
Universal Gesture Tracking Framework in OpenISS and ROS

and its Applications

Jashanjot Singh

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montréal, Québec, Canada

January 2020

© Jashanjot Singh, 2020

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Jashanjot Singh

Entitled: Universal Gesture Tracking Framework in OpenISS

and ROS and its Applications

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Aiman Hanna

Examiner
Dr. Marta Kersten-Oertel

Examiner
Dr. Sudhir P. Mudur

Supervisor
Dr. Joey Paquet

Supervisor
Dr. Serguei A. Mokhov

Approved by
Dr. Lata Narayanan, Chair of Department

February 6, 2020
Dr. Amir Asif, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Universal Gesture Tracking Framework in OpenISS and ROS and its

Applications

Jashanjot Singh

In this research work, we present a common and extensible framework that abstracts

different vision-based gesture recognition middleware and provides uniform gesture

recognition data obtained from those via its simpler API to enable hand gesture

interaction in different kinds of applications. We demonstrate various aspects of our

framework via instrumentation and enable gesture interaction for our two specific yet

different needs.

Firstly, we alleviate limited gesture tracking functionality in ISSv2 aka.

(Illimitable Space System v2), an interactive and configurable artists’ toolbox that is

used to create music visualizations, visual effects and interactive documentary film

based on the inputs from users such as gestures, voice, motion, etc. Secondly, we

provide a proof-of-concept solution to enhance and demonstrate limited language

usability of the Forensic Lucid language’s composition and compiler interactivity

by enabling a forensic investigator to create partial Forensic Lucid encoded

programs which require manipulation of preloaded digital evidence objects in a 3D

warehouse-like application (DigiEVISS) via hand gesture interaction.

We also leverage Robot Operating System (ROS), an open source set of tools and

libraries for its communication middleware to broadcast our framework data over

the network. We provide this framework as a specialization of the OpenISS core

framework and evaluate our framework on various aspects. We employ metrics such

as effective frame rate and delay to evaluate our exemplified scenarios that represent

our needs.

iii

Acknowledgments

I would begin by expressing my sincere gratitude towards my supervisors Dr. Joey

Paquet and Dr. Serguei Mokhov for supporting me to achieve this milestone in my

academic career. This work would not have been feasible without their constant

guidance, resources and encouragement. Next, I would like to thank my father, Raj

Kumar and, mother, Jasbir Kaur, who always believed in me despite all odds and

provided me with the resources that enabled me to reach this position. I am grateful

for my sister Jasmine Kaur, who has supported me with great love and devotion.

Throughout my Masters, I had the privilege of befriending many people, to whom

I am thankful for their endless support, and, I would like to mention their names

explicitly. My dear friends Shaheen Manoucheher and Diego Pizarro Ribera who

always supported me through difficult times. My friends from my part time work

during my studies from whom I learned certain life skills, Alexander Gorbachev,

Jayson Legault, Sohel Islam, Munna Miah and Felix Devost-Lamontagne for giving

me free French language lessons. I am also thankful for the support of Haotao Lai

and my peers Yiran Shen, Alexandre Simard and Jyotsana Gupta.

Finally, I would like to thank my beautiful girlfriend Marianne Venne, who is an

incredible woman and the source of my happiness and inspiration. I greatly admire

her personality and feel fortunate to have her as my partner. Our dog, Bali, whom

we love unconditionally, and wakes us up every morning only to start our day with

pure happiness. I yet again thank them all and I am grateful for everything that all

of these amazing people have done for me.

iv

Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Research Domain . 1

1.2 Motivation . 4

1.2.1 Essential Background . 4

1.2.2 Motivational Scenarios . 6

1.2.3 Scenario I: Manipulation of digital evidence objects in a 3D

warehouse-like application by a forensic investigator using hand

gestures . 6

1.2.4 Scenario II: Real time visual effects for performance visualiza-

tion on stage by an artist using hand gestures in ISSv2 8

1.2.5 Scenarios Summary . 9

1.2.6 Requirements . 12

1.3 Thesis Statement . 21

1.4 Goals and Objectives . 23

1.5 Research Questions . 24

1.6 Scope of the Thesis . 25

1.7 Contributions . 26

1.8 Structure of the Thesis . 27

v

2 Background 28

2.1 Related Work . 29

2.1.1 Illimitable Space System . 29

2.1.2 GIPSY . 35

2.1.3 Forensic Lucid . 36

2.1.4 Toward Multimodal Interaction in Scalable Visual Digital

Evidence Visualization Using Computer Vision Techniques and

ISS . 39

2.1.5 OpenISS depth camera as a near-realtime broadcast service for

performing arts and beyond 42

2.1.6 Gesture Tracking . 42

2.1.7 Vision-Based Gesture Recognition 43

2.1.8 Nielsen Usability Heuristics 43

2.2 Libraries, Tools and Middleware . 44

2.2.1 OpenKinect . 44

2.2.2 PrimeSense . 45

2.2.3 Nuitrack . 48

2.2.4 Robot Operating System (ROS) 50

2.2.5 Processing . 54

2.2.6 SWIG 4.0 . 55

2.2.7 Docker . 58

2.3 Summary . 58

3 Methodology 59

3.1 Solution Overview . 59

3.2 Framework Design Approach . 62

3.2.1 OpenISS Core Framework . 64

3.2.2 OpenISS Gesture Framework 66

3.3 Framework Design and Evaluation Methodology 66

3.3.1 Top-Down and Bottom-Up Approaches 67

vi

3.3.2 Design and Implementation 70

3.3.3 Evaluation . 73

3.4 Summary . 79

4 Framework Design and Instantiation 80

4.1 Framework Design . 80

4.1.1 Data Acquisition . 81

4.1.2 Data Adaptation . 83

4.1.3 Data Delivery . 84

4.1.4 Design Structure and Layers 84

4.2 Framework Instantiations . 94

4.2.1 NiTE2.0 . 95

4.2.2 Nuitrack . 98

4.2.3 ROS . 100

4.2.4 Framework Cross Language Module 104

4.3 Framework Applications . 108

4.3.1 Integrated Sample Application 108

4.3.2 DigiEVISS . 110

4.3.3 Scenario II Application . 118

4.4 Summary . 121

5 Evaluation and Results 122

5.1 Evaluation Testbed Specifications . 122

5.2 Integrated Sample Application as Evaluation Testbed 124

5.3 DigiEVISS . 130

5.4 ISSv2 . 132

5.5 Integrated Sample Application as ROS Client 136

5.6 Test Game Application . 142

5.7 Summary . 146

vii

6 Conclusion and Future Work 148

6.1 Concluding Remarks . 149

6.2 Limitations . 151

6.3 Future Work . 154

6.4 Summary . 155

Bibliography 156

Index 173

Appendix 178

A Docker File 178

viii

List of Figures

1 Vision-based hand gesture recognition [1] 2

2 Motivational scenarios (primary actors) 9

3 Motivation scenarios (secondary actors) 11

4 Coarse abstract overview of this work 23

5 Block diagram of illimitable space system (ISS) [2] 31

6 Conceptual pipeline of illimitable space system (ISS) [2] 32

7 ISSv2 various visual effects performances 34

8 Evidential statement [3] . 37

9 Conceptual and actual nested visualization representation based on ISSv1 40

10 High level architecture of the proposed solution in [4] 41

11 OpenNI2.0 and NiTE2.0 stack . 46

12 OpenNI and NiTE device and driver specific stack 48

13 Nuitrack architecture [5] . 49

14 Nuitrack modules [5] . 49

15 Nuitrack device and driver specific stack 50

16 ROS conceptual architecture levels 51

17 A typical ROS workspace and package structure [6] 52

18 Computation graph level . 53

19 A Processing sketch . 55

20 SWIG architecture . 56

21 SWIG pipeline . 56

22 SWIG Java demo . 57

23 Solution overview . 61

ix

24 Framework development process [7] 63

25 Gesture framework overview [7] . 64

26 OpenISS core and specialized gesture framework 67

27 Domain model . 68

28 Data flow from device to application 81

29 Adapter object adaptation via Composition 83

30 Layered architecture . 86

31 OIGestureTracker UML class diagram 88

32 OpenISS gesture framework kernel in UML 88

33 OpenISS gesture framework enumerations 91

34 OpenISS gesture framework class Hierarchy 94

35 NiTE2.0 instantiation in UML for OpenISS gesture provider hot spot

adapter . 96

36 Nuitrack instantiation in UML for OpenISS gesture provider hot spot

adapter . 101

37 ROS adaptation on publisher/subscriber ends 102

38 ROS OpenISS node and topics graph 103

39 Publisher: OpenISS ROS NiTE2.0 and Nuitrack instantiations . . . 104

40 Subscriber: applications instantiating NiTE2.0 or Nuitrack 105

41 Integrated sample application UML diagram 108

42 Integrated sample application viewer 109

43 3D application [8] (arranging planets with hands and gestures) 111

44 DigiEVISS structure in UML . 112

45 Scenario I: DigiEVISS application 113

46 DigiEVISS application first and second iterations 114

47 DigiEVISS application (tracked hand pointers) 114

48 DigiEVISS application (grabbing a sphere) 115

49 DigiEVISS application (semantic link) 115

50 ISSv2 backends SimpleOpenNI and OpenISS 119

51 ISSv2 application scenario II visual effect 1 and 2 119

x

52 Integrated sample application NiTE2.0 backend gesture recognition . 125

53 Integrated sample application NiTE2.0 backend hand tracking 126

54 Integrated sample application Nuitrack gesture adapter (gestures) . . 127

55 Integrated sample application Nuitrack gesture adapter (hands) . . . 128

56 DigiEVISS . 132

57 Integrated sample application Processing (NiTE2.0) 133

58 Integrated sample application Processing (Nuitrack) 134

59 ISSv2 visual effects via gestures framework 135

60 Master node and OpenISS ROS node publishing data on various topics137

61 Integrated sample application ROS (Nuitrack) gesture adapter 138

62 Integrated sample application ROS (NiTE2.0) gesture adapter 138

63 ROS server/publisher . 141

64 ROS client/subscriber . 142

65 Diff between existing vs updated controls 144

66 Gesture swipe left . 145

67 Gesture swipe up . 146

68 Gesture swipe down . 146

69 Gesture swipe right . 147

xi

List of Tables

1 Scenarios vs. functional requirements 20

2 Scenarios vs. non-functional requirements 20

3 Requirements evaluation classification 77

4 OpenISS gesture framework API overview 84

5 OpenISS gesture framework concrete implementation structure 87

6 ROS OpenISS package . 87

7 Environment hardware specifications 123

8 Middleware, libraries, and tools used 123

9 Depth sensors specifications . 124

10 Integrated sample application (average rendering FPS vs. sensor FPS) 130

11 ISSv2 (average rendering FPS vs. sensor FPS) 136

12 Callbacks-per-second when message queue size is 0 140

13 Callbacks-per-second when message queue size is 1 140

14 Callbacks-per-second when message queue size is 100 140

15 Callbacks-per-second when message queue size is 1000 140

16 ROS overhead . 141

17 Requirements evaluation summary 147

xii

Chapter 1

Introduction

In this chapter we start by providing the reader with a brief overview of the

research domain in Section 1.1. Subsequently, we describe the motivational scenarios

that exemplify our needs in Section 1.2, accompanied by the essential preliminary

background required in Section 1.2.1. Afterwards, we elicit specific functional and

non-functional requirements from these motivational scenarios in Section 1.2.6. Then,

we describe the research problem at hand in Section 1.3. Next, in Section 1.4 we

present the high level objectives of this research. Then, we define our research

questions in Section 1.5 that this work will answer, followed by the scope of this thesis

in Section 1.6. Then, we enumerate the contributions made towards the completion

of this research in Section 1.7. Finally, we outline the structure of the rest of the

dissertation in Section 1.8.

1.1 Research Domain

Human-Computer Interaction (HCI) is a multidisciplinary field of study that focuses

on various aspects of such interaction [9] and Software Engineering is one such

field whose concepts play a vital role in aiding to realize such interaction [10, 11].

Traditionally, a keyboard or a mouse are well-known interaction devices for enabling

humans to provide input. However, these devices have limitations in terms of the

number of degrees of freedom they offer, especially in the context of interacting with

1

3D applications. For example, a mouse that merely provides two degrees of freedom is

clearly not a good fit for 3D applications for proper emulation of three dimensions of

space [12–14]. Interestingly, when it comes to humans interacting amongst themselves,

we make extensive use of non-verbal forms of communication such as hand gestures

along with verbal communication to express ourselves. Thus, it is quite apparent

to desire interacting with the computers using natural communication modes such

as hand gestures. At this point, an intersection of the Computer Vision and the

Human-Computer Interaction domains enable the computers to understand human

hand gestures, via a key approach known as Vision-Based Hand Gesture Recognition

and Hand Tracking and fits better under the subdomain of HCI that is Natural User

Interfaces. This approach requires image acquisition through a camera that can sense

depth, such as the Microsoft Kinect, followed by pre-processing, segmentation, feature

extraction and subsequently, classification of the object of interest that is the human

hand as seen in Figure 1.

Data
Acquisition

Image	Pre-
processing

Segmentation Feature
Extraction

Classification

Figure 1: Vision-based hand gesture recognition [1]

However, irrespective of the source of the depth data, the key idea is to

obtain the depth information along with its corresponding color image to enable

specific applications in computer vision and image processing, including hand gesture

recognition, hand tracking and even object recognition among others. In this context,

depth, broadly scoped, is the distance from the camera to the surface of an object

of interest where each pixel represents the distance from the camera to a seen object

recorded within the depth image [15]. Moreover, authors have shown in [16] that

using simply the depth images, it is possible to classify hand gestures much faster

and with more precision than non-depth-based approaches, which is a crucial detail

for the reader to remember. Thus, we can say that the depth information plays a key

role in enabling hand gesture recognition and hand tracking for natural interaction

in 3D computer applications.

2

Vision-Based Hand Gesture applications can be broadly divided into four main

categories, namely [17]:

• Assistive Technologies and Medical Systems – gestures can be used to control

the distribution of resources in hospitals, interact with medical instrumentation,

control visualization displays, and even help handicapped users as part of their

rehabilitation therapy. One such example is Gestix, a hand tracking device that

allows surgeons to browse MRI images in an operating room [18,19].

• Entertainment – in the video gaming industry, hand gestures enable natural

interaction to enhance user experience. Additionally, various gestures help

emulate real-life sports in video gaming. The Kinect Sensor for Microsoft’s

Xbox 360 is a relevant example of gesture interaction application in the gaming

industry which also triggered a lot of academic research about other related

applications as well [20].

• Crisis Management and Disaster Relief – crisis management systems involve

experts dealing with large swaths of data such as geospatial data, which, when

visualized, require intuitive interaction modes to aid analysis and inferences.

DAVE_G, is one such multimodal and multi-user geographical information

system that supports analysis on geospatial data using gestures [21].

• Human-Robot Interaction – a very trivial example application requiring hand

gestures for human-robot interaction would be simple instructions that resolve

to navigation instructions such as pointing to a direction for mobile robots.

Another concrete example is the work of Yin et al. [22] that uses gestures to

control a hybrid service robot system called HARO-1.

Our work falls under the entertainment and assistive technologies for its specific

use-case applications. In this research work we employ Software Engineering

methodologies and concepts as tools and techniques to enable hand gesture interaction

for different kinds of applications [10, 11]. Thus, the domain in this research work

is an intersection of HCI Engineering and Software Engineering, that is employing

3

software engineering methodology in the HCI domain and its subdomain of Natural

User Interfaces (NUI).

1.2 Motivation

1.2.1 Essential Background

Before we delve into the specifics of this research work, we will begin by introducing

the reader with two individual bodies of work that will be referred to multiple times

from this point onward throughout and are essential for the reader to be aware of

before progressing further through this dissertation. Although, they are elaborated

in detail in Chapter 2, the goal is to provide the reader with a necessary preliminary

overview of the context.

Firstly, the Illimitable Space System (ISS), is a real-time interactive configurable

toolbox especially for artists, used to create visual effects, musical visualizations and,

interactive 3D documentary film based on multimodal user inputs such as voice or

gestures along with the corresponding image mapping [23], that was first proposed by

Dr. Miao Song in her doctoral dissertation [24]. Over several iterations, the ISS-as-

an-application has evolved from a design perspective in the past few years, and is

currently progressing towards having the OpenISS [25] (Chapter 2, Section 2.1.1.4)

as its open source backend core to prospectively support its various functional and

non-functional requirements [2], for instance, FR2: Interact using Motion and

Gesture [2], one of the significant functional requirement for the ISSv2 (the second

iteration of the ISS) that we will address in this work from a gesture perspective

only, and, address a few limitations of the ISSv1 and ISSv2 application instances

mentioned later (Chapter 2, Section 2.1.1.1 and Section 2.1.1.2). Now, there were

two primary motivations behind creating OpenISS as an open source core for any

version of the ISS:

• Open Source code allows the open source community to participate in the

development process crowdsourcing the contributions and wider adoption.

4

• A core allows parts of the system to be switched out at will without having to

modify it all at once keeping the applications functioning.

The first iteration of the Illimitable Space System or as we call it, is the ISSv1

(which is abandoned and no longer maintained presently), was built using XNA

and C#, whereas the current version, the ISSv2 is built using the Processing

environment [26]. Now, the ISSv1 and ISSv2 were limited to the Microsoft Kinect

sensor for depth and image data and, the ISSv3 is specifically for AR/VR applications

in Unity3D. However, further elaboration on the Illimitable Space System and its

versions namely, ISSv1, ISSv2, and ISSv3, can be found in detail in Chapter 2,

Section 2.1.1.1, Section 2.1.1.2, and, Section 2.1.1.3 respectively.

Secondly, is Forensic Lucid, an intensional programming/specification dialect

of the Lucid declarative programming language [3, 27]. Forensic Lucid enables

cybercrime investigators to reason about computer forensic cases by expressing in a

program form the encoding of evidence, witness stories, and evidential statements,

that can be tested against claims to see if there is a possible sequence or multiple

sequences of events that explain a given story. Presently, a forensic investigator

would require to write such a Forensic Lucid encoded program manually. A key

interesting takeaway for the reader is that every Forensic Lucid program is a

data-flow program that can be visually composed and illustrated as a 2D data-

flow graph [27] where the data flowing through the graph can be multidimensional.

In our related work [4] we explore an idea of a scalable management, visualization,

and evaluation of digital evidence in the context of cybercrime investigation with

extensions to the interactive 3D documentary subsystem of the Illimitable Space

System. We further elaborate on this related work in the next chapter in Section 2.1.4.

However, this work aims towards the realization of the aforementioned idea but only

from a gesture perspective.

Although, we further expand on Forensic Lucid in Section 2.1.3 in, but, at the

same time we would like to make the reader aware of the fact that we will only expose

Forensic Lucid to the extent that is strictly within the context and scope of this

thesis.

5

1.2.2 Motivational Scenarios

We came up with the following primary scenarios that are based on actual and

potential real-life use-cases and help us to elicit various functional and non-functional

requirements for our solution to enable a common platform that can cater to these

corresponding applications and enable real-time hand gesture interaction for specific

yet diverse 3D applications.

Now, partially based on our proposed overall solution in our related work [4]

(see Figure 10) that poses a much larger problem, which is further discussed in

detail in Section 2.1.4, we describe our first scenario. The primary actor, a forensic

investigator (hereafter referred to as F) wants to use Forensic Lucid to encode

digital evidence in a Forensic Lucid program’s context, e.g., Listing 2.1, creating

observation sequences via semantic linkage between various digital evidences objects.

Let’s assume these objects are represented as 3D spherical models that can be

arranged in a 3D application space using hand gestures. The actor, F will arrange

these digital evidence objects in a desired observation sequence and eventually, an

evidential statement to structure a 3D visual representation of a partial data-flow

graph of digital evidence objects by natural interaction via hand gestures rather than

manually encoding the digital evidence into a Forensic Lucid program using a

keyboard. The digital evidence objects are assumed to have been preloaded into the

serious game environment from external sources.

1.2.3 Scenario I: Manipulation of digital evidence objects in a

3D warehouse-like application by a forensic investigator

using hand gestures

In this scenario, the forensic investigator F needs to interact with the preloaded

digital evidence objects in an immersive 3D warehouse-like game application named

DigiEVISS using hand gestures and manipulate them to create a 3D visual

representation of the 2D data-flow graph illustrating a Forensic Lucid encoded

program, in the following steps:

6

1. Select up to two digital evidence objects (known as “observations” in Forensic

Lucid parlance), one at a time, via a gesture, and hold each one with each hand

so that they can be naturally moved around with the hands that are holding

these objects to be arranged in a desired sequence within the virtual 3D space.

2. Then create a semantic link (a time successor relationship) between these

selected objects by bringing them closer and placing them in a desired order

within DigiEVISS. This is required because Forensic Lucid observation

sequence evidential context is a chronological ordered collection of observations.

3. Once the investigator is done creating an observation sequence with those

semantically linked digital evidence objects, generate a Forensic Lucid

encoded program including the evidential statement and compile it with

the corresponding compiler within the General Intensional Program Compiler

(GIPC) framework.

4. Repeat the procedure for as many observation sequences as necessary to compile

the entire evidential statement.

Given that every Forensic Lucid program can be visually illustrated as a

2D data-flow graph, the idea is to leverage this attribute and extend it to a 3D

visual representation of these data-flow graphs with digital evidence context objects,

which further are a visual representation of the Forensic Lucid encoded context

as if it were manually written. Therefore, the investigator is creating a 3D visual

representation of a partial data-flow graph with these manipulations to digital

evidence objects in DigiEVISS. Note that while an entire Forensic Lucid program

can be represented as a data-flow graph, this work lays groundwork with the evidential

contexts of observation sequences only and is a crucial detail to remember.

Next, we exemplify our another need in a scenario to alleviate the limitations of

the ISSv2, and enable the gesture portion of the specific functional requirements,

such as, FR2: Interact using Motion and Gesture in [2] (mentioned above in

Section 1.2.1) for performance visualization, a mode in which once the performer

7

walks into the depth sensor viewing volume range, it captures gestures and postures

of the performer. The Illimitable Space System then processes the motion and gesture

data according to the depth data, gesture dictionary and/or posture dictionary and

generates real-time visual feedback (where gesture and posture dictionaries are a set

of pre-recognized gestures and postures with their corresponding feedback actions).

In this scenario, the primary actor, an artist (hereafter referred to as A) interacts with

the ISSv2 for performance visualization in real-time using hand gestures and uses

the existing viusal effects that are currently powered with the existing SimpleOpenNI

backend, which is relatively old and is limited only to the Microsoft Kinect hardware,

and exhibits quite a small gesture dictionary consisting of only three gestures out

of which only two can be used effectively. Now A, wants to use a camera other

than the Microsoft Kinect v1 or Kinect v2, simply, because these models have been

discontinued by Microsoft itself and relatively newer devices have emrged that provide

better accuracy, resolution, and response. As mentioned before, A has some existing

visual effects that were created for the ISSv2 earlier that should ideally work with

the desired newer devices and their drivers without much modification to ISSv2

itself. Additionally, A will have access to newer devices and gestures other than the

Microsoft Kinect and SimpleOpenNI respectively, A will continuously need to create

new visual effects that could take advantage of the newer devices’ capabilities and

wider gesture dictionaries to the full extent.

1.2.4 Scenario II: Real time visual effects for performance

visualization on stage by an artist using hand gestures

in ISSv2

In this scenario, the artist A requires real-time hand gesture recognition and hand

tracking via a flexible solution that will enable A to use newer devices (for better

quality and runtime performance) and assist in not only creating new visual effects,

but also accommodate the existing ones with newer devices as well, and perform the

following tasks:

8

1. First, select OpenISS as a backend instance “driver” to instantiate a desired

middleware/library that provides real-time hand gesture recognition, hand

tracking and necessary depth information functionalities via our solution, and,

this is a configurable selection.

2. Then, execute and interact with the existing ISSv2 performing arts applications

for performance visualization using hand gesture interaction provided via our

solution within the OpenISS backend as per usual with other backends such as

the SimpleOpenNI backend mentioned before with limited gesture interaction.

3. Or, create new ISSv2 performing arts application profiles for performance

visualizations using completely new hand gestures previously not possible

via our solution that must provide an easy to use Application Programming

Interface (API) for the computation artists to do so.

1.2.5 Scenarios Summary

These scenarios, combined for convenience, are illustrated visually in Figure 2 since

the work itself is about providing a common solution to both these scenarios. Thus,

Forensic Lucid
Investigator

Artist

Select
digital evidence

objects

Semantically
link selected

digital evidence
objects

Interact using
Motion & Gesture

Create new
visual effects

Hands

Forensic Lucid DigiEVISS
Application

ISSv2 Performing
Arts Application

OpenISS

Depth

Gestures

Select OpenISS
backend

Generate &
Compile Forensic

Lucid program

Figure 2: Motivational scenarios (primary actors)

so far, we described our scenarios from the perspective of our primary actors. Moving

on, we further discuss a situation where either of our primary actors, the forensic

investigator F or the artist A, may wish to extend their respective 3D applications

for the following reasons:

9

1. The applications are using an algorithm X for real-time hand gesture recognition

and hand tracking provided by some library/middleware. Where, X provides a

total of three gestures in its gesture dictionary that it is capable of recognizing

and the applications will have assigned those for desired actions.

2. Now, there is a newer algorithm Y for real-time hand gesture recognition and

hand tracking, that is available by a newer library/middleware. However, Y

provides a total of five gestures in its gesture dictionary.

3. Therefore, either of our actors wish to leverage this newer provider of gesture

recognition capabilities, Y , with more gestures for enhancing their applications

by adding more actions via these extra gestures.

4. Now, it is also possible that our actors might want a completely new application

that uses Y for hand gesture recognition and hand tracking for reasons such as

usability or simply the need to rewrite them based on their experience with the

existing one.

Thus, our secondary actor, a developer (hereafter referred to as D), can help

extend our solution to accommodate prospective solutions and/or create newer

applications for our primary actors thus enabling comparisons among different

middleware in order to make informed design decisions. As a result, our solution itself

must enable a developer to extend it with a minimum effort as well as in a concise

manner in order to maintain the program flow in these applications as unchanged and

ensure that there is uniformity among the applications in terms of the API. This is

a challenge that our work must address in order to enable easy extensibility and a

ease-of-use of its API in an SDK-like manner.

Now that we have discussed the need of prospective solutions that our primary

actors wish to leverage by asking a secondary actor to extend our solution and/or

create new applications using it. At the same time, it will enable the primary actor

to ask for a comparison among such prospective solutions so as to choose the most

optimal one specific to their application needs.

10

Developer

Create & Extend
ISSv2

Applications

Provide depth
& color streams

Provide gesture
recognition

Hands

OpenISS Applications NUI MiddlewaresOpenISS

Depth

Gestures

Provide hand tracking

NiTE 2.0

Nuitrack

Robot Operating System

Compare different
libraries or

middlewares

Enabling OpenISS
as a backend

Figure 3: Motivation scenarios (secondary actors)

In short, our solution must enable comparisons among these different gesture

providers, so that our secondary actor, the developer, can help the primary

actor to analyze and make recommendations based on comparisons of various

metrics/requirements (frame rate, resolutions, dictionary sizes, precision, etc.), and

support the secondary actor to make informed design decisions when extending our

solution or choosing the optimal gesture middleware/library for a specific application.

The above situation can be described as follows:

1. Primary actor (A or F) finds two newer libraries/middleware P and Q, that

provide gesture dictionaries of, e.g., 4 and 6 gestures.

2. Primary actor asks the secondary actor the developer (D) to demonstrate the

comparison between P and Q.

3. Based on application specific metrics, the primary actor decides to go with

either P or Q depending upon the comparison results.

Thus, it is yet another challenge to enable such comparisons via our solution to

support the users to make informed decisions for specific use cases within the context

of this research work.

11

1.2.6 Requirements

Now, the motivational scenarios mentioned in Section 1.2.2 enable us to elicit specific

functional and non-functional requirements that we have listed further below in

this section. These requirements will necessarily describe the solution itself, its

functionality and the capacity in which it must provide aforementioned functionality.

The majority of these requirements are derived from the related work referenced

in [2, 4] and the corresponding applications.

1.2.6.1 Functional Requirements

Definition. Functional Requirements are the ones that describe the behavior of the

software system; thus, a set of functionalities that a software system can provide.

The motivational scenarios described earlier have one thing in common, they both

require real-time hand gesture recognition and hand tracking for their specific use-

cases described as scenarios (thus, forming the basis for the requirements).

1. FR1: The system shall provide real-time hand gesture recognition.

Our very first functional requirement is to provide real-time hand gesture

recognition functionality. In our first scenario, the hand gestures represent

various actions that enable the investigator to interact with the digital evidence

objects in a 3D application and perform manipulations, whereas in our second

scenario, an artist interacts with the application for real-time visual effects using

hand gestures for a live on stage performance. For instance, a specific gesture

may trigger a pick or grab action to enable the investigator to manipulate

a visual digital evidence object representation a 3D immersive application.

Similarly, for the artist, certain gestures can trigger visual effects that enhance

on stage performances.

2. FR2: The system shall provide real-time hand tracking.

As gestures merely trigger an action, to continue the action we need hand

tracking data in terms of hand positions in 3D coordinates for their use in 3D

12

applications. For example, the investigator interacts with any two visual digital

evidence objects with their hands and, then, in order to create a semantic link

among them, they must bring the objects closer to one another. Likewise, an

artist might need hand tracking to showcase a visual effect in which a trail of

stars follow the motion of the hand.

3. FR3: The system shall provide real-time depth information of user’s

hands.

As mentioned before in Section 1.1, depth data is adequate for detection and

recognition of hand gestures and is relatively faster than non-depth approaches

for gesture detection and recognition. Therefore, a real-time stream of depth

frames containing essential depth data as captured by the depth sensing device

must be made available so that relevant information can be extracted from

these frames by middleware like NiTE2.0 or Nuitrack. Normally, depth frames

would be provided by their respective device drivers provided by the device

manufacturers or SDK such as Microsoft Kinect for Windows SDK [28].

However, some open source drivers exist as well for commonly used depth sensors

such as the Microsoft Kinect, explained later in the next chapter in Section 2.2.

4. FR4: The system shall serve as an easy-to-switch-to backend with

the existing ISSv2 pipeline.

As mentioned previously our solution must be sustainable with the current

ISSv2, which essentially means that although ISSv2 currently has limited hand

gesture recognition specific to the Microsoft Kinect hardware, it still has diverse

performing arts applications, which, ideally, should behave the same way with

minimal modifications if necessary, once our solution addresses such limitations

by replacing existing gesture providing backend with its own. For instance, if

a newer device such as the Intel RealSense D435 is being used instead of the

Microsoft Kinect, the behavior of the application must at a minimum remain

unchanged.

13

In other words, we must have a solution to serve as a backend instance that

serves as a gesture data provider for gesture-recognition algorithms, tracking

algorithms, multiple device encapsulation and sensor related data drivers

without affecting the front-end application that is the application side of the

Illimitable Space System that puts the show on the stage with visualizations

and effects for performing arts.

All these requirements represent a subset of the objectives of this research work along

with the non-functional requirements that are discussed in the next section.

1.2.6.2 Non-Functional Requirements

Definition. Non-functional requirements are the ones that describe the quality

standards expected to be met by the software, thus, how adequately the software can

provide the functionalities desired to the user.

1. NFR1: Real-time Response

Definition. The system should be able to process the frames at a speed that is

at least 10 frames-per-second (FPS).

Our very first non-functional requirement, inarguably, is Real-time Response

with a known, bearable latency. However, to precisely define this bearable

latency, the minimum threshold must be at least 10 FPS (which was an

acceptable output frame rate for some ISSv2 visual effects in shows), as the

human vision can minimally perceive it as motion. However, it is also plausible

that a sensitive response may make the application too prone to errors and

often missing targets. Now, broadly, there are four major stages before output

frames can be seen visualized via a desired mode for which we require real-time

response in terms of frame rate (also, see Figure 6), namely:

• Motion or Gesture Capture

• Motion or Gesture Interpretation

14

• Visual Effects Generation

• Visual Effects Rendering

This essentially means that irrespective of the input frame rate, the output

frame rate after all these stages must be minimally 10 FPS for a minimal

motion perception. However we could say, roughly, our scenario in Section 1.2.3

strictly requires real-time response from the proposed system whereas our

scenario in Section 1.2.4 can accommodate the above mentioned latency. This is

simply because of the nature of both applications are relatively different but it is

still desirable to have real-time response for both these scenarios. Where, non-

real-time scenarios include processing of pre-recorded video footage to extract

and record gesture frames and hand position for possible later use in other

applications as well, but this side of the project is not the focus of this thesis

presently.

2. NFR2: API Usability

Definition. The ability of an Application Programming Interface provided by a

system to be easy to use and learn by developers that wish to implement it [29,

30].

Now, one of the design goals for ISSv2 is to enable real artists to be able

to develop performance visualization applications with a minimal technical

background. Additionally, our motivational scenarios clearly depict the need for

an extensible solution, so it is strongly desirable to make that process as easy as

possible. Therefore, keeping in mind this constraint our solution must provide

a simpler abstraction as compared to existing solutions such as NiTE2.0 and

Nuitrack. All our actors, whether primary or secondary come from completely

different domains, but we can broadly classify them as programmers and non-

programmers. As a result, both these factors significantly affect our solution’s

API. Moreover, designing APIs with their users in mind can result in fewer

errors, along with greater efficiency, effectiveness, and security [29].

15

An Application Programming Interface (API) is a logical interface to a software

component that hides the internal details required to implement it. The notion

of a good abstraction is relatively subjective and there can be multiple ways of

abstracting a logical component [31]. This is yet another challenge that we must

address in this work. However, we do emphasize that although this usability

is relatively different from end-user interface usability, which requires extensive

user testing, it can still be evaluated with Nielsen’s usability heuristics [29,32].

Therefore, by following a human-centric design approach API designers can

make APIs easier to use by developers [29]. Thus, it is more of a usability criteria

for developers who wish to use our solution as an SDK (software development

kit) and extend it for their own specific use-cases.

In this research work, we design our API on preexisting applications and APIs

provided by middleware such as ISSv2 backends and middleware such as

NiTE2.0. Moreover, the latter is well received by the community and relatively

small and simple. So, we will demonstrate a simpler abstraction of a typical

gesture recognition API via our solution.

3. NFR3: Extensibility

Definition. The ability of a system to accommodate prospective solutions easily.

We have already mentioned before that there will always be room for better

solutions as technology or academic research progresses and recent integration

of depth cameras into mobile devices will certainly push efforts into improving

upon existing solutions even further. This means, that there can be prospective

technology solutions, which will outperform current solutions or even provide

wider range of gestures (gesture dictionary) that can be leveraged in both

our use cases and beyond. Normally, a larger gesture dictionary may

improve interaction possibilities, but it still needs to be constrained for specific

application types and intuitive enough for the users to be able to recall and use

the gestures easily that matches their mental models. Henceforth, the solution

16

requirement to be extensible and accommodate such potential additions from

the emerging technology and middleware APIs easily.

4. NFR4: Interoperability

Definition. The ability of a system to inter-operate with other software systems

and share meaningful data.

In Section 1.3, we mention that we will leverage the existing solutions available

in the form of middleware, libraries or even meta-operating systems that provide

hand gesture recognition capabilities or prerequisite computer vision pipelines.

One such meta-operating system is the Robot Operating System, abbreviated as

ROS [33]. In our recent work titled OpenISS depth camera as a near-real-time

broadcast service for performing arts and beyond [34] we exposed the Microsoft

Kinect depth camera streams as REST1 and SOAP2 web services. There, one of

our original future work items mentioned ROS as one of the potential candidates

for exposing depth cameras as a service that various clients can subscribe

to because ROS has a diverse array of community-contributed packages that

can interface with various motion capture systems including state-of the art

technology providers like Vicon Motion Capture Systems [35].

ROS is originally a robotics computer vision and sensor middleware, it is a

complex yet mature system that provides ready to use tools and stacks for

writing intercommunicating robotics software. It has a peer-to-peer architecture

to pass messages between different processes called nodes that are typically

distributed across two or more machines. We talk about its architecture in

detail in Section 2.2.4, Chapter 2. It will suffice for now to say, the ROS

community provides a few ROS packages, which can interface with different

depth devices, but none of them provides real-time hand gesture and hand

recognition functionality. However, the point is that since as ROS expands our

reach over to more devices, we certainly want to leverage its platform.
1Representation State Transfer
2Simple Object Access Protocol

17

More importantly, our solution requires depth information and ROS can provide

it to us from the same depth cameras we use; however, it is another problem

to demonstrate such interoperability with an external system such as ROS by

acting as a client to it. It is crucial to our solution as we want to be able to use

different kinds of depth data providers based on specific needs that may arise

in the larger scale deployments of ISSv2 and if ROS can be such a source, we

need it to be a part of our solution. However, we do expect some performance

overhead using ROS due to (de)marshalling and network delays, on which we

elaborate in Chapter 3 and later measure it in Chapter 5.

5. NFR5: Structural Scalability

Definition. The ability of a system to expand in a chosen dimension without

major modifications to its architecture.

With respect to both our scenarios we can easily imagine a situation where a

need may arise to decouple the sensor device and the system and the actors. For

example, if the depth sensing cameras can be mounted on drones overlooking

artists that are performing on stage and using the ISSv2 applications then the

data must be available over a network. Similarly, an expert Forensic Lucid

forensic investigator may be called upon remotely, to look over sensitive data

that must not leave its premises so as to bring the application to the digital

evidence storage rather than the other way around. Thus, we want our solution

to enable the investigator to still send gesture-interaction data over a network,

although we do not perform any setup to test such a scenario including drones

or a forensic investigator rather we will focus on first enabling it to test its

feasibility.

Therefore, by using ROS the sensor device can be physically distant from the

system, in othere words, by leveraging ROS’s network stack we can scale the

distance between the source and destination of the motion capture aka mocap

18

data. At the same time, a system has in general a physical limit of the depth

sensing devices it can connect to, whereas using the mature networking stack

of ROS itself we can potentially scale the system in terms of an array of devices

that can be connected over the ROS network.

Moreover, we merely consider this as a positive side effect of our previous

requirement, that is, interoperability with ROS (see NFR4). Although, we do

not evaluate these scenarios of multiple devices over ROS rather one in a simple

two machines client-server or publisher-subscriber fashion but we feel confident

enough to mention them for the reader to be aware of the functionalities that can

be leveraged in the near future in case the needs arise to do so. Henceforth, our

structural requirement to decouple the sensor and the end user application and

allow it to select a desired/available device without affecting the application.

6. NFR6: Device Adaptability

Definition. The ability of a system to switch between devices only minimally

affecting the end user application.

We also mentioned earlier that we need our solution to support as many depth

sensing devices as possible, so we need our solution to enable such device

adaptability via a minimal effort from a design point of view [36] with of course

affecting the end-user application minimally by exhibiting a plug-and-play feel.

7. NFR7: Cross-Platform

Definition. The ability of a system to function on more than one platform.

In Section 1.2.2, although both scenarios are specific applications, but one

cannot rule out the possibility of the end users with different platforms.

Therefore, we need our solution to minimally support the Linux distributions

and Unix based MacOS operating systems, where majority of our target

applications run. Some applications, namely games, and others, also require

Windows support. Thus, our proposed solution must be cross-platform.

19

8. NFR8: Cross-Language

Definition. The ability of a system to share data from its implementation

language to a different programming language application.

For real-time constraints and existing middleware platforms, we will use the

C++ programming language as our implementation language by default.

Whereas, as mentioned earlier, ISSv2 is primarily Java-based and so are its

existing visual effects. Thus, we need our solution to bridge the gap between

with a wrapper and demonstrate data sharing from C++ to Java and at the

same time making sure that the real-time aspect remains minimally affected.

We can summarize the above functional and non-functional requirements along with

the scenarios in Section 1.2.3 and Section 1.2.4 from which they were elicited in a

tabular form as seen in Table 1 and Table 2 respectively.

Table 1: Scenarios vs. functional requirements
Scenarios Functional Requirements

I FR1, FR2
II FR1, FR2, FR3, FR4

Table 2: Scenarios vs. non-functional requirements
Scenarios Non-Functional Requirements

I NFR2, NFR3, NFR5, NFR6, NFR7
II NFR1,NFR2,NFR3, NFR4, NFR5, NFR6, NFR7, NFR8

20

1.3 Thesis Statement

We research and develop a common, flexible and extensible solution that exhibits

real-time hand gesture recognition and hand tracking data provider functionality,

housed within the OpenISS core platform, to enable specific, yet, diverse applications

from a natural user interaction perspective for the Illimitable Space System itself.

These applications were illustrated before in the form of scenarios in Section 1.2.2.

Now, the reader must wonder that we just mentioned in the above section that

the Illimitable Space System was already used to create real-time visual effects and

musical visualizations based on inputs such as voice or gestures on stage.

So, why do we still want to provide our solution for real-time hand

gesture interaction and hand tracking?

When the Illimitable Space System evolved from ISSv1 to ISSv2, from a design

perspective (although it indeed was an improvement over its previous versions) by

changing technologies it sacrificed or degraded some of its functionalities such as

Hand Gesture Recognition and Green Screen to name a few [2]. At the same time, as

the Vision-Based Hand Gesture Recognition and Hand Tracking domain has evolved

due to its numerous applications in various fields, newer depth sensing devices and

different open source libraries have started appearing, which raised the need for a

flexible and extensible solution that can accommodate all these prospective additions

for the ISSv2 itself depending on the setup and sustainable evolution of the system

and its versions.

Currently, the ISSv2 provides very limited hand gesture recognition, only specific

to the Microsoft Kinect devices and their drivers, but, there are other recent depth

sensing devices available in the market that we certainly need to leverage, such as the

Intel RealSense D435 camera, that provides better accuracy and is still in production

unlike the Microsoft Kinect v1 and Kinect v2. However, it is crucial and yet another

challenge for these adoptions to be sustainable, that is, keeping the compatibility with

current devices and gesture-providing algorithms intact while enabling newer devices

and gesture providing algorithms.

21

This is where OpenISS plays its role as a flexible and extensible core component

for the Illimitable Space System, by allowing itself to act as a backend, just like

the first SimpleOpenNI [37] backend for the ISSv2, which was tightly coupled with

main pipeline, among others and is currently providing the aforementioned limited

hand gesture recognition and hand tracking functionality specific to the Microsoft

Kinect in the ISSv2 using outdated drivers and a limited gestures dictionary. In this

context, backend means the underlying components of the ISSv2 that are responsible

for providing certain computer vision pipeline functionality that the ISSv2 leverages

for real-time performance visualization on stage. Henceforth, through an OpenISS

instance, we will support the ISSv2, as a more flexible, modern, and sustainable

backend.

So, this research work is not about providing a novel Vision-Based Hand Gesture

Recognition and Hand Tracking algorithm, or an improvement, or an aggregation of

existing ones. Rather, we will leverage the existing solutions available in the form of

middleware such as NiTE2.0 and Nuitrack, or even meta-operating systems such as

ROS to provide real-time hand gesture recognition and hand tracking functionalities,

and consume the essential data structures that these middleware provide and adapt

them in a uniform manner via our common platform that is flexible and extensible

to enable real-time natural interaction from a gesture point of view in diverse 2D

or 3D applications. Thus, this work provides and abstract software model to enable

such applications. We demonstrate these capacities by developing a solution usable

for the implementation of ISSv2’s backend requirements, as well as enabling a

usable platform for a forensic investigator to use hand gestures to interactively create

observation sequences and introduce semantic links between digital evidence objects

and encode them in a Forensic Lucid program as elaborated further. The high-level

abstraction from a hand gesture interaction perspective of our work is illustrated in

Figure 4. The two specific motivational scenarios exemplify our needs, elaborated in

detail in Section 1.2.3 and Section 1.2.4, along with the reasoning for their relationship

with the needs created by our previous works mentioned in Section 2.1 fit into

this architecture. These scenarios directly fall into the Vision-Based Hand Gesture

22

Actors

OpenISS
Core

Hand-
Gesture

Interaction

ISS

Gesture	
Applications

Viewers

Forensic	LUCID
DigiEVISS

Application

ISSv2	Performing
Arts

Application

Figure 4: Coarse abstract overview of this work

application categories Assistive Technologies and Entertainment as mentioned in

Section 1.1. We then evaluate our solution to demonstrate that it can enable hand

gesture interaction for our scenarios and requirements with real-time response.

1.4 Goals and Objectives

Now that we have elicited the functional and non-functional requirements in

Section 1.2.6, from the motivational scenarios in Section 1.2.2, we will proceed

to define our end goal and the objectives that we must meet to achieve our end

goal. Simply put, we want to provide a common, flexible and extensible solution

that enables real-time hand gesture interaction for two different ISSv2 and forensic

evidence management in a 3D warehouse-like application:

• To enable a forensic investigator to manipulate digital evidence objects using

hand gestures to create observation sequences and semantic links using hand

gestures in DigiEVISS.

• To enable hand gesture interaction functionality for ISSv2 via a flexible,

extensible and device adaptable solution that is real-time, cross-language and

cross-platform, minimally affecting existing infrastructure of the ISSv2 itself

through the OpenISS core for performance visualization and performing arts.

23

Our objectives are essentially to fulfill and evaluate our functional and non-

functional requirements in Section 1.2.6 and the end goal is to enable both our

scenarios mentioned in Section 1.2 via a common, flexible and extensible solution.

1.5 Research Questions

We pose the following research questions that we must answer in this research work

to corroborate our objective and requirements. These research questions drive our

evaluation scenarios in Chapter 5 as a proof of concept to demonstrate the work done

in order to realize our requirements.

• Can we design a general extensible solution that meets all our stated

requirements and enable us to realize both of our motivation scenarios described

in Section 1.2.2?

• Can we enable comparisons among different gesture libraries or middleware via

our solution to make recommendations regarding which gesture provider suits

which application type?

• Specifically, which gesture library or middleware is better suited for Motivation

Scenario 1, in Section 1.2.3?

• Specifically, which gesture library or middleware is better suited for Motivation

Scenario 2, in Section 1.2.4?

• How much overhead does our solution and ROS introduce to the system?

24

1.6 Scope of the Thesis

In this section, we will describe the boundaries of this research work. We primarily

focus on providing a common solution for our two motivation scenarios mentioned

in Section 1.2.2. Although, we provide qualitative and quantitative analysis from

a functional and non-functional point of view, we do not perform any meaningful

formal end-user usability evaluation specifically with an actual forensic investigator

or a dance show in a controlled environment, which we defer to the future work.

Now, specifically for API Usability, see NFR2, we also do not perform any formal

user evaluation with a developer rather we design our API keeping in mind a subset

of Nielsen’s heuristics [32] applicable to our work to guide our design to inherently

cater to these usability heuristics but for APIs [29].

Despite the fact that there are other open source and proprietary middleware,

libraries etc. available that provide rich features like gesture recognition, hand

tracking and, even individual fingers tracking such as Leap Motion and OpenPose,

we compare only NiTE2.0, Nuitrack, and then, both of these over the ROS middleware

as depth and gesture information providers for our solution.

Similarly, there is a wide array of depth sensors or cameras that provide depth

data crucial for gesture recognition, hand tracking, skeleton tracking and other such

related applications. We have performed limited testing with available devices such as

the Microsoft Kinect v1, Kinect v2 and Intel RealSense D435. However, this definitely

must not affect the adaptability of our solution.

Finally, we will perform limited testing of the service side of our solution via ROS

between two machines only, where the first is acting as a server or data publisher

while the second acting as a client or data subscriber to experiment and calculate the

overhead introduced by ROS communication infrastructure. However, we will not

test multiple devices or drones simultaneously with the ROS for a single application.

25

1.7 Contributions

In this section we list the major contributions made in this research work. These

contributions directly cater to the requirements and objectives defined previously in

Section 1.2.6 and Section 1.4 and related supporting work.

1. We provide a common solution that provides functionalities such as real-time

hand gesture recognition, detection and hand tracking for specific, yet, diverse

applications that require natural interaction via hand gestures.

2. We provide a common solution that can be easily extended to accommodate

prospective hand gesture recognition algorithms/libraries/middleware that may

outperform the current ones in terms of advanced gestures, diverse gesture

dictionaries or faster and efficient vision based recognition and detection of

gestures.

3. We provide a common solution that provides a high-level abstraction for

complex tasks and facilitates an easy understanding for creating diverse

applications specifically for natural interactions via hand gestures.

4. We provide a common solution that enables interoperability with a mature and

powerful meta-operating system ROS or REST services and enables decoupling

of the depth sensing devices from the end-user application, if required.

5. We provide an integrated sample application that demonstrates various

functional and non-functional aspects of our solution and at the same time

acting as a significant resource on how to use our solution to create applications

that require natural interaction with hand gestures.

6. We provide a ROS package of our solution itself to the open source community

to use it to test and create hand gesture interaction applications.

7. This work is the first to enable Nuitrack in the Processing environment.

26

8. Related publications:

• Toward Multimodal Interaction in Scalable Visual Digital Evidence

Visualization Using Computer Vision Techniques and ISS [4].

• ISSv2 and OpenISS distributed system for real-time interaction for

performing arts. [38].

• OpenISS depth camera as a near-real-time broadcast service for performing

arts and beyond [34].

9. We provide a Docker image to free the end user from the hassle of deployment

of our solution and associated preliminary deployment setup.

10. Demand-Driven SOA Simulation Platform Based on GIPSY for Context-Based

Brokerage [39].

1.8 Structure of the Thesis

The forthcoming Chapter 2 provides the required background in detail in the context

of this research work. Then, in Chapter 3 we describe the approaches applied to

realize and evaluate our solution to the problems stated in the problem statement

and fulfill our various functional and non-functional requirements. Subsequently, the

architecture and design details along with the implementation details are presented

throughout Chapter 4. Lastly, in Chapter 5 and Chapter 6 we evaluate the work done,

discuss the results and limitations of our design and implementation and conclude.

27

Chapter 2

Background

In this chapter we will discuss essential foundational resources such as research works,

texts, tools, technologies and concepts that helped this work take shape. It is

necessary to mention the works that jointly create the need for this follow-up research

work [46].

Firstly, Serguei Mokhov’s Ph.D. thesis titled Intensional Cyberforensics [3], that

presents Forensic Lucid, a dialect of the Lucid programming language that

uses the intensional programming paradigm to formally model and implement a

cyberforensics investigation process including digital evidence with backtracing of

event reconstruction and so forth explained further in Section 2.1.3. Now, on

top of this, we explore a scalable management, visualization, and evaluation of

digital evidence in the context for cybercrime investigations to enhance Forensic

Lucid language composition and interaction from a usability perspective in our work

presented in [4] (see Section 2.1.4).

Secondly, to fulfill the functional requirement (FR2: Interact using Motion

and Gesture) of the current version of Illimitable Space System that is the ISSv2 [2]

that we will address in this work from a gesture perspective only as mentioned briefly

in the previous chapter in Section 1.2.1. At the same time, a partial requirement

of this research work to interface with ROS and leverage its functionality originally

stems from our other work presented in [34] (see Section 2.1.5). Nevertheless, recent

preceding OpenISS works, on person re-identification [47] by Haotao Lai and

28

the facial recognition framework [48] by Yiran Shen play an important role in

shaping up this work as well and will eventually sit adjacent to these preceding works

in a symbiotic configurable environment. Both these works laid some groundwork

such as device abstraction module in parallel to which we will build our solution.

However, the reader must note that all of these related works have already been

introduced except the last two, or atleast mentioned in the previous chapter in sections

such as Section 1.2.1, Section 1.2.2 and Section 1.2.6 but, elaborated in detail in this

chapter further in their respective subsections under Section 2.1.

Last but not the least, works that provided primary insights for writing style

strictly include Yi Ji’s work titled Scalability Evaluation of the GIPSY

Runtime System [49] and Alexander Simard’s thesis titled A Framework for

Interoperability Across Heterogeneous Service Description Models [50].

2.1 Related Work

In this part of this chapter, we elaborate all the related works that directly influence

this research work including the ones briefly mentioned in the above paragraph. We

successively discuss various previously mentioned works in depth in the upcoming

sections. The forthcoming sections will provide a relatively complete picture of how

these different works fit together however strictly in context to this research work.

2.1.1 Illimitable Space System

The Illimitable Space System, as mentioned briefly in the Chapter 1, page 1, is the

main source of our functional and non-functional requirements for this work. It is

designed to be a flexible, multi-modal, real-time, interactive, and configurable artists’

toolbox used to create music visualizations, visual effects and interactive documentary

film based on the inputs from users such as gestures, voice, motion, etc. The goal

of the Illimitable Space System is to enhance the interaction between actors and

graphics so that it is all projected as one integrated piece. It is a multidisciplinary

project with contributors from computer science, software engineering, computation

29

and media arts, and design. Moreover, Illimitable Space System and now its open

source backend core OpenISS [25] rely on computer vision techniques and machine

learning provided by OpenCV [51] and MARF [52], motion capture libraries for the

Microsoft Kinect depth cameras and others. It additionally includes sound control,

input from voice and music, and augmented and virtual reality components to co-

create either augmented performance or have an installation or film, or use as an

education tool for artists or children [23,53,54].

The functionality of the system generally includes the actors who are performing,

light, sound, computer graphics, animation, and resulting interactive visual effects.

The Microsoft Kinect sensors (depth cameras) were primarily used to capture motion

data for visual effects generation, lighting, projection, audio and other basic elements

that focus on actors’ performance. Gestures, motion and voice are captured and

are taken as input. It is processed using motion and speech recognition subsystems.

After combining the resulting data with computer graphics and animation, the output

is projected on the screen and/or on the performer in real-time. All these are

captured via the Data Capture System to generate a meaningful response to the

performers and/or the audience. Depending on the setup, participants, including

actors, audience, and other users may freely move in the designated physical space.

The captured data from the theatrical space are transferred to the Illimitable Space

System for processing and feedback. A high level block diagram of the system can be

seen in Figure 5 and the conceptual pipeline can be seen in Figure 6 [24].

As we briefly mentioned the evolution of Illimitable Space System before in the

Section 1.2.1, page 4 in Chapter 1, we will further elaborate on it here starting with

ISSv1 [24].

2.1.1.1 ISSv1

The very first iteration of the Illimitable Space System was ISSv1, an experimental

foundation of which was laid out in Miao Song’s Ph.D. thesis titled Computer-

Assisted Interactive Documentary and Performance Arts in Illimitable Space [24].

Some ISSv1-based works made it to public spaces and stage [55–59]. ISSv1 is

30

Figure 5: Block diagram of illimitable space system (ISS) [2]

no longer maintained however, and its development stopped mainly because of its

inflexible architecture and its complete reliance on the Microsoft XNA, which

was discontinued. Moreover, ISSv1 was not portable since it used Microsoft’s

C# and Kinect SDK for Windows. Additionally, it wasn’t computation

artist friendly because usually, artists use Max [60, 61], PureData [62] and

Processing [26] and even Unity, but didn’t use generally C# with XNA. However,

in this prototype iteration the gestures and voice processing was provided by the

Microsoft Kinect SDK for Windows [63–66] and was also too dependent on

a single Windows platform [2, 53]. However, during the design, development and

experimentation, the general architecture for ISS-like systems was established [67,68].

The interactive documentary film component of ISSv1 has inspired the Forensic

Lucid visualization application DigiEVISS for digital evidence representation and

interaction elaborated further in Section 2.1.4 [3, 4].

31

Figure 6: Conceptual pipeline of illimitable space system (ISS) [2]

2.1.1.2 ISSv2

ISSv2 was built using mixing of Max and Processing originally to make it

cross-platform and artist friendly to program and for software engineers and

computation/media artists to better collaboration [2, 69]. However, this resulted in

the Illimitable Space System losing some of the ISSv1 functionality such as partial

gesture recognition, voice processing, and green screen. Furthermore, newer devices

such as Microsoft Kinect v2, ZED, Intel RealSense D435, and, Structure Sensor with

better tracking hardware and accuracy, at the same time, different libraries started

showing up with better tracking than SimpleOpenNI [37] built on top of OpenNI2.0

and NiTE2.0. Thus, there was a strong need to regain the lost functionality while

keeping Illimitable Space System flexible and portable to accept, accommodate and

support newer devices, libraries or frameworks. We started with the backend driver

wrappers for devices, but there were also interesting libraries for creative coding and

32

communications like OpenFrameworks and Open Sound Control that we needed

to integrate with the Illimitable Space System. Therefore, OpenISS core came into

existence at this point to support ISSv2 needs as well as other applications within

the Illimitable Space System and beyond.

Now, the Illimitable Space System mainly consists of three logical core components

namely, recognition, computing, and media output and control. The motion capture

and recognition, voice recognition, and device processing systems are filtering, parsing,

and sorting motion, audio, and device/sensor input streams captured into ISSv2 by

various capture devices. The Illimitable Space System then computes, simulates,

and produces as needed computer graphics, projection mapping, and dynamic audio

output based on the mathematical and physically based algorithms. The system

then re-renders the newly computed visual effects onto projector(s), if/as needed

plays generated audio output, and, if required, may controls dynamic lighting

(interacted with originally as a result of participants actions) [2]. Some of the real-life

performances using the Illimitable Space System can be seen in Figure 7 [2,54,70–72].

2.1.1.3 ISSv3

ISSv3, is a small research-creation interactive documentary prototype to enhance

user engagement and create immersion for interactive documentaries by combining

Augmented Reality and Virtual Reality in order to create virtual worlds where users

can enjoy watching, hearing, and reading content [73, 74]. ISSv3 follows the same

architectural patterns as ISSv2, but its application side is written primarily in Unity.

Our longer-term goal to make the OpenISS backend available in Unity for ISSv3,

similarly to the Zigfu Development Kit [75] and Nuitrack [5] (cf. Section 2.2.3, page 48)

for cross-platform mobile and desktop AR/VR application development, but this is

currently outside of the scope of this thesis.

33

Figure 7: ISSv2 various visual effects performances

2.1.1.4 OpenISS

Open Illimitable Space System is a suite of configurable tools and the new open-

source core [25] for the ISSv2and other similar applications for motion-based data

VFX production and beyond. Inspired by the development of the different version

of the ISS, it exhibits multi-modal interaction and provides a platform for artists

to enhance their performance by leveraging modern day technology and being

available and open platform for education, learning, and contributions. OpenISS

initially designed and led by Serguei Mokhov began as an experiment with its C

API in 2016–2017 as a teaching medium in C and systems programming and shell

scripting [76]. Subsequently, C++, Java, and JavaScript APIs started to appear

in order to expose the motion capture data as-a-service for wider creative-broadcast

illimitable [34,38,77] dissemination and interaction inspired by the notion of illimitable

space as defined in Miao Song’s thesis [24]. As a result, OpenISS rapidly became

34

an experimental C/C++ framework with wrappers and API for motion capture and

other interactions and research subjects. This also allowed device abstraction as a

basic default requirement.

Moreover, ISSv1 and ISSv2 identified issues with person tracking and re-

identification. Likewise, additional requirements for another application were

produced for facial expression detection and landmark detection for character

animation VFX. This is where the works by Lai and Shen extended the OpenISS’s

framework design to incorporate instances employing deep learning, green-screening,

and facial processing [47,48].

This core is designed to allow the ISSv2 platform to be run as a distributed

system. Video and depth capture are done from a computer acting as a server with

a client component for displaying the applied effects and video from a web browser.

This has the added benefit of allowing the artist to broadcast their performance live

and opens the way for audience interaction. More information regarding this web

service aspect of OpenISS is further elaborated in our previously mentioned work

in Section 2.1.5, page 42. Experimental performances were done as well in District 3

and CHI 2018 [38]. An open Docker-container is being produced as well that contains

all necessary dependencies for OpenISS development (cf. Section 2.2.7).

OpenISS has its viewer modules being extended to interactive browser based

art from Chao Wang [78] as well as Max [60] and PureData [62] data-flow frontends

in-progress by Jonathan Llewellyn and team [53,54].

2.1.2 GIPSY

The General Intensional Programming System is a programming environment

designed for the compilation/execution of all dialects of the Lucid family of

programming languages. It consists in three modular sub-systems: GIPC, the General

Intensional Programming Language Compiler, GEE, the General Eduction Engine,

and RIPE, the Intensional Run-time Programming Environment [79]. However, just

like the Forensic Lucid, we will limit the extent to which GIPSY is presented

in this research work. For now, the reader must know that GIPSY houses the

35

development of the GIPC’s Forensic Lucid compiler instance [3]. GIPSY is an

open-source platform implemented primarily in Java to investigate properties of the

Lucid family of intensional programming languages, including Forensic Lucid.

Moreover, GIPSY is a great body of work, developed and maintained by the GIPSY

Research and Development Group at Concordia University.

Now, using the GIPSY platform, programs written in different dialects of Lucid

can be compiled and executed in a distributed processing environment. Therefore,

we will quickly converge here to the fact that GIPSY serves as a compilation and

evaluation platform for the Forensic Lucid language. GIPSY has a collection

of compilers under the GIPC framework and a corresponding runtime environment

under the GEE. These two modules are the primary components for compilation and

execution of intensional programs such as Forensic Lucid programs in the context

of cybercrime investigations. Within the context of this research we merely leverage

the GIPC in the GIPSY to simply validate the semantic correctness of Forensic

Lucid encoding program generated corresponding to the observation sequence of

digital evidence in a 3D application where one uses our solution to semantically link

digital evidence objects in a sequence.

It is worth mentioning our related work [39] was investigating a service-oriented

use of GIPSY’s GEE’s tiers in a simulation, which inspired in part the OpenISS-as-

a-Service project [38].

2.1.3 Forensic Lucid

We will start by reiterating our previous statement in the Section 1.2, page 4 in

Chapter 1 that we will only expose those aspects of Forensic Lucid [3] that are

essential for the reader to be aware of within the context of this research work. Now,

moving on with a gentle introduction to the Forensic Lucid language. So far, the

reader is loosely aware of a few things such as, a Forensic Lucid program is a

data-flow program that can be visually represented as a data-flow graph [27] and,

with Forensic Lucid, a cybercrime investigator can reason about cyberforensic

cases by expressing in a program form the encoding of the evidence, witness stories,

36

and evidential statements as Forensic Lucid contexts, that can be tested against

claims to see if there is a possible sequence or multiple sequences of events that explain

a given story. At this point, we introduce the reader with two terms strictly in the

domain of the Forensic Lucid language.

Definition. The observation sequence context, os represents a partial description

of an incident told by evidence or a witness account (electronic or human).

It is formally a chronologically ordered collection of observations representing a

story witnessed by someone or something (e.g., a human witness, a sensor, or a

logger). It may also encode a description of any digital or physical evidence found. All

these ‘stories’ (observation sequences) all together represent an evidential statement

context about an incident (its knowledge base).

Definition. The evidential statement, es is an unordered collection of observation

sequences.

Where, a simplified visual representation of the evidential statement can be seen

in Figure 8.

Figure 8: Evidential statement [3]

Definition. Forensic Lucid, is a dialect of the Lucid programming language

that uses the intensional programming paradigm to formally model and implement

a cyberforensics investigation process with backtracing of event reconstruction,

formalizing and modeling the evidence as multi-dimensional hierarchical contexts and

proving or disproving the claims in an intensional manner of expression and eductive

evaluation [3].

37

Even though the above definition might seem daunting for a reader

without adequate background in Lucid, intensional programming and cybercrime

investigation and reasoning in general, we will no more discuss the breadth of

capabilities of the Forensic Lucid language. For the curious readers we recommend

the corresponding work [3] that constitutes the entirety of the body that is Forensic

Lucid itself. Rather, we will focus on the role and significance of Forensic Lucid

within the context of this research. For cyberforensic analysis, Forensic Lucid

can express the encoding of the evidence, witness stories and evidential statements

in program form that can be tested against claims to see if there is a possible

sequence or multiple sequences of events that explain a given story [46]. However,

that includes writing a Forensic Lucid program manually. An example of a

simple Forensic Lucid program taken for a collection of compilable examples

from GitHub [80] is given in Listing 2.1. We use this program to build our

proof-of-concept visualization interaction application DigiEVISS to reproduce the

observation sequences dynamically from their visually constructed ordering into a

written textual file that later can be sent to GIPC described in Section 2.1.2 for

syntax and semantics checking.

os

where

observation o0 = ("A printed" => "very well", 1, 0, 0.85, 123);

observation o1 = ("B printed" => "not very well", 1, 0, 0.15, 231);

observation sequence os1 = {o0, o1};

observation sequence os2 = o0 fby o1;

evidential statement es1 = os2;

os = os2;

end

Listing 2.1: Simple Forensic Lucid observation sequence context

Now, the long term goal of the Forensic Lucid project is to enhance the

usability of the Forensic Lucid language composition and interaction via providing

a scalable management, visualization and evaluation of digital evidence in the context

of cybercrime investigations. This may be achieved by enabling investigators to

represent and create semantic links among digital evidence within an easy to use

38

interface powered by multi-modal interactions including but not limited to eye-gaze,

gestures and navigational hardware [4].

However, reiterating our previously mentioned statement that in this work we only

focus on enabling gesture interaction via our solution to quickly visualize, analyze

and sequence digital evidence via gestures by enabling a baseline platform as a first

building block to build upon for an eventual use by an investigator. At this time,

we will not provide a scalable management or evaluation of digital evidence. Within

this work we represent our digital evidence with pre-defined data rather than a real

digital evidence. The goal is to provide a proof-of-concept that we can enable such

a subset of functionality that emulates case specification via observation sequencing

and evaluating the validity of the underlying Forensic Lucid program encoding via

GIPSY.

Therefore, the intersection of this research work and the Forensic Lucid

language is merely enabling the interaction aspect of the language along with its

visualization in 2D/3D only to enhance the limited usability of the language itself in

forensic case specification and evaluation by GIPSY. However, the previous statement

is quite broad and must be interpreted very cautiously in accordance with the context

of this research work.

2.1.4 Toward Multimodal Interaction in Scalable Visual

Digital Evidence Visualization Using Computer Vision

Techniques and ISS

In our research work [4] we explored and positioned an idea of a scalable management,

visualization, and evaluation of digital evidence in the context for cybercrime

investigations with inspiration from the interactive 3D documentary subsystem of

the ISSv1.

The proposed modifications would enable investigators to represent and create

semantic links among digital evidence objects within an easy to use interface powered

by multi-modal interactions including but not limited to eye-gaze, gestures and

39

Figure 9: Conceptual and actual nested visualization representation based on ISSv1

navigational hardware as mentioned prior. That work may scale when properly re-

engineered and enhanced to act as an interactive ‘3D window’ into the evidential

knowledge base grouped into the semantically linked ‘bubbles’ visually representing

the documented evidence. By moving such a contextual window, or rather, navigating

within the theoretically illimitable space an investigator can sort out and reorganize

the knowledge items as needed prior launching the reasoning computation. This

notion of the sort in literature is referred to as “serious games” [44]. The most recent

significant work of that type appeared this year only in the SIGGRAPH Asia Real-

Time Live in Brisbane, Australia, called A Clever Label [81], which is an investigative

documentary experience that combines a personal story with a interactive room-scale

VR and gesture-based interaction experience to examine multiple sides of a topic

from big data and to enable something similar is our long-term vision in the open

source world. We have plans to possibly collaborate or interoperate with that project.

However, strictly in context to this work it is still a rather novel proposal that will

demonstrate feasibility of limited language usability of Forensic Lucid that and

can also be scaled to the entire language.

40

The interaction design aspect would be of a particular usefulness to open up

the documented case knowledge and link the relevant witness accounts and group the

related knowledge together. This is a proposed solution to the large-scale visualization

problem of large volumes of ‘scrollable’ evidence that does not need to be all visualized

at once, but behave like a snapshot of a storage depot. As an example, stills from

the actual ISSv1 installation hosting multimedia data (documentary videos) users

can call out by voice or gestures to examine the contents as in Figure 9 [67]. We

propose to reorganize the latter into more structured spaces so that the investigators

can create semantic links to group the relevant evidences together and for subsequent

evaluation by the distributed GIPSY backend engine.

Available gesture-based interactions using Kinect and similar depth cameras with

OpenCV [51] are the enabling HCI aspects for the investigator to link the evidential

items in the 3D space. In our general approach, we propose an architecture to enable

interactive visual windowing into the digital evidence processing as an investigator aid

tool as seen in Figure 10. Thus, the preferred method of interaction during analysis

and human insight phases prior to or after distributed processing of the evidence and

event reconstruction algorithms [4].

Cloud
HDFS

Hadoop

Evidence

GEER

GIPC

DGT

DWT

DST_1
DST_2
...

DST_n

GEE

GIPSY

Actors

ISS

OpenISS
Core

Views

Scrollable
Window

AR/VR

2D

3D

Multimodal	Interaction

Audio
Commands

Hardware
Controllers

Point	'n'
Click

Eye	Gaze

Gestures ...

Storage

Represent,
Semantic	Links,
Graphs,	Networks

...

Forensic	Lucid	Model

Figure 10: High level architecture of the proposed solution in [4]

However, as already discussed briefly in the Section 1.2 in Chapter 1, we partially

base our research in this thesis on [4] work to enable a subset of this proposed

solution from a gesture interaction perspective and a baseline platform to develop

41

for a digital investigator to emulate visualization of digital evidence objects in a 3D

application for observation sequencing and their semantic evaluation by the GIPSY’s

GIPC. Figure 10 also exposes the Forensic Lucid Evidential Storage and Compute

Infrastructure in Figure 4, page 23 in Chapter 1. Additionally, out of the multi-

modal interactions modes in the figure we enable the gesture interaction as a part

of our solution and recommend which currently available middleware and gesture

dictionaries are suitable for this type of task.

2.1.5 OpenISS depth camera as a near-realtime broadcast

service for performing arts and beyond

Recently, we extended the OpenISS by enabling SOAP and REST APIs, which

brought us closer to a more flexible and scalable architecture for being available as an

interactive broadcast service over the Internet to a wider audience [34, 38]. Due to a

few limitations we entitle our work as near-realtime and learning from our experience

with this work, in our current solution we deliver the data as a stream that can be

broadcast over the ROS network in a client-server fashion.

2.1.6 Gesture Tracking

A gesture is a non-verbal form of communication essentially used to convey a message

via movement of a specific part of body, such as hands, face, etc. Sign language is a

standard example of how gestures can enable people who have a speaking or hearing

disability to be able to communicate through the sign language itself [82]. However,

in terms of interaction with machines a gesture is any physical movement that can be

detected via a motion sensor and classified. The role of gestures in Human Computer

Interaction in general was first seen as early as in the mid 1960’s and caught the

limelight with the Apple Newton in 1992 [83].

42

2.1.7 Vision-Based Gesture Recognition

Definition. Gesture Recognition is a machine’s ability to infer gestures via some

mechanism and perform one or more tasks.

However, within the scope of this work we will essentially talk about vision based

gesture recognition observed as early as the 1980’s [86].

Definition. Vision-based gesture recognition is the process of recognizing meaningful

human movements from image sequences that contain information useful in human-

human interaction or human-computer interaction. [87]

This is distinguished from other forms of gesture recognition based on input from

a computer mouse, pen or stylus, sensor-based gloves, touch screens, etc. [88].

2.1.8 Nielsen Usability Heuristics

In 1995, author Jakob Nielsen defined 10 usability heuristics for interface design and

in [29] the authors have stated that these heuristics apply equally well to APIs as to

regular user interfaces. These are called heuristics because they are broad rules of

thumb and not specific usability guidelines. [32].

• Visibility of system status – User must be aware of the current status of the

system or provided with appropriate feedback.

• Match between system and the real world – User language, system should

match the mental model and expectations.

• User control and freedom – Undo and redo operations to enable user to

switch between states.

• Consistency and standards – Consistency in naming conventions, actions,

menus.

• Error prevention – Prevent users from making mistakes, pop-up dialog when

deleting something.

43

• Recognition rather than recall – Visibility of actions, operations, options,

such as stop action in red color written big and highlighted.

• Flexibility and efficiency of use – Enable shortcuts, tutorials or hints/tips

for novice users.

• Aesthetic and minimalist design – Relevant and non-redundant design via

essential information only.

• Help users recognize, diagnose, and recover from errors – Error or log

messages in simple language describing exact error and suggesting a solution.

• Help and documentation – Necessary resources to explain usage and help

documentation with appropriate drawings if necessary.

2.2 Libraries, Tools and Middleware

In this section we will talk about various tools, middleware and libraries that we will

directly or indirectly use to realize our research work.

2.2.1 OpenKinect

OpenKinect is an open source community of people primarily providing cross-platform

device drivers specifically for the Microsoft Kinect Sensor [90–92]. The community

has provided open source drivers libfreenect [93] and libfreenect2 [94] and is

actively maintaining both for the Kinect v1 and Kinect v2 respectively which work

on different technologies namely structured light [95] and time-of-flight [96]. These

drivers were also the first ones to be published for the Kinect line of sensor devices.

Additionally, there is an interesting story behind the birth of libfreenect. It all

started with Adafruit Open Kinect bounty for the first open source drivers for the

Kinect, which was claimed by Hector Martin and henceforth setting a foundational

proof of concept to leverage the cheap yet powerful Microsoft Kinect device for its

applications in specific domains.

44

2.2.1.1 libfreenect and libfreenect2

The libfreenect provides device driver for the Microsoft Kinect v1, which had

models 1414, 1473, and 1517. It also supports and provides access to the following

characteristics for the Kinect devices:

• RGB and Depth Images

• Motors

• Accelerometer

• LED

• Audio

Whereas, libfreenect2 provides device driver for the Microsoft Kinect v2 and

provides support for the following:

• RGB image transfer

• IR and depth image transfer

• Registration of RGB and depth images [94]

OpenNI2-FreenectDriver

OpenNI2-Freenect Driver [97] acts as a bridge to libfreenect and libfreenect2

and is implemented as an OpenNI2.0 driver; thus, allowing OpenNI2.0 to use the

Microsoft Kinect hardware on Linux, OSX, and Windows operating systems.

2.2.2 PrimeSense

OpenNI2.0 and NiTE2.0 were released collectively by PrimeSense in response to the

efforts of the open source community with libfreenect. OpenNI, stands for Open

Natural Interaction, which was eventually shutdown after Apple, Inc. [98] acquired

PrimeSense [99], the founding member of OpenNI on November 24, 2013. Prior

45

OpenNI	2.0

User	Application

NiTE	2.0

Device	Drivers

Figure 11: OpenNI2.0 and NiTE2.0 stack

to its purchase the API had versions OpenNI1.0 and OpenNI1.5 and subsequently

OpenNI2.0. However, Occipital [100], a former partner of PrimeSense kept the

OpenNI2.0 alive [101] as a forked version of the same as an open source software

for their own depth sensor product called the Structure Sensor [102]. Figure 11

illustrates a typical application using the OpenNI2.0 and NiTE2.0 stack.

2.2.2.1 OpenNI 2.0

OpenNI2.0 introduced major changes to the existing API by making it more device

driven rather than data driven. OpenNI2.0 provides the following functionalities via

its interface:

• Enabling connection with a device and provide IR, Color and Depth video

streams.

• Encapsulate stream data into a frame of data along with stream info and

configurations.

• Capture one or more stream output into a file of type ONI (OpenNI file format).

46

• Event driven depth access.

2.2.2.2 NiTE 2.0

NiTE2.0 acts as a middle ware integration layer which provides rich processing

features over the sensor data and is based on OpenNI2.0 with more focus on natural

interaction. Overall, NiTE2.0 provides the following functionalities via its API.

• Scene Segmentation

• Skeleton Tracking

• Pose Detection

• User and Hand Tracking

• Gesture Detection or Recognition

From an implementation point of view NiTE2.0 is a closed source proprietary

middleware now owned by Apple. However, via its documentation available over

the Internet and texts one can say that NiTE2.0 provides those above mentioned

functionalities via its two main classes namely, the UserTracker class, which provides

information related to users and their bodies and the HandTracker class, which

provides information regarding hand tracking and hand gestures on the most recent

scene.

The important classes that provide the majority of functionality are:

• HandTracker – Recognizes hand gestures and initiates hand tracking.

• HandTrackerFrameRef – Represents a frame of data with currently recognized

hands and gestures.

• GestureData – Represents a gesture with associated data such as state, position

coordinates, and, gesture type.

• HandData – Represents a real world human hand with associated hand tracking

data such as id, state, position coordinates, and, tracking status.

47

OpenNI	2.0

User	Application

Middleware	API	(NiTE	2.0)

Device	Driver	(OpenNI2-Freenect)

Depth	Sensor	(Kinect	1473)

User

Figure 12: OpenNI and NiTE device and driver specific stack

Typically, as seen in Figure 12, the data are delivered from the depth sensor that is

the Microsoft Kinect, which can interface to the Linux and MacOS operating systems

via the OpenNI2-Freenect Driver [97] and then the data is passed onto the NiTE2.0

middleware which contains the Gesture recognition and Hand tracking algorithms that

extract relevant information from the depth stream and color stream from the sensor

device [103].

2.2.3 Nuitrack

Nuitrack API is a well-supported native (C++) synchronous interface based on

the asynchronous commercial proprietary middleware layer that conceals all the

interactions with 3D sensor and other devices, as well as with an operating system

(Linux, Android). As a result, the user only applies Nuitrack API for writing cross-

platform applications. Its architecture can be seen in Figure 13 and the various

modules that facilitate the essential functionalities can be seen in the Figure 14.

Nuitrack makes it possible to receive data from a 3D sensor to Android without

root privileges required. The interaction with the Android OS occurs through JNI.

48

Sensor

Nuitrack	Middleware

Nuitrack	Native	C++	API

Nuitrack	C#	Wrapper

Plugin
Unity	3D

Plugin
Android

Figure 13: Nuitrack architecture [5]

DepthFrame

UserTracker

UserFrame

DepthSensor

SkeletonTracker

SkeletonData

HandTracker

HandTrackerData

GestureRecognizer

GestureData

Figure 14: Nuitrack modules [5]

The SDK contains a Nuitrack C# wrapper, a plug-in for Unity3D and a plug-in for

Android devices. In its list of dependencies Nuitrack SDK uses both above mentioned

OpenNI and OpenNI 2.0 under the hood including libfreenect, libfreenect2,

and librealsense2. Similar to NiTE2.0, as seen in Figure 15, the data are

delivered from the depth sensor that can interface to the Linux, Windows and Android

operating systems via different device sensors depending on the device manufacturer,

here PrimeSense Sensor device driver and then the data are passed onto the Nuitrack

49

Nuitrack	Middleware

User	Application

Middleware	API	(Nuitrack)

Device	Driver	(PrimeSense	Sensor)

Depth	Sensor	(Kinect	1473)

User

Figure 15: Nuitrack device and driver specific stack

middleware, which contains the Gesture recognition and Hand tracking modules that

extract relevant information from the depth stream and color stream from the sensor

device as seen in Figure 14. It is important to mention that currently Nuitrack

supports up to seven different depth devices including the Kinect v1, Kinect v2 and

Intel RealSense D415/D435.

2.2.4 Robot Operating System (ROS)

2.2.4.1 Overview

ROS stands for Robot Operating System, which unlike traditional operating systems

is an open source meta operating system designed primarily to support code reuse

for research related to robotics and computer vision, and provide a baseline to

write software for robots by providing services like hardware abstraction, message

passing between processes and low-level device control alongside a structured layer of

communication over the host operating system typically in a heterogeneous computing

cluster [33].

ROS uses a peer-to-peer topology to pass messages (similar to protocol buffers)

50

between different processes called nodes that are typically distributed across machines

and to facilitate a loosely coupled communication infrastructure among off board

computers running computation intensive tasks and on board computers on the robot

itself carrying out tasks that rely on the output from the off board computers in a

typical use case. ROS provides synchronous RPC-style communication over services

defined by a name, and request/response message types and provides asynchronous

streaming of data over topics.

In ROS code is organized into a granular structure referred to as package, which

can be easily shared or distributed and managed via the official build system catkin

that extends on top of cmake [105] build system to provide ROS specific functionality.

ROS is written in C++ and Python and extensively supports C++, Python and

LISP languages in terms of main client libraries. However, it does have experimental

client libraries in Java, Go, Haskell, Ruby and Node.js as well.

Currently, ROS supports Linux operating systems; however, there are build and

install instructions for MacOSX and Windows, which have been titled “experimental”

by the ROS community. In a nutshell, ROS is a distributed framework of nodes which

can communicate via messages and can publish to or subscribe to a topic of messages

of a defined type and are loosely coupled at runtime.

2.2.4.2 ROS Architecture

The ROS architecture has been defined and categorized into three conceptual

levels [6]:

ROS	Conceptual	Levels

File	System
Level

Computation	Graph
Level

Community
Level

Figure 16: ROS conceptual architecture levels

• The File System Level – This level constitutes different kinds of files that are

stored on the disk such as packages, messages, services and so forth. Usually,

the packages, messages, services, and project manifests reside in the catkin_

51

catkin_ws
catkin_ws

/home/user

catkin_ws

build

devel

src

ros_package_1

src

include

msg

srv

CMakeLists.txt

package.xml

ros_package_2
...

ros_package_n
Figure 17: A typical ROS workspace and package structure [6]

ws directory with three sub-directories namely, src, devel, and, build. By

default, ROS packages reside in src directory and after build and compilation

the executables are in the devel directory and build related files are typically

in the build directory.

– Packages, are the main unit for organizing software in ROS, the most

atomic build item, and, the most granular thing that is built and released

is a package.

– Package Manifests, typically, package.xml, provide metadata about a

package, including its name, version, description, license information,

dependencies, and other meta information like exported packages.

– Repositories, are collection of packages which share a common version

control system and can only contain one package.

– Message (msg) types, are descriptions that define the data structures for

messages sent in ROS.

– Service (srv) types, are descriptions that define the request and response

52

catkin_ws
catkin_ws
src
devel
build
src
devel
build
package.xml

data structures for services in ROS.

• The Computation Graph Level, ROS creates a network of different

connected processes where, any node within the system has access to the

network, and can easily interact with other nodes, see the information that

they are exhanging, and transmit data to the network itself.

Computation	Graph

Nodes

Messages

Topics

Parameter
Server

Services

Bags

Master

Figure 18: Computation graph level

– Nodes, are processes that perform computation and is written with the use

of a ROS client library, such as roscpp or rospy.

– Master, provides name registration and lookup to the rest of the

Computation Graph. Without it, nodes would not be able to find each

one another or exchange messages, or invoke services.

– Parameter Server, allows data to be stored by key in a central location.

– Messages, allow nodes to communicate with each other where, a message

is simply a data structure, comprised of typed fields.

– Topics, act as channels for messages routed via a transport system with

publish / subscribe semantics. A node sends out a message by publishing

it to a given topic that is used to identify the content of the message

in case a node that is interested in a certain kind of data will subscribe

to the appropriate topic. There may be multiple concurrent publishers

and subscribers for a single topic, and a single node may publish and/or

subscribe to multiple topics.

53

– Services, are defined by a pair of message structures, one for the request

and one for the reply and are offered by nodes under a name which is used

by clients by sending the request message and awaiting the reply.

– Bags, are a format for saving and playing back ROS message data and

storing data, such as sensor data [6].

• The Community level consists in Distributions, Repositories, ROS Wiki,

Bug Ticketing, Mailing Lists, ROS Answers, and, Blog. The community also

publishes open-source software on platforms like GitHub as well [6].

2.2.5 Processing

Ben Fry and Casey Reas, two graduate students at the MIT Media Lab developed

Processing IDE [26, 107] in 2001 with an aim to facilitate simpler visual arts

production with computer programming [108]. Processing is the made development

environment for ISSv2 as it was done in collaboration between software engineering,

computer science, and computation arts students for various productions mentioned

earlier. It was the best compromise between pure software development IDEs and

simplicity of development and rapidly testing out modifications often hours before

actual productions [2, 54,109].

Currently, as an open-source software project, Processing has attracted quite a

community strength, which contribute to the language actively. Also, Processing

is based on top of Java, which makes it quite powerful yet it is much easier to

learn than plain Java or C++. It is a software sketchbook and a programming

environment for learning how to code within the context of the visual arts and

rapid prototyping, which includes a 2D and 3D graphics API based on OpenGL

and a Java rendering engine [110]. A Processing program is usually written as

a Processing “sketch” as seen in Figure 19. Artists contribute various sketches

for real-time graphics on OpenProcessing.org using the same sketches as well as

p5.js to run them in browsers using WebGL. Processing IDE was also adapted to

C language programming of Arduino open source hardware boards. mDreams Stage

54

OpenProcessing.org

Figure 19: A Processing sketch

Research and Creation Group experimented of using an ISSv2 extension prototype

with a programmable LED light board in Arduino [111].

2.2.6 SWIG 4.0

SWIG stands for Simplified Wrapper and Interface Generator and is a software

development tool that enables programs written in C and C++ to interface with

a wide array of high-level programming languages. SWIG is a greatly flexible tool,

but is also quite complex as well with a steep learning curve. The array of languages

it can support can be seen just below:

• Scripting Languages

JavaScript, Perl, PHP, Python, Tcl, Ruby

• Non-Scripting Languages

C#, Go, Java, OCamL, Lua, R

SWIG takes an interface file with an extension .i which contains C-Style declarations

for which SWIG will create wrapper code which acts as a glue between the C/C++

55

library and the target language.

In a relatively simpler context, SWIG is a compiler that can generate wrappers

from C or C++ header files, once one lists everything that should be a part of the

desired extension module as simple C-Style declarations in the interface file. SWIG

will parse the interface file including the declarations and generate wrapper code for

the target language [116, 117]. Most common use cases of this tool are, building

interpreted interfaces to existing C programs and rapid prototyping and application

development. However, the latter serves our purpose in this research work.

interface.i
Preprocessor

C	/	C++
Parser

Semantic
Analysis

Code
Generator

Figure 20: SWIG architecture

SWIG	4.0

library_interfce.ilibrary.h

library_wrap.c

GCC

library_wrap.so

Figure 21: SWIG pipeline

• interface.i – This file declares or includes declarations that will be wrapped

using SWIG. The target Java module name is set using the module directive.

• interface_wrap.cxx – Generated by SWIG based upon the above interface

file and contains the JNI wrapper code that needs to be compiled and linked

with the rest of C++ application.

• library.h – Header file containing declarations of the desired library that

needs to be wrapped via SWIG.

56

interface.i
interface_wrap.cxx
library.h

interface.i

library.h

$	swig		-c++		-java	
interface.i

interface.i

interface_wrap.cxx

library.h

library.java

wrapper.java

wrapperJNI.java

Figure 22: SWIG Java demo

• library.java – This is a proxy class, generated for each structure, union or

C++ class that is wrapped. This class merely holds a pointer (swigCPtr)

to the underlying C++ object. It contains getters and setters for the public

member variables of the class. These functions call the native methods in the

intermediary JNI class. Each proxy class has an ownership flag swigCMemOwn

for the underlying C++ object, and its value determines that is responsible

for deleting this object. If the value is false then the object will outlive

the destruction of the proxy class. However, when an object is created by a

constructor or returned by value, then the ownership of the result goes to Java,

while pointers or references are handled opaquely.

• wrapper.java – This module class contains C global values wrapped as static

functions in Java and must be accessed as such by using the module name in

the static function call.

• wrapperJNI.java – For every JNI C function there has to be a static native

Java function, which appears in this intermediary JNI class. The intermediary

JNI class can be tailored through the use of pragmas, but is not commonly done.

57

library.java
wrapper.java
wrapperJNI.java

This class contains the complete Java–C/C++ interface so all function calls

go via this class. As this class acts as a go-between for all JNI calls to C/C++

code from the Java proxy classes, type wrapper classes and module class, it is

known as the intermediary JNI class. The functions in the intermediary JNI

class cannot be accessed outside of its package. Access to them is gained through

the module class for globals otherwise the appropriate proxy class.

Our use of SWIG in this work is to provide a maintainable Java wrapper for pure

Java-based and Processing-based OpenISS applications.

2.2.7 Docker

Docker tool consists in a set of services that allows its users to packages up code and

all its dependencies so the application runs quickly and reliably from one computing

environment to another in a standard unit of software called a container. Whereas, a

Docker container image is a lightweight, standalone, executable package of software

that includes everything needed to run an application: code, runtime, system tools,

system libraries and settings.

Container images become containers at runtime and in the case of Docker

containers, whereas images become containers when they run on the Docker

Engine [118]. We provide a Dockerfile in Appendix A that can be used to assemble

an image which contains all the required setup and required files to demonstrate our

solution. We are releasing in part various test and deployment versions of OpenISS

and its dependencies on DockerHub: https://hub.docker.com/u/openiss.

2.3 Summary

In this chapter we introduced the reader to the required background in context to this

research work in terms of the related work and software tools and how they pertain

to our OpenISS gesture framework design and development.

58

Dockerfile
https://hub.docker.com/u/openiss

Chapter 3

Methodology

In this chapter, we introduce the reader with our proposed solution, followed by the

reasoning that led us to our proposed solution and the various methods that we used

to design, develop and evaluate our solution. This also includes our design decisions

that were made based on our previous experience with the ISSv2 and our review of

the related work. Then, we provide an outline of the development and experiments in

a procedural way. Eventually, we preview an initial concrete design of our solution.

3.1 Solution Overview

We describe a subset of our core requirements that necessarily drive the solution

design decisions.

• Reusability – As we already know, this work aims to provide a common

platform that will not only enable two specific yet diverse applications, but also,

has the potential for other applications as well, within the context of natural

interaction via vision based gesture recognition. Therefore, we require that

our solution must rather be a reusable solution that can be applied to enable

such diverse applications from a natural interaction perspective through vision

based hand-gesture interaction as exemplified in our motivational scenarios

Section 1.2.3, page 6 and Section 1.2.4, page 8. This solution trait although

59

not explicitly mentioned in the form of a non-functional requirement, is equally

significant as the others.

• Extensibility – One of our key requirements for our proposed solution is

extensibility, see NFR3, essentially, to accommodate newer gesture recognition

algorithms, libraries or middleware that may outperform the present ones. This

simply means that our solution must provide a simple mechanism to allow

such extensions easily. Moreover, once such a mechanism is inbuilt within the

solution it must naturally be a uniform, standardized and, easy to follow and

implement.

• API Usability – Yet another detail, mentioned before, is that one of the design

goals of the ISSv2 was to enable digital media artist to create applications via

the popular platform Processing. This essentially requires an API that is

highly abstract yet simple enough to understand by not only artists, easy to

use and requires minimal effort to access hand gesture recognition functionality,

enabling good API usability (NFR2). This includes abstracting complex tasks

away to also reduce errors by users, for example, in the Template Method

design pattern, a method exists solely to provide a recipe or skeleton of the

process defined in it, and defines the order of calls to different functions. Thus,

reducing the chance of messing up the order of function calls by the user.

At the simplest level, an API that can provide the required gesture recognition

functionality in a minimal number of steps would be a good start towards its

usability. However, to provide such abstraction that facilitates the user to

create applications via an API that is easy to use, our solution must govern

the program control flow. This is relevant since the solution must take care of

initializing different devices and middleware, which bring gesture recognition

functionality to the user application by making corresponding calls to specific

methods. The API user should only care about what action can be assigned

to specific gestures depending upon the use case. Therefore, we will simply

plug application specific code to our solution where it takes care of initializing,

60

resource allocation and populating the data structures that provide essential

data. This is also commonly known as the Hollywood Principle or Inversion of

Control [119].

Now, these specific characteristics discussed above that must be inherent to our

solution, certainly lead us to a well known Software Engineering concept called

Frameworks, and, especially, in case of our scenarios, Application Frameworks.

Now, attributes such as code reuse, extensibility, flexibility, modularity and inversion

of control are naturally inherent to frameworks. At this point, we, therefore put

forward our decision to provide our solution as a Gesture Framework [120]. The

overview of this solution described visually can be seen in Figure 23. Now, we will

Middleware
OpenNI	2.0,
NiTE	2.0,
Nuitrack

Robot	Operating
System

Depth	Cameras
(Microsoft	Kinect,
Intel	RealSense	...)

Pre-recorded	Stream

Gesture	Framework

OpenISS	Core	Framework

Application	I
Manipulation	of	digital
evidence	objects	aka.
observations	via	hand
gesture	interaction	in	

a	3D	warehouse-like
application	DigiEVISS

Application	II
Real-time	visual	effects

for	performing	arts	
on	stage	by	an	artist
using	hand-gesture
interaction	in	ISSv2

Enable	Applications

Figure 23: Solution overview

discuss about Object Oriented Application Frameworks and how they enable

the above mentioned attributes that are desired in our research work listed in detail

in Section 1.2.6, page 12.

61

3.2 Framework Design Approach

Frameworks are semi-finished architectures that are reusable and applicable to various

domains. They are application generators that enable an array of applications for a

specific domain. Generally, the main idea is to describe the framework design and

its constituent classes while obscuring the implementation details. This is primarily

done to reuse common code across applications to reduce some level of complexity and

promote faster prototyping. The run-time architecture of a framework is characterized

by an inversion of control that allows the framework, rather than the application, to

determine which set of application-specific methods to invoke in response to external

events. A framework consists of Frozen Spots and Hot Spots, coined by Wolfgang

Pree in 1994 [121].

• Frozen Spots – the fixed components of the framework that define its

architecture and the object protocols that govern the control flow are referred

to as the frozen spots. These spots in the framework are immutable components

that define its kernel and are already implemented within the framework that

calls and invokes one or more hot spots provided by the implementer. This

kernel remains constant and is a fundamental part of each instance of the

framework [7].

• Hot Spots – a framework demonstrates extensibility and flexibility via

extension points, where the adaptation takes place, and are referred to as the hot

spots of the framework. They are the flexible and generic aspects of a framework

that enable specialization through inheritance or composition. A well-designed

framework must offer domain-specific hot spots and adequate flexibility for

adaptation. They take the form of hook classes and hook methods, which

are abstract methods or classes that provide a default empty implementation.

Hook methods give a subclass the ability to hook into the algorithm as desired.

The subclass may or may not use these hooks to adapt to implement a

desired behavior. They allow decoupling the stable interfaces and behaviors

62

of an application domain from the variations required by instantiations of an

application in a specific context [7].

Broadly, framework development consists of three stages given below [7], as seen in

the Figure 24:

1. Domain Analysis

2. Framework Design

3. Framework Instantiation

Domain	
Analysis

Framework	
Design

Framework	
Instantiation

Application	1

Application	2

Application	3

Application	n

Figure 24: Framework development process [7]

Frameworks themselves are not executable. Rather, they generate executables when

instantiated via the implementation of application-specific code for each hot spot by

extending them. Also, these hot spots typically are abstract classes or methods that

are required to be inherited and overridden to define application-specific behavior.

This is normally referred to as the Dependency Injection Principle [122]. However,

one must know that during domain analysis, the hot spots and frozen spots are

partially uncovered and the framework’s abstractions are defined. Authors in [7,123]

concluded that hot-spot approach helped in enhancing flexibility and extensibility of

the framework. An overview of the gesture framework can be seen in Figure 25.

63

OpenISS	Core	
Framework

OpenISS	Sepcialized	
Gesture	Framework

Frozen	Spots

Hot	Spots

Hot	Spots	Implementations

Framework	Instance

Gesture	Applications

Figure 25: Gesture framework overview [7]

3.2.1 OpenISS Core Framework

The OpenISS core framework, a part of which our Gesture Framework will be a

specialization of, consists of five modules which represent the primary frozen spots

of the framework itself. Most of these modules are a direct abstract mapping to our

solution overview shown in Figure 23. Thus, in this work, we provide the Gesture

Framework that will sit alongside the person re-identification [47] by Haotao

Lai and the facial recognition framework [48] by Yiran Shen, pushing OpenISS

towards its long-term design goals and as a significant addition to its set of specialized

frameworks that enable diverse applications in their respective domains. Next, we

describe our core OpenISS Framework modules that define the overall kernel of the

framework itself.

• Device Module – In this module, abstractions are present for depth and color

information sources, whether it be a physical device, a pre-recorded stream,

or a node publishing similar data, specifically a ROS node. In addition to

64

the existing abstractions, we provide abstractions for ROS. These abstractions

play a vital role in taking care of device specific drivers, device initialization

and setting up the device specifics if any, and at the same time, encapsulate

away these complexities away from the user and give the end user more of a

plug-and-play feel, see NFR6.

• Common Data Structures – It is quite obvious that different gesture

recognition provider middleware will provide data somewhat differently,

essentially in the form of different data types and user-defined types with non-

compatible interfaces. This module represents the core data structures of the

OpenISS core framework as well as the constituent specialized frameworks such

as the Gesture Framework to decouple the source from the application and at

the same time provide interoperability by adapting different data into a uniform

data that the framework defines. After this work, the set of data representations

will include our representations of a real world Hand and Gesture alongside

Frame (depth or color), Face, Skeleton and User, see NFR4.

• Cross-Language Module – In this module, we will provide the necessary

wrapper code and SWIG-related interface files that help generate wrapper

classes in Java and enable a bridge between C++ and Java in order to send

essential data from our gesture framework defined types to their corresponding

types in Java. This will enable interoperability between our gesture framework

in C++ and ISSv2 applications in Processing and Java, specifically for our

scenario mentioned in Section 1.2.4, page 8, also to fulfill our requirements NFR4

and NFR8.

• Tracker Module – In this module, abstractions are present primarily for

skeleton trackers and face trackers. We will thus provide the gesture tracker

abstractions under this module. A tracker factory object can instantiate the

desired tracker specific to the application, in our case NiTE2.0, Nuitrack or

ROS, and directly fulfill our requirements FR1 and FR2.

65

• Viewer Module – In this module, we provide abstractions for graphics

and windowing APIs such as OpenGL, WebGL, Unity, and OpenCV built-in

modules that simplify the viewing of frames coming from a source, whether in

real-time, over the network or a pre-recorded stream in the end-user applications

primarily to visualize the color and depth frames.

3.2.2 OpenISS Gesture Framework

The OpenISS specialized Gesture Framework uses the frozen spots of the core by

extension. However, the variant components of our solution based on our requirements

as seen in the first chapter are namely:

• Depth data providers, such as the Microsoft Kinect v1 and Kinect v2, and Intel

Real Sense devices, ROS Sever Node, or a pre-recorded dataset.

• Gesture providers, such as the NiTE2.0 and Nuitrack middleware.

• Middleware adapters for each middleware, essentially for interface and data

adaptation.

Now, these variations constitute the various hot spots of our Gesture Framework

itself. In other words, the OpenISS core framework becomes the calling framework,

and, our Gesture Framework is the one that gets called, and the specialization

interface is enabled via the different adapter classes as seen in Figure 26. Also, the

relationship between the core framework and the specialized framework is that the

latter will take the core as its dependency to define its desired functionality. Now,

based on our knowledge so far, we illustrate our domain model in Figure 27. In the

next section, we will describe our design and evaluation methodologies.

3.3 Framework Design and Evaluation Methodology

In this section, the reader will first learn about the different methods that we follow

in this research work to design, develop and evaluate our gesture framework. Then we

66

Common Data
Structures

Device Module

Viewer
Module

Tracker
Module

Facial
Analysis

Gesture
Recognition

Person Re-
Identification

Cross Language
Module

OIHand,
OIGesture

OIDepthFrame

OIGestureTracker

SWIG

Calling Framework
OpenISS

OpenISS Specialized
Frameworks

Called
Framework

Specialization
Interface

OpenGL
Viewers

Device
Drivers

NiTE2.0,
Nuitrack

ROS

Java
Wrappers

Adapter
Classes

Gesture
Framework

Figure 26: OpenISS core and specialized gesture framework

will enumerate the entire procedure in consecutive steps, for the design and evaluation

methodologies respectively. The next two chapters will essentially expand on the

technical aspects of the design and implementation, and their evaluation with regards

to the requirements.

3.3.1 Top-Down and Bottom-Up Approaches

During domain analysis, one can only partially uncover the frozen and hot spots of

the framework itself. In [124] authors have pointed out that although framework

development can be slow and unpredictable, the framework design and patterns must

be discovered using a bottom-up approach. Still, one can leverage existing frameworks

to conceive, design and implement high-quality frameworks rapidly. This is among the

reasons we choose to build our solution on top of the existing middleware, specifically,

NiTE2.0 and Nuitrack. Moreover, in this research work we will employ both top-down

and bottom-up design approaches in parallel for specific purposes.

67

OpenISSGestureFramework

+ getGestures():

MiddlewareAdapters

+ getGestures():override

OpenISSCoreFramework

+ enableGestures():

NiTEAdapter

+ getGestures():

NuitrackAdapter

+ getGestures():

ISSv2Applications

+ enableGestures():
+ getGestures():

Enables

Gets Called

Adapts data

Provide data

ROSAdapter

+ getGestures():

ROSOpenISS
Package

ROS Node
(Server)

Serve

<Enumeration> GestureDictionary

NiTEGestures
NuitrackGestures

Hand

+ getPosition():
+ getState():

Gesture

+ getPosition():
+ getState():

Figure 27: Domain model

Top-Down Framework Analysis and Design

Strictly speaking, the top-down approach to framework design requires complete

understanding of the problem at hand, and our problem is to provide real-time hand

and gesture data in a flexible and extensible manner to enable the development of

our specific applications in Section 1.2.3, page 6 and Section 1.2.4, page 8. Now,

beginning with the domain model described in Figure 27, and by factoring in our

experience with the previous Illimitable Space System versions alongside the existing

middleware solutions, namely NiTE2.0 and Nuitrack with their respective resources

such as online documentation and sample applications, we identify the necessary

information to infer and define an abstract design of our Gesture Framework.

Moreover, one of the previously mentioned ISSv2 backends is the SimpleOpenNI

68

backend, which is essentially a Java wrapper implementation of OpenNI2.0 and

NiTE2.0 middleware, which solely provides gesture recognition in the ISSv2

presently, thus, bolstering our decision to choose NiTE2.0 first, which also facilitates

the comparison with existing applications. On the other hand, Nuitrack provides

more gestures and supports multiple devices, which easily becomes a suitable choice

in contrast to NiTE2.0 as well as our requirements, especially for multiple devices

(cf. NFR6). However, this essentially means that we will require a intermediate

interface to bridge the gap between the interfaces of our framework’s API with the

API of these specific middleware.

The framework development and design patterns often go hand in hand and

specific problems of the frameworks are usually solved using one or more of the

design patterns that best suit the use case under consideration [125]. Since we are

dealing with incompatible interfaces, undoubtedly, the Adapter Pattern exists to

solve the very exact problem of adaptation between different interfaces. The top-

down approach also supports in designing of our API. For instance, we certainly

need API calls for our end user applications such as, getGestures(), getHands()

and getDepth() which, by the way, broadly resolve to our first three functional

requirements (FR1, FR2, and FR3). Now, these function must exactly do what their

names describe, that is get depth and/or detected and recognized gestures and/or

tracked hands to the end user simply by making calls to these functions. Similarly,

we also proceed by abstraction to fulfill the need to contain this information in

corresponding data structures. Likewise, the top-down approach will keep us on

track when it comes to fulfilling the rest of the remaining requirements.

Bottom-Up Framework Analysis and Design

A bottom-up approach promotes early implementation with smaller, individual

components that are gradually composed together into one complex system using

abstraction. It is only when a framework is used to build applications that its lack

of generality might show up. To find its weaknesses in applicability to different

situations, it must be designed and reused for different applications. Moreover,

69

an integral part of any library, middleware or framework is its documentation,

which enables other developers to use it by referring to the details provided in the

documentation about the architecture, classes, types, etc., and do something with

the functionality they provide. Both NiTE2.0 and Nuitrack provide documentation

and sample code to demonstrate how these middleware can be used. Therefore, we

must do the same for our gesture framework as well. We will reuse these samples

from NiTE2.0 and Nuitrack into our own single universal sample application that

must work with every instance of our Gesture Framework and demonstrate similar

behavior across these framework instances.

Thus, our sample application will serve as the qualitative analysis testbed that

will enable us to track our progress towards our goals and visualize and validate

our results. This includes the early discovery of the weaknesses of the framework

itself and removing them successively [126]. Broadly, the idea is to first encapsulate

NiTE2.0, followed by Nuitrack and eventually ROS as gesture providers via our

solution framework and compare the behavior of the sample application using the

different middleware. Both these above-mentioned approaches enable us to define

an entire procedure that we will follow throughout this research work to develop

our gesture framework and the functionality and the applications it enables for the

ISSv2. In the coming section, we will discuss the different evaluation methods that

we will use to evaluate our requirements and demonstrate the same capability through

experiments when possible.

3.3.2 Design and Implementation

In this section, we put forward the methodology steps that we follow to develop the

detailed design and implementation of our gesture framework:

1. We start with defining our abstract classes that will define the overall kernel of

the gesture framework based upon our domain model in Figure 27. These

classes essentially are the identified frozen spots for the gesture framework

with the required hook methods that constitute the identified hot spots for

70

our gesture framework. These hook methods can be overridden to provide

our extensibility requirement (see NFR3) for the hot spot that is susceptible

to change, in particular the gesture provider hot spot, which is an essential

requirement for the gesture framework itself to be flexible and extensible.

2. Further, we define the required data structures to enable our interoperability

requirement (see NFR4) and uniformity for our gesture framework. This is

essentially to provide uniform data to our framework applications since the

underlying middleware NiTE2.0 and Nuitrack have some differences in the

way they provide hand, gesture and depth information. Similarly, prospective

gesture providers may provide data differently, which must comply with our

gesture framework so as to not break existing code by complying with a newly

integrated middleware.

3. Next, we create our integrated sample application for our gesture framework

based on the insights from the sample applications of NiTE2.0 and Nuitrack.

The sample application will necessarily serve two purposes: first, following

the bottom-up design approach we will demonstrate and test individual

functionalities iteratively with our sample application. Secondly, this sample

application will eventually serve as a resource alongside the framework

documentation for the end users of OpenISS as an SDK, to use it effectively.

4. At this point, we must encapsulate NiTE2.0 and Nuitrack middleware to provide

the required real-time gesture recognition and hand-tracking functionality for

our Gesture Framework. Essentially, we require adapter classes for each

of these middleware to perform the intermediate adaptation of depth, gesture

and hand data to populate our gesture framework’s data structures and further

provide the data to the applications. Thus, the integrated sample application

that uses an instantiation of our gesture framework gesture provider hot spot

extensions, either NiTE2.0 or Nuitrack must exhibit similar or identical behavior

when either of these extensions are used as gesture providers for the application.

71

5. Next, after we have a baseline working Gesture Framework, we start building

our Forensic Lucid visual interaction application DigiEVISS against this

baseline framework to create the application as per the usage scenario mentioned

in Section 1.2.3, page 6. This process further supports our solution framework

from a developer’s perspective. This essentially means that not only this process

will bring certain current shortcomings of the API to the surface, but also

provide an insight in to streamlining the process of application development

using our framework.

6. After our review on ROS in Chapter 2, we found out that at the time of writing

this thesis no such ROS package was available that provides real-time hand-

gesture detection, recognition and hand tracking functionality. However, ROS

packages have existed for long enough that do provide access to raw video data

(depth and color frames) for devices such as the Microsoft Kinect. Moreover,

various ROS packages exist for OpenNI2.0 and NiTE2.0 and even one or two

for Nuitrack but, they all focus on providing skeleton tracking only instead.

Therefore, we rather create a ROS package version of our Gesture Framework

and publish real-time gesture detection and recognition data via the package and

create a corresponding ROS adapter client class to subscribe to the publisher

and obtain necessary data for adaptation between the ROS package and the

OpenISS gesture framework itself and eventually made available for the sample

application. In this scenario, our framework as a ROS package is the server that

provide gesture, depth and hand information over the ROS network stack and

the application is the one that instantiates the gesture framework ROS adapter

client that can subscribe to this data.

7. Next, we create an interface file for the SWIG tool to generate wrapper

classes for our gesture framework in Java so as to enable the performing arts

application in ISSv2 itself. We then bundle these classes as a JAR file to simply

place as is in the Processing [26] environment. We then create a backend class

specifically for our gesture framework within the ISSv2 and move on to refactor

72

existing application only to instantiate our backend and replace pre-existing

ones, such as SimpleOpenNI in the ISSv2 and analyze the behavior.

3.3.3 Evaluation

In this section, we define the methods we incorporate to evaluate our work and

compliance with the requirements. This includes quantifiable and non-quantifiable

properties of our gesture framework strictly corresponding to our functional and

non-functional requirements. Within the context of this research we employ both

quantitative and qualitative evaluation followed by the experimentation we conduct.

3.3.3.1 Qualitative Evaluation

Broadly speaking, in qualitative analysis we test the non-quantifiable properties of

our Gesture Framework mainly through observations and visual feedback via the

previously mentioned integrated sample application as a testbed for our requirements

evaluation. Essentially, the sample application will not only enable us to visually

track our progress, but also to identify problems, improve on design limitations and

essential refactoring that can be addressed early and successively across iterations.

Moreover, to answer our research questions in Section 1.5, page 24, it is mandatory

to demonstrate and evaluate our gesture framework by providing working application

prototypes conforming to their respective scenarios mentioned in Section 1.2.2, page 6.

Thus, creating two separate and specific application prototypes strictly in the context

to our scenarios using our proposed gesture framework that will be a proof-of-concept

that we can indeed design a common solution for both these applications and enable

comparisons among hot spot extensions. However, we will focus on the feasibility on

enabling such applications via a common platform by overcoming the challenges in

this research work.

Then we compare how our hot spot extensions namely NiTE2.0, Nuitrack and

ROS affect the behavior of our applications. We essentially want to compare these

adapter backends against our applications and make some useful inferences in terms

73

of desired functionalities of a solution for these applications. We compare these

backends on their gesture dictionaries, visual responsiveness, and whether or not the

gesture count matters? If yes, then what is the minimum number of gestures that are

required to enable both these applications in their complete form?

Note that usability evaluation with an actual investigator or even formal API

usability evaluation involving artists is beyond the scope of this thesis.

3.3.3.2 Quantitative Evaluation

Common run-time performance for interactive graphical applications is measured in

frames-per-second (FPS) i.e., how many frames the graphical application is able to

render to enable smooth appearance of rendered animated graphical imagery. Modern

day games typically aim for 60FPS or higher, where the highest FPS possible is

desirable. However, the render frame rate is affected by various factors such as the

type of visual effects that are used, transparency, realistic lighting, shadows etc.,

applied on the objects in the scene as well as the geometry of the said objects or

in graphics jargon “polygon count” and the final resolution of the rasterized image.

If the objects in the environment are dynamic and their topology changes due to

deformation and interactions, it may affect the frame rate. This affect is directly

proportional to the amount of objects, interaction and special effects there are and if

frames-per-second fall below 24, the end-users may experience what is known as lag

or jitter. This rate in the reality is the only one metric we consider in our evaluation

as it is the most user-perceptable. However, there are other things that may affect

our specific application types:

• Sensor rate: The rate at which the sensor devices give out sensor data

such as the Kinect provides 30FPS or 15FPS whereas Intel RealSense D435

provides 60FPS with better resolution than the former. However, this rate is

naturally independent of the render FPS as mentioned above, but may affect

the interactivity in the end-user application, which may still render at high

FPS, but the interaction may appear to be lagging if the sensor data delivery

74

rate is significantly slower. We can call this effect of sensor FPS on render FPS

as perceived FPS by the end user in reference to our real-time requirements.

Nonetheless, the two rates, render FPS and sensor FPS are otherwise fairly

decoupled.

• Sensor data processing: Now, processing of sensor data is another aspect

that may adversely affect the perceived FPS. A part of the processing takes

place in the middleware such as segmentation of hands or skeleton joints and

related transformations, e.g., using real-time physics engines for dynamic scene

or VFX generation. However, this relies on sensor data delivery rate, and any

additional overhead, may slow down the overall appearance of the generated

perceived and rendered FPS by the application.

To begin with quantifiable evaluation, we consider the render frame rate as well as the

perceived frame rate where necessary and their ratio for each and every instantiation

of the gesture framework, which entirely constitutes the four stages mentioned in

NFR1 namely:

• Motion or Gesture Capture

• Motion or Gesture Interpretation

• Visual Effects Generation

• Visual Effects Rendering

It is crucial to evaluate whether or not the framework delivers desired functionality

in real-time or not. A frame rate of 15FPS or more would be a preferred rate for

our applications to be considered real-time while 10FPS as acceptable for motion

perception. Moreover, as we will use ROS to provide the service aspect of our

solution simply by publishing data over the ROS network stack and the allowing

the application to subscribe to it. However, a bearable latency [127] is still expected

when it comes to adding multiple abstraction layers on top of one another. Thus,

when it comes to evaluating whether our solution is interoperable with middleware

75

like ROS we want to calculate this overhead introduced to the process by ROS. This

includes recording the frame rate yet again, but over the ROS network and finding

out the overhead in terms of FPS as compared to the framework abstractions alone.

To be acceptable, FPS needs to be minimally 10FPS so that it can be perceived as

motion and we are expecting an overhead. However, as long as the frame rate doesn’t

drop below the acceptable threshold, the overhead is considered bearable. Moreover,

the peer-to-peer nature of ROS’s architecture forces us to decouple the data publisher

and subsriber client application, thus, it is quite natural that even if the publisher

is not publishing any data the subscriber application can still render at 60FPS or

more. This might affect the evaluation of the overhead introduced by ROS.

To address this issue, we further instrument capturing callbacks-per-second on

both publisher and subscriber ends. To further explain this reader must know that,

middleware such as NiTE2.0 and Nuitrack have callback mechanisms that exist to

enable asynchronus processing where specific callback methods respond to certain

events such as availability of a new frame from the sensor device. Moreover, Nuitrack

provides even more similar callbacks for other events such as introduction of a new

user in the frame and so forth. Thus, we will count the number of times these callbacks

methods are called, which corresponds to the sensor device frame rate and if a new

frame is not available usually the previous one is reused. Thus, it will be quite helpful

in case of ROS where we essentially want to count the overhead introduced to the

sensor FPS as delivered to the client over the ROS network stack. So, we define our

metric effective FPS as the average of the sum of render FPS and sensor FPS as

delivered to the client application divided by 2 to measure the overhead of different

middleware on the perceived FPS by the user and the reaction time. However, this

assumes we include the sensor data related processing in this average.

effectiveFPS = (sFPS + rFPS)/2 (1)

We can summarize our different requirements under qualitative and quantitative

analyses as seen in Table 3.

76

Table 3: Requirements evaluation classification
Requirements Qualitative Quantitative
Real-Time X
Device Adaptability X
API Usability X
Cross-Platform X
Cross-Language X
Extensibility X
Interoperability X
Structural Scalability X

3.3.3.3 Experimental Evaluation

To evaluate our framework in practice, we put forward the following experiments that

enable a qualitative or quantitative analysis of the gesture framework itself:

1. Earlier, we mentioned about our integrated sample application. Now, we use

it to first obtain the depth frames, and then gestures and eventually hands via

our gesture framework. Then, we test the application by switching between

NiTE2.0 and Nuitrack gesture provider instances of our gesture framework and

note down the analysis and key points and make corrections if necessary.

2. Then, once we have built the digital evidence interaction application

DigiEVISS for Forensic Lucid investigations, we compare both NiTE2.0

and Nuitrack gesture provider instances to make inferences and note down the

key aspects of their comparisons over the same application in terms of gesture

dictionary sizes and whether or not we meet our functional requirements for

this scenario. For minimal API usability evaluation, we release the initial basic

application with only two evidential items, to be extended to four and two

observation sequences and observe them completing the task and integrate their

modifications back into the main application.

3. Subsequently, we produce the essential Java wrappers for our framework

instances, which we initially test using our integrated sample application

custom built for Processing for a qualitative evaluation. Then only we

test them with our existing visual effects pipeline in the ISSv2 and ensure

77

the proper functionality and data transfer between the two language layers.

This is where we also test the real-time aspect of the Gesture Framework,

firstly, qualitatively via the visual feedback compared between the existing

SimpleOpenNI backend compared to our OpenISS backend and in terms

of render FPS, and, secondly, comparing the frame rate with our minimum

threshold for real-time live performances on stage recorded on average through

the same sequence of visual effects present in ISSv2.

4. Having successfully built our applications conforming to our scenarios, and done

evaluating them on various aspects, we can move on to evaluate our integrated

sample application as a client to our framework delivered as a ROS package

over its network stack. The idea is to calculate the overhead introduced by

ROS and its effect on the real-time aspect of the application. Specifically here,

we compare the callbacks-per-second on the server side that is the ROS package

providing gesture data vs the integrated sample application on the client side

consuming that data. This means counting the total number of frames produced

and published by the publisher/server vs the total number of frames received

by the subscriber/client.

5. Last but not least, we choose a different unrelated test application to

demonstrate how easily we are able to plug our solution in as a library to this

test application and describe our experience in replacing existing interaction

functionality with hand gestures. For instance, this can easily be a 2D game that

requires keyboard direction keys to control and play the game, for which we can

replace the key strokes with hand gestures for direction control, made available

via our gesture framework. At this point we perform a qualitative API usability

evaluation against applicable Nielsen’s heuristics for usability evaluation.

6. After having done all these evaluations we should be able to make

concrete comparisons and suggest our experiences as a set of guidelines and

recommendations for these specific application types to application developers

along with the future work that can be done to extend and enhance the

78

capabilities of these applications and our own framework.

3.4 Summary

In this chapter, we gave the reader an overview of the various approaches we

follow to achieve our end goals and fulfill our various functional and non-functional

requirements in a procedural and systematic fashion. In the next chapter we will

further expand on these steps to design and develop our framework and how we can

instantiate our framework.

79

Chapter 4

Framework Design and Instantiation

In this chapter we provide the reader with the detailed design and implementation-

specific details of our gesture framework, its constituent classes, and its Application

Programming Interface (API). Now, we mentioned in the previous chapter that there

are three main stages of framework development, domain analysis, framework

design, and framework instantiation. In the previous chapter, we primarily

focused on the domain analysis for the framework solution and define a domain

model. Then, we put forward an action plan that described our steps to build our

Gesture Framework and perform the qualitative and quantitative analysis, the

findings of which we will discuss about in the next chapter. However, in this chapter

we describe our concrete framework design along with UML class diagrams and its

different instantiations namely, NiTE2.0, Nuitrack and ROS. In the last section and

its subsections we describe the look and feel of the integrated sample application and

realizations of our two different application scenarios as described in the first chapter.

4.1 Framework Design

The key aspect of any framework is that it is essentially a reusable design for a

specific class of problems that can be customized via creating application specific

subclasses of a parent abstract class of the framework. Not only the framework

describes the architecture of the application, it calls application code, instead of

80

having the application call specific APIs to implement a specific behavior [7]. Moving

on, we will start with providing an overview on how the data will flow from its source

and propagate through our data structures to the end user application as seen in

the Figure 28.

NUI
Middleware

Nuitrack

NiTE	2.0

Adapter
Classes

Nuitrack
Adapter

NiTE	2.0	
Adapter

ROS
Adapter

Data
Structures

Hands

Gestures

Depth	Frame

ISSv2
Performing

Arts

Integrated
Sample

Application

Forensic
Lucid

DigiEVISS

Hand-Gestures
Applications

Freenect2

Freenect

OpenNI	2.0

Nuitrack

Device
Drivers

Kinect	v2

Kinect	v1

Intel
RealSense

Pre-
recorded

Depth
Sources

Robot
Operating
System

Fakenect

OpenISS
Specialized	

Gesture	Framework

Figure 28: Data flow from device to application

In our solution, the OpenISS Specialized Gesture Framework, we can broadly

classify the flow of control into three different stages: data acquisition, data

adaptation, and data delivery, roughly following the general high-level design

principles in Figure 6, page 32.

4.1.1 Data Acquisition

In this phase, we acquire the data, essentially, the depth frames that contain crucial

information that can be extracted via algorithms provided by NiTE2.0 and Nuitrack

middleware and related solutions to classify gestures, track hands, track users and so

forth. Now the source, of these gesture data providing depth frames can be:

• A depth sensing device like the Microsoft Kinect or the Intel RealSense that

can provide depth and color streams along with related meta information.

• A pre-recorded video stream from a depth sensing device such as the Microsoft

Kinect using the libfreenect’s library Fakenect or libfreenect2’s

81

streamer_recorder, which emulate a real Kinect device and plays a

prerecorded stream on a continuous loop. A similar tool exists for RealSense.

• A ROS node that can publish depth data in the form of ROS messages over

ROS topics that can be subscribed and get data over the ROS network stack.

The data acquisition phase requires different device drivers for different devices

usually provided either by the device manufacturers or community driven open source

drivers. These drivers bridge the gap between the device and the operating system

and then this depth data can be further passed on to the NiTE2.0 and Nuitrack

middleware. Such middleware contain hand-gesture recognition algorithms which

process the aforementioned depth data and extract relevant information such as

detected and recognized gestures, hand tracking information, and associated meta

information such as a hand ID, gesture type, and their respective states.

However, before we go further, we would like to briefly talk about the role of

ROS in the implementation context. It is quite obvious to expect a delay related

to marshalling and de-marshalling of data back and forth between different systems

that are ROS and OpenISS over the ROS network stack. As mentioned before

at the time of writing this thesis there were no such ROS packages available that

can provide real-time gesture recognition and hand tracking functionalities. Now, to

address this, ideally we would create ROS packages for NiTE2.0 and Nuitrack only

to publish their respective data and subscribe to this data via OpenISS adapters

for each of these and instantiate within the client application that is the integrated

sample application. However, we instead decided to write a ROS package instead for

our OpenISS gesture framework which so far can still provide NiTE2.0 and Nuitrack

data but via our own API.

Not only can this be passed over to the ROS community as a extensible and

flexible gesture provider (first of its own kind) within the ROS package ecosystem but

also enables us to calculate the accumulative overhead of or framework abstractions

and ROS. One can speculate that incase our framework does not pose a significant

overhead it won’t affect the overall overhead introduced by ROS alone. Lastly, in

82

simple words, whatever functionality and data the OpenISS gesture framework can

provide the OpenISS ROS package must provide as well.

4.1.2 Data Adaptation

In the data adaptation phase the adapter classes enable adaptation of data between

the different interfaces of the underlying middleware with the OpenISS specialized

gesture framework API via intermediate or common data representations. This is

accomplished by the aforementioned Adapter Design Pattern [125], where the

framework instance adapts an existing object to a new use-context by means of

an intermediate Adapter object. A Client uses the Adapter operations only,

and the Adapter implements them in terms of the domain functionality of the

Adaptee [128] as seen in Figure 29. Thus, the idea is to create an object of the

gesture provider (here NiTE2.0 or Nuitrack) and simply copy the data directly from

its data members to our data structures. Once our data structures are populated,

they can then uniformly provide the essential data to a set of related hand-gesture

applications including our own realizations of application scenarios mentioned before

in the Chapter 1, Section 1.2.3, page 6 and Section 1.2.4, page 8.

Client
(ISSv2 Applications)

«interface»
OpenISS
(target)

Adapter (OIAdapters)

+ getGestures(): override

Adaptee (NiTE, Nuitrack)

+ getGestures():

adaptee.getGestures();

Figure 29: Adapter object adaptation via Composition

83

4.1.3 Data Delivery

After the data adaptation stage, comes the last stage, that is the data delivery

stage where an application can choose one of the framework instantiations and access

relevant adapted data directly from the OpenISS data structures coming from the

underlying gesture provider middleware such as NiTE2.0 and Nuitrack but via the

OpenISS API. The data are available directly via our simpler API that abstracts

away mundane tasks such as device initialization and getting the relevant gesture

and hand data associated with some form of action in the end user application. The

data are only accessible through the framework’s API and is governed by the gesture

framework itself. An overview of the OpenISS Gesture Framework API can be seen

in Table 4. In simple terms, the collection of gestures and hands in every depth

frame are available as a std::vector (C++ Standard Template Library) of their

respective data representations in OpenISS.

Table 4: OpenISS gesture framework API overview
API Call Functionality
init() Initialize devices, middleware and objects construction.
startGestureDetection() Start the gesture detection functionality.
stopGestureDetection() Stop the gesture detection functionality.
update() Call all the callbacks and update the data structures with most recent data.
startHandTracking() Start the hand tracking functionality.
stopHandTracking() Stop the hand tracking functionality.
getGestures() Get the collection of gestures and related data in the recent past frame.
getHands() Get the collection of hands and related data in the recent past frame.
stop() Release allocations or resources including the depth devices, destroy objects.

4.1.4 Design Structure and Layers

The entirety of the solution provided in this work is not merely centric to the sole

gesture framework itself. In Figure 30 we describe the different layers that are an

integral part of our solution stack. These different layers pass data from bottom

to top along with providing concrete details of the components within each layer.

Starting from the bottom-most layer we will next describe the role that different

layers play to realize the solution.

• Hardware Layer – This layer constitutes the depth sensing devices such as

84

the Kinect v1, Kinect v2 and Intel RealSense devices including the Fakenect

library from OpenKinect that comes with the Freenect library and emulates a

real device running a pre-recorded stream on a continuous loop.

• Device Driver Layer – This layer contains different device drivers that enable

access to device data captured by the devices in the hardware layer. The drivers

facilitate the transfer of data from the device to the operating system which can

further be processed by algorithms available via middleware like NiTE2.0 and

Nuitrack.

• Middleware Layer – In this layer, essentially, gesture provider middleware

such as NiTE2.0 and Nuitrack reside. Although, Intel RealSense’s middleware

librealsense2 itself does not provide any gestures yet, it provides wrappers

for OpenNI2.0; thus, eventually being compatible with NiTE2.0 also by

extension. This layer is responsible for extraction of useful information from

the depth frames received via the device driver layer and perform functionality

like gesture classification.

• Framework SDK Layer – This layer constitutes the entirety of the

gesture framework along with the core framework including essential data

representations of crucial data such as depth frame, hands, gestures and so

forth. Data processed by the middleware is adapted into our gesture framework

data representations and available via our API to the end user application.

• Application Layer – The top most layer contains the different instantiations

of the framework itself including the sample application and the ones mentioned

in Section 1.2.2, page 6.

In Table 5 we describe the structure of the work itself where, often, code is

grouped into directories or packages to manage and group different classes that work

with one another. In this work, directories like src/ and include/ contain all the

class definitions and declarations of the Gesture Framework including data structures,

85

src/
include/

Application
Layer

Integrated
Sample

Application

ISSv2
Application for
Real-time Visual

Effects

Forensic Lucid
DigiEVISS

Application
Test Application

OITracker OIGesture OIHand OIFrame

OIGestureTracker OIGestureData OIHandData OIDepthFrame

Framework
SDK

Layer

Middleware
Layer NiTE 2.0 Nuitrack RealSense roscpp

Device
Driver
Layer

OpenNI 2.0 Libfreenect/
Libfreenect2 Freenect-Driver

Intel
RealSense

Driver

Hardware
Layer Kinect v1 Kinect v2 Intel RealSense Fakenect

(Virtual Device)

Figure 30: Layered architecture

gesture enumerations, API definition, class definitions, adapter classes and so forth.

Under the samples/ directory we have grouped all the applications that were enabled

using the OpenISS gesture framework, including the integrated sample application,

and the applications realizing the scenarios mentioned in Section 1.2.2 and a test

application with the sole purpose to demonstrate the ease to plug our solution as a

library to an existing application and replace its interaction mode with hand gestures.

When providing a generic solution, especially, in this work there are lot of complex

configurations that can be easily managed by build systems like cmake. Thus, the

cmake-modules/ directory contains essential configuration files, that help lookup

and linking to of different dependencies that are required by a generic solution.

Further, the swig/ directory contains interface files and related cmake configurations

to produce Java wrappers for our gesture framework and produce a JAR file and

related compiled code packaged as libraries, thus, essentially, cross-language modules.

86

samples/
cmake-modules/
swig/

Table 5: OpenISS gesture framework concrete implementation structure
Directory Constitutes
src/ All the C++ source files, class definitions etc.
include/ All the C++ header files, declarations etc.
samples/ End user applications built using the framework itself.
cmake-modules/ Custom cmake scripts for looking up and linking with dependencies.
swig/ Interface files for the framework classes for Java JNI wrapper code.
CMakeLists.txt Top level cmake-compliant setup file.

Further, in Table 6, we describe the OpenISS gesture framework solution but

packaged as a ROS-package-compliant structure built on top of the roscpp, ROS’s

C++ API. Just like the project structure mentioned above for gesture framework,

the directories src/ and include/ contain essential class definitions for the ROS

Node (here the OpenISS gesture framework) and the msg/ directory contains the

data representations of gesture and hand collections that are published on the ROS

OpenISS package custom define topics for OpenISS itself. In the cmake-modules/

directory exist various scripts that enable looking up and linkage to with various

dependencies of the node itself. Whereas, package.xml defines properties about the

package such as its name, version number, author, dependencies on other catkin

packages and so forth. The reader may recall from Chapter 2, Section 2.2.4, page 50,

that this package will reside in the catkin_ws, that is, the catkin workspace.

Table 6: ROS OpenISS package
Directory Constitutes
src/ All the C++ source files, class definitions, using roscpp, C++ API.
include/ All the C++ header files, declarations etc.
msg/ Custom ROS publisher messages, essentially, OpenISS framework data.
cmake-modules/ Custom cmake modules for building the package with external dependencies.
CMakeLists.txt Top level cmake-compliant setup file.
package.xml Package manifest file.

As partially described before in Table 4, now, the complete concrete design of the

interface and its API, where, OIGestureTracker is the abstract class, that defines

the base kernel of the gesture framework, can be seen as an UML class diagram

in Figure 31.

In C++, one can define an abstract class by making one or more member

functions, pure virtual methods using the virtual keyword right in front and

87

src/
include/
samples/
cmake-modules/
swig/
CMakeLists.txt
src/
include/
msg/
cmake-modules/
package.xml
catkin_ws
src/
include/
msg/
cmake-modules/
CMakeLists.txt
package.xml

assigning it to zero, as seen in Figure 31. Then these pure virtual functions can be

overridden in different subclasses or concrete classes in other words. This is simply

polymorphic behavior, also known as dynamic dispatch mechanism, where, we access

the subclass member methods via a pointer or reference of its superclass as seen

in Figure 29, page 83.

OIGestureTracker

+ virtual ~OIGestureTracker() = default
+ virtual init(): OIStatusType
+ virtual update(): OIStatusType
+ virtual stop(): OIStatusType
+ virtual startGestureDetection(): OIStatusType
+ virtual stopGestureDetection(): OIStatusType
+ virtual startHandTracking(): OIStatusType
+ virtual stopHandTracking(): OIStatusType
+ virtual getGestures(): std::vector<OIGestureData>
+ virtual getHands(): std::vector<OIHandData>
+ virtual getDepthFrame(): OIDepthFrame
+ virtual convertHandCoordinatesToDepth(int, int, int, float*, float*): void

Figure 31: OIGestureTracker UML class diagram

Thus, in framework development terms, these concrete classes are the points

of variation or so-called hot spot implementations, that can be polymorphically

switched. The bare-bones framework kernel can be seen in the UML class diagram

presented in Figure 32 and constitutes the frozen spots of our gesture framework.

Classes OIGestureData, OIHandData, and, OIDepthFrame are representations of a

real world gesture, hand and depth frame as seen by the depth sensor, respectively.

«abstract»
OIGestureTracker

OIDepthFrame

const uint16_t* depth_data

+ getWidth(): int
+ getHeight(): int
+ getDepthData(): const uint16_t*

OIHandData

+ hand_id: int
+ hand_state: OIHandState
+ hand_position: Point3f

+ getHandID(): const int
+ getHandPosition(): const Point3f

OIGestureData

+ gesture_type: OIGestureType
+ gesture_position: Point3f

+ getGestureType(): OIGestureType
+ getGesturePosition(): Point3f

Figure 32: OpenISS gesture framework kernel in UML

88

Although, Table 4 provides an overview of the different API calls in a few words,

we will further expand on their functionality from the perspective of defining desired

behaviors via these methods in the various framework instantiations.

• init() – In this method, all the initializations such as device drivers, gesture

recognition, and hand tracker modules, especially those from NiTE2.0 and

Nuitrack, are done. The same goes for the roscpp, ROS’s C++ API, which is

initialized here as well.

• stop() – As the name suggests, in this method, we stop the functionality

such as gesture recognition or hand tracking, release held resources, and

destroy objects of gesture recognition and hand tracker modules created in the

constructor and initialized in the init() function.

• update() – This method is responsible for providing the most recent data as

seen by the sensor device as well as the information extracted by the middleware

by managing calls to callback methods that respond to events generated by

gesture recognition or hand tracking modules. Moreover, both NiTE2.0 and

Nuitrack provide callback mechanisms, but differently, so as to create a non-

blocking application and even delegate control to windowing libraries such as

based on OpenGL.

• startGestureDetection() – As the name suggests, we simply summon the

underlying middleware objects to commence the process of gesture recognition

or detection in real time with appropriate feedback to the user. It internally

initializes the algorithms that perform gesture classification and extract useful

information from the incoming depth frames. Both NiTE2.0 and Nuitrack are

closed-source, therefore, we cannot really comment on the kind of algorithms

they are using to do so.

• stopGestureDetection() – As opposed to the above, this method exists to

stop the process of gesture recognition or hand tracking on the incoming depth

89

frames. This is highly desirable to manage application resources since gesture

classification algorithms can be resource-extensive.

• startHandTracking() – In this method, we call the underlying middleware

objects to start the process of hand tracking, if any. This essentially means that

algorithms within the middleware will normally first recognize a hand and then

assign it an identity value to differentiate between multiple hands or users and

then track it until such information is no more available due to some reason

such as the hand is out of the field of view of the sensor itself. Now, in case of

NiTE2.0, one must first perform a gesture and once it is detected the coordinates

are used as a starting point to start tracking the hands. On the other hand, in

Nuitrack once the user itself is tracked successfully, hands are recognized and

tracked by default.

• stopHandTracking() – In this method, we stop tracking hands that are

currently being tracked in real-time. It is desirable to do so in case a hand

is no longer required to be tracked.

• getGestures() – This method adapts the gesture data from the middleware’s

data structures and populates our own, and then return the collection of

recognized gestures as a std::vector of type OIGestureData. It is crucial to

make a call to update() before in order to get the recognized gestures extracted

from the most recent depth frame.

• getHands() – Similarly here, we obtain the hand data from the middleware’s

data structures and populate our own and return the collection of hands

recognized or tracked as a std::vector of type OIHandData. Just like with

getGestures(), it is crucial to make a call to update() before in order to get

the currently tracked hands from the most recent depth frame.

• getDepthFrame() – In the first chapter, we established that for gesture

recognition and hand tracking depth data are crucial and adequate as well.

90

<<enumeration>>
OIStatusType

STATUS_DEFAULT
STATUS_OK
STATUS_TRACKER_UNINITIALIZED
STATUS_FAIL

<<enumeration>>
OIHandState

HAND_IS_ABSENT
HAND_IS_NEW
HAND_IS_LOST
HAND_IS_TRACKING
HAND_IS_TOUCHING_FOV

<<enumeration>>
OIGestureState

GESTURE_IS_ABSENT
GESTURE_IS_COMPLETE
GESTURE_IS_IN_PROGRESS

<<enumeration>>
OIGestureType

GESTURE_ALL
GESTURE_WAVE
GESTURE_CLICK
GESTURE_HAND_RAISE
GESTURE_SWIPE_LEFT
GESTURE_SWIPE_RIGHT
GESTURE_SWIPE_UP
GESTURE_SWIPE_DOWN
GESTURE_PUSH
GESTURE_WAVING

Figure 33: OpenISS gesture framework enumerations

By providing the depth frame exclusively we explore the possibility of further

extending the gesture dictionaries, preferably, by object composition.

• convertHandCoordinatesToDepth() – The coordinates that we obtain from

a depth sensors are usually real world coordinates, which need to be converted

into projective coordinates in order to display those 3D points on a 2D space

especially for our applications. However, with some precise measurements one

can compute the conversion factor for various devices. A concrete application

would be projection mapping by calculating camera intrinsic and extrinsic

parameters.

The different kinds of enumerations defined for our gesture framework can be seen

in Figure 33. Further, we will elaborate on these enumerations and data that they

represent.

• OIStatusType – It is extremely desirable to get hold of the feedback that

whether or not a method executed successfully, and if not, what is the error or

warning that can point the user in a direction towards solving the problem and

making things work as they are expected to do so. This directly supports two

of Nielsen’s usability heuristics [32] visibility of the system status and help

91

users recognize, diagnose and recover from errors. In this particular

enumeration, we have four values, namely:

1. STATUS_DEFAULT – It represents a default status value, or a value for

initialization itself.

2. STATUS_OK – It represents a successful execution of the function.

3. STATUS_TRACKER_UNINITIALZED – A special value that reports that the

underlying NiTE2.0 or Nuitrack tracker object was not initialized.

4. STATUS_FAIL – It represents that a method or an operation has failed to

execute.

• OIGestureType – This class constitutes to what we refer to as our gesture

dictionary, which currently is an aggregation of gestures from NiTE2.0 and

Nuitrack middleware. However, it is crucial to keep prospective additions to this

dictionary simple and efficient. For now we have the following enumerations of

different gesture types, namely:

1. GESTURE_DEFAULT – Represents the default value for a gesture object’s

type which essentially means an empty gesture object. It is generally a

good programming practice to provide such initial values for user defined

types.

2. GESTURE_WAVE – The simple action of waving a hand is represented by

this value.

3. GESTURE_CLICK – This value represents the click gesture with hand, which

can be thought of as pressing a large invisible button with your palm.

4. GESTURE_HAND_RAISE – This value represents the hand raise gesture.

5. GESTURE_SWIPE_LEFT – This value represents the hand swipe gesture to

the left.

6. GESTURE_SWIPE_RIGHT – This value represents the hand swipe gesture to

the right.

92

7. GESTURE_SWIPE_UP – This value represents the hand swipe gesture in

upwards direction.

8. GESTURE_SWIPE_DOWN – This value represents the hand swipe gesture in

downwards direction.

9. GESTURE_PUSH – This value is similar to the one above that is,

GESTURE_CLICK, where the only difference is that this belongs to Nuitrack

middleware.

10. GESTURE_WAVING – This value is similar to GESTURE_WAVE, but, belongs

to Nuitrack whereas the other comes from the NiTE2.0 middleware.

• OIHandState – This enumeration represents different states a OIHandData

object, which is our representation of a real world hand, can have at a given

instant in time. These states are crucial to create sophisticated applications

based on our experience with this work. One can leverage these states to create

effective interaction between the user and the application.

1. HAND_IS_ABSENT – This value indicates that there is no hand present in

the most recent depth frame received.

2. HAND_IS_NEW – This value indicates the presence of a newly tracked hand

in the most recent depth frame received.

3. HAND_IS_LOST – This value indicates the a previously tracked hand is lost

due to some reason.

4. HAND_IS_TRACKING – This value indicates that the hand is currently being

tracked.

5. HAND_IS_TOUCHING_FOV – This value indicates that the hand is currently

on the boundary of the sensor’s field of view.

• OIGestureState – This enumeration represents different states of a

OIGestureData object, which is our representation of a real world hand gesture.

93

1. GESTURE_IS_ABSENT – This value indicates that there is no gesture

detected in the most recent depth frame received.

2. GESTURE_IS_COMPLETE – This value indicates that the detected gesture

is complete.

3. GESTURE_IS_IN_PROGRESS – This value indicates that the gesture is

currently in progress.

Now that we have laid out the definitions of the baseline framework structure and

important classes, we can see the different instantiations in the UML representation

shown in Figure 34. This essentially means that these three instantiations are the

subclasses that provide specific behavior to the methods of the superclass as per

the underlying middleware. However, the kernel will remain the same, and still the

control flow will be governed by the framework itself in all of its instantiations. In the

next section, we will further elaborate on these different instantiations and eventually

our different applications built using our gesture framework API.

OINiTEGestureTracker OINuitrackGestureTracker OIROSGestureTracker

«abstract»
OIGestureTracker

Figure 34: OpenISS gesture framework class Hierarchy

4.2 Framework Instantiations

In this section, we will elaborate on the hot spot implementations provided on top of

the NiTE2.0 and Nuitrack middleware and then corresponding adapters for ROS to

publish the same data over its network stack. Now, as seen previously in Figure 29,

in C++, the instantiations can take the following forms as seen in Listing 4.1.

94

openiss::OIGestureTracker* gesture_tracker = new openiss::OINiTEGestureTracker;
openiss::OIGestureTracker* gesture_tracker = new openiss::OINuitrackGestureTracker;
openiss::OIGestureTracker* gesture_tracker = new openiss::OIROSGestureTracker;

Listing 4.1: OpenISS Gesture Framework Polymorphism

This is a classic polymorphism example, where the class OIGestureTracker

defines the API, but is unaware of which particular instantiation will provide the

functionality.

4.2.1 NiTE2.0

In this section, we shed light on how we leverage the NiTE2.0 middleware to be one of

the many (including prospective middleware) gesture provider to our framework. We

then uniformly populate the data from its API into our much simpler API provided

by our gesture framework. The OINiTEGestureTracker class can be referred to

as a derived class or a subclass of the abstract class OIGetsureTracker. The sole

purpose of this class is to adapt between the two different interfaces, that is, NiTE2.0

middleware’s gesture recognition and hand tracking API and our own framework’s

API. At the same time, this class also takes care of populating the essential data

structures required by the end user applications. As NiTE2.0 has a rather small

gesture dictionary of only three gestures, namely:

1. GESTURE_WAVE

2. GESTURE_CLICK

3. GESTURE_HAND_RAISE

Now, limited gestures as low as three in case of NiTE2.0 can be restricting for

applications requiring complex interactions. However, it is still adequate for testing

our gesture framework against existing visual effects applications in ISSv2 because a

few of our existing ISSv2 applications previously used SimpleOpenNI [37], which is

essentially a Java wrapper of OpenNI2.0 and NiTE2.0, for gesture interaction. Thus,

this enables us to compare our gesture framework as a backend with the existing

95

ISSv2 SimpleOpenNI backend. By default, NiTE2.0 provides gesture detection and

hand tracking through the HandTracker and HandTrackerFrameRef classes, where

the class NewFrameListener reacts to events generated by the HandTracker class.

To use this class, one must derive a class from it that implements the onNewFrame()

method as seen in Figure 35. This is the method that will be called when an event is

generated.

«abstract»
OIGestureTracker

openiss::OINiTEGestureTracker

- FrameListener* frame_listener
- nite::Status nite_status
- nite::HandId hand_id
- nite::HandTracker nite_hand_tracker
- nite::HandTrackerFrameRef nite_hand_tracker
- nite::Point3f gesture_position
- openni::VideoFrameRef openni_depth_frame
- OIStatus openiss_status
- OIGestureData openiss_gesture
- OIHandData openiss_hand
- std::vector<OIGestureData> openiss_gestures
- std::vector<OIHandData> openiss_hands

+ ~OINiTEGestureTracker() override
+ init(): OIStatusType
+ update(): OIStatusType
+ stop(): OIStatusType
+ startGestureDetection(): OIStatusType
+ stopGestureDetection(): OIStatusType
+ startHandTracking(): OIStatusType
+ stopHandTracking(): OIStatusType
+ getGestures(): std::vector<OIGestureData>
+ getHands(): std::vector<OIHandData>
+ getDepthFrame(): OIDepthFrame*
+ convertHandCoordinatesToDepth(int, int, int, float*, float*): void

FrameListener

+ onNewFrame() override: void

nite::HandTracker::NewFrameListener

+ virtual onNewFrame(): void

Figure 35: NiTE2.0 instantiation in UML for OpenISS gesture provider hot spot
adapter

We will now further expand on the procedure followed to build this hot spot

implementation adapter.

1. We started by inheriting the class OIGestureTracker publicly in our class

OINiTEGestureTracker. Next, we state all the methods as override,

including constructor and destructor. This promotes RAII (Resource

Acquisition is Initialization) to manage object lifetimes through constructors

and destructors. Therefore, resources like the depth device can be released

96

nite::HandTracker hand_tracker;
nite::hand_tracker.startGestureDetection(nite::GESTURE_CLICK);
nite::hand_tracker.startGestureDetection(nite::GESTURE_WAVE);
nite::hand_tracker.startGestureDetection(nite::GESTURE_HAND_RAISE);

Listing 4.2: Start gesture detection NiTE2.0

effectively once it is no longer required or the object holding the device has

completed its lifetime. However, this is more of a general programming practice

strictly in case of C++, so all our class definitions leverage this concept for

efficient object lifetime management. This may seem like a redundant detail,

but it is of utmost importance. Now, the next step would be to define these

overridden methods to attain desired functionality.

2. We start with the method init() and initialize NiTE2.0 in here including

the initialization of the device either using OIDevice or by default

taken care of by the middleware itself. To initialize NiTE2.0 we call

nite::NiTE::initialize() within this method. Subsequently, stop() to

destruct or release the device and other related resources by making a call to

nite::NiTE::shutdown().

3. A peculiar detail of the NiTE2.0 API is that to start tracking a hand or

hands one must perform a NiTE2.0 recognized gesture with the very hand that

must be tracked. Additionally, the gesture type must be mentioned that the

tracker object should expect the user to perform. Henceforth, in the method

startGestureDetection() we initiate gesture detection for all three gesture

types provided by NiTE2.0, see Listing 4.2.

4. The method onNewFrame(), as mentioned previously, also see Figure 35,

is responsible for providing the most recent data, as part of the design

of the NiTE2.0 middleware; therefore, the adaptation of data must take

place in this method. Now, in NiTE2.0, the two main functionalities of

class nite::HandTracker are recognizing hand gestures and tracking hands.

Whereas, nite::HandTrackerFrameRef represents a frame of data from

97

nite::HandTracker, which contains the currently recognized gestures and

hands in the scene. Additionally, nite::HandTracker is able to track hands

independent of the user’s body.

This means by creating instances of these classes, one can obtain the

gestures and hands information via the class methods and data members

through these instances and simply copy the information over into our

data structures and making it available by methods getGestures() and

getHands(), which are essentially our two functional requirements FR1

and FR2. For our another functional requirement FR3, we access it via

openni::VideoFrameRef::getData(), which returns a pointer with the

undefined data type (void*) to the first pixel of the frame. It is important

to note that the reader might wonder about the update() method, which is

expected to update the data every time a frame is received essentially, an array

of pixels which can be of type depth, color, but in this case we simply return

the control back to the program. This means that although the methods are

overridden, based on specific use cases they may or may not be defined in the

subclasses. However, for depth pixels received we convert it into an array of

depth pixels of type uint16_t and provide it via our API. This also enables

serializing some desired frames if required. Thus, essentially we are wrapping

underlying middleware NiTE2.0 functionality within our API calls.

4.2.2 Nuitrack

The OINuitrackGestureTracker class is a derived class or a subclass of the abstract

class OIGetsureTracker, just like the OINiTEGestureTracker earlier. In this class,

we bridge between the Nuitrack middleware’s gesture recognition and hand tracking

API with our own framework’s API. At the same time, this class also takes care

of populating the essential data structures required by the end user applications.

Moreover, Nuitrack has a gesture dictionary of six gestures, namely:

1. GESTURE_WAVING

98

// Create required Nuitrack modules instances for data access
depth_sensor = tdv::nuitrack::DepthSensor::create();
gesture_recognizer = tdv::nuitrack::GestureRecognizer::create();
hand_tracker = tdv::nuitrack::HandTracker::create();
user_tracker = tdv::nuitrack::UserTracker::create();

Listing 4.3: Essential Nuitrack modules instances

2. GESTURE_SWIPE_LEFT

3. GESTURE_SWIPE_RIGHT

4. GESTURE_SWIPE_UP

5. GESTURE_SWIPE_DOWN

6. GESTURE_PUSH

This provides the end user a broader scope of actions that can be associated with

gestures. However, there is a tradeoff: this isn’t directly proportional, that is, more

gestures does not necessarily mean more usability via mapping to diverse actions,

rather it can have an effect on the learning curve and recalling all of them might

be difficult; thus, negatively impacting usability. Unlike NiTE2.0, we don’t need to

explicitly start hand tracking in Nuitrack rather once a user is tracked successfully,

hands are tracked automatically.

1. Just like OINiTEGestureTracker we started by inheriting class

OIGestureTracker publicly in class OINuitrackGestureTracker marking

all the methods with the keyword override.

2. Next, we start with the method init() and wrap Nuitrack’s own initialization

method tdv::nuitrack::Nuitrack::init(). After, we create instances of

four essential modules using their respective create() methods, namely:

which provides access to the various callback methods (see Listing 4.4) defined

by the Nuitrack API, that respond to corresponding events and provide the

most recent data including depth frames as seen in Figure 36.

99

// Various Nuitrack callback functions
void onNewDepthFrame(tdv::nuitrack::DepthFrame::Ptr depth_frame);
void onNewGestures(tdv::nuitrack::GestureData::Ptr gesture_data);
void onHandUpdate(tdv::nuitrack::HandTrackerData::Ptr hand_data);
void onUserUpdate(tdv::nuitrack::UserFrame::Ptr user_frame);
void onUserStateChange(tdv::nuitrack::UserStateData::Ptr user_state);
void onNewUser(int user_id);
void onLostUser(int user_id);

Listing 4.4: Nuitrack callbacks providing essential data

Then the callback methods provide access to the most recent information

extracted from the depth frame including the frame itself captured by the

depth sensing device. Since these methods are providing the essential data,

the adaptation itself takes place within these individual methods that populate

our data structures. Additionally, it is important to make a call to the

tdv::nuitrack::Nuitrack::run() to start processing the data provided by

the sensor asynchronously. Subsequently, in our method update(), we must

call tdv::nuitrack::Nuitrack::update(), to request recent data from all

created Nuitrack modules mentioned above, and all the callback functions are

called to fetch the most recent data.

3. Finally, in the method stop() we release allocations and destroy module

instances created prior and initialized in init() to free resources such as the

depth sensing device.

4.2.3 ROS

As we mentioned prior, we provide the OpenISS gesture framework as a ROS package

that is the first of its kind to provide a flexible solution for gesture recognition

applications where essential data can be published and subscribed to over ROS’s

network stack. Yet, another reason was to be able to uniformly evaluate ROS vs

non-ROS applications for both NiTE2.0 and Nuitrack middleware. However, most

importantly, this is to fulfill our requirements, NFR4, NFR5, and NFR6. The first step

was to adapt between the OpenISS Gesture framework API and roscpp API. ROS

provides Messages, which essentially are data structures that are roscpp-compliant.

100

«abstract»
OIGestureTracker

openiss::OINuitrackGestureTracker

- tdv::nuitrack::DepthSensor::Ptr depth_sensor
- tdv::nuitrack::OutputMode output_mode
- tdv::nuitrack::GestureRecognizer::Ptr gesture_recognizer
- tdv::nuitrack::HandTracker::Ptr nuitrack_hand_tracker
- tdv::nuitrack::UserTracker::Ptr nuitrack_user_tracker
- tdv::nuitrack::Vector3 projective_coordinates
- tdv::nuitrack::Vector3 real_coordinates
- OIStatus openiss_status
- OIGestureData openiss_gesture
- OIHandData openiss_hand
- std::vector<OIGestureData> openiss_gestures
- std::vector<OIHandData> openiss_hands

+ ~OINuitrackGestureTracker() override
+ init(): OIStatusType
+ update(): OIStatusType
+ stop(): OIStatusType
+ startGestureDetection(): OIStatusType
+ stopGestureDetection(): OIStatusType
+ startHandTracking(): OIStatusType
+ stopHandTracking(): OIStatusType
+ getGestures(): std::vector<OIGestureData>
+ getHands(): std::vector<OIHandData>
+ getDepthFrame(): OIDepthFrame*
+ convertHandCoordinatesToDepth(int, int, int, float*, float*): void
- onNewDepthFrame(tdv::nuitrack::DepthFrame::Ptr depth_frame): void
- onNewGestures(tdv::nuitrack::GestureData::Ptr gesture_data): void
- onHandUpdate(tdv::nuitrack::HandTrackerData::Ptr hand_data): void
- onUserUpdate(tdv::nuitrack::UserFrame::Ptr user_frame): void
- onUserStateChange (tdv::nuitrack::UserStateData::Ptr user_state): void
- onNewUser (int user_id): void
- onLostUser (int user_id): void

Figure 36: Nuitrack instantiation in UML for OpenISS gesture provider hot spot
adapter

// Gesture.msg
uint16 gesture_type
geometry_msgs/Point gesture_position

Listing 4.5: OpenISS ROS message (gesture)

For instance, for our data types OIGetsureData, OIHandData and OIDepthFrame

as seen in Figure 32 an equivalent of all in roscpp messages can be seen in Listing 4.5,

Listing 4.6 and Listing 4.7 respectively.

101

// Hand.msg
uint16 hand_id
bool hand_state
geometry_msgs/Point hand_position

Listing 4.6: OpenISS ROS message (hand)

// DepthFrame.msg
uint16[] depth_data
uint16 frame_width
uint16 frame_height
uint16 frame_id
time frame_timestamp

Listing 4.7: OpenISS ROS message (depth frame)

OpenISS
ROS

Package

OpenISS
Gesture

Framework

adapt to
roscpp
via ROS

messages

OIROSGestureTracker

publish

subscribe
and adapt

back to
OpenISS

OIGestureTracker

ROS
Network

stack

Figure 37: ROS adaptation on publisher/subscriber ends

However, this adaptation can be referred to as the server-side adaptation, that

is adaptation from OpenISS data to ROS data but, on the other side, which is

the OpenISS framework itself, requires yet another adapter to adapt data between

roscpp back to the OpenISS API as seen in Figure 37. Moving on, these messages

now can be published over custom defined topics for our OpenISS ROS package

as seen in Figure 38 where ROSAdapter is the adapter class that subscribes to the

published data and adapts it back to the OpenISS gesture framework API. On a side

note, ROS’s catkin relies heavily on cmake and contains numerous cmake macros

that enable package management, dependencies management, linking to essential

libraries and so forth.

102

Figure 38: ROS OpenISS node and topics graph

After defining the corresponding data structures, they are populated from the

OpenISS API, and published using the ros::Publisher class from the roscpp API,

and should always be created via a call to NodeHandle::advertise(). Essentially,

we publish collection of gestures, tracked hands that can have different status, depth

frame including individual gesture and hand data as seen in Figure 39.

On the other end, we have various ros::Subscriber class instances, that

subscribe to the aforementioned publishers on their individual topics as seen

in Figure 40. Essential data, that is depth, gestures and hands are adapted to

the OpenISS API and populate its data structures and made available to the

applications via methods namely, adaptDepthData(), adaptGestureData() and

adaptHandData() respectively also can be seen in Figure 40.

To summarize, one can easily notice a trend that can be generalized for prospective

solution say X that can be leveraged via our framework by creating suitable

adapters enabling extensibility, see NFR3, and intermediate data representations for

interoperability, see NFR4:

1. Publicly inherit the abstract class OIGestureTracker and then override and

implement its various methods depending on the use case.

2. Adapt the interface between OpenISS API and X’s API via a suitable design

pattern such as the Adapter Object Pattern as seen previously in Figure 29.

103

OINuitrackGestureTracker

openiss_gesture_tracker

- ros::NodeHandle node_handle
- ros::Publisher gesture_publisher
- ros::Publisher hand_publisher
- ros::Publisher gesture_array_publisher
- ros::Publisher hand_array_publisher
- ros::Publisher depth_frame_publisher
- openiss::OIGestureTracker* gesture_tracker
- std::vector<openiss::OIGestureData> gestures
- std::vector<openiss::OIHandData> hands
- openiss::OIDepthFrame depth_frame

+ init(): void
+ publish(): void

OIGestureTracker

OINiTEGestureTracker

Figure 39: Publisher: OpenISS ROS NiTE2.0 and Nuitrack instantiations

3. Create applications that can use one or the other form of gesture recognition

and hand tracking for natural interaction using hands.

4.2.4 Framework Cross Language Module

One of our non-functional requirements from Chapter 1 is Cross-Language, see

NFR8, and, in Chapter 2 we talked about a mature tool named SWIG, which stands

for Simplified Wrapper and Interface Generator. Now, SWIG can generate JNI (Java

Native Interface) code from C/C++ code by creating interface files for corresponding

C++ classes that must be wrapped into JNI code. This essentially means a Java

program can call into C/C++ code from Java. For real-time requirements, see NFR1,

we chose C++ as the primary implementation language; however, as mentioned prior

104

openiss::OIROSGestureAdapter

- ros::Subscriber depth_frame_subscriber
- ros::Subscriber gestures_subscriber
- ros::Subscriber hands_subscriber
- ros::Subscriber hand_subscriber
- OIStatus openiss_status
- OIGestureData openiss_gesture
- OIHandData openiss_hand
- std::vector<OIGestureData> openiss_gestures
- std::vector<OIHandData> openiss_hands

+ ~ OIROSGestureAdapter() override
+ init(): OIStatusType
+ update(): OIStatusType
+ stop(): OIStatusType
+ startGestureDetection(): OIStatusType
+ stopGestureDetection(): OIStatusType
+ startHandTracking(): OIStatusType
+ stopHandTracking(): OIStatusType
+ getGestures(): std::vector<OIGestureData>
+ getHands(): std::vector<OIHandData>
+ getDepthFrame(): OIDepthFrame*
+ convertHandCoordinatesToDepth(int, int, int, float*, float*): void
- adaptDepthData(const openiss_gesture_tracker_msgs::DepthFrame& depth_frame_msg)
- adaptGestureData(const openiss_gesture_tracker_msgs::GestureArray& gestures_msg)
- adaptHandData(const openiss_gesture_tracker_msgs::HandArray& hands_msg)

«abstract»
OIGestureTracker

EndUserApplication

Figure 40: Subscriber: applications instantiating NiTE2.0 or Nuitrack

ISSv2 is Java-based. Thus, we leverage SWIG to generate such JNI code which we

bundled as a JAR file that can be placed into Processing’s libraries directory. The

main challenge is to define suitable interface files and SWIG typemaps, which enable

a mapping between native and user defined types in C++ code and corresponding

types in Java which can be created to exchange data back and forth.

The most essential data that is required for ISSv2 application for our scenario (see

Section 1.2.4, page 8), is the depth frames, and all the recognized gestures and hands

within those frames see Figure 32. Since we are using the std::vector type from

C++ STL, it was relatively easy to wrap using SWIG library itself. It provides an

105

// SWIG library for std::vector
%include "std_vector.i"

// Typemaps OpenISS types to corresponding Java types
%template(GesturesVector) std::vector<openiss::OIGestureData>;
%template(HandsVector) std::vector<openiss::OIHandData>;

...

%include "OIGestureTracker.h"
%include cpointer.i

Listing 4.8: SWIG interface file for OIGestureTracker

interface for the std::vector type named std_vector.i that can be included in the

interface file for the desired C++ class that uses std::vector type. Therefore, we

can define an interface file, see Listing 4.8 for the abstract class OIGestureTracker.

The next challenge is the conversion of our class OIDepthFrame, for which we

leverage the typemaps.i library from SWIG itself. Now, the reader can see in

Listing A.1 various kinds of typemaps such as jni, jtype, jstype and javaout.

Curious readers can read about these in detail in the official SWIG documentation.

• jni – JNI C types that provide default mapping of types from C/C++ to JNI.

• jtype – Java intermediary types that provide default mapping of types from

C/C++ to Java.

• jstype – Java types that provide default mapping of types from C/C++ to

Java.

• javaout – converts from jstype to jtype, but, from native method call return

type.

• out – converts method return values from C/C++ to Java. This is where

we create a Java type array from C++ pointer to array of pixels as seen in

Listing A.1.

cmake’s built-in macros for SWIG are used to help generate and manage the

various Java related files created in the process. Since we are only interested in

106

//
%typemap(jni) unsigned short* "jshortArray"
%typemap(jtype) unsigned short* "short[]"
%typemap(jstype) unsigned short* "short[]"
%typemap(javaout) unsigned short* {

return $jnicall;
}
%typemap(out) unsigned short*
{

long lSize = (arg1)->getWidth() * (arg1)->getHeight();
if ((arg1)->getDepthData() != nullptr)
{

// Create a new short[] object in Java
jshortArray data = JCALL1(NewShortArray, jenv, lSize);
if (data == nullptr)
{

jclass excep = jenv->FindClass("java/lang/NullPointerException");
if (excep)

jenv->ThrowNew(excep, "SIGSEV null pointer exception!");
$result = 0;
return $result;

}
// Copy pixels from image buffer
JCALL4(SetShortArrayRegion, jenv, data, 0, lSize, (jshort*)result);
$result = data;

}
else { $result = 0; }

}

...

%include "OIDepthFrame.h"

Listing 4.9: SWIG interface file for OIDepthFrame

the essential data required to run ISSv2 applications, we have only described those

in the above seen interface files. The generated Java code once bundled into a

dynamic library can be used alongside a JAR, which is essentially a Java archive

with the generated Java class like wrapperJNI.java seen in Chapter 2, Section 2.2.6,

page 55 using cmake’s command add_jar. This JAR can now be directly used in

the Processing environment including ISSv2, but provided the OpenISS Gesture

Framework is bundled along with it in the form of a library just like the one mentioned

above including middleware dependencies. It is important to mention the role of

rpath, that is run-time search path that gets encoded with such bundled generated

libraries. If this path is not handled and set properly it affects the portability of

the create libraries. However, just like the OpenISS ROS package this Java bundle

must provide similar functionality to the OpenISS Gesture Framework itself.

107

wrapperJNI.java

4.3 Framework Applications

In this section, we talk in detail about the various applications built using

our OpenISS Gesture Framework to test all the functional and non-functional

requirements mentioned in Chapter 1 (Section 1.2.6, page 12) and realize our

motivational scenarios.

4.3.1 Integrated Sample Application

The integrated sample application is crucial to this research work in different ways.

As mentioned before in Chapter 3, Section 3.3.1, page 69, it enables iterative testing

of features as we progress implementing our work and serve as a visual qualitative

testbed for a subset of non-functional requirements. The main components of the

application can be seen in the UML diagram shown in Figure 41.

Integrated_Sample_Application

- int width
- int height
- OIGestureTracker* tracker
- OIDepthFrame depth_frame

+ init(): void
+ update(): bool
+ release(): void
- onNewDepthFrame(OIDepthFrame &depth_frame): void
- initTetxture(int width, int height): void
- renderTexture(): void
- drawHistory(OIGestureTracker* tracker, int id,
 HistoryBuffer<20>* history, OIDepthFrame &depth_frame): void
- drawTrail(OIDepthFrame &depth_frame): void

Figure 41: Integrated sample application UML diagram

Now, we will first elaborate on the application from the development perspective

and then describe what exactly the application does and what it represents in context

to the functionality provided by the Gesture Framework:

1. We start by creating one of the three instances as seen in Listing 4.1 before and

calling the methods init() and startGestureDetection() in the init()

of the application itself.

108

Figure 42: Integrated sample application viewer

2. Next, in the update() method of the application we initialize the texture once

and then call the private methods onNewDepthFrame(), renderTexture, and

drawTrail() where in onNewDepthFrame() we call the update() method

of the Gesture Framework API and get the depth frame data and copy it to

the texture to visualize by calling the renderTexture method see Figure 42.

Finally, in the drawTrail() method we obtain the std::vector of gestures

and hands. Now, every time a gesture is performed or a user is tracked

successfully, it will trigger hand tracking, which in context to the application

means a colored GL_POINT, just like the green and red on the left and right

hand as in Figure 42. Moreover, a tracked hand will be followed by a trail of

points which denote the most recent past positions the hand went through.

3. Then, we simply need to switch between the three different instances of

the Gesture Framework, see Listing 4.1, and the ideally the behavior of the

application should remain the same. The findings of this are discussed in the

next chapter. However, in case of the OpenISS ROS package, one must first

start the master ROS node called roscore and then run the package itself using

109

the roscpp command rosrun followed by the name of the package and then

the name of the ROS node. Once all of this is done, we can run this application

and see the results.

4.3.2 DigiEVISS

In Chapter 1 under Section 1.2.3, page 6, we presented the reader with a

specific scenario that involves a forensic investigator wishing to manipulate

preloaded visualized digital evidence objects in a gamified warehouse-like application,

DigiEVISS. These manipulations help the investigator to create a 3D visual

representation of a partial dataflow graph that further is a visual reminiscent

of Forensic Lucid encoded program’s evidential context that contains one or

more observation sequences in an evidential statement. However, to perform these

manipulations and create such a representation the investigator prefers natural

interaction via hand gestures. Henceforth, our gesture framework that essentially

provides a solution to this interactivity problem by providing hand gesture interaction

abilities that are used in the application to perform such manipulations. The

application is designed primarily keeping in mind the MVC pattern which stands

for model, view and controller components of an application [129]. Currently, the

model component of our DigiEVISS application is assumed to be preloaded digital

evidence whereas the controller component is hand gesture interaction and the viewer

is the 3D application window in which we render our objects and manipulations. The

best illustration of the desired interaction for this application is shown in a related a

YouTube video [8] showing the creator placing 3D models of various planets within

a 3D application via hand gestures (see Figure 43) and we strongly encourage the

reader to watch it. The newest illustration of the desired level of interaction and data

processing is presented in the aforementioned A Clever Label [81] work.

Now, based on the nature of the application required, that is a 3D warehouse-

world-like application (the “warehouse” is a potentially large navigable game space),

we choose the well known cross-platform development library SDL [45] (Simple

110

Figure 43: 3D application [8] (arranging planets with hands and gestures)

DirectMedia Layer) that provides low level access to audio, input devices, and

graphics hardware via OpenGL. At the same time, plenty of boilerplate code such as

setting up the camera view point, near and far planes, field of view, shaders and basic

geometry such as the spheres (or originally referred to as bubbles in [130–132]) for

the 3D warehouse-like application has been reused from Open Source code available

on platforms like GitHub. We assume our readers have a fair understanding of

the OpenGL specification and libraries such as SDL in general. Thus, we will

simply skip related details since the goal is to provide a solution that can enable the

aforementioned scenario. This essentially means that irrespective of how sophisticated

or elementary the application itself can be, our solution must be capable of enabling

natural interaction via real-time hand gestures and we will only focus on the parts,

which enable such natural interaction in this application. However, the structure of

the application itself and related classes can be seen in Figure 44.

Broadly, Camera class takes care of the viewpoint of the application whereas

ApplicationRenderer class is responsible for objects that will be rendered within

the application and within this class we instantiate our framework instance. The

Scene class essentially represent the viewer window which simply leverages both

classes to visualize rendered objects. Since, NiTE2.0 and Nuitrack have quite different

gesture dictionaries, it is imperative, for comparisons, to design the application

111

Camera

+ getNearPlane(): float
+ getFarPlane(): float
+ getFieldofView(): float
...

Renderer

+ virtual Init(): bool
+ virtual Draw(Camera &camera): void

Scene

+ InitGL(): bool
+ Run(): void
+ Shutdown(): void

ApplicationRenderer

+ Init(): bool
+ Draw(Camera &camera): void
- DrawHandPointers(): void
- DrawSphere(): void
- DrawSemnaticLink(): void

uses uses

uses

Figure 44: DigiEVISS structure in UML

somehow accommodating to both these gesture dictionaries. Later, based on our

experiments, we will recommend, which middleware is better for this type of

application.

The first preview sketch of our application can be seen in Figure 45 where

the reader can spot multiple spheres in blue that are dispersed in a virtual

3D environment. These spheres represent the preloaded digital evidence objects

representing observations that the forensic investigator will arrange using hands and

gestures into one or more observation sequences. On the left bottom corner, there

are two buttons that will generate the Forensic Lucid program similar to one

seen in Listing 2.1 based upon the order of observations defined in the observation

sequence created by placing the spheres in a desired order and then compile it with

the GIPC, the details of which are provided further below. (The “preloading” aspect

refers to either parsing an index of evidence identifiers from a source like a database or

using GIPC to parse Forensic Lucid representations of the same, and representing

these identifiers as the spheres with a possibility to render the content of some of

the media types there – similarly to ISSv1 the Tangible Memories [130] interactive

documentary film idea. However, the preloading is outside the scope of this thesis.)

Initially, following the bottom-up approach we first created a rather primitive

version of our application consisting of only two spheres, which at most could

create one observation sequence of two observations as represented by the two

112

Figure 45: Scenario I: DigiEVISS application

aforementioned spheres. Recently, an opportunity to evaluate our gesture framework’s

gesture dictionary and the application surfaced in the second half of the Summer

2019 term the INSE6610 (Cybercrime Investigations) course that was delivered by

Dr. Serguei Mokhov here at Concordia University. Normally, students are given a set

of various project work choices that they can choose from which is relevant to the

course work. As our application is relevant to the course itself, the OpenISS gesture

framework and the Forensic Lucid application were presented as one of the project

work choices to employ its API usability aspects to extend the application to include

more than two spheres as to create observation sequences with two or more spheres

using the gesture set made available by the OpenISS gesture framework.

This project work was undertaken by a group of students namely, Chen Ling,

Yuaho Mao and Chao Wang [133] that not only extended the application to include

more than two spheres and create observation sequences with two or more spheres,

but also evaluated the OpenISS gesture framework’s gesture dictionary in context

to the application’s HCI requirements (essentially usability of certain gesture types

for this application). However, the findings of this work have been deferred to the

next chapter for better context in Section 5.3, page 130. For now, the difference

113

Figure 46: DigiEVISS application first and second iterations

between the first iteration and second iteration of the Forensic Lucid application

can be seen in Figure 46. However, although the most recent version can manipulate

multiple (but limited number of) spheres, we will illustrate essential information using

only four spheres for the purpose of better clarity and visibility in the related figures.

The same goes for not yet displaying preloaded data contained within each of these

spheres until later. It is well understandable that currently the reader won’t be able

to differentiate between the spheres but the intent is to emphasize on other functional

aspects such as gestures and enabling the requirements of the application.

Figure 47: DigiEVISS application (tracked hand pointers)

Now, we will reiterate through the manipulations required that are described in

detail in Section 1.2.3, page 6:

114

Figure 48: DigiEVISS application (grabbing a sphere)

Figure 49: DigiEVISS application (semantic link)

1. Select up to two digital evidence representation objects (known as

“observations” in Forensic Lucid parlance), one at a time, via a

gesture, and hold each one with each hand so that they can be

naturally moved around with the hands that are holding these objects

to be arranged in a desired sequence within the virtual 3D space.

Firstly, to select any digital evidence object we require a recognized hands

that are currently being tracked. The tracking hands in this application are

115

represented using a small blue triangle representing a hand cursor or a hand

pointer in other words, as can be seen in Figure 47. Now, once a tracking hand

is above and close to the sphere it can be picked or grabbed by the hand by

performing a gesture on it as seen in Figure 48. This is essentially when the

distance between the sphere origin and the tracked hand position is less than

or equal to the radius of the sphere.

2. Then create a semantic link (a time successor relationship) between

these selected objects by bringing them closer and placing them

in a desired order within the 3D application. This is required

because Forensic Lucid observation sequence evidential context is

a chronological ordered collection of observations.

Every sphere in the application is an instance of the Sphere class, which has

attributes such as sphere_id and sphere_data, using these we can maintain

and store the order of the observations in the collection, which is essential as

the end result of the observation sequence is used in the generation of the

corresponding Forensic Lucid program. Specifically, the sphere_id consists

of the character o (as in observation) followed by an integer specifying the

identity number starting from 0. Therefore, within these figures the four spheres

will have their sphere_id’s as o0, o1, o2, o3 and so forth starting from left to

right. Now, to semantically link two evidential objects, the user must grab the

spheres with hands that are currently being tracked and are visible as triangle

cursors in the 3D application and bring them close enough. In this case, when

the distance between the origins of two spheres is less than or equal to the sum

of their radii. In Figure 49 the reader can see the link between two spheres

represented as a fine blue line stretched between their origins.

3. Once the investigator is done creating an observation sequence

with those semantically linked digital evidence objects, generate a

Forensic Lucid encoded program including the evidential statement

and compile it with the corresponding compiler within the General

116

os
where

Listing 4.10: Forensic Lucid program generation (header)

evidential statement es1 = os2;
os = os2;

end

Listing 4.11: Forensic Lucid program generation (footer)

Intensional Program Compiler (GIPC) framework.

Referring to the simple Forensic Lucid program in Listing 2.1, page 38 we

divide the program generation logic into three parts. For now, the entire

program is generated by appending different strings together where some

of them are being dynamically generated by the manipulations performed

within the application into one final std::string that is output as

the simple-flucid-program.ipl. However, to create this final output

std::string that is the Forensic Lucid program itself we use a header

string, a footer string and an observation sequence string that is partially

built dynamically based on how the spheres representing the observations (o0,

o1, o2, o3) were arranged within the 3D application using hands and gestures.

To further elaborate, the header and footer will consist of Listing 4.10

and Listing 4.11 from Listing 2.1 respectively. Now the observation sequence

string itself is further built using two strings that are built dynamically based

on the order, in which the observations are semantically linked. A pseudo-code

representation of the same can be seen in Listing 4.12.

It should be noted the original simple program from Listing 2.1 [80], is just an

illustration of syntactical constructs for observations and their sequences and

an equivalence of those sequences. In itself, it simply constructs two observation

sequences using two notations – a list and the fby operator, returns the second

observation sequence, and its evidential statement as only a single observation

sequence (because both sequences are actually same in that program). For

117

simple-flucid-program.ipl

...
for(int i = 0; i < spheres.size(); i++)
{
"observation "
+ std::to_string(spheres[i].getSphereID())
+ " = "
+ "(" + spheres[i].getSphereData()
+ ");\n"

}
...
"observation sequence os1 = {" + ob_seq_comma + "};\n"
"observation sequence os2 = {" + ob_seq_fby + "};\n"
...

Listing 4.12: Forensic Lucid program generation (observations and observation
sequence)

its bare simplicity we chose it to use for dynamic generation of its evidential

context instead. We plan to extend the application to parse and work with

more complex and numerous evidential objects like those in some other samples

in [80].

4.3.3 Scenario II Application

Similarly, in Chapter 1 under Section 1.2.4, page 8, we present the reader with our

second specific scenario, in which an artist requires real-time hand gesture recognition

and detection to create visual effects within the ISSv2 (see Section 2.1.1.2, page 32)

that is built on top of Processing and Java. We will yet again reiterate through

the scenario and elaborate on how our gesture framework will enable this application

scenario and fulfill the requirements.

1. First, select OpenISS as a backend instance “driver” to instantiate

a desired middleware/library that provides real-time hand-gesture

recognition, hand-tracking and necessary depth information function-

alities via our solution, and, this is a configurable selection.

So far we introduced the reader to the notion of backends in ISSv2.

Surprisingly, there are seven experimental backends in total and OpenISS

gesture framework is the eighth one; however, the reader does not need to

118

«interface»
ISSBackend

ISSBackendOpenISS

- gesture_tracker: OIGestureTracker

+ setup(): void
+ update(): void

ISSBackendSimpleOpenNI

- kinect: SimpleOpenNI

+ setup(): void
+ update(): void

Figure 50: ISSv2 backends SimpleOpenNI and OpenISS

Figure 51: ISSv2 application scenario II visual effect 1 and 2

be aware of the others except the SimpleOpenNI backend mentioned a few

times before as it provide limited gesture functionality that we alleviate with

our solution and make comparisons. To select OpenISS as a backend instance

“driver” we created one in the ISSv2 itself, see Figure 50, and, then eventually

replacing the existing SimpleOpenNI backend by gradually testing one feature

at a time with existing ISSv2 applications.

2. Then, execute and interact with the existing ISSv2 performing

arts applications for performance visualization using hand-gesture

interaction provided via our solution within the OpenISS backend

as per usual with other backends such as the SimpleOpenNI backend

mentioned before with limited gesture interaction.

119

In Processing, there are two ways to import a library into its environment.

Now, when Processing is run for the first time after installation, it creates

a directory named sketchbook/ under the home/ directory of the user that

installed it. However, the another way to do so is by creating a directory named

code/ that can be placed alongside the sketch with extension .pde and place all

the required shared order dynamic libraries and JAR files under that directory.

This essentially means that the libraries and OpenISS gesture framework Java

classes generated by SWIG bundled into a JAR in Section 4.2.4 must be placed

in similar fashion to the SimpleOpenNI libraries and JARs and then OpenISS

gesture framework functionality can be called into Java code from C++. Then

we simply replaced the SimpleOpenNI instances with our gesture framework

instances and the results can be seen in Figure 51. We also created an equivalent

Processing sketch of integrated sample application in Section 4.3.1.

3. Or, create new ISSv2 performing arts application profiles for

performance visualizations using completely new hand-gestures

previously not possible via our solution that must provide an easy to

use Application Programming Interface (API) for the computation

artists to do so.

We also created a new ISSv2 performing arts application profile for performance

visualizations that uses the OpenISS gesture framework provided hand

gestures to create visual effects with not only OpenNI2.0 and NiTE2.0 just like

SimpleOpenNI, but also Nuitrack, which contains newer gestures that were not

present in the ISSv2 prior to our gesture framework’s cross language module

as detailed in Section 4.2.4. Moreover, we are the first ones to provide Nuitrack

functionality in Processing. However, as mentioned prior in Section 1.6 we

will not evaluate the usability of the API formally with a computation artist.

120

sketchbook/
home/
code/
.pde

4.4 Summary

In this chapter, we only focused on the design and implementation details, concrete

classes, their definitions and corresponding UML diagrams related to the overall

solution of this work that is the gesture framework. Then we describe the various

applications powered by our gesture framework. In the next chapter, we discuss the

analysis and evaluation of all the functional and non-functional requirements, whether

qualitative or quantitative.

121

Chapter 5

Evaluation and Results

In this chapter, we present the various findings of our two different evaluation

approaches namely, qualitative and quantitative evaluation as presented in Chapter 3,

under Section 3.3.3, page 73. Moreover, we will essentially present the results in the

same order as described in the evaluation steps in Section 3.3.3. Following the bottom-

up approach, we will start by using our integrated sample application described earlier

that not only enables us to visually track our progress, but also serves as a testbed

to evaluate various functional and non-functional requirements in terms of rendering

frame rate and sensor data frame rate. Moreover, we have an equivalent sample

application in Java for Processing to qualitatively evaluate a subset of our specific

requirements, for example, see NFR7 and NFR8.

5.1 Evaluation Testbed Specifications

Before we commence our discussions regarding our evaluation, we describe its

environment including the operating system used, processor power, memory, hardware

used, devices and so forth. Except for the ROS overhead evaluation experimentation

where we have two machines/nodes (one serving as a master node and publisher on the

same where as the other as a client with a data subscription to the aforementioned

publisher node), the rest of our experiments and evaluations we employ the client

machine only. Henceforth, the hardware specifications of both client and server can be

122

seen in Table 7; whereas, the various middleware/libraries/tools used in this research

work are described in Table 8 and the different depth sensor devices used and tested

are listed in Table 9 along with their hardware specifications. It is vital to mention

that various steps were taken to minimize affect on our evaluation in terms of running

as less processes as possible.

Setting Name Device

Client

Memory 8 GB
Processor Intel Core i5-2400 CPU @3.10GHz × 4
Graphics Nvidia Quadro 600 (1 GB)
OS Ubuntu 18.04.3 LTS 64-bit

Server

Memory 12 GB
Processor Intel Core i7-920 CPU @2.67GHz × 8
Graphics GeForce GTX1080 Ti (12 GB)
OS Ubuntu 18.04.3 LTS 64-bit

Table 7: Environment hardware specifications

Type Name Version

Middleware

OpenNI2.0 2.2.0.33 Beta x64
NiTE2.0 2.2.0.5 x64
Nuitrack 0.2.4
ROS Melodic Morenia

Libraries

Libfreenect 0.6.0
Libfreenect2 0.2.0
Processing 3.5.3
OpenGL 4.6.0
SDL2 2.0.8

Tools CMake 3.12.2
SWIG 4.0.1

Table 8: Middleware, libraries, and tools used

123

Depth
Sensor
Device

Model
Version

Depth
Resolution

(pixels)

Frame
Rate
(Hz)

FOV
(h*v)

Kinect v1 1414,
1473 640 * 480 30 57° * 43°

Kinect v2 1656 512 * 424 30 70° * 60°
Intel

RealSense D435 1280 * 720 60 87° * 58°

Table 9: Depth sensors specifications

5.2 Integrated Sample Application as Evaluation

Testbed

As described in Section 3.3.3.3, page 77 we performed specific experiments to

qualitatively and quantitatively evaluate our various functional and non-functional

requirements successively using our integrated sample application as described

in Section 4.3.1, page 108, which also serves as an important resource for the end users

to illustrate usage of our gesture framework to obtain real-time gesture interaction via

different NiTE2.0 or Nuitrack middleware. As seen prior in Figure 42 the reader can

spot the depth information (rendered as background texture within the application)

of the scene with the user waiving his hands. There, the red and the green points

on the user’s hands depict that these hands are currently being tracked and the

trail following these points that appears like a fine line of the same color as the

points represents recent past positions of the hand as it moved to its current position.

Further, we compare the behavior of the application between NiTE2.0 and Nuitrack

(and their ROS equivalent) backends of our gesture framework. As the reader can

recall from Listing 4.1, page 95 to instantiate either backend one will only require to

instantiate the corresponding adapter class object.

NiTE2.0

In Figure 52, the reader can see the NiTE2.0 gestures detected being notified at the

console, but provided via our gesture framework. In NiTE2.0 a successfully detected

gesture is required to start real-time hand tracking as seen in Figure 53. Essentially,

124

the real-world position coordinates of successfully detected gestures are passed on to

the hand tracking algorithm that takes on from that point and tracks the hands as

long as it is not occluded or somehow lost or went out the sensor’s field of view. As

mentioned in Section 4.2.1, page 95 it has three gestures namely:

1. GESTURE_WAVE

2. GESTURE_CLICK

3. GESTURE_HAND_RAISE

Figure 52: Integrated sample application NiTE2.0 backend gesture recognition

Nuitrack

Within the same sample application we comment out the previously instantiated

NiTE2.0 adapter class object and instantiate Nuitrack adapter class object instead.

This essentially demonstrates that minimally affecting the application one can switch

from one gesture provider backend to another given their corresponding adapter

class which exists within the framework to adapt required functionality. It must

125

Figure 53: Integrated sample application NiTE2.0 backend hand tracking

be noted that in case of the sample integrated application the functionality is trivial

for demonstration purposes only; however, it is still true that if two gesture providers

with a common subset of gestures in their gesture dictionaries can be easily switched

between with minimal modifications to the end user application.

In Figure 54, the reader can see the Nuitrack gestures detected are being notified

at the console. In Nuitrack, there is no such requirement to first perform a gesture

for hand tracking as seen in Figure 55. Once a user is detected within the frame,

the hands are tracked by default and gestures can be recognized and detected at any

instance as long as they are performed within the sensor’s field of view. Also, as

described previously in Section 4.2.2, page 98 Nuitrack has six gestures in its gesture

dictionary namely:

1. GESTURE_WAVING

2. GESTURE_SWIPE_LEFT

3. GESTURE_SWIPE_RIGHT

126

4. GESTURE_SWIPE_UP

5. GESTURE_SWIPE_DOWN

6. GESTURE_PUSH

Figure 54: Integrated sample application Nuitrack gesture adapter (gestures)

NiTE2.0 and Nuitrack Key Comparisons

• Current status: Although NiTE2.0 has not been maintained or suported

for a few years and research involving use of OpenNI2.0, NiTE2.0 and the

Microsoft Kinect stack for motion tracking and gesture interaction is on the

decline1 it is still used by the academia. Whereas, Nuitrack is relatively a newer

gesture provider middleware that is currently being developed, maintained and

supported by the author company as well. Even though Nuitrack requires a

commercial license to work, it still can be used for a total of three minutes in

an unlicensed version, which we found sufficient for our research work.
1The use of the OpenNI2/NiTE2/Kinect stack is on the decline, Kinect alone is still used

adequately.

127

Figure 55: Integrated sample application Nuitrack gesture adapter (hands)

• Platforms supported: NiTE2.0 binaries are available for MacOSX, Linux and

Windows. In this work we personally tested it on Linux and MacOSX platforms

so we will not comment on its working on the Windows platform. Nuitrack is

available for Windows and Linux platforms only and does not supports MacOSX

operating system which however is abundantly used for most of our ISSv2

applications.

• Gesture dictionaries: So far the reader is aware that NiTE2.0 provides three

gestures in total, however, specifically the hand raise gesture is not useful since

it gets detected always even if the user raise their hand to perform the other

two. Whereas, Nuitrack provide a total of six gestures out of which two waving

and click/push are similar to the remaining NiTE2.0 gestures.

• Supported depth devices: In terms of the amount of depth devices that

either of these middleware can support, Nuitrack is clearly a winner. However, in

context to this research work, three of our devices namely, Kinect v1, Kinect v2

128

and Intel RealSense D435 can work with both these middleware. As previously

mentioned, Intel RealSense SDK2.0 now officially supports OpenNI2.0 via its

wrappers as thus, by extension NiTE2.0 as well [134]. However, in the end

Nuitrack provides for more devices than NiTE2.0 such as Asus Xtion, Orbbec

Astra, and Orbbec Persee as well.

• Functionality: By default, both NiTE2.0 and Nuitrack fail to tell which

hand performed the gesture between the two of the same user. We strongly

felt the need of such information whilst developing DigiEVISS specifically.

Moreover, in NiTE2.0 by default there is no such notion of a left or a right

hand rather left/right hand joints available via its Skeleton class, whereas

Nuitrack explicitly provides both hands. However, it is not very precise as we

observed that if the user turns around the left becomes right and the right

becomes left.

Irrespective of these, the reader can see in Figure 52, Figure 53, Figure 54, and,

Figure 55 the behavior of the application doesn’t really change except the color of

the points which gets initialized at random from a set of few colors.

Further, in terms of real-time response as observed qualitatively and visually

the results are very satisfying and seem adequately real-time. Now, to quantify

the rendering frame rate per second we employed a frame rate counter within our

application and we run the application for an average of three minutes. There are

various ways to calculate the frame rate but all are based on the same equation

to simply count the number of frames rendered in a minute and divide it by the

number of seconds that is 60 and in our case 180. The reason to run it for exactly

three minutes is that since we didn’t purchase a commercial license for Nuitrack,

and without one Nuitrack only runs for three minutes and then terminates with a

LicenseNotAcquiredException signal as mentioned previously; thus, for consistent

results across NiTE2.0 and Nuitrack providers we settled to run our application for

three minutes for measurements. Now, the average measured frame rates of the

same sample application, but with NiTE2.0 and Nuitrack adapters via our gesture

129

framework can be seen in Table 10.
Table 10: Integrated sample application (average rendering FPS vs. sensor FPS)

OpenISS gesture provider rFPS sFPS effective FPS
NiTE2.0 58FPS 29FPS 43FPS
Nuitrack 50FPS 28FPS 39FPS

We observe, as NiTE2.0 is relatively smaller and less complex than Nuitrack;

hence, greater FPS than Nuitrack, which is more resource-intensive than NiTE2.0

simply because it recognizes more gestures than NiTE2.0 and provides more

functionality as well. Moreover, this essentially constitutes the qualitative and

quantitative evaluation of the following requirements, but from the perspective

of our integrated sample application following the bottom-up approach as described

in Section 3.3.1:

• FR1: The system shall provide real-time hand gesture recognition.

• FR2: The system shall provide real-time hand tracking.

• FR3: The system shall provide real-time depth information of user’s

hands.

• NFR3: The ability of a system to accommodate prospective solutions

easily.

Next, as described in the step 2 in Section 3.3.3, page 73, we will discuss our

observations and evaluation results for our DigiEVISS application on both NiTE2.0

and Nuitrack middleware.

5.3 DigiEVISS

We mentioned previously that the application must be accommodating for both

middleware so as to perform a fair comparison that is uniform among both

middleware. Therefore, the primary actions required to be performed in the

DigiEVISS application can be performed using either of the middleware. As we

observed and evaluated our DigiEVISS application against the two middleware and

130

depth devices, such as the Microsoft Kinect v1, Kinect v2, and Intel RealSense D435

we discovered the need to make slight changes in the application from the perspective

of usability. As we know that the user will essentially perform manipulations to digital

evidence objects represented as spheres in the application. Now, an attached sphere

that has been grabbed by a currently tracking hand and is attached to it will appear

red instead of the usual blue. Moreover, once the semantic link is created between

two spheres they will appear as green. At the same time, the sphere_id is visible on

the sphere itself to enable the reader to differentiate between different observations.

We also mentioned before that we essentially design the application in such a way

that the size of gesture dictionaries of NiTE2.0 and Nuitrack will not affect at least

picking up two spheres and creating a semantic link between them. However, Nuitrack

is certainly far better than NiTE2.0 when it comes to this application. Not only the

direction gestures of Nuitrack can be prospectively used to navigate around in the

3D warehouse-like application, but it also directly fulfills our another non-functional

requirement NFR6, since Nuitrack itself supports an array of different devices whereas

NiTE2.0 is restricted only to the Microsoft Kinect devices by default. We also

observed that using the Intel RealSense D435 performs better than the Kinect devices

in terms of responsiveness and ease of use due to better hardware (especially large field

of view for interaction) and middleware. In terms of gesture survey mentioned in the

previous chapter the authors surveyed the DigiEVISS application as to applicable

gestures and found that OpenISS yet is not adequate enough in terms of the type of

gestures it provides via NiTE2.0 or Nuitrack to handle complex actions. The survey

suggests integrating OpenPose library that has a gesture dictionary of 28 gestures.

However, we defer the integration of the same for future work.

Moreover, in this application we found the frame rate results pretty consistent

with as seen in Table 10 of the integrated sample application. This totally makes

sense because both the sample integrated application and the DigiEVISS in their

present states are relatively basic and the scenes or objects being rendered are simple

geometric types and thus their render rates are quite similar to as seen in Table 10.

The sample Forensic Lucid program generated by the manipulations of the

131

Figure 56: DigiEVISS

observations as depicted in Figure 56 can be seen in Listing 5.1. It is important to

mention that this generated program can be successfully compiled with GIPC for

semantic correctness as long as the required binaries are placed at the same location

where the generated program is saved.
es
where
observation o0 = ("A printed" => "very well", 1, 0, 0.85, 1234);
observation o1 = ("B printed" => "well", 1, 0, 0.65, 2341);
observation o2 = ("C printed" => "not very well", 1, 0, 0.35, 3412);
observation o3 = ("D printed" => "not well", 1, 0, 0.15, 4123);
observation sequence os1 = {o0, o3};
observation sequence os2 = o1 fby o2;
evidential statement es1 = {os1,os2};
es = es1;

end

Listing 5.1: Generated Forensic Lucid observation sequence context

5.4 ISSv2

Based on our work described in Section 4.2.4, page 104, we will now test our gesture

framework capabilities in our equivalent sample application, but in Processing. As

we observe similar results as expected in contrast to our sample application in C++

132

we will further discuss the results of our gesture framework in the existing ISSv2

visual effects pipeline.

Figure 57: Integrated sample application Processing (NiTE2.0)

Despite the language bridge, the results in terms of render frame rate were yet

again consistent with our previous results with integrated sample application. As

seen in Figure 57 and Figure 58 the reader can notice that the only difference between

them is where we instantiate NiTE2.0 vs. Nuitrack gesture provider via our gesture

framework. The Processing application behaves exactly as expected to its C++

counterpart. This bolsters our claim that high rendering rate is observed due to

minimal rendering computations.

However, specifically in ISSv2, there is an abundance of such computations in the

form of data transformation, computer vision algorithms from OpenCV such as edge

detection or contouring, VFX generation and so forth. Thus, ISSv2 is much more

intensive processing application that generates VFX using dynamic shapes, physics,

based on hand positions or skeleton positions as delivered to it from the sensor.

Therefore, we will now evaluate our gesture framework as a backend in the existing

ISSv2 pipeline to observe:

133

Figure 58: Integrated sample application Processing (Nuitrack)

• Whether the existing visual effects in ISSv2 work with the newer OpenISS

gesture backend?

• Whether the visual rendering response is real-time and render frame rate is

equal to or greater than 15FPS?

As we can see in Figure 59 various existing visual effects in the ISSv2 pipeline

work well with our backend. Moreover, we noticed that the rendering frame rate of

the application averages at 39FPS using OpenISS, which is still better than the

average frame rate of 29FPS as seen with the existing SimpleOpenNI backend. One

can only speculate that if SimpleOpenNI is merely trying to synchronize with device

rate. Moreover, SimpleOpenNI relies on a relatively older version of libfreenect

which is a plausible explanation as well for a lower reder rate. However, 39FPS is

less than compared to the trend seen so far with our integrated sample application

and DigiEVISS. This is essentially due to the heavy computations that take place

within the VFX pipeline of ISSv2. As we repeated the same experiment with Intel

RealSense, which provides 30FPS as the default sensor data rate the rendering frame

134

Figure 59: ISSv2 visual effects via gestures framework

rate still remained the same. Moreover, as mentioned briefly prior, via this research

work we provide access to the Nuitrack API data via our API, which is first of its

kind to do that. This already broadens the scope of ISSv2 devices that it can work

with apart from only restricted to the Microsoft Kinect devices.

Not only the answer to the above posed questions is yes, but at the same time this

also constitutes an evaluation for the following attained requirements qualitatively

135

Table 11: ISSv2 (average rendering FPS vs. sensor FPS)
OpenISS gesture provider rFPS sFPS effective FPS

NiTE2.0 39FPS 29FPS 34FPS
Nuitrack 39FPS 28FPS 33FPS

and quantitatively wherever applicable:

• FR4: The system shall serve as an easy-to-switch-to backend with the

existing ISSv2 pipeline.

• NFR1: The system should be able to process the frames at a speed

that is at least 10 frames-per-second (FPS)

• NFR4: The ability of a system to inter-operate with other software

systems and share meaningful data.

• NFR6: The ability of a system to switch between devices only

minimally affecting the end user application.

• NFR7: The ability of a system to function on more than one platform.

• NFR8: The ability of a system to share data from its implementation

language to a different programming language application.

5.5 Integrated Sample Application as ROS Client

In case of the ROS adapter there are a few extra steps that we need to perform to

evaluate gestures being published over ROS. We will demonstrate this with a single

machine setup first where the same machine acts as a server and a client or in other

words the OpenISS ROS package that essentially publishes depth, gesture and hand

data and the client application reside on the same computer. Later we will test this

setup on separate machines.

Now, first and foremost it is crucial for the master node to be up and running

by using the command roscore. Next, in an another terminal window we run the

OpenISS ROS package node that will essentially publish gesture data over the ROS

136

network by using the rosrun command. Now, ROS provides another command

rostopic, which essentially prints information regarding the current ROS topics on

which messages are being published, as visually illustrated in Figure 60.

Finally, we run our sample application that instantiates a ROS client adapter as

seen in Figure 61 and Figure 62. The reader can spot the gestures being detected

over the ROS network and available to the client application that is the integrated

sample application.

Figure 60: Master node and OpenISS ROS node publishing data on various topics

Now, as mentioned before, an interesting aspect of working with ROS is that it

decouples the publisher from the subscriber where the publisher is the OpenISS

gesture framework disguised as a ROS package and the publisher is the end user

application which in our case is the integrated sample application. This essentially

means that the client can still render at 60FPS, while receiving zero frames from the

sensor itself. Thus, measuring pure render frame rate (rFPS) was not sufficient in

our scenarios. This, especially exhibited by ROS, where the data acquisition server

application and the render application are physically or logically separated as different

processes completely decoupling the rendering and sensor processes. To measure the

137

Figure 61: Integrated sample application ROS (Nuitrack) gesture adapter

Figure 62: Integrated sample application ROS (NiTE2.0) gesture adapter

138

overhead introduced by ROS we leverage additional instrumentation to measure the

data delivery rate to the application from the middleware, which essentially boils

down to measuring the amount of data frames received vs. the number of frames

produced on the server side. Thus, this resulted in counting callbacks-per-second via

the various callbacks provided by NiTE2.0, Nuitrack and ROS.

Next, we setup our experiment on separate machines where one acts as the server

and the other as the client. Once we had fully bidirectional communication between

the two, so we can start the master node on the server. Next, on the client we setup

two essential ROS environment variables, namely, ROS_MASTER_URI and ROS_IP.

Since all nodes must talk to the same master node we simply set both these values

corresponding to the server on the client. The URI is usually http://localhost:

11311 and the IP address can be easily found via a network utility. However, instead

of localhost we provide the actual IP address of the server running the master node.

This enables the master node to easily let other nodes register to it and transfer data

among themselves.

After completing the setup once we started recording results, they quickly became

really interesting. Initially we noticed a huge drop of data in terms of dropped depth

frames. However, gesture and hand data being much smaller in size as compared to the

depth frames, did not show a significant loss. We speculated bandwidth restriction

and numerous firewalls were the factors responsible since both the machines were

initially not on the same subnet. However, upon further analysis we found out that our

server was publishing data over a 100Mbps network bandwidth despite availability

of a 1Gbps wired network bandwidth within the Gina Cody School of Concordia

University. As soon as we switched to the latter we started getting favourable results

as seen in Table 12, Table 13, Table 14 and Table 15. However, we did notice a 35%

loss of depth frame data only over the 100Mbps network. However, in case of a

1Gbps network we did not record any such non-negligible overhead neither did we

notice significant differences between the values recorded with NiTE2.0 vs. Nuitrack.

However, since we timestamped the published and received frames, we observed a

minute difference between the timestamps which turned out to be an average 16ms

139

http://localhost:11311
http://localhost:11311

delay and definitely it is network delay which may decrease on even higher bandwidth

networks. Last but not the least, we collected results over message queue sizes of 0,

1, 10 and 1000. Particularly in context to ROS message queue size of 0 means almost

infinite number of data buffering (to the available memory).

At the same time it is also possible to control the publishing and subscribing rate

of data in ROS. This is essential to take note of since it affects the values that one

will encounter in terms of number of published frames vs. actual frames captured by

the sensor. If we do not control the rate of the ROS publisher node, we observed that

between two frames captured by the sensor we published the same frame over and over

for an approximate of 5 or 6 times at an average. Whereas, if we limit the publisher

rate to 30Hz, which is almost similar and slightly more than the sensor frame rate

by a factor of 1 or 2 on an average, we do not publish duplicate frames; however, the

loss of data is still negligible. Publishing duplicate data enables the client to catch

the same data more than once in case previously the client was not able to catch

it somehow making it more resilient. However, more bandwidth was used and also,

the queue size of the client has been kept zero in all cases to buffer as much data

as possible for the client as not to loose anything that arrives. As mentioned prior

we have run these experiments for three minutes each due to Nuitrack free version

restriction. More importantly, in NiTE2.0 capture of depth, hand, and gesture date

are synchronized to the depth frame capture.

Table 12: Callbacks-per-second
when message queue size is 0
Data Type Server Client
Depth Frame 27132 27132
Gesture 24011 24011
Hand 26676 26675

Table 13: Callbacks-per-second
when message queue size is 1
Data Type Server Client
Depth Frame 27365 27365
Gesture 26361 26361
Hand 26632 26632

Table 14: Callbacks-per-second
when message queue size is 100
Data Type Server Client
Depth Frame 27236 27236
Gesture 26736 26736
Hand 26003 26003

Table 15: Callbacks-per-second
when message queue size is 1000
Data Type Server Client
Depth Frame 27314 27313
Gesture 26907 26907
Hand 26969 26969

140

Figure 63: ROS server/publisher

Table 16: ROS overhead

Network
Bandwidth

Depth
Frame
Loss%

Gesture
Frame
Loss%

Hands
Frame
Loss%

100 Mbps 35 0 0
1 Gbps 0 0 0

Both the server and the client in between an experiment can be seen in Figure 63

and Figure 64. As per this evaluation we can say that the following requirements

have been evaluated qualitatively and quantitatively as applicable:

• NFR4: The ability of a system to inter-operate with other software

systems and share meaningful data.

• NFR5: The ability of a system to expand in a chosen dimension

without major modifications to its architecture.

• NFR6: The ability of a system to switch between devices only

minimally affecting the end user application.

141

Figure 64: ROS client/subscriber

5.6 Test Game Application

In Section 3.3.3.3, page 77 we mentioned about an unrelated application that we

will leverage to demonstrate the ease of use of our gesture framework API. Now, we

found one such application on the GitHub platform that is available with a public

and free to use license [135]. The application is essentially a classic 2D snake game,

in which the snake grows every time it encounters a food object while moving in

the four directions that is, up, down, left and right using a hardware controller

such as the keyboard. Not only we easily replaced the keyboard controller with our

Nuitrack backend, but also achieved the real-time gesture interaction in a completely

unrelated application. The various direction controls were replaced using Nuitrack

direction gestures. The game is built using the SDL library and uses cmake to build

and link to dependent libraries. The game consists of the following classes:

• Controller

• Snake

142

• Renderer

• Game

To integrate our gesture framework with this application we first started by

extending the cmake file CMakeLists.txt to look for and link to Nuitrack and our

gesture framework as a library. Next, we explored the code base of the game itself

and find a suitable place to plug in gesture interaction via our solution. Upon initial

understanding, we found that the Snake class itself represents the “snake” object and

the Controller class is responsible for handling the input and hence the direction

of the snake object. Whereas, the Renderer class takes care of the visualization and

windowing via the SDL library and the Game class represents the game itself and

manages all other aforementioned classes.

Moving on, within the Controller class, a method named HandleInput exists

that uses SDL’s API to control the snake via the keyboard keys. We overloaded

this method and introduced our gesture framework instance as a parameter to this

method and a “diff” of both the methods can be seen in Figure 65. In less than 20

lines of code we were able to replace existing keyboard controller functionality with

gesture interaction. The updated or modified application is available on GitHub

as well [136] https://github.com/OpenISS/CppND-Capstone-Snake-Game. This

essentially wraps up our evaluations qualitatively evaluating the left out requirement

that is:

• NFR2: The ability of an Application Programming Interface provided

by a system to be easy to use and learn by developers that wish to

implement it. [29, 30]

The results can be seen in Figure 66, Figure 67, Figure 68, Figure 69 where the

reader can spot the snake being guided to different directions via gestures provided

by Nuitrack through the OpenISS gesture framework. In terms of rendering frame

rate the average FPS recorded is 59FPS.

Now, qualitatively we will describe the effects of a subset of applicable Nielsen’s

heuristics that affected our API design [29]:

143

CMakeLists.txt
https://github.com/OpenISS/CppND-Capstone-Snake-Game

Figure 65: Diff between existing vs updated controls

• Visibility of system status: In our API the various calls return a

OIStatusType object, which helps the user to know the return status of the

call.

• Match between system and the real world: Our API defines methods like

getGestures() and getHands(), that essentially match the real world action

of getting something.

• User control and freedom: We have API calls init() and stop(),

startGestureDetection() and stopGestureDetection() to initialize,

abort or reset operations.

• Consistency and standards: Irrespective of the adapter or middleware

behind the scenes our API is consistent across applications. We also rely on the

OpenNI2 standard.

• Error prevention: As we know our solution is a framework and it governs the

control flow; hence, preventing the users from making errors by providing them

a simple recipe of API calls required to be called in a specific order to enable

interaction applications.

• Recognition rather than recall: Clear and understandable names for

methods describing exactly what a method is capable of doing.

144

• Flexibility and efficiency of use: Our API is relatively compact and

provides high abstraction to complex tasks making it efficient to use and flexible

polymorphically.

• Aesthetic and minimalist design: Although an API cannot be necessarily

aesthetic however consistent naming with polymorphic method names that can

take different set of parameters can improve usability. However, our API is

adequately abstract and minimal already.

• Help users recognize, diagnose, and recover from errors: Similar to our

OIStatusType we have various log and error statements that enable user to

rectify their errors by clearly stating them the issue.

• Help and documentation: Our various applications including the integrated

sample application provide the essential knowledge on how to properly use our

API.

Figure 66: Gesture swipe left

145

Figure 67: Gesture swipe up

Figure 68: Gesture swipe down

5.7 Summary

In this chapter, we discussed our various evaluation results, whether qualitative

or quantitative and provided their interpretations. Moreover, the evaluations done

146

Figure 69: Gesture swipe right

enables us to answer the research questions we posed in the first chapter in Section 1.5,

page 24 that we have answered in the next and the last chapter. In the next chapter

we will conclude our work and describe current limitations that must be alleviated

in the future work. Lastly, we can summarize that all our functional and non-

functional requirements have been successfully fulfilled and evaluated qualitatively

or quantitatively as applicable and illustrated in Table 17.

Table 17: Requirements evaluation summary
Requirements Qualitative Quantitative Addressed

FR1 X Section 5.2
FR2 X Section 5.2
FR3 X Section 5.2
FR4 X Section 5.4

NFR1 X Section 5.4
NFR2 X Section 5.6
NFR3 X Section 5.2
NFR4 X Section 5.4, Section 5.5
NFR5 X Section 5.5
NFR6 X Section 5.4
NFR7 X Section 5.4
NFR8 X Section 5.4

147

Chapter 6

Conclusion and Future Work

In Chapter 1, we presented the reader with our problem statement based on our

motivational scenarios in Section 1.2.2, page 6 and the various requirements elicited

from these scenarios in Section 1.2.6, page 12. Then, in the next chapter Chapter 2

we provided the related work and various tools and software libraries used in this

work. Next, in Chapter 3, we introduced the reader with our solution, that is an

application framework, or, in other words, a gesture application framework along

with the different approaches followed in the development and evaluation of this

solution in the context of OpenISS. Then, we evaluated this framework qualitatively

and quantitatively in Chapter 5 ensuring the fulfillment of all our functional and

non-functional requirements with the integrated sample application built specifically

for such evaluations and our applications derived from our motivational scenarios

mentioned earlier. Finally, in this chapter, we conclude on our work done based

upon our qualitative and quantitative evaluation results in the previous chapter

in Section 6.1 and answer the various research questions that were posed in the first

chapter under Section 1.5, page 24 and make recommendations. Then, we describe

the various limitations of our research work that will be prospectively addressed in

the near future in Section 6.2. Finally, we elaborate on the few aspects of the work

that we deferred for the future in Section 6.3 respecting the scope of this research

work.

148

6.1 Concluding Remarks

Based on our evaluation results in the previous chapter we will conclude our research

work in this very section. First, we begin our concluding remarks by answering all

the different research question posed in Chapter 1 under Section 1.5, page 24 one by

one.

Question. Can we design a general extensible solution that meets all our stated

requirements and enable us to realize both of our motivation scenarios described

in Section 1.2.2, page 6?

Yes , we did indeed design a general and extensible solution, that is the gesture

application framework that enabled us to realize both of our motivational

scenarios exemplified in Section 1.2.3, page 6 and Section 1.2.4, page 8 in the form of

a standalone application DigiEVISS (see Figure 56) and a gesture provider backend

for the ISSv2 (see Figure 59). In our solution that is the Gesture Framework we

leverage object polymorphism, inheritance and design patterns such as the Adapter

pattern to make it extensible among others and via requirements NFR7 and NFR8

to support two of our very different aforementioned applications.

Question. Can we enable comparison among different gesture libraries or middleware

via our solution to recommend which one is better for which application type in a

uniform manner?

Yes , we did enable comparison among NiTE2.0 and Nuitrack middleware to

make recommendations and built our framework in a way that it is fairly simple

to extend it further to another gesture providing middleware/libraries for making

such comparisons and recommendations as well. These comparisons support decision

making for choosing gesture dictionaries, device compatibility, platform compatibility,

interaction effectiveness and so forth.

Question. Specifically, which gesture library or middleware is better suited for

Motivation Scenario 1, in Section 1.2.3, page 6?

149

Nuitrack , although we built our application in a way that it can still work with

NiTE2.0 as well, but, surely Nuitrack is better in this case. Nuitrack provides

relatively larger gesture dictionary that is six gestures as compared to three in

NiTE2.0, out of which only two work well. The application described in Section 1.2.3,

page 6 is meant to be a complex application, for which Nuitrack’s six gestures are

much better suited than three NiTE2.0 gestures. The four direction related Nuitrack

gestures (up, down, left, right) alone can be easily leveraged for enabling navigation

within the warehouse-like 3D application via hand gestures. This is certainly not

feasible when using NiTE2.0’s relatively much smaller gesture dictionary without

modifications. Moreover, it is quite obvious that since Nuitrack is currently being

maintained and provided support for by its developers, NiTE2.0 is rather obsolete,

but, both of these are closed source middleware.

Question. Specifically, which gesture library or middleware is better suited for

Motivation Scenario 2, in Section 1.2.4, page 8?

Although, Nuitrack , provides more gestures than the NiTE2.0 middleware as

stated above, and at the same time it can enable creation of newer visual effects

that can be used by computation artists for various stage performances by using

the larger gesture dictionary it provides, we cannot currently use it in production in

ISSv2. Nevertheless, this is the first ever solution that the Nuitrack middleware can

be used in the Processing environment. This is quite an achievement that broadens

the scope of ISSv2 over an array of devices that Nuitrack supports. However, the

core production platform of ISSv2 resides on MacOS X and computational artists

primarily use the same platform and Nuitrack does not currently run on it. Moreover,

as we know Nuitrack requires a commercial license, whereas NiTE2.0 does not require

one. Also, ISSv2 does not currently require a rich gesture dictionary due to its

application domain. Therefore, in this very scenario NiTE2.0 is suitable unless the

ISSv2 production is moved completely to the Linux or Windows platforms.

Question. How much overhead does our solution and ROS introduce to the system?

Overall, we did not observe any noticeable overhead when communicating over

150

a network bandwidth of 1Gbps. However, a network bandwidth of 100Mbps

introduced a 35% loss of depth frames as seen in Table 16. Moreover, we also

noticed an average network delay of 16ms between consecutive depth frames at

1Gbps. However, gesture and hand data remain unaffected and delivered without

any such measurable loss over both networks. We mentioned in our evaluation that

we are publishing depth frames at a rate approximately 5 times higher than the

actual device rate; however, we noticed that the trail in our integrated application

stays longer when the publish rate is set to 30. The trail logically within the code is

collection of 20 hand coordinate values. When we publish at much higher rate the

values of the collection are updated faster and the trail gets lesser chance to fill up.

Although, we did not anticipate this observation it does raise the need of testing it

with more use cases which we defer to the future work.

6.2 Limitations

Currently, in our research work although we fulfilled our requirements and goals there

are some present limitations that must be resolved in the near future:

• Even though our framework has no such a dependency, but the extensions

points may have dependencies such as NiTE2.0 and Nuitrack middleware in our

adapter classes and it is non-trivial and painful to manage these dependencies

and link to them in an effective manner. Thus far, our cmake files can take care

of these dependencies and manage them; however, it still requires installing or

placing a bunch of libraries and header files or define environment variables

to specific locations so that the cmake can help compiler to look for their

declarations and the linker can see corresponding definitions. However, to

overcome this issue we can provide a complete Docker image, but it has its own

limitations of connecting with USB devices such as the depth sensors used in this

research work. However, one can still easily use the Docker image and have pre-

recorded stream played with the fakenect library. But, currently fakenect

cannot work with Nuitrack. Nevertheless, we still provide our Docker image

151

that facilitates majority of the setup and is described in Appendix A. Moreover,

once we created our corresponding Java wrappers for our framework we quickly

came across the issue of making JARs and dynamic libraries portable. Normally,

a runtime path guides the linker, but it must be carefully set. In short,

supporting scripts or tools are required to automate this process as much as

possible.

• The core of a framework is its API and we have not done any usability

other than number lines of code required to get gesture recognition and hand

tracking functionality in terms of ease of use. However, when we compare the

effort required (in terms of methods employed) to enable gesture interaction in

Processing our API is definitely smaller than using the NiTE2.0 and Nuitrack

middleware API directly vs the OpenISS API.

• Our DigiEVISS application requires a lot of work visually and in flexibility,

as it currently does not load and pre-parse Forensic Lucid programs or

evidential objects from other sources like file storage or a database prior

visualization. Once such a functionality is enabled we can work with complete

data-flow graphs instead of partial ones. To compile the generated Forensic

Lucid program we need to enable natural user interaction as well. Moreover,

it is still gesture-deficient to be able to release a grabbed sphere (in case the

investigator grabs a wrong one or changes his mind) as for now we are dependent

on hiding/occluding the hand that is holding one.

• To provide an ideal testing environment it would have been easier to and

effective to pre-record a stream with some performed gestures and tracked hands

as a dataset that uniformly works with both NiTE2.0 and Nuitrack middleware.

However, currently it is not possible as not only the fakenect footage was not

available in Nuitrack, but similar tool streamer_recorder for libfreenect2

or librealsense2’s recorder, or a corresponding one from Nuitrack. Else, we

could have recorded the same footage over different devices simultaneously and

then feed them to both middleware for a identical captured dataset.

152

• The ROS equivalent adapter for either NiTE2.0 or Nuitrack is not yet ported

using SWIG; thus, ISSv2 cannot interoperate with ROS presently.

• This work does not enable custom gesture tracking additions similar to Microsoft

SDK for Kinect or the OpenPose project with a gesture dictionary of

28 gestures. Also, currently adding gestures requires adding them to our

enumerations, instead of dynamically learning and naming them.

• So far we did not evaluate a server pure device ROS like original packages,

with “heavy” client adapters. Essentially, this assumes the publisher is a low

power device merely publishing sensor data and the processing and extraction

of gesture and hand information takes place on the client side.

• Similarly, we did not test multiple devices with the ROS environment instead

a simple client-server setup with one device.

• This work only provides user’s hands and gestures information; however, there

is yet another way to get the hand coordinates – from the skeleton joints via

a skeleton tracking middleware. Both, NiTE2.0 and Nuitrack provide user and

skeleton tracking, but they are more resource intensive than their hands only

counterparts.

• We did not update our work in [34] to expose gesture and hand information as

REST services.

• We do not provide an API for Probabilistic values for ambigious gestures,

essentially, how accurately the gesture has been performed.

• Our OpenISS backend for ISSv2 currently cannot play all the effects it

could with SimpleOpenNI that require user image nor did we test it in a live

performance yet. Also, the projection mapping is not working yet either as it

requires scaling that we do not support currently in our backend solution.

153

6.3 Future Work

Our present work, that is described in this dissertation is dedicated towards enabling

a common and extensible solution that can provide vision based gesture recognition

data to create applications that require natural interaction via hand gestures such

as our applications created in this research work. Even though we achieved all our

goals and objectives, we did defer a few things along the way for future work that

were beyond the scope of this research work at the time. Aside from addressing the

limitations stated in the previous section, we list several future work items in more

detail:

• Now, the first and foremost is certainly the usability evaluation of the

DigiEVISS application with an actual forensic investigator and of the API

itself by an artist for insights on their mental models using Nielsen’s 10

Heuristics for Usability [32].

• Moreover, the immediate future work would be to finish the release of the

framework to the open source community along with the OpenISS ROS

package and the Java wrapper classes for our framework all bundled as one.

• It would be also be interesting and extremely effective to enable the user to

record and save their own custom gestures.

• The DigiEVISS has potential to scale and load real digital evidence from

a distributed storage. Currently, Forensic Lucid program generation is in

primitive stages and does not cover a significant portion of the language itself,

which possibly can be done by interacting with GIPC to get a parse tree into

C++.

• Certain wrappers or plugins can be written to convert our framework’s

data into Unity-like data formats for gesture data delivery into Unity

applications for real-time VFX and character animation rigging, like Nuitrack

and librealsense do. It is also desirable to deliver real-time data for the same

in Blender and Unreal Engine for animation specific applications.

154

• Integrate OpenPose’s gesture tracker.

• Similar to ROS, enable OpenISS data and features in medical applications

that use OpenIGTLink protocol [137].

• Enable GIPSY’s DST-based storage and server for replay and contextual image

analysis and playback in time (depth frames are preserved in the DST) as a

service equivalent testing of demand-driven OpenISS GIPSY backend.

• Lastly, it would be quite interesting to test the service aspect of the framework

with heavy data load such as depth, color and IR (infrared) frames together in

higher resolution on a larger network and multiple devices and corresponding

applications.

6.4 Summary

To summarize, in this work we provide our common, flexible and extensible solution

that necessarily enables gesture interaction for different yet specific application

that require such functionality in OpenISS. To conclude we make the following

recommendations based on our results and evaluations in this research work:

• For applications like ISSv2 we recommend OpenISS with NiTE2.0 backend.

• For applications like DigiEVISS we recommend OpenISS with Nuitrack

backend.

• For the applications involving requirements such as scalability and decoupling

of sensor and application processes we recommend the OpenISS with ROS

backend.

In the immediate future, we will release our OpenISS gesture framework as open

source and we look forward to integrate with other systems and frameworks and

enable a wider array of relevant applications in entertainment, serious games, research,

computer vision, VFX, and artistic performances. Follow the project on GitHub at

this URL: https://github.com/OpenISS/OpenISS

155

https://github.com/OpenISS/OpenISS

Bibliography

[1] M. J. Cheok, Z. Omar, and M. H. Jaward, “A review of hand gesture and sign

language recognition techniques,” International Journal of Machine Learning

and Cybernetics, vol. 10, no. 1, pp. 131–153, 2019.

[2] S. A. Mokhov, M. Song, S. Chilkaka, Z. Das, J. Zhang, J. Llewellyn, and

S. P. Mudur, “Agile forward-reverse requirements elicitation as a creative design

process: A case study of Illimitable Space System v2,” Journal of Integrated

Design and Process Science, vol. 20, no. 3, pp. 3–37, Sep. 2016. doi: 10.3233/jid-

2016-0026

[3] S. A. Mokhov, “Intensional cyberforensics,” Ph.D. dissertation, Department of

Computer Science and Software Engineering, Concordia University, Montreal,

Canada, Sep. 2013, online at http://arxiv.org/abs/1312.0466.

[4] S. A. Mokhov, M. Song, J. Singh, J. Paquet, M. Debbabi, and

S. Mudur, “Toward multimodal interaction in scalable visual digital evidence

visualization using computer vision techniques and ISS,” in Proceedings of

the International Conference on Pattern Recognition and Artificial Intelligence

(ICPRAI). CENPARMI, Concordia University, Montreal, May 2018. ISBN

978-1-895193-04-6 pp. 151–157, https://users.encs.concordia.ca/~icprai18/,

arXiv:1808.00118.

[5] Nuitrack Team, “Nuitrack SDK Architecture,” [online; accessed 27-May-2019],

...–2019, http://download.3divi.com/Nuitrack/doc/Architecture_page.html.

156

http://dx.doi.org/10.3233/jid-2016-0026
http://dx.doi.org/10.3233/jid-2016-0026
http://arxiv.org/abs/1312.0466
https://users.encs.concordia.ca/~icprai18/
http://download.3divi.com/Nuitrack/doc/Architecture_page.html

[6] ROS Wiki, “ROS Concepts,” [online, accessed 27-May-2019], 2019, http://wiki.

ros.org/ROS/Concepts.

[7] M. E. Markiewicz and C. J. d. Lucena, “Object oriented framework

development,” Crossroads, vol. 7, no. 4, pp. 3–9, 2001.

[8] A. Tkachuk, “3D OpenGL project for Kinect,” [online], YouTube, 2016, http:

//youtube.com/watch?v=9PcDp5HctnQ.

[9] Interaction Design Org., “Human Computer Interaction,” [online], 2019, https:

//www.interaction-design.org/literature/topics/human-computer-interaction.

[accessed 27-May-2019].

[10] J. Coutaz, “Evaluation techniques: Exploring the intersection of HCI

and software engineering,” in Software Engineering and Human-Computer

Interaction, R. N. Taylor and J. Coutaz, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1995. ISBN 978-3-540-49173-6 pp. 35–48.

[11] E. A. Buie and A. Vallone, “Integrating HCI engineering and software

engineering: A call to a larger vision,” in HCI (2), 1997, pp. 525–530.

[12] P. Garg, N. Aggarwal, and S. Sofat, “Vision based hand gesture recognition,”

World Academy of Science, Engineering and Technology, vol. 49, no. 1, pp.

972–977, 2009.

[13] M. S. Dias, S. Gibet, M. M. Wanderley, and R. Bastos, Eds., Gesture-

Based Human-Computer Interaction and Simulation, 7th International Gesture

Workshop, GW 2007, Lisbon, Portugal, May 23-25, 2007, Revised Selected

Papers, ser. LNCS, vol. 5085. Springer, 2009. doi: 10.1007/978-3-540-92865-2

[14] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for

human computer interaction: a survey,” Artificial intelligence review, vol. 43,

no. 1, pp. 1–54, 2015.

157

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts
http://youtube.com/watch?v=9PcDp5HctnQ
http://youtube.com/watch?v=9PcDp5HctnQ
https://www.interaction-design.org/literature/topics/human-computer-interaction
https://www.interaction-design.org/literature/topics/human-computer-interaction
http://dx.doi.org/10.1007/978-3-540-92865-2

[15] O. Wasenmüller and D. Stricker, “Comparison of Kinect v1 and v2 depth images

in terms of accuracy and precision,” in Asian Conference on Computer Vision.

Springer, 2016, pp. 34–45.

[16] K. K. Biswas and S. K. Basu, “Gesture recognition using Microsoft Kinect®,”

in The 5th International Conference on Automation, Robotics and Applications.

IEEE, 2011, pp. 100–103.

[17] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, “Vision-based hand-gesture

applications,” Communications of the ACM, vol. 54, no. 2, pp. 60–71, 2011.

[18] J. Wachs, H. Stern, Y. Edan, M. Gillam, C. Feied, M. Smith, and J. Handler,

“Gestix: a doctor-computer sterile gesture interface for dynamic environments,”

in Soft Computing in Industrial Applications. Springer, 2007, pp. 30–39.

[19] G. C. S. Ruppert, L. O. Reis, P. H. J. Amorim, T. F. de Moraes, and J. V. L.

da Silva, “Touchless gesture user interface for interactive image visualization in

urological surgery,” World Journal of Urology, vol. 30, no. 5, pp. 687–691, 2012.

[20] Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE Multimedia, vol. 19,

no. 2, pp. 4–10, 2012.

[21] S. Fuhrmann, A. MacEachren, J. Dou, K. Wang, and A. Cox, “Gesture and

speech-based maps to support use of GIS for crisis management: A user study,”

AutoCarto 2005, 2005.

[22] X. Yin and M. Xie, “Finger identification and hand posture recognition for

human–robot interaction,” Image and Vision Computing, vol. 25, no. 8, pp.

1291–1300, 2007.

[23] M. Song, S. A. Mokhov, P. Grogono, and S. P. Mudur, “Illimitable Space

System as a multimodal interactive artists’ toolbox for real-time performance,”

in Proceedings of the SIGGRAPH ASIA 2014 Workshop on Designing Tools for

Crafting Interactive Artifacts, ser. SIGGRAPH ASIA’14. New York, NY, USA:

158

ACM, Dec. 2014. doi: 10.1145/2668947.2668953. ISBN 978-1-4503-3215-6 pp.

2:1–2:4.

[24] M. Song, “Computer-assisted interactive documentary and performance arts

in illimitable space,” Ph.D. dissertation, Special Individualized Program/-

Computer Science and Software Engineering, Concordia University, Montreal,

Canada, Dec. 2012, online at http://spectrum.library.concordia.ca/975072 and

http://arxiv.org/abs/1212.6250.

[25] S. A. Mokhov et al., “OpenISS – Open Illimitable Space System,” [online],

[accessed 24-Oct-2019], 2016–2020, https://github.com/OpenISS/OpenISS.

[26] B. Fry and C. Reas, “Processing – a programming language, development

environment, and online community,” [online], 2001–2020, http://www.

processing.org/.

[27] J. Paquet, “Scientific intensional programming,” Ph.D. dissertation, Depart-

ment of Computer Science, Quebec City, Canada, 1999.

[28] Except on Tuesdays, “Gestures with Microsoft Kinect for Windows

SDK v1.5,” [online], Jul. 2012, http://blog.exceptontuesdays.com/post/

27989563563/gestures-with-microsoft-kinect-for-windows-sdk-v1-5.

[29] B. A. Myers and J. Stylos, “Improving API usability,” Communications of the

ACM, vol. 59, no. 6, pp. 62–69, 2016.

[30] T. Grill, O. Polacek, and M. Tscheligi, “Methods towards api usability: a

structural analysis of usability problem categories,” in International conference

on human-centred software engineering. Springer, 2012, pp. 164–180.

[31] M. Reddy, API Design for C++. Elsevier, 2011.

[32] J. Nielsen, “Ten usability heuristics,” useit.com, 2005, online at http://www.

useit.com/papers/heuristic/heuristic_list.html.

159

http://dx.doi.org/10.1145/2668947.2668953
http://spectrum.library.concordia.ca/975072
http://arxiv.org/abs/1212.6250
https://github.com/OpenISS/OpenISS
http://www.processing.org/
http://www.processing.org/
http://blog.exceptontuesdays.com/post/27989563563/gestures-with-microsoft-kinect-for-windows-sdk-v1-5
http://blog.exceptontuesdays.com/post/27989563563/gestures-with-microsoft-kinect-for-windows-sdk-v1-5
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html

[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: An open-source robot operating system,” in ICRA workshop

on Open Source software, vol. 3, Kobe, Japan, 2009, p. 5.

[34] J. Singh, H. Lai, K. Psimoulis, P. Palmieri, I. Atanasova, Y. Chiter,

A. Shirkhodaiekashani, and S. A. Mokhov, “OpenISS depth camera as a near-

realtime broadcast service for performing arts and beyond,” in SIGGRAPH

Asia 2018 Posters, ser. SA ’18. New York, NY, USA: ACM, 2018. doi:

10.1145/3283289.3283293. ISBN 978-1-4503-6063-0 pp. 25:1–25:2.

[35] Vicon, “Vicon Motion Capture System,” [Online], 2019, https://www.vicon.

com/. [accessed 27-May-2019].

[36] C. W. Irving and D. Eichmann, “Patterns and design adaptability,” in Pattern

Languages of Programs, vol. 2, 1996, pp. 1–10.

[37] Simple OpenNI Project, “Simple OpenNI – open source Processing library,”

[online], 2011–2013, https://code.google.com/p/simple-openni/ and https://

github.com/totovr/SimpleOpenNI.

[38] S. A. Mokhov, D. Li, H. Lai, J. Singh, Y. Shen, J. Llewellyn, M. Song, and

S. P. Mudur, “ISSv2 and OpenISS distributed system for real-time interaction

for performing arts,” in ACM SIGGRAPH 2019 Posters, ser. SIGGRAPH ’19.

New York, NY, USA: ACM, 2019. doi: 10.1145/3306214.3338539. ISBN 978-1-

4503-6314-3 pp. 16:1–16:2.

[39] T. Laleh, E. Garro, J. Singh, G. Raju, M. Usman, S. A. Mokhov, and

J. Paquet, “Demand-driven SOA simulation platform based on GIPSY for

context-based brokerage,” in Proceedings of Service-Oriented Computing –

ICSOC 2016 Workshops and Satellite Events, ser. Lecture Notes in Computer

Science, K. Drira, H. Wang, Q. Yu, Y. Wang, Y. Yan, F. Charoy, J. Mendling,

M. Mohamed, Z. Wang, and S. Bhiri, Eds. Springer International Publishing,

2016. ISBN 978-3-319-68136-8 pp. 169–173, demo paper.

160

http://dx.doi.org/10.1145/3283289.3283293
https://www.vicon.com/
https://www.vicon.com/
https://code.google.com/p/simple-openni/
https://github.com/totovr/SimpleOpenNI
https://github.com/totovr/SimpleOpenNI
http://dx.doi.org/10.1145/3306214.3338539

[40] M. Tsikkos and J. Glading, “Writing a gesture service

with the Kinect for Windows SDK,” [online], Aug. 2011,

http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/

writing-a-gesture-service-with-the-kinect-for-windows-sdk.aspx.

[41] M. Ladly, G. Penn, C. P. C. Chen, P. Chintraruck, M. Ghaderi, B. A.

Ludlow, J. Peter, R. Tanyag, P. Zhou, and S. Kazemian, “The CBC

Newsworld holodeck,” in CHI’14 Extended Abstracts on Human Factors in

Computing Systems, ser. CHI EA’14. New York, NY, USA: ACM, 2014. doi:

10.1145/2559206.2574795. ISBN 978-1-4503-2474-8 pp. 363–366.

[42] J. J. LaViola, Jr., “Context aware 3D gesture recognition for games and virtual

reality,” in ACM SIGGRAPH 2015 Courses, ser. SIGGRAPH’15. New York,

NY, USA: ACM, 2015. doi: 10.1145/2776880.2792711. ISBN 978-1-4503-3634-5

pp. 10:1–10:61.

[43] N. Villaroman, D. Rowe, and B. Swan, “Teaching natural user interaction using

OpenNI and the Microsoft Kinect sensor,” in Proceedings of the 2011 Conference

on Information Technology Education. ACM, 2011, pp. 227–232.

[44] M. L. Silveira, T. L. Carvalho, A. F. Neto, and T. Bastos Filho, “A multi-Kinect

system for serious game development using ROS and Unity,” in XXVI Brazilian

Congress on Biomedical Engineering. Springer, 2019, pp. 585–591.

[45] S. Lantinga and the SDL Contributors, “SDL – Simple Directmedia Layer,”

[online], 2008–2014, http://www.libsdl.org/.

[46] S. A. Mokhov, J. Paquet, and M. Debbabi, “On the need for data flow

graph visualization of Forensic Lucid programs and forensic evidence, and

their evaluation by GIPSY,” in Proceedings of the Ninth Annual International

Conference on Privacy, Security and Trust (PST), 2011. IEEE Computer

Society, Jul. 2011. doi: 10.1109/PST.2011.5971973. ISBN 978-1-4577-0582-3 pp.

120–123, short paper; full version online at http://arxiv.org/abs/1009.5423.

161

http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/writing-a-gesture-service-with-the-kinect-for-windows-sdk.aspx
http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/writing-a-gesture-service-with-the-kinect-for-windows-sdk.aspx
http://dx.doi.org/10.1145/2559206.2574795
http://dx.doi.org/10.1145/2776880.2792711
http://www.libsdl.org/
http://dx.doi.org/10.1109/PST.2011.5971973
http://arxiv.org/abs/1009.5423

[47] H. Lai, “An OpenISS framework specialization for deep learning-based person

re-identification,” Master’s thesis, Department of Computer Science and

Software Engineering, Concordia University, Montreal, Canada, 2019, https:

//spectrum.library.concordia.ca/. [accessed 9-December-2019].

[48] Y. Shen, “Toward a flexible facial analysis framework in OpenISS for visual

effects,” Master’s thesis, Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada, 2019, https://spectrum.

library.concordia.ca/.

[49] Y. Ji, “Scalability evaluation of the GIPSY runtime system,” Master’s

thesis, Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, Mar. 2011, http://spectrum.library.concordia.

ca/7152/.

[50] A. Simard, “A framework for interoperability across heterogeneous service

description models,” Master’s thesis, Department of Computer Science and

Software Engineering, Concordia University, Montreal, Canada, 2019, https:

//spectrum.library.concordia.ca/.

[51] Intel Corporation, W. Garage, and Itseez, “Itseez: Image processing

algorithms,” [online], 2000–2019, https://opencv.org/.

[52] Z. Song, S. A. Mokhov, M. Song, and S. P. Mudur, “Creative use of signal

processing and MARF in ISSv2 and beyond,” in ACM SIGGRAPH 2018

Posters, ser. SIGGRAPH ’18. New York, NY, USA: ACM, 2018. doi:

10.1145/3230744.3230752. ISBN 978-1-4503-5817-0 pp. 4:1–4:2.

[53] S. A. Mokhov, M. Song, S. P. Mudur, and P. Grogono, “Hands-on: Rapid

interactive application prototyping for media arts and performing arts in

illimitable space,” in ACM SIGGRAPH 2019 Studio, ser. SIGGRAPH ’19. New

York, NY, USA: ACM, 2019. doi: 10.1145/3306306.3328008. ISBN 978-1-4503-

6316-7 pp. 8:1–8:33.

162

https://spectrum.library.concordia.ca/
https://spectrum.library.concordia.ca/
https://spectrum.library.concordia.ca/
https://spectrum.library.concordia.ca/
http://spectrum.library.concordia.ca/7152/
http://spectrum.library.concordia.ca/7152/
https://spectrum.library.concordia.ca/
https://spectrum.library.concordia.ca/
https://opencv.org/
http://dx.doi.org/10.1145/3230744.3230752
http://dx.doi.org/10.1145/3306306.3328008

[54] ——, “Dataflow programming and processing for artists and beyond,” in

SIGGRAPH Asia 2019 Courses, ser. SA ’19. New York, NY, USA: ACM,

2019. doi: 10.1145/3355047.3359423. ISBN 978-1-4503-6941-1 pp. 134:1–134:33.

[55] M. Song and S. A. Mokhov, “Dynamic motion-based background visualization

for the Ascension dance with the ISS,” [dance show, video], Jan. 2014, http:

//vimeo.com/85049604.

[56] M. Song et al., “Real-time motion-based shadow and green screen

visualization, and video feedback for the Like Shadows theatre

performance with the ISS,” [theatre production, video, news], Apr.

2014, http://www.concordia.ca/encs/cunews/main/stories/2014/06/04/

digital-art-thatillustratesthelandofthelivingandthedead.html and http://www.

concordia.ca/content/dam/encs/csse/news/docs/like-shadows-cse-academy.

pdf.

[57] M. Song, S. A. Mokhov et al., “Illimitable Space System at the Concordia

University Virtual Touch exhibition,” Eureka! Festival, Old Port, Montreal,

Canada, Jun. 2014.

[58] ——, “Illimitable Space System at the Virtual Touch exhibition,” Westmount

Science Camp, Loyola, Concordia University, Montreal, Canada, Jul. 2014.

[59] M. Song, S. A. Mokhov, and P. Grogono, “Illimitable Space System demo,”

in Poster Session Proceedings of Graphics Interface 2014, C. Batty, Ed., May

2014, pp. 3–4, poster at GI’14, online at http://www.cs.mcgill.ca/~kry/gi2014/

GI2014PosterProceedings.pdf.

[60] Cycling ’74, “Max/MSP/Jitter,” [online], 2005–2015, http://cycling74.com/

products/max/.

[61] N. Böttcher, “An introduction to Max/MSP,” [online], Medialogy, Aal-

borg University Copenhagen, 2007–2013, http://imi.aau.dk/~nib/maxmsp/

introduction_to_MaxMsp.ppt.

163

http://dx.doi.org/10.1145/3355047.3359423
http://vimeo.com/85049604
http://vimeo.com/85049604
http://www.concordia.ca/encs/cunews/main/stories/2014/06/04/digital-art-thatillustratesthelandofthelivingandthedead.html
http://www.concordia.ca/encs/cunews/main/stories/2014/06/04/digital-art-thatillustratesthelandofthelivingandthedead.html
http://www.concordia.ca/content/dam/encs/csse/news/docs/like-shadows-cse-academy.pdf
http://www.concordia.ca/content/dam/encs/csse/news/docs/like-shadows-cse-academy.pdf
http://www.concordia.ca/content/dam/encs/csse/news/docs/like-shadows-cse-academy.pdf
http://www.cs.mcgill.ca/~kry/gi2014/GI2014PosterProceedings.pdf
http://www.cs.mcgill.ca/~kry/gi2014/GI2014PosterProceedings.pdf
http://cycling74.com/products/max/
http://cycling74.com/products/max/
http://imi.aau.dk/~nib/maxmsp/introduction_to_MaxMsp.ppt
http://imi.aau.dk/~nib/maxmsp/introduction_to_MaxMsp.ppt

[62] M. Puckette and PD Community, “Pure Data,” [online], 2007–2014, http://

puredata.org.

[63] Microsoft, “The Kinect for Windows SDK v. 1.5,” [online], May 2012,

online at http://www.microsoft.com/en-us/kinectforwindows/develop/

developer-downloads.aspx and http://msdn.microsoft.com/en-us/library/

hh855347.

[64] ——, “The Kinect Studio v. 1.5.0.1,” [online], 2012, http://msdn.microsoft.com/

en-us/library/hh855389.

[65] ——, “The Kinect for Windows Developer Toolkit v. 1.5.2,” [online], Aug. 2012,

http://go.microsoft.com/fwlink/?LinkId=259543.

[66] ——, “Microsoft.Kinect Namespace,” [online], MSDN Library, 2012, http://

msdn.microsoft.com/en-us/library/hh855419.

[67] M. Song, S. A. Mokhov, P. Grogono, and S. P. Mudur, “On a non-web-

based multimodal interactive documentary production,” in Proceedings of the

2014 International Conference on Virtual Systems Multimedia (VSMM’2014),

H. Thwaites, S. Kenderdine, and J. Shaw, Eds. IEEE, Dec. 2014. doi:

10.1109/VSMM.2014.7136675. ISBN 978-1-4799-7227-2 pp. 329–336.

[68] C. Charland, M. Dörfelt, J. Echelman, A. Koblin, M. Song, S. A. Mokhov, and

P. Grogono, “Demo hour,” Interactions, vol. 21, no. 4, pp. 8–11, Jul. 2014. doi:

10.1145/2621929

[69] M. Song, S. A. Mokhov, S. P. Mudur, and P. Grogono, “Rapid interactive real-

time application prototyping for media arts and stage performance,” in ACM

SIGGRAPH Asia 2015 Courses, ser. SIGGRAPH Asia’15. New York, NY,

USA: ACM, 2015. doi: 10.1145/2818143.2818148. ISBN 978-1-4503-3924-7 pp.

14:1–14:11.

164

http://puredata.org
http://puredata.org
http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx
http://msdn.microsoft.com/en-us/library/hh855347
http://msdn.microsoft.com/en-us/library/hh855347
http://msdn.microsoft.com/en-us/library/hh855389
http://msdn.microsoft.com/en-us/library/hh855389
http://go.microsoft.com/fwlink/?LinkId=259543
http://msdn.microsoft.com/en-us/library/hh855419
http://msdn.microsoft.com/en-us/library/hh855419
http://dx.doi.org/10.1109/VSMM.2014.7136675
http://dx.doi.org/10.1145/2621929
http://dx.doi.org/10.1145/2818143.2818148

[70] M. Song, S. A. Mokhov, J. Thomas et al., “Dynamic motion-based background

visualization for the Gray Zone dance with the ISSv2,” [dance show, video],

Feb. 2015, https://vimeo.com/121177927.

[71] M. Song, S. A. Mokhov, J. Chaffarod et al., “Dynamic motion-based

visualization for the District 3 Demo Day with the ISSv2 and Processing,”

[demo, video], Jun. 2015, https://vimeo.com/130122925 and https://vimeo.

com/129692753.

[72] S. A. Mokhov, K.-F. Yiu, B. Ye, J. Zhang, H. Lai, and M. Song, “Real-time

motion capture for performing arts and stage,” [online], TEDxConcordia, Sep.

2017, https://www.youtube.com/watch?v=YgwnEmHFwI8.

[73] S.-S. Bardakjian, M. Song, S. A. Mokhov, and S. P. Mudur, “ISSv3: From

human motion in the real to the interactive documentary film in AR/VR,” in

Proceedings of the SIGGRAPH ASIA 2016 Workshop on Virtual Reality Meets

Physical Reality, ser. VR Meets PR 2016. New York, NY, USA: ACM, Dec.

2016. doi: 10.1145/2992138.2992139. ISBN 978-1-4503-4548-4/16/12

[74] M. Song, S. A. Mokhov, S. P. Mudur, and J.-C. Bustros, “Demo: Towards

historical sightseeing with an augmented reality interactive documentary app,”

in Proceedings of the 2015 IEEE Games Entertainment Media Conference

(GEM 2015), E. G. Bertozzi, B. Kapralos, N. D. Gershon, and J. R. Parker,

Eds. IEEE, Oct. 2015. doi: 10.1109/GEM.2015.7377249. ISBN 978-1-4673-

7452-1 pp. 16–17.

[75] Motion Arcade, Inc., “The Zigfu Development Kit: Apps with Kinect in

HTML5/JavaScript, Unity3D and Flash,” [online], 2012–2013, http://zigfu.

com/en/zdk/overview/.

[76] B. Baron, C. Brady, R. Gentile, G. Pereyra, J. Mulkin, D. Carrol, L. Spiker,

B. Hedayati, C. Phillips, R. Martinez, M. Roy, A. Rader, C. Smith, and

N. Robbins, “Initial OpenISS C API and libraries integration,” [online],

165

https://vimeo.com/121177927
https://vimeo.com/130122925
https://vimeo.com/129692753
https://vimeo.com/129692753
https://www.youtube.com/watch?v=YgwnEmHFwI8
http://dx.doi.org/10.1145/2992138.2992139
http://dx.doi.org/10.1109/GEM.2015.7377249
http://zigfu.com/en/zdk/overview/
http://zigfu.com/en/zdk/overview/

CSI230, Serguei Mokhov, 2016–2018, https://github.com/OpenISS/OpenISS/

tree/master/src/api/c.

[77] K. Psimoulis, P. Palmieri, I. Taushanova-Atanasova, Y. Chiter, A. Shirkhodaei,

N. Golabian, M.-A. Eghtesadi, B. Hedayati, P. Annamalai, and A. Laramee,

“OpenISS web services API implementation for OpenISS-as-a-service,” [online],

SOEN487 Team 10 and Team 11, Serguei Mokhov, Apr. 2018, https://github.

com/OpenISS/OpenISS/tree/master/src/api/java.

[78] C. Wang, “OpenISS extension with new gesture and AI integration,” Tech. Rep.

COMP6971-S19, 2019, project report.

[79] J. Paquet and P. G. Kropf, “The GIPSY architecture,” in Proceedings of

Distributed Computing on the Web, ser. Lecture Notes in Computer Science,

P. G. Kropf, G. Babin, J. Plaice, and H. Unger, Eds., vol. 1830. Springer

Berlin Heidelberg, 2000. doi: 10.1007/3-540-45111-0_17 pp. 144–153.

[80] S. A. Mokhov, “Forensic Lucid encoded examples,” [online], 2018–2020, https:

//github.com/smokhov/atsm/tree/master/examples/flucid.

[81] M. Ledwidge, “A Clever Label,” SIGGRAPH Asia 2019: Real-Time Live!

Program, Brisbane, Australia, Nov. 2019, http://sa2019.conference-program.

com/presentation/?id=real_110&sess=sess230.

[82] Wikipedia, “Sign Language,” [onlne, accessed 27-May-2019], 2019, https://en.

wikipedia.org/wiki/Sign_language.

[83] B. A. Myers, “A brief history of human computer interaction technology,”

interactions, vol. 5, no. 2, pp. 44–54, 1998.

[84] X. W. Sha, “Resistance is fertile: Gesture and agency in the field of responsive

media,” Configurations, vol. 10, no. 3, pp. 439–472, 2002.

[85] B. Polson, “Pipeline design patterns,” in ACM SIGGRAPH 2015

Courses, ser. SIGGRAPH’15. New York, NY, USA: ACM, 2015. doi:

10.1145/2776880.2792724. ISBN 978-1-4503-3634-5 pp. 21:1–21:59.

166

https://github.com/OpenISS/OpenISS/tree/master/src/api/c
https://github.com/OpenISS/OpenISS/tree/master/src/api/c
https://github.com/OpenISS/OpenISS/tree/master/src/api/java
https://github.com/OpenISS/OpenISS/tree/master/src/api/java
http://dx.doi.org/10.1007/3-540-45111-0_17
https://github.com/smokhov/atsm/tree/master/examples/flucid
https://github.com/smokhov/atsm/tree/master/examples/flucid
http://sa2019.conference-program.com/presentation/?id=real_110&sess=sess230
http://sa2019.conference-program.com/presentation/?id=real_110&sess=sess230
https://en.wikipedia.org/wiki/Sign_language
https://en.wikipedia.org/wiki/Sign_language
http://dx.doi.org/10.1145/2776880.2792724

[86] P. Premaratne, “Historical development of hand gesture recognition,” in Human

Vomputer Interaction Using Hand Gestures. Springer, 2014, pp. 5–29.

[87] M. Turk, “Gesture recognition,” [online; accessed 12-Jan-2020], 2016, https:

//link.springer.com/referenceworkentry/10.1007/978-0-387-31439-6_376.

[88] ——, Gesture Recognition. Boston, MA: Springer. US, 2014, pp. 346–349.

ISBN 978-0-387-31439-6

[89] A. Davison, Kinect open source programming secrets: Hacking the Kinect with

OpenNI, NITE, and Java. McGraw-Hill New York, 2012.

[90] OpenKinect Developers, “The OpenKinect project,” [online, accessed 27-May-

2019], 2012–2019, http://openkinect.org.

[91] Microsoft, “Microsoft Kinect,” [online; accessed 27-May-2019], 2012–2019,

https://support.xbox.com/en-US/browse/xbox-360/getting-started/Kinect.

[92] Wikipedia, “Kinect — Wikipedia, The Free Encyclopedia,” [online; accessed

4-February-2012], 2012, http://en.wikipedia.org/w/index.php?title=Kinect&

oldid=474626703.

[93] OpenKinect Contributors, “OpenKinect: Open source drivers for kinect v1,”

[online, accessed 27-May-2019], 2011–2019, http://openkinect.org.

[94] L. Xiang, F. Echtler, C. Kerl, T. Wiedemeyer, Lars, hanyazou, R. Gordon,

F. Facioni, laborer2008, R. Wareham, M. Goldhoorn, alberth, gaborpapp,

S. Fuchs, jmtatsch, J. Blake, Federico, H. Jungkurth, Y. Mingze, vinouz,

D. Coleman, B. Burns, R. Rawat, S. Mokhov, P. Reynolds, P. Viau,

M. Fraissinet-Tachet, Ludique, J. Billingham, and Alistair, “libfreenect2:

Release 0.2,” Apr. 2016.

[95] Wikipedia, “Structured Light,” [online; accessed 27-May-2019], 2019, https://

en.wikipedia.org/wiki/Structured_light.

167

https://link.springer.com/referenceworkentry/10.1007/978-0-387-31439-6_376
https://link.springer.com/referenceworkentry/10.1007/978-0-387-31439-6_376
http://openkinect.org
https://support.xbox.com/en-US/browse/xbox-360/getting-started/Kinect
http://en.wikipedia.org/w/index.php?title=Kinect&oldid=474626703
http://en.wikipedia.org/w/index.php?title=Kinect&oldid=474626703
http://openkinect.org
https://en.wikipedia.org/wiki/Structured_light
https://en.wikipedia.org/wiki/Structured_light

[96] ——, “Time of flight,” [online; accessed 27-May-2019], 2019, https://en.

wikipedia.org/wiki/Time_of_flight.

[97] OpenKinect, “OpenNI2-Freenect Driver,” [online; accessed 27-May-

2019], 2019, https://github.com/OpenKinect/libfreenect/tree/master/

OpenNI2-FreenectDriver.

[98] Apple, Inc., “Apple,” [online; accessed 27-May-2019], ...–2019, https://www.

apple.com/.

[99] Wikipedia, “PrimeSense,” [online; accessed 27-May-2019], 2005, https://en.

wikipedia.org/wiki/PrimeSense.

[100] Occipital, “Occipital,” [online; accessed 27-May-2019], ...–2019, https://

occipital.com/.

[101] ——, “OpenNI 2 SDK binaries and docs,” [online; accessed 27-May-2019], 2019,

https://structure.io/openni.

[102] ——, “Structure sensor,” [online; accessed 27-May-2019], ...–2019, https://

structure.io/structure-sensor.

[103] S. Falahati, OpenNI Cookbook. Packt Publishing Ltd, 2013.

[104] S. Ravi, “Hand gesture recognition using OpenNI+ROS,” [online; accessed 27-

May-2019], 2014, https://www.youtube.com/watch?v=mc7qEY60nXY.

[105] B. Hoffman and K. Martin, “CMake,” in AOSA, Volume I, A. Brown and

G. Wilson, Eds. aosabook.org, Mar. 2012, vol. I, http://aosabook.org/en/

cmake.html.

[106] A. Brown and G. Wilson, Eds., The Architecture of Open Source Applications:

Elegance, Evolution, and a Few Fearless Hacks. aosabook.org, Mar. 2012,

vol. I, online at http://aosabook.org.

168

https://en.wikipedia.org/wiki/Time_of_flight
https://en.wikipedia.org/wiki/Time_of_flight
https://github.com/OpenKinect/libfreenect/tree/master/OpenNI2-FreenectDriver
https://github.com/OpenKinect/libfreenect/tree/master/OpenNI2-FreenectDriver
https://www.apple.com/
https://www.apple.com/
https://en.wikipedia.org/wiki/PrimeSense
https://en.wikipedia.org/wiki/PrimeSense
https://occipital.com/
https://occipital.com/
https://structure.io/openni
https://structure.io/structure-sensor
https://structure.io/structure-sensor
https://www.youtube.com/watch?v=mc7qEY60nXY
http://aosabook.org/en/cmake.html
http://aosabook.org/en/cmake.html
http://aosabook.org

[107] C. Reas and B. Fry, “Processing: programming for the media arts,” AI &

SOCIETY, vol. 20, no. 4, pp. 526–538, Sep. 2006. doi: 10.1007/s00146-006-

0050-9

[108] M. Lefebvre, G. Lévesque, R. Pettigrew, J. Segal, and B. Z. Leroux, “Dreaming

now,” [Théâre Youtheatre show; video], Feb. 2016, http://accesculture.com/

activite/Dreaming_now and https://vimeo.com/81609646.

[109] S. A. Mokhov, M. Song, A. Kaur, M. Talwar, K. Gudavalli, and S. P. Mudur,

“Managing data and artifacts between software engineers and artists: an issv2

case study,” in Proceedings of the 21st International Database Engineering &

Applications Symposium, IDEAS 2017, Bristol, United Kingdom, July 12-14,

2017, B. C. Desai, J. Hong, and R. McClatchey, Eds. ACM, 2017. doi:

10.1145/3105831.3105862. ISBN 978-1-4503-5220-8 pp. 6–13.

[110] J. Parker, Introduction to Game Development Using Processing, Jun. 2015.

ISBN 978-1937585402

[111] M. Song et al., “LED matrix demonstration (enhanced),” [online], 2016, https:

//vimeo.com/157863706.

[112] SWIG Community, “SWIG wiki,” [online; accessed 27-May-2019], 2019, https:

//github.com/swig/swig/wiki.

[113] Klaus Kaempf, “Generating language bindings for C/C++ libraries,” [online;

accessed 27-May-2019], 2008, https://en.opensuse.org/images/e/eb/Kkaempf_

KnowledgeSharing_Swig.pdf.

[114] D. M. Beazley et al., “SWIG: An easy to use tool for integrating scripting

languages with C and C++,” in Tcl/Tk Workshop, 1996, p. 43.

[115] D. M. Beazley, “Automated scientific software scripting with SWIG,” Future

Generation Computer Systems, vol. 19, no. 5, pp. 599–609, 2003.

169

http://dx.doi.org/10.1007/s00146-006-0050-9
http://dx.doi.org/10.1007/s00146-006-0050-9
http://accesculture.com/activite/Dreaming_now
http://accesculture.com/activite/Dreaming_now
https://vimeo.com/81609646
http://dx.doi.org/10.1145/3105831.3105862
https://vimeo.com/157863706
https://vimeo.com/157863706
https://github.com/swig/swig/wiki
https://github.com/swig/swig/wiki
https://en.opensuse.org/images/e/eb/Kkaempf_KnowledgeSharing_Swig.pdf
https://en.opensuse.org/images/e/eb/Kkaempf_KnowledgeSharing_Swig.pdf

[116] SWIG Community, “SWIG 4.0 documentation,” [online; accessed 27-May-2019],

2019, http://www.swig.org/Doc4.0/index.html.

[117] D. M. S. Beazley, “SWIG master class,” [online; accessed 27-May-2019], 2008,

http://www.dabeaz.com/SwigMaster/SWIGMaster.pdf.

[118] Docker, Inc., “Docker,” [online; accessed 27-May-2019], 2019, https://www.

docker.com/resources/what-container.

[119] Wikipedia, “Inversion of control,” [online], 2020, https://en.wikipedia.org/wiki/

Inversion_of_control.

[120] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of Object-

Oriented Programming, vol. 1, no. 2, pp. 22–35, 1988.

[121] W. Pree, “Meta patterns – a means for capturing the essentials of

reusable object-oriented design,” in European Conference on Object-Oriented

Programming. Springer, 1994, pp. 150–162.

[122] Wikipedia, “Dependency injection,” [online], 2019, https://en.wikipedia.org/

wiki/Dependency_injection.

[123] K. S. Al-Tahat, S. B. Idris, T. M. T. Sembok, and M. Yousof, “Using hot-spot-

driven approach in the development of a framework for multimedia presentation

on the web,” Framework, vol. 2, no. B1, p. A1, 2002.

[124] M. Fayad and D. C. Schmidt, “Object-oriented application frameworks,”

Communications of the ACM, vol. 40, no. 10, pp. 32–38, 1997.

[125] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995, ISBN: 0201633612.

[126] N. Wirth, “Program development by stepwise refinement,” in Pioneers and

Their Contributions to Software Engineering. Springer, 2001, pp. 545–569.

170

http://www.swig.org/Doc4.0/index.html
http://www.dabeaz.com/SwigMaster/SWIGMaster.pdf
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection

[127] Vicon, “Vicon FAQ: How can i measure real-time latency,” [on-

line, accessed 27-May-2019], 2019, https://www.vicon.com/faqs/hardware/

how-can-i-measure-real-time-latency.

[128] D. Riehle, “Framework design: A role modeling approach,” Ph.D. dissertation,

ETH Zurich, 2000.

[129] Wikipedia, “Model–view–controller,” [online], 2020, https://en.wikipedia.org/

wiki/Model\T1\textendashview\T1\textendashcontroller.

[130] M. Song, “Tangible Memories: Multi-dimensional interactive documentary

presentation,” Apr. 2011, [Concordia University Humanities Doctoral Student

Annual Conference]; http://dislocationsconference.wordpress.com/schedule/.

[131] Miao Song (Director), “Tangible memory bubbles,” [online], Oct. 2012, https:

//vimeo.com/51329588.

[132] M. Song, P. Grogono, J. Lewis, and M. J. Simmonds, “A poor woman’s

interactive remake of the “I Still Remember” documentary with OpenGL,”

in Proceedings of ICEC 2011, ser. LNCS, J. Anacleto, S. Fels, N. Graham,

B. Kapralos, M. S. El-Nasr, and K. Stanley, Eds., no. 6972. Springer, Oct.

2011. doi: 10.1007/978-3-642-24500-8_42. ISBN 978-3-642-24499-5 pp. 362–

366.

[133] Y. Mao, C. Ling, and C. Wang, “OpenISS: HCI for forensic investigators,” Tech.

Rep. INSE6610-S19, 2019, project report.

[134] Intel, “Intel RealSense SDK2.0,” [online; accessed 12-Jan-2020], 2020, https:

//github.com/IntelRealSense/librealsense.

[135] Udacity, “Snake 2D game,” [online; accessed 27-May-2019], 2019, https://

github.com/udacity/CppND-Capstone-Snake-Game.

[136] Jashanjot Singh, “Snake 2D game,” [online; accessed 27-May-2019], 2019, https:

//github.com/jashanj0tsingh/CppND-Capstone-Snake-Game.

171

https://www.vicon.com/faqs/hardware/how-can-i-measure-real-time-latency
https://www.vicon.com/faqs/hardware/how-can-i-measure-real-time-latency
https://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller
https://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller
http://dislocationsconference.wordpress.com/schedule/
https://vimeo.com/51329588
https://vimeo.com/51329588
http://dx.doi.org/10.1007/978-3-642-24500-8_42
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/udacity/CppND-Capstone-Snake-Game
https://github.com/udacity/CppND-Capstone-Snake-Game
https://github.com/jashanj0tsingh/CppND-Capstone-Snake-Game
https://github.com/jashanj0tsingh/CppND-Capstone-Snake-Game

[137] J. Tokuda, G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez, P. Cheng,

H. Liu, J. Blevins, J. Arata, A. J. Golby, T. Kapur, S. Pieper, E. C. Burdette,

G. Fichtinger, C. M. Tempany, and N. Hata, “OpenIGTLink: an open network

protocol for image-guided therapy environment,” The International Journal of

Medical Robotics and Computer Assisted Surgery, vol. 5, no. 4, pp. 423–434,

2009. doi: 10.1002/rcs.274

172

http://dx.doi.org/10.1002/rcs.274

Index

API

(void*), 98

adaptDepthData(), 103

adaptGestureData(), 103

adaptHandData(), 103

ApplicationRenderer, 111

Camera, 111

Controller, 142, 143

convertHandCoordinatesToDepth(),

91

create(), 99

drawTrail(), 109

Face, 65

fby, 117

Frame, 65

Game, 143

Gesture, 65

GESTURE_CLICK, 92, 93, 95, 125

GESTURE_DEFAULT, 92

GESTURE_HAND_RAISE, 92, 95,

125

GESTURE_IS_ABSENT, 94

GESTURE_IS_COMPLETE, 94

GESTURE_IS_IN_PROGRESS, 94

GESTURE_PUSH, 93, 99, 127

GESTURE_SWIPE_DOWN, 93,

99, 127

GESTURE_SWIPE_LEFT, 92, 99,

126

GESTURE_SWIPE_RIGHT, 92,

99, 126

GESTURE_SWIPE_UP, 93, 99, 127

GESTURE_WAVE, 92, 93, 95, 125

GESTURE_WAVING, 93, 98, 126

GestureData, 47

getDepth(), 69

getDepthFrame(), 90

getGestures(), 69, 84, 90, 98, 144

getHands(), 69, 84, 90, 98, 144

GL_POINT, 109

Hand, 65

HAND_IS_ABSENT, 93

HAND_IS_LOST, 93

HAND_IS_NEW, 93

HAND_IS_TOUCHING_FOV, 93

HAND_IS_TRACKING, 93

HandData, 47

HandleInput, 143

173

HandTracker, 47, 96

HandTrackerFrameRef, 47, 96

init(), 84, 89, 97, 99, 100, 108, 144

javaout, 106

jni, 106

jstype, 106

jtype, 106

Leap Motion, 25

libfreenect, 134

LicenseNotAcquiredException, 129

master, 136, 139

Message, 100

messages, 137

NewFrameListener, 96

nite::HandTracker, 97, 98

nite::HandTrackerFrameRef, 97

nite::NiTE::initialize(), 97

nite::NiTE::shutdown(), 97

NodeHandle::advertise(), 103

OIDepthFrame, 88, 101, 106, 107

OIDevice, 97

OIGestureData, 88, 90, 93

OIGestureState, 93

OIGestureTracker, 87, 88, 95, 96, 99,

103, 106

OIGestureType, 92

OIGetsureData, 101

OIGetsureTracker, 95, 98

OIHandData, 88, 90, 93, 101

OIHandState, 93

OINiTEGestureTracker, 95, 96, 98,

99

OINuitrackGestureTracker, 98, 99

OIStatusType, 91, 144, 145

onNewDepthFrame(), 109

onNewFrame(), 96, 97

OpenGL, 66, 89, 111, 123

openni::VideoFrameRef::getData(),

98

OpenPose, 25

out, 106

override, 96, 99

Renderer, 143

renderTexture, 109

ros::Publisher, 103

ros::Subscriber, 103

ROS_IP, 139

ROS_MASTER_URI, 139

ROSAdapter, 102

roscore, 109, 136

roscpp, 53, 87, 100–102, 110

rospy, 53

rosrun, 110, 137

rostopic, 137

rpath, 107

Scene, 111

SimpleOpenNI, 8, 9, 22, 32, 68, 73,

78, 95, 96, 119, 120, 134, 153

Skeleton, 65, 129

Snake, 142, 143

174

Sphere, 116

sphere_data, 116

sphere_id, 116, 131

startGestureDetection(), 84, 89, 97,

108, 144

startHandTracking(), 84, 90

STATUS_DEFAULT, 92

STATUS_FAIL, 92

STATUS_OK, 92

STA-

TUS_TRACKER_UNINITIALZED,

92

std::string, 117

std::vector, 84, 90, 105, 106, 109

std_vector.i, 106

stop(), 84, 89, 97, 100, 144

stopGestureDetection(), 84, 89, 144

stopHandTracking(), 84, 90

swigCMemOwn, 57

swigCPtr, 57

tdv::nuitrack::Nuitrack::init(), 99

tdv::nuitrack::Nuitrack::run(), 100

tdv::nuitrack::Nuitrack::update(),

100

typemaps, 105

typemaps.i, 106

uint16_t, 98

update(), 84, 89, 90, 98, 100, 109

User, 65

UserTracker, 47

virtual, 87

Background, 28

C, 34, 35, 54–58, 104, 106

C++, 20, 34, 35, 48, 51, 54–58, 65, 84,

87, 89, 94, 97, 104–106, 120, 132,

133, 154

C#, 5, 31, 49, 55

Conclusion and Future Work, 148

DigiEVISS, iii, 6, 7, 23, 31, 38, 72, 77,

110, 112–115, 129–132, 134, 149,

152, 154, 155

DST, 155

Evaluation, 122

Files

.pde, 120

build, 52

catkin_ws, 52, 87

cmake-modules/, 86, 87

CMakeLists.txt, 87, 143

code/, 120

devel, 52

Dockerfile, 58

home/, 120

include/, 85, 87

interface.i, 56

interface_wrap.cxx, 56

library.h, 56

library.java, 57

175

msg/, 87

package.xml, 52, 87

samples/, 86, 87

simple-flucid-program.ipl, 117

sketchbook/, 120

src, 52

src/, 85, 87

swig/, 86, 87

wrapper.java, 57

wrapperJNI.java, 57, 107

Forensic Lucid, iii, 5–7, 18, 22, 28, 31, 35–

40, 42, 72, 77, 110, 112–118, 131,

132, 152, 154

Framework Design and Instantiation, 80

Frameworks

GEE, 35, 36

GIPC, 7, 35, 36, 38, 42, 112, 117, 132,

154

RIPE, 35

GEE, 35, 36

GIPC, 7, 35, 36, 38, 42, 112, 117, 132, 154

GIPSY, 27, 35, 36, 39, 41, 42, 155

Haskell, 51

Illimitable Space System, 4, 5, 8, 14, 21,

22, 28–30, 32–34, 68

DigiEVISS, iii, 6, 7, 23, 31, 38, 72, 77,

110, 112–115, 129–132, 134, 149,

152, 154, 155

Forensic Lucid, iii, 6, 7, 23, 31, 38, 72,

77, 110, 112–115, 129–132, 134,

149, 152, 154, 155

OpenISS, iii, 4, 9, 21–23, 28, 30, 33–

35, 42, 64–66, 71, 72, 78, 81–

84, 86, 87, 100, 102–104, 107–109,

113, 118–120, 131, 134, 136, 137,

143, 148, 152–155

Introduction, 1

Java, 20, 34, 36, 51, 54, 55, 57, 58, 65, 69,

72, 77, 86, 95, 104–107, 118, 120,

122, 152, 154

JavaScript, 34, 55

Kinect v1, 8, 21, 25, 44, 45, 50, 66, 128,

131

Kinect v2, 8, 21, 25, 32, 44, 45, 50, 66,

128, 131

Libraries

OpenGL, 66, 89, 111, 123

LISP, 51

Lucid, 5, 28, 35–38

Methodology, 59

NiTE2.0, 13, 15, 16, 22, 25, 32, 45–49, 65–

73, 76, 77, 80–85, 89, 90, 92–100,

104, 105, 111, 120, 124–131, 133,

136, 138–140, 149–153, 155

Nuitrack, 13, 15, 22, 25, 26, 33, 48–50, 65–

73, 76, 77, 80–85, 89, 90, 92–94,

176

98–100, 104, 105, 111, 120, 123–

131, 133–136, 138–140, 142, 143,

149–155

OpenCV, 66

OpenGL, 66, 89, 111, 123

OpenISS, iii, 4, 9, 21–23, 28, 30, 33–35,

42, 64–66, 71, 72, 78, 81–84, 86,

87, 100, 102–104, 107–109, 113,

118–120, 131, 134, 136, 137, 143,

148, 152–155

OpenNI, 45, 46

OpenNI1.0, 46

OpenNI1.5, 46

OpenNI2.0, 32, 45–47, 69, 72, 85, 95, 120,

127, 129

Perl, 55

PHP, 55

Python, 51, 55

RIPE, 35

ROS, 17–19, 22, 25, 26, 28, 42, 50–54, 64–

66, 70, 72, 73, 75, 76, 78, 80, 82,

83, 87, 89, 94, 100, 102, 122, 123,

136–140, 153–155

Tools

add_jar, 107

catkin, 87, 102

cmake, 51, 86, 87, 102, 106, 107, 142,

143, 151

fakenect, 151, 152

libfreenect, 44, 45, 49, 81

libfreenect2, 44, 45, 49, 81, 152

librealsense, 154

librealsense2, 49, 85, 152

p5.js, 54

streamer_recorder, 82, 152

177

Appendix A

Docker File

FROM ubuntu:bionic

#

LABEL maintainer="Jashanjot Singh" release="1.0"

#

RUN apt-get update && apt-get install -y \

build-essential \

cmake \

wget \

git \

libusb-1.0-0-dev \

libudev-dev \

freeglut3-dev \

ffmpeg \

unzip \

ruby-full \

vim

Non-ROS

RUN /bin/bash -c " cd ~ \

&& wget http://se.archive.ubuntu.com/ubuntu/pool/main/libp/libpng/libpng12-0_1.2.54-1

ubuntu1_amd64.deb \

&& dpkg -i libpng12-0_1.2.54-1ubuntu1_amd64.deb \

&& wget http://download.3divi.com/Nuitrack/platforms/nuitrack-ubuntu-amd64.deb \

&& dpkg -i nuitrack-ubuntu-amd64.deb \

&& rm libpng12-0_1.2.54-1ubuntu1_amd64.deb nuitrack-ubuntu-amd64.deb \

&& cd ~ \

&& mkdir libs \

&& cd libs \

&& wget https://s3.amazonaws.com/com.occipital.openni/OpenNI-Linux-x64-2.2.0.33.tar.bz2 \

&& tar -xjvf OpenNI-Linux-x64-2.2.0.33.tar.bz2 \

178

&& wget https://sourceforge.net/projects/roboticslab/files/External/nite/NiTE-Linux-x64-2.2.tar.

bz2 \

&& tar -xjvf NiTE-Linux-x64-2.2.tar.bz2 \

&& wget http://download.3divi.com/Nuitrack/NuitrackSDK.zip \

&& unzip NuitrackSDK.zip \

&& cp -r NuitrackSDK/Nuitrack . \

&& rm NiTE-Linux-x64-2.2.tar.bz2 OpenNI-Linux-x64-2.2.0.33.tar.bz2 NuitrackSDK.zip \

&& git clone https://github.com/OpenKinect/libfreenect.git \

&& cd ~/libs/libfreenect && mkdir build && cd build \

&& cmake .. -DBUILD_OPENNI2_DRIVER=ON \

&& make \

&& cd ~/libs/libfreenect/build/lib/OpenNI2-FreenectDriver \

&& cp * ../ \

&& cd ~/libs/libfreenect/build/lib \

&& cp -rf * ~/libs/OpenNI-Linux-x64-2.2/Redist/OpenNI2/Drivers \

&& cd ~ \

&& wget https://gist.githubusercontent.com/jashanj0tsingh/bfcc092133a1cec3f2043b6ed3b9cb30/raw

/3415d3928ee65249d4dc79ec9e2c32d21b3d5232/env_setup_openiss.sh \

&& chmod a+x ~/env_setup_openiss.sh \

&& ./env_setup_openiss.sh \

&& cat .bashrc \

&& source .bashrc \

uncomment below to install opencv

&& cd ~ \

&& git clone https://github.com/opencv/opencv.git \

&& cd opencv \

&& git checkout 3.4 \

&& mkdir build && cd build \

&& cmake .. -L \

&& make -j4 \

&& make install \

&& rm -rf ~/opencv \

"

#

RUN bin/bash -c "cd ~ "

ROS

setup timezone

RUN echo ’Etc/UTC’ > /etc/timezone && \

ln -s /usr/share/zoneinfo/Etc/UTC /etc/localtime && \

apt-get update && apt-get install -q -y tzdata && rm -rf /var/lib/apt/lists/*

install packages

RUN apt-get update && apt-get install -q -y \

dirmngr \

179

gnupg2 \

lsb-release \

python3-pip \

&& rm -rf /var/lib/apt/lists/*

setup keys

RUN apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

#

setup sources.list

RUN echo "deb http://packages.ros.org/ros/ubuntu ‘lsb_release -sc‘ main" > /etc/apt/sources.list.d/

ros-latest.list

install bootstrap tools

RUN apt-get update && apt-get install --no-install-recommends -y \

python3-rosdep \

python3-rosinstall \

python3-vcstools \

&& rm -rf /var/lib/apt/lists/*

#

setup environment

ENV LANG C.UTF-8

ENV LC_ALL C.UTF-8

#

bootstrap rosdep

RUN rosdep init \

&& rosdep update

#

install ros packages

ENV ROS_DISTRO melodic

RUN apt-get update && apt-get install -y \

ros-melodic-desktop \

&& rm -rf /var/lib/apt/lists/*

#

CMD ["bash"]

Listing A.1: Dockerfile

180

181

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Domain
	Motivation
	Essential Background
	Motivational Scenarios
	Scenario I: Manipulation of digital evidence objects in a 3D warehouse-like application by a forensic investigator using hand gestures
	Scenario II: Real time visual effects for performance visualization on stage by an artist using hand gestures in ISSv2
	Scenarios Summary
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Thesis Statement
	Goals and Objectives
	Research Questions
	Scope of the Thesis
	Contributions
	Structure of the Thesis

	Background
	Related Work
	Illimitable Space System
	ISSv1
	ISSv2
	ISSv3
	OpenISS

	GIPSY
	Forensic Lucid
	Toward Multimodal Interaction in Scalable Visual Digital Evidence Visualization Using Computer Vision Techniques and ISS
	OpenISS depth camera as a near-realtime broadcast service for performing arts and beyond
	Gesture Tracking
	Vision-Based Gesture Recognition
	Nielsen Usability Heuristics

	Libraries, Tools and Middleware
	OpenKinect
	libfreenect and libfreenect2

	PrimeSense
	OpenNI 2.0
	NiTE 2.0

	Nuitrack
	Robot Operating System (ROS)
	Overview
	ROS Architecture

	Processing
	SWIG 4.0
	Docker

	Summary

	Methodology
	Solution Overview
	Framework Design Approach
	OpenISS Core Framework
	OpenISS Gesture Framework

	Framework Design and Evaluation Methodology
	Top-Down and Bottom-Up Approaches
	Design and Implementation
	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Experimental Evaluation

	Summary

	Framework Design and Instantiation
	Framework Design
	Data Acquisition
	Data Adaptation
	Data Delivery
	Design Structure and Layers

	Framework Instantiations
	NiTE2.0
	Nuitrack
	ROS
	Framework Cross Language Module

	Framework Applications
	Integrated Sample Application
	DigiEVISS
	Scenario II Application

	Summary

	Evaluation and Results
	Evaluation Testbed Specifications
	Integrated Sample Application as Evaluation Testbed
	DigiEVISS
	ISSv2
	Integrated Sample Application as ROS Client
	Test Game Application
	Summary

	Conclusion and Future Work
	Concluding Remarks
	Limitations
	Future Work
	Summary

	Bibliography
	Index
	Appendix
	Docker File

