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Abstract

Evacuation of Equilateral Triangles by Mobile Agents of Limited

Communication Range

Iman Bagheri

We consider the problem of evacuating k ≥ 2 mobile agents from a unit-sided equilat-

eral triangle through an exit located at an unknown location on the perimeter of the

triangle. The agents are initially located at the centroid of the triangle. An agent can

move at speed at most one, and finds the exit only when it reaches the point where

the exit is located. The agents can collaborate in the search for the exit. The goal of

the evacuation problem is to minimize the evacuation time, defined as the worst-case

time for all the agents to reach the exit.

Two models of communication between agents have been studied before; non-

wireless or face-to-face communication model and wireless communication model. In

the former model, agents can exchange information about the location of the exit

only if they are at the same point at the same time, whereas in the latter model,

the agents can send and receive information about the exit at any time regardless of

their positions in the domain. In this thesis, we propose a new and more realistic

communication model: agents can communicate with other agents at distance at most

r with 0 ≤ r ≤ 1.

We propose and analyze several algorithms for the problem of evacuation by k ≥ 2

agents in this model; our results indicate that the best strategy to be used varies

depending on the values of r and k. For two agents, we give five strategies, the last of

which achieves the best performance among all the five strategies for all sub-ranges of

r in the range 0 < r ≤ 1. We also show a lower bound on the evacuation time of two

agents for any r < 0.336. For k > 2 agents, we study three strategies for evacuation:

in the first strategy, called X3C, agents explore all three sides of the triangle before

connecting to exchange information; in the second strategy, called X1C, agents explore

a single side of the triangle before connecting; in the third strategy, called CXP, the
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agents travel to the perimeter to locations in which they are connected, and explore

it while always staying connected. For 3 or 4 agents, we show that X3C works better

than X1C for small values of r, while X1C works better for larger values of r. Finally,

we show that for any r, evacuation of k = 6+2�(1
r
−1)� agents can be done using the

CXP strategy in time 1+
√
3/3, which is optimal in terms of time, and asymptotically

optimal in terms of the number of agents.
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Chapter 1

Introduction

In Computer Science, search theory tackles the problem in which a Searcher with a

limited amount of information about the environment wishes to minimize the time

required to find a hidden prize [3]. Traditionally the hidden item was considered

stationary, meaning an adversary chooses a location for the item before the execution

of the algorithm. The best known example of these types of problems is the Cow

Path Problem [6], in which a cow (or an agent) searches an infinite fence represented

by a line, in order to find a hole, the hidden prize. An extended version of the cow

path problem is proposed in [29] where the prize is hidden in a star Q consisting of

M unbounded rays originating from a single point O, as shown in Figure 1.

OO

Figure 1: Star search proposed in [29]

Another classical problem is the The Princess and the Monster problem proposed

in [31]. In this problem the Princess and the Monster are both in a dark room and
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the Princess is aware of the fixed speed of the Monster although she can move with

arbitrary speed and she tries to avoid the Monster. This problem has some major

differences with the cow-path problem; in addition to the searching domain being a

two-dimensional region vs. a single line in cow-path problem, the motivation of this

algorithm is for the Princess to avoid being caught by the Monster.

Another search problem, called The Flaming Datum, is studied in [11] which has

military applications. Suppose at time 0 a submarine has fired a torpedo at a ship,

hence revealing its location. The ships sends out a distress call and a sonar carrying

helicopter arrives on the scene at time t. Unaware of the trajectory of the submarine,

the helicopter should use its sonar to locate the submarine. The advantage that the

submarine has is that up to time t, it can move in an arbitrary direction unknown to

the helicopter. On the other hand, the speed of the helicopter works in its favor.

A subcategory of search algorithms is group search algorithms in which the number

of searchers is greater than one. In this class, the search environment is divided into

several parts and then each part is assigned to a searcher so that they collaboratively

explore the whole area. In this case, the execution time of the algorithm with k

searchers can potentially be reduced up to 1/k of the time needed for the algorithm

with only one agent, though getting the improvement of 1/k is rarely achieved in real

scenarios.

Evacuation Problems can be seen as another type of the search problems. We will

first give a definition of the the evacuation problem in the following section, and later

on, will determine the specific problem that is going to be studied in this thesis.

1.1 Evacuation Problem

Consider a situation in which multiple agents are trapped in an enclosed domain.

The agents are aware of the existence of a single or multiple exit points but the

whereabouts of these points are unknown to the agents. Their initial position and

the domain is also known to the agents. The goal is to evacuate all the agents

from this domain through those exit points in the shortest time possible because of

unfortunate circumstances e.g. earthquake or fire. The agents have the ability to

communicate with each other and to send the location of the found exit points to the

other agents. This problem is known as Evacuation Problem. The main difference
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between evacuation and group search problems is that in the search problem, the

execution of the algorithm is finished once the target is found by any of the agents,

whereas in evacuation problems, the algorithm is finished when all the agents or some

specific agents exit the domain.

To describe an evacuation problem, we need to specify the following aspects of

the model [19]:

Search Domain: The search domain is the perimeter of an enclosed area in which

all the agents are trapped in it. There exists one or more exit points located on

the boundary, through which the agents can exit from that area. The domains

that have been studied so far are 2-D geometric shapes such as disk, triangle

and square.

Agents and Their Capabilities: The agents are assumed to know the geometry

of the search domain, they have the same sence of orientation, and they know

each others trajectories. They can move with at most unit speed. In terms of

computational power, both finite-automata agents, and Turing-machine agents

have been studied. In the latter model, agents can, for example, calculate the

shortest path to a point in which they can communicate with another agent in

negligible time, if it is necessary. An agent can recognize the exit only when it

reaches it. We may assume that all agents are reliable, or that some fraction

are faulty; both crash-faulty and Byzantine-faulty agents have been studied.

Finally, agents are capable of communicating with each other, using a specified

communication model. We describe below the communication models that have

been studied so far.

The main distinction between the evacuation problems is the communication

method of the agents. Agents in the face-to-face model studied in [13, 17, 10] can only

communicate if they are at the same point at the same time. In contrast, agents in

the wireless model studied in [19, 20] are capable of sending a message to any location

inside the domain at any time. Both these models are unrealistic; in practice agents

are likely to communicate using a wireless transmitter/receiver with limited commu-

nication range. In this thesis we introduce a new model, where agents are capable of

communicating with each other, only if they are close enough to each other.

In general, an evacuation algorithm consists of segments of a line or a curve that

each agent traverses. The sequence of these segments for each agent is called a
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trajectory for the agent. To specify an evacuation algorithm, first we need to specify

these trajectories for each agent. The trajectories are defined at time t = 0 and

typically all the agents are aware of the trajectories of the other agents, and they

typically know what to do if they find the exit or they get notified about the location

of the exit by another agent.

1.2 Problem Definition

In this thesis we consider k ≥ 2 non-faulty agents that are initially located at the

centroid of an equilateral triangle with side 1. Each agent has a wireless transmit-

ter/receiver and they can communicate with another agent only when their distance

is at most r. The objective of the algorithm is to evacuate all the agents through the

single exit point located on the boundary of this triangle. Our goal is to minimize

the time needed for all agents to exit through the exit point. At time t = 0 the

agents start to follow their assigned trajectories with maximum speed 1 and they find

the exit only when they reach it, meaning the exit cannot be recognized from some

distance.

1.3 Preliminaries

We denote the triangle by T , with O as centroid and A, B and C as vertices. For

any segment on the plane connecting point P to Q, we denote it with PQ and its

length by |PQ|. The height of the triangle is denoted by h and y = h/3. We denote

the time that point x is seen for the first time by any of the agents by tx.

By EA(k, r, x) we mean the evacuation time of algorithm A with k agents, k ≥ 2

and communication range of r, 0 ≤ r ≤ 1, if the exit is located at x. The worst-case

evacuation time of algorithm A with k agents and communication range of r is given

by EA(k, r), in other words:

EA(k, r) = sup
x∈P(T )

(EA(k, r, x))

where P(T ) is the perimeter of T . We denote the optimal evacuation time by k agents

by E∗(k, r), that is:

E∗(k, r) = inf
A

EA(k, r)

4



Critical Points

In our algorithms, we divide the exploration trajectory of agents into few segments.

For each segment, we try to find the point that has the maximum evacuation time,

we call these points critical points. In order to minimize the maximum evacuation

time, after identifying these critical points in the triangle, we introduce algorithms to

decrease the evacuation time for these points.

Extended Meeting Points

Due to the ability of transmitting a message, one agent can place itself between

two other agents, in order to act as a relay and enable the two other agents to

communicate. We call these positions extended meeting points. More formally if

we consider the positions of all the agents as P1, P2, ... Pk, those positions can be

considered as extended meeting points if there exists at least one connected graph

with vertices P1, P2, ... Pk, such that the length of each edge is at most r.

Effective Communication Range

By communication range we mean the maximum distance in which two agents can

send and receive data through their transmitters. As stated before, this range can be

further improved if a third agent is place between the two, acting as a relay agent.

By effective communication range we mean the maximum distance across which an

agent can transmit some data with the help of relaying agents.

1.4 Our Contributions

We now give a summary of our results in this section. The results will be discussed

in depth in the following chapters.

1. We propose a new communication model for agents in search and evacuation

problems. This model is more realistic than the previously proposed wireless

and face-to-face communication models.

2. For evacuation by two agents, we first modify the Equal Travel with Detour

algorithm in [13] for some values of r. We describe a new kind of detour,
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resulting in the A4 algorithm which can be used for any value of r, and improves

the evacuation time over the algorithm using the old detour. We further improve

the A4 algorithm by utilizing two detours instead of one. Our new algorithm

also improves the evacuation time of two agents in face-to-face model from

2.3367 [13] to 2.2861. Finally, we give a lower bound for the evacuation time

by 2 agents with communication range r ≤ 3y − 0.5 ≈ 0.3660.

3. For evacuation by three agents, we give three different strategies, each giving a

better evacuation time than the other two strategies for some range of r.

4. For evacuation by four agents, we give two different strategies, each of them

achieving a better evacuation time than the other for some range of r.

5. It is known that evacuation requires time at least 1 + 2y even in the wireless

model, regardless of the number of agents. For any r, we give upper and lower

bounds of k = 6 + 2�1/r − 1� and k = 1/r + 1 respectively, for k, the number of

agents required to achieve this optimal time.

1.5 Outline of Thesis

We describe related work in Chapter 2. In Chapter 3, we describe our upper and

lower bounds for evacuation by two agents with communication range r. In Chapter

4, we describe our algorithms for 3 agents. The case of 4 and more agents is described

in Chapter 5. We conclude with discussion and open problems in Chapter 6.
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Chapter 2

Related Work

In this chapter, we first discuss the previous research carried out on search problems.

This is followed by the previous work done on evacuation problems for both face-to-

face and wireless models.

In search and evacuation problems, the agents are looking for a target (or multiple

targets) in a discrete domain, such as a graph, or the continuous domain, such as a

line. The main goal is to minimize the worst-case time needed to find the target

utilizing a single or multiple number of searchers. We therefore often speak of an

adversary that will do his best to hide the target in some place that is hardest for the

searchers to find it. As mentioned in Chapter 1, in search problems, we minimize the

worst-case time for any of the agents to find the target, while in evacuation, we are

interested in minimizing the time for all the agents to reach the target.

2.1 Single-Agent Search Algorithms

In classical search algorithms it is assumed that there only exists a single agent,

responsible for searching the whole domain. A few of these problems are discussed in

the following.

2.1.1 Cow Path Problem

Search games were introduced with the classical cow-path problem [6, 7]. The search

domain is an unbounded line and there is a treasure which is located at some point

on the line. The sole purpose of the searcher is to find this treasure in the least time

7



possible. A doubling zigzag algorithm was introduced in [8] in which the agent moves

to the right for distance 22i from it’s initial location in phase 2i, and moves to the left

for distance 22i+1 in phase 2i + 1 where i ≥ 0. The authors proved the competitive

ratio of 9 for this algorithm and showed that this algorithm is optimal.

The cow path problem may differ from the reality, i.e. the speed of the agent

may vary for each part of the trajectory. This may be caused by a slope in the

terrain or perhaps the agent may have to slow down when it is searching for the exit.

The authors of [25] take these possibilities into consideration and study the following

models:

Beacon model where agent moves away from its original point of start with unit

speed and moves toward the start point with speed s ≥ 1.

Exploration history model where the agent searches the unexplored regions with

unit speed, and already explored regions with speed s ≥ 1.

Constant acceleration models where the agent can accelerate its speed at con-

stant rate in some conditions, or move with speed one otherwise.

Tailwind model in which the agent moves left with unit speed and moves right with

speed s ≥ 1.

For the first three models above, the authors give expanding-distance strategies,

wherein the algorithm works in phases. In Phase i, the robot moves distance di

from the origin in the opposite direction to the previous phase, where di = rdi−1, and

r is called the expansion ratio of the algorithm. For the doubling strategy described

previously, r = 2. The authors proved that the doubling zig-zag strategy is optimal

for the beacon model. For the exploration history model, an asymptotically optimal

distance-based zigzag strategy with expansion ratio of r =
√
2/(s+ 1) is given [25].

Two models of constant acceleration are studied. In the first model, the agent’s

speed increases at a constant rate c until the next turn. Upper and lower bounds of

6.36 and 11.1 respectively are given for the doubling strategy. In the second model,

the agent moves with unit speed going uphill and with constant acceleration going

downhill. The competitive ratio in the second model is dependent on the type of the

terrain. The authors showed that while the competitive ratio of the doubling strategy

is unbounded if the agent is located on an inclined line or on top of a symmetric hill,
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the competitive ratio is constant for the same strategy if the agent is located at the

bottom of a symmetric valley [25].

For the tailwind model, the authors analyzed an expanding-time zig-zag search

strategy in which the agent moves to the right for r2i time in phase 2i, and αr2i+1

in phase 2i + 1 where i ≥ 0. This is shown to work better than the distance-based

doubling strategy.

Many variations of this problem have been studied; randomized algorithm for

cow-path problem in [33], a ring instead of a line in [40], and searching for a line,

parallel to one of the x or y axes in [32].

2.1.2 Continuous High-Low Search

The high-low search is a game played on an interval or a discrete subset of it. The

hider chooses a point H on this interval, and for each guess that the searcher makes,

the hider reveals whether the guess was higher than H or lower.

The continuous version of this search game was introduced in [5] where the hider

picks a point H from the unit interval of Q = [0, 1], and the searcher should announce

a guess gi ∈ Q and then it is revealed that the H is greater than gi or otherwise.

The goal of the algorithm is to minimize the ”sum of errors” cost function, which is

equal to c =
∞∑
i=1

|gi −H|. Note that c = 1 for the naive halving strategy in which the

searcher always chooses the mid-point of the interval. Baston and Bostcok proved a

lower bound of v− = 0.6 for the problem and gave an algorithm with upper bound of

v+ = 0.628 [5]. It is demonstrated in [2] that there exists an optimal strategy for this

game , i.e. that v− = v+.

2.1.3 Infiltration Games

Assume at time t = 0 an infiltrator enters a set Q through a known point and heads to

the sensitive zone B ⊂ Q. Searcher is responsible for defending this zone by capturing

the infiltrator before it reaches B. A discrete version of this problem is introduced in

[30] where Q is an array of n+1 cells and B is located on the last cell. The probability

of capture is 1−λ if the defender and the infiltrator are both located in the same cell

and zero otherwise.

Lalley considered this game under the simplifying assumption that the infiltrator
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can stay at the safe zone outside of Q for unlimited time and he should reach the

target by time t, whereas t is known for both players [35]. Assuming both the defender

and the infiltrator can move with speed 1, Lalley presented optimal algorithms for

each player. It is obvious that the probability of a successful infiltration is at most

λ if the defender does not move throughout the course of the game. The optimal

infiltration strategy (called Admiral Farragut by Lalley) is to wait in the safe zone

until time τ where τ is uniformly distributed over the integers 1 ≤ τ ≤ t−n, and then

go full-speed toward the target reaching it at maximum time t. The best approach

for the defender (called orderly fallback by Lalley) is to stay at cell 1 for the first time

unit, go toward the target for ξ1 time unit; rest for 1 time unit then move toward the

target for ξ2 time unit and so on, where
∑

ξi = n− 1. It is shown that if t → ∞ then

the probability of a successful infiltration approaches λ [35].

2.1.4 Cop and Robber Games

The game of cop and robber was introduced in [38]. In this game which is played on

a connected graph G by two players, the first player, the cop, chooses a vertex on

G to begin. Likewise the second player, the robber, chooses another vertex for his

starting point. At each time step, the cop moves and then it is the robber’s turn

to move. A move consists of either moving to an adjacent vertex or staying at the

same vertex. The movement of each player is observed by the other player. The cop

wins if he catches the robber in a finite number of steps, otherwise the robber wins.

It is obvious that if the cop has a winning strategy, he should catch the robber in

maximum n(n− 1) + 1 time steps [1], where n is the number of vertices in G.

The graphs in which the robber has a winning strategy, are called the robber-win

graphs and the graphs in which the cops have a winning strategy, are called cop-win

graphs [38]. The purpose of this research is to determine which graphs are cop-win

and which are robber-win. Let p and d be adjacent vertices. Vertex p is a pitfall if

all neighbors of p are also neighbors of d. It is shown that G is a cop-win graph if we

could reduce G to a single vertex by removing the pitfalls (with their corresponding

edges) one after the other without any specific order [1].
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2.2 Group Search Algorithms

As opposed to the single-agent search algorithms, group search algorithms utilize more

than one agent in order to find the hidden treasure or treasures. Since the process is

parallelized and distributed between agents, the total time decreases. However, other

issues emerge, such as how agents communicate, what happens in a case of failure,

and also load balancing. The goal of the search algorithms is generally to minimize

the required time to find the treasures. Reducing the required number of searchers

could be another goal.

2.2.1 Faulty Agents in the Cow Path Problem

Consider the problem of group search on a line. It is clear that with two agents, search

can be done optimally in time d where d is the distance from the origin to the exit.

However, the assumption that the system is flawless is not completely practical as

every system is susceptible to malfunction. Hence variations of group search problems

where a few of the agents are faulty have been studied. In [23] the Cow Path problem

is revisited with n agents out of which f are faulty. The faulty agents can traverse

the line but they cannot detect the target. Such a type of fault is called a crash fault.

Note that it is not known in advance which agents are faulty, in fact the faulty agents

themselves don’t know that they are faulty. The goal in [23] is to get a lower search

time for the worst case, i.e. to decrease the time in which at least f + 1 agents have

visited the target. They gave an algorithm with competitive ratio of 5.24 for three

agents out of which one is faulty, and an optimal competitive ratio of 3, for the case

n = 2f + 1 when n tends to ∞.

The Byzantine Generals Problem is a classical problem in distributed computing

introduced in [36] where all the loyal generals should reach the same agreement on

a plan ignoring the traitor generals. Since then, agents that are not just faulty

but malicious liars have been considered in many distributed computing problems

[34, 12, 21]. A similar idea is used in [24] for the classical cow-path problem where

all the agents have wireless communication capabilities and Byzantine agents can not

only stay silent while visiting the exit, but also they can lie about the exit and send

every agent the location of a non-exit point as the exit. The goal of search with

Byzantine agents is to minimize the time needed for all the non-faulty agents to be
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certain that the correct location of the exit has been found. The authors gave a

competitive ratio of 3, 2 and 1 for four, five and six agents, respectively out of which

1 is Byzantine. They also conjectured that the competitive ratio cannot be improved

for 3 agents including 1 Byzantine from the crash-fault case. Later, the lower bound

for 3 agents including 1 Byzantine was improved from 3.93 [24] to 8
3

3
√
4 ≈ 5.23 [34],

thus showing that the algorithm in [23] is optimal for 3 agents, one of which is either

crash-faulty or Byzantine-faulty.

In the previous forms of faulty agents, we assumed that the faulty agents start

malfunctioning right at the beginning of the execution of the algorithm. In contrast

[26] looks at the problem where we have infinite number of boxes and the searches

should open them one by one to find the hidden prize. It is possible for some of the

agents to stop functioning at some point in the middle of execution of the algorithm

and the other searchers should recognize the breakdown of these agents.

2.2.2 Cops and Robbers Games

A variation of the cop and robber game described earlier is where there is more than

one cop in the game. The motivation is to identify c(G), the minimum number of

cops in a graph G to catch the robber. It is shown that if graph G does not have

any cycle with length of 3 or 4, c(G) should be at least the maximum degree of G [1].

Also c(G) ≤ 3 for any planar graphs [1]. Many variations of these games have been

studied quite extensively; see [28, 37, 9].

2.3 Evacuation Problems

The evacuation problem was first introduced in [16], looking at the evacuation of

multiple agents from a disk. The evacuation algorithms generally proceed in two

phases: first, agents have to search the perimeter looking for the exit, and then in

the second phase they communicate and move to the exit. Though we can say that

the first phase is a group search problem, we should look at the problem as a whole,

since an optimal algorithm for the first phase does not necessarily guarantee a best

solution for the whole problem.

The evacuation problems that we are interested in, differs from the evacuation

problem studied in [27], where the location of the exit is known to the evacuators,
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and the domain is a collection of cells, where at most one person can occupy a cell

at any time. In contrast, in our problem, the location of the exit is unknown to

the evacuators, the domain is the perimeter of a polygon, and a single point can be

occupied with multiple agents.

We will briefly discuss the research done on the evacuation problems so far cate-

gorizing them based on the search domain.

2.3.1 Disk

Evacuation from a disk with unit radius is studied in [16] for two, three as well as a

very large number of agents, for both face-to-face and wireless models. The authors

were able to give a tight bound for a large number of agents for both models, as well

as for two agents in the wireless model.

For evacuating two agents, the algorithm for both models are identical up to

the time that the exit is found. Both agents move to an arbitrary point A on the

perimeter and from there, one agent starts searching clockwise while the other agent

starts searching counter-clockwise. In the face-to-face model, when the exit is found

by one of the agents, it calculates the shortest path to intercept the other agent and

then the two agents go back to the exit together. In the wireless model, the location

of the exit is broadcasted and the second agent moves immediately to the exit. It is

shown that the worst placement of the exit in this specific algorithm for face-to-face

and wireless models are at distance 1.91 and 2.09 from point A, respectively.

The notion of using detours into the region, in order to improve evacuation time,

was first introduced in [17] for the case of two agents in the face-to-face model, which

is later used in other evacuation problems with different domains. The two agents

at some point during the execution of the algorithm leave the boundary of the disk

and move to a specific point inside the disk. If the exit is not found by either of the

agents, they move back to the same point on the boundary and continue searching

the unexplored part of the disk, otherwise, they go to the exit. With the use of a

detour, the evacuation time was improved from 5.74 in [16] to 5.628 in [17]. Also the

lower bound was improved from 5.199 to 5.255.

In [15] the evacuation problem with two wireless agents is studied with multiple

exits and slightly different settings. The perimeter of the disk is 1 and agents are

initially located on the boundary at distance L from each other. The agents are
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aware of the distance between each pair of exits, but they don’t know their own

initial positions. The paper gives an upper bound of 3
4
· D + L

2
and a lower bound

of 3
4
· D − L

2
for arbitrary values of L and D where L is the distance between the

two agents and D is the length of the longer of the two arcs between two consecutive

exits.

Evacuation from a disk with two exits located at distance d from each other is

revisited in [39] for two agents in both wireless and face-to-face models. It is shown

that it is better for the agents to move to two different points on the perimeter of

the disk with distance d apart from each other for the wireless model, though for the

face-to-face model, the value of d determines whether it is better for the agents to

move to the same point on the perimeter or they should move to different points with

distance d [39].

The case of three wireless agents with at most one of them being faulty are studied

in [21]. The authors consider two fault models, crash fault, in which the agent cannot

recognize the exit, or it is unable to transmit the location of the exit to the others; and

Byzantine faults in which the agents may or may not recognize the exit, but may be

malicious, and can transmit false data to the other agents. For the first fault model,

they proposed a trajectory for agents where two of them go to the same point on the

perimeter of the disk and start exploring in opposite directions; and the third agent

moves to a point on the perimeter with arc-distance of approximately 2.966 from

one of the agents and starts moving toward the closest one. Hence the crash fault

model can be solved in time ≈ 6.309 [21]. In the algorithm for the Byzantine model,

the agents go to opposite points on the perimeter, and start exploring in the same

direction. The difference is that they continue exploring their share of the perimeter,

even if they receive a message that exit is found. After the whole disk is explored,

then they

• continue exploring if no exit location is reported,

• they go directly to the exit if only one exit location is reported

• they go to the nearest reported exit location and if they don’t find any exit

there, they move to the second reported exit.

It is shown that the maximum evacuation time for the above algorithm s equal to

1 + 4π
3
+
√
3 ≈ 6.921 [21].
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2.3.2 Square

In [19], the evacuation problem in unit sided squares for wireless model is studied.

For the two-agent problem, the trajectories are shown in Figure 2. Both agents start

exploring in opposite directions from some point with distance x from the nearest

vertex. It is shown that the best value for x is equal to 1
2
− 1√

12
which yields a tight

bound of 3
2
+

√
3
2

for evacuating two agents. The evacuation time is maximized if the

exit is placed at either points C or E. For more than two agents, the improvement

AA BB

CC DD

ss

EE

Figure 2: Evacuation of two agents from a square [19]

depends on the starting point. It is shown in [19] that no improvement can be made

by using more that two agents if the starting point is one of the corners. For k ≥ 2

agents starting from the center of the square, the evacuation time is at most 3
√
2

2
+ 4

k

and no algorithm can do better than 3
√
2

2
.

Furthermore, the authors in [14] showed that in the face-to-face model, two agents

can evacuate the square in 3.4645 and any algorithm requires time at least 3.118. They

also gave evacuation times 3.1786 and 2.6646 for three and four agents, respectively.

2.3.3 Triangle

Evacuation of multiple agents from an equilateral triangle with sides of length one is

studied in [13] and [19]. Two models of communication, wireless and face-to-face, are

studied and lower and upper bounds are stated for both of the models.
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Wireless model

Evacuation of multiple agents with wireless communication capabilities in a triangle

with unit sides is studied in [19]. In the case of two agents, it is shown that if the

agents are located on the perimeter of the triangle, then x + 3
2
is a tight bound for

evacuating agents where x is the distance of the agents to the closest midpoint of

an edge. Hence placing the agents initially on the midpoint of an edge results in

minimum evacuation time. When the initial location of the agents is in the interior of

the triangle, the results are the same, i.e. x+ 3
2
is a tight bound and x is the distance

of the agents to the closest midpoint of an edge [19]. Therefore if the agents start at

the centroid of the triangle, evacuation time will be 1
2
√
3
+ 3

2
. The trajectories of both

agents are shown in Figure 3.

AA

BB CCMM

OO

Figure 3: Evacuation of two agents from a triangle [19]

For the case of k > 2 agents, the same approach is used. One of the edges is

divided in to k segments and each agent explores one segment and then moves to the

third vertex. The trajectories of three and four agents are illustrated in Figure 4.

Face-to-face model

Evacuation in an equilateral triangle in the face-to-face model is first studied in [13].

It is shown that for any number of agents in the face-to-face model, the evacuation

time is at least
√
3, and for two agents, the lower bound is improved to 1 + 2√

3
.
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(b)

Figure 4: Evacuating (a)three and (b)four agents with wireless transmitters in [19].

For three and more agents Equal-Travel Early-Meeting Algorithms [13] are proposed.

In these algorithms with k agents, the perimeter of the triangle is divided in to

k+ 1 segments and each segment is assigned to be explored by an agent. After these

segments are explored, agents move to the interior of the triangle in order to exchange

the information. These segments are chosen in such a way that all agents get to the

meeting point at the same time. If the exit is not found until then, then they move

to the last segment together.

Improved algorithms for 2 agents are given in [13]. Instead of travelling to a

meeting point, agents make a detour and move to the interior of the triangle. At the

end of the detour, if the agents are not intercepted by the other agent, they know

that the exit is not found and return to the perimeter of the triangle to resume the

exploration. The trajectories of both agents are shown in Figure 5.

In theory any number of detours can be implemented for evacuating two agents;

however it is shown in the same research that the improvement achieved by the third

and subsequent detours is insignificant. The achieved evacuation time of two agents

with Equal-Travel with Detour strategy is 2.3367.
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Figure 5: Evacuation of two agents from a triangle with one detour for each agent in

[13]
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Chapter 3

Evacuating Two Agents

In this chapter we give upper and lower bounds on the evacuation time for two agents

in an equilateral triangle of side 1. We divide the triangle into two halves by a

vertical line through A, as shown in Figure 6. In our algorithms, the first agent

R1 is responsible for searching for the exit in the left half and the second agent R2

is responsible for the right half. All the trajectories presented in this chapter are

symmetric with respect to line AM , where M is the midpoint of edge BC. Therefore,

without loss of generality, in the analysis of algorithms throughout this chapter, we

AA

BB CCMM

OO

SS11 SS22

Figure 6: Search domain is an equilateral triangle with sides 1
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assume that the exit is located on the right half of the triangle.

Let S1 and S2 be points on the sides AB and AC at distance r from A, shown

in Figure 6. This makes an equilateral triangle ΔS1AS2 at the top of T with side r.

If the agents do not find the exit outside ΔS1AS2 and enter this smaller equilateral

triangle, they are always in communication range with each other and the evacuation

time for all the algorithms described in this chapter, is independent of the exit position

and will always be tS1 + r. Recall that tS1 is the time that S1 is visited by any of the

agents for the first time.

In the algorithms in the face-to-face models, if one agent finds the exit, it moves to

a point, in a way that both of the agents will be at the same point at the same time.

However in our model, since agents have the ability to communicate within a certain

range, there is no need for both of them to be at the same point to communicate, an

agent can calculate a path to point p so that when it reaches point p, the other agent

is at distance at most r from the first agent. By r-interception we mean the action

of calculating the point p and getting there so that the two agents can communicate

with each other.

Recall that the best known algorithm described in [13] for the face-to-face model,

evacuates two agents in time 2.3367 and employs two detours. In [19], an optimal

algorithm for wireless model with evacuation time of 3/2 + y ≈ 1.78867 is described.

Hence if the agents are capable of communication within a certain range r > 0, it is

clear that:

1.78867 ≤ E∗(2, r) ≤ 2.3367

Algorithm 1 describes the behavior of both agents in T . The main idea is that

each agent moves along a pre-specified trajectory looking for the exit, and as soon as

one of them finds the exit, it r-intercepts the other agent and they both move to the

exit. Throughout this chapter, we use the same evacuation algorithm with different

trajectories.

3.1 A Simple Evacuation Trajectory

The trajectories of both agents are shown in Figure 7. The trajectory of R1 is shown in

blue, from the centroid to M to vertex B and then to vertex A. The green trajectory

is for R2, from the centroid to M to C and then to A. Whichever agent finds the
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Algorithm 1 Evacuation Algorithm for Two Agents

function Exploration

found← false

while not<found> and not<msg recd > do

move along the predetermined trajectory

end while

action

end function

function Action

if found then

P ← current location

if the other agent is not in communication range then

calculate the closest point U , where the other agent can be r-intercepted

go to U

end if

send(P ) to the other agent

end if

go to P and exit

end function
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Figure 7: Trajectory of Agents in Simple Algorithm
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exit, it will abort its exploration phase and attempt to r-intercept the other agent by

possibly going in the interior of the triangle. After informing the other agent, both

agents return to the exit point.

We are going to describe the trajectory of each agent as shown in Trajectory 1.

The sequence shows the order of points visited by each agent, whereas the first point

is the starting point and the last point of the sequence is the last point visited if the

whereabouts of the exit is still unknown to them.

Trajectory 1.

R1 follows the trajectory :< O,M,B,A >

R2 follows the trajectory :< O,M,C,A >

By A1, we mean Algorithm 1 with respect to Trajectory 1. In our analysis we use the

following lemma from [10] in order to determine the critical point of some segments

in T .

Lemma 3.1. [10] Suppose R1 and R2 with r = 0 are looking for an exit on lines L1

and L2 respectively, see Figure 8. Wlog assume the exit is found by R2. Let point N

be the exit point and Q where R1 is intercepted and S be the line connecting N and Q.

Denote the angle between L2 and S by β and angle between L1 and S by γ. Assuming

the function describing the trajectory of R2 is differentiable at N , if 2cosβ+ cosγ �= 1

then there exists another exit point that yields a larger evacuation time than placing

the exit at N .

More precisely if 2cosβ + cosγ < 1, then shifting the exit in the direction of the

movement of R2 yields a larger evacuation time, and if 2cosβ+cosγ > 1, then shifting

the exit in the opposite direction of the movement of R2 yields a larger evacuation

time.

For the proof that Lemma 3.1 still holds when agents at distance at most r can

communicate, we need the following lemma from [10]. Note that Lemmas 2.1, 2.2,

and 2.6 and some definitions from [10] have been combined to give Lemma ?? below.

Lemma 3.2. • [10] Set z := 1−2 cos β− cos γ. If 2cosβ+ cosγ < 1 and β ≤ π/2,

then |DE| ≥ 1 − ε/2 + z · ε/2, for some ε with 0 < ε ≤ 0.5 where D is the
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Figure 8: Lemma 3.1

point that R2 would reach in distance ε from N if it continued on L2 and E is

the point that R1 would reach in distance ε/2 from Q if it continued on L1 (see

Figure 9b) .

• [10] Set z := 1 − 2 cos β − cos γ. For all F on QE, if 2cosβ + cosγ < 1 and

β ≤ π/2, then ε + |DF | ≥ 1 + |QF | + z. · ε/2, where the definitions of ε and

points D and E are the same as above.

• [10] Set z := 2 cos β+cos γ−1. If 2cosβ+cosγ > 1, then |DE| ≥ 1−ε/2+z ·ε/4,
for some ε with 0 < ε ≤ 0.5 for some ε with 0 < ε ≤ 0.5 where D is the point

on L2 that R2 reached in distance ε from N before arriving at N and E is the

point that R1 reached in distance ε/2 from Q before arriving at Q (see Figure

9c) .

Lemma 3.3. Lemma 3.1 still holds for r > 0.

The proof is very similar to the proof in [10], however we will discuss it in depth

for completeness.

The Case 2cosβ + cosγ < 1

For simplicity we assume that |QN | = 1, which can be generalized to any value. First

assume that β > π/2, see Figure 9a. Let t be the time that R2 is at N . Clearly R1
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(b) The case 2cosβ + cosγ < 1
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(c) The case 2cosβ + cosγ > 1

Figure 9: The settings of agents in different cases based on β and γ

is at point Q at time t′ = t + 1 − r, and the evacuation time is t′ + 1 = t + 2 − r.

If we shift the exit to point G, since R1 cannot be r-intercepted sooner than t′, then

R1 still will be at point Q at time t′. The evacuation time is at least t′ + |QG| and
because β > π/2, we know that |QG| > |QN | = 1. We conclude that shifting the exit

toward the direction of R2 results in larger evacuation time.

Now we consider the case β < π/2. Let D be the point that R2 will reach in

distance ε from N , if it does not find the exit at N . Let E be the point that R1

will reach in distance ε/2 from Q, if it continues moving on L1, see Figure 9b. Set

z = 1− 2cosβ − cosγ. Clearly 0 < z ≤ 2.

Lemma 3.4. If 2cosβ + cosγ < 1 and β ≤ π/2, placing the exit at D will result in

larger evacuation time than placing the exit at N .

Proof. Recall that the evacuation time if the exit is located at N is t + 2 − r. By
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placing the exit at D, R2 will find the exit at time t + ε. We claim R1 is picked up

at time later than t + 1 + ε/2 − r. Suppose not, meaning R1 will be picked up at

most t+ 1+ ε/2− r. Agent R1 should be picked up on some point F on QE at time

t+1+|QF |−r. R2 will go directly to point F after finding the exit and will r-intercept

R1 at time t+ ε+ |DF | − r which by Lemma 3.2 is larger than t+ 1 + |QF | − r. A

contradiction and we conclude that R1 is picked up at time later than t+1+ ε/2− r.

Agent R1 is at E at time t+1+ ε/2− r and if it travels directly to the exit point

from E, the evacuation time will be t + 1 + ε/2 − r + |DE|, by Lemma 3.2 we have

|DE| > 1− ε/2. So the evacuation time if the exit is located at D, will be

t+ 1 + ε/2− r + |DE| > t+ 1 + ε/2− r + 1− ε/2 = t+ 2 + ε/2− r

which is larger than the evacuation time if the exit is located at N .

The Case 2cosβ + cosγ > 1

Let this time D be the point with distance ε from N which R2 reaches before arriving

at N . Similarly E is the point that R1 reaches at distance ε/2 from Q before arriving

at point Q, see Figure 9c. We use an analogous version of Lemma 3.2 for the case of

2cosβ + cosγ > 1.

Lemma 3.5. If 2cosβ+cosγ > 1, placing the exit at D will result in larger evacuation

time than placing the exit at N .

Proof. Let t = 0 be the time that R2 is at point D. Then R2 will reach point N at

time ε and if the exit is located at N , agent R1 will be r-intercepted at time ε+1− r

and evacuation time will be 2 + ε− r.

Now we place the exit atD. We claimR1 will be r-intercepted after time 1+ε/2−r.

For contradiction, lets say otherwise meaning R1 is r-intercepted at some point G at

time t′ ≤ 1 + ε/2 − r. If R1does not get notified, it will be at point E at time

1 + ε/2 − r. So |EG| ≤ 1 + ε/2 − r − t′. On the other hand, R1 is r-intercepted

when at G, so |DG| ≤ t′ + r. According to triangle inequality we should have

|DE| < |DG|+ |EG| ≤ 1+ ε/2 which is a contradiction to Lemma 3.2 and our claim

that R1 will be r-intercepted after time 1 + ε/2− r holds.

Therefore R1 is r-intercepted at point E at time after 1 + ε/2− r and by Lemma

3.2 we have |DE| > 1 + ε/2, so placing the exit at D results in evacuation time of
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te > ε/2+ 1− r+1− ε/2 = 2+ ε− r, which is larger than the evacuation time if the

exit is located at N .

For the analysis of algorithm A1, we assume the exit is found by R2. Then we

give a critical point for each segment of the trajectory, and later we show that the

maximum evacuation time is when the exit is located at point C.
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(a) Exit is located on segment MW2
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(d) Exit is located on segment S2A

Figure 10: Trajectory of agents based on the position of the exit point

Lemma 3.6. On segment MW2 (see Figure 10a) where |MW2| = r/2, point W2 is

the critical point and the evacuation time for this point is at most y + 1.5.
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Proof. Assume the exit is located at some point, N , on segment MW2. Since the

agents travel with the same speed, when R2 reaches the exit, agent R1 is located at

the same distance from M as R2 is from M . The distance between the two agents

is 2|MN | ≤ r, meaning they are in communication range. The evacuation time is

y + 3|MN | and this value is maximized in W2 and is equal to y + 3
2
r ≤ y + 1.5

Lemma 3.7. On segment W2C (see Figure 10b), vertex C is the critical point.

Proof. Suppose the exit is located at some point N on segment W2C . Then R1 will

be r-intercepted while travelling on edge BA. Hence according to Lemma 3.3, since

β > π/2, then N could not be the point that yields the maximum evacuation time

since there exists another point to the right of N , which yields a larger evacuation

time. We conclude that C is the critical point in this segment.

Lemma 3.8. On segment CS2 (see Figure 10c), vertex C is the critical point.

Proof. Let the exit be at some point N on segment CS2 and the interception point of

R1 be Q on side BA. We know that β+γ = 2π
3
, and for all points on segment CS2, the

angle β is between 0 and π/3. Then we get 2cos(β) + cos(γ) = 2cos(β)− cos(π/3+ β)

which is strictly greater than one. Hence based on Lemma 3.3 placing the exit at a

point closer to C will result in higher evacuation time. We can conclude that in this

segment, vertex C is the critical point.

Lemma 3.9. If the exit is located on segment S2A (see Figure 10d), then the evacu-

ation time is independent of exit location and is equal to y + 1.5.

Proof. Since in this segment, the two agents are in communication range and the

first agent that finds the exit sends its location to the other agent immediately and

exits. Suppose R2 find the exit at N , then R1 will get notified when it is at Q (see

Figure 10d). We conclude that the evacuation time is y + 0.5 + |BQ| + |QN | =

y + 0.5 + |BQ|+ |QA| = y + 1.5.

Lemma 3.10. The evacuation time when the exit is at C equals y+0.5+ r+ 2(1−r2)
2r+1

.

Proof. When the exit is located at C, the evacuation time will be t = y + 0.5 +

|BQ|+ |QC| where Q is the point that R1 is r-intercepted. Since both agents travel

equal distances at the point of r-interception, we get |BQ| = |QC| − r. On the

other hand by using the Cosine Rule we have |QC| = √
BQ2 + 1− BQ. By solving
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for |BQ| and substituting in the expression for the evacuation time t, we obtain

t = y + 0.5 + r + 2(1−r2)
2r+1

.

We now give the evacuation time for EA1 .

Theorem 3.11. The worst-case evacuation time obtained by A1 is achieved at point

C, and thus EA1 = y + 0.5 + r + 2(1−r2)
2r+1

.

Proof. Observe that r+ 2(1−r2)
2r+1

: r ∈ [0, 1] is a decreasing function with maximum and

minimum of 2 and 1 respectively. Therefore y+0.5+r+ 2(1−r2)
2r+1

≥ y+0.5+1 = y+1.5,

so based on Lemmas 3.6 and 3.9, this evacuation time is also larger than maximum

evacuation time of segments MW2 and S2A. We conclude that placing the exit at

point C results in maximum evacuation time. The bound then follows from Lemma

3.10.

3.2 Evacuating 2 Agents from a Triangle with De-

tour

In Theorem 3.11 we showed that placing the exit at point C causes the maximum

evacuation time. In this section we give a modified version of Equal-Travel with

Detour algorithm [13] in order to decrease the maximum evacuation time. The idea

of a detour is that R1 at some point will abandon exploring for the exit and move

into the triangle, in order to facilitate the evacuation, if the exit is located on some

segments of T . But if the agent realizes that the exit was not found in that segment,

it returns to the same point on the boundary where it left off and resumes exploring.

3.2.1 Equal Travel with One Detour

We fix two points Q1 and Q2 on the sides AB and AC respectively. The exact location

of these points will be specified later. Note that |BQ1| = |CQ2| Point J1 is on segment

Q1C, such that it satisfies the following equation:

|BQ1|+ |Q1J1| = |CJ1| − r
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Point P1 is located on segment J1Q2, where P1 satisfies the equation below:

|Q1J1|+ |J1P1| = |Q2P1| − r

Points J2 and P2 are located symmetrically with those of points J1 and P1 respectively,

with respect to line AM . The trajectory of both agents are described in Trajectory

2 and is shown in Figure 11.

Trajectory 2.

R1 :< O,M,B,Q1, J1, P1, Q1, A >

R2 :< O,M,C,Q2, J2, P2, Q2, A >

When R1 reaches point P1, if it does not get notified by the other agent, then with

no need of communication, it realizes that the exit is not found by R2 and terminates

the detour by returning to point Q1 where it started the detour in the first place and

resumes exploring the boundary to find the exit point. We denote by A2, Algorithm

1 with respect to Trajectory 2.

We now show that R1 will be r-intercepted before reaching point P1 if R2 finds

the exit before reaching Q2. Note that W3 is a point on segment MC such that if the

exit is located at W3, then R1 will be r-intercepted at point Q1, more formally

|MB|+ |BQ1| = |MW3|+ |W3Q1| − r
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QQ22

MM
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SS11 SS22

QQ11

JJ11

PP11

JJ22

PP22

Figure 11: Trajectory of agents in One-Detour Model
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(e) Exit is located on segment Q2S2
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(f) Exit is located on segment S2A

Figure 12: Trajectory of agents based on the position of the exit point in One Detour

algorithm

Lemma 3.12. Assume the exit is located at some point N on segment W3C, then R1

will be r-intercepted while moving on segment Q1J1.
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Proof. Note that by the definition of point W3, agent R1 cannot be r-intercepted

before reaching point Q1. Also by triangle inequality, in ΔJ1NC, see Figure 12c we

have |NJ1| < |NC|+ |CJ1|, hence R1 is going to be r-intercepted at point J1 at the

latest in this case.

Lemma 3.13. Suppose the exit is located at some point, N , on segment CQ2, then

R1 will be r-intercepted while moving on segment J1P1.

Proof. We know that if the exit is located at Q2, then R1 will be r-intercepted when

it is at point P1. In order to show that if the exit is before Q2, agent R1 can be

intercepted before reaching P1 it is enough to prove |CN | + |NP1| − r ≤ |CQ2| +
|Q2P1|−r. For the purpose of contradiction suppose not, meaning |CN |+|NP1|−r >

|CQ2|+ |Q2P1| − r = |CN |+ |NQ2|+ |Q2P1| − r and we get |NP1| > |NQ2|+ |Q2P1|
which according to the triangle inequality is impossible. Hence a contradiction.
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UU
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Figure 13: If the exit is located after Q2 and before S2, then R1 will be r-intercepted

before it reaches point S1.

Lemma 3.14. Suppose the exit is located between Q2 and S2 as in Figure 13. Then

R1 can be r-intercepted before reaching S1, assuming r > 0.
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Proof. We have to show that if R2 travels directly toward S1 from some point N2

between Q2 and S2 to a point U at distance r from S1, it takes less time to be in

communication range with R1 than going to point S2. In other words we need to

show that |N2U | < |N1S1|, considering N1 is symmetric point to N2 regarding line

AM .

For contradiction, assume |N2U | ≥ |N1S1|. By the definition we have |N2U | =
|N2S1| − r, substituting this value to assumption, and adding r to both sides of the

inequality, we get |N2S1| ≥ |N1S1| + r = |N1N2|. Since ΔN1AN2 is an equilateral

triangle, then the distance of any two points (excluding the edges) is strictly smaller

than the length of a side of triangle, meaning |N2S1| < |N1N2| which is a contradic-

tion.

This means if R2 moves toward point S1, it will be r apart from S1 sooner than

R1 reaches S1. So it can use this time to move towards another point that is slightly

before S1 and communicate with R1.

Wlog let us assume that R2 finds the exit at some pointN on the perimeter of T , so

Figure 12 shows the trajectory of R2 assuming it finds the exit on 6 different segments

of the triangle. Recall that |MW2| = r/2 and W3 is a fixed point so that if the exit

is located there, R1 will be r-intercepted exactly at point Q1 right before starting its

detour. For calculating this point, we have 0.5+|BQ1| = |MW3|+|W3Q1|−r. Also by

Cosine Rule we have |W3Q1| =
√|BQ1|2 + (0.5 + |MW3|)2 − |BQ1|2 · (0.5 + |MW3|).

By solving these two equation we get |MW3| = 2r·|BQ1|+r2+1.5|BQ1|+r
|BQ1|+2r+2

.

We now split the trajectory of R2 into 6 segments and show the critical point for

each segment.

Lemma 3.15. On segment MW2 (see Figure 12a), point W2 is the critical point and

the evacuation time for this point is less than or equal to y + 1.5.

Proof. Same as in Lemma 3.6, the evacuation time is y+3|MN | ≤ y+ 3
2
r ≤ y+1.5

Lemma 3.16. On segment W2W3 (see Figure 12b), point W3 is the critical point.

Proof. For any arbitrary point on segment W2W3 (except the two endpoints), based

on Lemma 3.12, R1 will be r-intercepted at some point Q while moving on segment

Q1J1, and according to Lemma 3.3, since β > π/2, there exists another point in the

direction of movement of R2 such that placing the exit at that point will result in a
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higher evacuation time. We conclude that in segment W2W3, point W3 is the critical

point.

Lemma 3.17. On segment W3C (see Figure 12c), point C is the critical point.

Proof. Since β > π/2, the proof is analogous to the proof of the previous lemma.

Lemma 3.18. On segment CQ2 (see Figure 12d), point C is the critical point.

Proof. Suppose the exit is located at some point N , then based on Lemma 3.13

R1 will be r-intercepted while moving on segment Q1J1 at some point Q. Note that

∠QQ2N > π/6, hence β+γ < 5π/6. On the other hand we have ∠QQ2N+β+γ = π.

It is easy to see that 2cos(β) + cos(γ) is always greater than 1. Based on Lemma

3.3, there exists another point in the opposite direction of R2 which yields a larger

evacuation time if the exit is located there.

Lemma 3.19. On segment Q2S2 (see Figure 12e), the point right after Q2 is the

critical point.

Proof. Let the exit be at an arbitrary point N on segment Q2S2 and the interception

point be Q on side BA. We know that β+γ = 2π
3
, and for all points on segment CS2,

the angle β is between 0 and π/3. Then we get 2cos(β)+cos(γ) = 2cos(β)−cos(π
3
+β)

which is strictly greater than one. Hence based on Lemma 3.3, moving the exit point

in the opposite direction of the movement of R2 will result in higher evacuation time.

We can conclude that in this segment, the point right after Q2 is the critical point.

Lemma 3.20. On segment S2A (see Figure 12f), the evacuation time is independent

of the location of the exit point and is equal to tS1 + r.

Proof. Let the exit be at some point N on this segment and point Q be the position

of R1 when the exit is found by R2. Recall that in this segment, the agents are

in communication range and as soon as R2 finds the exit, it will send the location

to R1. Since both agent are at the same distance to A, if the exit is found before

A, agent R1 will move to the exit on a line parallel to edge BC making a smaller

equilateral triangle at top of T . It is obvious that QN = QA end evacuation time

will be tS1 + S1Q+QN = tS1 + S1A = tS1 + r.

We will now give a value for EA2(2, r).
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r BQ1 Evac Time

0.10 0.61227 2.27422

0.20 0.53870 2.19427

0.30 0.47134 2.12651

0.40 0.40616 2.06593

0.50 0.34140 2.01050

0.60 0.27608 1.95926

0.70 0.20960 1.91169

> 0.7374049 N/A N/A

Table 1: Evacuation of 2 Agents using only one detour

Theorem 3.21. Let

t1 = y + 0.5 + |BQ1|+ |Q1C| and
t2 = y + 0.5 + |BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1|+ |Q1Z|+ |ZQ2|

whereas Z is a point that if the exit is located right after Q2, agent R1 will be r-

intercepted at Z. Then EA2(2, r) = max{t1, t2}.

Proof. Based on Lemmas 3.15 to 3.18, point C is a critical point on segments MC

and CQ2. We also know that the point after Q2 is a critical point on segment Q2A

based on Lemmas 3.19 and 3.20, therefore the maximum evacuation time is achieved

when the exit is located at either of these points.

Placing the exit at point C will result in evacuation time of t1 = y + |MB| +
|BQ1| + |Q1C|. On the other hand, evacuation time if the exit is located right after

point Q2 is t2 = y + |MB| + |BQ1| + |Q1J1| + |J1P1| + |P1Q1| + |Q1Z| + |ZQ2|. By

Theorem 3.21 we have EA2 = max(t1, t2). By increasing |BQ1|, time t1 increases and

Similarly, decreasing length of BQ1, increases t2. Best value for |BQ1| is obtained

when equation t1 = t2 is satisfied. Because of the complexity of the equations, the

final result is in the form of f(r, BQ1) = g(r, BQ1) and BQ1 cannot be shown as a

function of r. The results for different values of r are shown in Table 1.
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3.2.2 No Detour for Large Values of r for A2

The placement of point Q1 is a critical part of the algorithm, meaning it should yield

an optimal result. Moving the point higher toward A, and time t1 increases while

moving it toward point B, will result in increment of t2. Hence Q1 is a unique point

placed between B and A.

Consider a large r, in this specific example we assume r = 0.9. We know that

|Q1J1| = 1/2∗(√|BQ1|2 + 1− |BQ1|−|BQ1|−r). If we draw the graph of |Q1J1| for
that specific r, Figure 14, we realize that |Q1J1| would not be valid if |BQ1| is greater
that some specific value. Considering what was mentioned about the uniqueness of

point Q1, making a detour does not improve the evacuation time for large values of

r.

In other words, if we have a big r, when R1 reaches the point Q1 that it is

optimal to make a detour, that point is so close to point C, so that both agents could

communicate with each other directly and no detour is needed. We formalize this in

the lemma below:

Lemma 3.22. Adding a detour for r > 0.7374049 increases the maximum evacuation

time.

Proof. Values r and |Q1J1| have negative correlation. Increasing r will result in decre-

ment of |Q1J1| up until a point that |Q1J1| is equal to zero. At this point we would

have r =
√|BQ1|2 + 1− |BQ1| − |BQ1|. By substituting this value in f(r, |BQ1|) =

g(r, |BQ1|) and solving that we get the values of 0.1843512 and 0.7374049 for |BQ1|
and r respectively. If we increase r, we get negative value forQ1J1 which is invalid.

3.2.3 Equal Travel with Two or More Detours

We now show that for some values of r, further improvement in evacuation time

can be achieved by making more detours. Let’s skip the execution of A2 up until

the point that R1 and R2 reach vertices B and C respectively, assuming non of the

agents have found the exit so far. The problem which remains will be a triangle with

two unexplored sides of length 1, call this P1. Now consider the moment that the

two agents finish their detour and get back to points Q1 and Q2. Call the remaining

problem P2. It is obvious that P2 is similar to problem P1 with the only difference of
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Figure 14: Plot Q1J1 = f(BQ1) where r = 0.9
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Figure 15: Evacuating two agents using two detours

side of the triangle and due to this difference, the ratio of r to length of the side of the

triangle increases with every instance of detour until the point that no more detour

is needed. The trajectory of two agents in two detour model is shown in Trajectory

3. Note that J3 is located on line Q3Q2 in a way that |Q1Q3| + |Q3J3| = |Q2J3| − r

and P3 is located on line J3Q4 in a way that |Q3J3|+ |J3P3| = |Q4P3| − r. Points J4

and P4 are located symmetrically with those of points J3 and P4 respectively, with

respect to line AM and definitions of points J1, J2, P1 and P2 remains the same as

their definition in the previous section.
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r |BQ1| |Q1Q3| Evac Time

0.10 0.594418 0.20558 2.25424

0.20 0.530613 0.18272 2.18584

0.30 0.467966 0.15949 2.12325

0.40 0.405201 0.13563 2.06506

> 0.472505 N/A N/A N/A

Table 2: Evacuation of 2 Agents using two detours

Trajectory 3.

R1 follows the trajectory :< O,M,B,Q1, J1, P1, Q1, Q3, J3, P3, Q3, A >

R2 follows the trajectory :< O,M,C,Q2, J2, P2, Q2, Q4, J4, P4, Q4, A >

We denote Algorithm 1 with respect to Trajectory 3 by A3. In the case of two detours,

see Figure 15, similar to the proof of Theorem 3.21, it can be shown that there exists

three critical points as C, the point right after Q2 and the point right after Q4. The

evacuation times if we place the exit at these points will be as follows:

• t1 = |MB|+ |BQ1|+ |Q1C|

• t2 = |MB|+ |BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1|+ |Q1Q3|+ |Q3Q2|

• t3 = |MB| + |BQ1| + |Q1J1| + |J1P1| + |P1Q1| + |Q1Q3| + |Q3J3| + |J3P3| +
|P3Q3|+ |Q3Z|+ |ZQ4|

Obviously EA3(2, r) = max{t1, t2, t3}. By solving the equations of t1 = t2 and t1 = t3

we get the values for |BQ1| and |Q1Q3|. Again because of the complexity of the

equations, we were not able to provide any function for those values based on r,

instead we solved the equations numerically. The results are shown in Table 2.

In [13] it is shown that in the face-to-face model, adding additional detours always

improve the evacuation time, though the improvement obtained by successive detours

decreases rapidly. In contrast, for large values of r, adding even one detour does not
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improve the evacuation time. Similar to Lemma 3.22, it can be shown that the second

detour is not needed for r > 0.472505

3.3 A New Detour Trajectory

In this section we propose and analyse a different detour, namely Trajectory 4 and

the two detour version of it, Trajectory 5, which yields an improved evacuation time

compared with A2 and A3. Trajectories 4 and 5 used in Algorithm 1 will be referred

to as A4 and A5, respectively. In contrast to the Strategies A2 and A3 in which

detours were not beneficial for r greater than 0.7374049 and 0.472505, respectively,

the new detour is applicable for large values of r as well.

3.3.1 A4 Strategy

In our new strategy A4, the trajectories of both agents are symmetric with respect to

line AM . Therefore wlog, we assume that R2 finds the exit and analyse the trajectory

of R1.

As in Equal Travel with One Detour which was described in the previous section,

agent R1 at some point, abandons exploring the perimeter of T and moves toward

vertex C in order to decrease the evacuation time, in case the exit is located at C.

By reaching a certain point, it finds out that the exit was not at C and changes the

direction of the detour in order to facilitate the evacuation if the exit is found in some

other segments. After the detour is finished, if it is not notified by the other agent,

it returns to the same point from which it started the detour.

Trajectory 4.

R1 :< O,M,B,Q1, J1, P1, Q1, A >

R2 :< O,M,C,Q2, J2, P2, Q2, A >

We fix the point Q1 on side AB, the exact value will be specified later (see Figure

16). Point J1 is on segment Q1C such that it satisfies the following equation:

|BQ1|+ |Q1J1| = |J1C| − r

Similar to A2, the placement of point J1 makes sure that if the exit is located at

C, agent R1 can be r-intercepted at J1. In contrast to the previous algorithm, we
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Figure 16: Trajectories of agents in A4

introduce two new points V2 located on the side AC and P1 on segment Q1V2 in a

way that if the exit is located at V2, then R1 will be r-intercepted when it is at P1,

i.e.

|BQ1|+ |Q1J1|+ |J1P1| = |CV2|+ |V2P1| − r (1)

If the exit is located right after V2, it is obvious that R1 cannot be r-intercepted at

P1 and will only be notified when it finishes its detour. We have to make sure that if

the exit is located right after V2, the evacuation time does not exceed the time when

the exit is at C. In order to optimize the worst-case evacuation time, we equate the

evacuation time at C, and the time if the exit is immediately after V2, that is

|Q1J1|+ |J1P1|+ |P1Q1|+ |Q1V2| = |Q1C| (2)

Points V1, Q2, J2 and P2 are located symmetrically with points V2, Q1, J1 and P1

respectively, with respect to line AM .

The trajectories of the two agents are defined in Trajectories 4 and shown in Figure

16.

Our choices for the placement of all the mentioned points will result in the follow-

ing lemmas.

Lemma 3.23. If the exit is located at some point N on segment MC, then R1 will

be r-intercepted at or before reaching point J1.
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Proof. The proof is similar to the proof of Lemma 3.12.

Lemma 3.24. If the exit is located at some point N on segment CV2, then R1 will

be r-intercepted while moving on segment J1P1.

Proof. Assume not, meaning that R1 cannot be r-intercepted before reaching P1.

Then we have |BQ1|+|Q1J1|+|J1P1| < |CN |+|NP1|−r. Based on triangle inequality

we have |NP1| < |NV2|+ |V2P1|, substituting this in to the previous inequality results

in

|BQ1|+ |Q1J1|+ |J1P1| < |CN |+ |NV2|+ |V2P1| − r = |CV2|+ |V2P1| − r

which contradicts Equation 1.

Lemma 3.25. Suppose the exit is located at some point N on segment V2S2 excluding

the point V2, then R1 will be r-intercepted while exploring segment Q1S1.

Proof. For the purpose of contradiction assume otherwise, meaning R1 can be r in-

tercepted at or before point Q1 for some exit N which lies between V2 and S2. This

implies

|BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1| ≥ |CN |+ |NQ1| − r = |CV2|+ |V2N |+ |NQ1| − r

By triangle inequality we know |V2N |+ |NQ1| > |Q1V2|, hence

|BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1| > |CV2|+ |Q1V2| − r

By subtracting |P1Q1| from both sides of the inequality we get

|BQ1|+ |Q1J1|+ |J1P1| > |CV2|+ |Q1V2| − |P1Q1| − r = |CV2|+ |V2P1| − r

which contradicts Equation 1.

We now split the trajectory of R2 into different segments and for each segment,

we will determine the critical point and propose the evacuation time for each critical

points.

Lemma 3.26. On segments MC and CV2, vertex C is the critical point and the

evacuation time will be at most y + 0.5 + |BQ1|+ |Q1C|.

Proof. Similar to the proof of Lemmas 3.15 to 3.18.
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Lemma 3.27. On segment V2Q2, the evacuation time is maximum if the exit is

located right after V2. The evacuation is at most y + 0.5 + |BQ1|+ |Q1C|

Proof. Based on Lemma 3.3, the evacuation time is maximal in the immediate neigh-

borhood of V2 and is equal to y+0.5+ |BQ1|+ |Q1J1|+ |J1P1|+ |P1Q1|+ |Q1V2|. By
substituting Equation 2 into this value, we get the desired results.

Lemma 3.28. On segment Q2S2, the evacuation time is at most y + 0.5 + |BQ1| +
|Q1J1| + |J1P1| + |P1Q1| + |Q1Z| + |ZQ2| where Z is a point on segment AQ1 such

that |Q1Z| = |ZQ2| − r, i.e. point Z is the point that if the exit is located right after

Q2, agent R1 will be r-intercepted at Z.

Proof. Similar to the proof of Lemma 3.19.

The evacuation time if the exit is located on segment S2A is tS2+r which is clearly

less than the evacuation time if the exit is located at any point on segment Q2S2.

Now combining the results of the previous lemmas, we obtain the evacuation time for

A4 strategy.

Theorem 3.29. Let t1 = y+0.5+ |BQ1|+ |Q1C| and t2 = y+0.5+ |BQ1|+ |Q1J1|+
|J1P1| + |P1Q1| + |Q1Z| + |ZQ2|, where Z is a point on segment Q1S1 that R1 will

be r intercepted at, if the exit is located in the immediate neighborhood of Q2. Then

EA4(2, r) = max{t1, t2}.

Proof. Follows immediately from Lemmas 3.26 to 3.28.

As in A2 increasing |BQ1| will increase t1 and decreasing |BQ1| results in increase

of t2. Therefore, we conclude that the best value of |BQ1| is obtained when t1 = t2.

The results for different values of r which are obtained by numerical calculations are

shown in Table 3. Recall that for r = 1 an optimal evacuation algorithm is suggested

in [19], so no further improvement is possible.

3.3.2 A5 Strategy

Consider the moment that both agents have finished making the detours and are

back on the perimeter of T . This problem is identical to the problem in A4 when the

side BC is fully explored and agents are at vertices B and C, the only difference is

that the side of the triangle is smaller. Using the fact that the new detour can be
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r EA4(2, r) BQ1 BV1 Q1J1 J1P1

0.0 2.344339 0.672605 0.246081 0.105226 0.013629

0.1 2.234734 0.576648 0.260144 0.096381 0.021404

0.2 2.159036 0.504324 0.251749 0.080856 0.025759

0.3 2.096127 0.439301 0.234182 0.064424 0.028327

0.4 2.040527 0.377158 0.211072 0.048768 0.029459

0.5 1.990030 0.315998 0.183878 0.034679 0.029133

0.6 1.943552 0.254812 0.153253 0.022626 0.027195

0.7 1.900491 0.192977 0.119501 0.012930 0.023468

0.8 1.860477 0.130080 0.082708 0.005821 0.017777

0.9 1.823267 0.065825 0.042887 0.001470 0.009987

Table 3: Different values for A4 strategy

used for larger values of r, it is clear that another detour for the smaller triangle can

further improve the evacuation time. However in order to achieve this goal, we have

to re-balance all of the worst case evacuation times in T .
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Figure 17: Trajectory of agent R1 in A5

The trajectories of the two agents are defined in Trajectories 4 and shown in Figure

16. Note that the trajectory of R2 is removed in order to improve the readability of

the figure. For the same reason, the figure is not to scale, for example, in reality, the
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r EA5(2, r) BQ1 BV1 Q1Q3 Q1V3

0.0 2.286183 0.622816 0.323967 0.253695 0.092817

0.1 2.209896 0.553542 0.311850 0.218006 0.110798

0.2 2.147476 0.492745 0.285711 0.193098 0.107798

0.3 2.090640 0.433381 0.256494 0.168858 0.099266

0.4 2.037985 0.374193 0.225445 0.144368 0.087858

0.5 1.988921 0.314597 0.192760 0.119637 0.074675

0.6 1.943118 0.254214 0.158368 0.094869 0.060372

0.7 1.900349 0.192764 0.122105 0.070304 0.045448

0.8 1.860445 0.130026 0.083761 0.046174 0.030114

0.9 1.823264 0.065820 0.043129 0.022681 0.014830

Table 4: Different values for A5 strategy

value of Q3J3 is much smaller than Q1J1. Points V1, Q2, J2, P2, V3, Q4, J4 and P4

are located symmetrically with points V2, Q1, J1, P1, V4, Q3, J3 and P3 respectively,

with respect to line AM .

Trajectory 5.

R1 :< O,M,B,Q1, J1, P1, Q1, Q3, J3, P3, Q3, A >

R2 :< O,M,C,Q2, J2, P2, Q2, Q4, J4, P4, Q4, A >

Recall that by A5 we refer to Algorithm 1 with respect to Trajectory 5. Let t1 be

the evacuation time if the exit is located at C, and let t2 and t3 be the evacuation times

if the exit is located at the immediate neighborhood of points Q2 and Q4, respectively.

The exact values of |BQ1| and |BQ3| are obtained by solving the equations t1 = t2

and t1 = t3. As before, the equations were solved numerically and the results are

shown in Table 4.

3.4 Comparison of A1,A2,A3,A4 and A5

The evacuation time of all five variations of the proposed algorithms is shown in

Table 5. As mentioned in the previous chapter and [13], the improvement obtained
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by the second detour is significantly smaller than the improvement gained from the

first detour.

Evacuation times

r A5 A4 A3 A2 A1

0.00 2.286183 2.34433 2.3367 2.3838 2.78867

0.10 2.209896 2.23473 2.25424 2.27422 2.53867

0.20 2.147476 2.15903 2.18584 2.19427 2.36010

0.30 2.090640 2.09612 2.12325 2.12651 2.22617

0.40 2.037985 2.04405 2.06506 2.06593 2.12200

0.50 1.988921 1.99003 N/A 2.01050 2.03867

0.60 1.943118 1.94355 N/A 1.95926 1.97049

0.70 1.900349 1.90049 N/A 1.91169 1.91367

0.80 1.860445 1.86047 N/A N/A 1.86559

0.90 1.823264 1.82326 N/A N/A 1.82438

Table 5: Evacuation times of 2 Agents algorithms.

3.5 Lower Bound for Evacuating 2 Agents

In this section we prove a lower bound for evacuation by two agents . The proof is

essentially the same as the proof of the lower bound in [13] for the case r = 0, but

needs to take into account the ability of agents to communicate at distance r. We

give the entire proof here for completeness. First we need to generalize the Meeting

Lemma used in [13]. We say two points have opposite positions if one point is a vertex

of T and the other point is located on the opposite edge of that vertex.

Lemma 3.30 (Generalized Meeting Lemma). Assume that p1, p2 ∈ T and they have

opposite positions, e.g. points M3 and C in Figure 18. For any algorithm in which

one of the agents visits p1 at time t′ ≥ 0.5 + y and the other visits p2 at time t such

that t′ < t < 0.5+4y−r, the two agents cannot communicate any information between

time t′ and t.

Proof. Suppose the two agents exchange information between time t′ and t. They

have to get close to each other, in order to communicate.
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Figure 18: Modified Meeting Lemma

Then there exists a time tz with t′ ≤ tz ≤ t such that R1 is at point z1 and R2 is

at z2 at time tz, and |z1z2| ≤ r. Since p1 and p2 have opposite positions, |p1p2| ≥ 3y.

Therefore |p1z1|+|z1z2|+|z2p2| ≥ 3y. On the other hand, we know that tz−t′ ≥ |p1z1|
and t− tz ≥ |p2z2|. Combining these facts together, we obtain:

h ≤ |p1z1|+ |z1z2|+ |z2p2| ≤ tz − t′ + |z1z2|+ t− tz = t− t′ + r

t− t′ + r < 0.5 + h+ y − r − t′ + r ≤ 0.5 + h+ y − 0.5− y = h

which is a contradiction.

Using a similar arguments used in [13] we now establish the lower bound for the

case r ≥ 0 for two agents.

Theorem 3.31. Two agents are at a centroid of an equilateral triangle with sides 1.

The evacuation time for two agents of transmission range r ≤ 3y − 0.5 positioned at

the centroid of a triangle with sides one is at least 1 + 4y − r.

Proof. For the purpose of contradiction assume there exists algorithm A such that

EA(2, r) < 1 + 4y − r. Let us focus on the set of points S = {A,B,C,M1,M2,M3}.
We give an Adversary Argument. There exists some input I in which the exit is

the last of the point in S visited by an agent. Suppose time t is the time that the

fifth point from the set S is visited and v1 through v6 be the order that points are

visited. Wlog we assume that v5 is visited by R1. Since at time t, the fifth vertex
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is visited, then 3 points must have been visited by one of the agents and t ≥ y + 1.

On the other hand since the algorithm should satisfy EA(2, r) < 1 + 4y − r, then

t < 0.5 + 4y − r ≤ 0.5 + 4y since R1 needs extra time 0.5 to get to the sixth vertex.

We now examine the following exhaustive cases based on whether v5 is a midpoint or

a vertex.

Case 1. Point v5 is a vertex of T : Wlog assume that v5 is C. If v6 is one of A,

M3 or B, then it takes at least h for R1 to evacuate the triangle and E∗(2, r) ≥
t + h ≥ 1 + 4y which is a contradiction. We conclude that the v6 should be

either M1 or M2. Note that R1 could have visited at most one of A, M3 and

B by time t, hence R2 should have visited at least two points of A, M3 and B.

Assume v is the second vertex of the set of A, M3 and B visited by R2 at time

t′. Clearly t′ ≥ 0.5 + y. By the Generalized Meeting Lemma the two agents

cannot communicate between t′ and t on input I.

Now consider input I ′ in which the exit is located at v. On this input R1 andR2

behave identical to input I until time t′. After this time R2 may try to r-

intercept R1 but by Modified Meeting Lemma we know that the r-interception

does not occur before time t. Hence R1 has to travel at least h to get to the

exit which indicates that evacuation time will be at least 1 + y+ h = 1+ 4y on

input I ′, a contradiction.

Case 2. v5 is a midpoint of a side of T , and v6 is another midpoint: Wlog we

assume that v5 is M2 and v6 is M3. If R1 visits two vertices before arriving at

M2 then E∗(2, r) ≥ 2y + 1.5 which is a contradiction. We conclude that R2

must have visited 2 vertices before t. It is obvious that R2 cannot visit the

second of these two vertices sooner than time 2y + 1. If the second vertex is B

then the adversary places the exit at M2 and if the second vertex is C, it will

place the exit at M3. In both cases E∗(2, r) ≥ 2y + 1 + 3y > 1 + 4y which is a

contradiction. We conclude that the second vertex visited by R2 must be A.

Observe that if M1 is visited by R2, then E∗(2, r) ≥ y + 2 > 1 + 4y. Therefore

R1 should visit M1 as well as either B or C before arriving at M2. Let P be the

second point from set S visited by R1 at time t1. Clearly t1 ≥ y + 0.5. On the

other hand, R2 must visit A before time 0.5+4y−r. Let this time be t2. Clearly

t1 < t2, since if not, the time R1 gets to M2 will be at least t2 + 0.5 ≥ 2y + 1.5

which is a contradiction. By the modified meeting lemma, R1 and R2 cannot
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exchange information between t1 and t2. Now consider input I ′ in which the

exit is located at P . Agent R2 has the same behaviour until it reaches point

A at time t2 ≥ 2y + 1 and has to travel at least 3y to get to the exit. Hence

E∗(2, r) ≥ 2y + 1 + 3y > 1 + 4y. A contradiction.

Case 3. v5 is a midpoint of a side of T , and v6 is a vertex: Wlog assume v5 is

M2, if v6 is B then E∗(2, r) ≥ 4y + 1 which is a contradiction. We conclude

that v6 is either A or C. Wlog we assume v6 is A. If a single agent visits both

B and C, it takes time at least 2y + 2 to get to A, hence B and C should be

visited by different agents. Now we consider 2 cases: R1 visits C and R2 visits

B; and R1 visits B and R2 visits C.

Suppose R1 visits C. First observe that R1 cannot also visit M3 before reaching

point M2 as doing so will result in E∗(2, r) ≥ 4y + 1 which is a contradiction.

Therefore M3 should be visited by R2. If M1 is visited by R2, Lemma 3.33

assures that E∗(2, r) ≥ 4y + 1 and if M1 is visited by R1, then Lemma 3.34

assures the same thing.

Now suppose R1 visits B before reaching point M2 and R2 visits C. It is obvi-

ous that R1 cannot visit both M3 and M1 as by doing so, it will take at least

y+1.5 > 4y+0.5 to reachM2. Lemma 3.35 now assures that E∗(2, r) ≥ 4y+1−r

.

For Lemmas 3.33 through 3.35, we assume that v5 = M2 and v6 = A, and R1

visits M2 at time 1 + y ≤ tM2 < 4y + 0.5− r. We use the following observation from

[13].

Observation 3.32. [13] Let p be a point on the boundary. If at time 1 + 4y − |Ap|,
both A and p are unvisited, then E∗(2, r) ≥ 1 + 4y

Lemma 3.33. If R2 visits B, M3 and M1, and R1 visits C and M2, then EA(2, r) ≥
1 + 4y − r.

Proof. [13] First observe that if B is not visited before M3 and M1, then tB ≥ 0.5 +

y and tM2 ≥ 1 + y, hence by the Modified Meeting Lemma, R1 and R2 cannot

communicate between tB and tM2 . Thus if the exit is located at B, it will take at
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Figure 19: Illustration of (a) possible trajectories of R1 and (b) trajectory of R2 in

support of Lemma 3.33

least tM2 + h ≥ 1 + 4y for R1 to get to the exit, a contradiction. If R2 visits B,

M3 and M1 in that order, then at time tM1 − ε both A and M1 are unvisited, so by

Observation 3.32, EA(2, r) ≥ tM1 − ε+h > 1+4y, a contradiction. We conclude that

R2 should visit B, M1 and M3 in that order.

Let point p be the closest point to B on segment BM3 that is not visited by R2 before

visiting M1. The earliest time for R2 to visit p is |Op| + |Bp| + |BM1| + |M1p|, see
Figure 19b. It can be shown that for any point m on segment BM3, this time is more

than 1 + 4y − |Am|, therefore it also applies to p. On the other hand, R1 cannot

visit p on time: if it visits p before C (the blue trajectory in Figure 19a), we have

tM2 ≥ |Op|+ |pC|+ |CE| ≥ |OM3|+ |M3C|+ |CM2| = 4y+0.5, and if it visits p after

visiting C (the red trajectory in Figure 19a), we have tM2 ≥ |OC| + |Cp| + |pM2| ≥
|OC|+|CM3|+|M3M2| = 5y+0.5. Hence no agent can visit p before time 1+4y−|Ap|
and based on Observation 3.32, EA ≥ 1 + 4y.

Lemma 3.34. If R2 visits B, M3, and R1 visits C, M1 and M2, then EA(2, r) ≥
1 + 4y − r.

Proof. Recall that tM2 ≥ 1 + y. If R1 and R2 don’t meet between tB and tM2 then

by placing the exit at B, it will take at least 1 + 4y for R1 to get to the exit. So

we conclude that they should communicate with each other between tB and tM2 . If
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Figure 20: Trajectories when R2 visits B before M3 and R1 visits M1 before C

R2 visits M3 before B, then tB ≥ 0.5 + y and since tM2 < 0.5 + 4y − r, by the

Generalized Meeting Lemma they could not exchange any information between tB

and tM2 . Therefore R2 must visit B before M3.

Now if R1 visits C before M1, using a similar argument as in Lemma 3.33, it can

be verified that an unvisited point P exists on segment CM2 at time 1 + 4y − |AP |.
It follows from the Observation 3.32 that EA(2, r) ≥ 1 + 4y. Hence M1 should be

visited before C.

Observe that tC ≥ 0.5 + y and tM3 < 0.5 + 4y − r, so by the Generalized Meeting

Lemma R1 and R2 cannot exchange information between time tC and tM3 . We con-

clude that they should exchange information after tC and after tM3 . At this point,

the whole segment BM1 must be visited; because if not, before time tM3 +3y/2 there

exist an unvisited point on BM1 segment with distance at least 3y from A and by

Observation 3.32, EA(2, r) ≥ tM3 + 9y/2 ≥ 0.5 + 13y/2. Thus there must be a point

P on segment BM1 such that BP is explored by R2 and CP is explored by R1. Thus

tB ≥ |OP | + |BP | and tC ≥ |OP | + (1− |BP |). Suppose the exit is located at C, if

the agents don’t communicate before R2 reaches A, then clearly EA(2, r) ≥ 1 + 4y.

So they have to exchange information before R2 reaches A. Let Q be the last point

visited by R2 on segment AB, before either it gets r-intercepted by R1 or moves inside

T in order to get closer to the other agent. Let the interception points be N1 and N2,

see Figure 20, and let a = |QN2| and b = |N1C|. Clearly points Q and N2 will merge
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and a = 0, if R2 is r-intercepted on segment AB.

Note that R1 reaches point N1 at the same time that R2 reaches point N2 and

they are r-apart. Observe that:

For R2 to get to the exit at C in time, it must be that tN2 + r + b < 1 + 4y − r and

since tN1 ≥ tC + b, we obtain:

b <
1 + 4y − 2r − tC

2
≤ 1 + 4y − 2r − |OP | − 1 + |BP |

2
(3)

Now let Q′ be a point infinitesimally close to Q on segment QA and visited at time

tQ′ . Then by Observation 3.32, we have tQ′ < 1 + 4y− r− |AQ′|. Also we have

tQ′ ≥ tN2 + a ≥ tB + |BQ′|+ 2a, which implies that

a <
1 + 4y − r − |AQ′| − |BQ′| − tB

2
≤ 1 + 4y − r − 1− (|OP |+ |BP |)

2
(4)

Note that a+ b+ r ≥ 3y, yet from inequalities 3 and 4 we get:

a+ b+ r < 4y − |OP | − r/2 ≤ 3y

which is a contradiction. We conclude that these r-interception points do not exist

and if the exit is located at C, agent R2 cannot get to the exit point in time.

Lemma 3.35. If R2 visits C and at least one of points M1 or M3, and R1 visits B

and at most one of points M1 or M3, then EA(2, r) ≥ 1 + 4y − r.

Proof. The proof is identical to the proofs of Lemmas 7 through 9 in [13].
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Chapter 4

Evacuating Three Agents

In [13] an evacuation algorithm for 3 agents is proposed for r = 0 with evacuation

time of 2.08872. In this algorithm T is divided into 4 segment (see Figure 21), three

of these segments are assigned to individual agents and after they finish exploring

these 3 segments, they move inside T in a manner that they will be at the centroid

at the same time in order to exchange information. After the meeting, if the exit is

not found, all three agents will search the fourth segment together. We refer to this

segment as the unexplored part from now on.
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PP11 PP22

Figure 21: Trajectories of three agents in [13]
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In [13] it is shown that a better result is achieved if BQ1 �= CQ2 andM1P1 �= M1P2

rather than these values to be equal. However in this chapter we will show that this

will not always be the case and placing the unexplored part in the middle of side BC

will yield a better result for some specific values of r.

Another approach used in wireless model in [19] is to partition the side BC in

to three segments and assign each segment to one agent, see Figure 22. After each

agent finishes searching its segment, two of the agents continue to explore sides AB

and AC while the third agent moves to the unexplored vertex. The partitioning is

done in a way that all three agents will arrive at vertex A at the same moment.

AA

BB CC

OO

PP11 PP22

Figure 22: Trajectories of three agents in a wireless model

In this chapter, we will consider adaptation of both approaches, for the case r > 0.

Since three agents are going to evacuate the triangle, the trajectory of at least one of

them cannot be symmetric with respect to line AM .

Another thing to keep in mind is that when we have more than two agents, one of

them can act as a relay and extend the range of an agent to send the message contain-

ing the location of the exit. Also since the trajectories of the agents are known to all

of them before the execution of the algorithm, they know the moment and location in

which an agent can act as a relay and expanding the effective communication range.

Three different trajectories are going to be suggested in this chapter, but they all
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follow a general schema described in Algorithm 2. The <found> and <msg recd>

are one bit flags, implemented in each of the agents. Both of them are initialized to

false at the start of the algorithm.

Algorithm 2 Evacuation Algorithm for Three or more Agents

function Exploration

found← false

while not<found> and not<msg recd> do

move along the predetermined trajectory

end while

action

end function

function Action

if found then

P ← current location

while all the other agents are not in effective communication range do

continue moving on the trajectory

end while

end if

broadcast < P >

go to P and exit

end function

In Section 4.1 and 4.2 we will give two adaptations of Equal-Travel Early-Meeting

Algorithm in [13] and in Section 4.3 we will discuss a modified version of wireless

algorithm in [19]. Later on in this chapter, we will make a comparison of the three

types of algorithms and determine which one is better for specific values of r.

4.1 Evacuating 3 Agents from a Triangle Using

X3Cv1

The first adaptation of Equal Travel Early Meeting method proposed in [13] is de-

scribed in Trajectory 6 and shown in Figure 23. Points M1, M2 and M3 are midpoints

of the side of T . By X3Cv1 we mean Algorithm 2 that uses Trajectory 6. The whole
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Figure 23: Evacuating three agents using X3Cv1

idea is to have an exchange of information after a portion of T is explored, and only

if the exit was not found, move to the unexplored part of T .

Trajectory 6.

R1 follows the trajectory: < O,P1, B,Q1, J1, P3, wait for R3, P2 >

R2 follows the trajectory: < O,Q1, A,Q2, J2, P3, wait for R3, P2 >

R3 follows the trajectory: < O,Q2, C, P2, J3, P1, P2 >

We partition the perimeter of T into 4 segments. Three of the segments are

assigned to individual agents for exploration. After the exploration of these segments

are finished, they move inside T to the extended meeting points J1, J2 and J3. These

points have the following properties:

• They are at distance r from each other.

• Their distance to point O are equal.

• Points J1, J2 and J3 are located on line segments OM2, OM3 and OM1 respec-

tively.
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After the information is exchanged, if the exit is not found, they move toward the

fourth segment. At this point, due to the difference between the distance of each

agent to point P1, it is better if they don’t move together. Only R3 moves toward

point P1 and both R1 and R2 move toward P3, the midpoint of segment P1P2, and

wait there for R3. If R3 has found the exit, they move back toward point P1 and if

not, they move toward point P2 together. It is obvious that R1 and R2 moving to

M1 does not have any negative effect on the worst case evacuation time, since if the

exit is close to point P1, agent R3 from P1 has to travel |P1P2|
2

to inform the other two

agents and it takes another |P1P2|
2

for them to get to the exit, and if the exit is located

near P2, it again takes |P1P2| for R3 to get to the exit from P1.

Mark that if r → 0, X3Cv1 converges to Equal Travel Early Meeting in [13] and

we will show that our results for r = 0 is identical to results shown in [13]. Because

of the Equal Travel method used in this algorithm, agents should be at the extended

meeting points at the same time. Therefore we have:

• t1 = |OP1|+ |P1B|+ |BQ1|+ |Q1J2|

• t2 = |OQ1|+ |Q1A|+ |AQ2|+ |Q2J3|

• t3 = |OQ2|+ |Q2C|+ |CP2|+ |P2J1|

On the other hand, at the end of the first phase when information is exchanged, there

will be two critical points

• for R2 to reach point B and

• for R3 to finish the unexplored part of the triangle.

Putting everything together, we obtain the following equations:

1. t1 = t2 = t3 and

2. |J3B| = |J1P1|+ |P1P2|

Solving these equations with Maple software, we achieve the results shown in Table

6. The results are invalid for r ≥ 0.60 as for some segments, there is no positive

solutions when solving the equations.

Note that for r = 0.1761 this algorithm has the lowest evacuation time of 2.076211

and if r increases, the total evacuation time increases as well.
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r |BQ1| |BP1| |P1P2| |CQ2| EX3Cv1(3,r)

0.00 0.52520 0.38602 0.26698 0.54543 2.08871

0.05 0.53158 0.36381 0.31288 0.54642 2.08252

0.10 0.53839 0.34162 0.35505 0.54463 2.07848

0.15 0.54550 0.31935 0.39290 0.54025 2.07647

0.1761 0.549272 0.307634 0.410740 0.537022 2.076211

0.20 0.55273 0.29679 0.42581 0.53354 2.07642

0.25 0.55985 0.27363 0.45322 0.52482 2.07827

0.30 0.56664 0.24914 0.47440 0.514450 2.08210

0.40 0.57799 0.18995 0.49292 0.49089 2.09689

0.50 0.58847 0.06699 0.43301 0.47455 2.13037

≥0.60 N/A N/A N/A N/A N/A

Table 6: Evacuation of 3 Agents using X3Cv1

4.2 Evacuating 3 Agents from a Triangle Using

X3Cv2

We take a similar approach to X3Cv1 with some minor modifications. First, points

Q1 and Q2 and points P1 and P2 are symmetric with regards to line AM . Observe

that in contrast to X3Cv1, when the exploration of first three segments is finished,

agents move toward opposite vertices instead of the centroid and they communicate

when they are r apart at points J1 and J2. The trajectories of each agents are defined

in Trajectory 7. The exploration of the fourth segment is identical to X3Cv1, R1

is responsible for exploring the whole segment while R2 and R3 will wait for R1 at

the midpoint of this segment. Again, by X3Cv2 we refer to Algorithm 2 that uses

Trajectory 7. Note that when r → 0, this algorithm does not converge to Equal Travel

Early Meeting algorithm in [13]. Hence we will have larger evacuation time for small

values of r.
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Figure 24: Evacuating three agents using X3Cv2

Trajectory 7.

R1 follows the trajectory: < O,P1, B,Q1, J1, P1, P2 >

R2 follows the trajectory: < O,Q1, A,Q2, J2,M1, wait for R1, P2 >

R3 follows the trajectory: < O,P2, C,Q2, J2,M1, wait for R1, P2 >

Again since we implement an equal travel method, the agents should be at the

extended meeting point at the same time. Hence we will have:

• t1 = |OP1|+ |P1B|+ |BQ1|+ |Q1J1|
• t2 = |OQ1|+ |Q1A|+ |AQ2|+ |Q2J2|
• t3 = |OP2|+ |P2C|+ |CQ2|+ |Q2J2|

Due to the symmetry of the algorithm, we know that t1 = t3. We only have to

equate t1 = t2. Similar to previous algorithm, when agents are exchanging informa-

tion, there exists two critical points as

1. point C for R1 (same distance as B from R2 and R3)

2. and point P2 for R1
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By equating these two point, we get the equation |J1C| = |J1P1| + |P1P2|. Using
Maplesoft to solve the equations, we acquire the results shown in Table 7. Note that

same as before, the results are invalid for r ≥ 0.50 as for some segments, there is no

positive solutions when solving the equations.

r BQ1 BP1 P1P2 Evac Time

0.00 0.53385 0.37418 0.25162 2.08962

0.05 0.53582 0.36452 0.27094 2.08599

0.10 0.53761 0.35536 0.28926 2.08270

0.15 0.53925 0.34670 0.30659 2.07972

0.20 0.54074 0.33851 0.32297 2.07700

0.25 0.54210 0.33077 0.33845 2.07454

0.30 0.54336 0.32347 0.35307 2.07231

0.40 0.54553 0.31006 0.37988 2.06837

≥0.50 N/A N/A N/A N/A

Table 7: Evacuation of 3 Agents using X3Cv2

4.3 Evacuating 3 Agents from a Triangle Using X1C

As r increases, the improvements on evacuation time in the previous two algorithms

are not sufficiently large to approach the evacuation time of the algorithm in [19] in

which agents can communicate with each other with r = 1. We therefore consider

an adaptation of the algorithm from [19] which results in a lower evacuation time for

large value of r compared to X3Cv1 and X3Cv2. The trajectories of each agent are

illustrated in Figure 25 and described in Trajectory 8. By X1C we mean the algorithm

2 with regards to Trajectory 8. In this strategy the agents first explore the side BC

and later on, they will get connected to exchange information about the exit. If the

exit is not found yet, they all move to vertex A. The Trajectory 8 is different from

previous trajectories in a way that when R2 reaches point Q1, it reduces its speed so

that it remains on a horizontal line that passes through the other two agents.
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Figure 25: Evacuating three agents using X1C

Trajectory 8.

R1 follows the trajectory: < O,P1, B,A >

R2 follows the trajectory: < O,P1, P2, Q1, A >

R3 follows the trajectory: < O,P2, C, A >

Agents R1, R2 and R3 will reach points Q2, Q1 and Q3 respectively at the same

time, let this time be t. Points Q2 and Q3 are on sides AB and AC respectively, and

at the same distance from A and are chosen in a way so that |Q2Q3| = min{2r, 1}. We

will choose point Q1 in a way that the agents be always in effective communication

range at t and later on. As previously mentioned, when agent R2 reaches Q1, it will

decrease its speed so it could be at the same level with R1 and R3 until they reach

point A. Note that since the trajectories of R1 and R2 are symmetric, wlog we will

focus on analyzing the evacuation times of R1 and R2.
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Point Q1

Point Q1 is chosen based on value of r. If 0 < r < 0.5, it will be placed on segment

AM and if r ≥ 0.5, then it will be placed on segment MC in a way that all three

agents be at points B, Q1 and C at the same time, as well as being in effective

communication range with each other. Note that if r ≥ 2/3, then points Q1 and P2

will be at the same location, because at time t, when R1 is at B and R2 is at P2, they

are already in communication range and there is no need for R2 to move toward R1.

In conclusion we could present 3 cases for point Q1 based on value of r as follow:

Case 1, 0 ≤ r < 0.5: Point Q1 is the midpoint of segment Q2Q3. Since at time t

agents R1 and R2 should be at points Q2 and Q1 respectively, we have

|OP1|+ |P1B|+ |BQ2| = |OP1|+ |P1P2|+ |P2Q1|

By simplifying the equation and replacing |P2Q1| =
√

|Q1M |2 + ( |P1P2|
2

)2 and

|Q1M | = 3y − |AQ1|, we get

1− |P1P2|
2

+ (1− 2r) = |P1P2|+
√
(3y −

√
3r2 − 4r + 1)2 + (

|P1P2|
2

)2

from which |P1P2| can be written as a function based on r.

Evacuation time for this case is |OP1|+ |P1B|+ |BQ2|+ |Q2C|.

Case 2, 0.5 ≤ r < 2/3: Point Q1 is positioned on segment MP2 such that

|BP1| = |P1P2|+ |P2Q1| and |BQ1| = r

By solving these two equations we get P1P2 = r/2, and the evacuation time is

|OP1|+ |P1B|+ |BC| =
√
y2 + (r/4)2 + (1/2 − r/4) + 1

Case 3, r ≥ 2/3: Point Q1 is at distance 2/3 from B. Then we have |P1P2| = 1/3 and

the evacuation time will be

|OP1|+ |P1B|+ |BC| =
√
y2 + (1/6)2 + 1/3 + 1

The improvements compared to X3Cv1 and X3Cv2 for large values of r are achieved

for the following reasons:
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1. One agent acting like a relay, transfers the information between the other two,

expanding the effective communication range, and

2. agents do not have to deviate from the boundary in order to exchange informa-

tion, hence saving time.

The evacuation time of X1Cis illustrated in the following figure.

Figure 26: Evacuation time of EX1C(3, r)

4.4 Comparison

Now we are going to compare X3Cv1, X3Cv2and X1C based on their evacuation time.

As can be seen in Table 8, the X3Cv1 and X3Cv2 strategies, which are adaptations of

Equal Travel Early Meeting algorithm in [13], work better for small values of r, while

the X1C strategy yields better results for large values of r. Note that the best known

algorithm for face-to-face and wireless evacuates 3 agents in 2.08872 and 1.649708313

respectively.

Those specific values of r where small fluctuation in r results in one algorithm to

do better than the other one is obtain empirically rather than analytically.
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r X3Cv1 X3Cv2 X1C

0 2.08872 2.08963 2.64971

0.1 2.07849 2.08271 2.37052

0.2 2.07642 2.07702 2.13056

0.20825 2.07660 2.07660 2.11274

0.22589 2.07714 2.07572 2.07572

0.25 2.07828 2.07455 2.02747

0.3 2.08210 2.07231 1.93620

0.4 2.09689 2.06838 1.78880

0.5 2.13037 N/A 1.68958

0.6 N/A N/A 1.67532

0.7 N/A N/A 1.666667

0.8 N/A N/A 1.66667

0.9 N/A N/A 1.66667

1 N/A N/A 1.66667

Table 8: Comparison of evacuation time of 3 agents
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Chapter 5

Evacuating Four or More Agents

In this chapter we take a look at four agents. The strategies described in the previous

chapter can be generalized to be used in four agent variation of the problem. First,

we modify the X3Cv1 to be used with four agents. Recall that in X3Cv1 strategy, at

the extended meeting points the distance between any two agents is r, but with four

agents, we could increase this amount to 2r. Then we are going to describe another

strategy based on X1C.

5.1 Evacuating 4 Agents from a Triangle Using

X3Cv1

A similar approach to X3Cv1 is used here. The triangle is divided into 5 segments,

each agent is responsible for exploring one of these segments and after the exploration

of these 4 segments is finished, all the agents will move to the extended meeting points

inside of the triangle, in order to exchange information. In the case that the exit is

not found, the agent closest to the fifth segment, in our case R1, starts exploring that

segment and the other 3 agents will move to the midpoint of fifth segment and will

wait for the other agent. By X3C, we refer to Algorithm 2 with respect to Trajectory

9. The trajectories of all 4 agents are shown in Figure 27.
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Figure 27: Evacuating four agents using X3Cv1

Trajectory 9.

R1 follows the trajectory: < O,Q1, B, P1, J1, P1, P2 >

R2 follows the trajectory: < O,Q1, Q2, J4, P3, wait for R1, P2 >

R3 follows the trajectory: < O,Q2, A,Q3, J3, P3, wait for R1, P2 >

R3 follows the trajectory: < O,Q3, C, P2, J2, P3, wait for R1, P2 >

Same as Algorithm X3Cv1, the length of the trajectories traversed by each agent

up to the the point where they reach the extended meeting points, i.e. points J1−4,

are equal. Also points P1 and P2 are chosen in a way to satisfy the equation |J1P1|+
|P1P2| = |J4C|.

In this algorithm it is very critical for R2 to reach point P3 before R1 as R2 is the

farthest agent to P3. And this is true for small values of r, but as r gets larger than

0.11619, |J4P3| gets larger than |J1P1|+ |P1P3| and hence, the evacuation time of the

algorithm starts to increase at this point.
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5.2 Evacuating 4 Agents from a Triangle Using X1C

A modified strategy to X1C is used here with the difference that the trajectories of

agents are symmetric with regards to line AO. At first, agents travel to different

points on edge BC and start exploring that edge. After the exploration of edge BC

is finished, two of the agents continue exploring the other two edges while the two

remaining agents will move inside the triangle in order to maintain a communication

link between two agents moving alongside the edges. The trajectories of agents are

illustrated in Figure 28 and defined Trajectory 10.
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QQ11 QQ44
QQ33QQ22

Figure 28: Evacuating four agents using X1C

Trajectory 10.

R1 follows the trajectory: < O,P1, B,A >

R2 follows the trajectory: < O,M1, P1, Q2, A >

R3 follows the trajectory: < O,M1, P2, Q3, A >

R4 follows the trajectory: < O,P2, C, A >
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Note that if r is small and the exit is located at vertex C, the agents have to

travel a long way to the top of T so that they could communicate and then they have

to travel all the way down to the exit point. Hence this algorithm is not efficient for

small values of r.

Since X1C for four agents is a symmetric algorithm, we only analyze the trajec-

tories of R1 and R2 and assume the exit is located at vertex C. Based on the value

of r we have the following cases for the position of points Q1 and Q2. Points Q4 and

Q3 are symmetric to point Q1 and Q2 with respect to line AM1.

Case1, r < 1/3: Point Q1 is at distance 3r from A on edge AB. Point Q2 is r-apart

from point Q1 on segment Q1Q4. Point P1 is chosen in a way to satisfy the

following equation:

y + |M1P1|+ |P1Q2| = |OP1|+ |P1B|+ |BQ1|

Case2, 1/3 ≤ r < 0.6436493: In this case, since |P1P2| > r, when R2 and R3 reach

points P1 and P2, they have to move toward each other to be in communication

range. Points Q2 and Q3 are placed on the edge BC, and points P1 and Q2 are

obtained from solving the following two equations:

• y + |M1P1|+ |P1Q2| = |OP1|+ |P1B| and
• |M1P1| − |P1Q1| = r/2

The evacuation time is |OP1|+ |P1B|+ 1.

Case3, r ≥ 0.6436493: With large enough r, this problem converges to the wireless

problem proposed in [18]. Points P1 and P2 are chosen in a way so that all the 4

agents finish exploring side BC at the same time, i.e. y+|M1P1| = |OP1|+|P1B|.
When the edge BC is explored all the agents move toward vertex A. At all time

of the execution of the algorithm, all the agents are in effective communication

range. The evacuation time will be y + |M1P1|+ 1 ≈ 1.610499805.

Note that when R2 and R3 move toward vertex A, they move with speed less that

1 in a way that they always be on the line going through R1 and R4. The comparison

of evacuation time of X1C and X3C for four agents is shown in Table 9
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r X3C X1C

0.0 1.98157 2.59944

0.1 1.96199 2.19408

0.11619 1.95993 2.13688

0.1721 1.95993 1.95993

0.2 1.95993 1.88392

0.3 N/A 1.67649

0.4 N/A 1.62573

0.5 N/A 1.61912

0.6 N/A 1.61302

0.7 N/A 1.61050

1.0 N/A 1.61050

Table 9: Comparison for evacuating 4 agents with different strategies

5.3 Optimal Algorithm Employing Many Agents

It was previously shown that no algorithm can evacuate any number of agents from

T sooner than 2y + 1 [19]. For completeness we will give a short proof here.

AA

BB CC

MM22 MM33

MM11

OO

Figure 29: Trajectory of 6 agents with r = 1

Observation 5.1. [19] ∀n E∗(r, n) ≥ 2y + 1.

Proof. Let t be the time that first agent visits any of the vertices A, B or C. We
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know that t ≥ 2y. Then the adversary will place the exit at either of the other two

vertices, forcing the agent to travel additional distance 1 to reach the exit, completing

the proof.

5.3.1 Evacuating 6 Agents with r = 1

It was shown in [18] that six agents can evacuate in time 1 + 2y. The trajectories of

all agents are shown in Figure 29. As soon as one agent finds the exit, all the other

agents will be notified and they abandon their exploration and move toward the exit.

We now analyze the evacuation time of this algorithm.
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Figure 30: Lemma 5.2

Lemma 5.2. [18] The algorithm which uses the trajectory illustrated in Figure 29

has evacuation time 1 + 2y regardless of the position of the exit.

Proof. Wlog lets assume that the exit is located on segment BM1 at distance x from

B (see Figure 30). Let t be the time that the exit is found. It is obvious that the

farthest agents to the exit are the agents that are at N2 and N3 at time t (see Figure

30). Now considering the triangle N1N3C which is an equilateral triangle with sides

1 − x, the maximum distance between any two points on its boundary cannot be

greater that 1− x. Hence total evacuation time will be t+ 1− x = 2y + 1.

It follows from Observation 5.1 that this algorithm is optimal.
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5.3.2 Evacuating 8 Agents with r ≥ 0.5

We now show an algorithm utilizing 8 agents with r ≥ 0.5 that is optimal. The

trajectories of agents are shown is Figure 31. In this algorithm 6 agents are responsible

for searching the boundary for the exit, from now on we refer to these agents as

explorers. The other 2 agents are in charge to maintain a communication relay grid,

hence we call them relay agents. These two agents move to M2 and M3 at the start

of the algorithm and will stay there until the exit is found.
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MM22 MM33
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Figure 31: Evacuating 8 agents

Lemma 5.3. Eight agents with r ≥ 0.5 can evacuate T in 2y + 1.

Proof. Consider ΔBM2M1, since this is an equilateral triangle with side 0.5, then

the distance between any two points is maximum 0.5. This is also applicable to

ΔM1M3C. Hence all the 8 agents are in communication range at any stage of the

algorithm. The evacuation time of 2y + 1 follows directly from the proof of Lemma

5.2.

5.3.3 Upper and Lower Bound on k

We will now show an optimal evacuation algorithm with k = 6 + 2�1
r
− 1� number

of agents. By T ′ we mean the equilateral triangle of side 0.5 with vertices at the

midpoints of the 3 edges of T , namely M1, M2, and M3.

We break the execution of this algorithm into multiple phases for simplicity.
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Figure 32: K agents moving to the boundary

Moving to the boundary: 6 agents will move to the 3 vertices and start exploring

in the opposite directions. The trajectories of these 6 agents are identical to the

trajectories of the agents shown in Figure 29. All the other agents will move to

edges AB and AC in such a way that they are r-apart from their immediate

left and right neighbor agents (see Figure 32), and they will stay there until all

the 6 explorers reach the vertices.

Exploration: The exploration phase starts at time 2y. Once any of the explorers

reach any of the relay agents, that relay agent will start moving toward T ′ as

shown in Figure 33b. The relay agents positioned on ΔM2AM3 always move on

a line passing through the two explorer agents which were sent to vertex A at

the previous step, see Figure 33a. Note that this implies that these relay agents

move at a lower speed than the explorer agents. The other relay agents (that

were positioned on segments M2B and M3C move on lines parallel to edge BC

at unit speed.

Exit: Once one of the explorers finds the exit, all the other agents will be in effective

communication range and therefore will move toward the exit immediately.

Lemma 5.4. After the explorers reach the vertices of T , all agents will remain in

effective communication range with each other until the algorithm is finished.
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(a) Positions of the agents located ini-

tially on ΔM3AM2 at time 2y + |AN1|
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(b) Position of the agents at the end of

the exploration phase

Figure 33: Exploration phase

Proof. It is easy to see that the distance between the agents located on the perimeter

of ΔM3AM2 never increases. The movement of the agents located on the perimeter

of ΔM2BM1 is symmetric to those located on ΔM1M3C, hence wlog we focus on the

latter. Consider time t in which the blue explorer has passed the ith relay agent, see

Figure 34. It is easy to see that the agents from B1 to Bi are located on a line passing

through the two explorers on that part and the distance between each successive relay

agent is exactly r. Also note that the distance between the green agent and B1 is

also r and the distance between the blue agent and B1 is maximum r. Therefore, the

agents located on ΔM2BM1 and ΔM1M3C are in communication range with agents

located on ΔM3AM2 at any time.

Theorem 5.5. k = 6+2�1
r
−1� agents located at the centroid of T with any 0 < r < 1,

can evacuate T optimally, i.e. in time 1 + 2y.

Proof. The explorers will reach the vertices of T at time 2y. For any exit with distance

0 ≤ x ≤ 0.5 from the nearest vertex, at least one explorer will reach it at time 2y+x.

Lemma 5.4 assures that all the agents will get notified immediately and start moving

to the exit. As in Lemma 5.2, the farthest agent is at distance 1−x from the exit when

the exit is found, and hence the evacuation time will be 2y + 1 which is optimal.

Now we give a lower bound on the number of agents to optimally evacuate T .

Theorem 5.6. For any r, at least 1
r
+ 1 number of agents are needed to evacuate T

optimally, i.e. in time 1 + 2y.
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Figure 34: Agents which were initially located on segment CM2, at time t

Proof. Let t be the time the first agent, say R1, reaches a vertex, say A. Clearly,

t ≥ 2y. Since the adversary can place the exit at either B or C, for the evacuation

time to be exactly 1+2y, it must be that t = 2y, and furthermore, another agent must

have reached either B or C or both, and must be able to instantly communicate the

presence of the exit to R1. For this communication to happen, an additional 1/r − 1

agents are needed, for a total of 1/r + 1 agents.
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Chapter 6

Conclusions and Future Work

The previously studied evacuation problems look at the problem of evacuating mul-

tiple agents from an enclosed domain which has one or multiple exits. The model

used, face-to-face and wireless are two extreme cases of the communication spectrum,

whereas our new model, revisits the problem with a more realistic approach; the

agents should be close enough in order to communicate with each other.

In this thesis we focused on an equilateral triangle as a search domain. We first

modified the previously known Equal-Travel with Detour algorithm, but the detours

were only beneficial for some values of r. Then we proposed a new trajectory for

the detours which is applicable to all values of r. These new trajectories give an

evacuation time of 2.2862 for the evacuation of two agents in the face-to-face model,

which is an improvement over the previously known result of 2.3367. We also give a

lower bound 1.6547− r on the evacuation time for any value of r ≤ 0.336

For three agents, for any r, we provided an algorithm with three different trajec-

tories; X3Cv1 and X3Cv2 where agents explore all three sides of T before connecting

and X1C where the agents first fully explore one side and then connect. We showed

that X1C is a better approach for large values of r and for smaller values, the other

two approaches yields better results. For four agents, we propose two different tra-

jectories, one to X3Cv1 and the other one similar to X1C in the case of three agents.

Finally, we showed that for any r, evacuation of k = 6 + 2�(1
r
− 1)� agents can be

done using the CXP strategy in time 1 +
√
3/3, which is optimal in terms of time,

and asymptotically optimal in terms of the number of agents.

Throughout this thesis, we were unable to give a closed form solution for the
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evacuation time as a function of r, due to the complexity of the equations. It is

desired to have such a function or at least an estimation. We are aware that our

bounds are not tight. For the two agents, we were only able to give a lower bound for

r ≤ 0.336, it would be interesting to have a better bound for r > 0.336 rather than

the general lower bound for k agents introduced in [19].

All the proposed algorithms in this thesis are categorized under offline algorithms,

since before the execution, the agents are aware of their surroundings. It would be

an interesting idea to implement an online algorithm for agents which have no or

limited information regarding the search domain. This could be a consequence of a

fire blocking a part of the structure, destruction of some of parts of the building due

to an earthquake or etc. We would also like to know what is the best behavior of the

agents in other geometric shapes.

Finally, we would like to know what trajectories should be used if we need to save

only a specific agent from danger as in [22].
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