number restrictions constrain the number of role successors (≥ nR and ≤ nR,

where n ∈ N).

Brief Introduction to Syntax and Semantics ofALC The formal semantics

of a concept language is defined by an interpretation I = (∆I , ·I) in which

∆I is a domain and ·I is an interpretation function. The domain is a non-

empty set and the interpretation function maps: every instance name a to

an element (aI ∈ ∆I ); every atomic concept A to a subset (AI ⊆ ∆I ) and

every atomic role R to a binary relation (RI ⊆ ∆I × ∆I ). An interpretation I

satisfies a concept C if and only if CI 6= ∅.

DL axioms belong to one of the three types: TBox, RBox, and ABox.

• TBox is the terminological part of an ontology and it contains a finite set

of General Concept Inclusion (GCI) axioms. A GCI axiom is of the form

of C v D where C and D are concepts. An interpretation I satisfies

C v D if and only if CI ⊆ DI . Then, we say that D subsumes C and C

subsumes D. An equivalence axiom can be written as two GCI axioms.

Therefore, C ≡ D also called definitional GCI can be written as C v D

and D v C. C v D is called a primitive GCI if C is an atomic concept

and D a concept description.
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• RBox is a finite set of role inclusion axioms R v S where R and S are

roles. An interpretation I satisfies R v S if and only if RI ⊆ SI .

• ABox is the assertional part of an ontology that consists of a finite set

of assertions about individuals (or instances of concepts) such as C(a)

where a is declared an instance of C, i.e., aI ∈ CI , and roles where

R(a, b) states that a and b are individuals in the relationship R, i.e.,

(aI , bI) ∈ RI .

An interpretation I satisfies a TBox T and its associated RBox R if and

only if I satisfies all axioms in T and R. An interpretation I satisfies an

ABox A and its associated TBox T and RBox R if and only if I satisfies all

axioms in T and R, and all assertions in A. The syntax and semantics of

ALC are presented in Table 2.1.

TABLE 2.1: Syntax and semantics of ALC

Concept Constructors Syntax Semantics
Top > >I = ∆I

Bottom ⊥ ⊥I = ∅
Concept A AI ⊆ ∆I , A is atomic
Negation ¬C ∆I \ CI

Conjunction C u D CI ∩ DI

Disjunction C t D CI ∪ DI

Universal ∀R.C {x | ∀y : (x, y)∈RI ⇒ y∈CI}
Existential ∃R.C {x | ∃y : (x, y)∈RI ∧ y∈CI}
Role R RI ⊆ ∆I × ∆I

The standard DL inference services that are relevant to this thesis are con-

cept satisfiability, TBox satisfiability (or consistency), i.e., >I 6= ∅, and con-

cept classification, which computes a taxonomy or subsumption hierarchy

over all atomic concepts in a TBox T .
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Concept Inference Services

• Satisfiability: A concept C is said to be satisfiable considering the TBox

T if and only if there is a model I in T where CI is not empty or T 6|=

C ≡ ⊥

• Subsumption: The concept C is subsumed by concept D considering

the TBox T if and only if T |= C v D or CI ⊆ DI holds for every

model I of T .

• Equivalence: Two concepts C and D are equivalent considering the

TBox T if and only if T |= C ≡ D or CI ≡ DI holds for every model I

of T or C v D and D v C.

• Disjointness: Two concepts C and D are disjoint considering the TBox

T if and only if T |= CuD ≡ ⊥ or CI ∩DI = ∅ holds for every model

I of T .

It is worth to mention that the above tasks can also be translated to each

other:

• Unsatisfiability/ Subsumption: C is unsatisfiable if and only if C is sub-

sumed by ⊥.

• Subsumption/Disjointness: D subsumes C if and only if ¬D and C are

disjoint.

• Disjointness/Equivalence: Two concepts C and D are disjoint if and

only if C u D is equivalent to ⊥.

• Equivalence/Unsatisfiability: C and D are equivalent if and only if (Cu

¬D) t (D u ¬C) is not satisfiable.
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Tableau-based Reasoning Tableau-based reasoning was first introduced

for the ALC language but then extended for many concept languages. The

algorithm’s structure is based on completion graphs. To find out whether

an ontology is satisfiable, the tableau-based reasoning procedure starts with

loading the input ontology. We assume that all concept expressions are in

negation normal form, i.e., a negation sign only occurs in front of atomic

concepts. Tableau-based reasoning is controlled by a set of completion rules

that are specific each for DL language and creates a graph by adding a first

node. The status of this node is then updated and possibly other new nodes

are added to the graph based on the tableau completion (or expansion) rules.

Completion Graph A Completion Graph G = 〈V, E,L〉 is a directed graph

and represents a tableau. Each node x ∈ V is labeled with a set of concepts

L(x). Each edge (x, y) ∈ E is labeled with a set of roles L(x, y). A graph

has a clash for a node x if L(x) contains ⊥ or {¬A, A}with A an atomic con-

cept. A graph is complete when no more expansion rules can be applied. A

completion graph for ALC is expanded using tableau completion (or expan-

sion) rules shown in Table 2.2, until no rule can be applied, i.e., the result is

a complete graph. A complete graph is called clash-free if it does not contain

a clash. If a complete graph for a concept C is clash-free, then C is satisfiable.

Otherwise, C is unsatisfiable.
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TABLE 2.2: Tableau completion rules for ALC

u-Rule If (C u D) ∈ L(x) and {C, D} 6⊆ L(x)
then set L(x) = L(x) ∪ {C, D}

t-Rule If (C t D) ∈ L(x) and {C, D} ∩ L(x) = ∅
then
set L(x) = L(x) ∪ {E} with E ∈ {C, D}

∀-Rule If ∀R.C ∈ L(x) and there is a node y
with R ∈ L(x, y) and C 6∈ L(y)
then set L(y) = L(y) ∪ {C}

∃-Rule If ∃R.C ∈ L(x) and there is not any node x
with R ∈ L(x, y) and C ∈ L(y)
then
set L(x, y) = L(x, y) ∪ {R} and
L(y) = L(y) ∪ {C} where y is a new node

2.3 Tableau Optimization Techniques

We group the tableau optimization techniques into five categories focusing

on different parts of description logic. These groups are: Preprocessing, Sat-

isfiability, TBox, ABox, and Nominals. The list of these optimization tech-

niques can be seen in Figure 2.1. The red star marks in the figure indicate the

optimization techniques that are considered for enhancement in this thesis.

2.3.1 Preprocessing

In order to speed up the reasoning process in DL systems, input should be

in a more appropriate form. Simplifying the input helps to find tautologies,

i.e., avoid redundancy. Normalising helps to detect contradictions earlier by

identifying syntactical equivalences. Moreover, one should avoid the use of

general axioms, which is costly due to their non-deterministic status. Ab-

sorption builds primitive definition axioms from general axioms.
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Normalisation and Simplification

It may not always be constructive to assume the input of tableau algorithms

to be in negation normal form since it could delay clash detection by ignor-

ing obvious contradictions. For example, applying negation normal form

to (A u B) u ¬(A u B) gives (A u B) u (¬A t ¬B), which is not very effi-

cient since it ignores the direct contradiction between the concept expres-

sions (A u B) and ¬(A u B) in the first place. Therefore, with negation nor-

mal form, clashes can only be recognized on atomic concepts after applying

costly methods such as backtracking. It is costly especially if concepts are

large [20]. To avoid this, one may consider the syntactical form of all concepts

(both atomic and expression) and try to detect their syntactically equivalent

concepts [38].

To make it easier to find the equivalent concepts, one should normalise con-

cept expressions. Nomalisation helps to detect the duplicates much easier.

One of the most common ways to normalise the concepts is to use DeMorgan’s

law, which uses useful replacements of operators to generate more normal-

ized expressions. For example, rules 4 and 6 in Table 2.3 respectively shows

the replacement of t and ∃ by negated u and ∀.

TABLE 2.3: Normalisation function

Norm Function Normalised
Norm(A) A (A is an atomic concept name)
Norm(¬C) Simp(¬Norm(C))
Norm(C1 u · · · u Cn) Simp(u{Norm(C1)} ∪ · · · ∪ {Norm(Cn)})
Norm(C1 t · · · t Cn) Norm(¬(¬C1 u · · · u ¬Cn))
Norm(∀R.C) Simp(∀R.Norm(C))
Norm(∃R.C) Norm(¬∀R.¬(C)
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To complete the optimization process, these normalisation rules may also

carry some simplification rules mentioned in Table 2.4.

TABLE 2.4: Simplification function

Simp Function Simplified

Simp(¬C)


⊥ i f C ≡ >
> i f C ≡ ⊥
Simp(D) i f C ≡ ¬D
¬C otherwise

Simp(uS)



⊥ i f⊥ ∈ S
⊥ i f {C,¬C} ⊆ S
> i f S = ∅
Simp(S\{>}) i f> ∈ S
Simp(u{P} t S\{u{P}}) i f u {P} ∈ S
uS otherwise

Simp(∀R.C)

{
> i f C = >
∀R.C otherwise

The above-mentioned techniques can be classified into the following groups:

cheap and expensive. The cheap rules, e.g., C u> ≡ C, can be easily applied

to all of the TBox members and are always constructive but expensive rules,

e.g., A t B ≡ B if A v B, may not always be helpful.

Lazy Unfolding

Lazy unfolding is one of the most powerful methods among all of the opti-

mization techniques. It ignores axioms until it becomes necessary to unfold

a concept during the subsumption and satisfiability testing.

Lazy unfolding is even more effective when the TBox is divided into two

parts containing unfoldable and general axioms, Tu and Tg, respectively; and

then apply lazy unfolding to the unfoldable part. Tu and Tg together form the
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main TBox, also they are disjoint from each other. Moreover, we can include

another part called Tr containing axioms defining role domains and ranges.

An axiom can be included in the unfoldable TBox if it is definitional, mean-

ing that it has an atomic concept on its left side and the definition of that

concept on the right side. For example, A v C defines the concept A and it

is called primitive axiom. A ≡ C is also definitional but non-primitive. The

rest of the axioms are included in the general TBox part.

Tableau expansion rules shown in Table 2.5 are used to unfold concepts in an

unfoldable TBox. Dividing a TBox into general and unfoldable parts helps

TABLE 2.5: Unfolding rules for an unfoldable TBox (Tu)

Rule If Then
U1-rule(≡) 1.A ∈ L(x) and (A ≡ C) ∈ Tu L(x)→ L(x) ∪ {C}

2.C /∈ L(x)
U2-rule(≡) 1.¬A ∈ L(x) and (A ≡ C) ∈ Tu L(x)→ L(x) ∪ {¬C}

2.¬C /∈ L(x)
U3-rule(v) 1.A ∈ L(x) and (A v C) ∈ Tu L(x)→ L(x) ∪ {C}

2.C /∈ L(x)

us to only apply internalisation to the general TBox. Internalisation is a sim-

plification technique that is applied to the inclusion axioms of a TBox. The

purpose of this simplification is to express all axioms of the TBox as a single

concept called CT by conjoining them. Therefore, it first assumes that every

axiom in the TBox can be written as an inclusion axiom because as said be-

fore one can even write an equivalence axiom as two inclusion axioms, i.e.,

C ≡ D as C v D and D v C. Then, every inclusion axiom such as C v D will

be converted to > v ¬C t D. Internalisation helps us dealing with general

axioms by adding disjunctions to the TBox but it is not very efficient since

many disjunctions will be added to all concept labels (L(x)).

Table 2.6 shows the tableau expansion rules for general axioms. The axioms
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TABLE 2.6: Tableau expansion rules for the general TBox (Tg)

Rule If Then
G1-rule(≡) 1.(C ≡ D) ∈ Tg L(x)→ L(x) ∪ {(D t ¬C)}

2.(D t ¬C) /∈ L(x)
G2-rule(≡) 1.(C ≡ D) ∈ Tg L(x)→ L(x) ∪ {(¬D t C)}

2.(¬D t C) /∈ L(x)
G3-rule(v) 1.(C v D) ∈ Tg L(x)→ L(x) ∪ {(D t ¬C)}

2.(D t ¬C) /∈ L(x)

in Tr, can be unfolded using tableau expansion rules shown in Table 2.7.

TABLE 2.7: Unfolding rule for the range TBox (Tr)

Rule If Then
R-rule 1.> v ∀S.C ∈ Tr L(y)→ L(y) ∪ {C}

2.there is an S−neighbour y of x with C /∈ L(y)

Absorption

As mentioned before, applying tableau expansion rules are costly for general

axioms since they produce non-deterministic axioms. To avoid this, absorp-

tion takes advantage of lazy unfolding and tries to have as many axioms as

possible in the unfoldable and domain/range parts, Tu and Tr, respectively;

so it maximizes the effectiveness of lazy unfolding [17]. In other words, it

tries to absorb axioms from Tg into Tu or Tr. In addition to concept and role

absorption, nominal absorption may also be applied if there is any nominal

in the axioms [44].

Before applying any absorption rule, one may normalise general axioms in

Tg and consider their normalised form for absorption. For example, every

axiom in the form of A v B will be converted to > v (¬A t B). This helps

ignoring axioms such as> v > that is satisfiable or consider the whole TBox

as unsatisfiable in the case, the axiom > v ⊥ exit.
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After normalising the TBox, the absorption rules for concepts, roles, and

nominals can be applied as shown in Table 2.8.

TABLE 2.8: Absorption rules

Rules Absorb from Absorb into
Concept Absorption > v ¬A t C from Tg A v C into Tu

Role Absorption 1. > v (∀R.C) t D from Tg C v ∀Inv(R).D into Tr
2. > v (6 nR.C) t D from Tg C v ∀Inv(R).((6 nR.C) t D) into Tr

Nominal Absorption 1. > v ¬(o1 t . . . on) t D from Tg oi v D into Tu
1 6 i 6 n

2. > v ¬(∃R.(o1 t . . . on)) t D from Tg oi v ∀Inv(R).D into Tu
1 6 i 6 n

Along with those absorption rules, some transformation rules may also need

to be applied to some axioms in order to make the adoption of absorbing

from Tg to Tu much easier. Also, told cycles that lead to non-termination

should be removed. Told cycles can be direct or indirect [47]. In the case

of direct, it happens when a definition axiom, e.g., A v C or A ≡ C has

the atomic concept A also added to the left-hand side of the axiom (concept

expression C), i.e., A v C u A or A ≡ C u A. The above-mentioned rules are

applied until no more rules can be applied to Tg or Tg is empty.

TABLE 2.9: Axiom transformation rules in Tg

Convert from into
> v B t C > v D t C
where B is an atomic concept and B ≡ D is in Tu

> v ¬B t C > v ¬D t C
where B is an atomic concept and B ≡ D is in Tu

> v (D1 u D2) t C > v D1 t C and > v D2 t C
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2.3.2 Satisfiability

Testing the satisfiability of a concept in tableau-based systems might be costly

due to non-deterministic expansions. Reasoners can avoid such cost by us-

ing some optimization techniques, which saves memory or time or both.

Expansion-Ordering Heuristics dictate the order of disjunctions for expan-

sion. A proper heuristic selection greatly reduces the size of the search space

for reasoners. The Ordering of Expansion Rules is a very essential technique

in the tableau algorithm, which decides what rules to expand first. Back-

jumping uses dependency lists to avoid redundant backtracking in comple-

tion graphs. Local Simplification and Semantic Branching both attempt to

reduce the cost of non-determinism in tableaux. Caching is a way to store the

results from traced branches in completion graphs and uses them in branches

currently being explored, i.e., avoids repetitive computations.

Backjumping

To avoid redundant backtracking or thrashing in tableau-based systems, one

can use the backjumping technique. In contrast to backtracking, backjump-

ing does not just backtrack from a clash to the most recent choice point but

also considers whether a choice point is related to a clash. This is achieved by

creating a dependency set for each selected disjunct and labeling the concepts

with sets containing the non-deterministic choices in each branch [47].

For instance, consider the following set of disjunctions:

{p t q, s t t, Φ1 tΨ1, . . . , Φn tΨn,¬p t ¬s}

As shown in the example of Figure 2.2, at least five initial disjunctions exist

in the TBox that are labeled with numbers from 1 to 5. As indicated in Figure
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2.2, there also may exist many states between state 3 and state 4. Each node

added to the tableau tree will be labeled with a new number following the

last assigned number. For example, by taking the first disjunct p from the

first disjunction p ∨ q, we label it with 6.

For each node, the numbers in square brackets refer to the dependency set

for that disjunct. For example, disjunct p depends on the disjunction p∨ q; in

other words, node 6 depends on the disjunction labeled with 1; therefore, its

dependency set is [1].

All disjunctions are expanded. If a clash is detected the expansion of the

current branch stops. In this example, the first clash is detected in node

10 with a clash between ¬p from node 10 and p from node 6. The branch

is closed since a clash is detected. To decide which node to backtrack to,

one chooses the most recent node that causes this clash considering that the

disjunction should have an unexplored disjunct. From the two disjuncts

of nodes 10 and 6 that cause this clash, we inspect their dependencies ([5]

and [1]) in order to choose the backtracking point. Now as said, we find

5 : ¬p ∨ ¬s as the most recent disjunction that has an unexplored branch.

Afterward a new node 11 containing ¬s is created. The dependency set for

this label would be its parent and the closed branch, i.e., 5 and 6, respectively.

Another clash is detected. This time the clash is between ¬s in node 11 and

s of node 7. Analyzing the dependencies of both nodes, we backtrack to the

most recent dependency that has at least one unexplored branch. The node

5 : ¬p ∨ ¬s is not considered since both of its branches have already been

explored, so, node 2 : s ∨ t is selected. This is a situation where backjumping

becomes useful. Instead of backtracking over all disjunctions, i.e., 5,4,3,. . . ,

2, we only process the dependency nodes that caused the clash, i.e., 5 and
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2. Therefore, if we have n disjunctions between the disjunctions 3 and 4, this

technique also helps us to bypass all of them during backjumping but normal

backtracking needs to explore them all. This creates a possible search space

of exponential size (2n) compared to backjumping, which requires only linear

space (n).

FIGURE 2.2: Backjumping (from Zhen[28])

Local Simplification

The local simplification technique is used to reduce the number of non-determinism

caused by disjunctions. The local simplification also called Boolean Con-

straint Propagation is usually applied before expanding disjunctions and it

tries to simplify them and avoid the cost of non-deterministic expansions

[20].
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Boolean Constraint Propagation (BCP) expands a disjunction with a disjunct

while all other disjuncts have their negations in the TBox except for the se-

lected disjunct. BCP applies the following rule to simplify the concept in

L(x):

TABLE 2.10: Boolean Constraint Propagation (BCP)

¬C1, . . . ,¬Cn, C1 t · · · t Cn t D
D

Semantic Branching

Traditional tableau algorithms use a not very efficient algorithm called syn-

tactic branching. Consider the expansion of (A t B1) u (A t B2). If we as-

sume that A is unsatisfiable, i.e., it is equivalent to ⊥, the expansion leads to

four branches shown in Figure 2.3.

x0

x1 x2

x3 x4

{(A t B1), (A t B2)}

L(x0) ∪ {A}
clash

L(x0) ∪ {B1}

L(x2) ∪ {A}
clash

L(x2) ∪ {B2}

FIGURE 2.3: Syntactic branching assuming A is unsatisfiable
(after Faddoul [11])

The first branch updates the status of state x0 and adds A to it; that results

in state x1. Since A is assumed to be unsatisfiable, we encounter a clash in

this branch and consider this branch as closed. Then, state x0 is updated

again to state x2 where we create the next branch that chooses B1; no clash
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has been encountered yet; therefore, we move to the next expression that is

again non-deterministic; now we choose A for the third branch. Since A is

unsatisfiable, we have a clash in state x3, i.e., it is also closed, and check the

last branch for satisfiability/unsatisfiability. The fourth branch adds B2 to

state x4 and no clash is seen here; therefore, (At B1)u (At B2) is satisfiable.

In order to prove the satisfiability of a concept expression, we only need

to know if one (unclosed) branch is satisfiable but in this example, we could

not detect any satisfiable branch until we had explored all branches. In the

case, where the initial concept expression is unsatisfiable, we need to show

that all branches are unsatisfiable and have to explore all branches anyway.

As shown in the above example, the problem with syntactic branching

is that two branches encountered the unsatisfiability of concept A. Due to

the redundant search space that syntactic branching might explore, several

reasoners apply semantic branching instead.

Semantic branching uses the Davis-Putnam-Logemann-Loveland (DPLL)

algorithm that splits two branches by making them disjoint with each other

[15]. DPLL has been developed to solve the SAT problem in propositional

logic. In a tableau-based algorithm, while branching in the first level, in-

stead of having A and B1 respectively as the first and second branch, we

would have A and B1 u ¬A, respectively. This ensures the disjointness of

the branches and no repetitive fails in different branches are encountered.

For semantic branching, Figure 2.4 shows that there are only two explored

branches in the tree and the unsatisfiability of A is only encountered once.
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x0

x1 x2

{(A t B1), (A t B2)}

L(x0) ∪ {A}
clash

L(x0) ∪ {¬A, B1, B2}

FIGURE 2.4: Semantic branching assuming A is unsatisfiable
(after Faddoul [11])

Unit propagation in DPLL DPLL accepts boolean formulas as input that

consist of a conjunction of clauses in which each clause consists of a dis-

junction of literals (Conjunctive Normal Form). It is assumed that an empty

clause is unsatisfiable and an empty formula is satisfiable. There exist dif-

ferent versions of DPLL. It has also been extended for Satisfiability Modulo

Theories (SMT) [7].

To prove that a boolean formula is satisfiable, a SAT solver should at least

find one truth-value assignment for the variables of that formula, where a lit-

eral stands for a variable or its negation. DPLL incrementally builds the truth

assignment for variables by selecting one variable each time. The procedure

repeats until all the variables are assigned successively to satisfy the formula.

Unit propagation is an important part of the DPLL procedure. Unit prop-

agation only applies to unit clauses. Since every clause in a boolean formula

should be TRUE, to satisfy the entire formula, we first consider unit clauses,

i.e., literals representing unit clauses need to be TRUE. If we have a literal

A, we set A’s variable to TRUE and for ¬A, we set A’s variable to FALSE.

Now, by applying the new truth value to the entire formula, a new formula

is generated that may contain other unit clauses. Therefore, unit propagation

is applied again until no more unit clauses exist in the formula. For example,

in the formula
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(A t B) u (¬A t C) u (¬C t D) u (A)

(A) is a unit clause containing the variable A; therefore, A should be TRUE.

From this assignment, one concludes that the clauses A, (A t B) can be re-

moved from the formula and ¬A can be eliminated from clause (¬A t C).

The new generated formula would be (C) u (¬C t D) that again contains

another unit clause (C). Therefore, another unit propagation is applied and

the final formula is obtained as (C) u (D) u (A).

Heuristics for Choosing Expansion-Ordering

The order of choosing disjuncts in disjunctions can greatly reduce the size

of search space, i.e., the reasoning time for DL reasoners. Hence, several

heuristics have been defined for this purpose based on the metrics of con-

cepts involved in disjunctions. Those metrics are determined based on the

frequency of the concepts occurring in an ontology, size of the concepts and

depth of their quantifiers. The heuristics of expansion-ordering are explained

in more detail in Section 4.3.2.

Ordering the Application of Expansion Rules

To decide which rules to expand first, DL reasoners introduce an approach

using a ToDo list that controls the order of applying rules by giving them a

priority [47]. The ToDo list is a queue containing as entries concepts and their

nodes that are stored by some order.

The ToDo list Architecture Performing reasoning tasks can be costly in

tableau-based systems due to non-deterministic expansions. To reduce space
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and time costs, optimization techniques such as the ordering of applying ex-

pansion rules are used to decide what rules to expand first.

In the traditional top-down approach using the trace technique, the ∃-rule

has the lowest priority; therefore, no unnecessary graph expansion happens

until there are no more rules to apply except the ∃-rule. Additionally, the

trace technique only considers the local trace and not a fully expanded tree

since it removes the already traced branches to save space. Therefore, it is

difficult to apply the trace technique in the presence of inverse roles. The rea-

son is that not only the successors but also the predecessors will be involved

and must be expanded recursively if needed, while the approach only keeps

hold of local expansions. Moreover, if traditional tableau-based systems ap-

ply non-deterministic rules such as the disjunction rule (t) earlier than any

other rules, the potential search space will increase.

To overcome the above restrictions, a ToDo list does not only store the

entries in a particular order but also creates different queues based on the

priority of different rules. Therefore, every time an entry is requested from

the ToDo list, it is chosen from the queue with the highest priority. The pro-

cess ends when all queues are empty or a clash is detected. If all queues

have the same priority and only ∃ has the lowest priority; then the ToDo list

technique works in the same way as the traditional top-down trace technique

[46, 24].

In addition to the rules for the previously introduced ALC concept con-

structors, we consider rules for number restrictions (> n R.C, 6 m R.D with

n, m ∈ N), which specify lower and upper bounds for role successors. The

concepts ∃R.C (∀R.C) can be also expressed as > 1 R.C (6 0 R.¬C). The cor-

responding 6-rule is considered as non-deterministic since it might require
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the application of the non-deterministic choose-rule for number restrictions

(see Baader et al. 1996 [3] for more details).

Caching

Compared to the trace technique, which saves space by closing the already

traced branches, caching saves time/memory by reusing the satisfiability re-

sults of already traced branches for another node with similar concept ex-

pressions in the same tableau. In other words, it reduces the number of nodes

(the size of models) by reusing other nodes (already built models).

When a node is fully expanded, i.e., no more rules can be applied; then,

one could say that the successor node is independent of the previous node.

Therefore, to prove the satisfiability /unsatisfiability of the successor node,

we only need to check the concepts added to the successor since we are al-

ready aware of the satisfiability of the concepts from the previous node. Also,

the added concept might have a satisfiability status in the cache and does not

need to be checked for satisfiability again. Besides, this is one of the good

reasons for delaying the expansion of the existential rule to the end since ex-

panding it earlier may change the initial nodes a lot, and in this case, one

cannot take the full advantages of the caching technique.

Caching uses hash tables to store the satisfiability/unsatisfiability of nodes.

Therefore, before any expansion of a node, the satisfiability of the node will

be checked in the cache. If the node has a satisfiability status, then it will not

be checked again for satisfiability and the result will be reused.

Moreover, suppose that cache keeps the satisfiable and unsatisfiable sets in S

and U, respectively; then, given a node called x containing all concepts of a



Chapter 2. Preliminaries and Theoretical Background 29

branch, we conclude:

• If x ∈ S and y v x, then y is also satisfiable.

• If y ∈ U and y v x, then x is also unsatisfiable.

2.3.3 TBox

TBox optimization involves building a hierarchy structure from its concepts.

Classification allows reasoners to build a subsumption hierarchy of concepts

that speeds up inferences. It also helps reasoners to answer subsumption

queries. Therefore, optimization in classification could have a drastic effect

on the reasoning procedure.

To classify a knowledge base, one needs to consider subsumption relations

between named concepts in a TBox. The process of classification is iterative.

The hierarchy structure is represented as a directed acyclic graph used to

show the concepts and their relations. Nodes are concepts and edges repre-

sent a partial ordering between those concepts [4].

To classify a KB, first, the hierarchy structure is initialized with a node labeled

with⊥ subsumed by a node labeled with>. If KB is unsatisfiable; then, there

is only one node in the hierarchy and it is labeled with both⊥ and>. To find

the position of a concept in the hierarchy, each time a concept is added for

classification, we determine its parents (the nodes that subsume the concept)

and children (the nodes that are subsumed by the concept). To carry this out,

the top-down search and bottom-up search are applied respectively for par-

ents and children of the added concept.

To find the position of C in the hierarchy according to its parents, we start

from >. If C is subsumed by D, we look into the children of D, if D does not
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have any child that subsumes C, then D is considered as a parent of C. The

same procedure is applied for finding the children of C this time by the help

of the bottom-up search. During the process, if we find out that D is both

parent and child of a concept C; then, C and D have the same position in the

hierarchy since they are equivalent, i.e., D ≡ C

In this section, some of the techniques to reduce the number of subsumption

tests while classifying the concepts into a taxonomy are introduced.

Taxonomy Creation Order

For creating the taxonomy of concepts, it is needed to test subsumptions be-

tween the concepts. The number of tests depends on the order that we allow

concepts to be added to the taxonomy. Therefore, the best method is the one

that applies the concepts in the order in which we need the least number of

subsumptions tests.

One optimizing technique is to enter concepts in definition order, which

means when there are two concepts C and D where C uses/directly uses D;

then, D should be allowed in the taxonomy before C. C directly uses D when

D occurs in the definition of C and uses stands for transitive closure of directly

uses. Therefore, a concept will be classified after all of the concepts it uses are

classified.

To reduce the number of subsumption tests, Baader et al. [5] suggested to

also remove the bottom-up search tests when all of the TBox axioms are un-

foldable; in other words, Tg = ∅; because, for all primitive concepts of Tu,

their child is ⊥. This only can happen when the general TBox axioms set (Tg)

is empty. For example, considering:
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Tu = {C1 v D, C2 v D} and Tg = {> v C1 u C2},

If we ignore the bottom-up search for the primitive concepts C1 and C2, we

may ignore C1 u C2 having > as its child in Tg. Besides, from Tu, we know

C1 t C2 v D. Without considering the axioms in Tg, we cannot conclude

> v C1tC2 v D, i.e.,> v D but from both Tg and Tu since C1uC2 v C1tC2

holds, we conclude: > v C1 u C2 v C1 t C2 v D, i.e., > v C1 t C2 v D.

To further reduce the number of bottom-up searches, the above-mentioned

approach is modified from definition order to quasi-definition order, which

is the same as before except in this case, we shall ignore the relations between

primitive concepts in the TBox if they are referenced by role quantifiers [18].

For example, from

C v D, D v ∃R.C

we only conclude C v D subsumption. This conclusion can be violated in

some cases where there is an inverse role. Considering:

C v D, D v ∃R.∀R−C

D v C is concluded form the second axiom; therefore, we cannot ignore this

subsumption, and from both axioms, we have D ≡ C.

Told Subsumers and Disjoint

Another way to reduce the number of subsumption tests for classifying the

concepts is to take advantage of breadth-first traversal. To do this, one only

needs to check whether C is subsumed by D when all of the concepts that

subsume D also subsume C; otherwise, there is no need to test the subsump-

tion between C and D. Moreover, one should make sure that all of the told
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subsumers of a concept to be classified before the concept itself. A told sub-

sumer of the concept C is D when C v D.

Among all of the told subsumers of a concept, the most specific one is consid-

ered as a parent of that concept. To check if a subsumer is the most specific

among all of the subsumers of the concept C, one may check the children of

that subsumer, if none of the children of the subsumer subsume the concept,

then the subsumer is the parent of C.

In addition to the top-down breadth-first traversal to find the parent of a con-

cept, the bottom-up breadth-first traversal can also be used to find the chil-

dren of a concept. Besides, the told subsumer can be used to propagate the

subsumption. For example, If D is not a subsumer of C and A is a subsumer

of D, then A is not subsumer of C either. Another term used in contrast with

told subsumer is told disjoint that is used to determine the non-subsumption.

C is told disjoint of D when C v ¬D u E.

Clustering

While classifying a concept C, if C v D, we shall also consider the children of

D. Suppose D has children D1, . . . , Dn; to classify C, the children of D should

also be checked for subsumption, i.e., C v Di where i = 1, . . . , n. To avoid

checking all of the subsumptions of C v Di, a clustering technique is used.

The technique labels the union of children of the concept D with a new name,

e.g., Dij = Di t Di+1 · · · t Dj. There could be different clusters of D’s chil-

dren. Then, instead of checking the subsumption for each of the children of D

with C, we check the subsumption between C and the clusters. For example,

if C 6v Dij and Dij = Di t · · · t Dk t · · · t Dj then it is obvious that C 6v Dk.
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Having several clusters of D’s children, to determine the subsumption of one

of the children, at least one of the clusters should be explored completely.

Completely Defined (CD) Concepts

Another method to reduce the number of subsumption tests is to define Com-

pletely Defined (CD) concepts. A primitive concept C in a TBox defined as

C = C1 u · · · u Cn is CD if the following holds:

• Primitivity: Ci is a primitive concept for i = 1, . . . , n

• Minimality: For i = 1, . . . , n, there is no two Cis that are told subsumers

of each other.

CD concepts are the concepts that do not need any subsumption test if there

are only CD concepts in the acyclic TBox. Concepts can easily be classified by

definition order since they are completely defined by their told subsumers.

Therefore, the structure of a TBox plays an important role to make a TBox

with CD concepts much easier for classification. Some of the techniques to

help the TBox taking advantage of CD concepts are:

• CD concepts without non-primitive concepts in their definition can eas-

ily be classified but when non-primitive concepts are not excluded from

the right side of the primitive axiom they cannot be ignored. For exam-

ple, from the TBox

C v C1 u C2 u C3

applying definition order, one can easily conclude that since C is a CD

concept also C1, C2 and C3 are primitive concepts; therefore, when C is
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classified C1, C2 and C3 are considered as the parents of C and the child

of C is ⊥.

Changing the TBox to:

C v C1 u C2 u C3, A ≡ C1 u C2

Since C1 uC2 is non-primitive, the CD classification approach cannot be

applied as above. To avoid this situation, primitive synonyms should

be considered. In this case, A is considered as a primitive synonym of

C1 u C2. Therefore, first, C1C2 that stands for C1 u C2 is classified; then,

A will be in the same position as C1C2 in the taxonomy.

• Checking the minimality of the concepts in the definition of CD con-

cepts may be needed again after absorption, etc.

• CD classification can be extended to TBoxes having both CD and non-

CD concepts. Most of the interesting TBoxes have both kinds of con-

cepts. The best way to deal with such TBoxes is to separate CD and

non-CD parts and first classify the CD concepts. For example, the TBox

C v C1 u C2 u C3, A ≡ C1 u C2

includes both CD and non-CD concepts. CD part has C, C1, C2, and C3

concepts; so, the only concept in non-CD part is: A. To classify, first,

we consider the CD part. After classification, C has parents C1, C2 and

C3. Then, we classify the non-CD part in which we conclude that A has

parents C1 and C2 and child C.
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• Sometimes it is not possible to apply CD classification in the presence

of general axioms; therefore, one should try to empty Tg. For example,

in the TBox

Tu = {C v >, A v D, B v D}, Tg = {> v A t B}

applying CD classification, C will have > as its parent but when ignor-

ing Tg, we cannot conclude that A, B, and C will be the children of D

and D is equivalent to >. Therefore, CD classification is only applied

when Tg is empty.

Concept Model Merging

Pseudo-model merging is a possible way of speeding up TBox reasoning. It

is a non-subsumption test between concepts. The same algorithm also ap-

plies to ABox reasoning, which will be explained briefly in Section 2.3.4. The

algorithm is proposed for ALCNHR + [18].

Instead of doing the consistency test using costly algorithms such as tableau-

based, it caches the pseudo-models of the involved concepts and finds the

interactions between their completions. If the pseudo-models can be merged

then the subsumption does not hold.

For example, having (A t B) u C as a concept description, we want to cache

its pseudo-model. We would have two options since it has two completions

A u C and B u C [49].

The pseudo-model for each concept is composed of a tuple < MA, M¬A, M∃,

M∀ >.

MA = {A|a : A ∈ A ′}
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M¬A = {A|a : ¬A ∈ A ′}

M∃ = {R|(∃R.C)(a) ∈ A ′}

M∀ = {R|(∀R.C)(a) ∈ A ′}

For every two concepts, we check whether there is any interaction between

their models. One should compare two concepts with tuples < MA
1 , M¬A

1 , M∃1 ,

M∀1 > and < MA
2 , M¬A

2 , M∃2 , M∀2 > in such a way that if the following coun-

terparts can be merged: MA
1 with M¬A

2 , M¬A
1 with MA

2 , M∃1 with M∀2 and M∀1

with M∃2 .

Pseudo-model merging is sound but not complete. For example, consider

we want to check if A v A u B holds. To check this, we may need to

have an axiom with conjunction since pseudo-model merging is about to

find out if pseudo-models of conjunction parts can be merged. To do that,

instead of checking A v A u B, we check its negative equivalence, which

is A u ¬(A u B). Now, we try to find out the pseudo-model of conjuncts A

and ¬(A u B). A’s pseudo-model is M1 =< A, ∅, ∅, ∅ > but ¬(A u B) or

simply ¬A t ¬B has two possible pseudo-models M2a =< ∅, A, ∅, ∅ > or

M2b =< ∅, B, ∅, ∅ >. There is an interaction between MA
1 and M¬A

2 and

they cannot be merged but there is not any interaction between MA
1 and M¬B

2

and they can be merged. Considering both, we finally conclude that the two

models M1 and M2 can be merged. This shows the fact that if even two

models have interactions with each other, we cannot say for sure if they are

non-mergeable and we should look for the next possible path that leads to

the models interacting with each other while building the pseudo-models.

Now, consider another example where we want to check if ∀R.C v ∀R.D

holds. Therefore, we should check if ∀R.Cu¬∀R.D or simply ∀R.Cu ∃R.¬D

does not hold. The model for ∀R.C is M1 =< ∅, ∅, ∅, R > and the model
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for ∃R.¬D is M2 =< ∅, ∅, R, ∅ >. There is an interaction between M∀1 and

M∃2 since they both have R. This is where deep merging should be applied.

Until now, we only saw the effect of flat merging. Deep merging also looks at

the concepts that roles had relations with; so, for M∀1 , we should look for the

pseudo-model of C and for M∃2 , we look for the pseudo-model of ¬D. The

pseudo-models of C and ¬D do not have any interaction and they are merge-

able. Deep merging is only applied for concept merging and not individual

merging.

2.3.4 ABox

The size of ABoxes is often larger than TBoxes due to the many concept and

role assertions they contain. Therefore, optimizing ABoxes is very effective

for reasoning as much as, if not more than, TBoxes. In this section, two ABox

optimization techniques are explained. Both techniques try to reduce the size

of large ABoxes to make reasoning much easier and faster.

ABox Modularization

ABox modularization is a way of reducing instance checking by considering

a small subset of relevant assertions instead of the whole ABox [48]. Thereto-

fore, modularization helps us to save both memory and time.

ABox modularization is mainly designed for SHI that is a semi-expressive

description language. We define an ontology O as <T ,R ,A>. Ontology O is

considered to be consistent meaning there is an interpretation I that I |= O.

ABox modularization M is composed of set of ABoxes A1, A2 , . . . , An in which

Ai is an ABox module. For both concept and role assertions, we can say
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• M entails a concept assertion C(a) if ∃Ai ∈ M. < T , R , Ai >|= C(a)

and

• M entails a role assertion R(a1, a2) if ∃Ai ∈ M. < T , R , Ai >|= R(a1, a2)

One always tries to generate an ABox modularization that is both sound and

complete. Considering ontology O as <T ,R ,A>, M is sound when it only

derives assertions entailed by A and M is complete when it derives every as-

sertion entailed by A .

Therefore, choosing proper modules is very important when it comes to rea-

soning. For an example of ABox modularization, suppose ontology Oa =<

Ta, Ra, Aa >, which is defined below:

Ta = {Chair ≡ ∃headOf.Department},

Ra = {headOf v memberOf},

Aa = {Department(ee), Professor(mae),

UndergraduateCourse(c4), UndergraduateCourse(c5),

Student(sam), Student(sue), Student(zoe), headOf(mae, ee),

teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)}

(2.1)

By generating two modules from Aa, we have:

Aa1 = {Department(ee), headOf(mae, ee), Professor(mae)}
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Aa2 = {UndergraduateCourse(c4), UndergraduateCourse(c5),

UndergraduateCourse(c4), UndergraduateCourse(c5),

Student(sam), Student(sue), Student(zoe),

teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)}

(2.2)

From Aa1, we conclude that mae is an instance of Chair since based on headOf

(mae, ee) and Department(ee) in Aa1 and Chair ≡ ∃headOf.Department in

Ta, it is obvious that ee is an instance of Department, i.e., mae is an instance

of Chair.

As seen from above example, we still conclude the same assertions even after

modularization but by considering the following modules from Aa:

Aa3 = {Department(ee), UndergraduateCourse(c4),

UndergraduateCourse(c5)

Aa4 = {Professor(mae), Student(sam), Student(sue), Student(zoe),

headOf(mae, ee), teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)}

(2.3)

We cannot conclude that mae is an instance of Chair since we cannot con-

clude solely from Aa4 that ee is an instance of Department.
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The ABox modularization can be divided into component-based modular-

ization and intentional-based modularization.

Component-based modularization only looks at the assertional part of the

ontology to decide how to break the ABox into modules. It maps the ABox

to a graph in which nodes represent individuals asserted as instances of con-

cepts and edges represent relationships asserted between individuals. Such

modularization has already been seen in the previous examples.

If there exist many role assertions in an ABox, component-based modular-

ization generates a small number of large ABoxes that is not very efficient.

One can overcome this issue by splitting role assertions. Intentional-based

modularization analyses the TBox of an ontology in order to find out how

to break role assertions. For example, consider an ontology Ob as <Tb,Rb,Ab>

with:

Tb = {> v ∀takes.Course},

Rb = {},

Ab = {Course(c5), Student(zoe), takes(zoe, c5), teaches(mae, c5)}

From Tb, we already know takes propagates Course; also since Course(c5) is

an element of Ab, we know that c5 is an instance of Course, the role takes(zoe,

c5) can be split. Moreover, the role teaches(mae, c5) is useless and can be re-

moved since it does not propagate anything. To know exactly which roles

should be split, we might use a ∀–info structure [48]. It helps us to determine

the concept descriptions that are propagated over role descriptions. Before

applying ∀–info structure, a TBox should be in normal form, i.e., all its GCI

axioms should be in form > v C in which C is in negation normal form.



Chapter 2. Preliminaries and Theoretical Background 41

Then, ∀–info structure contains subconcept descriptions of all ∀–concept de-

scriptions from the closure of the TBox. For example, the TBox:

Tc = {> v ∀takes.Course, ∃takes.Course v Student,

∃memberOf.> v Person, GraduateStudent v Student,

UndergraduateStudent v Student}

(2.4)

Converting Tc to the normal form:

Tc = {> v ∀takes.Course,> v ∀takes.¬Courset Student,

> v ∀memberOf.⊥t Person,> v ¬GraduateStudentt Student,

> v ¬UndergraduateStudentt Student}
(2.5)

The ∀–info structure would be:

in f o∀Tc
(R) =


{Course,¬Course} i f R = takes

{⊥} i f R = memberOf

∅ otherwise

After identifying the concept descriptions that are propagated via role de-

scriptions, we should split the target roles.

We define an ABox split function in such a way that if there is not any role

assertion between two individuals a and b, we do not have any role to split;

therefore, the ABox is the same before and after the split. The other case is

where there is a role assertion between two individuals ann and c1; shown in

Figure 2.5. In this case, we need to consider two distinct anonymous individ-

uals ann∗ and c1
∗ and try to split the role assertion into two role assertions.

The two new role assertions would be teaches(ann, c1
∗) and teaches(ann∗, c1).
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FIGURE 2.5: ABox splitting (from Fokoue et al. [48])

Now, the component-based modularization is applied as described before.

ABox Summary

Another ABox optimization method, which is introduced in [12], is ABox

summary. It tries to summarize ABoxes representing databases, i.e, reduces

the reasoning process for those ABoxes. This technique is proposed for SHI .

Many ABoxes have redundant concept assertions. As seen from Figure 2.6,

the original ABox is summarized to the ABox on the right hand side such a

way that all of its individuals that have the same relationships are considered

to be the same node (aggregating similar individuals in the same concept)

and the ones that are not the same (c1 and c2) remain in their nodes.

Further, the ABox summary technique also applies some filtering techniques

to reduce the summarized ABoxes that grantee to be scalable for very large

ABoxes. More information on this technique is given in [12].
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FIGURE 2.6: ABox summary
node a represents a1 and a2, node b represents b1 to b6, node
d represents d1 and d2 and node c represents c3 and c4 (from

Wandelt et al. [12])

Individual Model Merging

Pseudo-model merging is a method that avoids costly inconsistency tests. To

check whether an individual is not an instance of a concept, it checks if the

pseudo-model of that individual can be merged with the pseudo-model of

the negation of that concept. For example, if one wants to check if a : C is

true; it should check if A t {a : ¬C} is not satisfiable. Here, A stands for an

ABox. Then, it checks for pseudo-models of individual a and ¬C and sees if

they are mergeable. By pseudo-model of a, we mean the pseudo-models of

the concepts that a belongs to in the ABox. The same formulas for finding

pseudo-models as discussed in 2.3.3 can be applied for this case too.

When two models have a clash between them that does not necessarily mean

they cannot be merged since their dependency sets can say if the clash is

deterministic or not meaning that a completion graph could have chosen an-

other way to bypass the clash. In other words, pseudo-model merging is

sound but incomplete as already discussed in Section 2.3.3.
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2.3.5 Nominals

Nominals can be seen as concepts with only one instance. The con-

structor which allows the definition of a concept containing nominals

is called OneOf. For example, the concept Continent is defined as:

Continent = {europe, asia, america, antartica, africa, oceania} in which

europe, asia, america, antartica, africa and oceania are the nominals of the

concept Continent. Besides, another constructor of nominals called hasValue

defines an existential restriction over nominals of a concept. For example,

Catholic v Personu ∃follows.pope defines Catholic as a Person who follows

pope where pope is a nominal [44].

Many reasoners ignore the presence of nominals while optimizing

ABoxes and TBoxes. However, with nominals in a TBox, classification, and

satisfiability of concepts can be affected by ABox assertions. Moreover, on-

tologies with numerous GCI axioms related to nominals cannot be handled

with former absorption techniques. In the following, two nominal optimiza-

tion techniques are reviewed: Nominal Absorption, which is related to ab-

sorbing GCI axioms including nominals and nominal-based pseudo-model

merging, are used for non-subsumption detection of concepts that deal with

nominals.

Nominal Absorption

It is very important to apply the absorption techniques for nominals since

GCI axioms are non-deterministic and may consume a large amount of space.

Since the former absorption techniques cannot be applied to nominals, in
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the following, nominal absorption for both cases of nominals OneOf and

hasValue are presented [44]:

• OneOf: Suppose,

WineColor ≡ {red, rose, white} and WineColor vWineDescriptor

Both of the above deal with GCI axioms and cannot be ab-

sorbed using the former absorption techniques. Therefore, we add

¬WineColor t {red, rose, white} to all of the nodes in tableau; consid-

ering {red, rose, white} = {red} t {rose} t {white}. Adding this dis-

junction to the tableau is very expensive and causes non-determinism.

To avoid this issue, the following nominal absorption technique is used:

The inclusion axiom WineColor ≡ {red, rose, white} can be absorbed

into a primitive definition

WineColor v {red, rose, white}

and ABox assertions

WineColor(red); WineColor(rose); WineColor(white)

, which is equal to GCI {red, rose, white} vWineColor

Now, with this absorption, the disjunction {red, rose, white} is not

very expensive since it is only applied to WineColor individuals in the

tableau and not every individual. Therefore, absorption helped us to

localize the cost of disjunctions to a small number of nodes instead of

every node.

• hasValue: Consider,



Chapter 2. Preliminaries and Theoretical Background 46

Riesling ≡Wineu ≤ 1madeFromu ∃madeFrom.{RieslingGrape}

If we consider a GCI from above axiom:

Wineu ≤ 1madeFromu ∃madeFrom.{RieslingGrape} v Riesling

i.e.,

> v ¬Winet ≥ 2madeFromt ∀madeFrom.¬{RieslingGrape}

tRiesling
(2.6)

So, Wine can be defined as

Wine v≥ 2madeFromt ∀madeFrom.¬{RieslingGrape} t Riesling.

Adding the definition of Wine to every concept containing Wine causes

more non-determinism that should be avoided. To avoid this issue, the

following nominal absorption technique is used:

In this technique, GCI

∃p.{o} v C

is absorbed to

{o} v ∀p−.C

as shown in Figure 2.7 in which {o} v C is equal to C(o).

Therefore, in our example, we absorb:

∃madeFrom.{RieslingGrape} v ¬Winet ≥ 2madeFromt Riesling
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FIGURE 2.7: Nominal absorption graph

into

{RieslingGrape} v ∀madeFrom−.¬Winet ≥ 2madeFromt Riesling

Since {o} v C is equal to C(o), the above can be written as:

(∀madeFrom−.¬Winet ≥ 2madeFromt Riesling)({RieslingGrape})

Compared to the former absorption applied to the definition of Wine,

this time the number of disjunctions are the same but they are local-

ized to the individual RieslingGrape that is smaller than the number of

individuals of Wine.

Nominal-based Pseudo-model Merging

The pseudo-model merging optimization technique for classification can

also take advantage of the presence of nominals in order to detect non-

subsumption between concepts. The technique is useful only if there are

concepts with existential restriction on nominals in a TBox (hasValue), e.g.,

RedWine v Wine u ∃hasColor.{red}. To check the non-subsumption rela-

tion between two concepts, the pseudo-model merging technique checks for

the information gained from the completion graph of the first concept that

is used for its satisfiability test that involved its nominals. The information

gained from the completion graph of the first concept is used to check the
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non-subsumption relation between two concepts, i.e., by using that info the

number of satisfiability tests can usually be reduced. For example, consider

the two concepts’ RedWine and ItalianWine:

RedWine vWineu ∃hasColor.{red}

and

ItalianWine vWineu ∃producedIn.{italy}

We want to check the non-subsumption relation between RedWine and

ItalianWine. To do that, we check if ItalianWine u ¬RedWine holds; there-

fore, we extract the pseudo-models for both concepts ItalianWine and

¬RedWine, i.e., the pseudo-models for Wine u ∃producedIn.{italy} and

¬(Wineu ∃hasColor.{red}).

The pseudo-models of both concepts can be merged since we can have mod-

els that do not interact with each other. Therefore, we conclude that the sub-

sumption ItalianWine v RedWine does not hold [44].

2.4 Machine Learning

Machine learning is a branch of artificial intelligence that uses a trained

model for predicting unseen data without manual intervention. Machine

learning techniques can be categorized into four groups:

• Supervised learning in which the training data is provided with labels.

The trained model is used to predict the labels for unseen data. This

can be seen as a classification problem in which the data is classified

based on the labels that are given.
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• Unsupervised learning in which the training data is not provided with

any labels and the model is built to find meaningful patterns in the data

without knowing any labels. This can be seen as a clustering problem

in which the data is clustered based on the found patterns.

• Semi-supervised learning is used to train the data with both labeled

and unlabeled data provided. Obtaining labeled data could be costly

depending on the problem; in this case, one can take advantage of dif-

ferent semi-supervised learning techniques to make use of a mix of un-

labeled and labeled data for their training data.

• Reinforcement learning is used in order to gain the maximum reward

based on the agent’s interaction with the environment. The model

learns to take any action that leads to the maximum reward.

In this section, first, we focus on two supervised machine learning tech-

niques called logistic regression and SVM. Later, we focus on feature engi-

neering techniques that also includes an unsupervised learning technique

called Principal Component Analysis (PCA).

2.4.1 Logistic Regression

Logistic Regression is a supervised learning technique, which predicts a label

(class)1 for each input data.

In comparison with linear regression, which predicts a continuous de-

pendent variable for each independent variable (instance), logistic regression

1For the rest of this chapter, the words “label” and “class” are used interchangeably.
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predicts a categorical dependent variable (class) for each independent vari-

able.

The model built for logistic regression considers the dependent variable

as a conditional probability given as P(Y = 1|X = x) that indicates the prob-

ability of choosing a specific class (identified as 1) for an instance x. If the

resulting probability is more than 0.5, then the instance belongs to class 1;

otherwise, it belongs to class 0 [42].

The represented model for linear regression is a linear equation that re-

lates independent variables (x with n features x1, x2, ..., xn) to dependent vari-

ables (h(x)):

h(x) = wTx =
n

∑
i=0

wixi (2.7)

x0 is equal to 1 and w stands for parameters or weights.

Using the same model for logistic regression leads to:

P(Y = 1|x) = wTx (2.8)

that is not promising, since the probability should be bounded between 0 and

1. Therefore, the modified equation represented for logistic regression is:

P(Y = 1|x) = ewTx

1 + ewTx
(2.9)

Multinomial Logistic Regression

If the number of classes to predict is more than two, then the logistic regres-

sion technique is called multinominal logistic regression and it is defined by:
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P(Y = Hj|x) =
e

wT
Hj

x

∑H′ e
wT

H′x
(2.10)

where ∑H P(H|x) = 1, H = H1, H2, ..., Hj, .., Hk. For all k classes, the proba-

bility of an instance labeled as each of those classes will be obtained; finally,

among the obtained probabilities the maximum one defines the class that the

instance belongs to.

To obtain the best value for parameters (w), the Newton-Raphson method

is used to maximize the approximation of the predictor function. To obtain

the best w, Newton-Raphson uses Hessian and Gradient that are the second

and first derivative of the error function (J(w)), respectively. The following

formula is repeated several times to obtain the best w (w0 is initiated with a

vector of 0s):

wi+1 = wi − J′(wi)

J′′(wi)
(2.11)

The training data pairs (xi, yi) are ready to be used for the Newton-Raphson

method. xi is an input point in training data and yi is the associated label to

this input. While computing wHj , the training instances with class Hj will be

identified as class 1 and others are 0.

The error function (J(w)) in logistic regression is defined as:

J(w) = −
m

∑
i=1

yilog(h(xi)) + (1− yi)log(1− h(xi)) (2.12)

To avoid overfitting, the regularized term λ ∑m
i=1 w2

i is added to the cost func-

tion where λ is a regularization parameter (Hessian and Gradient formulas

will also be changed accordingly).
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2.4.2 Support Vector Machine (SVM)

SVM is a supervised classifier technique, which is best used for binary classi-

fication. SVM creates a decision boundary called hyperplane in order to sep-

arate data points (training data) into two different classes. Each data point

belongs to one of the classes 1 or 2.

As an example, Figure 2.8 shows data points from two different classes

1 and 2 represented as and ; respectively. There is an infinite number

of hyperplanes that separate two classes; however, the objective is to find an

optimal hyperplane that creates a maximum distance between the two clos-

est data points from two classes. The optimal hyperplane in Figure 2.8 is

shown in bold. The margin is the location between the hyperplane and each

data point shown in Figure 2.9. If the margin is small enough to separate the

data points perfectly, it is called hard margin (Figure 2.9). However, there is

a possibility that a model with 100% accurate prediction cannot be general-

ized for unseen data. This issue is called overfitting of the model. To avoid

overfitting, the margin should be softened (widened) to allow some misclas-

sification as shown in Figure 2.10. This helps to create a more generalizable

model.

SVM can handle the data points that are not linearly separable by using a

non-linear hyperplane. In this case, the non-linear kernel functions are used

to transform the original data point to a higher dimensional feature space

to make them linearly separable in the new space as shown in Figure 2.11.

Possible kernels are RBF (Radial Basis Function) and Polynomial [8].
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FIGURE 2.8: Optimal hyperplane for separating data points

FIGURE 2.9: Hard margin

FIGURE 2.10: Soft margin
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FIGURE 2.11: Mapping original data to a higher dimensional
feature space

2.4.3 Feature Engineering

Feature Transformation

Feature transformation techniques increase the accuracy of the learning

model by creating new features based on the original features. These tech-

niques may include standardization as well as dimensional reduction tech-

niques.

Standardization helps to scale the data point, i.e., forcing them to have the

same scale by assigning their mean to zero and standard deviation to one.

Dimensional reduction techniques are used to reduce the high dimension

of feature spaces. One of the well-known feature reduction techniques is

called PCA, which transforms features to a set of new features that are non-

linearly correlated [50].

Principal component analysis (PCA) When data is complex with too many

correlated features, in order to reduce the difficulties of data, one may con-

sider analyzing the data and its features. However, it is nearly impossible
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to interpret all the patterns that result from analyzing each feature against

other features. PCA is a statistical technique used to reduce the dimension-

ality of features in order to reduce data complexity while keeping as much

information as possible of the original data. In most cases, PCA increases the

accuracy of models by creating a new combination of features. In this case,

PCA uses a linear combination of features with different weights. Each prin-

cipal component is a linear combination of features with a maximum vari-

ance but uncorrelated with other principal components. Interpreting these

principal components against each other is less expensive. Standardization

as described above is usually an important pre-step for PCA that helps to

highlight useful features.

Feature Selection

In machine learning problems, it is not always easy to predict what features

among all features contribute more to the accuracy of the built model unless

a feature selection technique is used. Feature selection techniques give scores

to features based on their importance and finally select the most important

features to build a model. The more a feature is correlated to the class pre-

diction the more influence it has. One of the well-known feature selection

techniques is Mutual Information (MI).

Mutual Information Mutual information measures the association be-

tween features and classes and scores the features accordingly.
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Mutual information formula is as follows:

MI(F, C) = H(F) + H(C)− H(F, C) = H(F) + H(F|C) =

∑
f∈F

∑
c∈C

p( f , c) log
p( f , c)

p( f )p(c)

(2.13)

where F is a set of features and C is a set of classes. H(X) is a marginal

entropy for discrete random variable X, which calculates the amount of not

known knowledge about X. H(X|Y) and H(X, Y) are the conditional entropy

for variable Y and joint entropy between X and Y; respectively. f and c have

probability distributions of p( f ) and p(c). p( f , c) is their joint probability

distribution and p( f )p(c) is their product distribution [9].

2.5 Ontology Features

Machine learning aids with effective and successful decision-making in dif-

ferent states related to reasoning about ontologies, e.g., assigning the most

optimal DL reasoner to a specific ontology based on the ontology’s features

[36]. Furthermore, ontology features play a pivotal role in predicting rea-

soner performance. Many works have revealed the impact of ontology fea-

tures on machine learning approaches for reasoners [23, 22, 2]. Ontologies

can be very complex and variant, i.e., choosing relevant features are criti-

cal for increasing the prediction accuracy of applications related to ontol-

ogy learning [40]. Additionally, Automated Theorem Prover (ATP) frame-

works such as E-MaLeS proposed learning-based feature tuning [26]; how-

ever, depending on the specification of ontology learning problems, these

frameworks may or may not be generalized.
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Ontology features are categorized into four categories [1]:

1. Ontology size related feature contains the basic measures of an ontol-

ogy’s signature and axioms, e.g., number of named classes, object prop-

erties, logical axioms, etc.

2. Ontology expressivity feature describes the features related to the DL

family name of an ontology.

3. Structural feature is related to class hierarchy, richness, and cohesion of

an ontology. For example, maximum depth of an ontology hierarchy,

number of subclasses, subproperties, ratio of classes having attributes,

etc.

4. Syntactical feature represents different ratios and frequencies related to

classes (and their different types), properties, individuals, axioms and

constructors. For example, the ABox ratio feature is the ratio of ABox

axioms to all other axioms.

In this thesis, in addition to some of the already established features from the

above categories, we also created some features that are believed to be useful

for this research. More details on those features and the reasoning behind

choosing them for each ML-based approach are given in Chapter 4.

2.6 Summary

This chapter covered the main concepts required to understand the next

chapters of this thesis. The provided knowledge contains description logic,

tableau optimization techniques, machine learning, and features related to
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ontologies. In the next chapter, we focus on the literature review, which con-

tains related work and the main contribution of this thesis.
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Chapter 3

Literature Review

3.1 Introduction

OWL reasoners have been integrated with various optimization techniques

introduced in the previous chapter. These techniques are designed to speed

up the reasoning process in OWL reasoners. Based on their effectiveness and

usage, they could have a drastic impact on the performance of these reason-

ers. These tableau-based optimization techniques could further be improved

due to their heuristic nature.

In this chapter, the literature review is provided in two parts. In the

first part (Section 3.2), we study the possibility of providing decision-

making strategies for optimization techniques in order to deal with their non-

deterministic behavior. Then among these optimization techniques, we select

three of them that we think are more affected by heuristic decision-making.

Later, in Section 3.3 and 3.4, we discuss the related work and our contribu-

tions in this thesis, respectively.
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3.2 Learning from Tableau Optimization Tech-

niques

In this section, some of the optimization techniques of Chapter 2 that require

decision-making for their non-deterministic behavior are introduced. Know-

ing the source of non-deterministic actions in those optimization techniques

helps us to build algorithms based on machine learning, which are able to

learn in order to make the best decision while encountering various heuristic

options.

The absorption techniques from the preprocessing category of optimiza-

tion techniques (see Section 2.3.1) are very useful for decreasing the number

of GCI axioms as the main source of non-determinism in many ontologies,

i.e., helping to make the search space smaller. Using the best combination of

the absorption techniques could speed up DL reasoners. In this case, we can

learn how and in which order to apply the combination of those absorption

techniques to get the best performance out of the reasoner. Moreover, the

absorption techniques can be combined with other optimization techniques

based on their functionality. For example, compared to concept absorption,

role absorption has the advantage of not reducing the concepts while remov-

ing GCI axioms; therefore, the CD classification technique (see Section 2.3.3)

will remain applicable even after role absorption.

As said in Section 2.3.2, semantic branching is used to reduce the cost

of non-determinism in syntactic branching. If the single disjunct that we

chose for splitting the tree branches is large, it may not be that efficient to

apply semantic branching. Examining the size of disjunct may help to choose
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between syntactic and semantic branching. However, it is already proven

that semantic branching is still a better choice even if the single disjunct is a

large concept [20].

Moreover, in both syntactic and semantic branching, we have non-

deterministic decisions to make due to the existence of disjunctions in on-

tologies. For semantic branching, we may learn which single disjunct is a

better choice and leads to a better outcome. Therefore, we build a learning-

based technique that predicts which concept as a disjunct will have a drastic

impact on the reasoning speedup.

Additionally, there exists an optimization technique that determines the

order of applying disjuncts in disjunctions (see Section 2.3.2). Making the

best decision among the different expansion-ordering heuristics developed

for this purpose could have a huge impact on the reasoning speedup.

Further, the proper order of applying rules can be learned as well in which

a priority is assigned to each rule (see Section 2.3.2).

When it comes to caching (see Section 2.3.2), machine learning could help

us to identify some pattern combinations such as a pattern similar to the

subset, superset satisfiability/unsatisfiability dependency. Moreover, a cache

store that keeps the nodes with their satisfiability status could be very mem-

ory consuming since it should keep the nodes and their satisfiability status

until the end of the tableau algorithm process. To avoid this memory con-

sumption, one can learn which nodes should be stored until the end of the

reasoning process. Also, some of the nodes could be removed from storage

based on their usage where this knowledge could be achieved by learning.

In order to maximize the effect of classification-based optimization tech-

niques, we may consider other tree traversals and look for the one that
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has the maximum speedup effect (see Section 2.3.3). Also, some improve-

ments might be possible by modifying the type of tree traversals; therefore,

a learning-based strategy can predict which type has the best effect overall.

Besides, to minimize the number of subsumption tests during the clas-

sification, it is important to consider the order of adding named concepts.

Some techniques have already been suggested for this purpose; such as def-

inition order, told subsumers, replacing expensive subsumption tests, clus-

tering (see Section 2.3.3). With the help of machine learning, we may predict

which of those techniques could maximize the effectiveness of the classifica-

tion optimization more than the others while also minimizing the number of

subsumption tests.

As said in Section 2.3.4, component-based modularization can generate

a small number of large modules that is not very sufficient especially in the

case of many role assertions; therefore, intentional-based modularization has

been introduced. Even though intentional-based modularization generates

smaller modules that are easier for reasoning, the number of times we need

to apply the ∀–info structure is very important. It might have too many

roles; therefore, the performance of ∀–info may not be better compared to

component-based modularization.

Also, as mentioned, there might exist different options for generating

ABox modules. Some of those modules may not be proper according to the

stated example of Section 2.3.4. This problem can be solved by a technique

called bridge rules, which connect the useful information between ABox

modules with possible connections but this solution causes overhead [48].

Therefore, one can come up with a strategy that learns how to avoid such

useless modularizations in the first place as well as choosing the modules
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that lead to the best outcome.

As seen from the examples in Section 2.3.5, when nominals occur in ax-

ioms, the nominal absorption techniques are more effective than other ab-

sorption techniques such as concept absorption. First, we can make sure if

this applies to every case and then build a strategy that predicts if nominal

absorption must be preferred over other forms of absorptions in some cases.

Since the model merging algorithm may contain non-determinism similar

to the tableau-based algorithm (see Section 2.3.5), one can choose between

two options where one leads to non-mergeable pseudo-models and the other

proves the opposite. Therefore, we can manage the selection process with a

learning-based strategy to avoid useless steps.

3.3 Related Work

Semantic branching (see Section 2.3.2) is a primary solution for the SAT prob-

lem in propositional logic. A SAT solver’s runtime varies based on the given

instance and the heuristic algorithm (branching heuristic) used for choos-

ing variables in each decision level. In recent years, many novel branching

heuristics have been developed for SAT solvers. One of these is LRB [29],

which is based on reinforcement learning. To solve a SAT problem efficiently,

another approach was developed to apply reinforcement learning in order to

select the branching heuristic with a maximum long-term reward to give the

most proper order for variables with the least overall cost [27]. In another

work, a different learning technique called multinomial logistic regression is

used to solve Quantified Boolean Formulas (QBF) that are more expressive
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than propositional logic [39]. However, the proposed solution is only appli-

cable to QBF expressions with binary clauses.

As stated above, a well-known decision-based method applied by SAT

solvers involves the application of different branching heuristics in order to

determine which concept (or branch) must be chosen when dealing with dis-

junctions [32]. Unlike SAT solvers, DL reasoners are designed to handle more

than propositional satisfiability. Since search strategies and branching heuris-

tics are shown to be very effective for SAT and Satisfiability Modulo Theory

(SMT) based problems [7], encoding DL expressions to SMT might yield a po-

tential solution. However, the encoded results might become very large and

thus intractable for real-world ontologies [14]. While in propositional logic

every concept is considered an atomic concept, in DL expressions, concepts

are rather rich and may have complicated structures. In this case, applying

branching heuristics such as MOMS (see Section 4.3.1) in every tree level is

not equivalently effective for OWL reasoners. The reason is that these meth-

ods do not take into account the dependencies from other branches and could

even reduce the reasoner performance [4, Ch. 9]. However to enhance the ef-

fects of backjumping [6], one could select the branches that contain concepts

with old dependencies [21, Ch. 7]. Nonetheless, this approach could not

boost the performance as much either. Further, a feedback-based heuristic

technique was proposed in order to reduce the expansion of disjuncts with a

clash. It uses the characteristics of the already expanded clash-free disjuncts

for detecting and prioritizing the not yet expanded clash-free disjuncts [44].

The technique is mainly effective for ontologies with a large number of nom-

inals.

Since optimizing the expansion of each disjunction can dramatically
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speed up reasoner performance, designing similar heuristic strategies that

can benefit satisfiability testing for OWL reasoners is both required and at-

tainable. Hence, Tsarkov and Horrocks [46] introduced a new heuristic strat-

egy for ordering branches (sub-concepts). The suggested heuristics take into

account the metrics of the concepts (or sub-concepts) such as frequency of

concepts in an ontology, size of concepts and depth of their quantifiers. These

metrics presumably play a major role in heuristic decisions in the satisfiabil-

ity tests of the reasoner.

Moreover, selecting suitable heuristics by utilizing machine learning algo-

rithms in satisfiability testing or similar tasks has substantially enhanced the

runtime for variants of SAT, SMT and QBF solvers [27, 39, 25]. For resolution-

based theorem provers, different statistical machine learning methods are

used to predict the plausibility of search branches for faster query results

[43]. There are also learning-based approaches for detecting the best possi-

ble expansion [44]. The proposed method by Sirin et al. [44] reduces the

expansion of inherently clash generating disjuncts. It orders the disjuncts

based on the characteristics they share with already expanded clash free dis-

juncts. Furthermore, some reasoners dramatically benefit from caching [37].

Caching can be used indirectly for the (un)satisfiability status of (sub/super)

concepts in disjunctions [16, 10]. Caching is used with quantifiers and in this

case, the status of generated successors can be cached for look-alike concepts.

Furthermore, arranging the order of tableau rules employed by OWL

reasoners also requires a decision-making procedure. As mentioned in Sec-

tion 2.3.2, a more effective approach compared to the top-down approach is

based on a ToDo list architecture, where heuristics are applicable at a global

level [46]. A local ordering may not be quite applicable, and thus not useful
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for learning purposes due to the runtime overhead of the learning process at

each tableau level.

3.4 Contributions

Non-determinism related to disjunctions can be resolved using a simple

method based on boolean solvers, such as SAT and QBF solvers. Therefore,

similar to the approach used for QBF solvers [39], we employ multinomial

logistic regression. Our method, however, applies machine learning to OWL

reasoners and not to SAT solvers. Although propositional logic is less ex-

pressive than description logic [4], a significant percentage of OWL ontolo-

gies contain concept descriptions resembling propositional logic. Also, our

method does not restrict the number of clauses or variables in logic expres-

sions. In order to integrate our approach into OWL reasoners, for each clause

in the reasoner’s input, the order of variables is changed. The new order is

specified based on the order given by solving an input ontology as a SAT

problem using machine learning; in other words, the reasoner uses our fully

trained model to choose the new order. Thus, the clauses in each branching

level of reasoning have a new order that could lead to a smaller search space.

To summarize, an ML-based selection strategy for branching heuristics has

been applied to improve semantic branching in satisfiability testing for OWL

reasoners [33]. However, the approach is limited to propositional description

logic.

To expand the approach beyond propositional logic, we apply machine

learning to choose among the built-in expansion-ordering heuristics that are

developed for input with more than just propositional logic [35]. These
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heuristics are built based on some structural characteristics of ontologies that

may have an impact on the order of selecting disjuncts. More details on these

heuristics are given in Section 4.3.2. The ML-based method determines the

proper heuristic among the built-in heuristics. Later, the chosen heuristic is

used to determine the order of selecting disjuncts in each disjunction. The

goal is to at least avoid encountered timeouts of the reasoning process for

ontologies by learning to choose the right heuristics.

Finally, to improve uncertain decision-making related to the order of

rules, we applied machine learning to the heuristic-based ToDo list optimiza-

tion in DL reasoners [34]. While performing reasoning tasks on ontologies

the order of applying rules has a great impact on reducing the search space.

To help in finding a proper solution, we have also offered some heuristics

for the orders of applying rules as presented in Section 4.4. Our ML-based

approach identifies the best order of applying different rules during the rea-

soning process.

3.5 Summary

This chapter presented the literature review. We investigated the possibility

of heuristic decision-making for improving tableau optimization techniques.

Further, the previous (learning-based) methods used to speed up different

types of solvers such as SAT, QBF, and SMT solvers are explored. Finally, we

discussed our contribution to the related work.

In the next chapter, our ML-based methodology for optimizing each of

the three optimization techniques that are selected for the improvement of

their heuristic decision-making is presented.
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Chapter 4

ML-based Approaches to Handle

Decision-making

4.1 Introduction

From the previous chapter, we studied the potential for handling decision-

making in the tableau optimization techniques of OWL Reasoners. This

chapter introduces our methodologies for improving decision-making in

those techniques. These methodologies are based on machine learning and

they are developed to comply with three of the well-known tableau op-

timization techniques including Semantic Branching, Heuristics for Choosing

Expansion-Ordering, and Ordering of Expansion Rules. The evaluation of these

approaches is also demonstrated in this chapter.

Section 4.2 presents the main common steps for the three approaches. In

Section 4.3, two approaches for selecting the right disjunct in disjunctions are

presented. The first approach (see Section 4.3.1) is an ML-based approach

that learns to select the right disjunct for Semantic Branching optimization
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technique. The second approach (see 4.3.2) is another ML-based approach

that learns the right disjunct in Heuristics for Choosing Expansion-Ordering op-

timization technique. The final approach that predicts the right order of ap-

plying rules (for Ordering of Expansion Rules optimization technique) is pre-

sented in Section 4.4.

4.2 Main Steps

This section introduces the main steps of our approaches for handling

decision-making in OWL reasoners. The ML-based approaches are based

on an independent systematic analysis of heuristics to uncover ontology pat-

terns and their associated features that are relevant for each specific opti-

mization technique.

Figure 4.1 shows the five main steps taken for the ML-based strategy. In

Step 1, the input ontology is loaded. In Step 2, the features related to the input

ontology are computed. Step 3 contains the process of building the model

from training data (ontology features derived from training data and their

associated labels). Step 4 predicts a proper label for a given input ontology.

Finally, in Step 5, the predicted label is used for optimizing the reasoning

task. Each of these steps for each approach is explained in detail later.

This section also presents our experimental results. We selected JFact1, a

Java port of FaCT++2, as our prototype reasoner to conduct our experiments.

Although the developed approaches are applicable to every reasoner that can

accept super sets of ALC, we chose JFact for its maintainability, extensibility,

1https://github.com/owlcs/jfact/
2https://bitbucket.org/dtsarkov/factplusplus/src
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FIGURE 4.1: The machine learning based steps for predicting a
label for an input ontology

and robustness. In the remainder of this thesis, ML-JFact refers to our ML-

based JFact prototype while JFact refers to the unmodified JFact reasoner.

4.3 Learning to Select the Right Disjunct

This section introduces two ML-based approaches that were designed to

make the selection process for disjuncts more effective. The first approach

uses branching heuristics to select a proper disjunct and the second approach

uses the built-in heuristics of DL reasoners (aka expansion-ordering heuris-

tics) in order to make a proper decision. The second approach is the evolved

version of the first one since it covers ontologies beyond propositional logic.
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4.3.1 Approach I-A: Learning the Right Disjunct Using

Branching Heuristics

In the following, first, the branching heuristics (the labels3 to be predicted

for each input ontology) are discussed. Later, the list of features to help build

the learning models is presented. Finally, the procedure and experimental

results are presented.

Labels: Branching Heuristics

As already noted, the order of applying variables (concepts) in semantic

branching can significantly affect the resulting runtime. Based on different

branching heuristics, variables can have different scores. These branching

heuristics try to prune the search tree by targeting specific variables and

clauses.

The formula below determines the score of each variable (score_var(Var))

by considering the score of its literals in each branch, so it could balance be-

tween the branches to increase a variable’s score. The first branch considers

the positive from score_lit(Lit+) and the second branch considers the negative

from score_lit(Lit−):

score_var(Var) = score_lit(Lit+) + score_lit(Lit−) (4.1)

Lit+ and Lit− are the positive and negative forms of the variable Var.

3For the rest of this chapter, the words “label” and “class” are used interchangeably for
heuristics. Heuristics are the predicted outputs of our ML-based approaches for given input
ontologies.
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Choosing the variable with the highest score (score_var(Var)) saves time

by leading to a smaller search space. Moreover, by knowing the scores of

both literals or branches (score_lit(Lit+) and score_lit(Lit−)), one can also

choose between the branches. In our implementation, we are only concerned

about changing the order of selecting variables in the reasoning process.

The well-known branching heuristics that are used in our implementation

are as follows.

First literal The first literal occurring in the boolean formula is returned.

MOMS The literal with the maximum number of occurrences in the clauses

with minimum-sized is considered.

MOMS(l) = occurrences of l in minimum-sized clauses. (4.2)

MOMSF It is the alternative of MOMS. If f (x) is the number of occurrences

of the variable x in the clauses of minimum-sized, we return the vari-

able maximizing

(f (Lit+) + f (Lit−)) ∗ 2k + (f (Lit+) ∗ f (Lit−)) (4.3)

where k is a defined constant. In Freeman [13, Ch. 7] some factors that

lead to choosing the best priority function are indicated.

MAXO The literal with the maximum number of occurrences in the boolean

formula that has the greatest score.

MAXO(l) = number of occurrences of l in the formula. (4.4)
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JW The Jeroslaw-Wang chooses the literal that maximizes the following

equation where nj is the number of literals in the clause Cj:

JW(l) = ∑
j,l∈Cj

2−nj (4.5)

JW2 The two-sided Jeroslaw-Wang is the same as JW, but to choose a vari-

able it considers its score by adding the score of its positive and nega-

tive literals together.

DLCS (Dynamic Largest Combined Sum) It counts the number of clauses

in which the literal and its negation occur in and assigns them respec-

tively with CP and CN:

DLCS(Var) = CP(Var) + CN(Var) (4.6)

The variable with maximum DLSC is selected. If CP ≥ CN, the positive

form of the variable (l) is chosen and if CP < CN, the negative form (¬l)

is chosen. DLSC is faster than JW.

POSIT it is similar to DLCS, but the search is only done on clauses with

minimum-sized.

DLIS (Dynamic Largest Individual Sum) It is the same as DLCS, but it

chooses the maximum value among all CP and CN values; then, it picks

the variable with the maximum value. DLIS performs faster than DLCS

and on some benchmarks, it performs twice as fast as JW.

To obtain a label (or proper branching heuristic) of each training data, all

heuristics are applied to the training data and for each data, the heuristic that
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runs fastest will be considered as the label of that training data. Algorithm

1 shows the procedure of determining labels for training data. The training

data and their associated labels are used later to build our learning model.

The learning model is then used to predict the labels for the test data (ontolo-

gies in sample tests).

Although more novel branching heuristics have been developed recently,

none of them is the most effective solution for all benchmarks. For exam-

ple, MOMS may only be good for the logic expressions with many binary or

unary clauses [30], but when considering all possible inputs and including

features such as the number of unary and binary clauses, MOMS may lead

to very effective results. Therefore, the branching heuristics were chosen in

such a way to consider input files with different attributes.

Clause-based Features

Ten features are chosen for building our model. These features are based

on the clause structure of logic expressions in ontologies. They are a good

indication for the unit propagation procedure because they reduce the search

space (discussed in Section 2.3.2) that chooses the best branching heuristic.

The features are shown in Table 4.1.

Procedure: Choosing the Right Branching Heuristic

Figure 4.1 shows the main steps of predicting a label for an input ontology.

The input ontology (test data) will be converted into Conjunctive Normal

Form (CNF) (Step 1). This input format is required for clause-based SAT

solvers that are employed in generating ML-based models. After the features
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Algorithm 1 Find labels of training data for Approach I-A
Input: Training Data
Output: Labels for Training Data

1: procedure FINDLABELS(training-data)
2: n← number of training data
3: k← number of branching heuristics
4: for td← 1 to n do
5: for bh← 1 to k do
6: T[td, bh]← ComputeTimeSolve(td, bh)
7: end for
8: end for
9: Label = min T(td, bh) where td ∈ 1 . . . n and bh ∈ 1 . . . k

10: return Label
11: end procedure
12: function COMPUTETIMESOLVE(td,bh)
13: startTime← currentTime
14: SatSolver(td, bh)
15: executionTime← currentTime− startTime
16: return executionTime
17: end function
18: function SATSOLVER(td,bh)
19: if td is solved then
20: return
21: else
22: update input td after using heuristic bh to solve td
23: SatSolver(td, bh)
24: end function

TABLE 4.1: Selected input features

Ontology Clause-based Features
Number of variables (var)
Number of clauses (cls)
var/cls
(var/cls)2

(var/cls)3

Ratio of binary clauses to all clauses
Ratio of ternary clauses to all clauses
Ratio of horn clauses (clauses with exactly one positive literal) to all clauses
Number of positive literals
Number of negative literals



Chapter 4. ML-based Approaches to Handle Decision-making 76

of the input ontology are computed (Step 2), the built model helps to predict

a label for the input ontology. In Step 3 the built model is based on a machine

learning technique called Multinomial Logistic Regression. Multinomial lo-

gistic regression helps with the prediction when there exist multiple labels

(branching heuristics). Afterward, the proper label is predicted for an input

ontology (Step 4). Finally, based on a reasoner’s implementation, the order

of disjuncts could be changed for the input ontology (as a preprocessing step

before reasoning starts) because the disjunction rule always selects disjuncts

from left to right. Alternatively, the implementation of the disjunction rule

could be changed to dynamically select a proper disjunct based on the com-

puted model (Step 5). For ML-JFact we selected the reordering technique.

Results for Approach I-A

The training data used for this experiment are files in CNF format. Our train-

ing data are from different benchmarks available on SATLIB.4 Those bench-

marks are JNH, AIM, PARITY, Flat, CBS, RTI, BMS, and Uniform Random

(the statistics are shown in Table 4.2). The benchmarks available from SATLIB

are limited to a specific range of variable and clause numbers; for example,

there are only a few CNF files with less than 50 variables and all of the files

have at least 20 variables. To avoid this restriction, we added about 147 ad-

ditional CNF files. These additional files contain small CNF inputs with be-

tween 1 to 50 variables. The final training data contains 1400 files including

both satisfiable and unsatisfiable CNFs. Table 4.3 shows some attributes of

the training data.

4http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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TABLE 4.2: Training data chosen from SATLIB (number of sam-
ples)

Library JNH AIM PARITY Flat CBS RTI BMS UF3SAT Others Overall

Training samples 47 24 9 79 623 24 80 367 147 1400

Satisfiable 14 16 9 79 623 24 80 279 107 1231

Unsatisfiable 33 8 0 0 0 0 0 88 40 169

TABLE 4.3: Overall training data attributes

Number of variables Number of clauses

Min Max Avg Min Max Avg

1 558 103 1 1801 434

In the above experiment, we only deal with propositional logic input.

Therefore, the training data contains files in CNF DIMACS format to be

solved with a SAT solver. A standard SAT solver, which is based on the

DPLL algorithm, is used for training data.

To verify whether providing more training data can lead to more accurate

results, we use a learning curve to show how increasing the number of train-

ing data can increase/decrease the accuracy of the classifier. As shown in

Figure 4.2, we think that adding more training data will probably not change

the accuracy of the classifier significantly.

As stated in Section 4.3.1, the nine branching heuristics (labels) used for

this experiment are FirstLiteral, MOMS, MOMF, JW, JW2, POSIT, ZM, DLSC,

and DLIS. Based on the Algorithm 1, for each training data, the selected

branching heuristic is used until the solver process is finished. The same

pattern applies to the sample tests. Table 4.4 shows for each heuristic the

number of training samples with an improved runtime.
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FIGURE 4.2: Cross-validation learning curve

TABLE 4.4: Number of 1400 training samples with an improved
runtime for each heuristic

Heuristics First Literal DLSC DLIS MOMS MOMSF POSIT ZM JW JW2
Count 92 159 129 90 292 170 111 137 220

In our experiment, we used 40 sample tests where the number of clauses

is between 150 and 400 and the number of variables between 35 and 90.

Half of the samples are satisfiable and half are unsatisfiable. A 7-fold cross-

validation was carried out on 1400 training samples with a learning accuracy

of 83%.

The performance of 40 sample tests is shown in Table 4.6. For each sample

the table lists the JFact runtime, the ML-JFact runtime, the number of JFact

backjumps, the number of ML-JFact backjumps, the runtime speedup (de-

fined as JFact runtime divided by ML-JFact runtime), the backjump reduction

(defined as the number JFact backjumps divided by the number of ML-JFact

backjumps), and also the number of clauses, variables, and the SAT status.

Table 4.6 also shows that there is a direct relationship between the speed im-

provement and the reduction in the number of backjumps. For example, for
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the sample number 27, the number of backjumps went from 7,699,075 down

to 271,423 (reduction of 28) while the runtime improved from 106,941 mil-

liseconds to 4,393 milliseconds (speedup of 24).

TABLE 4.5: Speedup improvement

Improvement in milliseconds Speedup ratio
Maximum 102,548 311.2
Average 18,500 14.3
Sum 731,106 1.86

The overall performance of the algorithm is given in Table 4.5. It lists

the maximum and average as well as the sum of all runtime improvements

(in milliseconds) and their corresponding speedup factors. This shows that

applying ML-based techniques improves the speed of satisfiability checking

by one to two orders of magnitude.

Moreover, the percentage of improvement based on (un)satisfiability sug-

gests that the learning technique is more successful for satisfiable cases. The

rate of success for unsatisfiable and satisfiable input are 53.01% and 78.25%,

respectively. These percentages could be due to the fact that the training data

contains more satisfiable cases.

Discussion

Changing the order of disjuncts in disjunctions does not affect JFact’s func-

tionality; therefore, this ensures both soundness and completeness of ML-

JFact.

Since the goal is to achieve a significant runtime improvement (e.g., at

least 10%), we mostly focus on sample tests that perform in a sufficient

amount of time (e.g., at least several seconds) such that the improvement
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TABLE 4.6: Approach I-A: Performance of 40 sample tests (run-
times in milliseconds)

No. Runtime
(without
learning)

Runtime
(with

learning)

No. of backjumps
(without
learning)

No. of backjumps
(with

learning)

Runtime
speedup

Backjump
reduction

No. of
variables

No. of
clauses

Sat/
Unsat
status

1 22,651 10,569 1,892,308 834,000 2.14 2.26 60 250 S

2 16,431 10,871 1,368,222 899,510 1.51 1.52 60 245 S

3 25,247 3,699 2,252,016 267,111 6.82 8.431 65 257 S

4 26,270 2,051 2,223,617 133,915 12.80 16.60 65 265 S

5 24,351 7,577 2,085,350 817,211 3.21 2.55 59 250 U

6 597,447 534,735 56,537,985 50,330,597 1.11 1.12 60 160 U

7 6,105 1,290 667,257 92,138 4.73 7.24 34 150 S

8 7,313 1,248 784,748 94,423 5.85 8.31 34 151 S

9 7,148 1,958 700,315 158,318 3.65 4.42 40 156 S

10 52,989 31,587 4,380,675 2,609,718 1.67 1.67 75 325 U

11 16,031 9,866 940,941 273,202 1.62 3.44 80 346 U

12 25,959 2,883 2,223,617 191,346 9.004 11.62 70 270 S

13 15,438 9,182 1,277,983 712,342 1.68 1.79 59 240 U

14 17,097 9,001 1,365,016 731,959 1.89 1.86 65 243 U

15 20,229 10,222 1,771,462 789,925 1.97 2.24 59 261 U

16 14,577 3,094 866,465 189,226 4.71 4.57 80 350 U

17 15,276 3,556 886,084 223,494 4.29 3.96 85 354 U

18 16,770 5,511 1,019,601 350,294 3.04 2.911 90 354 U

19 12,657 1,388 741,914 86,578 9.11 8.56 90 342 S

20 40,452 30,015 3,245,607 2,423,444 1.34 1.33 75 333 U

21 37,079 16,871 2,664,404 1,180,861 2.19 2.25 75 400 U

22 39,078 31,866 3,000,095 1,688,700 1.22 1.77 75 395 U

23 7,268 1,800 709,942 158,874 4.03 4.46 45 160 S

24 7,469 24 676,268 37 311.20 18277.51 60 162 S

25 70,240 8,537 4,400,237 507,550 8.22 8.66 75 325 U

26 3,690 1,573 199,824 90,270 2.34 2.21 75 377 S

27 106,941 4,393 7,699,075 271,423 24.34 28.36 75 305 S

28 23,989 5,146 1,582,981 327,533 4.66 4.83 70 325 U

29 18,779 800 1,212,269 32,067 23.47 37.8 75 325 S

30 12,343 3,072 755,159 154,546 4.01 4.88 91 354 U

31 54,945 13,671 3,939,491 800,453 4.01 4.92 75 325 S

32 5,699 3,807 464,096 304,361 1.49 1.52 55 250 U

33 19,493 9,511 1,593,995 740,132 2.04 2.15 59 243 U

34 6,866 1,641 677,743 136,166 4.18 4.97 45 160 S

35 15,616 290 918,259 5,308 53.84 172.995 75 325 S

36 6,644 373 362,336 7,634 17.81 47.46 74 321 S

37 6,364 1,545 579,600 108,859 4.11 5.32 45 163 S

38 5,744 753 551,661 49,356 7.62 11.17 34 155 S

39 110,952 15,244 6,627,625 850,760 7.27 7.8 75 343 U

40 8,779 6,090 514,896 359,794 1.44 1.43 70 343 U
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is obvious. For example, the samples with less than 50 variables and 100

clauses mostly perform in less than one second; therefore, improving their

speed is not our primary concern.

On the other hand, the sample number 6 from Table 4.6 (with 60 vari-

ables and 160 clauses) has an initial runtime of 597,447 milliseconds and the

runtime is improved by 62,712 milliseconds after learning. Therefore, the

percentage of improvement is 10.49%, which is still considered as good.

Our approach does not improve the runtime for every input. For one out

of every five input files (20%), the runtime is mostly unchanged or increased

by only less than 10%. For example, the increased runtime of about 2% after

learning is considered as a tolerable performance loss.

To reduce the number of cases without a significant speedup, we believe

it is a good idea to discover specific CNF patterns where a learning improve-

ment is not expected. For example, in one of the identified patterns for every

clause, there also exist clauses with the exact same variables of that clause

but every other possible combination of their literals. An example of such

pattern is the following description logic axiom.

D ≡ (A t E t F) u (A t ¬E t F) u

(A t E t ¬F) u (A t ¬E t ¬F) u

(¬A t E t F) u (¬A t ¬E t F) u

(¬A t E t ¬F) u (¬A t ¬E t ¬F) u

(B t C) u (B t ¬C) u

(¬B t C) u (¬B t ¬C)
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4.3.2 Approach I-B: Learning the Right Disjunct Using

Expansion-ordering Heuristics

Similar to the previous approach, this approach also focuses on properly or-

dering disjuncts in disjunction expressions of ontologies for satisfiability test-

ing. However, compared to the previous one, it covers more than proposi-

tional logic. Moreover, it focuses on the different built-in expansion-ordering

heuristics developed specifically for this purpose. These built-in heuristics in

reasoners determine the order for branches in search trees while each heuris-

tic choice impacts the performance of various ontologies depending on the

ontologies’ syntactic structure and probably other features as well. An ML-

based approach helps to detect the right expansion-ordering heuristic.

In the following, first, the labels for the ML-based approach are intro-

duced. Later, the features and ML-based procedure are presented and the

experiments are given.

Labels: Expansion-ordering Heuristics

Many DL reasoners are accompanied by various configuration settings that

help to integrate optimization techniques for different reasoning tasks. One

of the parameters in their configuration settings provides customizable

expansion-ordering heuristics that determine the sorting order for concepts

in disjunctions. These expansion-ordering heuristics are set for both satisfia-

bility and subsumption tests. Since the current focus is only on satisfiability

testing, for the rest of this section, expansion-ordering heuristics are only re-

ferring to heuristics for satisfiability testing.
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TABLE 4.7: Configuration labels

Config# 1 2 3 4 5 6 7 8 9 10 11 12
Labels SAP SDP FAP FDP DAP DDP SAN SDN FAN FDN DAN DDN

The configuration setting options for expansion-ordering heuristics are in

the form of a string5 “MOP” defined as follows: “M” is a sorting name character

field, which has the options:6 S (stands for size), D (stands for depth), and F

(stands for frequency). “O” is an ordering type character field, which has the

options: D for descending and A for ascending. Finally, “P” is a preference

character field, which is either P for preferring generating rules or N for not

preferring generating rules. Rules that deal with ∃ or > concept constructors

and add new nodes to a tableau are called generating rules. This leads to 12

heuristics as identified in Table 4.7. If no sorting order is provided (“MOP” is

empty), the reasoner uses its default order.

Before any reasoning process begins, the reasoner computes all of the nec-

essary statistics about each concept (such as size, frequency, depth, etc.) and

stores them for later use that involves imposing orders for concepts in dis-

junctions.

Type-based and Disjunction-based Features

Ontology features play a significant role in reasoning tasks that involve

decision-making. Therefore, to implement a robust ML strategy, features are

5For compatibility, we adopt this notation from JFact reasoner.
6These options are inspired by JFact reasoner. For the sorting name character field, two

other statistics such as the number of branches and generating rules in concepts have been
recognized. However, they have not been suggested as options to be chosen from in the
configuration setting of the source codes for neither JFact nor FaCT++ [46]. For the sake of
simplicity, we do not use them here.
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defined to cover the structural characteristics as well as the disjunction re-

lated metrics of ontologies. Overall 39 features were used to build our model.

These features are based on the type metrics of ontologies as well as the dis-

junction related metrics. Based on our experiments, a selection of features

that were shown to be the key ones in increasing the accuracy of our model

listed in Table 4.8.

TABLE 4.8: Main features of ontologies used in the built models

Ontology Related Metrics
Number of nominals
Number of instances
Number of classes
Average population
Number of GCI
Number of generating rules (∃ and >)
Ratio of TBox axioms to all axioms
Ratio of RBox axioms to all axioms
Ratio of ABox axioms to all axioms
Number of Object Properties
Number of Inverse Object Properties
Number of Subclasses
Number of Equivalent Classes
Number of Disjoint Classes
Disjunction Related Metrics
Number of disjunctions
Average of the disjunctions’ averages of sub-concepts sizes
Average of the disjunctions’ averages of sub-concepts depths
Average of the disjunctions’ averages of sub-concepts frequencies
Maximum number of children in disjunctions
Average number of children in disjunctions
Number of positive concepts is disjunctions
Number of negated concepts is disjunctions
Ratio of positive concepts to all concepts in disjunctions
Ratio of negated concepts to all concepts in disjunctions

The Average Population feature is defined as the ratio of instances to classes
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in an ontology. This and some other features such as GCI consider the syn-

tactic structure of ontologies that determine the similarity of these ontologies

to particular types of ontologies [46].

Procedure: Determining the Right Order for Expansions

Learning to make effective decisions in non-deterministic situations are

highly promising for reasoners. These decisions are particularly required for

sorting either atomic or non-atomic concepts in disjunctions.

As already noted, the default sorting orders for expansion-ordering

heuristics in reasoners are usually based on some initial assumptions ob-

tained from past experiments that have analyzed a few syntactic features

from a handful of ontologies, whereas other —possibly more important—

features were disregarded. Moreover, as reported by Tsarkov and Horrocks

[46], there is no general single sorting strategy that works best for all ontology

types. Therefore, it is preferential to come up with a learning methodology

that chooses the right sorting heuristic for each ontology based on its features

such as the syntactic structure characteristics of the ontology.

Building a multi-class classification learning model that chooses from all

12 configurations7 of Table 4.7 is not practical since the number of labels (con-

figurations) is too high and this leads to a model with less than 50% accuracy.

Instead, a more sensible solution is used in which for each configuration a

separate binary classification model is built that determines if that heuristic

is the right choice. Therefore, instead of a multi-class classifier with 12 labels,

7For simplicity, in this chapter, the terms (expansion ordering) heuristics and configura-
tions are used interchangeably.
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we have 12 binary classifiers where each predicts if its assigned heuristic is a

“Good” or “Bad” choice.

Algorithm 2 shows for each training data, how the “Good” or “Bad” label

is assigned to each configuration. In this algorithm, the threshold is a bound-

ary that determines if a configuration associated with data is a “Good” or

“Bad” choice. If the configuration’s runtime is less than the threshold, its

label is “Good”; otherwise, its label is “Bad”. Later, in Section 4.3.2, we ex-

plain how the threshold (the average of mean plus standard deviation of the

runtimes on the training data) is calculated.

Support Vector Machine (SVM) [8] is among one of the machine learning

techniques that handles binary classification with a highly dimensional fea-

ture space effectively; therefore, it is used to build our highly dimensional

model. Principal Component Analysis (PCA) [50] and Mutual Information

[9] are also used for feature extraction.

Figure 4.1 shows the procedure of predicting a label for an input ontology.

First, the features for the input ontology are computed (Step 1 & 2). Since

we use a binary classification learning (from Step 3), for the input ontology a

“Good” or “Bad” label should be predicted for each configuration of Table 4.7

(Step 4). The predictions are based on the built models for the configurations

on the training data. Afterward, based on the priorities given in Table 4.12

and different scenarios mentioned in Table 4.13 (that will be explained in

more detail in Section 4.3.2), the proper configuration from Table 4.7 is as-

signed to the input ontology. Finally, the reasoner chooses a concept from

disjuncts based on the order determined from the assigned (sorting) config-

uration (Step 5).
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Algorithm 2 Find labels of training data for Approach I-B and Approach II
Input: Training Data
Output: Labels for the Configurations of all Training Data

1: procedure FINDLABELS(training-data)
2: n← number of training data
3: k← number of configurations
4: for i← 1, n do
5: for j← 1, k do
6: T(i, j)← Runtime of training data i with configuration j
7: end for
8: end for
9: threshold← average of mean plus standard deviation of all

configurations on all training data
10: for i← 1, n do
11: for j← 1, k do
12: if T(i, j) ≤ threshold then
13: Label(i, j)← “Good”
14: else
15: Label(i, j)← “Bad”
16: end for
17: end for
18: return Label
19: end procedure
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Results for Approach I-B

To perform our experiments, ontologies from the OWL Reasoner Evalua-

tion (ORE) 2014 competition8 repository were used. The ontologies collected

from ORE 2014 must be eligible for building the learning model, i.e., they

must be affected by the expansion ordering heuristics due to the existence

of non-deterministic situations. Based on that, initially, we were able to ex-

port around 3000 ontologies that cause non-deterministic situations and their

expressivity is at least in ALC.

Additionally, two more eligibility criteria were considered for collecting

the training data. First, if for a single ontology, all 12 configurations lead to a

timeout, then that ontology is discarded because it is not clear if the ontology

is affected by those heuristics. The considered timeout, for this experiment,

is 500,000 milliseconds (8.33 minutes). Due to the high complexity of the

reasoning process, obtaining the exact termination runtimes for ontologies

that lead to a timeout is not practical, thus, no number was assigned to them.

Second, if an ontology has very close runtimes (less than 2 seconds differ-

ence) for all 12 configurations, one may doubt its eligibility. The reason is that

the difference could be just a runtime overhead from the system. To ensure

this, multiple runtimes are examined and if for all runtimes the maximum

and minimum runtimes belong to the same configuration, those ontologies

are included in the training data because it is obvious that the heuristics are

effective. Moreover, the ontologies that are inconsistent are discarded too.

Considering all the above conditions for all ontologies from ORE 2014

repository, only 143 were considered to qualify as training data, and 25% of

these were saved for the test part.
8http://dl.kr.org/ore2014/ontologies.html

http://dl.kr.org/ore2014/ontologies.html
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TABLE 4.9: Standard deviation and mean for the thresholds of
all 12 configurations (numbers in milliseconds)

Config# 1 2 3 4 5 6
std 45240 41093 44969 30237 39744 31692

mean 90670 74557 84560 70336 82350 68626
std+mean 135910 115650 129529 100573 122094 100318

Config# 7 8 9 10 11 12
std 70340 48232 45791 31736 52981 39864

mean 119611 83761 85775 71612 99992 71706
std+mean 189951 131993 131556 103348 152973 111570

As stated previously, for each configuration (heuristic), a binary classifi-

cation model is built. For each binary model of a configuration, there are two

labels: “Good”, which indicates that a heuristic is the right choice and “Bad”,

which indicates the wrong choice. To determine a threshold for identifying

the “Good” and “Bad” labels in training data, we consider the average of

the mean plus standard deviation of the training data for all those configu-

rations. The standard deviation is added in order to take into account the

outlier cases as well. Table 4.9 shows the mean, standard deviation and their

sum for each configuration. The timeout cases are excluded while examining

the data distributions. Threshold is defined as the average of the mean plus

standard deviation for all configurations, which is about 127,122 ms (about 2

minutes).

To build each binary classifier, a 10-fold cross-validation SVM classifier is

applied to the training data. To achieve the model with the highest accuracy,

a grid search is conducted in order to find the best parameters such as the

number of features in mutual information for feature selection, number of

PCA components, SVM kernels, etc. For configurations 7 and 8 in Table 4.12,
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SVM with Radial Basis Function (RBF) kernel outperformed linear SVM. RBF

is a kernel function that separates the not linearly separable data by mapping

it to a higher dimensional feature space.

A total of 35 ontologies have been chosen as test data. The experiments

use additionally a few ontologies from DL’98 repository [19] and three spe-

cific ontologies with different ontology structures. Table 4.10 shows the ML-

JFact runtimes of all 35 tests on all the heuristics (configurations). The symbol

‘∗’ indicates that a label has been falsely predicted. For example, 4201∗ (Con-

fig 5 of sample 7 in Table 4.10) indicates that the predicted label is “Bad”

where the actual runtime is “Good”. The configurations automatically se-

lected for the samples are shown in bold.

The rightmost column shows the JFact runtimes for its default heuristics.

This default configuration was determined based on experiments by Tsarkov

and Horrocks [46] (and likely other unpublished experiments). The default

sorting configuration is set to FDN for ontologies with the number of GCIs

beyond a specific threshold but few or zero ABox assertions. The default

configuration is set to SDP for the ontologies with more than 100 nominals

but fewer GCIs and for all other ontologies, it is set to SAP.

The F-Score in Table 4.11 shows the overall performance of our classi-

fier on all 35 test data for each configuration. F-Score indicates the bal-

ance between precision and recall. It focuses on both false positives samples

(falsely predicted as “Good”) and false negatives samples (falsely predicted

as “Bad”).

The accuracy of each configuration and its priority based on its accuracy

on the training data are given in Table 4.12. If two configurations hold an
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TABLE 4.11: F-Score of test data from ORE 2014

Config# 1 2 3 4 5 6 7 8 9 10 11 12
F-score 94% 84% 94% 92% 96% 92% 88% 92% 92% 93% 94% 91%

equal accuracy, then the priorities are assigned from left to right, e.g., con-

figuration 3 has a higher priority than configuration 4. This is an arbitrary

decision that does not have any impact on the overall performance of ML-

JFact. The priorities are used to determine which heuristic is a better choice

for an input test ontology. The main strategy is to ignore the “Bad” order

sets and choose the “Good” order sets. In this case, we end up with three

scenarios as shown in Table 4.13.

TABLE 4.12: Priorities of configurations for “Good” labels
based on 10-fold cross-validation accuracy

Config# 1 2 3 4 5 6 7 8 9 10 11 12
Accuracy 95% 83% 89% 89% 97% 91% 86% 82% 87% 93% 91% 84%

Priority 2 11 6 7 1 4 9 12 8 3 5 10

An example of Scenario 2 can be seen in sample 5 of Table 4.10 in which

the configurations 2,4,6 and 10 are “Good”. Since configuration 10 has the

highest priority among these configurations from Table 4.12, it will be chosen.

As shown in Table 4.10, there are six cases (samples 5, 11, 20, 22, 24 and 27)

in which ML-JFact outperformed JFact by one or two orders of magnitude.

Table 4.14 shows the maximum speedup as well as the average speedups

of the test cases for ML-JFact compared to JFact. By using a timeout of

1,800,000 milliseconds, the average speedup increases from 11.6 to 39.56 and

the maximum from 167.28 to 602.208. Moreover, Table 4.15 shows that the

average and sum of the runtimes ML-JFact is 4 to 5 times smaller compared

to JFact; we consider this a significant improvement.
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TABLE 4.13: Scenarios

Scenarios Actions
1) When there is only one
“Good” label among all the con-
figurations (others are “Bad”).

The learner chooses the only
configuration with the “Good”
label.

2) When there are multiple con-
figurations with the “Good” la-
bel.

Among the configurations with
the “Good” label, the learner
will choose the configuration
with the highest accuracy/pri-
ority (the priorities based on Ta-
ble 4.12 for Approach I-B and
Table 4.19 for Approach II).

3) When all of the configura-
tions’ labels are predicted as
“Bad” (the classifier will not in-
dicate whether this label has a
timeout runtime or it runs in
between threshold value and 8
minutes).

The configuration with the low-
est accuracy (the priorities based
on Table 4.12 for Approach I-B
and Table 4.19 for Approach II)
will be chosen with the hope for
a false “Bad” prediction.

TABLE 4.14: Speedup factor of test data

Speedup ratio Timeout (500,000 ms) Timeout (1,800,000 ms)
Maximum 167 602

Average 11.6 39.56

TABLE 4.15: Sum and average runtime (in milliseconds) of all
test data with timeout=1,800,000 ms

ML-JFact JFact
Sum 2,741,960 13,604,733

Average 78,341 388,707
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Discussion

Approach I-B guarantees soundness and completeness of ML-JFact since

changing the order in disjunctions does not affect JFacts’s behavior.

The runtime overhead for measuring the features varies from 5 to 15 sec-

onds or could exceed this amount for very large ontologies. Since some of

these features are related to the DAG structure obtained at the beginning of

JFact, a small part of this time is due to the interoperation or switching time

between Python (machine learning source code) and Java (reasoner source

code). However, this time can be reduced in future developments by opti-

mizing the implementation. The other part of the overhead is due to the cal-

culation of metric features related to the ontologies’ structure that will take

only a couple of seconds for smaller-sized ontologies (with less than 30 MB),

but for large-sized ontologies (with more than 30 MB), this could take some-

where between 15 to 50 seconds. The number of very large-size ontologies

makes up only 6% of our data.

Besides, almost all of these structural features are the same metrics that

are measured9 at the beginning of Protege10 framework after loading an on-

tology. Protege-OWL API is an easy to use GUI environment for ontology

reasoning and other applications related to ontologies. It is vastly used by

users in different domains that involve ontology operations. The loading

time could vary in Protege depending on the size of an ontology. For de-

veloping a built-in plugin of the learned-based reasoner for Protege, these

features are already measured in Protege while loading ontologies, i.e., there

is no need to calculate them again.

9The metrics can be found in the metric section in the home display of Protege.
10http://protege.stanford.edu

http://protege.stanford.edu
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In order to increase our set of test ontologies, we also considered EL on-

tologies. EL is a subset of ALC that allows as concept constructors only u

and ∃. However, if a reasoner does not implement EL-specific optimizations,

then a subsumption test might internally negate concept expressions. These

new expressions are not in the EL fragment anymore, e.g., conjunctions are

transformed into disjunctions. This makes it possible to also consider EL

ontologies for disjunction heuristics. After experimenting on EL ontologies

from the repository, no interesting samples were found due to one of two sce-

narios: (i) Most of these ontologies run in just a few seconds; (ii) No change

with different heuristics is reported for these ontologies. The reason could be

due to the rather simple structure of EL ontologies.

4.4 Approach II: Learning the Right Order of Ap-

plying Tableau Rules

We developed an ML-based approach to improve the ToDo list optimization

technique described in Section 2.3.2. ToDo list or ordering of applying expan-

sion rules is a substitute for a traditional top-down approach that had been

developed for tableau-based reasoners. The ToDo list mechanism allows one

to arrange the order of applying different rules by giving each a priority. Our

goal is to find the right priority for each rule using the ML-based approach.

In the following, the labels and features, as well as the procedure for build-

ing an SVM-based classifier are discussed. Our experiments are presented as

well.
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Labels: Heuristics for the Order of rules

The current default order of applying tableau rules in DL reasoners is mostly

based on the exposure to a limited number of tested ontologies [46]. Yet, the

effect of different orderings varies from case to case depending on the fea-

tures of ontologies and cannot be generalized for all ontologies in these rea-

soners. Moreover, Tsarkov and Horrocks [46] already concluded that there

is no universal strategy to ensure the best ordering heuristics of rules in the

ToDo list for all types of ontologies. Hence, the best scenario could be an ap-

plication of an ML-based strategy that considers the features of an ontology

in order to predict the best order.

To tackle this as a supervised machine learning problem, the labels need

to be identified. Here, each label is considered as an order set that defines the

priority of rules in the ToDo list. Having more than two order sets results in

a multi-class classification problem with the number of classes equal to the

number of possible order sets. Hence, for each input ontology (OWL file),

its label is an assigned order set that results in the shortest runtime for that

ontology.

Reasoners have a configuration setting that specifies the ordering of rules

in the ToDo list (Section 2.3.2). The selected configuration is represented as a

string of characters where each character specifies a rule (we adopted JFact’s

notation here). This string is identified as “IAOEFLG” in which “I” stands

for a concept Id number, “A” for conjunction (u), “O” for disjunction (t), “E”

for existential quantifier (∃), “F” for universal quantifier (∀), “L” for less than

or equal (6), and “G” for greater than or equal (>) rules, respectively. Each

of these characters is assigned to a number (with 0 being the highest priority)
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indicating the associated rule priority, e.g., 0612354 specifies that Id has the

highest priority over the other rules, then t has the second priority, and so

on.

The number of all possible order sets obtained from assigning numbers

to the characters is 77 = 823543 (considering that some rules can have iden-

tical priorities). In order to make the problem practical and applicable to the

reasoner, the number of order sets needs to be reduced to only a few reason-

able and effective orders. Therefore, before prioritizing, some of the rules are

combined based on how they affect the reasoning process. Id is combined

with u, > is combined with ∃ since both are generating rules (they add new

nodes to tableaux), ∀ is also deterministic but rather simple (and must be

applied to all of its successors), i.e., it is singled out, and finally 6, t since

both cause non-determinism. This leads us to define only seven order sets

as shown in Table 4.16 (rules in the same cells have the same priority). Id

and u are ignored and given the first priority because they do not cause non-

determinism or expansion, i.e., it is believed that their priority seldom has

any effect on the reasoning time.

Structure-based and Statistics-based Features

The features considered for this approach are based on the statistics and

structure of ontologies that also include metrics about ratios based on the

occurrence of OWL language elements. They are listed in Table 4.17, which

shows among other features the ratio of TBox, ABox, and RBox axioms to the

total number of logical axioms.

Moreover, to add more useful features, we also added the occurrence ratio



Chapter 4. ML-based Approaches to Handle Decision-making 98

TABLE 4.16: Labels for order sets; the order sets in the table are
based on the form of the string “AOEFLG” in which A, O, E,
F, L, and G stands for the rules dealing with the concept con-
structors u, t, ∃, ∀, 6, and >, respectively (in this table we
only include tableau rules, i.e., we ignore the first character in
“IAOEFLG” denoted by “I”); 0 is the highest and 3 is the lowest

priority

Label order sets Priority
0 1 2 3

1 012312 u 6,t >,∃ ∀
2 013213 u 6,t ∀ >,∃
3 000000 u,6,t,>,∃,∀ NA NA NA
4 032132 u >,∃ ∀ 6,t
5 031231 u ∀ >,∃ 6,t
6 021321 u >,∃ 6,t ∀
7 023123 u ∀ 6,t >,∃

of each concept constructor to all concept constructors. These ratio features

are defined below.

Ratio6+∀ =
No6 + No∀

No6 + No∀ + Not + Nou + No> + No∃

Ratio>+∃ =
No> + No∃

No6 + No∀ + Not + Nou + No> + No∃

Ratiot =
Not

No6 + No∀ + Not + Nou + No> + No∃

Ratiou =
Nou

No6 + No∀ + Not + Nou + No> + No∃

In addition to the ones mentioned in Table 4.17, we also added as features

the occurrence number of different types of OWL object properties including

functional, transitive, symmetric, inverse functional object properties.11 An-

other feature that we found to be useful in our case due to the importance

11https://www.w3.org/TR/owl2-syntax/

https://www.w3.org/TR/owl2-syntax/
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TABLE 4.17: Basic features for ontologies

Ontology Structural and Statistical Based Features
Number of Existential Value Restriction of Roles
Number of Universal Value Restriction of Roles
Number of Classes
Number of Conjunction Groups
Number of Disjunction Groups
Number of Disjoint Classes
Number of Object Properties
Number of Inverse Object Properties
Number of Nominals
Number of Instances
Number of Role Assertions
Number of Min Cardinality Assertions
Number of Max Cardinality Assertions
Number of Subclasses
Number of Equivalent Classes
Number of Sub Object Properties
Number of Domains
Number of Ranges
Number of Data Properties
Number of Data Properties Assertions
Ratio6+∀
Ratio>+∃
Ratiot
Ratiou
Ratio of ABox axioms to all axioms
Ratio of TBox axioms to all axioms
Ratio of RBox axioms to all axioms
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of ABox individuals, is the Average Population, which indicates the ratio of

concept instances to the number of classes in an ontology [45]. Obtaining

some of the features such as the depth of the class hierarchy can be very ex-

pensive, especially for big-size ontologies. Moreover, they may not have an

impact on changing the order of rules in reasoning tasks.

The reasoning task used in this approach is the hierarchical classification

of an ontology, which computes the subsumption relation between named

classes of an ontology. The term classification of ontologies is different from

the term classification used for machine learning; therefore, we refer to the

former as the hierarchical classification of ontologies to avoid any confusion

in this thesis.

Since the reasoner’s task is to find hierarchical relations in ontologies, to

obtain more knowledge from a deeper level of the ontologies, we also consid-

ered the number of concept expressions patterns occurring in subsumption

(v) and equivalence (≡) axioms. The patterns for v are (we use the same

patterns for ≡ too):

C v (t(. . .)), C v (6 (. . .)) (4.7)

C v (u(. . .)) (4.8)

C v (∀(. . .)) (4.9)

C v (∃(. . .)), C v (> (. . .)) (4.10)

In addition to that, the number of occurrences of each concept constructor

in the parentheses from each of the above patterns will also be considered as

separate features. For example, for the pattern C v (t(. . .)), we count the
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number of occurrences of the ∀ concept constructor inside the parentheses.

C v (t(. . . , ∀R.C1, . . . ,t(C2, ∀R.C3, . . .), . . .)) (4.11)

The same is applied to other concept constructors for each of the patterns

in (4.7)-(4.10).

Procedure: Determining the Right Priority for rules

Similar to Approach I-B, a multi-class classification learner is proposed to

learn the best order among the seven order sets12 for each input ontology.

With the small number of training data available for this task, there are seven

labels (configurations), which is pretty high number and leads only to a 50%

accuracy; therefore, the alternative approach is to consider each order set as

a separate binary classification problem and predict for an input ontology its

proper order set. The procedure and algorithm to find labels for training data

are almost similar to the previous approach (see Algorithm 2).

Moreover, Figure 4.1 shows the procedure of predicting a label for an in-

put ontology. After the features for an input ontology are computed (Step 1

& 2), seven binary classifiers (built from Step 3) predict a “Good” or “Bad”

label for the seven configurations of Table 4.16 (Step 4). Later, based on the

priorities given in Table 4.19 and the scenarios of Table 4.13, a suitable (sort-

ing) configuration from Table 4.16 is selected for the input ontology. Finally,

the reasoner reorders the rules before performing the reasoning task on the

input ontology (Step 5).

12For simplicity, in this chapter, order sets (heuristics) and configurations are used inter-
changeably.
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Results for Approach II

For this experiment13 we collected ontologies from ORE 2014.14 Although

the ORE 2014 corpus comprises a large number of ontologies, not all of them

can be considered for our dataset. The extracted ontologies from the ORE

2014 library are the ones that trigger at least one rule, that is associated with

one of the rules in each of the priority categories shown in Table 4.16. The

reason is that the ToDo list technique is specifically designed to determine the

order of some rules, i.e., the selected ontologies must share the same criteria

for the label definitions. Furthermore, this study does not focus on any ma-

chine learning problems where the required features are missing. With this

strategy, we collect around 1840 OWL files from the ORE 2014 repository.

Furthermore, another decision is required to examine if an ontology

among the 1840 OWL files is an appropriate indication of the training data.

To make this decision, the reasoning task (hierarchical classification of on-

tologies) is performed on the 1840 files and the average of three runtimes (in

order to obtain reliable runtimes) is calculated for each data on each order set

shown in Table 4.16. Then two further conditions are imposed.

Considering a (human) user’s point of view, we make a few assumptions

about useful speedups. First, if for an ontology the difference between the

maximum and minimum runtimes with all seven order sets is less than two

seconds, it will be excluded. For instance, let us assume the classification of

an ontology takes 3347, 3357, 4537, 2851, 3066, 3408, 2951 milliseconds with

the seven order sets. Then, the minimum and maximum runtimes are 2851
13The main procedure for approaches II and III are very similar (the main difference is the

number of configurations) To avoid some possible confusion, in this section, we may repeat
a few details from the previous section.

14http://dl.kr.org/ore2014/ontologies.html

http://dl.kr.org/ore2014/ontologies.html
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(belongs to order set 4) and 4537 (belongs to order set 3) and the difference

between them is 1686 milliseconds. The difference of less than two seconds

could be caused by runtime overhead. To confirm this, we perform several

runs; if the biggest and smallest runtimes do not belong to the same config-

uration in all of the runs, then the difference is indeed caused by a runtime

overhead. For such ontologies, this indicates that the rule ordering does not

have an impact on ontology reasoning (those ontologies could also be very

simple and small). To ensure the homogeneity conditions for the training

data (and test data) those ontologies are excluded.

Second, the training data that leads to timeouts for all seven orders are

excluded too. The timeout considered for this experiment is 500,000 millisec-

onds (8.33 minutes). Since obtaining the exact termination time for timeout

cases is very expensive, we do not associate them with any runtimes. There-

fore, again it is not obvious whether the ontology is affected by any of the

rule orderings. The above conditions led to 159 OWL files, of which 75% is

used as training data and 25% as test data.

As mentioned previously, if each order set from Table 4.16 is considered

as one class, it leads to a multi-class classification model with a high predic-

tion error rate. This is due to the high number of labels without having a

large set of training data. Therefore, we take another approach and convert

the problem into seven binary classification problems (each order set as an

independent machine learning problem) with two labels for each problem.

A label “Good” for an order set indicates that the runtime for this order set

is below the given threshold value (while performing hierarchical classifi-

cation) and a label “Bad” indicates that the runtime is above the threshold

value (a “Bad” label also includes a timeout case).
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TABLE 4.18: Standard deviation and mean values for the
threshold for 7 configurations (numbers in milliseconds)

Config# 1 2 3 4 5 6 7
std 94811 65705 86221 74743 69883 86980 69312

mean 56323 30427 42644 33428 33822 45085 30930
std + mean 151134 96132 128865 108171 103705 132065 100242

Similar to Approach I-B, the threshold in this experiment is obtained by

exploiting the data distribution for all of the configurations. Table 4.18 shows

(in milliseconds) the mean and standard deviation (std) for the training data

in each configuration. The maximum value is 151134, which belongs to con-

figuration 1 and the minimum value is 96132, which belongs to configuration

2. The average of the mean plus standard deviation from all of the configura-

tions is considered as the threshold value. This value is 117,187 milliseconds

(around 2 minutes).

To build the binary classification models of the configurations, again we

use the SVM technique with a 10-fold cross-validation. We conducted a grid

search to select the best models by choosing the best parameters such as the

numbers of PCA components. Since PCA happens after feature selection, the

number of PCA components to grid search over were also considered based

on the maximum number of selected features. The optimal kernel used for

all configurations except the second one is linear. RBF kernel outperforms

the linear one by 10% for configuration 2.

Binary classifiers built for each configuration (order set) have two labels

(classes): “Good” and “Bad” indicating if an ontology can be classified in less

than 2 minutes or more than 2 minutes including timeouts, respectively. Sim-

ilar to the previous approach, three main scenarios could occur and the sys-

tem will react to them as shown in Table 4.13 and based on the priorities for
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each configuration given in Table 4.19. Table 4.19 shows the cross-validation

accuracy of all configurations after applying standardization and the com-

bination of PCA with the mutual information feature selection technique that

selects the 40 features with the highest scores.

TABLE 4.19: Priorities of configurations for “Good” labels
based on their 10-fold cross-validation accuracy

Config# 1 2 3 4 5 6 7
Accuracy 76% 85% 77% 81% 75% 71% 83%

Priority for “Good” labels 5 1 4 3 6 7 2

Finally, to assess the impact of the built models on JFact, 39 unseen sam-

ples from ORE 2014 competition were randomly selected (that also observe

the two earlier-mentioned conditions for the training data) and evaluated by

their F-score (Table 4.21), which shows the overall success of our built classi-

fier on the 39 test samples.

Table 4.20 shows the runtimes for the 39 samples with different order sets

using ML-JFact. However, the last column shows the runtimes for JFact’s

default configuration which was set by its developers and is deemed to be

based on the FaCT++ code [47] but such a configuration might not be ade-

quate for ontologies that are currently available or might be encountered in

the future. This indicates that compared to the JFact’s default configuration

that leads to a timeout for sample 10, ML-JFact runs by 2-3 orders of mag-

nitude faster, respectively. The selected configurations for the samples are

shown in bold.

Our approach is very helpful for the samples that have timeouts or run

in more than 2 minutes in some order sets and instead one can choose an-

other order set that runs in less than 2 minutes. For example, in Table 4.20,
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since for sample 1, the configurations 1,2,3 and 7 are classified as “Bad” order

sets, with the built model, ML-JFact will choose among the “Good” labeled

configuration instead (configurations 4, 5, and 6).

Table 4.22 shows the maximum and average speedup factors of the ML-

JFact compared to the worst case rule order sets, which is by average about

two orders of magnitude faster. The speedup ratio of ML-JFact compared to

JFact is also shown in the same table.

Discussion

JFact itself is sound and complete. Since changing the order of rules does not

impact the reasoner’s functionality, soundness and completeness of ML-JFact

still hold.

In order to show the significance of ML-JFact, we offer a new way to as-

sess the quality of systems. Our experiments demonstrate that Approach

II provides more effectiveness for group reasoning about ontologies when

compared to individual reasoning about ontologies. Group reasoning about

ontologies here refers to reasoning about ontologies together (either sequen-

tially or in parallel) rather than individually. In order to prove this, the sum

of the runtimes of all test cases for JFact compared to ML-JFact is shown in

Table 4.23. It shows that the sum for ML-JFact is 344,322 milliseconds less

(near 1.5 times faster) than JFact. This may even reach nearly a factor of 2

when the timeout is increased to more than 500,000 milliseconds. Hence, the

ML-based strategy is very beneficial when dealing with group reasoning of

ontologies. That is usually the case for simultaneously processing a group

of ontologies on high-performance computers as well as applications that
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TABLE 4.20: Approach II: Runtimes (in milliseconds) for the 39
tests chosen from ORE 2014 competition (TO indicates a time-
out and the configurations selected by ML-JFact are shown in

bold; a ‘∗’ indicates falsely predicted labels)

Sample Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7 JFact Default Configration

1 TO TO TO 40146 39200 42831 TO 40246

2 TO 625 2050 903 TO TO 607 881

3 TO TO TO 15688 15253 19141∗ TO 15727

4 10296 9642 25926 8617 8761 8875 9451 8467

5 14272 13862 52538 15319 15508 16023 13672 11240

6 4212 4050 297164∗ TO 3808∗ TO 3959 2701

7 TO 417 1372 412 408 414 407 382

8 167748 63112 TO∗ 88423 212917 300729 75658 85404

9 TO TO TO 192741∗ 198465∗ 210961∗ TO 188800

10 379 373∗ 355 TO∗ TO TO 325 TO

11 TO 557 936 598 TO TO 557 595

12 TO TO TO 39500 38936 41690 TO 40160

13 TO TO TO 36773 36602 TO TO 35125

14 TO 14007 17900 13916 TO TO 13882 13942

15 TO 6450 9905 6647 TO TO 6556 8263

16 TO TO TO 42277 41877 45745 TO 43638

17 TO 720 1171 794 867∗ TO 677 870

18 TO 773 2612 856 836 TO∗ 675 852

19 TO TO TO 15298 15626 17728∗ TO 15269

20 2462 2946 3599 1553 1536 4586 2639 1699

21 TO∗ 518 475 497 469 486 476 589

22 718∗ 678 3958 1620 1857∗ 1932∗ 664 1749

23 TO 434 671 417 413∗ TO 430 388

24 65579 3432 18415 2510∗ 5156∗ 25909∗ 3494 2734

25 TO∗ 457 471 480 TO∗ TO∗ 457 456

26 TO TO TO 324682∗ 329102∗ 350004∗ TO 298338

27 230550 16057 178259∗ 3863 3879 27882 6575 3568

28 3717 1058 3454 1187∗ 1497 4050 1083 1146

29 TO 16105 TO∗ 2928 TO TO 16679 2628

30 7858∗ 6982∗ 99669∗ 6436∗ 6404 5748∗ 7048∗ 6344

31 327919 27042 264452∗ 4357 4397 52241 8343 3597

32 TO 420 853 436 424∗ TO 415 443

33 TO 545 574 558 610∗ TO 553 581

34 3489 919 2416 931∗ 1123 3602 910 848

35 TO 449 791 443 402∗ TO 429 440

36 TO∗ 979 6022 1714 TO∗ TO∗ 991 1753

37 574 566 23380 606 586 569 581 615

38 91032 96408 124938∗ 2296 2325 2350 93088 2405

39 17058∗ 3523 31232 2172 2206 17998∗ 2469 1925
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TABLE 4.21: F-score for all 39 tests chosen from ORE 2014

Config# 1 2 3 4 5 6 7
F-score 76% 96% 86% 90% 75% 71% 96%

TABLE 4.22: Speedup ratio improvement of all 39 test data

Maximum Average
ML-JFact to the worst case 1538.45 339.114

ML-JFact to JFact 1538.45 40.37

require to perform reasoning tasks on a group of ontologies together either

simultaneously or sequentially.

TABLE 4.23: Sum and average runtimes (in milliseconds) of all
39 test data (ML-JFact vs. JFact)

ML-JFact JFact
Sum 1,000,585 1,344,808

Average 25,656 34,482

Although the ML-based strategy never selects a timeout runtime, one

could still argue that JFact seems to encounter only one timeout case, which

is better than each of the seven orders (Table 4.20), i.e., the default order by

JFact is an optimal choice. Nonetheless, we may disagree since the default or-

der (by JFact) is based on a set of very limited experiments [47] and it seems

a rather arbitrary choice. To support our concern, we created 56 new random

order sets (configurations) in order to compare the number of timeout cases

for these random order sets against JFact’s timeout cases.

Our analysis showed that for the 56 random order sets, on average 32%

of the cases encounter timeouts (the minimum number of timeouts is 10%

and the maximum is 72%); however, for the JFact standard configuration,

only 3% of the runtimes are timeouts. For the seven order sets defined in

Table 4.20, the timeouts make up on average 25% of the cases (minimum 8%
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and maximum 55%). This shows our systematically defined order sets (7

order sets in Table 4.20) are mainly generalized from the most possible order

sets whereas the default order suggested by JFact seems to rather be a lucky

choice with fewer timeouts. Yet, compared to JFact, ML-JFact seems more

practical for applications that involve reasoning about multiple ontologies

together compared to individual cases in which JFact and ML-JFact seem to

perform mostly similar.

Furthermore, if we consider the whole process of classifying ontologies

in JFact this task is also accompanied by reasoner tasks such as checking the

consistency of ontologies. Depending on the number of nominals (or size

of an ABox), the consistency checking before the main hierarchical classifi-

cation may take time (and even lead to a timeout). However, we believe

these ontologies will also take almost the same amount of time for classifica-

tion. The reason may be that too many nominals indicate a big-size ontology

associated with many classes. In order to cover all possible ontologies, we

provided both training data and samples that contain ontologies with a large

or small number of nominals, or no nominals. Finally, for ML-JFact it usually

takes between 5 to 10 seconds to calculate the features of an ontology.

In addition to the test data that was already considered in the experi-

ments, we also included EL ontologies that do not necessarily trigger all

possible rules in the data set. From our experiments, no interesting sam-

ples could be reported (either the ontologies ran in just a few seconds or no

change was encountered when the heuristic is changed). Regardless of that,

it is also worth mentioning that most of the features that influence our learn-

ing model are equal to zero for EL ontologies, i.e., they may have led to low

accuracy and possibly not a good representation for the test set.
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4.5 Summary

This chapter presented the ML-based approaches developed for improving

decision-making in OWL reasoners. The empirical evaluation for each ap-

proach is given as well. In the next chapter, the conclusion and future work

are given.
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Chapter 5

Conclusion and Future Work

Heuristic decision-making in OWL reasoners over many alternatives can be

resolved with the help of machine learning that relies on defining proper and

correlated features for ontologies. Although ontologies are very complex in-

frastructures, we showed that the hierarchical classification of ontologies can

be improved in order to make proper decisions during the reasoning pro-

cess. In this thesis, we focused on two sources causing a non-deterministic

behavior of OWL reasoners, which can be enhanced with the help of machine

learning.

5.1 Summary

In this thesis, we developed three approaches based on machine learning,

which are summarized in the following.

• Approach I-A: First, we focused on decreasing redundant search space

exploration in disjunctions. Approach I-A is based on learning new
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orderings for selecting variables at each branching level. Our first algo-

rithm has demonstrated a significant improvement in our sample tests;

however, it only accepts propositional description logic as input.

• Approach I-B: The extended version of Approach I-A that is Approach

I-B focuses on the built-in expansion-ordering heuristics in OWL rea-

soners. These heuristics determine the order of concepts or sub-

concepts for satisfiability tests. Determining the right ordering helps

to speed up satisfiability testing and many other reasoning tasks that

are based on satisfiability testing. Compared to the first approach, this

one accepts input beyond propositional logic. Our ML-based approach

outperforms by an average of one to two orders of magnitude when the

speedup is compared to the recommended default ordering heuristic.

• Approach II: Finally, we focused on improving the ToDo list approach

in order to resolve the unsystematic application of rules in OWL rea-

soners (Approach II). The order of rules in the ToDo list is likely to have

a drastic impact on improving the performance of reasoners. Thus, we

learned a model that allows a reasoner to choose adequate heuristics for

given ontologies and speed up the computation of classification hierar-

chies. For this purpose, we presented a learned model that outperforms

the worst case ordering selection by one to three orders of magnitude.

Moreover, compared to JFact, the ML-JFact is most beneficial when it

comes to working with groups of ontologies.
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5.2 Future Work

In the following, we survey some of the aspects of this thesis that can be

improved for future work.

• Alternatives for Approach I-A: As part of our future work, for training

purposes, OWL expressions could be treated as propositional logic or

QBF, so they can take advantage of available training sets to be solved

by QBF, SAT, or SMT solvers. Although, encoding description logic

expressions that are beyond propositional logic to the input format ac-

ceptable by SAT, SMT, and QBF solvers might yield a solution but could

result in the loss of data due to the special input format required by

these solvers.

• More reasoning tasks: As for future work, more reasoning tasks such

as classification could be sped up by considering the combination of

expansion ordering heuristics for satisfiability and subsumption testing

together.

• More than two labels: As of the future work, for both Approach I-B

and Approach II, we plan to improve the built model in order to help

with not only the right but also probably the best heuristic selection, i.e.,

the heuristic with the smallest runtime. This could be done by defin-

ing more thresholds that lead to determining more than only “Good”

and “Bad” labels. We already proposed such an approach by defining

a third label, called “Ok”, which would be assigned to runtimes be-

tween the given threshold and timeout. However, maintaining a high
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accuracy model that holds the prediction of more than two labels is dif-

ficult. Therefore, building a high accuracy model that can reach this

goal is highly appealing.

• Others: A learning model may estimate the feature calculation time

for very large-sized ontologies and predict whether it is worth for a

reasoner to ignore and not apply ML learning techniques on those on-

tologies. Finally, the developed techniques can be applied to every

tableau-based OWL reasoner that can reason about super sets of ALC.

Moreover, we yet have to explore what other sources that require opti-

mal decision-making can be enhanced by machine learning in JFact and

other similar OWL reasoners.
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