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Abstract

Evacuation of Equilateral Triangles by Mobile Agents of Limited

Communication Range

Iman Bagheri

We consider the problem of evacuating £ > 2 mobile agents from a unit-sided equilat-
eral triangle through an exit located at an unknown location on the perimeter of the
triangle. The agents are initially located at the centroid of the triangle. An agent can
move at speed at most one, and finds the exit only when it reaches the point where
the exit is located. The agents can collaborate in the search for the exit. The goal of
the evacuation problem is to minimize the evacuation time, defined as the worst-case
time for all the agents to reach the exit.

Two models of communication between agents have been studied before; non-
wireless or face-to-face communication model and wireless communication model. In
the former model, agents can exchange information about the location of the exit
only if they are at the same point at the same time, whereas in the latter model,
the agents can send and receive information about the exit at any time regardless of
their positions in the domain. In this thesis, we propose a new and more realistic
communication model: agents can communicate with other agents at distance at most
r with 0 <r <1.

We propose and analyze several algorithms for the problem of evacuation by & > 2
agents in this model; our results indicate that the best strategy to be used varies
depending on the values of  and k. For two agents, we give five strategies, the last of
which achieves the best performance among all the five strategies for all sub-ranges of
r in the range 0 < r < 1. We also show a lower bound on the evacuation time of two
agents for any r < 0.336. For k > 2 agents, we study three strategies for evacuation:
in the first strategy, called X3C, agents explore all three sides of the triangle before
connecting to exchange information; in the second strategy, called X1C, agents explore

a single side of the triangle before connecting; in the third strategy, called CXP, the

il



agents travel to the perimeter to locations in which they are connected, and explore
it while always staying connected. For 3 or 4 agents, we show that X3C works better
than X1C for small values of r, while X1C works better for larger values of r. Finally,
we show that for any r, evacuation of k = 6+ 2[ (1 —1)] agents can be done using the
CXP strategy in time 1+ +/3/3, which is optimal in terms of time, and asymptotically

optimal in terms of the number of agents.
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Chapter 1
Introduction

In Computer Science, search theory tackles the problem in which a Searcher with a
limited amount of information about the environment wishes to minimize the time
required to find a hidden prize [3]. Traditionally the hidden item was considered
stationary, meaning an adversary chooses a location for the item before the execution
of the algorithm. The best known example of these types of problems is the Cow
Path Problem [6], in which a cow (or an agent) searches an infinite fence represented
by a line, in order to find a hole, the hidden prize. An extended version of the cow
path problem is proposed in [29] where the prize is hidden in a star ) consisting of

M unbounded rays originating from a single point O, as shown in Figure 1.

m+1

Figure 1: Star search proposed in [29]

Another classical problem is the The Princess and the Monster problem proposed

in [31]. In this problem the Princess and the Monster are both in a dark room and



the Princess is aware of the fixed speed of the Monster although she can move with
arbitrary speed and she tries to avoid the Monster. This problem has some major
differences with the cow-path problem; in addition to the searching domain being a
two-dimensional region vs. a single line in cow-path problem, the motivation of this
algorithm is for the Princess to avoid being caught by the Monster.

Another search problem, called The Flaming Datum, is studied in [11] which has
military applications. Suppose at time 0 a submarine has fired a torpedo at a ship,
hence revealing its location. The ships sends out a distress call and a sonar carrying
helicopter arrives on the scene at time . Unaware of the trajectory of the submarine,
the helicopter should use its sonar to locate the submarine. The advantage that the
submarine has is that up to time ¢, it can move in an arbitrary direction unknown to
the helicopter. On the other hand, the speed of the helicopter works in its favor.

A subcategory of search algorithms is group search algorithms in which the number
of searchers is greater than one. In this class, the search environment is divided into
several parts and then each part is assigned to a searcher so that they collaboratively
explore the whole area. In this case, the execution time of the algorithm with &
searchers can potentially be reduced up to 1/k of the time needed for the algorithm
with only one agent, though getting the improvement of 1/k is rarely achieved in real
scenarios.

Evacuation Problems can be seen as another type of the search problems. We will
first give a definition of the the evacuation problem in the following section, and later

on, will determine the specific problem that is going to be studied in this thesis.

1.1 Evacuation Problem

Consider a situation in which multiple agents are trapped in an enclosed domain.
The agents are aware of the existence of a single or multiple exit points but the
whereabouts of these points are unknown to the agents. Their initial position and
the domain is also known to the agents. The goal is to evacuate all the agents
from this domain through those exit points in the shortest time possible because of
unfortunate circumstances e.g. earthquake or fire. The agents have the ability to
communicate with each other and to send the location of the found exit points to the

other agents. This problem is known as Fvacuation Problem. The main difference



between evacuation and group search problems is that in the search problem, the
execution of the algorithm is finished once the target is found by any of the agents,
whereas in evacuation problems, the algorithm is finished when all the agents or some
specific agents exit the domain.

To describe an evacuation problem, we need to specify the following aspects of
the model [19]:

Search Domain: The search domain is the perimeter of an enclosed area in which
all the agents are trapped in it. There exists one or more exit points located on
the boundary, through which the agents can exit from that area. The domains
that have been studied so far are 2-D geometric shapes such as disk, triangle

and square.

Agents and Their Capabilities: The agents are assumed to know the geometry
of the search domain, they have the same sence of orientation, and they know
each others trajectories. They can move with at most unit speed. In terms of
computational power, both finite-automata agents, and Turing-machine agents
have been studied. In the latter model, agents can, for example, calculate the
shortest path to a point in which they can communicate with another agent in
negligible time, if it is necessary. An agent can recognize the exit only when it
reaches it. We may assume that all agents are reliable, or that some fraction
are faulty; both crash-faulty and Byzantine-faulty agents have been studied.
Finally, agents are capable of communicating with each other, using a specified
communication model. We describe below the communication models that have

been studied so far.

The main distinction between the evacuation problems is the communication
method of the agents. Agents in the face-to-face model studied in [13, 17, 10] can only
communicate if they are at the same point at the same time. In contrast, agents in
the wireless model studied in [19, 20] are capable of sending a message to any location
inside the domain at any time. Both these models are unrealistic; in practice agents
are likely to communicate using a wireless transmitter /receiver with limited commu-
nication range. In this thesis we introduce a new model, where agents are capable of
communicating with each other, only if they are close enough to each other.

In general, an evacuation algorithm consists of segments of a line or a curve that

each agent traverses. The sequence of these segments for each agent is called a



trajectory for the agent. To specify an evacuation algorithm, first we need to specify
these trajectories for each agent. The trajectories are defined at time ¢ = 0 and
typically all the agents are aware of the trajectories of the other agents, and they
typically know what to do if they find the exit or they get notified about the location
of the exit by another agent.

1.2 Problem Definition

In this thesis we consider k£ > 2 non-faulty agents that are initially located at the
centroid of an equilateral triangle with side 1. Each agent has a wireless transmit-
ter/receiver and they can communicate with another agent only when their distance
is at most r. The objective of the algorithm is to evacuate all the agents through the
single exit point located on the boundary of this triangle. Our goal is to minimize
the time needed for all agents to exit through the exit point. At time ¢ = 0 the
agents start to follow their assigned trajectories with maximum speed 1 and they find
the exit only when they reach it, meaning the exit cannot be recognized from some

distance.

1.3 Preliminaries

We denote the triangle by T', with O as centroid and A, B and C' as vertices. For
any segment on the plane connecting point P to (), we denote it with PQ) and its
length by |PQ|. The height of the triangle is denoted by h and y = h/3. We denote
the time that point x is seen for the first time by any of the agents by ¢,.

By Ea(k,r,x) we mean the evacuation time of algorithm A with k agents, k > 2
and communication range of r, 0 < r < 1, if the exit is located at x. The worst-case
evacuation time of algorithm A with k agents and communication range of r is given
by E4(k,r), in other words:

Ea(k,r) = sup (Ea(k,r x))
zeP(T)
where P(T') is the perimeter of T. We denote the optimal evacuation time by k agents
by E*(k,r), that is:
E*(k,r) = igf Ea(k,r)

4



Critical Points

In our algorithms, we divide the exploration trajectory of agents into few segments.
For each segment, we try to find the point that has the maximum evacuation time,
we call these points critical points. In order to minimize the maximum evacuation
time, after identifying these critical points in the triangle, we introduce algorithms to

decrease the evacuation time for these points.

Extended Meeting Points

Due to the ability of transmitting a message, one agent can place itself between
two other agents, in order to act as a relay and enable the two other agents to
communicate. We call these positions extended meeting points. More formally if
we consider the positions of all the agents as Py, Ps, ... Py, those positions can be
considered as extended meeting points if there exists at least one connected graph

with vertices Py, P, ... Py, such that the length of each edge is at most r.

Effective Communication Range

By communication range we mean the maximum distance in which two agents can
send and receive data through their transmitters. As stated before, this range can be
further improved if a third agent is place between the two, acting as a relay agent.
By effective communication range we mean the maximum distance across which an

agent can transmit some data with the help of relaying agents.

1.4 Owur Contributions

We now give a summary of our results in this section. The results will be discussed

in depth in the following chapters.

1. We propose a new communication model for agents in search and evacuation
problems. This model is more realistic than the previously proposed wireless

and face-to-face communication models.

2. For evacuation by two agents, we first modify the FEqual Travel with Detour

algorithm in [13] for some values of . We describe a new kind of detour,



resulting in the A, algorithm which can be used for any value of r, and improves
the evacuation time over the algorithm using the old detour. We further improve
the A4 algorithm by utilizing two detours instead of one. Our new algorithm
also improves the evacuation time of two agents in face-to-face model from
2.3367 [13] to 2.2861. Finally, we give a lower bound for the evacuation time
by 2 agents with communication range r < 3y — 0.5 ~ 0.3660.

3. For evacuation by three agents, we give three different strategies, each giving a

better evacuation time than the other two strategies for some range of r.

4. For evacuation by four agents, we give two different strategies, each of them

achieving a better evacuation time than the other for some range of r.

5. It is known that evacuation requires time at least 1 4+ 2y even in the wireless
model, regardless of the number of agents. For any r, we give upper and lower
bounds of k = 6 + 2[1/r — 1] and k = 1/r + 1 respectively, for k, the number of

agents required to achieve this optimal time.

1.5 Outline of Thesis

We describe related work in Chapter 2. In Chapter 3, we describe our upper and
lower bounds for evacuation by two agents with communication range r. In Chapter
4, we describe our algorithms for 3 agents. The case of 4 and more agents is described

in Chapter 5. We conclude with discussion and open problems in Chapter 6.



Chapter 2

Related Work

In this chapter, we first discuss the previous research carried out on search problems.
This is followed by the previous work done on evacuation problems for both face-to-
face and wireless models.

In search and evacuation problems, the agents are looking for a target (or multiple
targets) in a discrete domain, such as a graph, or the continuous domain, such as a
line. The main goal is to minimize the worst-case time needed to find the target
utilizing a single or multiple number of searchers. We therefore often speak of an
adversary that will do his best to hide the target in some place that is hardest for the
searchers to find it. As mentioned in Chapter 1, in search problems, we minimize the
worst-case time for any of the agents to find the target, while in evacuation, we are

interested in minimizing the time for all the agents to reach the target.

2.1 Single-Agent Search Algorithms

In classical search algorithms it is assumed that there only exists a single agent,
responsible for searching the whole domain. A few of these problems are discussed in

the following.

2.1.1 Cow Path Problem

Search games were introduced with the classical cow-path problem [6, 7]. The search
domain is an unbounded line and there is a treasure which is located at some point

on the line. The sole purpose of the searcher is to find this treasure in the least time



possible. A doubling zigzag algorithm was introduced in [8] in which the agent moves
to the right for distance 2% from it’s initial location in phase 2, and moves to the left
for distance 2%*! in phase 2i + 1 where ¢ > 0. The authors proved the competitive
ratio of 9 for this algorithm and showed that this algorithm is optimal.

The cow path problem may differ from the reality, i.e. the speed of the agent
may vary for each part of the trajectory. This may be caused by a slope in the
terrain or perhaps the agent may have to slow down when it is searching for the exit.
The authors of [25] take these possibilities into consideration and study the following

models:

Beacon model where agent moves away from its original point of start with unit

speed and moves toward the start point with speed s > 1.

Exploration history model where the agent searches the unexplored regions with

unit speed, and already explored regions with speed s > 1.

Constant acceleration models where the agent can accelerate its speed at con-

stant rate in some conditions, or move with speed one otherwise.

Tailwind model in which the agent moves left with unit speed and moves right with

speed s > 1.

For the first three models above, the authors give expanding-distance strategies,
wherein the algorithm works in phases. In Phase i, the robot moves distance d;
from the origin in the opposite direction to the previous phase, where d; = rd;_;, and
r is called the expansion ratio of the algorithm. For the doubling strategy described
previously, r = 2. The authors proved that the doubling zig-zag strategy is optimal
for the beacon model. For the exploration history model, an asymptotically optimal
distance-based zigzag strategy with expansion ratio of r = 1/2/(s + 1) is given [25].
Two models of constant acceleration are studied. In the first model, the agent’s
speed increases at a constant rate ¢ until the next turn. Upper and lower bounds of
6.36 and 11.1 respectively are given for the doubling strategy. In the second model,
the agent moves with unit speed going uphill and with constant acceleration going
downhill. The competitive ratio in the second model is dependent on the type of the
terrain. The authors showed that while the competitive ratio of the doubling strategy

is unbounded if the agent is located on an inclined line or on top of a symmetric hill,



the competitive ratio is constant for the same strategy if the agent is located at the
bottom of a symmetric valley [25].

For the tailwind model, the authors analyzed an expanding-time zig-zag search
strategy in which the agent moves to the right for 7% time in phase 2i, and ar?*!
in phase 2¢ + 1 where ¢ > 0. This is shown to work better than the distance-based
doubling strategy.

Many variations of this problem have been studied; randomized algorithm for
cow-path problem in [33], a ring instead of a line in [40], and searching for a line,

parallel to one of the x or y axes in [32].

2.1.2 Continuous High-Low Search

The high-low search is a game played on an interval or a discrete subset of it. The
hider chooses a point H on this interval, and for each guess that the searcher makes,
the hider reveals whether the guess was higher than H or lower.

The continuous version of this search game was introduced in [5] where the hider
picks a point H from the unit interval of @ = [0, 1], and the searcher should announce
a guess ¢g; € () and then it is revealed that the H is greater than g; or otherwise.
The goal of the algorithm is to minimize the ”sum of errors” cost function, which is

equal to ¢ = Y |g; — H|. Note that ¢ = 1 for the naive halving strategy in which the
=1

searcher alwa&s chooses the mid-point of the interval. Baston and Bostcok proved a
lower bound of v~ = 0.6 for the problem and gave an algorithm with upper bound of
vT =0.628 [5]. It is demonstrated in [2] that there exists an optimal strategy for this

game , i.e. that v~ = o™,

2.1.3 Infiltration Games

Assume at time ¢ = 0 an infiltrator enters a set () through a known point and heads to
the sensitive zone B C (). Searcher is responsible for defending this zone by capturing
the infiltrator before it reaches B. A discrete version of this problem is introduced in
[30] where @ is an array of n+1 cells and B is located on the last cell. The probability
of capture is 1 — X if the defender and the infiltrator are both located in the same cell
and zero otherwise.

Lalley considered this game under the simplifying assumption that the infiltrator



can stay at the safe zone outside of () for unlimited time and he should reach the
target by time ¢, whereas t is known for both players [35]. Assuming both the defender
and the infiltrator can move with speed 1, Lalley presented optimal algorithms for
each player. It is obvious that the probability of a successful infiltration is at most
A if the defender does not move throughout the course of the game. The optimal
infiltration strategy (called Admiral Farragut by Lalley) is to wait in the safe zone
until time 7 where 7 is uniformly distributed over the integers 1 < 7 < t—mn, and then
go full-speed toward the target reaching it at maximum time ¢. The best approach
for the defender (called orderly fallback by Lalley) is to stay at cell 1 for the first time
unit, go toward the target for & time unit; rest for 1 time unit then move toward the
target for & time unit and so on, where » & = n— 1. It is shown that if ¢ — oo then

the probability of a successful infiltration approaches A [35].

2.1.4 Cop and Robber Games

The game of cop and robber was introduced in [38]. In this game which is played on
a connected graph G by two players, the first player, the cop, chooses a vertex on
G to begin. Likewise the second player, the robber, chooses another vertex for his
starting point. At each time step, the cop moves and then it is the robber’s turn
to move. A move consists of either moving to an adjacent vertex or staying at the
same vertex. The movement of each player is observed by the other player. The cop
wins if he catches the robber in a finite number of steps, otherwise the robber wins.
It is obvious that if the cop has a winning strategy, he should catch the robber in
maximum n(n — 1) 4+ 1 time steps [1], where n is the number of vertices in G.

The graphs in which the robber has a winning strategy, are called the robber-win
graphs and the graphs in which the cops have a winning strategy, are called cop-win
graphs [38]. The purpose of this research is to determine which graphs are cop-win
and which are robber-win. Let p and d be adjacent vertices. Vertex p is a pitfall if
all neighbors of p are also neighbors of d. It is shown that G is a cop-win graph if we
could reduce G to a single vertex by removing the pitfalls (with their corresponding

edges) one after the other without any specific order [1].

10



2.2 Group Search Algorithms

As opposed to the single-agent search algorithms, group search algorithms utilize more
than one agent in order to find the hidden treasure or treasures. Since the process is
parallelized and distributed between agents, the total time decreases. However, other
issues emerge, such as how agents communicate, what happens in a case of failure,
and also load balancing. The goal of the search algorithms is generally to minimize
the required time to find the treasures. Reducing the required number of searchers

could be another goal.

2.2.1 Faulty Agents in the Cow Path Problem

Consider the problem of group search on a line. It is clear that with two agents, search
can be done optimally in time d where d is the distance from the origin to the exit.
However, the assumption that the system is flawless is not completely practical as
every system is susceptible to malfunction. Hence variations of group search problems
where a few of the agents are faulty have been studied. In [23] the Cow Path problem
is revisited with n agents out of which f are faulty. The faulty agents can traverse
the line but they cannot detect the target. Such a type of fault is called a crash fault.
Note that it is not known in advance which agents are faulty, in fact the faulty agents
themselves don’t know that they are faulty. The goal in [23] is to get a lower search
time for the worst case, i.e. to decrease the time in which at least f + 1 agents have
visited the target. They gave an algorithm with competitive ratio of 5.24 for three
agents out of which one is faulty, and an optimal competitive ratio of 3, for the case
n = 2f + 1 when n tends to oc.

The Byzantine Generals Problem is a classical problem in distributed computing
introduced in [36] where all the loyal generals should reach the same agreement on
a plan ignoring the traitor generals. Since then, agents that are not just faulty
but malictous liars have been considered in many distributed computing problems
(34, 12, 21]. A similar idea is used in [24] for the classical cow-path problem where
all the agents have wireless communication capabilities and Byzantine agents can not
only stay silent while visiting the exit, but also they can lie about the exit and send
every agent the location of a non-exit point as the exit. The goal of search with

Byzantine agents is to minimize the time needed for all the non-faulty agents to be
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certain that the correct location of the exit has been found. The authors gave a
competitive ratio of 3, 2 and 1 for four, five and six agents, respectively out of which
1 is Byzantine. They also conjectured that the competitive ratio cannot be improved
for 3 agents including 1 Byzantine from the crash-fault case. Later, the lower bound
for 3 agents including 1 Byzantine was improved from 3.93 [24] to $v/4 ~ 5.23 [34],
thus showing that the algorithm in [23] is optimal for 3 agents, one of which is either
crash-faulty or Byzantine-faulty.

In the previous forms of faulty agents, we assumed that the faulty agents start
malfunctioning right at the beginning of the execution of the algorithm. In contrast
[26] looks at the problem where we have infinite number of boxes and the searches
should open them one by one to find the hidden prize. It is possible for some of the
agents to stop functioning at some point in the middle of execution of the algorithm

and the other searchers should recognize the breakdown of these agents.

2.2.2 Cops and Robbers Games

A variation of the cop and robber game described earlier is where there is more than
one cop in the game. The motivation is to identify ¢(G), the minimum number of
cops in a graph G to catch the robber. It is shown that if graph G does not have
any cycle with length of 3 or 4, ¢(G) should be at least the maximum degree of G [1].
Also ¢(G) < 3 for any planar graphs [1]. Many variations of these games have been
studied quite extensively; see [28, 37, 9].

2.3 Evacuation Problems

The evacuation problem was first introduced in [16], looking at the evacuation of
multiple agents from a disk. The evacuation algorithms generally proceed in two
phases: first, agents have to search the perimeter looking for the exit, and then in
the second phase they communicate and move to the exit. Though we can say that
the first phase is a group search problem, we should look at the problem as a whole,
since an optimal algorithm for the first phase does not necessarily guarantee a best
solution for the whole problem.

The evacuation problems that we are interested in, differs from the evacuation

problem studied in [27], where the location of the exit is known to the evacuators,
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and the domain is a collection of cells, where at most one person can occupy a cell
at any time. In contrast, in our problem, the location of the exit is unknown to
the evacuators, the domain is the perimeter of a polygon, and a single point can be
occupied with multiple agents.

We will briefly discuss the research done on the evacuation problems so far cate-

gorizing them based on the search domain.

2.3.1 Disk

Evacuation from a disk with unit radius is studied in [16] for two, three as well as a
very large number of agents, for both face-to-face and wireless models. The authors
were able to give a tight bound for a large number of agents for both models, as well
as for two agents in the wireless model.

For evacuating two agents, the algorithm for both models are identical up to
the time that the exit is found. Both agents move to an arbitrary point A on the
perimeter and from there, one agent starts searching clockwise while the other agent
starts searching counter-clockwise. In the face-to-face model, when the exit is found
by one of the agents, it calculates the shortest path to intercept the other agent and
then the two agents go back to the exit together. In the wireless model, the location
of the exit is broadcasted and the second agent moves immediately to the exit. It is
shown that the worst placement of the exit in this specific algorithm for face-to-face
and wireless models are at distance 1.91 and 2.09 from point A, respectively.

The notion of using detours into the region, in order to improve evacuation time,
was first introduced in [17] for the case of two agents in the face-to-face model, which
is later used in other evacuation problems with different domains. The two agents
at some point during the execution of the algorithm leave the boundary of the disk
and move to a specific point inside the disk. If the exit is not found by either of the
agents, they move back to the same point on the boundary and continue searching
the unexplored part of the disk, otherwise, they go to the exit. With the use of a
detour, the evacuation time was improved from 5.74 in [16] to 5.628 in [17]. Also the
lower bound was improved from 5.199 to 5.255.

In [15] the evacuation problem with two wireless agents is studied with multiple
exits and slightly different settings. The perimeter of the disk is 1 and agents are

initially located on the boundary at distance L from each other. The agents are
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aware of the distance between each pair of exits, but they don’t know their own
initial positions. The paper gives an upper bound of % - D+ % and a lower bound
of % - D — % for arbitrary values of L and D where L is the distance between the
two agents and D is the length of the longer of the two arcs between two consecutive
exits.

Evacuation from a disk with two exits located at distance d from each other is
revisited in [39] for two agents in both wireless and face-to-face models. It is shown
that it is better for the agents to move to two different points on the perimeter of
the disk with distance d apart from each other for the wireless model, though for the
face-to-face model, the value of d determines whether it is better for the agents to
move to the same point on the perimeter or they should move to different points with
distance d [39].

The case of three wireless agents with at most one of them being faulty are studied
in [21]. The authors consider two fault models, crash fault, in which the agent cannot
recognize the exit, or it is unable to transmit the location of the exit to the others; and
Byzantine faults in which the agents may or may not recognize the exit, but may be
malicious, and can transmit false data to the other agents. For the first fault model,
they proposed a trajectory for agents where two of them go to the same point on the
perimeter of the disk and start exploring in opposite directions; and the third agent
moves to a point on the perimeter with arc-distance of approximately 2.966 from
one of the agents and starts moving toward the closest one. Hence the crash fault
model can be solved in time & 6.309 [21]. In the algorithm for the Byzantine model,
the agents go to opposite points on the perimeter, and start exploring in the same
direction. The difference is that they continue exploring their share of the perimeter,
even if they receive a message that exit is found. After the whole disk is explored,
then they

e continue exploring if no exit location is reported,
e they go directly to the exit if only one exit location is reported

e they go to the nearest reported exit location and if they don’t find any exit

there, they move to the second reported exit.

It is shown that the maximum evacuation time for the above algorithm s equal to
1+ 4 4+ /3 ~6.921 [21].
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2.3.2 Square

In [19], the evacuation problem in unit sided squares for wireless model is studied.
For the two-agent problem, the trajectories are shown in Figure 2. Both agents start
exploring in opposite directions from some point with distance z from the nearest
vertex. It is shown that the best value for = is equal to % — \/% which yields a tight
bound of % + \? for evacuating two agents. The evacuation time is maximized if the

exit is placed at either points C' or FE. For more than two agents, the improvement

C D
NE
2x
|z
A s B

Figure 2: Evacuation of two agents from a square [19]

depends on the starting point. It is shown in [19] that no improvement can be made
by using more that two agents if the starting point is one of the corners. For k > 2
agents starting from the center of the square, the evacuation time is at most %ﬁ + %
and no algorithm can do better than %ﬁ

Furthermore, the authors in [14] showed that in the face-to-face model, two agents
can evacuate the square in 3.4645 and any algorithm requires time at least 3.118. They

also gave evacuation times 3.1786 and 2.6646 for three and four agents, respectively.

2.3.3 Triangle

Evacuation of multiple agents from an equilateral triangle with sides of length one is
studied in [13] and [19]. Two models of communication, wireless and face-to-face, are

studied and lower and upper bounds are stated for both of the models.
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Wireless model

Evacuation of multiple agents with wireless communication capabilities in a triangle
with unit sides is studied in [19]. In the case of two agents, it is shown that if the
agents are located on the perimeter of the triangle, then x + % is a tight bound for
evacuating agents where x is the distance of the agents to the closest midpoint of
an edge. Hence placing the agents initially on the midpoint of an edge results in
minimum evacuation time. When the initial location of the agents is in the interior of
the triangle, the results are the same, i.e. x4+ % is a tight bound and z is the distance
of the agents to the closest midpoint of an edge [19]. Therefore if the agents start at
the centroid of the triangle, evacuation time will be ﬁg + % The trajectories of both

agents are shown in Figure 3.

B M —C
Figure 3: Evacuation of two agents from a triangle [19]
For the case of k > 2 agents, the same approach is used. One of the edges is

divided in to k£ segments and each agent explores one segment and then moves to the

third vertex. The trajectories of three and four agents are illustrated in Figure 4.

Face-to-face model

Evacuation in an equilateral triangle in the face-to-face model is first studied in [13].
It is shown that for any number of agents in the face-to-face model, the evacuation

time is at least v/3, and for two agents, the lower bound is improved to 1 + \%
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Figure 4: Evacuating (a)three and (b)four agents with wireless transmitters in [19].

For three and more agents Equal-Travel Early-Meeting Algorithms [13] are proposed.
In these algorithms with k& agents, the perimeter of the triangle is divided in to
k4 1 segments and each segment is assigned to be explored by an agent. After these
segments are explored, agents move to the interior of the triangle in order to exchange
the information. These segments are chosen in such a way that all agents get to the
meeting point at the same time. If the exit is not found until then, then they move
to the last segment together.

Improved algorithms for 2 agents are given in [13]. Instead of travelling to a
meeting point, agents make a detour and move to the interior of the triangle. At the
end of the detour, if the agents are not intercepted by the other agent, they know
that the exit is not found and return to the perimeter of the triangle to resume the
exploration. The trajectories of both agents are shown in Figure 5.

In theory any number of detours can be implemented for evacuating two agents;
however it is shown in the same research that the improvement achieved by the third
and subsequent detours is insignificant. The achieved evacuation time of two agents
with Equal-Travel with Detour strategy is 2.3367.
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Figure 5: Evacuation of two agents from a triangle with one detour for each agent in
[13]
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Chapter 3
Evacuating Two Agents

In this chapter we give upper and lower bounds on the evacuation time for two agents
in an equilateral triangle of side 1. We divide the triangle into two halves by a
vertical line through A, as shown in Figure 6. In our algorithms, the first agent
Ry is responsible for searching for the exit in the left half and the second agent R,
is responsible for the right half. All the trajectories presented in this chapter are
symmetric with respect to line AM, where M is the midpoint of edge BC. Therefore,

without loss of generality, in the analysis of algorithms throughout this chapter, we

B M C

Figure 6: Search domain is an equilateral triangle with sides 1
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assume that the exit is located on the right half of the triangle.

Let S; and S5 be points on the sides AB and AC' at distance r from A, shown
in Figure 6. This makes an equilateral triangle AS; AS, at the top of T with side r.
If the agents do not find the exit outside AS;ASs and enter this smaller equilateral
triangle, they are always in communication range with each other and the evacuation
time for all the algorithms described in this chapter, is independent of the exit position
and will always be tg, +r. Recall that tg, is the time that Sy is visited by any of the
agents for the first time.

In the algorithms in the face-to-face models, if one agent finds the exit, it moves to
a point, in a way that both of the agents will be at the same point at the same time.
However in our model, since agents have the ability to communicate within a certain
range, there is no need for both of them to be at the same point to communicate, an
agent can calculate a path to point p so that when it reaches point p, the other agent
is at distance at most r from the first agent. By r-interception we mean the action
of calculating the point p and getting there so that the two agents can communicate
with each other.

Recall that the best known algorithm described in [13] for the face-to-face model,
evacuates two agents in time 2.3367 and employs two detours. In [19], an optimal
algorithm for wireless model with evacuation time of 3/2 + y ~ 1.78867 is described.
Hence if the agents are capable of communication within a certain range r > 0, it is
clear that:

1.78867 < E*(2,r) < 2.3367

Algorithm 1 describes the behavior of both agents in 7. The main idea is that
each agent moves along a pre-specified trajectory looking for the exit, and as soon as
one of them finds the exit, it r-intercepts the other agent and they both move to the
exit. Throughout this chapter, we use the same evacuation algorithm with different

trajectories.

3.1 A Simple Evacuation Trajectory

The trajectories of both agents are shown in Figure 7. The trajectory of Ry is shown in
blue, from the centroid to M to vertex B and then to vertex A. The green trajectory
is for Ry, from the centroid to M to C and then to A. Whichever agent finds the

20



Algorithm 1 Evacuation Algorithm for Two Agents

function EXPLORATION
found« false
while not<found> and not<msg recd > do
move along the predetermined trajectory
end while
ACTION

end function

function AcTIiON
if found then
P < current location
if the other agent is not in communication range then
calculate the closest point U, where the other agent can be r-intercepted
go to U
end if
send(P) to the other agent
end if
go to P and exit

end function

Figure 7: Trajectory of Agents in Simple Algorithm
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exit, it will abort its exploration phase and attempt to r-intercept the other agent by
possibly going in the interior of the triangle. After informing the other agent, both
agents return to the exit point.

We are going to describe the trajectory of each agent as shown in Trajectory 1.
The sequence shows the order of points visited by each agent, whereas the first point
is the starting point and the last point of the sequence is the last point visited if the

whereabouts of the exit is still unknown to them.

Trajectory 1.
R, follows the trajectory :< O, M, B, A >

R, follows the trajectory :< O, M,C, A >

By A;, we mean Algorithm 1 with respect to Trajectory 1. In our analysis we use the
following lemma from [10] in order to determine the critical point of some segments
in T

Lemma 3.1. [10] Suppose Ry and Ry with r = 0 are looking for an exit on lines L,
and Lo respectively, see Figure 8. Wlog assume the exit is found by Ry. Let point N
be the exit point and () where Ry s intercepted and S be the line connecting N and Q).
Denote the angle between Ly and S by B and angle between Ly and S by . Assuming
the function describing the trajectory of Ry is differentiable at N, if 2cosf + cosy # 1
then there exists another exit point that yields a larger evacuation time than placing
the exit at N.

More precisely if 2cosf3 + cosy < 1, then shifting the exit in the direction of the
movement of Ry yields a larger evacuation time, and if 2cosff+cosy > 1, then shifting
the exit in the opposite direction of the movement of Ry yields a larger evacuation

time.

For the proof that Lemma 3.1 still holds when agents at distance at most r can
communicate, we need the following lemma from [10]. Note that Lemmas 2.1, 2.2,

and 2.6 and some definitions from [10] have been combined to give Lemma ?? below.

Lemma 3.2. e [10] Set z:=1—2cos B —cos~y. If 2cosf+ cosy < 1 and B < 7/2,
then |DE| > 1 —¢/2 + z-¢/2, for some ¢ with 0 < ¢ < 0.5 where D is the
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Figure 8: Lemma 3.1

point that Ry would reach in distance € from N if it continued on Ly and E is
the point that Ry would reach in distance ¢/2 from Q if it continued on Ly (see
Figure 9b) .

[10] Set z == 1 — 2cos 3 — cos~y. For all F on QF, if 2cosf3 + cosy < 1 and
B < 72, then € + |DF| > 1+ |QF| + z. - €/2, where the definitions of € and

points D and E are the same as above.

[10] Set z := 2 cos B+cosy—1. If2cosB+cosy > 1, then |DE| > 1—¢/2+42-¢/4,
for some & with 0 < & < 0.5 for some € with 0 < e < 0.5 where D 1is the point
on Ly that Ry reached in distance € from N before arriving at N and E 1is the

point that Ry reached in distance /2 from @ before arriving at Q) (see Figure
9c) .

Lemma 3.3. Lemma 3.1 still holds for r > 0.

The proof is very similar to the proof in [10], however we will discuss it in depth

for completeness.

The Case 2cosf3 + cosy < 1

For simplicity we assume that [QQN| = 1, which can be generalized to any value. First
assume that 5 > 7/2, see Figure 9a. Let ¢ be the time that Ry is at N. Clearly Ry
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(c) The case 2cosf3 + cosy > 1

Figure 9: The settings of agents in different cases based on § and ~

is at point ) at time ¢’ =t + 1 — r, and the evacuation time is ' +1 =t + 2 — r.
If we shift the exit to point G, since R; cannot be r-intercepted sooner than t’, then
Ry still will be at point @ at time ¢. The evacuation time is at least ¢’ + |QG| and
because 5 > /2, we know that |QG| > |QN| = 1. We conclude that shifting the exit
toward the direction of Ry results in larger evacuation time.

Now we consider the case < 7/2. Let D be the point that Ry will reach in
distance ¢ from N, if it does not find the exit at N. Let E be the point that R;
will reach in distance /2 from @), if it continues moving on L;, see Figure 9b. Set

z=1—2cosf3 — cosy. Clearly 0 < z < 2.

Lemma 3.4. If 2cosf + cosy < 1 and B < 7/2, placing the exit at D will result in

larger evacuation time than placing the exit at N.

Proof. Recall that the evacuation time if the exit is located at N is t +2 — r. By
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placing the exit at D, Ry will find the exit at time t + . We claim R, is picked up
at time later than ¢t + 1 + &/2 — r. Suppose not, meaning R; will be picked up at
most t +1+¢/2 —r. Agent R; should be picked up on some point ' on QFE at time
t+1+|QF|—r. Ry will go directly to point F' after finding the exit and will r-intercept
Ry at time t + ¢ + |[DF| — r which by Lemma 3.2 is larger than ¢t + 1 + |QF| —r. A
contradiction and we conclude that R; is picked up at time later than ¢t +1+¢/2 —7.

Agent Ry is at F at time t + 1+ /2 —r and if it travels directly to the exit point
from E, the evacuation time will be t + 1+ ¢/2 — r + |DE|, by Lemma 3.2 we have
|DE| > 1 —¢/2. So the evacuation time if the exit is located at D, will be

t+1+¢e¢/2—r+|DE|>t+1+¢/2—r+1—¢/2=t+2+¢/2—7

which is larger than the evacuation time if the exit is located at N. O]

The Case 2cosf3 + cosy > 1

Let this time D be the point with distance € from N which R, reaches before arriving
at N. Similarly F is the point that Ry reaches at distance /2 from @) before arriving
at point (), see Figure 9c. We use an analogous version of Lemma 3.2 for the case of

2cosf3 + cosy > 1.

Lemma 3.5. If 2cos3+cosvy > 1, placing the exit at D will result in larger evacuation

time than placing the exit at N.

Proof. Let t = 0 be the time that Ry is at point D. Then Ry will reach point N at
time € and if the exit is located at N, agent R, will be r-intercepted at time e +1—1r
and evacuation time will be 2 +¢ — 7.

Now we place the exit at D. We claim R; will be r-intercepted after time 14+¢/2—r-.
For contradiction, lets say otherwise meaning R; is r-intercepted at some point G at
time ¢ < 1+ ¢/2 —r. If Rydoes not get notified, it will be at point E at time
l+¢/2—r. So |EG| < 1+¢/2—r—1t. On the other hand, R; is r-intercepted
when at G, so |DG| t' + r. According to triangle inequality we should have
|DE| < |DG| + |EG| < 14 ¢/2 which is a contradiction to Lemma 3.2 and our claim
that Ry will be r-intercepted after time 1+ ¢/2 — r holds.

<
<

Therefore Ry is r-intercepted at point E at time after 1 4+ ¢/2 —r and by Lemma

3.2 we have |DE| > 1+ ¢/2, so placing the exit at D results in evacuation time of
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te>¢e/241—r+1—¢/2=2+¢e—r, which is larger than the evacuation time if the
exit is located at V.

]

For the analysis of algorithm A, we assume the exit is found by Ry. Then we
give a critical point for each segment of the trajectory, and later we show that the

maximum evacuation time is when the exit is located at point C.

(c) Exit is located on segment C'Sy (d) Exit is located on segment Sy A

Figure 10: Trajectory of agents based on the position of the exit point

Lemma 3.6. On segment MW, (see Figure 10a) where |MWs| = /2, point Wy is

the critical point and the evacuation time for this point is at most y + 1.5.
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Proof. Assume the exit is located at some point, N, on segment MW,. Since the
agents travel with the same speed, when R, reaches the exit, agent R; is located at
the same distance from M as R, is from M. The distance between the two agents
is 2|M N| < r, meaning they are in communication range. The evacuation time is

y + 3|M N| and this value is maximized in W5 and is equal to y + gr <y+15 O
Lemma 3.7. On segment WyC' (see Figure 10b), vertex C' is the critical point.

Proof. Suppose the exit is located at some point N on segment WoC' . Then R; will
be r-intercepted while travelling on edge BA. Hence according to Lemma 3.3, since
f > m/2, then N could not be the point that yields the maximum evacuation time
since there exists another point to the right of N, which yields a larger evacuation

time. We conclude that C is the critical point in this segment. O]
Lemma 3.8. On segment CSy (see Figure 10c), vertex C' is the critical point.

Proof. Let the exit be at some point N on segment ('S5 and the interception point of
Ry be Q on side BA. We know that S+~ = =<, and for all points on segment C'Ss, the
angle (3 is between 0 and 7/3. Then we get 2003(6) + cos(y) = 2cos(B) — cos(™/3+ )
which is strictly greater than one. Hence based on Lemma 3.3 placing the exit at a
point closer to C' will result in higher evacuation time. We can conclude that in this

segment, vertex C' is the critical point. O

Lemma 3.9. If the exit is located on segment S A (see Figure 10d), then the evacu-

ation time is independent of exit location and is equal to y + 1.5.

Proof. Since in this segment, the two agents are in communication range and the
first agent that finds the exit sends its location to the other agent immediately and
exits. Suppose Rs find the exit at NV, then R; will get notified when it is at @ (see
Figure 10d). We conclude that the evacuation time is y + 0.5 + |BQ| + |QN| =
y+ 0.5+ |BQ|+|QA| =y + 1.5. O

2(1—r2)
2r+1 -

Lemma 3.10. The evacuation time when the exit is at C equals y+ 0.5+ r +

Proof. When the exit is located at C, the evacuation time will be t = y + 0.5 +
|BQ| + |QC| where @ is the point that R; is r-intercepted. Since both agents travel
equal distances at the point of r-interception, we get |BQ| = |QC| — r. On the
other hand by using the Cosine Rule we have |QC| = \/BQ2 + 1 — B@Q. By solving
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for |BQ| and substituting in the expression for the evacuation time ¢, we obtain

o 2(1—7r2)

O
We now give the evacuation time for 4, .

Theorem 3.11. The worst-case evacuation time obtained by Ay is achieved at point

C, and thus E4, =y +0.5+7r + 2(21T—+r12)'
Proof. Observe that 7+ 2(217112) :r € [0, 1] is a decreasing function with maximum and

2(1—r2)
2r+1

> y+05+1=y+1.5,

so based on Lemmas 3.6 and 3.9, this evacuation time is also larger than maximum

minimum of 2 and 1 respectively. Therefore y+0.54+1r+

evacuation time of segments MW, and S;A. We conclude that placing the exit at
point C' results in maximum evacuation time. The bound then follows from Lemma
3.10. =

3.2 Evacuating 2 Agents from a Triangle with De-

tour

In Theorem 3.11 we showed that placing the exit at point C' causes the maximum
evacuation time. In this section we give a modified version of FEqual-Travel with
Detour algorithm [13] in order to decrease the maximum evacuation time. The idea
of a detour is that R; at some point will abandon exploring for the exit and move
into the triangle, in order to facilitate the evacuation, if the exit is located on some
segments of T'. But if the agent realizes that the exit was not found in that segment,

it returns to the same point on the boundary where it left off and resumes exploring.

3.2.1 Equal Travel with One Detour

We fix two points ) and ()5 on the sides AB and AC respectively. The exact location
of these points will be specified later. Note that |BQ:| = |C Q2| Point J; is on segment
@1C, such that it satisfies the following equation:

|BQ| + |Q1 1| = |CJy| —r
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Point P; is located on segment J;()o, where P satisfies the equation below:
Q11| + |1 P = [QePr| — 7

Points J; and P, are located symmetrically with those of points J; and P; respectively,
with respect to line AM. The trajectory of both agents are described in Trajectory

2 and is shown in Figure 11.

Trajectory 2.
Rl < OvMaBthJlaplanaA >

RZ < 07M707Q27J27P27Q27A >

When R; reaches point P, if it does not get notified by the other agent, then with
no need of communication, it realizes that the exit is not found by Ry and terminates
the detour by returning to point )1 where it started the detour in the first place and
resumes exploring the boundary to find the exit point. We denote by As, Algorithm
1 with respect to Trajectory 2.

We now show that R; will be r-intercepted before reaching point P; if Ry finds
the exit before reaching (2. Note that W3 is a point on segment M C' such that if the

exit is located at Ws, then R; will be r-intercepted at point ()1, more formally

[MB| + [BQ1| = [MWs| + [WsQu| -7

Figure 11: Trajectory of agents in One-Detour Model
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Cc

(a) Exit is located on segment MW>

A

B Wy M w, W, N c

(e) Exit is located on segment (25 (f) Exit is located on segment Sy A

Figure 12: Trajectory of agents based on the position of the exit point in One Detour

algorithm

Lemma 3.12. Assume the exit is located at some point N on segment W3C', then Ry

will be r-intercepted while moving on segment QQ1.J;.
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Proof. Note that by the definition of point W3, agent R; cannot be r-intercepted
before reaching point ). Also by triangle inequality, in AJ; NC, see Figure 12¢ we
have |[NJi| < |[NC| + |CJy|, hence Ry is going to be r-intercepted at point J; at the

latest in this case. OJ

Lemma 3.13. Suppose the exit is located at some point, N, on segment C'(Q)s, then

Ry will be r-intercepted while moving on segment J, P;.

Proof. We know that if the exit is located at ()2, then Ry will be r-intercepted when
it is at point P;. In order to show that if the exit is before ()2, agent R; can be
intercepted before reaching P; it is enough to prove |CN| + |[NP| — r < |CQs| +
|Q2P1|—r. For the purpose of contradiction suppose not, meaning |CN|+|N P |—r >
|CQa| + Q2P| —7 = |[ON[+ |NQo| 4 |Q2Py| — r and we get [NPi| > [NQa| + [Q2 P

which according to the triangle inequality is impossible. Hence a contradiction. [

B M C

Figure 13: If the exit is located after ()5 and before Sy, then R; will be r-intercepted

before it reaches point Sy.

Lemma 3.14. Suppose the exit is located between Qo and Sy as in Figure 153. Then

Ry can be r-intercepted before reaching S1, assuming r > 0.
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Proof. We have to show that if Ry travels directly toward S; from some point Ns
between )o and S, to a point U at distance r from Sy, it takes less time to be in
communication range with R; than going to point S5. In other words we need to
show that |NoU| < |N1Sy|, considering N; is symmetric point to N regarding line
AM.

For contradiction, assume |NyU| > |N1S;|. By the definition we have |[NyU| =
|N2Sy| — 7, substituting this value to assumption, and adding r to both sides of the
inequality, we get |NoSi| > |N1.Si| +r = |N1Ny|. Since AN; AN, is an equilateral
triangle, then the distance of any two points (excluding the edges) is strictly smaller
than the length of a side of triangle, meaning |NoS;| < |N1Ny| which is a contradic-
tion.

This means if Ry, moves toward point S, it will be r apart from S; sooner than
Ry reaches Si. So it can use this time to move towards another point that is slightly

before S| and communicate with R. O]

Wilog let us assume that R, finds the exit at some point /N on the perimeter of T', so
Figure 12 shows the trajectory of Ry assuming it finds the exit on 6 different segments
of the triangle. Recall that |[MWs| = r/2 and W3 is a fixed point so that if the exit
is located there, Ry will be r-intercepted exactly at point (); right before starting its
detour. For calculating this point, we have 0.5+|BQ1| = |[MW;|+|W5Q;|—r. Also by

Cosine Rule we have [W3Q1| = /| BQ1]> + (0.5 + |[MWs3|)2 — |BQ1|? - (0.5 + [MWj3)).

21| BQ1|+r2+1.5|BQ1 |+r
[BQ1[+2r+2 :

We now split the trajectory of Ry into 6 segments and show the critical point for

By solving these two equation we get |[MW3| =

each segment.

Lemma 3.15. On segment MW, (see Figure 12a), point Wy is the critical point and

the evacuation time for this point is less than or equal to y + 1.5.
Proof. Same as in Lemma 3.6, the evacuati