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Abstract

Facility Location Planning Under Disruption

Badr Afify, Ph.D.

Concordia University, 2020

Facility Location Problems (FLPs) such as the Uncapacitated Facility Location (UFL) and

the Capacitated Facility Location (CFL) along with the k-Shortest Path Problem (k-SPP) are

important research problems in managing supply chain networks (SCNs) and related oper-

ations. In UFL, there is no limit on the facility serving capacity while in CFL such limit is

imposed. FLPs aim to find the best facility locations to meet the customer demands within

the available capacity with minimized facility establishment and transportation costs. The

objective of the (k-SPP) is to find the k minimal length and partial overlapping paths be-

tween two nodes in a transport network graph. In the literature, many approaches are

proposed to solve these problems. However, most of these approaches assume totally reli-

able facilities and do not consider the failure probability of the facilities, which can lead to

notably higher cost.

In this thesis, we investigate the reliable uncapacitated facility location (RUFL)and

the reliable capacitated facility location (RCFL) problems, and the k-SPP where potential

facilities are exposed to disruption then propose corresponding solution approaches to ef-

ficiently handle these problems. An evolutionary learning technique is elaborated to solve

RUFL. Then, a non-linear integer programming model is introduced for the RCFL along

with a solution approach involving the linearization of the model and its use as part of an

iterative procedure leveraging CPLEX for facility establishment and customer assignment

along with a knapsack implementation aiming at deriving the best facility fortification. In
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RUFL and RCFL, we assume heterogeneous disruption with respect to the facilities, each

customer is assigned to primary and backup facilities and a fixed fortification budget allows

to make a subset of the facilities totally reliable. Finally, we propose a hybrid approach

based on graph partitioning and modified Dijkstra algorithm to find k partial overlapping

shortest paths between two nodes on a transport network that is exposed to heterogeneous

connected node failures. The approaches are illustrated via individual case studies along

with corresponding key insights. The performance of each approach is assessed using

benchmark results. For the k-SPP, the effect of preferred establishment locations is ana-

lyzed with respect to disruption scenarios, failure probability, computation time, transport

costs, network size and partitioning parameters.
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Chapter 1

Introduction

1.1 Context

As stated in [53], “supply chain network (SCN) is defined as a system of facilities, people,

activities, information and resources involved in moving a product or service from sup-

plier to customer”. From strategic perspective, a SCN should be designed to minimize the

cost where most of the cost is determined by the location of facilities and the transport

of products. SCN design is also referred to as network modelling due to the fact that a

mathematical model can be created to optimize the SCN design [91]. From operation per-

spective, a SCN should be designed to ensure the efficient flow of products from suppliers

to customers.

Facility disruptions can have negative impact on the SCN flow and consequently lead

to economic and market-share loss due to customers dissatisfaction as a result of the delay

or termination of the deliveries. In the past, at the planning stage, SCN planners assume

continuous availability and unlimited capacities of established facilities to guarantee con-

tinuous and sustainable flow of the materials over the SCN with no expected delay or

termination of the delivery services. However, in reality the SCN infrastructure are often

affected by various internal and external disruption factors which may render such network
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completely or partially disrupted. The aim of this thesis is to explore how such plans can be

formed to develop reliable SCN that work efficiently in the normal conditions and minimize

the impact of the disruption.

1.2 Motivation

Supply facilities may fail due to internal factors (e.g. poor inventory management, technical

issues, work accidents, etc.) as well as external factors (e.g. power outage, road blockages,

natural disasters, etc.). Thus, unexpected disruptions can have significant negative impact

on the network reliability including its economic activities and lead to higher transportation

costs, order delays, inventory shortages and loss of market share.

In [24], the authors investigate a network involving 2610 U.S. domestic airports and

64,204 flight connections. The study mentions that because of a complete disruption of

Ted Stevens Anchorage international airport, the average span of flights has changed from

3.192 to 3.566 over the U.S. domestic airport network which is corresponding to an overall

12% extra stops over all flight traversals. In [100], the authors document that the collapse

of I-35W bridge over the Mississippi river interrupted the usual routes of about 140,000

daily vehicle trips and caused an additional overall daily loss of $400,000 for travellers and

commercial vehicles due to re-routing. In [18], the authors study the impact of Nisqually

earthquake in 2001 on SeaTac international airport. The authors mention that the airport

operated at reduced capacity for three months during repairs and the major cargo airport in

the region suffered from a damage in the runway that led to a significant impact for both

the passengers and the cargo delivery.

In [60], the authors state that the Hanshin-Awaji Earthquake caused a direct repair cost

of $5.5 billion for the port of Kobe along with an estimated indirect economic loss of $6

billion. In [63], the authors state that the disruption of a flu vaccine manufacturer in Bris-

tol, UK in 2004 resulted in disastrous consequences since the U.K. government stopped
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production when U.S. regulators inspected a manufacturing plant and found evidence of

bacterial contamination problems. This event reduced the U.S.’s supply of the vaccine by

nearly 50% during the 2004-2005 flu season. In [49], the authors document that Hurri-

canes Katrina and Rita in 2005 on the U.S. Gulf Coast destroyed facilities at almost all

levels of the supply chain causing a reduction of the production facilities capacity to the

minimum level. In [48], the author studies the economic effects of Japan’s 2011 Earthquake

and Tsunami. The event crippled Japan’s nuclear industry since 11 of Japan’s 50 nuclear

reactors were immediately closed after the disaster and as a result reducing the country’s

electricity generation by 40%.

According to the aforementioned events, unpredictable and unhandeled disruptions

might have serious and negative impact on SCN activities. In this dissertation we focus

on eliminating the impact of such disruption on SCN by investigating the following prob-

lems:

• Uncapacitated Facility Location (UFL) problem, in which we consider that the SCN

facilities are subject to failure. This includes allocating one layer of backup facilities

for each customer while fortifying subset of the established facilities within a limited

budget. The fortification ensures continuous availability of facilities that are exposed

to disruption. The objective of the model is to minimize the total facility establish-

ment and transportation costs for customers to their primary and backup facilities.

• Capacitated Facility Location (CFL) problem, in which we consider that the SCN

facilities are subject to failure. Also, we assign each customer to one primary facility

and another totally reliable backup facility. Finally, a limited budget is be used to

fortify a subset of the established facilities to ensure that the facilities will maintain

its capacity in case of disruption. The objective of the model is to minimize the total

facility establishment and transportation costs for the customers to their primary and

backup facilities.
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• k-Shortest Path Problem (k-SPP), in which we consider partial and complete disrup-

tion in facilities over a large size transport network. This includes partitioning the

network into p partitions, investigate the effect of facility disruption and find k partial

overlapping paths from a source node to a destination node such that the generated

paths length are minimum.

1.3 Problems Overview

In this thesis, we address the FLP which is considered a strategic decision problem and the

k which is considered an operational decision problem. More precisely, we investigate the

designing of SCN that are exposed to the risk of complete or partial disruption in facilities.

We also investigate the k-SPP where a subset of nodes (and consequently their connected

links) are exposed to the risk of complete or partial disruption. UFL, CFL as well as k-SPP

are designed over a graph of interconnected nodes. In both UFL and CFL, we consider a

subset of nodes to represent the available locations to establish facilities and another subset

of nodes to represent customers of known demands that will be assigned to the established

facilities. Finally, the set of edges are representing transportation links of known costs.

In UFL, by definition it is assumed that there is no capacity limit on the serving facilities

while in CFL the serving facilities have capacity limitations. The objective of UFL and CFL

is to establish a number of facilities to serve the customer demands such that the optimal

solution minimizes the facility establishment and the transportation costs.

The objective of the shortest path problem is to find a path with minimal length from

source to a destination nodes while in the k-shortest path problem the objective is to find

k partial overlapping paths when a subset of the established facilities on the network are

disrupted completely or partially.

4



1.4 Objectives

The aim of this thesis is to design models for the UFL, RCFL and the k-SPP by taking into

consideration the existence of complete or partial disruption on the established facilities.

We introduce a non-linear integer programming formulation for UFL and CFL and propose

solution approaches for both problems. We also propose hybrid approach based on graph

partitioning and modified Dijkstra algorithm for the k-shortest path problem. Thus, the

objectives of this dissertation are as follows:

• Modeling the Uncapacitated Facility Location Problem Under Disruption: Our first

objective is to model the uncapacitated facility location problem under disruption,

understand problem requirements, complexity, and propose a solution approach.

• Modeling the Capacitated Facility Location Problem Under Disruption: Our sec-

ond objective is to model the capacitated facility location problem under disruption,

understand problem requirements, complexity, and propose a solution approach.

• Modeling Partitioning Based partial Overlapping k-Shortest Path Problem Under

Disruption: Our third objective is to model the shortest path problem under disrup-

tion, understand the problem requirements, assumptions, complexity and propose a

solution approach.

• Designing efficient algorithms for the above three mentioned problems: We develop

various techniques and algorithms to solve the problems.

• Algorithms performance illustration: We illustrate the proposed approaches using

case studies to show the performance of such approaches.

• Verification and validation of algorithms: We compare the proposed approaches with

respect to existing similar approaches in the literature via experimental results.
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1.5 Research Methodology

UFL and CFL are considered as strategic decision problems, in other words they are long-

term focused decision problems for SCN. As such, for both of these problems, it is quite

important to design models that are taking into account the potential disruption and its

impact on the resulting cost.

k-SPP is considered an operational decision for SCN, in other words it is a short-term

focused decision problem (day to day activities), and is affected by the SCN design since

in some situation it is important to reach a specific site location from different routes in a

cost effective manner (time or distance).

In Chapter 3, we address the UFL problem where we consider that the SCN facilities

may experience complete disruption, leading the customers to travel to backup facilities.

This is reflected as a transportation cost increase since each customer is assigned to pri-

mary and backup facilities. We propose a fast evolutionary learning heuristic solution

technique to generate near-optimal solutions for reliable p-median problem (RPMP) and

RUFL instances. More specifically, we address the uncapacitated facility location problem

by combining learning with evolutionary boosting technique. RPMP and RUFL have been

addressed before using Lagrangian relaxation (LR) approach in [54]. The difference be-

tween our approach and the LR approach is our case, we obtain in a comparatively short

time complete solutions in terms of facility establishment, fortification budget allocation

and customer assignments while the LR approach takes longer time and provides upper

and lower solution cost bounds.

In Chapter 4, we address the CFL where we consider that the SCN facilities are subject

to partial disruption which renders such facilities lose portion of its capacity and in this

case the customers fulfil their demands from a backup facilities and this will add extra

transportation costs to the customers that go to such facilities. We propose a separation-

linearization algorithm to generate optimal solutions for the RCFL instances. We address
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the capacitated facility location problem by separating the initial model into two separate

sub-models (location allocation and fortification sub-models). More specifically, we use

CPLEX solver for the location allocation sub-model while ue develop an implementation

for the knapsack problem to generate the optimal facility fortification strategy. Finally, the

approach is flexible enough to hedge against different disruption situations using different

fortification budget amount and the ranking (importance) of facilities. In other words, the

approach allows partial fortification.

In RPMP, RUFL and RCFL models, the facility fortification budget is defined as a cost

that is used to improve the reliability of the established facilities.

Finally, in Chapter 5, we address the k-SPP where we consider partial and complete

disruption in the connected nodes over a large size transport network (TN). In case of

partial disruption, a subset of the connected nodes fail partially and consequently extra

cost will be added to their connected links. As a result, all the generated paths will be

of higher costs comparing to the normal scenario. In the case of complete disruption, a

subset of the connected nodes fail completely and consequently they became unavailable

and their connected links as well. Consequently this would lead to the generation of paths

with higher costs compared to the normal (undisrupted) situation. To solve the k-SPP

under disruption, we propose hybrid approach based on graph partitioning and modified

Dijkstra algorithm. The approach enable partitioning the TN sub-networks and allows

faster solution generation via reducing the query time when computing the shortest path

between two nodes for a very large TN. The approach can generate a maximum predefined

number of shortest paths between any pairs of nodes on a transportation network unless the

destination cluster is isolated.
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1.6 Document Organization

The thesis is organized as follows. Chapter 2 discusses the literature related to our prob-

lems, namely UFL, CFL and k-SPP and details the gap analysis. Chapter 3 presents the

uncapacitated facility location problem under disruption (RPMP and RUFL), details the

solution approach, and provides a case study and benchmarks. Chapter 4 presents the

capacitated facility location problem under disruption (RCFL) along with the separation-

linearization solution generation. It also provides a case study and benchmarks. Chapter

5 details the k-shortest path problem under disruption and presents the solution approach

along with a case study and benchmarks. Finally, Chapter 6 concludes the thesis.
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Table 1: Abbreviations

Term Abbreviation

Facility Location Problem FLP

P-Median Problem PMP

Uncapacitated Facility Location UFL

Capacitated Facility Location CFL

Reliable Uncapacitated Facility Location RUFL

Reliable P-Median Problem RPMP

Reliable Capacitated Facility Location RCFL

k-Shortext Path Problem k-SPP

Lagrangian Relaxation LR

Branch and Bound B & B

Tabu Search TS

Genetic Algorithm GA

Continuum Approximation CA

Supply Chain Network SCN

Public Service Facility Network PSFN

Reliable Facility Location-Network Design Problem RFLNDP

Reliable Uncapacitated Facility Location with Service Levels RUFL-SL

Integer Programming IP

Integer Linear Programming ILP

Mixed Integer Non-Linear Programming MINLP

Mixed Integer Programming MIP

Transportation Network TN

Facility Failure FF

Non-Linear Integer Programming NIP

Demand Failure DF

Link Failure LF

Iterative Metaheuristic IM

Variable Neighbourhood Search VN

Capacitated Arc Routing Problems CARP

9



Capacitated Warehouse Location Model with Risk Pooling CLMRP

Benders Decomposition BD

ε-constraint technique ECT

Capacitated Location-Routing Problem CLRP

Green CLRP G-CLRP

Planar Location-Allocation Problem PLAP

Neighbourhood Search NS

Multi-Period Capacitated Flow Refuelling Location Problem MCFRLP

Electric vehicles EVs

Cross Decomposition CD

Distribution Centers DCs

Capacitated Facility Location and Network Design CFLNDML

Problem with Multi-type of Links

Fix-And-Optimize FAO

Stochastic Energy-Efficient Facility Location Allocation SEEFLA

Stochastic Simulation STS

Scatter Search SCS

Single Source Multiple Target SSMT

Reliable Shortest Path Problem RSPP

Constrained Shortest Path Tour Problem CSPTP

Dijkstra algorithm DA

Transit Node Routing TNR

Density-based Clustering for Shortest Path Deliveries DenCluSPD

k reliable shortest paths KRSP

Road Network RN

Markov Decision Process MDP

Approximate Dynamic Programming ADP

Analytical Hierarchical Processing AHP

Ant Colony Optimization ACO

Single Source Shortest Path Problem SSSPP

Single Source Single Destination SSSD

Shortest Path Routing Problem SPRP

10



Wireless Sensor Network WSN

Shortest Path Routing SPR

Dynamic Navigation Algorithm DNA

Spatially Dependent Reliable Shortest Path Problem SD-RSPP

Simulation Based Genetic Algorithm SBGA

k Shortest Path With Diversity KSPD

Replacement Paths Algorithm RPA

Realtime Shortest Path RSP

Realtime Shortest Path Plus R-SP+

Recursive Enumeration Algorithm REA

Dijkstra-Ant Colony DACO

Particle Swarm Optimization PSO

Simulation Based Genetic Algorithm SBGA

R-Interdiction Median Problem with Fortification S-RIMF

Fortification fortif.
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Chapter 2

State-of-the-Art

2.1 Introduction

Supply chain management and logistics planning involving facility location and short-

est path are important problems extensively studied across the scientific communities all

around the world. The computation complexity and practical relevance of commodity de-

livery problems have attracted the researchers for more than half a century. The planning

of logistics activities is a particular type of operational plan that ensures the supply of re-

sources in a timely manner at the right locations. In the chapter, we address two types of

FLP including UFL, CFL problems as well ask-shortest path problem. Often time, UFL

and CFL problems are formulated as non-linear integer programming and we find several

approaches that are proposed in the literature to solve such problems. However, the ma-

jority of the proposed solution approaches assume that the established facilities are totally

reliable.
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2.2 Uncapacitated Facility Location Problem (UFL)

A majority of the FLP employ a graph to represent the underlying network in order to model

the problem. The objective function of a typical FLP is to minimize total cost of facility

establishment and transport from the serving facilities to the demand (customer) nodes.

The objective functions of these models aim to improve path coverage as described by

[39], minimize establishment and transportation costs as discussed by [32], reduce failure

probability as introduced by [56], etc. [31] documented a detailed classification of these

location problems. A brief taxonomy of the facility location models including the median

and plant location models, and the center and covering models can be found in [72]. [50]

provide a critical survey of the SCN design problem under uncertainty and the related

proposed optimization models. Moreover, [83] provide a survey of supply chain disruptions

models.

The Uncapacitated Facility Location Problem is a subcategory of FLP which imposes

no limitation on the serving facility capacity. In the literature, the Uncapacitated FLP in

classified in two different categories, namely the p-median problem and the uncapacitated

Facility Location(UFL), based on the cost and the number of established facilities. In p-

median problem there is no cost of establishing facilities but a maximum bound (p) is

placed on the number of established facilities. Thus, the objective of the problem is to

reduce overall transportation cost only. However, in UFL problem there is a cost of es-

tablishing facilities and there is no maximum bound placed on the number of established

facilities so each facility has an associated establishment cost. Thus, the objective of the

problem is to reduce overall establishment cost and the overall transportation cost. The

UFL problems are handled using greedy algorithms, branch and bound schemes, dual de-

scent heuristic, and other programming techniques as discussed by [45]. [3] present a

genetic algorithm (GA) and a scatter search (SCS) approaches to solve p-median problem

where some facilities may not be operative during certain periods.
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Various approximation algorithms for solving such problems have been surveyed by

[32] and [81]. The common solution generation techniques for p-median problems include

greedy methods, branch and bound heuristic, primal-dual heuristic, node partitioning and

substitution, meta-heuristic techniques, etc. as detailed by [90]. [28] introduce the con-

cept of facility disruptions based on two mathematical models. The first model captures a

variant of the p-median problem with known facility failure probability. The second model

captures a (p; q)-center problem in which p facilities must be located to minimize the max-

imum cost when at most q facilities fail. He used heuristic algorithm for the solution of

both problems. More recent articles show growing academic interest on the reliability-

oriented optimization in distribution networks as well as characterizing different sources of

disruptions.

[25] study the RUFL problem and presented a model that optimally determines the fa-

cility locations as well as the customer assignments in order to minimize initial setup costs

and expected transportation costs in both normal and failure scenarios. They solved mid-

sized instances using Lagrangian relaxation (LR) algorithm and for large-scale problems

they used continuum approximation (CA). Under independent and location specific facil-

ity failure probabilities, [59] analyze an uncapacitated fixed-charge facility location model

with two types of facilities: unreliable and reliable. In this formulation, each customer will

be assigned to one primary facility and one totally reliable backup facility. The objective

of this model is to optimally determine the number and location of both types of facili-

ties and the customer assignment. They developed a Lagrangian relaxation-based solution

algorithm to solve the model. [7] formulate a non-linear integer programming model to

investigate SCN design problem where some facilities are exposed to random disruptions

and as a result may fail to serve the customers. They develop a genetic-algorithm-based

solution approach to solve the model.

[67] develope a facility location interdiction model to design a coverage-type service

14



network that is robust to the worst instances of long-term facility loss. They presented a

decomposition algorithm to solve the bilevel program optimally. [57] present the Stochastic

R-Interdiction Median Problem with Fortification(S-RIMF). In S-RIMF model, the authors

aim to minimize the impact of disruption by allocating defensive resources among facilities.

They used heuristic reduction rules to solve the model. [45] study the supply chain network

design problem that is exposed to the risk of partial and complete facility disruption by

considering different disruption scenarios. They develop two solution methods based on

Lagrangian relaxation (LR) and genetic algorithm (GA) to solve the model. [82] develop

a reliable facility location-network design problem (RFLNDP) which is suitable to hedge

against the impact of facility disruptions by hardening selected facilities while taking into

account facility location, link construction, and transportation costs. They linearize the

model then solve it using CPLEX.

To handle the sources of uncertainty associated with demand and service, [95] model

the congested situations in the system within a queuing framework and propose a reliable

location-allocation model where the facilities are subject to the risk of disruptions. The au-

thors enhance a Benders decomposition algorithm using two efficient accelerating methods

including valid inequalities and knapsack inequalities to obtain exact solution of the pro-

posed model. [76] compare two mathematical formulations for the reliable uncapacitated

facility location problem (RUFL)in which correlated facility disruptions is modelled. The

study compared two variant of RUFL models. The first model reduces unsatisfied service

by allowing the decision maker to price unsatisfied demand using a penalty cost. The sec-

ond model with service levels (RUFL-SL) in which a minimum level of satisfied demand

for each scenario is guaranteed. The authors use LINGO 17.0 to solve RUFL and RUFL-SL

models to optimality.

With the increasing attention given to environmentalism, [99] develop a 0-1 mixed inte-

ger bi-objective programming mode for a green closed-loop supply chain network design.
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To generate lower bounds efficiently, the authors implement an improved reformulation-

linearization technique based on decomposed piecewise McCormick envelopes.

Table 2 covers a number of relevant existing efforts to handle uncertainty over the Un-

capacitated FLP.

Table 2: Survey of previous effort on uncertainty over Uncapacitated FLP

Authors Paper Topic Uncertainty Application Category Model Approach

[62] Max. the profit by facility setup

& production allocation

Demand, ser-

vices & sales

SCN PMP - limited bud-

get

2-step SP Dual-based procedure

[28] Min. weighted distance from

customers to facilities

FF; indepen-

dent

Emergency

services

PMP, (p,q)-Cent er

Problem

MINLP Heuristic algo.

[29] Optimal locations to establish

new facilities

Demand

change

Facility estab-

lishment

PMP-Time depen-

dent demand

Non-convex

& ILP

Standard mathemati-

cal programming

[13] Capture market expansion and

cannibalization effects

Demand

change

SCN FLP;Spatial IMP

Worst-case bound

IP Specialized B&B and

Greedy heuristics

[3] Min. total transportation cost

by finding p facility locations

that are inexpensive & reliable

FF SCN PMP LIP GA-SCS

[84] Min. the weighted sum of oper-

ating cost

FF (indep.) TN RPMP & fix.-charge

RUFL

MINLP LR

[14] Min. average distance from

customers to facilities

FF; indepen-

dent

Hospital local-

ization

RPMP MINLP Error-bound Greedy

Heuristic and B&B

[25] Min. facility setup & transport

costs

FF;dependent,

Random

SCN Fix. charge RUFL MILP Customized LR &

continuum approx.

[59] Min. facility setup, fortification

& customer conn. costs

FF; indepen-

dent

SCN RUFL & UFL facil-

ity hardening

MIP LR

[57] Allocate resource to min.

worst-case impact of disruption

FF; indepen-

dent, Random

TN Stochastic RIMP;

Fortif. budget

BLMIP Heuristic reduction

rules.

[55] Min. facility setup & customer

transportation costs

FF; Spatially

Correlated

Sensor deploy

:surveillance

Fix. charge RUFL MINLP Continuum Approxi-

mation

[81] Customers reassignment FF; Constant,

independent

TN RUFL 2-step SP &

MINLP

Approximation algo.

[8] Min. facility setup, DCs

labour working, DCs safety

stock, transportation and lost

sale costs

FF SCN PMP NIP GA

[67] Evaluate max. & min. coverage

by p facilities w/o disruption

FF; indepen-

dent

TN Loc. covering-

Interdiction prob.

MIP &

BLMIP

Bi-level decomposi-

tion algo.
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[23] Min. facility setup, inventory

holding and delivery costs

FF; Scenario Plan & trans-

port structure

RUFL MINLP Custom LR & Poly.-

time algo.

[56] Maximize flow & path coverage Sensor failure Sensor Deploy RUFL ILP Custom Greedy & LR

[85] Min. the weighted distance

from customers to facilities

DF & LF TN UFLP - limited bud-

get

IP Decomposition algo.

[45] Optimal facility location & cus-

tomers assignments

FF; indepen-

dent, Scenario

SCN Integrated SC de-

sign models

MINLP LR & GA

[49] Generate extreme events &

characterize impact

FF & LF; in-

dep., Scenario

SCN Risk model with

multi-hazard

3-phase

hazards

Monte-Carlo simula-

tion

[82] Opt. facility location, customer

assignment & facility harden-

ing costs

FF; indepen-

dent

Integrated

facility & SC

design

RUFL (facility &

link)

MINLP Linearization

[54] Min. facility setup, fortification

& customer connection costs

FF; indepen-

dent

TN RPMP & RUFL -

fortif. budget

MINLP LR

[51] Max. the expected net revenues Sales & trans-

port costs

SCN (1-

Echelon)

SMLTP Binary IP LR, C&W savings, TS

& heur.

[8] Min. facility setup, inventory,

transportation & lost sales costs

FF SCN Stochastic FLP NIP GA

[95] Min. the fixed setup, trans-

portation, serving & penalty

costs

FF SCN design RUFL MIP BD

[76] Min. the sum of fixed and trans-

portation costs

FF (Corre-

lated)

SCN RUFL & RUFL-SL NLIP LINGO 17.0

[99] Min. the total costs and CO2

emissions

Demand and

CO2 emission

rate

SCN RUFL 0-1 MI

bi-objective

program-

ming

Reformulation-

Linearization tech-

nique

2.3 Capacitated Facility Location Problem (CFL)

Facility Location Problem (FLP) usually employs a graph to represent the underlying trans-

port network in order to model the problem where the objective is to minimize total cost of

facility establishment and transport from facilities to demand nodes. Based on the capacity
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of the serving facilities, FLPs are classified in the literature into capacitated and uncapac-

itated. In contrast with the uncapacitated FLP, the capacitated FLP impose a limitation on

the capacity of the serving facilities. Since capacitated FLPs have more realistic assump-

tions compared to the uncapacitated FLPs, there is a growing academic interest on consid-

ering the capacitated version of FLP under different sources of disruptions. [35] developed

a mathematical model for the discrete capacitated FLP where the established facilities are

unreliable (unavailable) as a result of disruptions and use the sample average approxima-

tion algorithm to solve it. [58] develop a mathematical model for the capacitated FLP with

limited budget to fortify a subset of the established facilities. The goal of the model is to

optimally protect the network against correlated facility disruptions as well as to optimize

protection plans to hedge against large area disruptions. The authors employ adapted tree

search (ATS) algorithm to find out which facilities to be protected. [11] propose a model

to design supply chain network (SCN) consisting of capacitated production facilities, dis-

tribution centers and retailers. The authors assume that the supply chain network is under

uncertainties from demand-side and supply-side.

[4] propose a set of two-stage robust optimization models to design reliable p-median

facility location networks under the risk of disruption and also include practical cases: fa-

cility capacities and demand losses due to disruptions. [69] study the logistics network

design problems (LNDP) with facility disruptions and propose a mixed-integer program-

ming model to minimize the nominal cost and reduce the disruption risk using p-robustness

criterion. To solve the model, they develop a hybrid metaheuristic algorithm based on ge-

netic algorithm (GA), local improvement (LI) and the shortest augmenting path (SAP)

method to solve the model. [86] propose an approach for designing and planning multi-

echelon, multi-commodity production distribution networks under deterministic demands.

They consider that the decisions related to facilities, supplier and the production flows are

dynamic. They also consider that a facility is functioning only between a minimum and
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maximum rate of utilization of its installed capacity. To solve the model they use Xpress-

MP (MILP solver) based on the branch-and-bound (B&B) approach. A detailed review of

FLP including the capacitated version and an overview of the major location problems that

have been introduced in the literature can be found in [88].

[44] investigate the single source location problem with the presence of several possible

capacities in which the opening fixed cost facility depend on the used capacity and the

area where the facility is located. The authors formulate two mathematical models for

both the discrete and the continuous cases using the rectilinear and Euclidean distances.

To solve the models, they propose two methods, namely an iterative metaheuristic (IM)

approach and variable neighbourhood search (VNS) based metaheuristic technique. [92]

study the waste collection problem in Denmark which motivated them to develop a fast

heuristic solution approach for the large-scale capacitated arc routing problems (CARP)

with or without duration constraints. [68] study the capacitated warehouse location model

with risk pooling (CLMRP) in which a single plant ships one type of product to a set

of retailers, each with an uncertain demand. They formulate the problem as a non-linear

integer program and propose a Lagrangian relaxation (LR) solution algorithm to solve it

with reasonable computational requirements.

To ensure the desired level of reliability and availability for supply chain facilities, [65]

investigate a supply chain problem design that is subject to random failures and consider a

stochastic SCN design model that handles facility location and facility unavailability man-

agement simultaneously. To solve the model, they use GA based optimization approach to

define the optimal supply chain structure and perform two simulation strategies to manage

the facilities failure, one by replacing each unavailable facility by the closest facility and

the other is to execute reallocation process using GA. [71] propose a mathematical formu-

lation for the capacitated facility location problem under uncertainty and they assume that
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the uncertainty appears in the demands and costs. They develop an efficient heuristic solu-

tion algorithm based on the VNS to solve the problem. [80] introduce a mixed non-linear

integer programming model for the distance-constrained mobile hierarchical facility loca-

tion problem in order to minimize the total system costs. The authors develop a GA based

heuristic approach to solve the model.

[34] propose a computational study for the capacitated FLP to address the usefulness of

the Benders Decomposition (BD) approach. The study focuses on the particular case where

the application of BD yields a single subproblem of the same size as the original problem.

To minimize the fuel consumption, they propose a mixed integer linear bi-objective model

for the Capacitated Location-Routing Problem (CLRP), named Green CLRP (G-CLRP).

The authors solve the proposed mathematical model using the classical Pareto optimisation

ε-constraint technique (ECT).

[77] present a linear mixed integer formulation for the generalized version of the re-

liable capacitated facility location problem (RCFLP) under correlated facility disruptions

with uncertain joint distribution. The model guarantees a minimum level of service in terms

of satisfied demands. They optimally solve the model for several penalty cost values using

LINGO 17.0. A survey about deterministic FLP, dynamic FLP, stochastic FLP, and robust

FLP can be found in [15]. To handle the sources of uncertainty associated with demand

and service, [95] model the congested situations in the system within a queuing frame-

work and propose a reliable location-allocation model where the facilities are subject to the

risk of disruptions. The model is solved using an enhanced BD algorithm employing two

accelerating methods including valid inequalities and knapsack inequalities.

[76] compare two mathematical formulations for the reliable uncapacitated facility lo-

cation (RUFL) problem where a correlated facility disruption is modelled. The first model

reduces unsatisfied service by allowing the decision makers to price unsatisfied demand us-

ing a penalty cost. The second model employs service levels (RUFL-SL) where a minimum
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level of satisfied demand for each scenario is guaranteed. The authors use LINGO 17.0 to

optimality solve RUFL and RUFL-SL models. [73] introduce a mixed integer non-linear

programming model for the RCFLP in which certain facilities are exposed to disruption.

The authors develop two heuristic procedures to solve the problem. [6] propose a model

for reliable distribution centers (DCs) in case of unexpected disruption including the site-

dependent failure and random link disruptions. The authors use three solution approaches

to solve the proposed model, including LR, cross decomposition (CD) and a firefly algo-

rithm.

To hedge against random disruptions and capacity limitation of the distribution centers

(DCs), [5] use the concept of reliable & unreliable facility and propose a two-stage integer

programming model for the Reliable Facility Location Distribution Network (RFLDN) in

which the authors consider the location decisions for opening DCs in the first stage while

assigning customers to either a reliable or an unreliable facility in the second stage. The

authors develop LR approach to solve the model.

To solve the proposed model, the authors develop a fix-and-optimize (FAO) heuristic

based on the firefly algorithm. [46] present a new stochastic energy-efficient facility loca-

tion allocation (SEEFLA) model subject to carbon emission, economical, capacitated, and

regional constraints. To solve the model, the authors employ an algorithm that integrates

stochastic simulation (STS) and scatter search (SCS). [16] present a mathematical model

to support location decisions oriented for the Public Service Facility Network (PSFN). The

model aims to minimize the total cost needed to provide remaining facilities with addi-

tional service capacities to satisfy demand resulting from the reallocation of users previ-

ously assigned to service points that have been closed. [99] develop a 0-1 mixed integer

bi-objective programming mode for a green closed-loop supply chain network design. To

generate lower bounds efficiently, the authors implement a linearization technique.

The work introduced [58] hedge against disruption by identifying the critical portions
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of the system whose fortification reduces the impact of the worst possible disruption while

our work hedges against disruption by assigning each customer to a primary and a backup

facility. The works of [35], [71] and [73] introduce penalty costs for the unmet demands

from the disrupted facilities while in our work the customers obtain the portion of unmet

demand from the backup facility when the primary facility partially fails. The work intro-

duced in [5] has similar assumptions like our work but this work hedge against disruption

by adding an emergency cost for supplying from the reliable facilities in the case of dis-

ruption. Thus, the customers obtain emergency services from the backup facility when the

primary facility fails while in our work we hedge against disruption in the sense that the

customers obtain the portion of unmet demand from the backup facility when the primary

facility partially fails. The work of [77] use an effectiveness metric to guarantee a minimum

level of satisfied demand to avoid the penalty cost for unmet demand in order to ensure an

acceptable service level under disruption while in our work we use a limited budget to for-

tify a subset of the established facility so that they become available and each customer is

assigned to a primary and a backup facility.

Table 3 covers a number of relevant existing efforts to handle uncertainty over the Ca-

pacitated FLP.

Table 3: Survey of previous effort on uncertainty over Capacitated FLP

Authors Paper Topic Uncertainty Application Category Model Approach

[30] Min. cost of holding inventory

and demand loss

Demand change Prod., Capacity

Planning

Prod.,Capacity plan

(time horizon)

LP, SP &

MIP

Specialized algo.

[35] Optimal facility locations for var-

ious disruptions

FF; independent SCN Cap. FLP 2-step SP Sampling of average

approximation

[58] Protecting capacitated median

system with limited resources

FF(Correlated) TN Cap. RIMP; Fortif.

budget

3-step, MIP Adapted tree-search

[61] Min. nominal cost & cost bounds

under disruption

FF; Scenario SCN Cap. P-robust Lo-

gistics Net. Design

MIP GA based Hybrid

metaheuristic

[11] Max. SCN expected cost effec-

tiveness

FF(Demand) &

LF(indep.)

Multi-product

SCN

Cap. FLP & flow

detection

MINLP Piece-wise linear ap-

prox. (Commer. S/W)
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[4] Min. weighted distance from cus-

tomers to facilities

FF; Simult., Sce-

nario

DN Cap. RPMP &

RUFL

MINLP Benders decomposi-

tion; col.-constraints

[92] Min. the overall cost including

fixed cost of using the depots &

vehicles, the dead-heading travel

and the total penalty costs

Time RN CARP ILP Branch & Cut, Clus-

tering based heuristic

[68] Min. the sum of facility setup,

transportation, and inventory car-

rying costs

Demand SCN Cap. FLP NIP LR

[65] Min. the sum of the follow-

ing costs: facility setup, shipment

plus transportation, the total in-

ventory and the DC holding safety

stock costs.

FF SCN Cap. FLP NIP GA

[71] Opt. location for p number

of Cap.facilities in such a way

that minimizes the total expected

costs of transportation, construc-

tion, and penalty of uncovered de-

mands

Demand & Cost SCN Cap. PMP MINLP NS

[80] Find the optimal number and lo-

cations of launch and recharge

stations to minimizing the total

establishment, drone procurement

and drone usage costs

Demand Telecomm. Cap. PMP MINLP GA

[77] Min. total facility setup & trans-

portation costs

FF (Correlated) SCN Cap. RUFL MILP LINGO 17.0

[73] Min. total investment and opera-

tional costs

FF SCN Cap. RUFL MINLP Relax & Fix and Relax

& Round Heuristics

[6] Min. Total Facility setup, trans-

portation and improvising costs

FF (Dep.)-LF SCN Cap. RUFL MILP LR, Cross Decompo-

sition & Firefly

[5] Min. the facility setup, the de-

terministic service cost for cus-

tomers, the expected service cost

for customers, and the holding

costs.

FF-site-

dependent

DN RFLDN Two-Stage

IP

LR - CPLEX solver

[95] Min. the fixed setup cost as well

as expected transportation, serv-

ing & penalty costs

FF SCN design RUFL MIP BD

23



[76] Min. the sum of fixed and trans-

portation costs

FF (Correlated) SCN RUFL & RUFL-SL NLIP LINGO 17.0

[46] Min. the total transportation en-

ergy consumption of customers

FF Energy-eficient

FLA

Cap. FLP NLIP Stochastic Simulation

& Scatter Search

[16] Min. the total cost needed to pro-

vide remaining facilities with ad-

ditional service capacities

Facility Capacity Public Services

Network

Cap. PSFN ILP CPLEX solver

[99] Min. the total costs and CO2

emissions.

Demand and CO2

emission rate

SCN RUFL 0-1 MI

bi-objective

program-

ming

Reformulation-

Linearization tech-

nique

2.4 Shortest Path Problem

The classical shortest path problem is one of the fundamental problems in graph theory

in which the objective is to find a path that minimize the length from a source node to a

destination node. In the last few decades, a variety of approach have been introduced to

solve such problem. In [27], the author develops a single source multiple target (SSMT)

algorithm for the shortest path problem. The authors in [94] propose a pre-computation

based approach for both single pair alternative shortest path and all pairs shortest paths

processing in spatial network. To handle the variability of travel time, [97] present an

algorithm to solve the mean-standard deviation reliable shortest path problem (RSPP) in

which they take into account the correlations between the link travel time. [33] propose

a mathematical model for the constrained shortest path tour problem (CSPTP) in which

the path must cross by a sequence of node in a given order must. The author introduces a

Branch & Bound method to solve the model.

[41] formulates a non-linear objective functions for the stochastic shortest path problem

using the mean and standard deviation values of the resulting probability distribution and

general cost functions. To solve the model, the author applies Lagrangian relaxation (LR) to
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find the feasible solution. Considering the travel time uncertainty, [21] extend the classical

k-loopless shortest path problem to the stochastic transportation network and introduce the

k reliable shortest paths (KRSP). To solve the problem in large-scale networks exactly,

the authors propose a deviation path algorithm and to further improve the KRSP finding

performance they introduce the A? technique.

The authors in [22] study the travel time uncertainties in a road network(RN)where the

goal is to find the most reliable path that maximizes the probability of on-time arrival. They

propose a two-stage solution algorithm that exactly solve the problem. The authors in [79]

use the historical information and the real-time information of a transportation network and

present the dynamic shortest path problem with stochastic disruptions as a discrete time fi-

nite horizon Markov decision process (MDP). They develop a hybrid approach based on

approximate dynamic programming (ADP) and clustering using deterministic lookahead

policy and value function approximation. In [2], the author provides an experimental anal-

ysis on how traversal algorithms behave on social networks. Dijkstra algorithm has been

used in [89] to generate single source single destination (SSSD) shortest path in large sparse

graphs where the goal is to reduce the response time for online queries. [1] present ASAP

system that can extremely quickly generate the shortest path for all pair of nodes on large

scale networks.

The dynamic single source shortest path problem (SSSPP) has been addressed in [37]

via dynamizing Dijkstra algorithm and generate the solution of that problem with com-

plexity O(nlg m) for the update time. To reach an emergency area in a minimum time, [64]

develop a dynamic emergency routing approach based on Dijkstra algorithm and analytical

hierarchical processing (AHP). For safe evacuation in a short time from an emergency area,

[75] model the evacuation route then they generate the directed graph based on the distance

between nodes and coordinate of nodes. To generate the shortest and safest path, they use

Dijkstra algorithm and Dijkstra-ACO.
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[9] optimize Dijkstra algorithm using a faster queue design based on binary (or d-ary)

heap implementation to accelerate the computation of the shortest paths. [43] introduce

a new time-dependent shortest path algorithm for SSSD in multimodal transportation net-

work.

Considering the stochastic disruption in a network, the authors in [47] present an emer-

gency evacuation model for the SSP and they propose a real-time dynamic navigation algo-

rithm (DNA) to solve it. [42] study a network that is stochastic on-time arrival and propose

a modification for the reliable routing algorithm. The authors modify the shortest path

algorithm to decrease its computation time by choosing particular subset of graph nodes

and links. Taking into account the travellers concern on travel time reliability in congested

RN, [20] formulate the spatially dependent reliable shortest path problem (SD-RSPP) on

a RN of correlated link travel times. The authors propose a link-based multi-criteria A*

algorithm (ERSPA* algorithm) to solve the model. To find the optimal path in an uncertain

transportation network, [19] formulate three model for the shortest path problem typically

name expected value, dependent-chance and chance constrained models. The authors de-

velop a simulation based genetic algorithm (SBGA) to solve the former models.

[36] derives the uncertainty distribution of the shortest path length in an uncertain net-

work and investigates solutions to the α-shortest path. The author indicates that there is an

equivalence relation between the α-shortest path in an uncertain network and the shortest

path in a corresponding deterministic network and as so proposes an approach to find the

α-shortest path and the equivalence deterministic shortest path. An approach based on GA

for the SPRP has been presented in [12]. The authors in [70] indicate that most of the exist-

ing approaches that handle the shortest path problem have two main drawbacks: generating

the path before movement and re-processing when node and/or link fails. To handle these

shortcomings, they propose two novel algorithms typically name Realtime Shortest Path

(RSP) and Realtime Shortest Path Plus (R-SP+).
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The authors in [98] present a robust shortest path model to hedge against the risk of un-

certainty in travel times. To solve the model, they propose an efficient primal approximation

method that has to solve the deterministic shortest path problem and the mean-standard de-

viation shortest path problem. [96] analyze the dynamic stochastic characteristics and the

relationships between the links and nodes of the transportation network. The authors de-

fine the probabilistic shortest path concept, propose a mathematical model for the dynamic

stochastic KSP and develop a GA to solve the model. A survey on variations of the short-

est path problem of different objective functions and existing solution approaches can be

found in [87]. Table 4 covers a number of relevant existing efforts to handle the shortest

path problem and k-shortest path problem.

2.5 Gap Analysis

In the previous Sections 2.2,2.3 and 2.4, we summarize a number of relevant existing ef-

forts to handle the uncapacitated FLP, capacitated FLP, and shortest path problem under

disruption (uncertainty) over SCN. Section 2.2 and Section 2.3 cover a number of relevant

existing efforts to handle the uncapacitated FLP and capacitated FLP. The majority of these

works consider only complete disruption of facilities with equal probability, which is not

a very realistic assumption. Also, they ignore partial facility disruptions in the case where

facilities fail partially, which is a more realistic assumption. Moreover, a minority of these

works consider partial fortification depending on a ranking of the facilities. Furthermore,

most of them do not address correlated facility failure probabilities (site dependence and

spatial correlation) since it can trigger the failure of other facilities. Finally, most of the

works do not consider the impact of SCN disruption on economic conditions and popula-

tion especially when the SCN facilites are located on a site of a population that is highly

correlated to the SC activities.
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Section 2.4 covers a number of relevant existing efforts to handle the shortest path prob-

lem and k-shortest path problem. The majority of these works do not take into account the

failure probabilities in the connected nodes partially or completely and their consequences

on the connected links. Also, the majority of them do not handle the partial overlapping

k-SPP. Moreover, most of these works do not consider the case when the correlated failures

of the connected nodes. Furthermore, a minority of these models handle k-shortest path

problem in multi-modal or global networks.

In the next three chapters of this thesis and based on the foregoing explanation, we are

addressing the following gaps:

• Partial and Complete disruption in SCN facilities, where they are subject to hetero-

geneous failure probabilities,

• Partial and Complete disruption in TN connected nodes, where they are subject to

heterogeneous failure probabilities

• Partial fortification of SCN facilities, depending on a ranking of the facilities, and

• Partial overlapping k-SPP.

we are going to address the foregoing gaps as follows:

• Presenting a non-linear integer programming model for RPMP, RUFL problems as

well as developing an evolutionary learning heuristic as solution generation approach.

• Capturing the RCFL problem using a non-linear integer programming model and

developing a separation-linearization-based solution approach for MILP solver based

solution generation.

• Modelling the partial overlapping k-SPP under partial and complete disruption in the

TN connected nodes as well as developing a clustering-based solution approach.
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Table 4: Survey of previous effort on SPP and k-SPP

Authors Paper Topic Uncertainty Application Category Approach

[79] Shortest path pairs Link (stochastic) TN Shortest Path Heuristic algoritm

[37] Dynamic single source shortest Path Link TN SPP Dynamized DA

[64] Enhanced routing in disaster man-

agement

Link TN SPP Enhanced DA

[75] Emergency SP Nodes and Links High rise building SPP DA & DACO

[43] Generate a virtual path from single

source to single target

Travel time Multimodal TN Heuristic Algorithm

[47] Find the shortest path in emergency

area

Links (Stochastic) TN SPP DNA

[42] Decrease the computation time of

the KSPP

Nodes & Links

(Stochastic)

TN KSPP Modified reliable routing algo-

rithm

[20] Find spatially dependent reliable

shortest path in RN

Links (Correlated) RN SD-RSPP ERSPA* algorithm

[19] Find the optimal path under an un-

certain environment

Links (Stochastic) TN SPP simulation-based genetic algo-

rithm

[36] Find the shortest path in uncertain

network

Links RN SPP DA

[12] Finding the shortest path in variable

structure network

Links Randomly generated

network topologies

SPP GA

[70] Find the best alternative route Node/Link RN SPP RSP & R-SP+

[98] Find the hortest path in uncertain

network

Random travel times

and their distributions

TN SPP PAM

[96] Find the k shortest transport paths in

dynamic stochastic networks

Node/Link TN Dynamic stochastic

KSP

GA

[41] Introduce an efficient method to

handle previous limitations and im-

prove the processing speed further

for the SPP

VLSI circuit design Constrained SPP LR
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Chapter 3

Uncapacitated Facility Location

Planning Under Disruption

3.1 Introduction

The p-median problem (pmp) represents a subclass of facility location problem where a

fixed p number of facilities are required to be established and the objective function in-

volves minimizing total transportation cost. In UFL, each node has an associated facility

establishment cost and the decision makers are required to establish an optimal number

of facilities to minimize overall sum of establishment cost and transportation cost. Thus,

in general, facility location problems assume guaranteed availability of facilities to serve

customer demands. Conversely, reliable p-median problem (RPMP) and reliable uncapaci-

tated facility location problem (RUFL) consider a predefined probability of failure for each

node. Therefore, in this context, every customer is required to be associated with multi-

ple facilities (typically a primary and a backup) to ensure availability of facilities under

disruptions.
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3.2 Model Assumptions

The following assumptions are typically considered to define RPMP and RUFL:

• Facilities have unlimited capacity (as in [59], [54], [25] and [4]).

• If a facility fails, it becomes totally unavailable.

• Facility failures are independent (as in [59], [54], [25] and [4]).

• Each customer is assigned to a primary facility and a backup facility (as in [54])

unless the primary facility is fortified (i.e. totally reliable) in which case it also

serves as a backup for the same customer.

• Probability of a simultaneous failure of primary and backup facilities is negligible

for each customer.

• The fortification budget is fixed (an input to the problem).

3.3 Model Formulation

We present next the specific details and formulation of each of these two problems.

3.3.1 Reliable p-Median Problem (RPMP)

In RPMP, each member node of a network of interconnected nodes is exposed to a prede-

fined failure probability. The problem aims to select p locations to serve the customers such

that the total transportation cost to satisfy customer demands, by assigning each customer

to one primary and one backup facilities, is minimal. Additionally, the problem assumes

a fixed budget available to fortify few selected facilities to increase network reliability.

RPMP model is considered as detailed by [54].
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The formulation considers a set of customers I , a set of potential facility locations J ,

and a predefined number p of facilities to be established. The set of potential facilities is

a subset all customers, J ⊆ I . However, they can also represent a different set. Each

customer i ∈ I has a specific demand hi. Let dij > 0 be the transportation cost of one unit

of demand from facility location j ∈ J to customer i ∈ I . For each facility j there exists

a failure probability qj where 0 ≤ qj ≤ 1 and a fortification cost fcj which consists of a

setup cost sj and a reliability cost qj × rcj . rcj denotes the cost related to unit reduction in

the failure probability. Total fortification budget is B.

The decision variables used in the formulation are as follows:

xj =

 1, If a facility is established at location j

0, otherwise.

zj =

 1, If the facility at location j is fortified

0, otherwise.

yij0 =

 1, If customer i is served by primary facility j

0, otherwise.

yij1 =

 1, If customer i is served by backup facility j

0, otherwise.

The objective function for optimization is described as follows:

Min
∑
i∈I

∑
j∈J

[
hidijyij0(1− qj(1− zj)) + hidijyij1

∑
r∈J,r 6=j

qryir0(1− zr)

]
(1)
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Subject to: ∑
j∈J

yij0 = 1 ∀i ∈ I (2)

∑
j∈J

yij1 = 1 ∀i ∈ I (3)

yij0 + yij1 ≤ xj∀i ∈ I, j ∈ J (4)

∑
j∈J

xj = p (5)

zj ≤ xj (6)

∑
j∈J

(sj + qj × rcj)zj ≤ B (7)

zj, xj ∈ {0, 1}∀j ∈ J (8)

yij0, yij1 ∈ {0, 1}∀i ∈ I, j ∈ J (9)

The objective function (1) of RPMP model is to minimize the total transportation cost

for satisfying all customer demands. The term
∑
j∈J

[
hidijyij0(1 − qj(1 − zj))

]
is the ex-

pected transportation cost between customer i and its primary facility, where (1−qj(1−zj))

is the probability that the primary facility is available. The term
∑
j∈J

[
hidijyij1

∑
r∈J,r 6=j

qryir0(1−

zr)

]
is the expected transportation cost between customer i and its backup facility, where

the term
∑

r∈J,r 6=j

qryir0(1− zr) is the probability that the primary facility failed (in this case,
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the backup facility is assumed to be available). Constraints (2) and (3) ensure that each

customer will be assigned only to one primary and one backup facility. Constraint (4)

guarantees that the facility must be established before serving any customer. Constraint (5)

ensures that only p facilities are opened. We add Constraint (6) to the formulation as a valid

inequality ensuring that a facility must be established before being fortified. Constraint (7)

is the total fortification budget constraint. Finally, both (8) and (9) represent integrality

constraints.

3.3.2 Reliable Uncapacitated Facility Location (RUFL)

We present briefly the RUFL formulation as detailed by [54]. The RUFL problem has sim-

ilar definition and assumptions as RPMP but the restriction on the total number of opened

facilities is dropped. However, In RUFL we have an additional establishment cost fj re-

quired to establish a new facility at node j. The goal of RUFL is to minimize the total

facility establishment cost and the total transportation cost for the customer to its primary

and backup facilities. Thus, in contrast to RPMP, RUFL has two different terms that will

affect the objective function (10): the total number (not predetermined) of opened facilities

and the transportation cost. The formulation is similar to that of RPMP in terms of decision

variables and constraints, except constraint (5) which is dropped in RUFL formulation. The

objective function is as follows:

Min
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

[
hidijyij0(1− qj(1− zj)) + hidijyij1

∑
r∈J,r 6=J

qryir0(1− zr)

]
(10)

The objective function (10) in RUFL model minimizes the total facility establishment cost

and the total transportation cost associated with satisfying all customer demands. The term∑
j∈J

fjxj represents total facility establishment cost while the remainder of the objective

function (10) is similar to equation (1).
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3.4 Evolutionary Boosting Technique

We propose a fast heuristic solution generation technique to reach near-optimal solutions

for RPMP and RUFL instances. As defined, a solution to any of these two problems cor-

responds to a particular assignment for the decision variables which satisfy the constraints.

Each such assignment represents a point in the solution search space and each of these solu-

tions has a corresponding cost. The objective functions of RPMP and RUFL refer to a solu-

tion or a set of solutions that have the same minimum cost. In RPMP, this cost involves the

total transportation cost whereas in RUFL, it involves the summation of all establishment

and transportation costs. Our approach iteratively probes or “navigates” various regions

of the solution search space in order to reach a near optimal solution progressively. The

search procedure is based on evolutionary learning whereby the characteristics of probed

regions help to “navigate” towards near-optimality.

We address uncapacitated facility location problem by combining learning with evolu-

tionary boosting technique. The latter was introduced in [52] to find near-optimal solutions

based on a statistical model. The optimal solution generation in combinatorial optimiza-

tion often renders the solution search procedure intractable for large networks. In contrast,

evolutionary boosting constructs a computationally tractable procedure for searching the

solution search space. The associated search involves repetitive generations of more com-

petitive solutions through an elitist selection. More precisely, in each iteration, we employ

a heuristic technique to generate a predefined number (SZ) of solutions for the problem

instance and add them to a solution pool. The boosting mechanism applies a periodic rein-

forced learning over this evolving population pool. The outcome progressively segregates

sub-optimal solutions from potential near-optimal solutions. For an uncapacitated facility

location problem instance, the approach relies on learning solution quality (as identified by

the cost) from successively generated solutions to improve decision making on segregating

suitable customer nodes from possibly unsuitable ones to find appropriate facility locations.
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3.4.1 Assumptions

In the current set of competitive solution samples generated during the multi-round evo-

lutionary learning technique, there will be solutions with highest and lowest costs. With

each iteration, we aim to search a better lowest cost solution and select a new solution

with reduced highest cost using elitist selection. This allows to progressively reach a set

of acceptable near optimal solutions by learning from elitist samples. The proposed proce-

dure converges to a set of near-optimal solutions by progressively increasing confidence on

determining certain nodes for facility establishment while segregating other nodes as un-

suitable for facility establishment. This also produces more and more competitive solutions

closer to the lowest cost solution in the selected pool.

We assume that, in a solution, the total number of customer nodes (|N |) is significantly

higher compared to the facilities (p). Typically, we consider p
|N | < 0.5. This makes an

inappropriate attribution of a node as a potential facility less likely, especially in the earlier

iterations of the evolutionary procedure. Another important assumption in this respect is

that the lowest cost solution of the combined solution pool exhibits monotonic decrease in

terms of solution cost after every iteration with a potential to reach a set of near optimal

solutions.

3.4.2 Evolutionary Learning and Solution Pool Handling

Evolutionary learning is related to the boosting technique as presented in [17]. Boosting

composes a series of weak rules/learners into a strong learner which is generally used for

classification purposes as discussed in [78]. In this setting, let xt = {xt1, xt2, . . . , xtn} be a

vector where xti is a binary variable which indicates whether node i is suitable to establish

a facility at iteration t. Simply, xti = 0 means that node i is deemed unsuitable to establish

a facility at iteration t. In classification, we call xt as feature vector. Actually, xti denotes

multiple instances for decision variable xi at each iteration. Now, let there also be a set of
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explored solutions each of which is denoted as su. In su, siu ∈ {0, 1} denotes whether a

facility is established on customer i in an observed solution su. Then, the boosting can be

captured through an additive model:

Hτ (su) = Hτ−1(su) + ατThτ (su) =
τ∑
t=1

αtTht(su) (11)

where Hτ is a boosted classifier generated from τ weak hypotheses identified by ht from

t=1 to τ . At an iteration t, hypothesis ht is incorporated with weight vector αtT (T denotes

transpose) to the classifier H t−1. Hypothesis ht focuses on assessing solutions that are not

well classified by H t−1 generated at previous iteration. In research literature, the value of

weight αtT and error minimization objective of hypothesis ht are specific to the boosting

technique.

In our setting, we also need additional means to explore only a small subset of com-

petitive solutions during successive iterations. In classification, we train a classifier using

a solution pool and corresponding known classes. If there exist two classes, near-optimal

and sub-optimal, a trained classifier tries predicting a class for an unknown solution. Thus,

a decision maker can classify a new solution using the classifier. Let ou be a boolean vari-

able that determines a binary class. If ou = true the solution is near-optimal whereas

ou = false corresponds to a sub-optimal solution. Thus, the classifier performs like a

black box with respect to the feature variables and the solution class.

There are two key challenges in solving RPMP and RUFL. First, since the optimal

solution is unknown during search, proper ou = true label generation is difficult. At every

next iteration, a currently labelled near-optimal solution can be found sub-optimal with

further exploration of newer low-cost solutions. However, at any iteration, ou = false can

be correctly labelled based on the cost of currently best-known solution and a user defined

gap. All solutions with the cost between the values of the currently best-known solution

and gap are called current competitive solutions. Second, the solution generation procedure
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can evaluate only a very small subset of solution samples from the solution search space of

medium and large scale problems. So, we require additional means to meaningfully reduce

the search space in order to sample progressively more competitive solutions. Evolutionary

learning addresses the forenamed challenges. Unlike traditional classification, it uses an

interpretable function fi(xti) to determine the effect of decision making such as considering

node i for facility establishment. A link function ζ(. . . ), as introduced in [52], represents

the relation between the expectation (E) of ou and the observed values of the decision

variables (xt) over a training sample su, as shown in Eq. (12):

ζ(E(ou|xt = su)) = γ0 +
n∑
i=1

fi(siu) (12)

where siu denotes the value of variable xti on a solution sample su. As such, Eq. (12) is a

Generalized Additive Model (GAM) where γ0 is an intercept. The value of γ0 +
n∑
i=1

fi(siu)

can be approximately computed based on various independent factors (e.g. location, con-

nections, demand, etc.) of a node in SCN for a given problem instance. We use heuristic

mechanism to locally generate the response (which represents a solution). This, in turn,

helps in segregating a solution sample su, at a particular iteration, with label ou = true

(for iteration t) or ou = false (for iteration t and all subsequent iterations) by marking

potentially near-optimal and sub-optimal solutions. Among the potentially near-optimal

solutions, if a feature xti is highly biased to a particular value 0 or 1 across the explored

competitive solutions, then fi(xti = 0) and fi(xti = 1) contribute dominantly in determin-

ing ζ(E(ou|xt = su)). For example, at iteration t, if all the near-optimal solutions in a pool

indicate that siu = 0 then it means that customer i should not be considered to establish a

facility. On the other hand, if the potentially near-optimal solutions exhibit a mix of siu = 0

and siu′ = 1, then node i’s impact on the decision making is less conclusive.

As such, a simple voting procedure over the elite solutions can be adopted, at every

iteration, to (re)assign conclusive dominances over the decision variables. As the number
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of customers is typically larger than the number of facilities, nodes receive votes for having

customer-only role. So, the nodes with most votes represent candidates out of which one

or more nodes will have fixed role in the next iterations. This reduces the solution search

space. The search procedure converges as more and more nodes increasingly retain their

role in the next iteration after the exploration of newer potentially near-optimal solutions.

A pseudo-random explore function is used to search for competitive solution samples.

At an iteration t, a sample is determined competitive if its cost is closer (within a defined

gap) to the existing lowest cost solution. A better lowest cost solution (mint) leads to the

removal of all solution samples where the solution cost is greater thanmint×(1+gap). The

explore function uses a generator template of weight vectors (wt) for n nodes as represented

by
(
wt1, w

t
2, · · · , wtj, · · · , wtn

)
. At iteration t, wtj denotes the bias of node j to establish a

facility. If wtj = 1, then node j is considered to have no inclination for the establishment

of a facility at its location during the solution search at iteration t. However, if wtj = 0,

the inclination of node j cannot be confirmed. We update these weights in each iteration

using voting and normalization. At iteration t, for all competitive solutions (St), if node

j appears with votetj (votetj ≤ |St|) times as customer-only node, then its weight can be

defined as:

wtj =


1,

If rank(votetj, j) ≤ cl or {wt−∆
j = 1 and mint−∆ ≤

mint−(∆+1)}
;

0, If j ∈ Sexp;
ρj
Zt ·

votetj
|St| , otherwise.

where, ∆ < t. t − ∆ refers to a previous iteration. ρj is problem specific and designed

from problem data (Section 3.4.4 discusses ρj in details). Zt is a normalization factor. The

updated weight is set as an input to a pseudo-random explore function in order to search

solutions according to the current weight vector. In relation to evolutionary learning, the

template vector wt serves for a numeric approximation of ζ(E(ou|xt = su)). Over τ

39



successive iterations, this weight vector is trained and updated such that the final template(
wτ1 , w

τ
2 , · · · , wτj , · · · , wτn

)
serves to accurately determine role of all nodes.

In the aforementioned, each decision variable (xti) is considered independent in the as-

sessment of near-optimal and sub-optimal solutions. The variable independence allows

every solution su to be considered as a point on a space of n orthogonal axes. In this set-

ting, near-optimal solutions can be seen as a subset of points delimited by a series of cutting

planes over the same orthogonal axes. Function fi helps computing the cutting planes over

variables xti. Thus, for each sample su, the error in boosting technique can be seen as the

difference: |Hτ (su)−ζ(E(ou|xt = su))|. This error may come from wrongly locating a fa-

cility due to sampling limitations in each iteration. Thus, our proposed procedure demands

for error mitigation strategies in the design. Furthermore, a threshold (MaxCl) is used in

the algorithm to decide a maximum number of nodes that can be declared as customer-only

(unsuitable for facility establishment) in each iteration.

3.4.3 Error Mitigation

At each iteration, a decision is made over previously undecided customer nodes whether

a subset of them can be excluded as potential candidates to establish a facility. In this

respect, error comes from wrong decision making at any iteration. We employ three error

mitigation strategies to handle such errors:

• Confidence Adjustment: A rank(. . . ) function is developed to strictly order unde-

cided customer nodes based on the last explored competitive solutions. The smaller

rank of node i indicates increased presence of node i as customer node in the last

explored competitive solutions. In each iteration, new customer nodes are excluded

as possible locations to establish facilities if their ranks are less than a variable cl

(cl ≤ MaxCl). If the exclusion is appropriate, there is a statistical increase in the

likelihood of finding better solutions, if they exist, with more similarity to current
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elitist solutions and lower cost. As such, we expect to identify more competitive so-

lutions in the next exploration. This potentially improves the lowest cost bound as

well. However, if the lowest cost solution of the current iteration exceeds the previ-

ous lowest cost solution, we assume that the last decision making is incorrect. Then,

the technique backtracks to the previous decision. It also reduces the value of cl to

max(1, b cl
2
c), Therefore, in the next iteration, it performs an alternative assignment

whereby a smaller number of additional nodes are excluded from establishing facil-

ities at their locations. If the current lowest cost solution still exceeds the previous

one at the limit of cl = 1, we place the respective node in an exception set Sexp.

Nodes in Sexp are not considered for exclusion in subsequent iterations.

• Node Swap: At the end of each iteration, we perform role swaps (between customer-

only nodes and customer nodes where facility establishment was considered for

newly derived competitive solutions) in pursuit of improving the lowest cost solu-

tion. This can also mitigate the impact of potential error(s) in selecting the locations

of facilities. This often allows to obtain the best possible lowest cost solution of the

current iteration based on the generated solution samples. During the swapping, if

certain customer node(s) present in Sexp are considered as customer-only node while

producing a competitive solution, we remove the respective node(s) from Sexp.

• Selective Exhaustive Solution Search: During the process run, more and more cus-

tomer nodes are excluded from the choice to establish facilities which also reduces

the search space significantly. In this respect, whenever the number of all remaining

possible combinations is less or equal to the user-defined sample size, an exhaustive

search is performed to identify the final solution.
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3.4.4 Weight Bias Determination

Sections 3.4.2 and 3.4.3 present a general problem-solving approach using evolutionary

learning. To solve RPMP, we use two sets of different inputs to construct ρj for each

node j. In RPMP, two sets of decision variables xj and zj determine one of three roles

for each node j: customer-only (C), unfortified facility (U-F) or fortified facility (F-F).

For each node j, we determine two values from the problem data to construct ρj . The

first one, ϕ1j corresponds to an independent bias of node j to establish a facility in its

location. The second one, ϕ2j represents its bias to fortify the facility. These two values

affect node’s role determination as well as the solution search. The value of ϕ1j is in-

fluenced by node’s demand and transportation cost. We propose assessing this value as a

ratio between weighted transportation costs considering j to host a facility against being

customer-only. Considering node j hosting a facility, let K1
(D−hi)hj

d2ij
determine the prob-

ability of facility j to serve customer i where K1 is a constant and D is an integer bigger

than highest demand of all nodes. Then, the probabilistic travel cost can be computed

as K1
(D−hi)hj

d2ij
(1 − qj)hidij = K1

hihj(D−hi)(1−qj)

dij
where (1 − qj) represents the probabil-

ity of facility j to be available. Similarly, if node j is customer-only, then it needs to

be assigned to a primary facility (i) and a backup facility (k) with transportation cost:

K2hj(D − hj)
[

(1−qi)hi
dji

+ qihk
djk

]
(K2 is a constant). We define ϕ1j as the following ratio:

ϕ1j = K

(1− qj)
[ ∑
i∈N\{j}

(D−hi)hj
dij

]
(D − hj)

[ ∑
{i,k}⊂N\{j}

[
(1−qi)hi
dji

+ qihk
djk

]]

where K = K1

K2
. The ϕ1j represents a ratio that indicates an approximate potential benefit

if node j is chosen to host a facility instead of being customer-only. A comparative lower

value of ϕ1j decreases the probability of the customer j to host a facility.

On the other hand, ϕ2j is influenced by fortification cost (fcj), available budget (B)
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and failure probability (qj). Node j can be fortified if and only if fcj ≤ B. Also, there is

no need to fortify if it is always available (qj = 0). Moreover, higher cost of fortification

for node j has larger impact on the available budget if node j is fortified. Finally, node j

should be fortified if the gain from fortification is high in terms of reducing the solution

cost. This gain can be represented in the form ofK ′qj(D−hi)
∑

i∈N\{j}
hi
dij

which indicates

the difference between the probabilistic transportation cost if node j hosts an unfortified

facility instead of fortified one. Thus, we define ϕ2j as follows:

ϕ2j =


0, If B < fcj

K ′(B − fcj)qj
[ ∑
i∈N\{j}

(D−hi)hi
dij

]
, otherwise.

To address RPMP, we define ρj as 1
(a·ϕ1j+b·ϕ2j)

. Here, a and b are user chosen constants

to represent the impact of ϕ1j and ϕ2j respectively on weight determination for wtj . Higher

value of ρj indicates node’s increased bias not to host a facility. ϕ2j determines node

j′s bias for fortification during new solution sample generation. It should be mentioned

here that given the template of weight vector, it is still possible to find solution(s) during

exploration where the combined facility fortification cost exceeds budget B. Additional

penalty is enforced to the solution cost in order to make those solutions non-competitive.

We approach RUFL by devising a procedure that leverages the RPMP solution approach

in a way that allows to appropriately determine the number of facilities p that have to

be established in order to reach near-optimal solution. In this pursuit, the procedure is

assessing the best trade-off between the overall establishment cost (which increases when

increasing p) and total transport cost (which decreases when increasing p).

Figure 1 depicts the RUFL solution finding strategy exemplified on the benchmark in-

stance of 100 nodes and budget of 180 (Figure 11 (a)). The key aspect is the case of RUFL

is the determination of p (facilities to be established) given the trade-off between increasing
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Figure 1: Near-optimal solution finding for a RUFL instance

establishment cost and lowering transportation cost. The procedure involves probing suc-

cessive p values and the generation of progressively narrow upper and lower bounds until

the best p value (yielding the lowest cost) is identified. We illustrate next the corresponding

procedure over 9 iterations. The solution costs are shown by two columns and a solid line

with respect to the primary axis. Since all cost values are higher than 15000, the primary

axis is accordingly bounded. The columns provide the costs obtained with budget 0 (black

column) and maximum budget to fortify all facilities (light gray column). The solution cost

with budget 180 (black solid line) is in between.

Solving with zero or maximum budget is faster since this allows either total fortification

or no fortification at all. Thus, we may effectively use reference estimation from zero and

maximum budget solutions (black and light gray) as the procedure involves probing several

p values. The corresponding p values are shown through a dashed line graph with respect

to the secondary axis. We apply two different series for the p value probing. Initially, we

increase p using the following series: pite+1 = (2× pite − pite−1 + 1). This increases p at a

higher rate than linear growth but not as much as exponential growth. This allows to avoid
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unnecessary probing of large p values (which incurs higher computation time). Once a pair

of lower and upper bound cost values is determined, we adjust p using binary search.

The probing procedure starts from p = 2 and continues in a series expansion of increas-

ing distance between the successive p values as long as the corresponding solution cost is

decreasing. Thus, from p = 2 to p = 4, the distance is 2, then from p = 4 to p = 7, the

distance is 3 and so on until p = 16 where the solution cost is increasing to 17810.001

compared to the previous value of p = 11 with a cost of 17381.001. Is this case, the proce-

dure switches to a binary search mode and continues the probing with p = (7 + 11)/2 = 9.

The resulting solution cost 17889.654 is higher than p = 11. Thus, the procedure contin-

ues probing with p = b(11 + 16)/2c = 13 which yields a cost of 17140.504. The next

probing is then at p = (11 + 13)/2 = 12 with a cost of 17173.312 which is higher than

17140.504. Thus, the procedure goes on to probe p = b(13 + 16)/2c = 14 which gives a

cost of 17201.652 which is also higher than 17173.312. The last two p values indicate that

the best p = 13 since the solution cost values for both p = 12 and p = 14 are higher than

the cost obtained for p = 13. Therefore, the procedure stops after probing p = 14.

3.4.5 Algorithm Design

Figure 2: Overview of the Solution Technique
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Figure 2 depicts the synopsis of our proposed solution technique. The procedure first loads

the problem data and input parameters. The former includes transport network, demand and

facility establishment cost (in RUFL) of each node and their probability of failure. The pa-

rameters are fortification budget and number of facilities (in RPMP). Then, the initial bias

(customer or facility) of the nodes is estimated based on the problem data. The procedure

continues by a cycle involving solution sampling and weight adjustment. The solution sam-

pling involves the exploration of solution samples using pseudo random explore function

followed by voting on the competitive solutions which allows to generate node ranking.

The weight adjustment boosts the competitive solutions leading to progressive solution

space reduction and solution pool update. The cycle terminates when the stop condition

is satisfied (e.g. maximum number of iterations reached, solution space reduction to lev-

els comparable to the sample count). Once the solution space is sufficiently reduced, an

exhaustive search is performed to find the final solution.

The proposed technique relies on successive sampling steps of the solution space whereby

the most likely customers are identified with progressively better confidence until the final

solution is identified. Each sampling step uses the explore function to generate a defined

number (SZ) of solution samples equal to the sample count. However, an elitist selection

is performed on the samples such that only the competitive (within a defined gap) samples

are retained. The samples are used in a voting process to extract knowledge with respect

to the role of the nodes as customers or facilities and subsequently rank the nodes. This

allows to segregate customers from facilities such that a progressively larger set of nodes

is assumed to represent customers. After the generation of each solution, an improvement

is attempted by carrying out customer-facility swaps.Then, we assign votes to the nodes as

many times as they appear as customer in the selected set of competitive solutions. Thus, if

a node represents a customer in every solution, it receives the maximum number of votes.

The received votes allow ranking the nodes in the decreasing order of the votes such that the

46



nodes with more votes (higher rank) represent more likely customers. If the same number

of votes are received by more than one node, the nodes are ranked in decreasing order of

their demand. The node index is used to assure total ordering if the demands are also same.

Thus, for equal votes, the nodes with lower demand are considered as more likely cus-

tomers. From the candidate customers, cl nodes are assumed as customers based on their

ranking from high to low, prior to the next sampling step. Algorithm 1 uses several initial

parameters and input variables stated in the beginning. These parameters and variables are

subsequently described along with the related logic where they are involved. There is a

main loop which can have at most ite iterations. Inside the main loop, we have a secondary

loop with SZ iterations whereby the solution sampling takes place for problem instance

Pi based on a weighted pseudo-random process. The sampling involves an elitist selection

(better than the best cost so far) such that only progressively better samples (out of the max-

imum SZ) are retained in Scurr. Each time a valid solution sample (respecting the budget

constraint and the elitist selection) is added to Scurr, the corresponding solution value is

also used to update the cost variable. After sampling, using acceptTh ∈ (0, 1) as threshold

(typically from 0 to 1%) for allowed tolerance from the current lower bound mint (needed

to handle the case where the best cost so far is nearly missed due to insufficient sampling),

the algorithm checks if Scurr[0] (the least cost solution of the current round) is less than or

equal tomint×(1+acceptTh). If so, all solutions with cost greater than cost×(1+gap) are

discarded (where gap ∈ (0, 1) represents the allowed cost gap, typically 10% from cost).

Then, the retained solutions are used to count votes for each of the nodes that appears as

client and is not a member of the exception set Sexp. Subsequently, these nodes are ranked

in a set S ′ in descending order of their received votes. While not explicitly mentioned in

the algorithm, the nodes that receive the same amount of votes can be further ranked using

their demand as previously explained. Using the ranking, the algorithm selects from the top

at most cl nodes (such that p facilities can still be established) that are not in the exception
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set Sexp and adds them to the set of potential customers St. Subsequently, if St is empty,

the search is pre-emptively terminated. Otherwise, the set of confirmed customers Scl is

updated to include St; cl is reset to MaxCl (maximum number of customers that can be

confirmed in a round) and Scurr[0] is used to update min. Otherwise, if cl is greater than

1, we half it (flooring to the integer part). If the previous condition does not hold, we add

S ′[0] to the exception set since based on the current sampling it could not be confirmed as a

customer and may represents a potential facility. Then, the weights are updated as well as

the cost (typically to a value that is slightly higher than the current lower bound). Finally,

if the combinatorial search space size (corresponding to the confirmed customers Scl) is

less or equal to SZ the algorithm employs an exhaustive search (since it will be equally

costly with the sampling procedure but guaranteed to provide the best lower bound) and

pre-emptively terminate the main loop.
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Algorithm 1 Solution Algorithm (RPMPSolver)
1: Initially: min ← ∞, cost ← ∞, cl ← MaxCl, Sexp ← φ, Scurr ← φ, Scl ← φ, St ← φ,
vote[0 . . . n− 1]← {0, 0 . . . 0},

(
wt

1 · · · wt
n

)
←
(
w0

1 · · · w0
n

)
;

2: Input: Pi, p, bgt, ite, SZ, gap, acceptTh;
3: Output: S∗;
4: while ite > 0 do
5: vote← {0, 0 . . . 0}, ite← ite− 1;
6: for i := 0 to SZ − 1 do
7: explore a new solution S using template

(
wt

1 · · · wt
n

)
for Pi (considering Scl ∪ St as customers)

seeking p facilities;
8: if fortifyCost(S) ≤ bgt and solCost(S) < cost then
9: Scurr ← Scurr ∪ {S}; cost← solCost(S);

10: end if
11: end for
12: if solCost(Scurr[0]) ≤ min× (1 + acceptTh) then
13: delete each S ∈ Scurr where solCost(S) > cost× (1 + gap);
14: for i := 0 to n− 1 do
15: for each S ∈ Scurr do
16: if i ∈ getClients(S) and i /∈ Sexp then
17: vote[i] = vote[i] + 1;
18: end if
19: end for
20: end for
21: rank n nodes in descending order of vote and assign to S

′
;

22: Scl ← Scl ∪ St, cl←MaxCl;
23: min← minimumOf(min, solCost(Scurr[0]));
24: else if cl > 1 then
25: cl← b cl2 c;
26: else
27: Sexp ← Sexp ∪ {S′ [0]}, cl←MaxCl;
28: end if
29: St ← φ, k ← n;
30: while k > 0 and |St| < cl and |Scl|+ |St| ≤ n− p and |Sexp| ≤ p do
31: if S

′
[n− k] /∈ Sexp and S

′
[n− k] /∈ Scl then

32: St ← St ∪ {S′ [n− k]};
33: end if
34: k ← k − 1;
35: end while
36: if |St| = 0 then
37: break;
38: end if
39: update

(
wt

1 . . . wt
n

)
and cost to explore new solutions;

40: if searchspace(Pi, p, Scl) ≤ SZ then
41: run exhaustive solver; break;
42: end if
43: end while
44: S∗ ← Scurr[0];
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3.4.6 Case Study

The case study involves a modified version of a 12 node (p=5) example from [26] as de-

picted in Figure 3.

Figure 3: Case Study: A 12 node example p-Median problem

While the cost matrix is the same, the failure probability and fortification cost values

have been borrowed from the first 12 nodes of the 30-node benchmark problem. The com-

plete data of the case study problem is presented in Table 5 and in addition, we consider a

fortification budget of 180.
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Table 5: Case Study: A 12 node example p-Median problem
i/j N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 Demand Fail_prob Fortif_cost

N0 0 15 37 55 24 60 18 33 48 40 58 67 15 0.014 38.69106

N1 15 0 22 40 38 52 33 48 42 55 61 61 10 0.045 50.6559

N2 37 22 0 18 16 30 41 28 20 58 39 39 12 0.015 34.88595

N3 55 40 18 0 34 12 59 46 24 62 43 34 18 0.035 64.265

N4 24 38 16 34 0 36 25 12 24 47 37 43 5 0.026 31.14998

N5 60 52 30 12 36 0 57 42 12 50 31 22 24 0.005 32.73

N6 18 33 41 59 25 57 0 15 45 22 40 61 11 0.042 52.84212

N7 33 48 28 46 12 42 15 0 30 37 25 46 16 0.048 58.95696

N8 48 42 20 24 24 12 45 30 0 38 19 19 13 0.044 61.11592

N9 40 55 58 62 47 50 22 37 38 0 19 40 22 0.017 38.26999

N10 58 61 39 43 37 31 40 25 19 19 0 21 19 0.035 49.8401

N11 67 61 39 34 43 22 61 46 19 40 21 0 20 0.038 37.2979

We detail the solution finding procedure in a stepwise manner by referring to Figure 4.

In essence, the procedure involves successive sampling with progressively enhanced ability

to segregate the most likely customers until the final solution is identified. The sampling

involves generating a SZ number of solutions using weighted randomized facility selection

where a progressively larger set of nodes is assumed to represent customers. This rests on

the assumption that is more likely to correctly perform an educated guess of a customer

node than it is for a facility node since the number of customers is larger than the number

of facilities. After each solution generation, an improvement is attempted via customer-

facility permutations aiming at lowering the cost. Thus, even though some nodes may be

considered as representing customers during the weighted randomized facility selection,

the improved solution may contain customer-facility swaps.

We start with an initial sampling step whereby a maximum size SZ solution pool is

formed. From this pool, only the solutions with gap = 10% cost increase or less compared

to the current best solution are further considered. Thus, whenever a newly formed solution

becomes the current best, all other solutions with cost over the gap are discarded such that
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the final size of the pool is notably smaller than SZ. Then, we evaluate each solution in the

pool and assign votes to the nodes that represent customers. Thus, if a node represents a

customer in every solution in the pool, then it receives maximum number of votes. More-

over, if a node is customer only in a subset of solutions, then it receives correspondingly

less than maximum votes. Otherwise, if a node never appears as customer, then it receives

0 (no) votes. Consequently, we can rank the customer node candidates in the decreasing

order of the votes provided by the solutions in the pool. Thus, the nodes with more votes

represent more likely customers. In this setting, the same number of votes may be received

by more than one customer. In this case, the nodes can be further ranked in the increasing

order of their demand. Thus, nodes with lower demand are considered as more likely cus-

tomers. This way, a list of potential client candidates is formed from which a maximum of

cl nodes are assigned as customers (in their ranking order) before the next sampling step.

At the end of each sampling step, the obtained solutions are evaluated against the best so-

lution obtained in the previous sampling steps. If the best solution of the current sampling

step is at least as good (same or lower cost) as the previous best solution, then this serves

to confirm that the previous client selection was adequate. Conversely, if the best solution

of the current sampling step has higher cost than the previous best solution, this indicates

an inadequate client selection at the previous step. This leads to backtracking on the previ-

ous customer assignment by progressively halving the cl nodes assigned as customers until

confirming an adequate client selection or at the limit (in case of only one client candidate)

placing the respective candidate in an exception list containing nodes that represent poten-

tial facilities. In this respect, the nodes in the exception list receive no votes in subsequent

iterations.
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Figure 4: Solution search trace for Case Study

Figure 4 depicts the successive iterations performed to identify the solution for the case

study problem. Since the latter has a small number of nodes and a correspondingly small

solution search space, we set cl = 2 in order to show in more detail the various steps

that can be involved during the generation of the solution. The leftmost column lists the

iterations along with the current best solution. The presence of ‘†’ mark at a particular

iteration signals that backtracking is performed due to solution quality degradation or lack

of any solution within gap. The next columns provide the votes obtained by the candidate

client nodes at each iteration. Also, on the top of each node column we can see the node

id and its demand in round parentheses. Then, the last two columns list respectively the

gradual client list identification and the exception list.

In the first iteration, the initial solution pool is generated and the current best solution

has a cost of 1485.68. The majority votes go to nodes 1, 6 and 8, all with 9 votes. For cl = 2,

only nodes 1 and 6 are selected as customer candidates since node 1 has demand 10, node

6 has demand 11 while node 8 has demand 13. In the second iteration, no improvement

is found but the previous best solution appears again. Thus, nodes 1 and 6 are deemed

as adequately identified customers. Moreover, in the same iteration, the majority votes go
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to node 8 (9 votes) which is selected as customer candidate. In the third iteration, a new

solution with decreased cost (1473.876) becomes the current best solution and confirms the

adequate customer identification of node 8. Also, in the same iteration, the majority votes

go to node 3 (9 votes) which is selected as customer candidate. In the fourth iteration, no

improvement is found but the previous best solution appears again. Thus, node 3 is deemed

as adequately identified among customers. In the same iteration, the majority votes go to

node 4 (8 votes) which is selected as customer candidate. In the fifth iteration, the best

solution found has increased cost (1475.109) compared to the current best solution. Thus,

backtracking is performed and given that node 4 was the only one selected as customer

candidate, it goes to the exception list. Furthermore, in the same iteration, the majority

votes go to node 2 (9 votes) which is selected as customer candidate. In the sixth iteration,

no improvement is found but the previous best solution appears again. Thus, node 2 is

deemed as adequately identified among customers. In the same iteration, the majority votes

go to node 10 (8 votes) which is selected as customer candidate. In the seventh iteration,

no improvement is found but the previous best solution appears again. Thus, node 10 is

deemed as adequately identified among customers. Moreover, in the same iteration, the

majority votes go to node 11 (4 votes) which is selected as customer candidate. In the

eighth iteration, no solution is found within gap such that backtracking is performed and

since node 11 was the only one selected as customer candidate, it goes to the exception

list. Furthermore, in the same iteration, the majority votes go to node 9 (3 votes) which is

selected as customer candidate. In the ninth iteration, no solution is found within gap such

that backtracking is performed and since node 9 was the only one selected as customer

candidate, it goes to the exception list. Also, in the same iteration, the majority votes

go to node 7 (2 votes) which is selected as customer candidate. In the tenth iteration,

no improvement is found but the previous best solution appears again. Thus, node 7 is

deemed as adequately identified among customers. Moreover, the tenth iteration is also the
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last since the number of adequately identified clients reaches the maximum value (7) such

that the remaining 5 nodes can be only facilities (0,4,5,9 and 11). The final solution with

cost of 1473.876 applies fortification on facilities 4, 5, 9 and 11 (see Appendix for detailed

solution steps).

Figure 5: Near-optimal solution finding via evolutionary learning

Figure 5 depicts the execution of the solution generation procedure for the case study.

We use a gap of 10% to keep near-optimal solutions (for voting) with respect to the lowest

solution cost found at each round. The gray columns in the upper side show the gap between

the lowest and highest solution costs as stored in each iteration.

As discussed in Section 3.4, the evolutionary learning helps in reducing the lower bound

(as long as no backtracking is involved as in iterations 5, 8 and 9) while improving simi-

larity among the solutions. The blue columns below show the number of solutions stored

in each iteration. We note the trend whereby progressively a smaller number of accepted

solutions are retained according to the already confirmed customers in each round. The

difference between the lowest and highest solutions is also reduced.
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3.4.7 Experimental Results

Tables 6 and 7 compare our RPMP solutions obtained by our approach against solutions

obtained using the LR-based algorithm published by [54].

Column Nodes provides the number of nodes while column Budget represents the forti-

fication budget. Column Facilities represents the established facilities where an underlined

number denotes a fortified facility. Columns LR:LB and LR:UB provide the lower and re-

spectively the upper bounds provided by the mentioned LR-based algorithm while columns

Best Known and Heur. Cost columns denote the best-known cost (where ∗ indicates optimal

value) and respectively the cost obtained by our approach. The Gap(%) column indicates

the gap of our solution cost with respect to the best known cost calculated as the difference

between unity and the ratio of these two costs. Column Time (s) presents our computation

time in seconds.

Our approach produces complete solutions in terms of established and fortified facilities

for each instance. For p=5, we obtain on the 30 and 49 nodes instances 0% Gap with respect

to the best known cost. The latter was obtained by means of an exhaustive search for all

instance where p=5. Moreover, for 100 and 150 nodes instances, we also obtain in many

cases a 0% Gap. For p=8, we also obtain in many cases 0% Gap with respect to the best

known cost (given by an exhaustive search for 30 and 49 nodes or the upper bound of the

LR-based algorithm for 100 and 150 nodes) and even negative values meaning our solution

cost is less than the upper bound of the LR-based algorithm. Actually, for p=8, in all

cases of 30, 49, 100 and 150 nodes, we produce better or same results in term of solution

cost when compared to the upper bound of the LR-based algorithm. Also, our approach

produces these results faster than the LR-based algorithm.
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Table 6: Benchmark details on RPMP problem instances for P=5
Nodes Budget Facilities LR:LB LR:UB Best Known Heur. Cost Gap(%) Time(s)

30

0 1,2,3,7,21 3694.2 3694.2 3694.2 * 3694.2 0.0 <1

30 1,2,3,7,21 3694.2 3694.2 3694.2 * 3694.2 0.0 1

60 1,2,3,7,21 3573.8 3573.8 3573.8 * 3573.8 0.0 1

120 1,2,3,7,21 3502.5 3502.5 3502.5 * 3502.5 0.0 1

180 1,2,3,7,21 3366.1 3382.1 3382.1 * 3382.1 0.0 1

240 1,2,3,7,21 3327.9 3344.4 3344.4 * 3344.4 0.0 1

300 1,2,3,7,21 3309.7 3309.7 3309.7 * 3309.7 0.0 1

360 1,2,3,7,21 3283.5 3299.2 3299.2 * 3299.2 0.0 1

49

0 1,3,5,6,11 8826.3 8870.4 8853.2 * 8853.2 0.0 <1

30 1,3,5,6,11 8826.3 8870.4 8853.2 * 8853.2 0.0 2

60 1,3,5,6,11 8704.7 8736.3 8736.3 * 8736.3 0.0 2

120 1,3,5,6,11 8625 8653.5 8653.5 * 8653.5 0.0 3

180 1,2,3,6,11 8538.4 8538.5 8538.5 * 8538.5 0.0 3

240 1,2,3,6,11 8417 8459 8459 * 8459 0.0 3

300 1,3,6,9,11 8360 8401.9 8401.9 * 8401.9 0.0 4

360 1,3,6,9,11 8325.4 8366.9 8366.9 * 8366.9 0.0 4

100

0 3,35,54,59,89 17 594.4 17682.8 17682.3 * 17682.3 0.0 <1

30 3,35,54,59,89 17 594.4 17682.8 17682.3 * 17682.3 0.0 4

60 2,3,35,54,59 17 328.8 17380.3 17380.3 * 17469.6 0.5112 6

120 2,3,54,83,88 17 086.4 17172.2 17143.3 * 17143.3 0.0 7

180 1,2,3,59,83 16 977.0 17061.6 17006.9 * 17061.5 0.32 7

240 1,2,3,59,83 16 897.5 16927.0 16926.9 * 16927.1 0.0012 7

300 1,2,3,59,83 16 847.2 16847.2 16847.2 * 16847.2 0.0 9

360 1,2,3,59,83 16 810.0 16886.6 16833.4 * 16833.4 0.0 9

150

0 3,15,59,65,87 20 136.7 20237.0 20214.2 * 20214.2 0.0 1

30 3,15,59,65,87 20 136.7 20237.0 20214.2 * 20214.2 0.0 9

60 2,3,15,59,65 19 881.7 19968.5 19968.5 * 19968.5 0.0 9

120 2,3,15,59,65 19 760.8 19829.1 19808.9 * 19808.9 0.0 20

180 1,2,3,15,59 19 653.5 19747.2 19669.4 * 19724.4 0.2788 12

240 1,2,3,15,109 19 494.4 19592.3 19581.9 * 19581.9 0.0 11

300 1,2,3,15,109 19 451.0 19547.3 19547.2 * 19547.2 0.0 11

360 1,2,3,8,15 19 512.0 19589.9 19530.9 * 19530.9 0.0 11
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Table 7: Benchmark details on RPMP problem instances for P=8
Nodes Budget Facilities LR:LB LR:UB Best Known Heur. Cost Gap(%) Time(s)

30

0 1,2,3,9,11,15,16,19 2192.5 2201.0 2200 * 2200 0.0 <1

30 1,2,3,9,11,15,16,19 2192.5 2201.0 2200 * 2200 0.0 1

60 1,2,3,9,11,15,16,19 2144.1 2150.1 2150.1 * 2150.1 0.0 1

120 1,2,3,9,11,15,16,19 2096.8 2102.7 2102.7 * 2102.7 0.0 1

180 1,2,3,9,11,15,16,19 2044.4 2053.7 2052.8 * 2052.8 0.0 1

240 1,2,3,9,11,15,16,19 2014.8 2024.7 2024.7 * 2024.7 0.0 2

300 1,2,3,9,11,15,16,19 1980.5 1990.5 1990.5 * 1990.5 0.0 2

360 1,2,3,9,11,15,16,19 1981.4 1991.3 1983.3 * 1983.3 0.0 2

49

0 1,2,3,4,6,7,19,26 5874.6 5903.2 5877.6 * 5877.6 0.0 <1

30 1,2,3,4,6,7,19,26 5874.6 5903.2 5877.6 * 5877.6 0.0 1

60 1,2,3,4,6,7,19,26 5772.2 5801.1 5777.7 * 5777.7 0.0 1

120 1,2,3,4,6,7,19,26 5724.6 5752.8 5729.4 * 5729.4 0.0 2

180 1,2,3,4,6,7,19,26 5678.3 5705.6 5695 * 5695 0.0 2

240 1,2,3,4,6,7,19,26 5638.9 5647.3 5647.3 * 5647.3 0.0 3

300 1,2,3,4,6,7,19,26 5625.1 5627.0 5627 * 5627 0.0 4

360 1,2,3,4,6,7,19,26 5580.9 5608.1 5608.1 * 5608.1 0.0 6

100

0 1,2,3,16,38,51,59,83 12711.3 12775.1 12775.1 12729.8 -0.36 <1

30 1,2,3,16,38,51,59,83 12711.3 12775.1 12775.1 12729.8 -0.36 4

60 1,2,3,16,38,51,83,88 12571.7 12593.1 12593.1 12652.2 0.46 5

120 2,3,16,38,51,54,83,88 12431.5 12491.3 12491.3 12454.4 -0.29 8

180 1,2,3,16,38,51,83,88 12311.3 12372.8 12372.8 12371.2 -0.01 12

240 1,2,3,16,38,51,83,88 12283.6 12339.3 12339.3 12311.9 -0.22 21

300 1,2,3,16,38,51,83,88 12230.6 12252.4 12252.4 12252.4 0.0 27

360 1,2,3,16,38,51,83,88 12198.9 12198.9 12198.9 12198.9 0.0 35

150

0 2,3,15,16,59,65,71,137 14682.7 14755.9 14755.9 14755.9 0.0 <1

30 2,3,15,16,59,65,71,137 14682.7 14755.9 14755.9 14755.9 0.0 2

60 2,3,15,16,59,65,71,137 14659.3 14685.7 14685.7 14650.3 -0.24 3

120 1,2,3,15,16,71,109,137 14494.1 14566.7 14566.7 14566.6 0.0 5

180 1,2,3,15,16,71,88,137 14436.3 14508.8 14508.8 14496.9 -0.08 8

240 1,2,3,15,16,71,88,137 14389.3 14462.3 14462.3 14447.6 -0.1 13

300 1,2,3,15,16,71,88,137 14385.3 14440.8 14440.8 14413 -0.19 17

360 1,2,3,15,16,71,88,137 14389.7 14401.5 14401.5 14398.7 -0.29 23
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Table 8 compares the results for different RUFL problem instances obtained using our

approach against the results published by [54] using LR-based algorithm. For the 30 and 49

nodes instances we obtain the best known cost. The latter was obtained using exhaustive

search for the 30 and 49 node instances. In case of 100 and 150 nodes instances our

results are showing the same or better cost compared to the best known cost given by the

corresponding the upper bound of the LR-based algorithm.

Figure 6 depicts a snapshot of a solution for a 100-node problem instance with five

facilities under different fortification budget. Figure 6(a) shows that when the available

budget is 0, nodes 2,53,58, 82 and 88 are selected as facilities. However, no facilities are

fortified since the budget is 0. Figure 6(b) shows that when the available budget is 120, the

selected facilities are 1,2,53,58 and 82. Among these facilities 1,53 and 82 are fortified.

Figure 6(c) represents the solution for budget 240. The selected facilities are 0,1,2,58 and

82. Among these facilities, 0,1 and 2 are fortified. We can note that the increased budget

value of 240 was better spent by selecting different nodes as facilities compared to the case

where the budget is 120. Finally, Figure 6(d) shows the solution for an available budget of

360. The selected facilities are 0,1,2,58 and 82. With this budget, all of these facilities are

fortified. It is clear that a higher budget helps to fortify more facilities which lowers the

cost (fortified facilities take both primary and backup role) while increasing reliability.

In Figure 7, we provide the performance appraisal of the heuristic technique by taking

the 30, 49, 100 and 150 node problem instances where P = 5. Thus, Figure 7(a) presents a

bar-graph depicting the total search space size for each problem instance and for increasing

budget values (0 to 360). In addition, Figure 7(b) depicts a dual axis graph illustrating

the same problem instances showing the percentage of the search space that is heuristically

visited (on the left side primary axis) and the computation time (on the right-side secondary

axis). We also provide the backtrack (BT) count for each heuristic search.
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In this context, we note that a higher backtrack count of 8 for the 150 nodes instance

with budget 120 leads to a notable increased computation time. We observe in Figure 7(a)

that the search space grows exponentially with the number of nodes and budget values,

ranging from sub-million to many billions. The heuristic search predominantly visits a

small fraction of the total search space as shown in Figure 7(b). However, in order to

obtain competitive solutions, a certain critical mass of a few million solutions is needed

during each search. Consequently, in the few cases (i.e. the 30-node instance) where the

total search space is comparable to the critical mass, the percentage of the search space

heuristically visited is high. In contrast for the cases where the search space is vastly

greater than the critical mass (i.e. 150 nodes instance), the percentage of the search space

heuristically visited is around 0.1%.

(a) budget=0, facilities={2,53,58,82,88} (b) budget=120, facilities={1,2,53,58,82}

(c) budget=240, facilities={0,1,2,58,82} (d) budget=360, facilities={0,1,2,58,82}

Figure 6: Solution profile for 100-node problem instance (P = 5)
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Table 8: Benchmark details on RUFL problem instances
Nodes Budget Facilities LR:LB LR:UB Best Known Heur. Cost Gap(%) Time(s)

30

0 1,10,12,13 7963.9 8003.9 8003.9 * 8003.9 0.0 <1

30 1,10,12,13 7963.9 8003.9 8003.9 * 8003.9 0.0 1

60 1,10,12,13 7854.1 7886.3 7886.3 * 7886.3 0.0 1

120 1,10,12,13 7751.5 7789.8 7789.8 * 7789.8 0.0 1

180 1,10,12,13 7713.3 7751.1 7751.1 * 7751.1 0.0 1

240 1,10,12,13 7701.0 7734.3 7734.3 * 7734.3 0.0 1

300 1,10,12,13 7697.7 7734.3 7734.3 * 7734.3 0.0 1

360 1,10,12,13 7696.0 7734.3 7734.3 * 7734.3 0.0 1

49

0 1,3,6,8,12,18,22,27 12090.9 12151.1 12151.1 * 12151.1 0.0 6

30 1,3,6,8,12,18,22,27 12090.9 12151.1 12151.1 * 12151.1 0.0 6

60 1,3,6,8,12,18,22,27 11983.0 12042.5 12042.5 * 12042.5 0.0 6

120 1,3,6,8,12,18,22,27 11933.2 11992.4 11992.4 * 11992.4 0.0 6

180 1,3,6,8,12,22,27 11899.6 11959.3 11959.3 * 11959.3 0.0 7

240 3,6,8,12,22,27,39 11884.4 11943.2 11943.2 * 11943.2 0.0 7

300 3,6,8,12,22,27,39 11846.5 11903.0 11903.0 * 11903.5 0.0 9

360 1,3,6,8,12,22,27 11837.2 11896.6 11881.3 * 11881.3 0.0 11

100

0 3,9,11,15,19,27,47,50,54,55,58,69,91 17295.3 17295.3 17380.3 17380.6 0.0 25

30 3,9,11,15,19,27,47,50,54,55,58,69,91 17295.3 17295.3 17380.3 17380.6 0.0 49

60 3,9,11,15,19,27,47,50,54,55,58,69,91 17185.6 17271.4 17271.4 17271.4 0.0 47

120 3,9,11,15,19,27,47,50,54,55,58,69,91 17084.9 17178.5 17178.5 17178.5 0.0 60

180 3,9,11,15,19,27,47,50,54,55,58,69,91 17056.0 17140.5 17140.5 17140.5 0.0 54

240 3,9,11,15,19,27,47,50,54,55,58,69,91 17031.0 17116.8 17116.8 17116.7 0.0 64

300 3,9,11,15,19,27,47,50,54,55,58,69,91 16999.8 17082.6 17082.6 17082.5 0.0 96

360 3,9,11,15,19,27,47,50,54,55,58,69,91 16999.8 17082.6 17082.6 17082.5 0.0 77

150

0 1,8,21,49,56,57,68,75,94,101,111,120,126 18953.7 19117.4 19117.4 19105.3 -0.06 31

30 1,8,21,49,56,57,68,75,94,101,111,120,126 18953.7 19117.4 19117.4 19105.3 -0.06 39

60 1,8,21,49,56,68,75,94,101,102,111,120,126 18840.4 19021.6 19021.6 19021.6 0.0 38

120 1,8,21,49,56,57,68,75,94,101,111,120,126 18838.9 19000.3 19000.3 18966.6 -0.18 62

180 1,8,21,49,56,57,68,75,94,101,111,120,126 18763.9 18916.9 18916.9 18945.25 0.15 44

240 1,8,21,49,56,57,68,75,94,101,111,120,126 18586.8 18907.5 18907.5 18870.4 -0.2 45

300 1,8,21,49,56,68,75,94,101,102,111,120,126 18600.2 18841.3 18841.3 18841.2 0.0 49

360 1,8,21,49,56,57,68,75,94,101,111,120,126 18545.7 18853.0 18853.0 18786.2 -0.36 346
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(a) Total search space size for each problem (in millions of combinations) vs. increasing

budget

(b) Percentage of search space heuristically visited (primary) and computing time (secondary)

Figure 7: Heuristic Performance for 30, 49, 100 and 150 node problem instances (P = 5)
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3.4.8 Sensitivity Analysis

In this section, we conduct a sensitivity analysis with respect to increasing demand priori-

ties and fortification costs. In addition, we assess the impact of different distance calcula-

tion methods (e.g. Euclidean vs. Geographic) on the generated solutions.

3.4.8.1 Demand Priority & Fortification Cost

We discuss next the effect of preferred establishment locations on the heuristic solution

with respect to demand priority and transport cost.This relates to practical situations where

certain locations may be considered as having more priority to access their supplying facil-

ities. Some nodes may represent the locations of various critical infrastructure objectives

(e.g. power plants, telecommunications relay hubs, etc.) which can have demands that need

to be served faster from a strategic perspective. In this setting, we employ a priority factor

over the existing demands specific to different number of nodes and assess the impact on the

corresponding solutions. We assume the presence of strategic objectives close to locations

with larger population since the locations in the used data set represent important urban

centers. While this abstraction is somewhat coarse (e.g. conventional power plants are not

necessarily adjacent to major urban centers but also not very distant), it serves nevertheless

to illustrate the effect on the heuristically obtained solutions.

We use, as example, the 100-node RPMP instance used in the benchmarks. Figure 8

contains two graphs that depict the increase in solution cost with respect to various priority

factors.
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(a) Increasing demand priority (b) Increasing demand priority and fortif. cost

Figure 8: Cost comparison for 100-node RPMP with fortification budget=240

We increase the priority factor as follows: 1.5, 2, 2.5 and 3 for the top 20 most pop-

ulated cities in the data set. The original demands are multiplied with the priority factor.

The total fortification budget is 240 and p = 8. Figure 8(a) shows the effect on the solution

cost with increasing demand priority. Figure 8(b) shows the effect when increasing both

demand priority and fortification cost by the same factor. The application of the factor

naturally results in more costly solutions. However, since the transport (i.e. the distances

among nodes) does not change, we reassess the solutions (after obtaining the initial lo-

cation of the facilities and the corresponding customer assignment) without applying the

factor. This way, we employ a form of a penalty method over the cost. The actual solu-

tion cost still increases albeit to a lesser extent since the initial solution differs from the

optimal/near optimal solution in terms of where the facilities are located (i.e. in locations

more favourable for the prioritized nodes). The corresponding transport cost and penalty

are separately shown in Figure 8(a) and Figure 8(b). We use the Euclidean metric for cost

calculation in order to have the means to assess the gap between the solution obtained for

preferred establishment locations and the near-optimal solution (as provided in the bench-

mark results which employ reference values obtained using the Euclidean metric). The gap

can provide an important insight to decision makers with respect to the relative increase in

cost (as percentage) compared to the optimal/near-optimal solution.
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Figure 9 illustrates the effects of demand priority on a geographic information system.

We apply the priority factor on demands and fortification costs over the same 100-node

RPMP instance as used in the benchmark results with budget 240 and P = 8.

(a) 2 × Demand Priority (b) 3 × Demand Priority

Figure 9: Solutions for 100-node RPMP with budget=240 and demand priority for 20%

nodes

Figure 9(a) and Figure 9(b) show the results obtained by prioritizing the demands of

20% nodes with a factor of 2 and respectively 3. We note that compared to the case where

no demand priority is considered (as in Figure 10(a) later), the results show depots located

at more populated United States cities. Thus, Figure 9 shows depots established respec-

tively at Houston, Jacksonville and Detroit instead of Garland (node 87), Montgomery

(node 82) and Dayton (node 15) depicted in Figure 10(a). Also, with increased priority

factor from double to triple, Seatle, with more population, is chosen as a facility instead of

Oakland.

3.4.8.2 Euclidean vs. Geographic Distance

Figure 10 contrasts the solutions obtained using Euclidean and respectively geographical

distances between nodes for the same 100-node RPMP problem instance.

65



(a) Using Euclidean distance between nodes (b) Using geographic distance between nodes

Figure 10: Solution comparison for 100-node RPMP instance (p = 8 and budget = 240)

We assess the solutions for p = 8 facilities under a fortification budget of 240. Figure

10(a) shows that when using the Euclidean distance, the selected facilities are 0,1,2,15,37,50,82

and 87. Among these selected facilities, 0,1,37 and 87 are fortified. Figure 10(b) shows

that when using the geographical distance the selected facilities become 0,1,2,20,50,58,82

and 93. Among these selected facilities, 0,2 and 58 are fortified. Thus, the solutions are

notably different according to the way of measuring the distance between nodes and sub-

sequently the solution cost. In case of using the Euclidean distance calculated based on

the latitude and longitude values taken as Cartesian coordinates, as by [54], the solution

cost is 12311.9. In contrast, the solution cost is 1228228.4 in case of using the latitude and

longitude values to compute the geographical distance, in kilometers. Thus, the Euclidean

abstraction used by [54] can lead to different solution both in terms of facility establishment

and fortification as well as transport cost. This aspect is even more important in the case of

RUFL where the objective function is used to minimize the combined cost of transport and

facility establishment.

Figure 11 depicts a solution comparison between the Euclidean and geographical dis-

tances for the 100-node RUFL problem instance under a fortification budget of 180. Since

the calculated geographical distances are approximately two orders of magnitude greater

than in the Euclidean case, we apply a corresponding magnification factor for the facility
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establishment cost. Without such factor, the best solution would be to establish facilities at

every node since the savings in transport cost would cover the establishment cost.

(a) Using Euclidean distance between nodes (b) Using geographic distance between nodes

Figure 11: Solution comparison for 100-node RUFL problem with fortification budget=180

Figure 11(a) shows that when using the Euclidean distance, the solution has 13 estab-

lished facilities (2,8,10,14,18,26,46,49,53, 54,57,68 and 90). Among the selected facilities

2,26,49 and 53 are fortified. Figure 11(b) shows that when using the geographical distance,

(along with multiplying the establishment cost of all facilities by 100), the solution has

12 established facilities (2,8,10,14,18,26,46,49,53,57,68 and 90). Among these selected

facilities, 2,26,49 and 53 are fortified. The solution is different according to the way of

measuring the distance between nodes. In case of using the Euclidean distance as men-

tioned by [54], the solution cost is 17140.5. In contrast, the solution cost in case of using

the geographical distance, is 1709895.2. Also, in this case, the use of geographical distance

is more appropriate since only 12 facilities are required to be established.

3.4.9 Conclusion

In this chapter, we presented an evolutionary learning technique to near-optimally solve

reliable facility location problems where potential facilities have individual failure proba-

bilities. We addressed the RPMP and RUFL problems using a generic approach that can
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also be used to solve similar class of problems (e.g. PMP, UFL, etc.) with simple modifi-

cations. The approach is innovative and allows faster solution generation via evolutionary

learning whereby the solution search space can be significantly reduced by progressively

fixing the role of some nodes as customer only after learning from successive generations

of solutions obtained using an evolving solution generator template. Of key significance

is the possibility of selecting of a smaller or larger number of nodes to receive fixed roles

per iteration, which allows for a trade-off between performance and computing time. This

represents a distinctive feature compared to other approaches such as Tabu search. We

provided the key highlights of the proposed approach using an illustrative example and

demonstrated the performance via benchmark results. Our solution generation is affected

by the following key factors: the problem size, the number of facilities, fortification budget

and transport network properties. The solution quality is also affected when the facility

count is comparatively larger with respect to the total number of nodes since accurately

ascertaining the nodes role as customer only turns increasingly difficult with the increase

in the number of facilities. Moreover, a limited fortification budget allowing just partial

fortification also influences the solution quality as more extensive exploration of the so-

lution space is needed. Conversely, there are situations where the budget is too small to

allow any fortification at all or is sufficiently large to fortify all established facilities. In

such situations, the solution search space is reduced since there is no need to explore var-

ious combination of spending the fortification budget. In general, this leads to obtaining

more competitive solutions. The solution quality may also be influenced by the transport

network setting, which may correspond to a sparse search space where the exploration of

solution requires visiting more local minima (potentially involving backtracking) in order

to reach a good quality solution.
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Chapter 4

Capacitated Facility Location Planning

Under Disruption

4.1 Introduction

CFL problem represents a subclass of FLP where a number of facilities with limited ca-

pacity must be established to serve customers with known demands such that the optimal

solution minimizes an objective function typically involving establishment and transporta-

tion costs. In CFL problem, each node has an associated facility establishment cost and

limited capacity so the decision makers have to establish an optimal number of facilities

to minimize overall sum of establishment cost and transportation costs to meet all cus-

tomer demands. Thus, in general, FLP assumes guaranteed availability of and unlimited

capacity of the established facilities. Conversely, Reliable Capacitaed Facility Location

(RCFL) problem considers a predefined probability of failure and limited capacity for each

node. Therefore, in this context, each customer is assigned to multiple facilities (typically

a primary and a backup) to ensure service continuity in the existence of such disruptions.
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4.2 Model Assumptions

The following assumptions are typically made to define RCFL problem:

• Facilities have limited capacity.

• If a facility fails, it will lose portion of its capacity proportional to the failure proba-

bility and if it is fortified it maintains its original capacity.

• Facility failures are independent.

• Each customer is assigned to primary and backup facilities unless the primary facility

is fortified (i.e. totally reliable) in which case the customer still has a backup facility

but won’t be assigned to.

• Probability of a simultaneous failure of primary and backup facilities is negligible

for each customer.

• The fortification budget is fixed (represents an input to the problem).

4.3 Model Formulation

We present next the details and initial non-linear formulation of the RCFL problem based

on a modification of the model introduced by [54] where we add supplementary valid in-

equality and capacity limitation constraints. In Section 4.4, we detail how we linearize the

initial model after separating it into two sub-models.

RCFL problem is represented over, a complete network of interconnected nodes in

which some nodes represent customers with particular demand value while the others rep-

resent specific locations associated with predefined failure probability and limited capacity

where facilities can be established. The problem aims to serve all customers by establishing

a number of facilities such that the total establishment cost and transportation cost to each
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customer from one primary and one backup facilities, is minimum. Additionally, the prob-

lem assumes a fixed budget available to fortify a number of selected facilities to increase

network reliability.

We introduce a non-linear integer programming formulation to tackle the capacitated

situation of the FLP under the risk of disruption. The formulation involves a set of I

customers and a set of J facilities where a subset of J has to be established to serve the

set of I customers. Each customer i ∈ I has a specific demand di. Let cij >= 0 be the

allocation cost of customer i ∈ I to facility location j ∈ J . For each facility j there exist

additional establishment cost fj required to establish a new facility at node j and limited

capacity capj . Also, each facility has a capacity capj and is assigned to a failure probability

qj where 0 ≤ qj ≤ 1. Moreover, each facility has a fortification cost fcj consisting of

a setup cost sj and a reliability cost qj × rcj where rcj denotes the cost related to unit

reduction in the failure probability. Finally, total fortification budget in this model is B.

The decision variables used in the formulation are as follows:

xj =

 1, If a facility is established at location j

0, otherwise.

zj =

 1, If the facility at location j is fortified

0, otherwise.

yij0 =

 1, If customer i is served by primary facility j

0, otherwise.
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yij1 =

 1, If customer i is served by backup facility j

0, otherwise.

The objective function for optimization is expressed as follows:

Min
∑
j∈J

fjxj +
∑
i∈N

∑
j∈J

[
hidijyij0(1− qj(1− zj)) + hidijyij1

∑
r∈J,r 6=j

qryir0(1− zr)

]
(13)

Subject to: ∑
j∈J

yij0 = 1 ∀i ∈ I (14)

∑
j∈J

yij1 = 1 ∀i ∈ I (15)

yij0 + yij1 ≤ xj ∀i ∈ N, j ∈ J (16)

∑
i∈I

[di(1− qj)yij0 + diqjyij1] ≤ (1− qj)capj ∀j ∈ J (17)

zj ≤ xj (18)

∑
j∈J

(sj + qj × rcj)zj ≤ B (19)

zj, xj ∈ {0, 1} ∀j ∈ J (20)

yij0, yij1 ∈ {0, 1} ∀i ∈ N, j ∈ J (21)

The objective function Eq. (13) is used to minimize the total facility establishment

cost and the total transportation cost together for the customers assigned to their primary

and backup facilities. The term
∑
j∈J

fjxj represents total facility establishment cost. The

term
∑
j∈J

hidijyij0(1 − qj(1 − zj)) is the expected transportation cost between customer i

and its primary facility, where (1 − qj(1 − zj)) is the probability that the primary facility
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is available. The term
∑
j∈J

hidijyij1

( ∑
r∈J,r 6=j

qryir0(1 − zr)
)

is the expected transportation

cost between customer i and its backup facility, where the term
∑

r∈J,r 6=j

qryir0(1− zr) is the

probability that the primary facility failed (in this case, the backup facility is assumed to be

available).

Constraints Eq. (14) and Eq. (15) ensure that each customer will be assigned only

to one primary and one backup facility. Constraint Eq. (16) guarantees that the facility

must be established before serving any customer. Constraint Eq. (17) ensures that the total

demand assigned to a facility will not exceed its capacity. Constraint Eq. (18) is a valid

inequality ensuring that a facility must be established before being fortified. Constraint Eq.

(19) ensures that the total fortification cost is within the available budget. Finally, both Eq.

(20) and Eq. (21) represent integrality constraints.

4.4 Separation-Linearization Solution Approach

Based on the definition of RCFL, Constraint Eq. (18) states that the facility must be es-

tablished before being fortified. This simply means that the facility establishment, and of

course customer allocation, are prior to the facility fortification. Based on the foregoing ex-

planation, we can separate the model introduced in Section 4.3 to two separate sub-models

typically name: establishment-allocation and fortification.

In the following two sections 4.4.1 and 4.4.2 we detail the foregoing two sub-models.

4.4.1 Establishment-Allocation

Based on the separation criteria explained above, the objective function of RCFL described

in Eq. (13) can be rewritten as follows:

Min
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

[
cijyij0(1− qj) + cijyij1

∑
r∈J,r 6=j

qryir0

]
(22)
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Subject to: ∑
j∈J

yij0 = 1 ∀i ∈ I (23)

∑
j∈J

yij1 = 1 ∀i ∈ I (24)

yij0 + yij1 ≤ xj ∀i ∈ N, j ∈ J (25)

∑
i∈I

[di(1− qj)yij0 + diqjyij1] ≤ (1− qj)capj ∀j ∈ J (26)

xj ∈ {0, 1} ∀j ∈ J (27)

yij0, yij1 ∈ {0, 1} ∀i ∈ I, j ∈ J (28)

4.4.1.1 Model Linearization

Theorem 1 The RCFL is NP-hard. Proof. We prove this by showing that a special case of

the RCFL is NP-hard. If we consider the fortification budget B = 0 and the facility failure

probability qj = 0, ∀j ∈ J , then RCFL becomes the classical CFL problem which has

been proven to be NP-hard as in [40].

RCFL is proven to be NP-hard and has a non-linear objective function as in Eq. (22) since

cijyij1
∑

r∈J,r 6=j qryir0 can be expressed as cij
∑

r∈J,r 6=j qryij1yir0 which is the non-linear

part of the objective function. The optimal solution of such problem requires combinatorial

optimization that often renders the solution search procedure intractable for large supply

networks and one of the possible solutions is to linearize the summation of product of the

decision variables yij1 and yir0 model by introducing an auxiliary decision variable to the

proposed model as follows. Let vijr = yij1yir0 where

vijr =

 1, If customer i is served by primary facility r and backup facility j

0, otherwise.
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Based on the foregoing, the RCFL problem can be rewritten as follows.

Min
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

[
cijyij0(1− qj) + cij

∑
r∈J,r 6=j

qrvijr

]
(29)

Subject to: ∑
j∈J

yij0 = 1 ∀i ∈ I (30)

∑
j∈J

yij1 = 1 ∀i ∈ I (31)

yij0 + yij1 ≤ xj ∀i ∈ N, j ∈ J (32)

∑
i∈I

[di(1− qj)yij0 + diqjyij1] ≤ (1− qj)capj ∀j ∈ J (33)

vijr ≤ yir0 ∀i ∈ I, j ∈ J, r ∈ J, r 6= j (34)

vijr ≤ yij1 ∀i ∈ I, j ∈ J, r ∈ J, r 6= j (35)

yir0 + yij1 ≤ vijr + 1 ∀i ∈ I, j ∈ J, r ∈ J, r 6= j (36)

xj ∈ {0, 1} ∀j ∈ J (37)

yij0, yij1, vijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r ∈ J, r 6= j (38)

4.4.2 Fortification

In the fortification sub-model, a specific criteria is used to rank the established facilities

that have been produced by the establishment-allocation sub-model in the normal scenario

nef (recall in this case the facility failure probability is equal to 0) which are considered

the most reliable and optimal facilities.
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We calculate the rank of each facility fj as follows:

• If a facility fj is established in the normal situation (i.e., fj ∈ nef ) then Rank(fj)

= Clients(fj) where Clients(fj) is the number of clients that are assigned to fj

• otherwise Rank(fj) = 0

Thus, the total expected cost reduction from fortifying facility fj is Rankj and accordingly

our objective is to maximize the utilization of the available fortification budget B over the

set of established facilities. Let fcj be the cost of fortifying a facility zj , then the problem

can be expressed as follows.

Max
∑
j∈J

Rankj zj (39)

Subject to: ∑
j∈J

fcj zj ≤ B (40)

zj ∈ {0, 1} ∀j ∈ J (41)

4.4.3 Solution Approach Summary

According to section 4.4.1, the first goal is to use the model introduced in section 4.4.1.1

to generate the optimal location for facility establishment and the optimal customer alloca-

tion such that the total cost including establishment and transportation costs is minimum.

Finally, the second goal is to use the model introduced in section 4.4.2 to optimally fortify

subset of the established facilities according to available fortification budget.

Since the model is linearized, we propose an iterative approach based on CPLEX solver

to generate exact and optimal solutions for RCFL instances in terms of facility establish-

ment and customer allocation as well as using implementation for the knapsack problem to

generate the optimal facility fortification strategy. According to the problem definition, a
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solution of RCFL problem instance corresponds to a particular assignment for the decision

variables which satisfy the constraints and has a corresponding cost. In RCFL, this cost

involves the summation of facility establishment and transportation costs. Our approach

iteratively solve a problem instance as follows.

The first phase is called the Normal Allocation Phase (NAP) in which we consider that

the facility failure probability is equal to 0 and we call CPLEX solver to generate the opti-

mal assignment that minimize the linear objective function in Eq. (29). The output of this

phase is the set of established facilities in the normal scenario nef , the customer allocation

as well as the corresponding normal optimal solution cost (Nos). The set nef contains the

optimal facilities that minimize the total establishment and transportation costs.

The second phase is called the Disrupted Allocation Phase (DAP) in which a failure

probability is assigned to each of the available locations where we can establish a facility.

We call CPLEX solver to produce the optimal assignment that minimize the linear objective

function in Eq. (29). The output of this phase is the set of established facilities in the

disruption scenario def , the customer allocation as well as the current optimal solution

cost (Cus). In general, a subset of the elements in the set def will be found in the set nef .

The third phase is called the Fortification Phase (FP) in which we solve the sub-model

detailed in Section 4.4.2. The output of this phase is the set of fortified facilities (sff )

using the available fortification Budget B.

Finally, in the case where the problem is solved for multiple budget values, we iter-

atively call knapsack solver with facility fortification costs as well as the available forti-

fication budget, then CPLEX solver with multiple input parameters including the matrix

of allocation cost, facility establishment costs, facility capacities, facility failure probabil-

ities. In this case, by using the output of the third phase, the proposed approach identifies

which facilities will be fortified and then updates the facility failure probabilities vector
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accordingly. The approach terminates, if facility fj is selected to be fortified then the cor-

responding failure probability will set to zero (i.e., qj = 0) and the CPLEX solver will be

called again with the modified parameters.

The approach terminates according to the following conditions:

• No more budget to fortify other facilities, or

• (1− Cus

Nos
) <= 10%

whereNos represents the optimal solution cost in the normal scenario whileCus represents

the optimal solution cost in the disrupted scenario. Note that the above 10% is user defined

value.

4.4.4 Algorithm Design

The synopsis of our proposed iterative solution technique is depicted in Figure 12

Figure 12: Overview of the Solution Technique
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Algorithm 2 summarizes the main steps in the proposed iterative approach as follows.

Algorithm 2 RCFL Solution Algorithm (RCFLSolver)
1: i = Number of customers, j = Number of facilities

2: cij = Allocation cost matrix

3: di = Customer demand, capj = Facility capacity

4: fj = Facility setup cost

5: fortj = Facility fortification cost

6: rankj = Facility rank

7: qj = Failure probabilities

8: B = Maximum fortification budget

9: Cub[k] = Current available budget

10: Nos Solution cost in normal situation

11: Cus Solution cost in disruption situation

12: Initialization

13: Set q = 0;

14: Input i, j, d, cap, c, q

15: Call CPLEX solver (i, j, d, cap, c)

16: Get Allocation strategy, Nos

17: Update facility failure probabilities q

18: Call CPLEX solver (i, j, d, cap, q, c)

19: Get Get Customers Allocation, Cus

20: Calculate facilities rank

21: Set k=0

22: Main body of the algorithm

23: while Cub[k] ≤ B or (1− Cus

Nos
) <= 10% do

24: Call knapsack (cub[k], Rank, fort)

25: Update facility failure probabilities q

26: Call CPLEX solver (i, j, d, cap, q, c)

27: Get Customers Allocation, Cus

28: end while

29: Return CuS
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4.4.5 Case Study

We present next an illustrative example of a RCFL instance, as depicted in Table 9. The

example is based on a modified version of a 15 node instance where the number of clients

is 10 and the number of candidate locations to establish facilities is at most 5. While the

cost matrix is borrowed from [40], the failure probabilities and the fortification cost values

have been borrowed from the first 10 nodes of the 30-node problem considered by [54].

Table 9: 15 Nodes Instance Details
Client Customer Demand Facility Capacity Estab. Cost Failure Prob. Fort. Cost

1 12 1 59 329 0.014 18.691

2 18 2 48 144 0.045 30.656

3 18 3 65 408 0.015 14.886

4 19 4 43 202 0.035 44.265

5 26 5 64 369 0.026 11.15

6 21

7 18

8 19

9 18

10 11

Table 10 presents the 10 by 5 matrix of transportation costs between customers and

facilities where the data is borrowed from [40]. We initially use the procedure to generate

the optimal solution Nos in the normal scenario (i.e., facility failure probability qj is equal

0). The solution provides the exact set of established facilities and customer allocation.

Table 11 presents the optimal solution details of the 15 nodes instance in the normal (no

disruption) scenario. The set of established facilities in this scenario are considered to be

the most reliable.
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Table 10: Customer Allocation Cost
i/j F1 F2 F3 F4 F5

C1 8 85 5 49 42

C2 9 0 4 65 59

C3 35 21 65 94 46

C4 60 80 82 46 16

C5 63 44 67 47 62

C6 96 72 38 51 26

C7 51 36 34 53 71

C8 81 66 17 78 70

C9 10 62 2 26 0

C10 95 61 92 44 54

Table 11: Solution Details of 15 Nodes RCFL Instance in Normal Scenario
Facility Rank Assigned Customers Estab. Cost Allocation Costs Total

1 3 1, 2, 3 329 52 381

2 2 7, 8 144 102 246

4 2 5, 10 202 61 263

5 3 4, 6, 9 369 42 411

According to the information presented in Table 11, the established facilities are 1, 2,

4, & 5 and the optimal solution cost in the normal scenario is 1331.

By updating the failure probabilities associated with each facility we use CPLEX solver

to generate the optimal solution Cus in the disruption case.

The solution provides the exact set of established facilities, the role of each facility

(primary or backup) as well as the customer allocation. The optimal solution of the 15

nodes instance in the disruption scenario (where the facilities are disrupted) is detailed in

Table 12. According to Table 12, the selected facilities are: 1, 2, 4, 5 and the optimal

solution cost in the disrupted case increases to 1333.9, which reflects the effect of the

disruption.
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Table 12: Customers Allocation of 15 Nodes RCFL Instance in Disruption Scenario
Facility Role Assigned Customers

1
Primary 1, 2, 3

Backup 7, 9

2
Primary 7, 8

Backup 2, 3, 5

4
Primary 5, 10

Backup 4, 6

5
Primary 4, 6, 9

Backup 1, 8, 10

The established facilities will be fortified according to their rank, which corresponds to

the number of their assigned customers (more customers corresponds to higher rank) and

our procedure involves progressively enhanced ability to segregate the most likely facilities

that will be fortified based on their effect in reducing the solution cost. The output of the

previous process are facilities 1, 2, 4, and 5 with ranks 3, 2, 2, and 3 respectively. We use the

knapsack part of the proposed approach to sequentially fortify a subset of the established

facilities based on the facility rank values and the available fortification budget. We use

the information generated from the knapsack process and update the failure probabilities

associated with the facilities that have been selected to be fortified (i.e., if fj is fortified

then qj = 0). Then, we call the CPLEX solver to generate the next solution. Table 13

illustrate the output of the previous process where the underlined elements are the facilities

that have been selected for fortification.

Table 13: Final Solution Details of 15 Nodes RCFL Instance
Instance Budget Facilities Best Cost Time(s)

15 Nodes

0 1,2,4,5 1333.9 4

30 1,2,4, 5 1332.1 4

60 1,2,4, 5 1332.1 4

120 1, 2, 4, 5 1311 4

In Table 13, it is observed that the effect of disruption on the solution cost is reduced
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by using the available budget to fortify some selected facilities. For instance, using budget

30, the cost has been reduced from 1333.9 to 1332.1 with total gain of 1.8. It might be

unrealistic to use budget 30 to save 1.8 however from SCN activities and sustainability

perspectives, the amount of 1.8 can represent savings on daily, weekly or monthly basis in

contrast to a one time saving. On the other hand, the amount of 1.8 includes transportation

cost but can also include maintenance operating cost, etc. Thus, it might be beneficial to

spend a fixed fortification amount once in order to have repetitive savings on the long term.

Figure 13 depicts a snapshot of the relation between the disruption and fortification on

one side and the solution cost on the other side. The figure shows that if the SCN facilities

are subject to disruption and in the absence of any countermeasure (no fortification) the

solution cost increase from 1331 to 1333.9. The figure also shows that by using the forti-

fication budget, we can hedge against the effect of such disruption. Finally, it is observed

that if there exist enough budget to fortify all the established facilities the solution cost is

brought back to the normal situation where the SCN is totally reliable.

Figure 13: Disruption and Fortification Effect

Figure 14 depicts a snapshot of the relation between the disruption represented by the

facility failure probabilities (expressed as percentages) and the solution cost on a 30-node

instance borrowed from [40] where the failure probabilities are borrowed from [54]. The

relation between the facility failure probability and solution cost is almost linear at the

beginning when the failure probability percentage is low. On the other hand, when the
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failure probability percentage starts to increase, the relation turns to be quadratic which

indicates the significant negative effect that disruptions can have of the SCN reliability and

shows the importance of hedging against such disruption.

Figure 14: Disruption Effect vs. Solution Cost

4.4.6 Experimental Results

The experiments for RCFL have been conducted using a dataset comprising seven rele-

vant instances used in [40] where the customer allocation costs, the cusomers’ demands,

the fixed costs for establishing facilities, and the facilities’s capacities are available on-

line, while the fortification costs and facilities failure probability are taken from [54]. The

dataset contains respectively 30, 45, 60, 70, 60, 105 and 120 nodes problem instances.

Each instance involves a set of nodes representing the customers associated with their de-

mands and a set of nodes location representing the serving facilities as well as transport

cost between the nodes in both sets. The knapsack sub-model of the proposed approach is

implemented using C# and the benchmark results have been obtained using a 64-bit core

i7 machine, with 8 GB RAM, running Windows operating system. The following para-

graphs discuss the performance assessment of the proposed approach on the reference set

of problem instances.

Table 14 partially details the solution generated by our approach in the normal case

where the SCN is not exposed to any disruption. In other words, we consider that the
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facility failure probability is equal to 0. Each solution includes the established facilities,

customer assignment, solution cost, fortification strategy as well as the rank of each of the

established facilities. We recall that facility rank is the total number of customers served

by a facility in the normal scenario. Our solutions is compared with the optimal solutions

reported by [40]. We obtain the same results in terms of established facilities, customer

assignment, and solution cost meanwhile we do not compare the time since we used a

different computing platform.

The information in Table 14 provide another important insight to decision makers with

respect to the facility rank since by calculating and sorting based on the rank of each of the

established facilities, the decision makers can realize on what facilities they have to focus

(which of these facilities they must start to fortify to reduce most of the failure effect).

Table 14: Solution Details of RCFL Problem Instances in Normal Scenario
Instance Estab. Facilities Rank Best Cost Optimal Cost (†) Time (s)

30-nodes 2, 3, 4, 5, 7, 8, 9 3, 3, 2, 4, 3, 2, 3 2014 2014 12

45 Nodes 2, 5, 6, 7, 11, 14, 15 2, 1, 6, 7, 5, 6, 3 4366 4366 81

60 Nodes
1, 3, 5, 6, 7, 9, 12,

13, 14, 16, 17, 20

5, 4, 3, 2, 5, 5,

4, 1, 3, 2, 1, 5
15607 15607 259

70 Nodes
1, 2, 3, 4, 5, 6,

8, 11, 14, 16, 19, 20

7, 2, 8, 6, 6, 25,

7, 3, 4, 17, 11, 4
4448 4448 183

90 Nodes
6, 11, 16, 17,

21, 23, 24, 28

12, 5, 4, 7,

10, 10, 5, 7
4701 4701 200

105 Nodes
2, 3, 8, 10, 13,

14, 15, 22, 24

7, 9, 8, 8, 10,

8, 7, 10, 8
7887 7887 551

120 Nodes 13, 14, 17, 18, 19, 20 22, 13, 7, 11, 16, 13, 17, 13 5937 5937 814

Optimal Cost (†): The optimal solution costs reported in [40]

Table 15 partially details the solution generated by the proposed approach in the dis-

ruption scenario (i.e., each facility in SCN is subject to failure probability). The generated

solution includes the established facilities, customer assignment to primary and back facil-

ities and the solution cost. The obtained solutions are compared to the solutions obtained
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by the same approach in the normal case. The Avg. Fail(%) column represents the aver-

age failure probability for each instance and is calculated as follows: 1
J

∑
j∈J

qj , where J

is the total number of facilities in the corresponding instance and qj represents the failure

probability of facility fj .

The Gap% represents the gap between the solutions obtained in the normal situation

(i.e., no facility disruption) and the solution obtained in the disruption situation (i.e., all

or a subset of the facilities are partially disrupted) and is calculated as follows: Gap% =

(
Disruptedsolution

Normalsolution
− 1) ∗ 100

In partial disruption situation, the facility loses portion of its capacity proportional to

the failure probability associated to the facility. We note thatGap% is always positive since

the solution cost in the disruption scenario is greater or equal (with enough fortification)

than the solution cost in the normal scenario as a result of the facility failure. Moreover, the

customer in the disruption scenario will be assigned to two layers of services (primary and

backup facilities) which adds extra transportation cost for the customer to go to the backup

facility while in the normal case the customer will be assigned only to one layer of serving

facility (recall that each customer still has a backup facility but would not have to go to).

Table 15: Solution Details of RCFL Problem Instances in disruption Scenario
Instance Estab. Facilities Best Cost Avg. Fail(%) Solution Gap(%) Time (m)

30-nodes 1 2 4 5 7 8 9 10 2041.8 2.9 1.4 1.32

45 Nodes 2, 5, 6, 7, 11, 14 4398.2 3.1 0.74 4.1

60 Nodes 1, 3, 5, 6, 7, 9, 12, 13, 14, 16, 17, 20 15632 2.8 0.16 111.17

70 Nodes 1, 2, 3, 4, 5, 6, 8, 11, 14, 16, 19, 20 4499.2 2.8 1.2 405.3

90 Nodes 6, 11, 16, 17, 21, 23, 24, 28 4723.2 2.6 0.47 42.82

105 Nodes 2, 3, 8, 10, 13, 14, 15, 22, 24 7922.3 2.6 0.45 82.36

120 Nodes 9, 10, 13, 14, 18, 20, 22 6037.3 2.6 1.7 349.45

In Tables 14 and 15, there are two key factors that have impact on the solution com-

putation time of each instance: the problem size and the number of established facilities.

Finally, for each instance, the computation time in the case of the disruption scenario is
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always larger than in the case of the normal scenario since the solution search space of the

disruption case is always larger than the one of normal case. This due to the fact that in

the disruption case, each customer will be assigned to primary and backup facilities and

accordingly the search space will contain a larger number of combinations of primary and

backup while in the normal case, each customer will be assigned only to a primary facility

which corresponds to a search space with a lower number of combinations. Table 16 de-

picts the solution details of different RCFL instances of different size versus the impact of

disruption as well as the impact of fortification using different budget values on the solution

cost and established facilities. The table depicts the solutions in terms of established facil-

ities and solution cost of different scenarios. In our experiment, we consider the following

scenarios:

• Normal scenario (no disruption),

• disruption scenario using no fortification budget ($0K), and

• disruption scenario using different fortification budget values ($30K, $60K, $120K,

$180K, $240K and $300K).

The underlined facilities are the facilities that have been selected to be fortified. We note

that the solution cost in the case of the disruption scenario is always larger than in the case

of the normal scenario as a result of the impact of disruption. By starting the fortification

process, we notice that the solution cost in the disruption scenario starts to be reduced.

Finally, Table 16 shows that when fortifying all the established facilities, the solution costs

and the established facilities in the both the disrupted and the normal scenarios are the

same.
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Table 16: Solution Details vs. Disruption/Fortification Effect

Instance
Solution

Details

Normal Budget

0

Budget

$30K

Budget

$60K

Budget

$120K

Budget

$180K

Budget

$240K

Budget

$300K

30-nodes
Est. Facilities

2 3 4 5

7 8 9

1 2 4 5

7 8 9 10

2 3 4

5 7 8 9

2 3 4

5 7 8 9

2 3 4

5 7 8 9

2 3 4

5 7 8 9

2 3 4

5 7 8 9

Solution Cost 2014 2041.8 2018.6 2017.5 2017.2 2015.5 2014

45 Nodes
Est. Facilities

2 5 6 7

11 14 15

2 5 6 7

9 11 14

2 5 6 7

11 14 15

2 5 6 7

11 14 15

2 5 6 7

11 14 15

2 5 6 7

11 14 15

Solution Cost 4366 4398.2 4379 4371.1 4366.3 4366

60 Nodes
Est. Facilities

1 3 5 6

7 9 12

13 14

16 17 20

1 3 5 6

7 9 12

13 14

16 17 20

1 3 5 6

7 9 12

13 14

16 17 20

1 3 5 6

7 9 12

13 14

16 17 20

1 3 5 6

7 9 12

13 14

16 17 20

1 3 5 6

7 9 12

13 14

16 17 20

1 3 5 6

7 9 12

13 14

16 17 20

Solution Cost 15607 15632 15619 15614 15610 15609 15607

70 Nodes
Est. Facilities

1 2 3 4

5 6 8

11 14

16 19 20

1 2 3 4

5 6 8

11 14

16 19 20

1 2 3 4

5 6 8

11 14

16 19 20

1 2 3 4

5 6 8

11 14

16 19 20

1 2 3 4

5 6 8

11 14

16 19 20

1 2 3 4

5 6 8

11 14

16 19 20

1 2 3 4

5 6 8

11 14

16 19 20

1 2 3 4

5 6 8

11 14

16 19 20

Solution Cost 4448 4499.2 4454 4453 4451.6 4449.5 4449 4448

90 Nodes
Est. Facilities

6 11 16

17 21

23 24 28

6 11 16

17 21

23 24 28

6 11 16

17 21

23 24 28

6 11 16

17 21

23 24 28

6 11 16

17 21

23 24 28

6 11 16

17 21

23 24 28

Solution Cost 4701 4723.2 4721.9 4719.3 4705.9 4701

105 Nodes
Est. Facilities

2 3 8

10 13 14

15 22 24

2 3 8

10 13 14

15 22 24

2 3 8

10 13 14

15 22 24

2 3 8

10 13 14

15 22 24

2 3 8

10 13 14

15 22 24

2 3 8

10 13 14

15 22 24

2 3 8

10 13 14

15 22 24

Solution Cost 7887 7922.3 7913.6 7911.3 7900.1 7891.8 7887

120 Nodes
Est. Facilities

13 14

17 18

19 20 22

9 10 13

14 18

20 22

13 14

17 18

19 20 22

13 14

17 18

19 20 22

13 14

17 18

19 20 22

13 14

17 18

19 20 22

Solution Cost 5937 6037.3 5978.6 5963.4 5941.4 5937
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Figures 15 and 16 depict the effect of disruption and fortification process on the solu-

tion cost and computation time for different size RCFL instances. It can be observed that

there is a strong relation between the solution cost and the facility failure levels. Recall

that by using a suitable fortification budget, the impact of facility failure can be reduced.

Thus, the data in Table 16 as well as Figures 15 and 16 provide another important insight

to decision makers with respect to the relative increase in solution cost compared to the

optimal solution in the normal scenario, by using different fortification levels (strategies)

according to the available fortification budget (partial or complete fortification).

Another important insight can be observed in Figures 15 and 16 which show that the

maximum reduction on the solution cost mostly happens when using budget 30 and 60

respectively since the highest ranked facilities will be fortified up to this level which also

shows the importance of facility ranking as discussed before. Figures 15 and 16 also depict

the effect of disruption and fortification on the solution computation time of different size

RCFL instances. It can be observed as discussed before that there is a strong relation

between the computation time and the disruption level from one side and between the

computation time and the problem size on the other side.

The final detailed solutions of all the instances that have been used in our experimental

results can be found in the Appendix A.
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(a) 30-nodes (Cost) (b) 30-nodes (Time)

(c) 45 Nodes (Cost) (d) 45 Nodes (Time)

(e) 60 Nodes (Cost) (f) 60 Nodes (Time)

(g) 70 Nodes (Cost) (h) 70 Nodes (Time)

Figure 15: Disruption & Fortification (30 to 70 nodes) vs. Solution Cost & Computation

Time

90



(a) 90 Nodes (Cost) (b) 90 Nodes (Time)

(c) 105 Nodes (Cost) (d) 105 Nodes (Time)

(e) 120 Nodes (Cost) (f) 120 Nodes (Time)

Figure 16: Disruption & Fortification (90 to 120 nodes) vs. Solution Cost & Computation

Time
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4.5 Conclusion

In this chapter, we presented a non-linear integer model for the RCFL problem. The model

considers limited facility capacity, heterogeneous facility failure probabilities. Moreover,

a limited fortification budget will be used to fortify a subset of the established facilities.

The model assumes that if a facility is disrupted, it will lose portion of its capacity and if

it is fortified, it maintains its entire capacity. We solve by separating the initial model into

two sub-models dealing respectively with establishment-allocation and fortification. We

presented a linearization of the establishment-allocation sub-model which we employed as

part of an iterative approach leveraging the CPLEX solver and an implementation for the

knapsack problem to solve the fortification sub-model. The approach allows generating

optimal solutions in terms of of established facilities, customers allocation and the forti-

fication strategy within the available budget. Our approach provides the decision makers

with flexibility to hedge against different disruption situations and choose between different

level of fortification according to the available budget.
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Chapter 5

k-Shortest Path Problem Under

Disruption

5.1 Introduction

Shortest path problem (SPP) represents one of the basic and classical problems of graph

theory. The importance of such problem is back to its wide range of application such as GIS

network analysis. The objective of the classical shortest path problem is to find the minimal

length path between source and destination nodes on a transport network graph while the

objective of the (k)-shortest path problem is to find k minimal length partial overlapping

shortest paths.

5.2 Problem Assumptions

The following assumptions are typically used to define the k-shortest path problem.

• Transportation network is represented as a symmetric directed graph with no negative

link length,
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• If a node fails partially, all its connected links will incur extra cost (length) propor-

tional to corresponding node failure value,

• If a node fails completely, it becomes unavailable as well as the connected links,

• Nodes and all its connected links are all failure dependent, and

• Nodes heterogeneous failure probabilities.

5.3 Problem Description

The following two sections provide a description for the graph partitioning and the shortest

path problems.

5.3.1 Graph Partitioning Problem (GPP)

Graph partitioning problem (GPP) is an optimization problem where the goal is to parti-

tion a transportation network into a set of partitions in order to balance the workload and

minimize the communication among generated partitions. Let G = (N,L,C) be a directed

graph that represents a transportation network where N is a set of nodes, L is a set of links

and C is a square cost matrix whose diagonal are equal to zero (i.e. self-loops are not

permitted) represents the lengths associated to each link. We define the cardinality of a

partition as the number of nodes in such partition. We also define the density of a partition

as the ratio of the number of the external edges of a partition to its cardinality. GPP aims

to partition the set of N nodes into m mutually disjoint partitions as follows:

• The cardinality of each generated partition is limited to W as the maximum number

of nodes in such partition, and

• The density of each generated partition is limited to Q as the maximum density of a

cluster
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The parameters W and Q are user-defined values and they have to be selected carefully

since they may have the highest influence on the quality of the produced partitions.

5.3.2 Shortest Path Problem (SPP)

The objective of the k-shortest path problem is to find k shortest and partial overlapping

paths between source and destination nodes on a graph. Let G = (N,L,C) be a directed

graph where N is a set of nodes, L is a set of links and C is a square cost matrix whose

diagonal are equal to zero represents the length associated to each link. In general, A path

p is defined as a sequence of adjacent nodes in a graph. Let li,j be the link that connects

nodes ni and nj and f be a weight function. The shortest path from a source node s to a

destination node d is defined as the sequence of nodes (path) P = (s, n2, . . . , d) such that

over all possible combination of n minimizes
n−1∑
i=1

f(li,i+1).

5.4 Clustering Based Shortest Path Technique

Computing the k-shortest path between two locations on a road network is an important

problem in the graph theory. The problem has variety applications in transportation net-

work design. The classical solution approach for shortest path problem is Dijkstra algo-

rithm as discussed in Dijkstra and Edsger, 1959. The author in [93] state that Dijkstra

algorithm has deficiency in computing the shortest path between two nodes for a very large

transportation network. To address this deficiency, handling node disruption as well as re-

ducing the query time, we propose a hybrid solution approach based on a modified graph

partitioning algorithm called Hierarchical Recursive Progression1 (HRP1) as detailed in

[10] and modified Dijkstra algorithm for the k-shortest path problem where a subset of

nodes are exposed to the risk of partial or complete disruption. The approach reduces the

search space during the processing of shortest path queries by exploiting the fundamental
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property of border nodes which state that that any path starting from a source node s inside

a cluster Cs to a destination node d in a cluster Cd must pass through one or more of the

border nodes as stated in [66].

The following sections we detail our approach. We elaborate the main points of the

proposed solution approach in section 5.4.1.

5.4.1 Algorithm Design

The solution approach consists of three separated phases:

• Problem Data Loading

• Graph Partitioning

• k-Shortest Path Generation

Figure 2 depicts the synopsis of the proposed solution approach.

Figure 17: Overview of the Solution Technique

In the problem data loading phase, the problem data and the input parameters are

loaded. The former includes the graph that is representing the transport network, node
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failure probabilities, the disruption scenario (partial/complete nodes failures), cluster size,

cluster density, source and destination nodes. Finally, in this phase the graph is updated

according to the disruption scenario (partial or complete) as well as node failure probabili-

ties.

In the partitioning phase, we execute the modified HRP1 (known as HRP1+) to parti-

tion the graph into a number of clusters. HRP1+ initially consider that the total number

of clusters is equal to | N | (the total number of nodes in the graph) and each cluster con-

tains only one single node. HRP1+ iteratively attempts to find a pair of clusters that can

be combined together into one cluster by exploring all the connected pairs with combined

cardinality (the total number of internal nodes in a cluster) less than or equal to W (user

defined value represents the maximum number of permitted nodes in a cluster) and with

individual density greater than or equal to Q (user defined value and is calculated as the

ratio of the number of external connections of a cluster divided by its cardinality). A pair of

clusters with the lowest density among all generated pairs is selected to be merged together

with respect to the value of W which must be greater than 0 and less than the total number

of nodes N . The crucial element of the algorithm is the appropriate chosen values of W

and Q because as in [10] they have the major effect on the quality of the produced clusters.

Q should not be too high or too low since the low-density value results in isolated clus-

ters and the high-density value will generate a large number of inter-connections. HRP1+

terminates when the generated clusters reach has a size and density that satisfies the user

defined Q and W constraints. HRP1+ also generates the border nodes (BN ), border links

(BL), critical nodes (CN ) and critical links (CL) that are corresponding to each individual

generated cluster. CN is defined as the subset of nodes in a network in which if any of

these nodes completely fail that would isolate part of the network. CL is defined as the

subset of links in a network in which if any of them completely fail that would isolate part

of the network.
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Finally, in the k-shortest generation phase, we use a modified version of Dijkstra al-

gorithm to generate k partial overlapping shortest paths. In this phase, the total number

of clusters (CTN ), clusters values (CV ), clusters adjacency matrix CAM (Connectivity

matrix), border links BL, the source (s) and destination (d) node values are loaded. Using

the previous informations, the approach is able to identify the source cluster (Cs) and the

destination cluster (Cd) then attempts to find the shortest path from Cs to Cd (SPCsCd)

by running Dijkstra algorithm in which CAM , (Cs), (Cd) are mimicking the graph, the

source node, and the destination node respectively. Once the shortest path from Cs to Cd is

generated and using the information generated in the second phase, the approach identifies

the shortest border link (SBL) between each pairs of connected clusters located on the

aforementioned shortest path SPCsCd from Cs to Cd. For instance, SBL12 refers to the

shortest border link between cluster 1 and cluster 2. The approach continues identifying

the inner shortest paths (ISP) in each cluster individually. For instance, if cluster no. 1 is

connected to cluster no. 2 then ISP1 refers to the shortest path in cluster 1 starting from

the source node s to border node in SBL12 and so on. Finally, by adding the ISPs values

to the SBLs values sequentially (for instance, ISP1 then SBL1 and so on) the approach

produces the first shortest path from source node s in Cs to destination node d in Cd.

To generate the next k partial overlapping shortest paths, the approach iteratively, dis-

cards one edge at a time among those edges located on the first generated shortest path as

well as from the original graph then repeats the previous steps to generate the next shortest

path.

Finally, the termination criteria of this phase are either when the required number of

paths are generated or the destination node d in Cd or any other two connected clusters,

where the shortest path pass through, are isolated (disconnected). Recall, the network

isolation (disconnection) will arise when any 2 nodes, that are representing a link, located

on the last generated shortest path are among the subset CN generated in phase 2 and have
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to be discarded from the graph.

section 5.4.2 and section 5.4.3 elaborate the clustering and k-shortest generation phases

of the solution approach.

5.4.2 Graph partitioning algorithm

HRP1+ considers a complete and partial disruption in graph nodes. The notations that are

used in HRP1+ are as follows. Let N be the total number of nodes of the network, E the

total number of edges of the network, H {n1, n2, . . . , nN} group of nodes of the clusters,

Q a user defined maximum density for a cluster, W a user defined maximum number of

nodes in a cluster, rk node subset k, where k = 1, 2, . . . , K, and q(rk) is the density of a

cluster rk where q(rk) = C(rk)
card(rk)

. We handle the network failure as detailed in Section 5.2

The main steps of HRP1+ partitioning is presented in in Algorithm 3.

5.4.3 k-Shortest Path Generator

k-Shortest Path Generator(KSPG) exploits the Dijkstra algorithm that has been introduced

by Dijkstra, 1959.

KSPG starts finding a shortest path from the source node (s) to destination node (d).

Once a shortest path is generated, the procedure will discard one of the existing links that

are in the generated path from the set SPCsCd. The algorithm is repeatedly executed on

the pruned SPCsCd to find the next shortest path and the process is continued until Cd is

isolated.

The pseudo-code of the Dijkstra algorithm and KSPG algorithms are presented in Al-

gorithm 4 and Algorithm 5 respectively.
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Algorithm 3 HRP1 Partitioning(PartitioningSolver)

1: Initialization
2: Update the network w.r.t. the disruption scenario
3: K = N where K is a variable contains the number of clusters at each instant
4: for k := 1 to K do
5: Compute rk = {k} and q(rk) = C(rk)

card(rk)

6: end for
7: Main body of the algorithm
8: Set n = 0
9: for i = 1 to K − 1 do

10: for j = i+ 1 to K do
11: if (riandrjare connected and (card(ri) + card(rj) <= W ) and (q(ri) > Q) and (q(rj) > Q)

then
12: Set n = n+ 1
13: Set sn = ri ∪ rj .
14: Calculate q(sn) = C(sn)

card(sn)

15: if n = 1 then
16: Set s∗ = sn, h1∗ = i, h2∗ = j, q∗ = q(sn)
17: end if
18: end if
19: if (n > 1) and q(sn) < q∗ then
20: Set s∗ = ss, h∗1 = i, h∗2 = j, q∗ = q(sn)
21: end if
22: if n = 0 then
23: Stop, Print rk for k = 1, 2, . . . ,K, Terminate the algorithm
24: end if
25: Set rh∗1 = sn and q(rh∗1 )
26: if h∗2 < k then
27: for i = h∗2 to K − 1 do
28: Set ri = ri + 1 and q(ri) = q(ri + 1)
29: end for
30: end if
31: K = K − 1
32: go to 8
33: end for
34: end for
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Algorithm 4 Dijkstra Algorithm Steps (SP_Solver)

1: Function Dijkstra(Graph, Source, Destination)
2: for Each vertex v in Graph do
3: Set dist[v] = infinity
4: Set previous[v] = undefined
5: end for
6: Set dist[Source] = 0
7: Set GN = The set of all graph nodes
8: while GN is not empty do
9: Set u = vertex in GN with smallest dist[]

10: if dist[u] = infinity then
11: Break
12: end if
13: if u = Destination then
14: Break
15: end if
16: Remove u from GN
17: for Each neighbour v of u do
18: Set alt = dist[u] + cost(u, v)
19: if alt < dist[v] then
20: Set dist[v] = alt
21: Set previous[v] = u
22: end if
23: end for
24: end while
25: Set S = empty sequence
26: Set u = Destination
27: while previous[u] is defined do
28: Set Insert u at the beginning of S
29: Set u = previous[u]
30: end while
31: Return S
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Algorithm 5 k-Shortest Path(KSP_Generator)

1: s = Source node, Cs = Source cluster, d = Destination node, Cd = Destination cluster
2: SPCsCd[i] = Shortest path from Cs to Cd, CPL = Length of SPCsCd
3: CSPs[i] = Source node i in SPCsCd[i], CSPd[i] = Destination node i in SPCsCd[i]
4: ISP [i] = Shortest path in cluster i
5: SBL[i, j] = Shortest border link from cluster i to cluster j
6: CAM [i, j] = Cluster adjacency matrix
7: S[i] = Shortest path i,
8: k = number of paths found so far
9: Initialization

10: Update Overlapping Status
11: Set Isolated = False
12: Set k = 1
13: Set SPCsCd = empty sequence
14: Set SPCsCd[k] = Dijkstra (CAM,Cs, Cd)
15: Set S = empty sequence
16: Main body of the algorithm
17: while Isolated = False do
18: Set S[k] = empty sequence
19: Set CPL = Length(SPCsCd [k])
20: for i = 1 to CPL do
21: Dijkstra (SPCsCd[i], CSPs[i], CSPd[i])
22: if (SBL[i, i+ 1]) = empty then
23: Set S[k] = S[k] + ISP [i] + SBL[i, i+ 1]
24: else
25: S[k] = S[k] + ISP [i]
26: end if
27: end for
28: Remove one edge that appears in S[k] from SPCsCd[k]
29: Update CAM
30: for i = 1toLength(CAM) do
31: if CAM [i] = 0 then
32: Set Isolated = True
33: Exit For
34: end if
35: end for
36: if Isolated = False then
37: Set k = k + 1
38: Set SPCsCd = empty sequence
39: Set SPCsCd[k] = Dijkstra (CAM,Cs, Cd)
40: end if
41: end while
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5.4.4 Case Study

Figure 18 depicts a graph of 24 nodes and 32 weighted links as in [10], that is representing

the transportation network.

Figure 18: Case Study: A 24 node example Clustering problem

The partitioning phase generated 4 clusters (Typically named C1, C2, C3, C4), the bor-

der nodes, the border links, critical nodes and critical links that are corresponding to each

individual generated cluster as presented in Tables 17 and 18. We assume that the maxi-

mum number of nodes in each cluster is 8 and the max density of a cluster is 0.125. Finally,

we will refer to the cluster that contains the source node by source cluster and the cluster

that contains the destination node by destination cluster.

Table 17: Network Partitioning Details
Cluster Nodes Border Nodes Border Links

1 1, 4, 3, 2, 5, 6, 7, 8 8 8-9 , 8-10

2 9, 11, 10 9, 10, 11 9-8 , 10-8 , 11-12

3 12, 14, 16, 17, 18, 20, 21, 19 12, 14 12-11 , 12-13 , 14-15

4 13, 15, 22, 24, 23 13, 15 13-12 , 15-14
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Table 18: Critical Nodes & Links
Inner Clusters Critical Nodes Critical Links

1 & 2 8 8-9 , 8-10

2 & 1 9, 10 9-8 , 10-8

2 & 3 11 11-12

3 & 2 12 12-11

3 & 4 12, 14 12-13 , 14-15

4 & 3 13, 15 13-12 , 15-14

Figure 19 shows the generated clusters, the sets of BN , BL, CN and CL.

Figure 19: Clustering problem details

Table 19 presents the cluster adjacency matrix (CAM ).

Table 19: Cluster Adjacency Matrix
Ci/Cj C1 C2 C3 C4

C1 0 (8-9, 57),(8-10, 59) 0 0

C2 (8-9, 57),(8-10, 59) 0 (11-12, 43) 0

C3 0 (11-12, 43) 0 (12-13, 38),(14-15, 33)

C4 0 0 (12-13, 38),(14-15, 33) 0

In the k-shortest path generation phase, we consider that the source node to be node 1

in C1 and the destination node to be node 24 in C4. Using the clusters adjacency matrix

(CAM ), the approach identifies that the shortest path (SP) from C1 to C4 (SPCsCd) is [C1,
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C2, C3, C4]. The next step is to find the shortest border link between each pair of the afore-

mentioned 4 clusters starting from C1 to C4 as shown in Figure 19. In this example, the al-

gorithm uses the information in CAM as well as in SPCsCd and identifies that the shortest

3 border links (Typically name SBL[1, 2], SBL[2, 3], SBL[3, 4]) are 8-9,11-12 and 14-15

respectively. Now, the algorithm uses the information in CAM and SPCsCd to identify

the inner shortest in each cluster individually (Typically name ISP [1], ISP [2], ISP [3],

and ISP [4]). Finally, the algorithm merge ISP and SBL sequentially (i.e., ISP [1] then

SBL[1, 2]) to generate a full shortest path between nodes 1 and 24. Table 20 summarizes

the former steps.

Table 20: Single Shortest Path Solution Generation
Cluster Inner Shortest Path, (Length) Shortest Border Link (Clusters)(Length)

C1 1, 3, 6, 8 (104) 8-9 (C1-C2) (57)

C2 9, 11 (58) 11-12 (C2-C3) (43 )

C3 12, 14 (36) 14-15 (C3-C4) (33)

C4 15, 23, 24 (61) None

SP 1: 1, 3, 6, 8, 9, 11, 12, 14, 15, 23, 24, Length: 392

To generate the next partial overlapping path, the approach identifies one edge at a time

to be discarded from the graph and repeat the previous steps to generate the next shortest

path. The procedure terminates when the predefined number of paths are reached or the

destination node is isolated. the destination node is isolated when either the source cluster

or the destination cluster isolated from the network.

Table 21 summarizes the 7 generated partial overlapping paths.

105



Table 21: Shortest Paths Details
Path No. Paths Details Paths Length

1 1, 3, 6, 8, 9, 11, 12, 14, 15, 23, 24 392

2 1, 4, 7, 8, 9, 11, 12, 14, 15, 23, 24 437

3 1, 4, 7, 8, 10, 11, 12, 14, 15, 23, 24 437

4 1, 4, 7, 8, 10, 11, 12, 13, 15, 23, 24 440

5 1, 4, 7, 8, 10, 11, 12, 13, 15, 22, 24 442

6 1, 2, 6, 8, 10, 11, 12, 13, 15, 22, 24 446

7 1, 2, 5, 8, 10, 11, 12, 13, 15, 22, 24 450

Table 22 details the solution generation of the 7 generated shortest paths shows that

the paths pass through different clusters and through the border nodes detailed in Table 18

which confirms the fundamental property of border nodes mentioned in section 5.4.
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Table 22: k-Shortest Path Solution Generation
Cluster Inner Shortest Path, (Length) Shortest Border Link (Clusters)(Length)

C1 1, 3, 6, 8 (104) 8-9 (C1-C2) (57)

C2 9, 11 (58) 11-12 (C2-C3) (43 )

C3 12, 14 (36) 14-15 (C3-C4) (33)

C4 15, 23, 24 (61) None

SP 1: 1, 3, 6, 8, 9, 11, 12, 14, 15, 23, 24 (Length: 392)-(Discard edge 1-3)

C1 1, 4, 7, 8 (149) 8-9 (C1-C2) (57)

C2 9, 11 (58) 11-12 (C2-C3) (43 )

C3 12, 14 (36) 14-15 (C3-C4) (33)

C4 15, 23, 24 (61) None

SP 2: 1, 4, 7, 8, 9, 11, 12, 14, 15, 23, 24 (Length: 437)-(Discard edge 8-9)

C1 1, 4, 7, 8 (149) 8-10 (C1-C2) (59)

C2 9, 11 (58) 11-12 (C2-C3) (43 )

C3 12, 14 (36) 14-15 (C3-C4) (33)

C4 15, 23, 24 (61) None

SP 3: 1, 4, 7, 8, 10, 11, 12, 14, 15, 23, 24 (Length: 437)-(Discard edge 12-14)

C1 1, 4, 7, 8 (149) 8-10 (C1-C2) (59)

C2 10, 11 (56) 11-12 (C2-C3) (43 )

C3 12 (0) 12-13 (C3-C4) (38)

C4 13, 15, 23, 24 (95) None

SP 4: 1, 4, 7, 8, 10, 11, 12, 13, 15, 23, 24 (Length: 440)-(Discard edge 23-24)

C1 1, 4, 7, 8 (149) 8-10 (C1-C2) (59)

C2 10, 11 (56) 11-12 (C2-C3) (43 )

C3 12 (0) 12-13 (C3-C4) (38)

C4 13, 15, 22, 24 (97) None

SP 5: 1, 4, 7, 8, 10, 11, 12, 13, 15, 22, 24 (Length: 442)-(Discard edge 1-4)

C1 1, 2, 6, 8 (153) 8-10 (C1-C2) (59)

C2 10, 11 (56) 11-12 (C2-C3) (43 )

C3 12 (0) 12-13 (C3-C4) (38)

C4 13, 15, 22, 24 (97) None

SP 6: 1, 2, 6, 8, 10, 11, 12, 13, 15, 22, 24 (Length: 446)-(Discard edge 2-6)

C1 1, 2, 5, 8 (157) 8-10 (C1-C2) (59)

C2 10, 11 (56) 11-12 (C2-C3) (43 )

C3 12 (0) 12-13 (C3-C4) (38)

C4 13, 15, 22, 24 (97) None

SP 7: 1, 2, 5, 8, 10, 11, 12, 13, 15, 22, 24 (Length: 450)-(No more edge discard)
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Figure 20 depicts the solution generation of the 7 partially overlapping shortest paths

for a 24-node problem instance. The black nodes and the red links represent the border

nodes and the border links respectively. It shows also that all the generated shortest paths

always pass by the border links and the procedure generates only 7 partially overlapping

paths then terminates because node 24 is isolated from the graph. Finally, the figure also

shows that at each round the algorithm select only one edge to be discarded to produce the

next partial overlap shortest path.

5.4.4.1 Partial Disruption

In this case, we randomly consider that 5% of the total number of network nodes are fail-

ing. Moreover, we will consider that the node failure probability values are in average 5%.

For instance, consider the case of a car accident or road works on some bridges (connected

nodes) on a TN. In this case, all the the roads (links) that are directly connected to that

bridges (connected nodes) will affected partially by the event until it is fixed. As the as-

sumption in section 5.2 state, the failure will propagate to all the connected links of the

disrupted nodes so they will incur 5% extra length. Also, the node failure will not affect

the topology of the network and will remain the same as the original topology. Finally,

the generated clusters, border node, border links, critical nodes and critical length will also

remain the same. According to the foregoing, on the 24 nodes dataset, nodes 5 and 9 are

selected randomly to be failed so all the connected links of both nodes will incur 5% extra

length. Table 23 present the generated paths in the case of node partial disruption.
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(a) Path 1: 1, 3, 6, 8, 9, 11, 12, 14, 15, 23, 24

Length: 392, Discard edge 1-3

(b) Path 2: 1, 4, 7, 8, 9, 11, 12, 14, 15, 23, 24

Length: 437, Discard edge 8-9

(c) Path 3: 1, 4, 7, 8, 10, 11, 12, 14, 15, 23, 24,

Length: 437, Discard edge (12-14)

(d) Path 4: 1, 4, 7, 8, 10, 11, 12, 13, 15, 23,

24, Length: 440, Discard edge (15-23)

(e) Path 5: 1, 4, 7, 8, 10, 11, 12, 13, 15, 22, 24,

Length: 442, Discard edge (1-4)

(f) Path 6: 1, 2, 6, 8, 10, 11, 12, 13, 15, 22, 24,

Length: 446, Discard edge (2-6)

(g) Path 7: 1, 2, 5, 8, 10, 11, 12, 13, 15, 22, 24, Length:

450, Discard edge (8-10)

(h) Path 8: Destination Isolated

Figure 20: k-Shortest path generation details
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Table 23: Node Partial Disruption SP Details
Path No. Paths Details Paths Length

1 1, 3, 6, 8, 10, 12, 14, 15, 23, 24 392

2 1, 4, 7, 8, 10, 11, 12, 14, 15, 23, 24 441

3 1, 4, 7, 8, 9, 11, 12, 14, 15, 23, 24 447

4 1, 4, 7, 8, 9, 11, 12, 13, 15, 23, 24 450

5 1, 4, 7, 8, 9, 11, 12, 13, 15, 22, 24 452

6 1, 2, 6, 8, 9, 11, 12, 13, 15, 22, 24 452

7 1, 2, 5, 8, 9, 11, 12, 13, 15, 22, 24 456

It is observed that the generated path lengths in the disruption case are greater than

those who have been generated in the normal case. The average length in the normal case

is 434.86 where in the disrupted case is 441.43 with an increase of 6.57 which reflect the

effect of the partial disruption.

Figure 21: Normal vs. Partial Disruption Paths

Figure 21 compares the generated paths in the normal and partial disruption situations.

Series 1 represents the generated paths in normal situation while Series 2 represents the

generated paths in the disrupted situation. It is observed that only path 1 in both situations

are equal and 6 out of 7 generated paths in the disrupted situation exceed the corresponding

paths in the normal situation.
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5.4.4.2 Node Complete Disruption

In this case, we also randomly consider that 5% of the total number of network nodes are

completely failing (unavailable). As the assumptions in section 5.2 state, the failure will

propagate to all the connected links of the disrupted nodes so each disrupted facility and all

the corresponding connected links will not be available any more in the network. According

to the foregoing, the complete disruption of the nodes will change the topology of the

network and we have to repartition the network accordingly to maintain the connectivity

among the network. Figure 22 depicts the topology changes of our original case study

mentioned in Section 5.4.4.

Figure 22: A Disrupted 22 Nodes Case Study

As the network topology change, the generated clusters, border node, border links,

critical nodes and critical length will not remain the same as the normal scenario. By

applying the previous steps on the 24 nodes dataset, nodes 4 and 9 are selected randomly

to be disrupted completely (this explain why the dataset size decrease from 24 to 22 nodes)

both nodes as well as the corresponding connected links will not be available any more in

the network.

Table 24 present the details of the repartitioning process in which the maximum number

of nodes per partition in each cluster should not exceed 8 nodes per cluster and the max

density of each partition is 0.125. It is observed that the number of generated clusters
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increase to 6 as a result of the unavailability of nodes 4 and 9, and their related links.

Table 24: Network Repartitioning Details
Cluster Nodes Border Nodes Border Links

1 1, 2, 3, 5, 6, 7, 8 8 8-10

2 10, 11, 12, 13, 14, 15, 22, 23 10, 14, 22, 23, 15 10-8, 14-16, 22-24, 23-24, 15-23

3 16, 17, 18, 19, 20 16, 19, 20 16-14, 19-21, 20-21

4 21 21 21-19, 21-20

5 24 24 24-22, 24-23, 24-23

6 23 23 23-15, 23-24

Table 25 present the generated paths in case of node complete disruption. It is also

observed that the number of generated paths is decrease to 3 which the reflect the effect of

topology change as a result of the unavailability of node 4 and 9 and, their related links.

Table 25: Node Complete Disruption SP Details
Path No. Paths Details Paths Length

1 1, 3, 6, 8, 10, 12, 14, 15, 23, 24 392

2 1, 2, 6, 8, 10, 11, 12, 14, 15, 23, 24 441

3 1, 2, 5, 8, 10, 11, 12, 14, 15, 23, 24 445

The average length of the first three generated paths in the normal case is 422 where in

the disrupted case is 426 with an increase of 4 which reflect the effect of the node complete

disruption.
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Figure 23: Normal vs. Complete Disrupted Paths

Figure 23 compares the first three generated paths in the normal and disrupted situation.

Series 1 represents the generated paths in normal situation while Series 2 represents the

generated paths when nodes 4 and 9, and their related links became completely unavailable.

It is observed that only path 1 in both scenarios are equal and 2 out of 3 generated paths in

the disrupted situation exceed the corresponding paths in the normal situation.
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5.4.5 Experimental Results

The experiments for both the graph partitioning and k-shortest path generation problem

have been conducted using several relevant datasets utilized in [74] and [38] for which

the underlying data was obtained upon request. The datasets are ds332, ds662, ds1138,

ds3353 which contain respectively 332, 662, 1138 and 3353 nodes, and are represented as

a directed and symmetric graph. The cluster parameter W & Q are the maximum number

of nodes in each cluster and the maximum value of a cluster density respectively. The

proposed approach was implemented in C# and the benchmark results have been obtained

using a 64-bit core i7 machine running Windows 7 Ultimate operating system.

Table 26 details the datasets that are used in these experiments, the partitioning param-

eters and the number of generated clusters.

Table 26: Datasets Details and Partitioning Parameters & Output
Dataset Nodes Links Cluster Parameter No. of clusters

ds332 332 2100 W = 50, Q = 0.1 8

ds662 662 906 W = 100, Q = 0.1 15

ds1138 1138 1458 W = 150, Q = 0.1 35

ds3353 3353 8870 W = 400, Q = 0.1 30

Table 27 summarizes the datasets information as well as the number of generated partial

overlapping paths.

Table 27: Datasets and Partial Overlapping Paths Details
Dataset Nodes Links Directed Weighted Symmetric No. of Paths Time (s)

ds332 332 2100 Yes Yes Yes 4 <1

ds662 662 906 Yes Yes Yes 7 <1

ds1138 1138 1458 Yes Yes Yes 7 <1

ds3353 3353 8870 Yes Yes Yes 4 <1

In this experiment, we assume that the required number of paths is 7 and we consider

that the source node s and the destination node d is (1,332), (1,662), (1,1138), and (1,3353)
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in ds332, ds662, ds11383, and ds3353 datasets respectively. The approach generates only

4 partial overlapping paths fr datasets ds332 and ds3353 because the destination node is

isolated in other words the source cluster and the destination cluster are disconnected. Fi-

nally, concerning ds662 and ds1138 datasets, the approach generates 7 partial overlapping

paths.

Figure 24 depicts the lengths of the generated partially overlapping paths that are cor-

responding to each of the 4 datasets. it is observed that the generated paths are varying in

their lengths as expected.

(a) Dataset ds332 (b) Dataset ds662

(c) Dataset ds1138 (d) Dataset ds3353

Figure 24: Shortest paths comparison

Table 28 details the generated partially overlapping paths. Table 29 presents the effect

of the proposed approach on reducing the clusters search space. For instance, the original

total cluster search space of ds3353 is 30 clusters (C1-C30) and the proposed approach
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reduced it in the first round to 9 clusters (C1-C9) (since the source and the destination

nodes are located in C1 and C1 respectively) and in the final round reduced it to 4 clusters

only (C1, C2, C5 and C9) which represents 13.33% of the original clusters search space.

Table 30 shows the effect of the clustering process on the search space reduction(SSR).

The search space is represented by the total number of links in each dataset. For instance,

in ds3353 the source node is 1 and the destination node is 3353. According to the obtained

clustering data the source node is located in C1 and the destination node is located in C9.

This reduces the search space from 8870 to 2848 links representing 31.1% of the original

search space. We refer to this as the search space reduction in the first round (SSR1)

The 2848 links represents the total number of links in the clusters search area [C1-C9] in

addition to the border links between these clusters. The approach reduces the search space

by identifying the shortest path from source cluster C1 to the destination cluster C9 and

as a result the search space is reduced from 2848 to 1702 links representing 19.2% of the

original search space (8870 links). We refer to this as the search space reduction in the

second round (SSR2).
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Table 29: Heuristics and Clusters Search Space Reduction
Dataset No. of clusters Phase 1 Phase 2 Avg. Reduction (%)

ds332 8 8 2.5 31.25%

ds662 15 13 4.75 31.67%

ds1138 35 21 4 11.43%

ds3353 30 9 4 13.33%

Table 30: Clustering and Search Space Reduction
Dataset Links No. of Paths Cs-Cd SSR1(†) (%) SSR2(†) (%)

ds332 2100 4 C1-C8 2100 (100%) 115 (5.84%)

ds662 906 7 C1-C13 813 (89.74%) 415 (45.81%)

ds1138 1458 7 C1-C21 1202 (82.44%) 459 (31.48%)

ds3353 8870 4 C1-C9 2848 (32.11%) 1752 (19.75%)

SSR1(†): Search space reduction in the first round round

SSR2(†): Search space reduction in the second round round

Considering ds332, ds662, ds1138, and ds3353 problem instances, Figure 25 shows

how the clustering process reduces the cluster search space. Thus, the figure presents a bar-

graph depicting the total search space size represented by the number of generated clusters

for each dataset. The first phase of the reduced cluster search space is depicted by the ini-

tial bar and the subsequent bar depicts the average number of clusters that are heuristically

visited to generate the shortest paths. It is observed that there is no reduction in the first

phase for ds332 since the source node is located in cluster 1 and the destination node is

located in cluster 8. In other words, the search space in the first phase of ds332 problem

instance will be as the original search space while the average number of clusters in the

final phase reduction will be 2.5 clusters.
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Table 28: Shortest paths solution details
Dataset Path No. Paths Details Clusterss Cost

ds332

1 1,8,313,329,327,332 C1,C8 8042
2 1,4,8,313,329,327,332 C1,C8 8148
3 1,2,8,313,329,327,332 C1,C8 8318
4 1,4,47,313,329,327,332 C1,C3,C8 9149

ds662

1 1,222,172,272,425,414,413,393,323,456,544,659,658,662
C1,C8,C7,C13 327

2
1,286,48,34,23,89,293,40,124,11,122,155,128,
192,290,55,206,392,442,441,379,650,655,662 C1,C4,C7,C13 328

3
1,286,48,34,136,90,13,294,293,40,124,11,122,155,
128,192,290,55,206,392,442,441,379,650,655,662 C1,C11,C4,C7,C13 331

4 1,286,48,34,310,410,414,413,393,323,456,544,659,658,662
C1,C8,C7,C13 353

5
1,286,48,34,196,85,139,292,143,215,79,294,293,40,124,11,
122,155,128,192,290,55,206,392,442,441,379,650,655,662 C1,C2,C11,C4,C7,C13 357

6 1,286,48,34,310,410,414,413,408,566,518,456,544,659,658,662
C1,C8,C7,C13 358

7
1,286,48,34,196,85,139,292,143,65,7,45,234,235,295,294,293,40,
124,11,122,155,128,192,290,55,206,392,442,441,379,650,655,662 C1,C2,C11,C4,C7,C13 363

ds1138

1 1,563,567,566,555,556,579,927,921,527,526,505,578,530,797,805,1138 C1,C16,C17,C21 269
2 1,5,9,104,13,34,553,503,507,508,781,776,797,805,1138 C1,C17,C21 281
3 1,5,9,10,104,13,34,553,503,507,508,781,776,797,805,1138 C1,C17,C21 282

4 1,5,9,10,104,34,553,503,507,508,781,776,797,805,1138
C1,C17,C21 285

5
1,5,9,10,2,563,567,566,555,556,579,927,
921,527,526,505,578,530,797,805,1138 C1,C16,C17,C21 287

6
1,5,9,10,2,563,567,566,555,557,558,998,995,
517,515,507,508,781,776,797,805,1138 C1,C19,C17,C21 290

7
1,5,9,10,2,563,567,566,555,557,558,989,985,987,903,
556,579,927,921,527,526,505,578,530,797,805,1138 C1,C19,C16,C17,C21 368

ds3353

1

1,22,165,162,167,164,171,190,191,336,338,343,344,
340,347,348,335,515,407,524,582,589,596,597,636,641,
642,632,649,655,1229,1442,1277,1473,1282,1286,1474,1374,3353

C1,C2,C5,C9 30290

2

1,2,3,23,166,163,164,171,190,191,336,338,343,344,
340,347,348,335,515,407,524,582,589,596,597,636,641,
642,632,649,655,1229,1442,1277,1473,1282,1286,1474,1374,3353

C1,C2,C5,C9 30680

3

1,2,4,21,17,18,19,15,20,160,162,167,164,171,190,191,336,338,
343,344,340,347,348,335,515,407,524,582,589,596,597,636,641,642,
632,649,655,1229,1442,1277,1473,1282,1286,1474,1374,3353

C1,C2,C5,C9 30935

4
1,2,4,5,8,12,14,15,20,160,162,167,164,171,190,191,336,338,343,
344,340,347,348,335,515,407,524,582,589,596,597,636,641,
642,632,649,655,1229,1442,1277,1473,1282,1286,1474,1374,3353

C1,C2,C5,C9 35788
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Figure 25: Cluster Search Space Reduction

Considering ds332, ds662, ds1138, and ds3353 problem instances, Figure 26 shows

the performance appraisal of the heuristic approach. Thus, the figure presents a bar-graph

depicting the total search space size represented by the total number of links in each prob-

lem instance and two bars depicting the reduced search space that were heuristically visited

to generate the shortest paths. It is observed that there is no reduction in the first phase for

ds332 since the source node is located in cluster 1 and the destination node is located in

cluster 8. In other words, the first reduction will be identical to the original search space

while the second and final reduction will include only cluster 1 and 8 since they are the

shortest path cluster and they are both connected.
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Figure 26: Solution finding via search space reduction

Figure 27 depicts the relationship between the density (multiplies by 1000) of each of

the four datasets used in this experiment and the solution search space reduction (SSR)

percentages. We notice that there is direct relationship between the density and the search

space reduction. SSR1 is comparable to SSR2 for the four datasets except in ds332 since it

has the maximum number of clusters (35 clusters) and the highest density value so there is

a high chance that most of the 35 clusters interconnect. As expected, cluster 1, where the

source node is located, is connected to cluster 8, where the destination node is located, and

that explains why the reduced search space drops from 100% to 5.48%.
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Figure 27: Search Space Reduction and Graph Density

5.4.5.1 Node Partial Disruption

In this section we will discuss the effect of partial disruption on both the network partition-

ing and the generated shortest paths. We will use the same datasets ds332, ds662, ds1138,

ds3353 that have been detailed in Section 5.4.5. We will consider the percentage of dis-

rupted nodes of is 5% (as Sectio 5.2) for each used dataset. Table 31 details the effect of

partial disruption on each of the used dataset. The third column of the table represents the

total number of disrupted nodes while the fourth column represents the total number of

links that will incur 5% (recall this percentage represents the node failure probability) extra

cost. The fourth column is Ratio(%) column which is defined as the percentage of failed

links per node and is calculated as follows.

Ratio(%) = Total disrupted links
Total number of nodes

For instance, the ratio of ds332 is 30 means that on average 30% of the connected to

each node will fail partially. The ratio can provide an important insight to decision makers

with respect to the average increase in paths in the disrupted scenario.
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Table 31: Dataset Partial Disruption details
Dataset Nodes No. of Dis. Nodes No. of Dis. Links Ratio(%)

ds332 332 17 100 30

ds662 662 32 119 18

ds1138 1138 57 180 16

ds3353 3353 168 887 27

Table 32: Partial Disruption Shortest Paths details
Dataset Path No. Normal Length Disrupted Length Avg. Normal Length Avg. Disrupted Length Gap

ds332

1 8042 8197

8414.3 8585.5 171.2
2 8148 8303

3 8318 8538

4 9149 9304

ds662

1 327 327

345.3 349.3 4

2 328 335

3 331 338

4 353 353

5 357 358

6 358 364

7 363 370

ds1138

1 269 271

294.6 295.4 0.8

2 281 281

3 282 282

4 285 285

5 287 289

6 290 290

7 368 370

ds3353

1 30290 30471

31923.3 32102.8 179.5
2 30680 30855

3 30935 31116

4 35788 35969

As expected, neither the number of generated clusters nor the number of generated

paths will change only the paths length is expected to be changed.

Table 32 compares the length of the generated paths for each dataset in the normal and

partial disruption scenario.
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(a) Dataset ds332 (b) Dataset ds662

(c) Dataset ds1138 (d) Dataset ds3353

Figure 28: Partial Disruption Shortest Paths Comparison

Figure 28 depicts the lengths of the generated paths in normal and the partial disruption

scenarios. It is observed that in ds331 and ds3353 all the 4 generated shortest paths in the

disrupted scenario have higher cost (length) than their counterparts in the normal scenario.

Table 32 also presents the average increase (gap) of paths length in the disrupted sce-

nario compare to the normal scenario. It is observed that ds332 and ds3353 have higher

average length than ds662 and ds1138 which reflect the effect of node ration presented in

Table 31 as explained above. Finally and with respect to the ratio effect, all the generated

paths of ds332 and ds 3353 in the disrupted scenario will have higher cost that their coun-

terparts in the normal scenario where in ds662 and ds1138 all the generated paths in both

scenarios are very slightly different.
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5.4.5.2 Node Complete Disruption

Again, we will consider the same assumptions in section 5.2 which state that the failure

will propagate to all the connected links of the failed nodes. In this case 5% of the total

number of each dataset and all their corresponding connected links will not be available any

more in the network and as a result the topology of the network will change and we have to

repartition the network accordingly to maintain the connectivity among the network. Table

33 details the number of nodes and links in each disrupted dataset as well as repartitioning

results with respect to the network topology change.

Table 33: Datasets Repartitioning Results
Dataset No. of Nodes No. of Links No. of Clusters (Normal)

ds332 315 2000 None (8)

ds662 628 787 56 (15)

ds1138 1081 1278 115 (35)

ds3353 3185 7983 232 (30)

In ds332, the repartition process can not generate any clusters since an isolation hap-

pened in the network. The reason behind this isolation is that nodes 313 and 329 are

disrupted and they are indeed among the subset of critical nodes and the subset critical

sub-path. The critical nodes are defined as the subset of nodes in a network in which if any

of these nodes completely fail that would isolate part of the network. The critical nodes

are part of the network partitioning process output in the normal scenario. We also define

the critical sub-path as the as the subset of nodes the are exist in both the critical nodes

and in all the generated path in the normal scenario. For instance, the critical node between

cluster 1 and 8 is 313 between cluster 8 and 1 is 329. That is simply means cluster 1 and

8 will isolate from each other if node 313 or 329 fail. The critical sub-path of ds332 is

313-329-327-332. As a result, on the foregoing isolation no shortest paths can be gener-

ated. Table 34 compares the length of the generated paths for each dataset in the normal

and partial disruption scenario.
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Table 34: Complete Disruption Shortest Paths details
Dataset Path No. Normal Length Disrupted Length Avg. Normal Length Avg. Disrupted Length Gap

ds332

1 8042 None

8414.3 None None
2 8148 None

3 8318 None

4 9149 None

ds662

1 327 327

345.3 385.9 40.6

2 328 353

3 331 392

4 353 393

5 357 406

6 358 412

7 363 418

ds1138

1 269 272

294.6 352.1 57.5

2 281 281

3 282 282

4 285 285

5 287 290

6 290 351

7 368 705

ds3353

1 30290 35396

31923.3 36912.8 4989.5
2 30680 35780

3 30935 35811

4 35788 40664

We notice that the average increase of the path length cost (represented by the gap) in

the complete disruption scenario is greater than its counterpart in the normal scenario as

well the partial disruption scenario. We also notice that ds3353 has the highest gap value

as a result of the network topology change.

Figure 29 depicts the lengths of the generated paths in normal and the complete disrup-

tion scenarios. It is observed that in ds662 and ds1138 a subset of generated shortest paths

in the disrupted scenario are almost have the same cost as those in the normal scenario

except the last shortest path in ds1138 extremely has higher cost. Finally, in ds3353 all the

generated 4 paths have higher cost (length) than their counterparts in the normal scenario.
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Table 34 compares the gaps from normal paths length in both partial and complete

disruption scenarios where gap1 is used for the partial disruption and gap2 is used for the

complete disruption.

Table 35: Gap Comparison
Dataset Gap1(†) Gap2(†)

ds332 172.2 None

ds662 4 40.6

ds1138 0.8 57.5

ds3353 179.5 4989.5

Gap1(†): Partial disruption, Gap2(†): Complete disruption.

(a) Dataset ds662 (b) Dataset ds1138

(c) Dataset ds3353

Figure 29: Complete Disruption Shortest Paths Comparison
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5.5 Conclusion

In this chapter, we present a hybrid approach based on the graph partitioning and Dijkstra

algorithm for the (k)-SPP in large scale TN where a subset of the connected nodes are

subject to pertial or complete disruption. We address the partial overlapping (k)-SPP using

a generic approach that can also be used to solve the graph partitioning problem and the

shortest path problem with simple modifications. The approach is innovative and allows

faster solution generation via partitioning large networks into sub-networks whereby the so-

lution search space can be significantly reduced and as so generating k-paths will be much

faster. The approach also reduce the query time when computing the shortest path between

two nodes for a very large TN. The approach can generate a maximum predefined number

of shortest paths between any pairs of nodes on a transportation network unless the desti-

nation cluster is isolated. We also deeply investigate the effect of partial and complete node

disruption on the generated shortest paths with respect to the topology change. Our solu-

tion generation is affected by three key factors: the disruption situation (partial-complete)

the disrupted nodes, failure probability value, the network size and network partitioning

properties.
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Chapter 6

Conclusion and future work

In this thesis, we first investigated the facility location problem under disruption where po-

tential facilities have individual failure probabilities. We addressed three variants of such

problems: reliable p-median problem (RPMP), the reliable uncapacitated facility location

problem (RUFL) and the reliable capacitated facility location problem (RCFL). Second,

we investigated the k-shortest path problem (k-SPP) under disruption. In k-SPP we con-

sidered that the connected nodes are subject to individual failure probabilities partially or

completely, which will have an impact on the corresponding connected links in terms of

road blockage or travel time delay.

In RPMP we aim to establish p facilities that are minimizing the total transportation

cost for satisfying all customer demands. In RUFL we aim to minimize the total facil-

ity establishment and transportation costs associated with satisfying all customer demands.

In contrast to RPMP, there is no restriction on the total number of established facilities.

However, each facility has a corresponding establishment cost. Thus, in RPMP we aim to

minimize the transportation cost while in RUFL our aim is to minimize the total establish-

ment and transportation costs.

In RPMP and RUFL, we assume that the facilities have unlimited capacities. Also,

if a facility fails, it is considered unavailable and if it is fortified it is considered reliable
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(available). Facility failures are independent and each customer is assigned to primary

and backup facilities unless the primary facility is fortified (i.e., totally reliable) in which

case the customer will not have to go to the backup facility. Finally, The probability of a

simultaneous failure of primary and backup facilities is negligible.

To solve the RPMP and RUFL problems, we employed an evolutionary learning tech-

nique which can be customized to also address similar types of problems (e.g., PMP, UFL).

The approach is innovative and allows faster solution generation by efficiently exploring

the solution search space using evolutionary learning. This involves a progressive reduction

of the search space by fixing the role of some nodes as customer-only after learning from

successive generations of solutions obtained from an evolving solution generator template.

An important aspect is the ability to select a smaller or larger number of nodes to have fixed

roles in each iteration. This allows a trade-off between performance and computing time.

This is a distinctive feature compared to other approaches such as Tabu Search.

We illustrated the proposed evolutionary learning technique using an instructive case

study. Moreover, we demonstrated the performance via benchmark results. The proposed

solution generation approach is affected by the following factors: the problem size, the

number of facilities, the fortification budget and the transport network properties. With

respect to RUFL instances, the solution quality is also affected when the facility count

is comparatively larger relative to the total number of nodes. This stems from the fact

that accurately estimating the nodes role as customer-only turns increasingly difficult with

the increase in the number of facilities. A limited fortification budget that allows just

partial fortification also impacts the solution quality as more extensive exploration of the

solution space is needed. Conversely, when the fortification budget is too low to fortify any

established facility or large enough to fortify all the established facilities, then the solution

search space is reduced since there is no need to consider budget spending allocation. In

such problem settings, the obtained solutions can be comparatively more competitive.
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The solution quality is also affected by the transport network settings. If the solution

space contains distant near-optimal solutions, the exploration potentially requires visiting

more local minima in order to obtain a good quality solution. Also, a typical challenge for

the proposed approach is related to probing the vast combinatorial solution search spaces

of larger problems instances where the knowledge gathered by evolutionary learning may

have a limited effectiveness. However, the proposed technique is relevant for problem of

practical size and can be useful in situations that require quick deployment of facilities, as

in the case of establishing distribution centers in situations of crisis.

For the Reliable Capacitated Facility Location (RCFL), we detailed a novel non-linear

integer programming formulation where the aim is to minimize the total facility establish-

ment and the transportation costs associated with satisfying all customer demands while

respecting the capacities of the established facilities. The model assumes limited facility

capacities, heterogeneous facility failure probabilities and one layer of supplier backup.

The facility failure probabilities are assumed to be independent. The model also considers

a finite budget for facility fortification. The facility fortification cost is considered to be

location specific. We also assumed that if a facility fails, it loses a portion of its capacity

and if it is fortified, the facility maintains its original capacity. Moreover, in RCFL each

customer is assigned to primary and backup facilities unless the primary facility is fortified

(i.e., totally reliable) in which case the customer still has a backup facility but would not

need to go to. The probability of a simultaneous failure of primary and backup facilities is

considered as negligible.

We presented a linearization of the proposed model and used an iterative approach

based on CPLEX solver for facility establishment and customer allocation in conjunction

with a C# implementation to solve the knapsack fortification budget problem. The approach

optimally solves the linear integer model of RCFL. Also, the approach allows generating

optimal solutions in terms of customers allocation and the fortification strategy within the

130



available budget. Finally, the approach provides the decision makers with flexibility to

hedge against different disruption scenarios and choose between different level of forti-

fication according to the available budget. We provided key highlights of the proposed

approach using an illustrative example and demonstrated the performance via benchmark

results. The solution generation is affected by the following factors: the problem size, the

number of facilities, the fortification budget and the transport network properties (size and

network topology). The time required for generating the optimal solution for problems

of small and medium size (up to 90 nodes) is faster in contrast to problems of larger size

(100 nodes and more). Also, a limited fortification budget that allows partial fortification

influences the solution quality since more extensive exploration of the solution space is

needed. This is the reason why the solution generation time is comparatively longer for

small budget values.

Finally, for the k-shortest path problem (k-SPP), we aim to find the minimum cost of

k partial overlapping paths between any pairs of nodes in a transportation network graph.

In k-SPP, we assume that the connected nodes and all their corresponding connected links

are all failure dependent. Thus, if a connected node fails partially, all its corresponding

connected links will incur extra cost (length or time) depending on the connected node

failure probability. Moreover, if a connected node fails completely, it becomes unavailable

as well as all its corresponding connected links.

To solve k-SPP, we introduced a hybrid approach based on graph partitioning and a

modified version of Dijkstra algorithm to generate k partial overlapping paths between any

pairs of nodes. We showed that the approach is scalable and useful in situations requiring

quick response in the form of relevant paths to traverse across a large size transportation

network where a subset of the connected nodes are subject to disruption. We addressed the

partial overlapping k-SPP using a generic approach that can be customized to address the

graph partitioning and the shortest path problems, both considered under disruption. The
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approach is innovative and allows faster solution generation via partitioning large size net-

work into a number of clusters whereby the solution search space is significantly reduced.

Consequently, the generation of the k partial overlapping paths is notably faster.

The approach can overcome the deficiency in Dijkstra algorithm and can reduce the

query processing time when computing the shortest path between a pair of nodes in large

transportation networks. The approach can generate a predefined number of partial overlap-

ping shortest paths between any pairs of nodes in a transportation network. Moreover, the

approach can be customized to generate all the partial overlapping shortest paths between

any pairs of nodes in a transportation network. Furthermore, we provided key highlights

of the proposed approach using an illustrative example and demonstrated the performance

via benchmark results. Also, we analyzed the effect of partial and complete disruptions of

the connected nodes on the generated shortest paths with respect to changes in the network

topology. The solution generation is affected by the following factors: the disruption case

(partial or complete including the disrupted connected nodes and the failure probability val-

ues), the network properties (size and topology) and the network partitioning parameters.

As future work, there are a number of interesting directions to explore including the

elaboration of suitable heuristic approaches to solve the capacitated and uncapacitated max-

imum coverage location problems under disruption. We also envision extending the k-SPP

approach to tackle the dynamic k-SPP and addressing correlated facility failure probabil-

ities, multiple facility failures and, the duration and the frequency of the facility disrup-

tions. Moreover, it is important to address uncertainty in travel times, amounts of returns

in reverse logistics, transportation costs, demand variation and the production lead times.

Furthermore, another future work direction involves addressing the multi-period formula-

tion of the dynamic and site-specific demand variations and multi-commodity problems.

Finally, other areas to explore relate to integrating the design of supply networks with other

SCN problems such as inventory management, capacity expansion and vehicle routing.
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Appendix A

First Appendix

Table A.1: Detailed Solution of 30-nodes RCFL Problem Dataset
30-nodes

No.(†) Cost

2014

Bu(†)

0

Cost

2041.8

Bu

30

Cost

2018.6

Bu

60

Cost

2.17.5

Bu

120

Cost

2017.2

Bu

180

Cost

2015.5

Bu

240

Cost

2014
Customer P(†) B(†) P B P B P B P B P B P B

1 5 3 1 5 5 3 5 2 5 8 5 8 5 3

2 2 3 1 2 2 3 2 3 2 3 2 5 2 3

3 9 3 2 1 9 2 9 2 9 3 9 2 9 3

4 5 8 5 4 5 3 5 3 5 4 5 8 5 8

5 8 7 8 10 8 2 8 2 8 2 8 2 8 7

6 8 4 7 5 8 5 8 5 8 5 8 2 8 4

7 7 2 9 2 7 9 7 9 7 9 7 2 7 2

8 3 4 7 10 3 5 3 2 3 9 3 5 3 4

9 3 4 5 1 3 5 3 2 3 5 3 5 3 4

10 9 8 9 10 9 5 9 5 9 3 9 3 9 8

11 4 9 10 4 4 5 4 5 4 5 4 5 4 9

12 4 2 4 2 4 2 4 2 4 9 4 7 4 2

13 2 8 2 1 2 5 2 3 2 5 2 9 2 8

14 5 4 5 1 5 3 5 3 5 4 5 9 5 4

15 2 7 2 4 2 3 2 5 2 3 2 8 2 7

16 5 9 4 8 5 3 5 2 5 4 5 9 5 9

17 7 8 8 2 7 8 7 8 7 8 7 5 7 8

18 7 2 7 9 7 5 7 5 7 9 7 5 7 2

19 3 4 1 4 3 5 3 2 3 4 3 2 3 4

20 9 8 9 4 9 3 9 3 9 4 9 8 9 8

P(†): Primary Facility, B(†): backup Facility, Bu(†): Fortification Budget, No.(†): Normal Scenario Solution Cost
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Table A.2: Detailed Solution of 45 Nodes RCFL Problem Dataset Instances
45 Nodes

No. Cost

4366

Bu

0

Cost

4398.2

Bu

30

Cost

4373.1

Bu

60

Cost

4368

Bu

120

Cost

4366.3

Bu

180

Cost

4366
Customer P B P B P B P B P B P B

1 11 2 9 6 11 14 11 14 11 7 11 2

2 7 11 7 14 7 14 7 14 7 6 7 11

3 14 7 14 2 14 5 14 6 14 5 14 7

4 11 14 2 6 11 14 11 14 11 7 11 14

5 7 15 7 14 7 14 7 14 7 5 7 15

6 6 2 6 14 6 5 6 14 6 7 6 2

7 6 2 9 6 6 5 6 14 6 7 6 2

8 14 7 6 2 14 5 14 6 14 6 14 7

9 15 11 14 6 15 14 15 14 15 11 15 11

10 7 2 7 5 7 5 7 5 7 5 7 2

11 15 14 5 6 15 5 15 5 15 6 15 14

12 15 6 2 5 15 5 15 5 15 6 15 6

13 14 5 9 6 14 5 14 5 14 6 14 5

14 11 2 11 6 11 14 11 14 11 6 11 2

15 7 15 7 6 7 5 7 6 7 11 7 15

16 7 11 7 6 7 14 7 14 7 11 7 11

17 11 15 11 14 11 14 11 14 11 7 11 15

18 7 6 7 6 7 14 7 6 7 15 7 6

19 14 2 14 5 14 5 14 6 14 5 14 2

20 7 15 7 6 7 5 7 5 7 6 7 15

21 14 5 14 6 14 5 14 6 14 7 14 5

22 11 14 9 5 11 5 11 5 11 6 11 14

23 6 2 6 9 6 5 6 14 6 7 6 2

24 6 2 6 2 6 5 6 5 6 15 6 2

25 2 6 14 2 2 14 2 14 2 15 2 6

26 14 6 14 6 14 5 14 6 14 5 14 6

27 5 15 6 5 5 14 5 14 5 15 5 15

28 6 2 9 6 6 14 6 14 6 11 6 2

29 2 6 11 6 2 5 2 6 2 11 2 6

30 6 14 11 6 6 5 6 5 6 5 6 14
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Table A.3: Detailed Solution of 60 Nodes RCFL Problem Dataset
60 Nodes

No. Cost

15607

Bu

0

Cost

15632

Bu

30

Cost

15619

Bu

60

Cost

15614

Bu

120

Cost

15610

Bu

180

Cost

15609

Bu

240

Cost

15607
Customer P B P B P B P B P B P B P B

1 14 1 14 6 14 13 14 12 14 12 14 17 14 1

2 1 12 1 13 1 5 1 5 1 16 1 5 1 12

3 9 16 9 16 9 5 9 5 9 5 9 1 9 16

4 20 1 20 17 20 16 20 9 20 9 20 16 20 1

5 9 3 20 16 9 20 9 12 9 13 9 1 9 3

6 20 1 20 6 20 13 20 13 20 13 20 1 20 1

7 3 6 3 13 3 13 3 13 3 1 3 1 3 6

8 17 3 17 16 17 16 17 16 17 16 17 5 17 3

9 12 20 12 6 12 17 12 13 12 1 12 13 12 20

10 1 17 1 6 1 7 1 7 1 5 1 16 1 17

11 12 20 12 16 12 16 12 5 12 1 12 16 12 20

12 16 12 16 13 16 5 16 5 16 1 16 1 16 12

13 9 3 9 16 9 16 9 16 9 5 9 12 9 3

14 20 3 9 6 20 9 20 12 20 12 20 6 20 3

15 6 3 9 1 6 16 6 12 6 1 6 9 6 3

16 5 17 5 1 5 13 5 12 5 12 5 16 5 17

17 9 1 9 16 9 16 9 16 9 5 9 1 9 1

18 6 3 6 13 6 5 6 16 6 20 6 9 6 3

19 12 1 12 13 12 5 12 5 12 9 12 9 12 1

20 14 20 14 13 14 20 14 20 14 9 14 9 14 20
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Table A.4: Detailed Solution of 60 Nodes RCFL Problem Dataset (Cont..)

60 Nodes
No. Cost

15607

Bu

0

Cost

15632

Bu

30

Cost

15619

Bu

60

Cost

15614

Bu

120

Cost

15610

Bu

180

Cost

15609

Bu

240

Cost

15607
Customer P B P B P B P B P B P B P B

21 9 3 7 6 9 5 9 5 9 1 9 6 9 3

22 1 20 3 1 1 5 1 5 1 13 1 20 1 20

23 3 5 1 16 3 16 3 12 3 12 3 12 3 5

24 1 5 1 13 1 13 1 12 1 12 1 17 1 5

25 20 3 20 6 20 16 20 16 20 9 20 13 20 3

26 5 1 5 13 5 16 5 16 5 1 5 6 5 1

27 7 5 7 16 7 16 7 12 7 12 7 12 7 5

28 7 1 3 1 7 17 7 17 7 17 7 17 7 1

29 13 20 13 6 13 5 13 16 13 1 13 16 13 20

30 12 1 12 16 12 16 12 5 12 1 12 1 12 1

31 5 3 5 1 5 16 5 12 5 16 5 20 5 3

32 20 1 20 6 20 16 20 12 20 12 20 1 20 1

33 14 1 14 17 14 5 14 17 14 17 14 17 14 1

34 3 7 7 6 3 5 3 16 3 7 3 7 3 7

35 7 6 7 1 7 5 7 12 7 1 7 1 7 6

36 1 5 1 16 1 5 1 5 1 16 1 13 1 5

37 7 1 6 13 7 5 7 5 7 5 7 6 7 1

38 16 5 16 13 16 5 16 5 16 12 16 6 16 5

39 3 16 3 13 3 13 3 13 3 13 3 13 3 16

40 7 1 6 13 7 5 7 5 7 5 7 6 7 1
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Table A.5: Detailed Solution of 70 Nodes RCFL Problem Dataset Instances
70 Nodes

No. Cost

4448

Bu

0

Cost

4499.2

Bu

30

Cost

4454

Bu

60

Cost

4453.8

Bu

120

Cost

4451.6

Bu

180

Cost

4449.5

Bu

240

Cost

4449

Bu

300

Cost

4448
Customer P B P B P B P B P B P B P B P B

1 11 1 11 6 11 6 11 5 11 6 11 14 11 1 11 1

2 4 11 4 19 4 3 4 19 4 3 4 19 4 19 4 11

3 20 14 20 6 20 2 20 1 20 1 20 19 20 1 20 14

4 8 19 3 6 8 1 8 1 8 1 8 1 8 3 8 19

5 20 8 16 6 20 2 20 1 20 1 20 1 20 5 20 8

6 14 2 14 6 14 1 14 1 14 1 14 6 14 3 14 2

7 8 1 8 3 8 20 8 20 8 20 8 1 8 2 8 1

8 3 8 8 3 3 1 3 2 3 20 3 20 3 1 3 8

9 20 1 20 19 20 3 20 5 20 3 20 6 20 2 20 1

10 16 3 16 6 16 1 16 19 16 2 16 5 16 2 16 3

11 1 8 4 6 1 3 1 5 1 2 1 19 1 6 1 8

12 16 2 16 6 16 3 16 1 16 3 16 3 16 2 16 2

13 4 2 3 19 4 20 4 20 4 20 4 20 4 20 4 2

14 1 3 3 5 1 3 1 5 1 20 1 3 1 16 1 3

15 5 1 5 16 5 2 5 20 5 3 5 16 5 19 5 1

16 8 4 8 19 8 16 8 19 8 16 8 1 8 19 8 4

17 8 14 5 11 8 11 8 11 8 11 8 1 8 2 8 14

18 2 4 5 16 2 5 2 5 2 1 2 5 2 3 2 4

19 11 5 11 5 11 2 11 2 11 2 11 2 11 1 11 5

20 16 3 1 6 16 6 16 19 16 1 16 3 16 19 16 3

21 3 2 20 6 3 5 3 2 3 2 3 20 3 1 3 2

22 5 3 1 5 5 3 5 1 5 3 5 6 5 20 5 3

23 5 3 16 6 5 3 5 1 5 3 5 8 5 6 5 3

24 19 6 19 6 19 6 19 1 19 6 19 3 19 3 19 6

25 1 2 1 19 1 3 1 19 1 3 1 3 1 3 1 2
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Table A.6: Detailed Solution of 70 Nodes RCFL Problem Dataset Instances(Cont..)

70 Nodes
No. Cost

4448

Bu

0

Cost

4499.2

Bu

30

Cost

4454

Bu

60

Cost

4453.8

Bu

120

Cost

4451.6

Bu

180

Cost

4449.5

Bu

240

Cost

4449

Bu

300

Cost

4448
Customer P B P B P B P B P B P B P B P B

26 3 6 3 4 3 6 3 20 3 20 3 20 3 1 3 6

27 19 14 6 16 19 6 19 5 19 6 19 8 19 5 19 14

28 16 11 20 16 16 20 16 20 16 1 16 19 16 3 16 11

29 19 3 19 6 19 5 19 1 19 6 19 3 19 2 19 3

30 14 1 14 16 14 16 14 16 14 16 14 3 14 11 14 1

31 1 16 1 6 1 3 1 19 1 3 1 3 1 3 1 16

32 4 2 4 16 4 2 4 2 4 2 4 2 4 2 4 2

33 1 2 1 6 1 3 1 19 1 3 1 3 1 3 1 2

34 1 11 1 6 1 5 1 19 1 3 1 3 1 20 1 11

35 4 2 4 16 4 2 4 2 4 2 4 2 4 2 4 2

36 14 19 14 19 14 6 14 19 14 6 14 5 14 1 14 19

37 1 2 1 6 1 3 1 19 1 3 1 3 1 3 1 2

38 16 4 4 16 16 3 16 5 16 3 16 5 16 5 16 4

39 8 1 8 16 8 20 8 20 8 20 8 3 8 1 8 1

40 8 1 8 3 8 3 8 1 8 3 8 1 8 19 8 1

41 20 14 2 6 20 2 20 1 20 3 20 19 20 1 20 14

42 4 1 16 6 4 16 4 16 4 16 4 11 4 11 4 1

43 8 1 8 6 8 6 8 16 8 6 8 6 8 2 8 1

44 6 16 6 19 6 3 6 19 6 1 6 3 6 1 6 16

45 14 4 14 16 14 16 14 16 14 16 14 6 14 5 14 4

46 3 1 3 16 3 5 3 16 3 1 3 14 3 6 3 1

47 6 1 8 6 6 1 6 20 6 16 6 1 6 8 6 1

48 16 20 16 6 16 3 16 19 16 2 16 3 16 1 16 20

49 8 2 2 19 8 20 8 19 8 20 8 5 8 19 8 2

50 3 4 19 6 3 1 3 19 3 5 3 1 3 2 3 4
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Table A.7: Detailed Solution of 90 Nodes RCFL Problem Dataset
90 Nodes

No. Cost

4701

Bu

0

Cost

4723.2

Bu

30

Cost

4721.9

Bu

60

Cost

4719.3

Bu

120

Cost

4705.9

Bu

180

Cost

4701
Customer P B P B P B P B P B P B

1 23 6 23 24 23 24 23 24 23 21 23 6

2 28 11 28 21 28 21 28 21 28 6 28 11

3 16 6 16 21 16 21 16 24 16 23 16 6

4 23 28 23 16 23 16 23 16 23 6 23 28

5 17 11 17 23 17 23 17 23 17 23 17 11

6 24 21 24 16 24 6 24 21 24 28 24 21

7 6 11 6 24 6 24 6 21 6 21 6 11

8 28 6 28 21 28 16 28 16 28 6 28 6

9 21 6 21 24 21 16 21 6 21 28 21 6

10 17 23 17 16 17 16 17 16 17 16 17 23

11 17 6 17 16 17 16 17 16 17 16 17 6

12 11 6 11 16 11 16 11 16 11 28 11 6

13 16 6 16 6 16 6 16 6 16 6 16 6

14 21 6 21 16 21 16 21 6 21 28 21 6

15 6 21 6 21 6 24 6 21 6 21 6 21

16 24 17 24 6 24 6 24 6 24 6 24 17

17 17 23 17 16 17 16 17 16 17 16 17 23

18 21 6 21 23 21 23 21 16 21 6 21 6

19 21 11 21 16 21 16 21 6 21 6 21 11

20 6 23 6 21 6 24 6 21 6 28 6 23

21 6 11 6 24 6 24 6 21 6 16 6 11

22 24 28 24 21 24 6 24 21 24 21 24 28

23 21 6 21 16 21 16 21 24 21 6 21 6

24 23 11 23 16 23 16 23 16 23 16 23 11

25 23 17 23 24 23 24 23 24 23 6 23 17

26 21 6 21 16 21 16 21 6 21 6 21 6

27 28 11 28 21 28 21 28 21 28 6 28 11

28 16 6 16 24 16 24 16 6 16 6 16 6

29 6 28 6 24 6 24 6 21 6 21 6 28

30 16 23 16 6 16 6 16 24 16 21 16 23
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Table A.8: Detailed Solution of 90 Nodes RCFL Problem Dataset(Cont..)

90 Nodes
No. Cost

4701

Bu

0

Cost

4723.2

Bu

30

Cost

4721.9

Bu

60

Cost

4719.3

Bu

120

Cost

4705.9

Bu

180

Cost

4701
Customer P B P B P B P B P B P B

31 28 21 28 6 28 6 28 6 28 24 28 21

32 6 21 6 21 6 24 6 21 6 28 6 21

33 11 6 11 24 11 24 11 24 11 24 11 6

34 6 11 6 23 6 21 6 21 6 21 6 11

35 24 11 24 16 24 6 24 6 24 28 24 11

36 6 11 6 21 6 24 6 24 6 21 6 11

37 23 11 23 6 23 6 23 6 23 21 23 11

38 6 17 6 21 6 24 6 16 6 23 6 17

39 11 6 11 23 11 23 11 23 11 23 11 6

40 28 6 28 24 28 24 28 24 28 24 28 6

41 21 6 21 23 21 23 21 6 21 28 21 6

42 23 6 23 24 23 16 23 16 23 21 23 6

43 23 11 23 6 23 6 23 6 23 24 23 11

44 17 6 17 6 17 6 17 6 17 6 17 6

45 24 16 24 16 24 6 24 6 24 6 24 16

46 21 6 21 24 21 24 21 6 21 6 21 6

47 28 6 28 24 28 24 28 24 28 24 28 6

48 21 6 21 6 21 6 21 6 21 6 21 6

49 6 17 6 24 6 24 6 21 6 21 6 17

50 23 6 23 6 23 6 23 6 23 28 23 6

51 28 23 28 24 28 24 28 24 28 6 28 23

52 6 17 6 23 6 24 6 24 6 21 6 17

53 23 6 23 6 23 6 23 6 23 28 23 6

54 17 21 17 23 17 23 17 23 17 23 17 21

55 11 21 11 16 11 16 11 16 11 16 11 21

56 11 6 11 24 11 16 11 16 11 16 11 6

57 6 11 6 16 6 24 6 21 6 28 6 11

58 17 23 17 24 17 24 17 24 17 28 17 23

59 23 11 23 21 23 21 23 21 23 6 23 11

60 21 11 21 16 21 16 21 6 21 23 21 11
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Table A.9: Detailed Solution of 105 Nodes RCFL Problem Dataset
105 Nodes

No. Cost

7887

Bu

0

Cost

7922.3

Bu

30

Cost

7913.6

Bu

60

Cost

7911.3

Bu

120

Cost

7900.1

Bu

180

Cost

7891.8

Bu

240

Cost

7887
Customer P B P B P B P B P B P B P B

1 2 15 2 24 2 24 2 24 2 10 2 8 2 15

2 15 14 15 2 15 8 15 8 15 8 15 8 15 14

3 13 8 13 3 22 13 22 13 22 3 22 13 13 8

4 3 10 3 2 3 22 3 10 3 2 3 10 3 10

5 15 14 15 24 15 24 15 24 15 24 15 14 15 14

6 10 13 10 13 10 24 10 3 10 3 10 22 10 13

7 22 3 22 13 22 13 22 24 22 2 22 2 22 3

8 13 2 13 10 13 10 13 10 13 2 13 22 13 2

9 15 3 15 24 15 24 15 24 15 2 15 14 15 3

10 13 2 13 10 13 10 13 3 13 2 13 10 13 2

11 15 13 15 13 15 13 13 15 13 10 13 14 15 13

12 13 3 13 3 13 3 13 3 13 2 13 2 13 3

13 3 10 3 24 14 3 14 3 14 3 14 2 3 10

14 13 3 13 3 13 15 13 15 13 2 13 2 13 3

15 14 3 14 10 14 10 14 10 14 2 14 2 14 3

16 22 15 22 13 13 22 22 8 22 24 22 2 22 15

17 24 13 24 13 24 10 24 10 24 13 24 8 24 13

18 10 3 10 3 10 24 10 3 10 2 10 8 10 3

19 24 10 24 10 24 10 24 10 24 10 24 8 24 10

20 3 2 3 24 15 3 15 3 15 3 15 3 3 2

21 14 2 14 3 8 3 8 3 8 3 8 22 14 2

22 13 14 13 3 13 8 13 8 13 24 13 8 13 14

23 10 2 10 22 10 24 10 3 10 2 10 2 10 2

24 2 22 2 10 2 10 2 10 2 3 2 13 2 22

25 10 15 10 3 10 24 10 3 10 13 10 2 10 15
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Table A.10: Detailed Solution of 105 Nodes RCFL Problem Dataset(Cont..)

105 Nodes
No. Cost

7887

Bu

0

Cost

7922.3

Bu

30

Cost

7913.6

Bu

60

Cost

7911.3

Bu

120

Cost

7900.1

Bu

180

Cost

7891.8

Bu

240

Cost

7887
Customer P B P B P B P B P B P B P B

26 3 8 3 24 2 3 3 10 3 2 3 10 3 8

27 24 10 24 10 24 10 24 10 24 2 24 10 24 10

28 2 14 2 10 10 24 10 3 10 13 10 13 2 14

29 24 15 24 13 13 24 13 24 13 10 13 2 24 15

30 13 3 13 2 13 10 13 2 13 2 13 2 13 3

31 13 3 13 3 13 3 13 2 13 2 13 2 13 3

32 15 3 15 24 15 24 15 24 15 2 15 2 15 3

33 24 2 24 10 24 10 24 3 24 2 24 13 24 2

34 22 3 22 3 22 3 22 3 22 2 22 2 22 3

35 8 3 8 24 8 15 8 15 8 15 8 3 8 3

36 3 8 3 10 3 10 3 10 3 2 3 14 3 8

37 22 15 22 10 22 8 22 8 22 13 22 10 22 15

38 2 3 2 24 2 15 2 15 2 3 2 14 2 3

39 24 14 24 2 24 10 24 10 24 2 24 14 24 14

40 22 13 22 10 2 10 2 10 2 3 2 3 22 13

41 8 10 8 24 24 10 24 3 24 3 24 10 8 10

42 8 10 8 24 8 24 8 24 8 24 8 22 8 10

43 8 3 8 22 8 15 8 15 8 15 8 22 8 3

44 8 3 8 3 8 3 8 3 8 3 8 3 8 3

45 15 3 15 3 3 15 15 3 15 2 15 2 15 3

46 3 10 3 13 3 13 3 10 3 2 3 2 3 10

47 10 8 10 22 10 24 10 3 10 2 10 2 10 8

48 15 3 15 24 15 24 15 24 15 24 15 8 15 3

49 14 2 14 10 14 10 14 10 14 10 14 10 14 2

50 2 13 2 24 2 8 2 22 2 10 2 10 2 13
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Table A.11: Detailed Solution of 105 Nodes RCFL Problem Dataset(Cont..)

105 Nodes
No. Cost

7887

Bu

0

Cost

7922.3

Bu

30

Cost

7913.6

Bu

60

Cost

7911.3

Bu

120

Cost

7900.1

Bu

180

Cost

7891.8

Bu

240

Cost

7887
Customer P B P B P B P B P B P B P B

51 10 3 10 13 10 24 10 3 10 2 10 2 10 3

52 14 22 14 13 14 13 14 8 14 8 14 3 14 22

53 24 13 24 3 24 10 24 10 24 3 24 10 24 13

54 14 15 14 3 14 3 14 3 14 3 14 10 14 15

55 24 15 24 13 24 10 24 3 24 13 24 13 24 15

56 22 3 22 3 22 3 22 3 22 10 22 10 22 3

57 14 3 14 10 14 10 14 10 14 10 14 22 14 3

58 14 3 14 2 14 2 14 2 14 2 14 2 14 3

59 10 3 10 24 10 24 10 3 10 13 10 24 10 3

60 22 3 22 13 22 13 22 13 22 2 22 2 22 3

61 8 3 8 2 8 2 8 2 8 2 8 10 8 3

62 22 3 22 3 22 3 22 3 22 2 22 2 22 3

63 3 8 3 10 3 10 3 10 3 2 3 2 3 8

64 3 2 3 13 3 13 3 10 3 2 3 10 3 2

65 13 2 13 3 3 13 3 10 3 10 3 2 13 2

66 10 3 10 24 24 10 24 3 24 2 24 2 10 3

67 3 10 3 22 3 22 3 10 3 10 3 10 3 10

68 14 3 14 13 14 13 14 10 14 13 14 2 14 3

69 22 3 22 10 22 10 22 10 22 2 22 2 22 3

70 2 22 2 22 2 22 2 22 2 3 2 8 2 22

71 8 2 8 24 8 24 8 24 8 24 8 2 8 2

72 22 3 22 13 22 13 22 13 22 2 22 2 22 3

73 13 3 13 10 13 15 13 15 13 2 13 3 13 3

74 2 22 2 22 22 15 2 22 2 10 2 22 2 22

75 8 3 8 24 8 15 8 15 8 15 8 22 8 3
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Table A.12: Detailed Solution of 120 Nodes RCFL Problem Dataset
120 Nodes

No. Cost

5937

Bu

0

Cost

6037.3

Bu

30

Cost

5978.6

Bu

60

Cost

5963.4

Bu

120

Cost

5941.4

Bu

180

Cost

5937
Customer P B P B P B P B P B P B

1 22 13 22 18 22 19 22 13 22 13 22 13

2 18 22 18 10 18 19 18 19 18 14 18 22

3 20 13 20 14 20 14 20 13 20 13 20 13

4 20 22 20 14 20 13 20 13 20 13 20 22

5 18 13 18 14 18 19 18 19 18 14 18 13

6 18 19 18 20 18 19 18 20 18 20 18 19

7 13 18 13 18 13 19 13 20 13 20 13 18

8 17 19 13 14 17 13 17 13 17 20 17 19

9 13 22 10 13 13 19 13 20 13 14 13 22

10 19 13 20 13 19 13 19 13 19 13 19 13

11 13 20 13 18 13 19 13 20 13 17 13 20

12 22 18 10 9 22 13 22 20 22 17 22 18

13 13 20 22 13 13 19 13 20 13 22 13 20

14 17 22 13 14 17 13 17 13 17 13 17 22

15 17 22 18 14 17 14 17 14 17 19 17 22

16 13 18 13 9 13 19 13 20 13 20 13 18

17 17 22 20 9 17 19 17 20 17 14 17 22

18 19 17 10 14 19 13 19 13 19 17 19 17

19 13 18 13 14 13 19 13 19 13 22 13 18

20 18 13 18 13 18 13 18 13 18 17 18 13

21 22 13 22 9 22 13 22 13 22 13 22 13

22 18 13 18 9 18 22 18 22 18 22 18 13

23 17 13 13 18 17 13 17 13 17 20 17 13

24 22 20 22 13 22 13 22 13 22 13 22 20

25 20 13 10 13 20 13 20 19 20 17 20 13

26 20 13 20 9 20 19 20 13 20 13 20 13

27 18 13 18 10 18 22 18 22 18 17 18 13

28 18 13 18 14 18 19 18 19 18 19 18 13

29 13 22 13 14 13 19 13 20 13 17 13 22

30 13 17 9 13 13 19 13 19 13 14 13 17
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Table A.13: Detailed Solution of 120 Nodes RCFL Problem Dataset (Cont..)

120 Nodes
No. Cost

5937

Bu

0

Cost

6037.3

Bu

30

Cost

5978.6

Bu

60

Cost

5963.4

Bu

120

Cost

5941.4

Bu

180

Cost

5937
Customer P B P B P B P B P B P B

31 20 22 20 13 20 19 20 13 20 22 20 22

32 14 20 14 13 14 13 14 13 14 13 14 20

33 22 13 22 14 22 19 22 19 22 13 22 13

34 19 17 9 22 19 13 19 13 19 13 19 17

35 13 18 13 18 13 19 13 19 13 17 13 18

36 18 13 18 9 18 14 18 14 18 17 18 13

37 13 18 13 9 13 19 13 20 13 20 13 18

38 19 13 18 9 19 13 19 13 19 17 19 13

39 18 13 18 10 18 13 18 20 18 20 18 13

40 13 18 13 22 13 19 13 19 13 14 13 18

41 22 17 10 22 22 13 22 13 22 13 22 17

42 18 13 18 13 18 13 18 20 18 17 18 13

43 18 13 9 14 18 19 18 19 18 14 18 13

44 18 20 10 18 18 19 18 22 18 22 18 20

45 20 18 9 20 20 19 20 13 20 13 20 18

46 17 14 10 22 17 19 17 19 17 22 17 14

47 17 22 18 14 17 19 17 19 17 13 17 22

48 20 22 20 9 20 13 20 13 20 13 20 22

49 22 13 22 9 22 13 22 13 22 13 22 13

50 20 13 20 14 20 14 20 19 20 13 20 13

51 19 17 22 9 19 13 19 13 19 13 19 17

52 14 19 14 9 14 18 14 18 14 13 14 19

53 18 13 18 14 18 14 18 14 18 14 18 13

54 19 13 22 14 19 13 19 20 19 22 19 13

55 14 17 14 22 14 22 14 20 14 13 14 17

56 19 22 22 13 19 13 19 20 19 13 19 22

57 19 22 9 14 19 13 19 20 19 17 19 22

58 14 17 14 9 14 13 14 13 14 13 14 17

59 17 14 20 13 17 13 17 20 17 20 17 14

60 19 18 9 20 19 13 19 13 19 13 19 18
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Table A.14: Detailed Solution of 120 Nodes RCFL Problem Dataset (Cont..)

120 Nodes
No. Cost

5937

Bu

0

Cost

6037.3

Bu

30

Cost

5978.6

Bu

60

Cost

5963.4

Bu

120

Cost

5941.4

Bu

180

Cost

5937
Customer P B P B P B P B P B P B

61 19 17 10 13 19 13 19 20 19 13 19 17

62 14 13 14 20 14 19 14 20 14 20 14 13

63 18 13 18 20 18 19 18 20 18 17 18 13

64 20 18 20 22 20 19 20 13 20 13 20 18

65 22 17 22 9 22 13 22 13 22 17 22 17

66 22 17 10 18 22 13 22 20 22 17 22 17

67 20 18 9 20 20 19 20 19 20 13 20 18

68 18 22 13 18 18 13 18 13 18 13 18 22

69 22 20 10 22 22 19 22 19 22 19 22 20

70 20 13 20 22 20 19 20 13 20 13 20 13

71 22 14 22 9 22 13 22 13 22 13 22 14

72 14 17 9 14 14 13 14 13 14 13 14 17

73 19 22 10 9 19 13 19 13 19 17 19 22

74 20 22 20 9 20 13 20 13 20 13 20 22

75 13 17 9 13 13 19 13 19 13 17 13 17

76 18 20 14 18 18 14 18 14 18 14 18 20

77 19 13 20 18 19 13 19 13 19 13 19 13

78 20 13 20 14 20 13 20 13 20 13 20 13

79 17 19 9 14 17 13 17 14 17 19 17 19

80 20 19 9 22 20 13 20 19 20 13 20 19

81 22 13 22 13 22 19 22 19 22 20 22 13

82 22 13 22 9 22 13 22 13 22 13 22 13

83 17 22 20 13 17 19 17 20 17 22 17 22

84 20 19 9 20 20 13 20 13 20 22 20 19

85 20 13 20 9 20 13 20 13 20 13 20 13

86 17 13 18 14 17 19 17 14 17 13 17 13

87 13 22 13 20 13 19 13 19 13 14 13 22

88 19 18 9 22 19 13 19 13 19 17 19 18

89 20 22 9 20 20 13 20 13 20 13 20 22

90 14 22 10 9 14 13 14 13 14 13 14 22
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