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Montréal, Québec, Canada

February 2020

c© Nickesha Ayoade, 2020



CONCORDIA UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 

This is to certify that the thesis prepared 

By: Nickesha Ayoade 

Entitled: Theoretical Studies On The Design Of School Choice Mechanisms 

and submitted in partial fulfillment of the requirements for the degree of 

Doctor Of Philosophy  (Economics) 

complies with the regulations of the University and meets the accepted standards with respect to 
originality and quality. 

Signed by the final examining committee: 

Chair 
Dr. Kregg Hetherington 

 External Examiner 
Dr. Lars Ehlers 

 External to Program 
Dr. Joel Bothello 

 Examiner 
Dr. Ming Li 

 Examiner 
Dr. Dipjyoti Majumdar 

Thesis Supervisor 
Dr. Szilvia Papai 

Approved by 
Dr. Christian Sigouin, Graduate Program Director 

January 23, 2020 
Dr. André Roy, Dean 
Faculty of Arts and Science 



Abstract

Theoretical Studies On The Design Of School Choice

Mechanisms

Nickesha Ayoade, Ph.D.

Concordia University, 2020

This thesis consists of three papers on market design which address broadly applicable

questions on the design of school choice mechanisms, refugee placement, assignment in

entry-level labour markets and similar matching rules.

In the first paper a new family of rules is introduced for many-to-one matching prob-

lems, the Preference Rank Partitioned (PRP) rules. PRP rules are Student-Proposing

Deferred Acceptance rules where the schools use a choice function based on the stu-

dents’ preference orderings in addition to the schools’ strict priority orderings. Each

PRP rule uses a choice function which is a function of a fixed partition of both student

preference ranks and school priority ranks: the choice function first seeks to select stu-

dents based on the priority classes and then based on the preference classes. The strict

priorities are only used for tie-breaking. PRP rules include many well-known matching

rules and some interesting new rules, and we analyze them in this unified framework.

In the second paper we study a new class of matching rules, called Deferred Accep-

tance with Improvement Trading Cycles (DA-ITC), which start with the DA, and if the

DA outcome is not Pareto-efficient then there is an iterated improvement trading cycle

phase which allows for Pareto-improvements until a Pareto-efficient outcome is reached.

We first revisit EADAM (Kesten, 2010) and show that a simple algorithm which re-

traces cycles in the DA procedure in a backward order of the rejections is equivalent to

the EADAM rule. The new class of DA-ITC rules contains the EADAM and DA-TTC

as its two extreme members and exhibits some of their desirable properties.
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In the third paper we focus on matching problems where stability need not be

satisfied if the violation of priorities is ”small,” such as when a small priority difference

is considered insignificant or when one is willing to consent but only if the priority

reversal is small. Based on the degree of stability which specifies what is considered a

small priority gap, we define two families of matching rules, the k-Consent rules and

the k-DA rules, and explore their attributes.
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Chapter 1

Introduction

1.1 Matching Theory

As aptly put by Alvin Roth (2002, [48]) “Economist have been lately called upon

not only to analyze markets, but to design them.” Market design seeks to translate

economic theory and analysis into practical solutions to real-world problems. By re-

designing both the rules that guide market transactions and the infrastructure that

enables those transactions to take place, market designers can address a broad range of

market failures. In this context, this thesis consists of three studies on market design,

which draw on the fields of matching theory, mechanism design, axiomatic resource

allocation and game theory, and address broadly applicable questions in the design of

school choice mechanisms, refugee placement, entry-level labour markets and similar

assignment problems.

There are two main types of matching models that are closest to our analysis: one-

sided and two-sided matching models. In both types of matching models the goal is

to assign the agents or objects on one side of the market to the agents on the other

side of the market based on some desirable criteria. In one-sided matching one side

of the market has indivisible goods (often referred to as objects), while the other side

has agents. The latter is considered the only active side (hence the name “one-sided”),
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since only the agents’ side matters for the required normative and incentive goals. By

contrast, in two-sided matching both sides of the market has agents. The focus of this

thesis is on one-sided matching.

There are three key objectives in matching theory: fairness, efficiency and strate-

gyproofness. For one-sided matching, an agent is said to have justified envy if there

exists an object which he prefers to his assignment and for which he has a higher pri-

ority than another agent who is matched to this object. A matching is said to be fair

if there is no agent who has justified envy. Thus, fairness is achieved by eliminating

all justified envy. This concept is also closely related to the well-known criterion of

stability for the two-sided matching model. The other two criteria, Pareto-efficiency

and strategyproofness are standard axioms on market design and axiomatic resource

allocation. A matching is considered Pareto-efficient if there is no way to make any

agent better off without making at least one agent worse off. Finally, strategyproofness

ensures that no agent has an opportunity to misrepresent her preferences, regardless

of what preferences the other agents report, such that the agent can obtain a better

object assigned to her by doing so.

1.2 School Choice and Deferred Acceptance

A school choice model, introduced by Abdulkadiroǧlu and Sönmez (2003, [2]), consists

of a set of a set of students and a set of schools, where a quota is specified for each

school indicating the number of available school seats. Each student has a preference

ranking over schools and her outside option. Being matched to the outside option

means that the student remains unassigned in the problem and could be interpreted in

the school choice context as going to a private school or being home-schooled. Each

school has a priority ranking over students. The priority rankings are determined by

local (state or city) laws and education policies, and typically do not reflect the school’s

preferences. In other contexts, such as refugee matching, we can also take the priorities
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to be mandated. Thus, only student preferences are relevant for normative welfare and

fairness requirements, and only students are subject to incentive criteria. The school

choice model is closely related to the college admissions problem introduced by Gale and

Shapley (1962, [30]). The key difference between the two models is that in school choice

schools are objects to be “consumed” by the students, whereas in college admissions

schools themselves are agents and have preferences over students, as opposed to being

objects that have mandated priorities over students.

The outcome for a school choice problem with given student preferences and school

priorities is a matching of schools to students, such that each student is matched to

either a school or to the outside option, and no school is matched to more students than

its quota. A school choice mechanism, which we will also refer to as a matching rule,

is a function that assigns a matching to each school choice problem with fixed prefer-

ences and priorities. The benchmark mechanism, which is widely used in school choice

programs and in entry-level labour markets, such as in hospital-residence matching, is

the Gale-Shapley Deferred Acceptance (DA) algorithm due to Gale and Shapley (1962,

[30]).

For each school choice problem the DA rule operates as follows:

Step 1 Each student applies to her highest-ranked school. Each school tentatively

accepts, up to its capacity, the best students according to its priority list and

rejects the rest.

Step k (k ≥ 2) Each student rejected in the previous step applies to her next highest-

ranked school. Each school tentatively accepts, up to its capacity, the best stu-

dents among its new applicants and the students who are tentatively already

matched to the school according to its priority list and rejects the rest.

The algorithm stops when no more students are rejected.

The DA is strategyproof (Dubins and Freedman, 1981, [18]; Roth, 1982, [47]) and

fair (Gale and Shapley, 1962, [30]) in the one-sided matching model. However, the
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DA is not Pareto-efficient, despite the fact that the DA allocation Pareto-dominates all

other fair allocations at each preference profile (Gale and Shapley (1962, [30]).

The DA algorithm proposed by Gale and Shapley (1962, [30]) has had a substantial

impact on market design, as it is the fundamental algorithm for a number of labor

market clearinghouses around the world. It has also been recently implemented in

school choice systems in Boston and New York City, among many others. New York

City replaced its decentralized system of high school admissions with a centralized

clearinghouse based on the DA algorithm (Abdulkadiroǧlu et al., 2005, [4], [5]). In July

2005 the Boston School Committee voted to replace the existing Boston school choice

mechanism with a DA mechanism, which simplifies the strategic choices facing parents.

Abdulkadiroǧlu et al. (2005, [4], [5]) report details on Boston and New York City.

1.3 Theoretical Background

Abdulkadiroǧlu and Sönmez (2003, [2]) was the first paper to apply matching theory to

the practical design of public school choice systems. They argued that placement mech-

anisms used in many cities, such as Boston, were flawed or didn’t function well, and

proposed alternative centralized mechanisms that would expand the choice of available

schools and have good normative and incentive properties. This led to several cities

adopting a new school choice mechanism, and this continues to be an active area of re-

search which focuses on designing improved mechanisms and studying the performance

of mechanisms in use.

Kesten (2004, [36]) argues that there are three important properties that a good

student placement mechanism should ideally satisfy: equity (such as eliminating or

minimizing justified envy in some manner); optimality (such as Pareto-efficiency or

a constrained version of efficiency if full efficiency is not possible) and immunity to

strategic behaviour (ideally strategyproofness). It is well known in the literature that

there are trade-offs among strategyproofness, fairness and efficiency. Most notably,
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Gale and Shapley (1962, [30]) and Balinski and Sönmez (1999, [?]) show that there

is an incompatibility between eliminating justified envy and Pareto-efficiency. This

incompatibility has inspired a substantial literature with various approaches to reconcile

the properties of fairness (or stability) and efficiency. There are quite a few papers on

weakening stability in some manner, which may allow for improving efficiency. We

mention a few here without intending to provide an exhaustive list: Klijn and Massó

(2003, [38]), Kesten (2004, [36]), Alcalde and Romero-Medina (2015, [?]), Cantala and

Pápai (2014, [14]), Pápai (2015, [43]), and Morrill (2014, [41]; 2017, [25]).

Kesten (2010, [37]) provides theoretical and computational evidence which shows

that the Deferred Acceptance matching outcome may suffer large welfare losses. Kesten

(2010, [37]) proposes a mechanism that aims to improve efficiency compared to the

Deferred Acceptance mechanism. He introduces the idea of consent in school choice,

where a consenting student cannot be made worse off by agreeing to have his priority

violated, but may help other students as a consequence. This thesis draws inspiration

from Kesten (2010, [37]). In particular, Chapter 4 introduces a new class of rules

which are all Pareto-efficient and improve upon the Deferred Acceptance outcome in

terms of efficiency. In a similar spirit to consenting, Chapter 5 proposes an alternative

relaxation of stability where, unlike Kesten (2010, [37]), a student does not consent

unconditionally.

Another strand of the literature focuses on priority structures for which Pareto-

efficiency and fairness can be reconciled. For strict priorities, Ergin (2002, [29]) showed

that “acyclicity” of the priority structure is a necessary and sufficient condition for

Pareto-efficiency of the Deferred Acceptance rule. A priority structure is acyclic if it

never gives rise to situations where an agent can block a trade between any other agents

without affecting his own allocation. Kesten (2002) showed that the Deferred Accep-

tance and Top Trading Cycle rules are equivalent if and only if the priority structure

is acyclic, but his acyclicity condition is stronger than that of Ergin’s when there are

multiple copies of objects (i.e., in the school choice model). Furthermore, Kesten’s
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stronger acyclicity condition is a necessary and sufficient condition for the Top Trading

Cycle rule to always yield a stable matching. Ehlers and Erdil (2010, [22]) generalize

this result to the case where school priorities are coarse, that is, school priorities may

have indifferences. Morill (2013, [42]) and Hakimov and Kesten (2014,[31])) introduce

alternative matching rules, in the school choice model, to the well-known Top Trading

Cycles rule, which are also Pareto-efficient and strategyproof just like the Top Trad-

ing Cycles rule, and compare favorably in terms of justified envy, although a direct

comparison of justified envy at particular preference profiles is not conclusive.

The Deferred Acceptance algorithm produces the student-optimal matching when

we have strict priorities over all students, which is a nice theoretical property. However,

in reality schools often do not have strict priorities over all students. For example in

the Boston Public School system students are prioritized based on whether they have

a sibling enrolled at the same school or whether the student lives within the walk zone

of the school. This places many students in the same priority class. When using the

Deferred Acceptance algorithm, which is only defined for strict priorities, ties among

students are typically broken randomly. Abdulkadiroǧlu et al. (2009, [1]) demonstrate

that when priorities are coarse there does not exist a unique stable matching in general

which is weakly Pareto-efficient for students, and this may harm student welfare.

Abdulkadiroǧlu et al. (2009, [1]) showed, using simulations, that the Deferred Ac-

ceptance rule with single tie-breaking, albeit preferred to the Deferred Acceptance with

multiple tie-breaking, can also lead to a matching that is not a student-optimal sta-

ble matching. A single tie-breaking rule uses the same tie-breaker at each school,

while a multiple tie-breaking rule may use a different tie-breaker at each school. A

theoretical result of Abdulkadiroǧlu et al. (2009, [1]) implies that there does not ex-

ist a strategyproof mechanism (stable or not) that Pareto-improves on the Deferred

Acceptance outcome with single tie-breaking. That is, the potential inefficiency of

the student-proposing Deferred Acceptance rule with single tie-breaking is the cost

of strategyproofness. Erdil and Ergin (2008, [27] created an algorithm, called stable
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improvement cycles, to find a student-optimal stable matching that Pareto-dominates

the outcome of the student-proposing Deferred Acceptance rule with an arbitrary tie

breaking rule.

In the same vein as Erdil and Ergin (2008, [27], in Chapters 4 and 5 we introduce

alternative algorithms which are aimed at improving upon the student-proposing De-

ferred Acceptance rule. Moreover, one of the desirable features of the mechanisms that

we propose and analyze in Chapter 3 is that they are compatible with coarse priori-

ties, and therefore add to the existing literature by offering alternative approaches to

breaking ties.

1.4 Summary of the Chapters

This thesis consists of three studies on market design, which draw on the fields of

matching theory, mechanism design, axiomatic resource allocation and game theory,

and address broadly applicable questions in the design of school choice mechanisms,

refugee placement, entry-level labour markets and similar assignment problems.

The definitions of all relevant matching rules are collected in Chapter 2. Chapter 3

introduces a unified framework to study the stability and incentive properties of new

and existing matching rules that rely on student preferences directly in the schools’

choice functions. Chapter 4 studies new Pareto-efficient matching rules by revisiting

the EADAM rule of Kesten (2010, [37]). Chapter 5 proposes a relaxed definition of

stability which may be applicable in several contexts and may lead to matching rules

with improved efficiency compared to stable matching rules. More detail to motivate

each of the main chapters is provided below.

7



1.4.1 Chapter 3: A Unified Analysis of Some School Choice

Rules

In Chapter 3 we introduce a new family of rules for many-to-one matching problems, the

Preference Rank Partitioned (PRP) rules. PRP rules are Student-Proposing Deferred

Acceptance rules where the schools use a choice function to select among applicants.

These choice functions are based on the students’ strict preference orderings, in addition

to the schools’ strict priority orderings. Often only the priorities are used by the choice

function, such as in the standard DA rule, but there are quite a few matching rules that

have been studied in the literature, or have been used in practice, for which this is not

the case, and student preferences play a role in the schools’ selections among applying

students. For instance, the Boston mechanism, used in Boston prior to 2005, is a rule

which relies heavily on submitted student preferences in its selection. We wish to unify

all these rules by specifying a large class of rules, the PRP rules, which includes all

known matching rules of this kind, and also some new rules that have not been studied

so far, and analyze this class of mechanisms.

Specifically, to capture all school choice rules which rely on preferences for selection

among applicants, we introduce choice functions based on a partition of both student

preference ranks and school priority ranks: the choice function first seeks to select

students based on the priority classes and then, when needed, based on the preference

classes. Finally, if the selection of students is still not determined then the strict

priorities are used for tie-breaking. PRP rules include many well-known matching

rules, such as the Deferred Acceptance and Boston rules, and the family of Application-

Rejection mechanisms of Chen and Kesten (2017, [[16]]), in addition to interesting new

matching rules. We study the stability and incentive properties of PRP matching

rules, including a special sub-family of PRP rules which treat students’ preferences

symmetrically.
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1.4.2 Chapter 4: Revisiting Kesten’s EADAM Rule

In Chapter 4 we study a new class of matching rules, called Deferred Acceptance with

Improvement Trading Cycles (DA-ITC), which start with the DA, and if the DA out-

come is not Pareto-efficient then there is an iterated improvement trading cycle phase

which allows for Pareto-improvements until a Pareto-efficient outcome is reached. We

first revisit EADAM and show that a simple algorithm which re-traces cycles in the

DA procedure in a backward order of the rejections, following the DA rounds starting

from the last round, and restores these cycles in this backward order, is equivalent to

the EADAM rule (Kesten, 2010, [37]). This class of rules has the DA-TTC as one of its

extreme members and EADAM as the other extreme member. Matching rules between

the two extremes are rules that combine features of both the DA-TTC and EADAM.

1.4.3 Chapter 5: Relaxing Stability When Small Priority Vi-

olations Are Acceptable

In Chapter 5 we study matching problems where stability need not be satisfied if the

violation of priorities is ”small,” such as when a small priority difference is considered

insignificant or when one is willing to consent but only if the priority reversal is small.

Based on the degree of stability which specifies what is considered a small priority

gap, we define two families of matching rules, the k-Consent rules and the k-DA rules,

and analyze their properties. The standard stability notion of a matching requires no

justified envy, that is, if student i prefers a school to the school she is assigned at

the given matching, then each agent j who is assigned a seat at the preferred school

has a higher priority for this object than i does, in addition to individual rationality

(no student should be matched to an unacceptable school) and non-wastefulness (no

school seat should remain empty that at least one student desires). This stability

concept can be relaxed in many ways. One interesting and natural way to relax it is

to simply consider “small” priority violations acceptable. For example, the priorities
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might be based on some criterion that is subject to random variation or inaccuracy

of measurement, such as a test score. Or consider the idea of consent introduced by

Kesten (2010, [37]). Instead of unconditional consent (which may be ideal to increase

efficiency), one can easily imagine that a potentially consenting party may agree to

consent only if the priority violation is deemed small. This type of weakening of the

standard stability notion is the focus of this paper.

We study this more relaxed stability compared to the usual concept, which depends

on the size of the priority violation measured by the distance in the priority ranking,

assuming strict priorities to begin with. For example, test scores of 162 and 166 may

be considered close enough to deem the difference insignificant and thus allow for a

priority violation in the matching, by letting the applicant with 162 points be matched

to a university over the applicant with 166 points, while the latter applicant prefers

this university to the university he is matched to, but if this applicant had 167 points

then a similar violation would not be allowed, since a 5-point difference is no longer

considered small. We refer to this as the degree of stability and define the concept of k-

stability which specifies the allowed size of the priority violation. In the above example,

5-stability would be violated if an applicant with 167 points had justified envy in the

described situation, but 5-stability would be satisfied if this applicant’s test score was

166. Note that 1-stability coincides with standard stability, while 2-stability requires a

more relaxed degree of stability that allows for a small priority violation, namely, when

two students’ priority rankings are adjacent for the object in question. Clearly, a larger

degree of stability is associated with a smaller k-stability (minimally 1), and a smaller

degree of stability requires a larger k-stability. At the extreme of k = n there is no

stability implication since any priority violation is acceptable.
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Chapter 2

Definitions of Matching Rules

In this chapter we provide definitions of the known matching rules that we use in the

thesis. The school choice problem consists of a set of students S, a set of schools C,

priority ordering �c and capacity constraint qc for each school c ∈ C, and preference

ordering Ps for each student s ∈ S.

2.1 Deferred Acceptance Rule (Gale and Shapley,

1962)

The Deferred Acceptance (DA) mechanism was proposed by Gale and Shapley (1962)

both for the one-to-one matching model (marriage markets) and for the many-to-one

college admission model, where the latter is formally identical to our model.

Step 1: Each student applies to his first-ranked acceptable school. Each school rejects

the lowest-ranked applicants under �c who are in excess of its capacity, and keeps

its remaining applicants tentatively.

Step k (k ≥ 2) : Each student who is rejected at Step k−1 applies to his next-ranked

school. Each school c considers its new applicants together with its applicants

who were kept at Step k − 1 and rejects the lowest-ranked under �c who are

beyond its capacity, and keeps its remaining applicants tentatively.
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The algorithm terminates whenever each student is either kept by a school or has applied

to all the schools. The outcome is the matching that results by matching students to

the schools that kept them tentatively in the last step of the procedure, in while other

students (if any) remain unmatched.

2.2 Boston Rule (Abdulkadiroǧlu and Sönmez, 2003)

Step 1: Each student applies to his first-ranked school. Each school rejects the lowest-

ranked applicants under c who are in excess of its capacity, and immediately

accepts the remaining applicants. Each school’s capacity is now reduced by the

number of students that it has just accepted. Let qkc be the number of units that

remain of school c after Step 1.

Step k (k ≥ 2) : Each student who is rejected at Step k− 1 applies to his kth-ranked

school. Each school consider its new applicants, rejects the lowest ranked ones

under �c who are in excess of its capacity that remains after Step k − 1, and

immediately accepts the remaining applicants. Each school’s current capacity is

now reduced by the number of students that it has just accepted after Step k.

Let qkc be the number of units that remain of school c after the current step.

This procedure terminates when each student is either accepted by an school or has

applied to all of the schools. In the latter case the student remains unassigned.

2.3 First Preference First Rules (Pathak and Sönmez,

2013)

The set of students is partitioned into two sets. One set is the equal preference schools

and the other one is the first preference first schools. Given a priority and a preference

profile (�, P ), the first preference first rule is the same as the DA with P and the

following strict priorities:
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1. Each equal-preference school c uses the strict priority �c.

2. Each first-preference-first rule school c uses the following strict priority: any stu-

dent who ranks school c at a certain rank has higher priority than any student who

ranks the same school lower than that rank. Among students who rank school c

the same, the priority is determined according to �c.

Note that the DA and the Boston rules are special cases of the First Preference First

rules. The DA is the special case when each school is an equal-preference school, and

the Boston rule is the special case when each school is a first-preference-first school.

2.4 Secure Boston Rule (Dur et al., 2018)

In this variation of the Boston rule no student loses his priority at a guaranteed school.

Student s has a guaranteed seat at school c with basic priority order �c students

(including student s) who either have higher priority than student s or are in tie with

student s under �c. Let G�c denote the set of students who have guaranteed seats at

school c under �c. Note that this set may be empty.

Given a priority and preference profile (�, P ). For each preference profile P , the

outcome that the mechanism selects for it is the application of DA for P and the

following modified priority profile �̂:

For each school c and each s; ŝ ∈ I:

1. if s ∈ G�c and s �c ŝ , then s�̂cŝ,

2. if s, ŝ /∈ G�̂c
, then

(a) if student s has ranked school c higher than student ŝ under R, then s�̂cŝ,

(b) if student s and ŝ have ranked school c the same and s �c ŝ, then s�̂cŝ.
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2.5 General French Rules (Bonkoungou, 2017)

In the French university admissions system, there are selective schools which strictly

order students based on their academic performances and non-selective schools which

define priority based on the students’ educational district. France is divided into 30

educational districts. For each non-selective school, each student who belongs to the

same district as the school has higher priority over each student who lives outside this

district. But students who live in the same district remain tied for schools in their

district, and similarly, students outside a district remain tied for schools in the district

in question.

The first step is to use the French tie-breaking procedure to obtain a strict priority

ordering. The DA is then applied to the modified priority profile �̂c.

The French tie-breaking rule can be described as follows. To begin, the set

of schools C (i.e., the schools) is partitioned into T categories (i.e., districts). Let

(C1, ..., CT ) be such a partition. A school c ∈ Ct for some district t is said to be ranked

relatively higher by student s than by another student ŝ if s ranks c higher than ŝ

among schools in Ct. A school c ∈ C is said to be ranked absolutely higher by student

s than by another student ŝ if s ranks c higher than ŝ among all schools in C. Given a

preference profile P , ties are broken based on the preferences as follows.

1. For any tie in the coarse priorities, a student who ranks the school relatively higher

than another student has higher priority for the school than the other student.

2. Among students who are tied for a school based on coarse priorities and relative

rankings, a student who ranks the school absolutely higher than another student

has higher priority for the school than the other student.

3. Among students who are still tied for a school based on coarse priorities, relative

rankings and absolute rankings, a student who is ordered higher in the tie-breaker

�c of the school has higher priority than another student who is ordered lower in

�c.
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2.6 The French Rule (Bonkoungou, 2019)

Given the priority profile �, for each preference profile P the French Rule constructs

the following strict priority profile �∗ (P ).

For all pairs i, j ∈ S:

1. if i �c j then i �∗c j;

2. if i ∼c j and student i has ranked school c at a higher position than did student

j under P then i �∗c j;

3. if i ∼c j and student i and j have ranked school c the same position under P and

student i is ranked higher than j under �c then i �∗c j.

Run the DA with the constructed priority profile �∗ (P ) at every preference profile P .

Note that the French rule is a General French rule with one school per category or

with only one category, both of which result in the same matching rule.

2.7 Application-Rejection Rules (Chen and Kesten,

2017)

Step 0: Each student applies to his first choice. Each school c considers its applicants.

Those students with the highest �c are tentatively assigned to school c up

to its quota. The rest are rejected.

Each rejected student, who is yet to apply to his e-th choice school, applies to his

next choice. If a student has been rejected from all his first e choices, then he

remains unassigned in this round and does not make any applications until

the next round. Each school c considers its applicants. Those students with

highest �c are tentatively assigned to school c up to its quota. The rest of

the applicants are rejected.
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The round terminates whenever each student is either assigned to a school or is

unassigned in this round, i.e., he has been rejected by all his first e choice

schools. At this point, all tentative assignments become final and the quota

of each school is reduced by the number of students permanently assigned

to it.

Step k (k ≥ 1) : Each unassigned student from the previous round applies to his te+1-

st choice school. Each school c considers its applicants. Those students with the

highest �c are tentatively assigned to school c up to its quota. The rest of the

applicants are rejected.

The algorithm terminates when either each student or each school has been assigned.

After this step all tentative assignments become final.

2.8 Taiwan Deduction Rules (Dur et al., 2018)

A Taiwan rule can be implemented by deducting points from the student priority scores

and then applying DA to the resulting problem. Define a deduction rule as λ =

(λ1, λ2, . . . , λ|S|+1) such that λ1 = 0 and λk ≤ λk+1 for any k ∈ (1, 2, . . . , |S|).

When deduction points are zero, that is, if λ = (0, 0, 0, . . . , 0) the associated Taiwan

deduction rule produces the same outcome as the DA. When deduction points are very

large, that is if λ = (0, πmax, 2πmax, . . . , |S|πmax), the associated Taiwan deduction rule

produces the same outcome as the Boston rule.

2.9 Serial Dictatorships (Satterthwaite and Sonnen-

schein, 1981)

Given an ordering σ of students from 1 to n (i.e., any permutation of the set S), a

Serial Dictatorship fσ assigns the schools to students as follows:
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1. The first student is assigned her favorite school among all the schools.

2. The second student is assigned her favorite school with remaining seats.

And so on, each student is assigned her favorite school with remaining seats.

2.10 Gale’s Top Trading Cycle Rule (Shapley and

Scarf, 1974)

The Top Trading Cycles (TTC) rule is based on an initial “endowment” of schools to

students, and has the following steps:

Step 1: Each student points to the school who is endowed with her first-ranked school.

A student may point to herself. There exists at least one cycle, which may consist

of one or more pointing students. Assign each student in each cycle (a top trading

cycle) to the school owned by the student to whom she is pointing. These are

final assignments, so we remove all the students with their assigned schools who

were in a top trading cycle and have received their assignments.

Step k (k ≥ 2) : After the assigned schools and students have been removed in round

k−1, repeat the same procedure in the reduced market as in round 1, except that

now each students points to the student who is endowed with her first-ranked

school among the schools that are still in the market.

The algorithm stops when all students who were given an initial endowment have been

removed from the market with an assigned school.

2.11 DA-TTC (Cantala and Pápai, 2014)

Step 1 (DA step): Run the DA algorithm.

Step 2 (TTC step): Using the DA outcome as endowments, run the TTC algorithm.
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2.12 EADAM (Kesten, 2010)

Student i is an interrupter at a particular preference profile if the student is rejected

by a school c in the DA algorithm in round t, and there is at least one more student

who had been previously rejected by school c prior to round t, while student i was

temporarily matched to school c in that round. Then student i is an interrupter in

round t and the pair (i, c) is an interrupting pair in round t.

Step 1 (DA step): Run the DA algorithm.

Step 2 (Efficiency adjustment step):

Find the last round of the DA algorithm run in Step 1 in which an interrupter

is rejected by any school. If there is no interrupter for any school, the algorithm

terminates. Otherwise identify all interrupting pairs (i, c) of this particular round

and remove school c from the preferences of student i without changing the relative

order of the remaining schools in R. Keeping the rest of the preference profile

unchanged, re-run the DA algorithm with the new preference profile.

In general, in round k, k ≥ 2, find the last round of the DA algorithm run in round

k−1 in which an interrupter is rejected by any school. If there is no interrupter left

for any school, the algorithm terminates. Otherwise identify all interrupting pairs

(i, c) of this particular round and remove school c from the preferences of student

i without changing the relative order of the remaining schools in R. Keeping the

rest of the preference profile unchanged, re-run the DA algorithm with the new

preference profile.

2.13 Simplified EADAM (Tang and Yu, 2014)

A school c is underdemanded at a matching µ if no student prefers c to her assignment

under µ.
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The steps of the simplied EADAM are as follows:

Step 0: Run DA for the problem (P,�)

Step k (k ≥ 2) : This step consists of three substeps:

1. Identify the schools that are underdemanded at the DA matching found in

the previous step, settle the matching at these schools, and remove these

school seats and the students matched to them.

2. For each removed student i who does not consent, each remaining school c

that student i desires and each remaining student j such that i � j , remove

c from j’s preference.

3. Re-run DA for the remaining school seats and students.

Stop when all school seats or all students are removed.
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Chapter 3

School Choice with Preference

Rank Classes

3.1 Introduction

We study a new family of matching rules, which we call Preference Rank Partitioned

(PRP) rules, for many-to-one matching problems that assign heterogeneous indivisible

objects to agents, where objects have strict priorities over agents and several agents may

be assigned to the same object. Since this model is known as the school choice model

due to Abdulkadiroǧlu and Sönmez (2003, [2]), we call the objects schools and refer to

the agents as students. However, the theoretical approach and results pertain to a broad

range of applications, not just to school choice, such as centralized university admissions,

refugee resettlement, and dormitory room assignments, among others. Balinski and

Sönmez (1999, [?]) introduced this model first, which only differs from the college

admissions model of Gale and Shapley (1962, [30]) in that school priorities are mandated

by policies or by the law and thus schools can be viewed as objects to be allocated,

while in college admissions schools have preferences and are considered to be strategic

agents. This has implications for the efficiency and incentive axioms used in the two

models. In the school choice model, only the students’ welfare and incentives are
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considered. Stability, on the other hand, translates into fairness in the school choice

model, since the exogeneously given school priorities are taken into account from the

students’ perspective.

PRP matching rules are student-proposing Deferred Acceptance (DA) rules (Gale

and Shapley, 1962, [30]) in which schools use a choice function to select among applicants

that rely not only on the school priorities, but also on the student preferences. Choice-

based DA mechanisms are studied and characterized by Kojima and Manea (2010,[39])

and Ehlers and Klaus (2016, [24]). Choice functions are employed in matching with

diversity constraints (e.g., Ehlers et al., 2014, [23]), matching with distributional con-

straints (e.g., Kamada and Kojima, 2018, [35]), or more generally by numerous papers in

matching with contracts. None of these papers consider choice functions which depend

on preferences.

PRP rules are determined by a partition of each school’s priority ordering of students

and by a partition of each student’s preference ranking over schools, which lead to

priority and preference rank classes respectively. Students who are in a higher priority

rank class are selected by the school’s choice function first, followed by a comparison of

the preference rank classes in which applying students place the school in question, in

order to make further selections. If ties remain then the school-specific strict priorities

over students are used for tie-breaking. Since the given priorities are assumed to be

strict, a PRP matching rule specifies, as the first selection criterion, priority rank classes

which lead to coarse priorities that are consistent with the given strict priorities. As the

second selection criterion, a PRP rule bases the selection of students on their preference

rank classes in the instances where some students applying to the school are in the

same priority rank class and selecting all of them would result in exceeding the school’s

capacity. The strict priorities within the priority rank classes specified by the PRP rule

are used only for tie-breaking, as a last resort, when neither the priority rank classes

nor the preference rank classes can determine the selection of students by a school in a

particular round of the iterated Deferred Acceptance procedure.
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The set of PRP rules includes many well-known matching rules, such as the Deferred

Acceptance (Gale and Shapley, 1962, [30]) and Boston (Immediate Acceptance) rules

(Abdulkadiroǧlu and Sönmez, 2003, [2]), as well as the family of Application-Rejection

mechanisms of Chen and Kesten (2017, [16]), the French Priority mechanisms of Bonk-

oungou (2019, [12]), the Taiwan Deduction mechanisms of Dur et al. (2018, [20]) and

the Secure Boston mechanism introduced by Dur et al. (2019, [21]), among others. We

analyze the family of PRP matching rules, and also study a subfamily of PRP rules, the

Equitable PRP rules, which treat students symmetrically. For matching rules in this

subfamily the preference rank classes are homogeneous across students. All previously

studied rules and families of rules that are PRP rules are Equitable PRP rules. We

specify new PRP rules which are not Equitable PRP rules, namely, the class of Favored

Students rules, which treat students in one of two ways: each student has either the

coarsest or the finest preference rank partition. We also identify some further classes

of PRP rules which are Equitable PRP rules and include the Deferred Acceptance and

Boston rules, but are distinct from such families of rules already studied in the liter-

ature, such as the Application-Rejection rules, the Taiwan Deduction rules, and the

generalized class of Secure Boston rules, proposed by Dur et al. (2019, [21]). One such

class is what we call the Deferred Boston rules, which are PRP rules that have homo-

geneous priority rank partitions combined with the finest preference rank partitions.

We also identify the class of Homogeneous PRP rules, characterized by having both

homogeneous priority and preference partitions, which makes Homogeneous PRP rules

a superset of almost all previously studied PRP rules (except for some French Priority

rules such as First Preference First and Secure Boston rules) and a subset of Equitable

PRP rules.

Several PRP rules have been used worldwide in school choice, university admissions,

and hospital-intern matching. Apart from the widely used Deferred Acceptance rule,

which was adopted (with some variations) by the school boards of several large US

cities such as New York City, Boston, and New Orleans, and is being used extensively
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in hospital-intern matching in North-America, the Boston rule was in use in Boston for

school choice until 2005 and is still a popular procedure for student placement.1 The

Boston rule is a special case of the priority matching mechanisms of Roth (1991,[49]),

which were used in several UK cities starting in the 1960s for allocating hospital po-

sitions to graduating medical students and were subsequently abandoned, since these

mechanisms have poor stability and incentive properties. Priority matching mecha-

nisms rely both on the exact preference ranks of hospitals by students and the exact

priority ranks of students by hospitals to determine the matching, and use a formula

which orders the pairs of ranks starting with (1, 1) to make matches. The only priority

matching rule that is a PRP rule is the Boston rule. The First Preference First rule used

in England for school choice was banned in 2007 (Pathak and Sönmez, 2013, [46]). The

French Priority rules are employed in centralized university admissions in France (Bonk-

oungou, 2019, [12]). The Parallel Mechanisms (more generally, Application-Rejection

rules) are in use in China (Chen and Kesten, 2017, [16]). The Taiwan Deduction rules

of Dur et al. (2018, [20]) have been used for high school assignment in Taiwan since

2014. Hence, PRP rules and their properties are not just of theoretical interest, but

also have practical relevance.

Our results pertain to the stability, efficiency, and incentive properties of PRP rules.

We first demonstrate that PRP rules choose the optimal matching that is consistent

with the specific school choice functions at each preference profile (Proposition 1).

We also characterize the subclass of PRP rules which treat students symmetrically,

the Equitable PRP rules, by applying a natural weak stability property that relies

on preferences in addition to the priorities to justify assignments (Proposition 2). This

characterization generalizes to the larger class of rules which are not necessarily optimal

but share the choice-function-specific stability properties of PRP rules (Theorem 1). We

also show that the only Pareto-efficient PRP rules (Pareto efficient for the students’ side

of the market) are what we call the Near-Boston rules, and this result also holds for the

1See Pathak (2017, [44]) for the literature on the practical aspects of school choice design.
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larger set of rules mentioned above, which form a superset of PRP rules (Theorem 2).

Surprisingly, the set of Near-Boston rules includes some PRP rules other than the

Boston rule, which itself is well-known to be efficient (Abdulkadiroǧlu and Sönmez,

2003, [2]; Kojima and Ünver, 2014, [40]). However, the class of Pareto-efficient PRP

rules is still quite restricted, since for these matching rules only one student’s preference

rank partition may differ from that of the Boston rule, which itself calls for the finest

preference partition for each student. A serious issue with the efficiency of the Near-

Boston rules is that these rules are not strategyproof (note that in this context for

strategyproofness we only take into account the students’ incentives, as the schools are

not considered strategic agents). In fact, the Boston rule is well-known to be highly

manipulable. Thus, since many students (or their parents, in the case of school choice)

misrepresent their true preferences, the matching outcome is unlikely to be Pareto-

efficient, and in fact the welfare loss can be significant (Ergin and Sönmez, 2006, [28];

Pathak and Sönmez, 2008, [45]). These concerns also carry over to the other Near-

Boston rules.

We also prove that the only strategyproof PRP rule is the Deferred Acceptance rule

(Theorem 3). Hirata and Kasuya (2017, [32]) study stability and strategyproofness

in a general matching market with contracts, and find that the number of stable and

strategy-proof rules is at most one. They also show that if the student-optimal stable

rule exists then it is the only candidate for a stable and strategyproof rule. These

results, nonetheless, don’t imply ours, since in their setup the choice function selects

a feasible set of contracts from each set of contracts independently of the preferences.

Alva and Manjunath (2019) also deal with related topics.

While PRP rules are not strategyproof except for the DA, they can be shown to be

less manipulable than their non-optimal counterparts, using the criterion of Pathak and

Sönmez (2013, [46]) for comparing manipulability. This result follows from the general

results of Pathak and Sönmez (2013, [46]) and Chen et al. (2016, [15]). Our main result

on incentives is that students cannot manipulate PRP rules to obtain a school that was

24



unattainable when reporting their preferences truthfully by placing this school in the

same preference rank class or in a lower one when reporting untruthfully (Theorem 4).

This theorem sheds new light on the incentive properties of well-known PRP rules and

offers insight into their manipulability properties in general.

The closest papers to ours are Bonkoungou (2019, [12]),2 who studies an important

subclass of PRP rules, the French Priority rules, in a somewhat different setup, and

Chen and Kesten (2017, [16]) and Dur et al. (2018, [20]), both of which study a class of

PRP rules which is distinct from the French Priority rules and only have two members

in common: the DA and the Boston rule. Bonkoungou (2019, [12]) has coarse priorities

as primitives of his model, thus the French Priority rules, which always have the finest

preference partition for students (as in the Boston rule), collapse to one single rule in

his paper. He explores the incentive properties of the French Priority rule from both

an ex-ante and an ex-post perspective. Bonkoungou also introduces a notion called

strategic accessibility, which serves as a basis for further manipulability comparisons

(see also Bonkoungou and Nesterov, 2019, [13]). Our analysis is from the ex-post

perspective, and our results complement the ex-post perspective results of Bonkoungou

(2019, [12]). Specifically, Bonkongou (2019, [12]) makes comparisons based on how fine

the given coarse priorities are, while our main theorem on incentives pertains to the

preference rank classes. Chen and Kesten (2017, [16]) study a subclass of PRP rules

in which the preference rank classes are homogeneous but the priority rank classes are

the coarsest. The Taiwan Deduction rules of Dur et al. (2018, [20]) translate into the

same class of PRP rules in our framework as the Application-Rejection rules of Chen

and Kesten (2017, [16]). We generalize the findings of Chen and Kesten (2017, [16])

about the extreme members of the class of Application-Rejection rules (Theorem 2 and

Theorem 3). The results of Chen and Kesten (2017, [16]) and Dur et al. (2018, [20])

on manipulability comparisons of different matching rules are independent of our main

result on incentives (Theorem 4).

2See also a previous version of this paper, Bonkoungou (2017, [11].)

25



Although we assume that there are exogenously determined strict priorities, PRP

matching rules can also be useful when only coarse (weak) priorities are given, as would

be typical for public schools that cannot strictly order the students based on a few

criteria only, or for countries which cannot distinguish among all refugee families but

wish to prioritize refugees with certain skills and attributes. In Bonkoungou’s (2019,

[12]) approach the exogeneously given priorities are coarse, following the practice of

universities in France, and consequently the use of preference rankings is viewed as

breaking the ties in the given coarse priorities. In cases like this, when priorities are

weak, the DA and most other prominent matching rules that rely on priorities are

not well-defined, and the ties need to be resolved. Abdulkadiroǧlu et al. (2009, [1])

propose to use a single tie-breaking procedure in the DA, which is a tie-breaking lottery

that applies to each school, and show this tie-breaking method to be superior to the

multiple tie-breaking procedure, which means separate tie-breaking lotteries for schools.

Erdil and Ergin (2008, [27]) introduce stable improvement cycles, which is essentially a

different tie-breaking procedure at different preference profiles with the aim of improving

student welfare while preserving stability with respect to the coarse priorities. Further

interesting papers on tie-breaking are Ehlers and Erdil (2010, [22]) and Ehlers and

Westkamp (2018, [26]).

3.2 Model

Let S be the set of n students and C the set of m ≥ 3 schools. Each school c has

capacity qc ≥ 1. In order to simplify the exposition, we assume that m ≥ 3 and that

there exist schools a, b, c ∈M such that qa+ qb+ qc < n. The latter assumption ensures

that there is scarcity for at least the three schools with the least capacity, so we don’t

need to take care of special cases where this minimum scarcity doesn’t hold.

Each student s ∈ S has a preference relation Ps, a strict ordering over C ∪ {0},

where assigning 0 to student s represents staying unmatched (or being matched to an
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outside option). If 0Psc then school c is unacceptable to student s, and otherwise the

school is acceptable to s. For c, c′ ∈ C we write cPsc
′ if student s strictly prefers school

c to school c′, and cRsc
′ if either cPsc

′ or c = c′. Let Ps ∈ (c) denote that student

s has one acceptable school only, namely c, and let Ps ∈ (0) denote that s has no

acceptable schools. More generally, we will write Ps ∈ (a, b, c), for example, to indicate

that student s ranks school a first, b second, and c third, and that these are the only

acceptable schools to s. We will also use the notation rs(c) for student s’s ranking of

school c for each acceptable school c. For example, rs(c) = k indicates that c is ranked

in the kth position by s. Note that if rs(c) < rŝ(c) then s ranks school c higher than

ŝ, in the sense that a lower rank number indicates higher preference. Let Ps denote

the set of all preference relations for student s ∈ S and let P = Ps1 × . . . × Psn . A

preference profile is P = (Ps1 , . . . , Psn), where P ∈ P .

Each school c ∈ C has a strict priority ordering �c of students in S. Let π be the

set of all priority orderings (i.e., permutations) of students. Then for all c ∈ C, �c∈ π.

Let Π = π × . . . × π be the m-fold Cartesian product of π. A priority profile is

�= (�c1 , . . . ,�cm), where �∈ Π. We assume that a fixed strict priority profile �∈ Π is

a primitive of the model. We will discuss in Section 9 how we can relax this assumption

and give a different interpretation to Preference Rank Partitioned matching rules when

coarse priorities are the primitives instead of strict priorities.

The outcome of a matching problem is an assignment of students to schools, which

we refer to as a matching. Formally, a matching is a function µ : S → C, where

µ(s) ∈ C indicates the school to which student s is matched. If a student s is unassigned

in matching µ, we will write µ(s) = s. For ease of notation we let µs denote µ(s) and

µc denote µ−1(c), the set of students assigned to c. For all c ∈ C, |µc| ≤ qc, that is,

the school capacity qc cannot be exceeded. Let the set of matchings be denoted by M .

A matching rule ϕ assigns a matching to each priority and preference profile pair

(�, P ), or a profile for short. Thus, ϕ : P × Π→M .

A matching µ is blocked by student s ∈ S at P ∈ P if s prefers being single to

27



being matched to µs, that is, sPsµs. A matching is individually rational at P if it

is not blocked by any student at P . A matching µ is non-wasteful at P if no student

s prefers a school to µs which has empty seats at µ, that is, for all s ∈ S and c ∈ C, if

cPsµs then |µc| = qc.

Student s has justified envy at µ, given a profile (�, P ), if there exist school c and

student ŝ such that cPsµs, s �c ŝ and µŝ = c. That is, student s has justified envy for

c, given that ŝ is matched to c and ŝ has lower priority for c than s. A matching µ is

stable at (�, P ) if it is individually rational, non-wasteful, and there is no student who

has justified envy at µ, given (�, P ). A matching rule is stable if it assigns a stable

matching to each profile (�, P ).

A matching µ is Pareto-efficient if there is no η ∈ M which Pareto-dominates µ,

considering the student’s preferences. A matching η ∈ M Pareto-dominates µ if for

all s ∈ S, ηsRsµs and, for some ŝ ∈ S, ηŝPŝµŝ. A matching rule is Pareto-efficient if

it assigns a Pareto-efficient matching to each preference profile (�, P ). A matching is

optimal if it is stable and Pareto-dominates all other stable matchings for the set of

students. By Gale and Shapley (1962, [30]), there is a unique optimal stable matching

for students at each profile. A matching rule is optimal if it assigns the optimal matching

for students to each preference profile.

3.3 Preference Rank Partitioned Matching Rules

We now describe the family of matching rules that we study in this paper, called

Preference Rank Partitioned (PRP) matching rules. Each PRP rule is determined by

a profile of ”partitions” of both the priority rankings of schools and the preference

rankings of students. Each school’s priority rankings are partitioned by specifying the

number of consecutively ranked students in each member of the partition, starting

from the top of the rankings.3 Each student’s preference rankings are also partitioned

3A partition of priority rankings may arise naturally when priorities are coarse, as is often the case
in school choice, but here we treat the partitions as part of the matching rule, given the strict priorities
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similarly by specifying the number of consecutively ranked schools in each member of

the partition.

PRP rules are choice-based Deferred Acceptance rules, that is, each school uses a

choice function to select among applicants in each round of the DA procedure. For each

school c ∈ C, we define a choice function Chc such that for all S ′ ⊆ S, Chc(S
′) ⊆ S ′ with

the following properties. If |S ′| ≤ qc then Chc = S ′ and if |S ′| ≥ qc then |Chc(S ′)| = qc.

We may also write Chc(S
′, (�, P )), if we want to indicate explicitly that Chc depends

not just on S ′ but also on the profile (�, P ).

Choice-Based Deferred Acceptance (DA) rules:

• Round 1:

Each student applies to her highest-ranked school (assuming that the highest-

ranked school is acceptable to the student). Each school tentatively assigns its

seats according to its choice function. Any remaining applicants are rejected.

• Round k :

Each student who was rejected in round k− 1 applies to her next highest-ranked

acceptable school (if any remains). Each school considers the students who are

tentatively assigned to the school, if any, together with its new applicants (hence-

forth the “applicant pool”), and tentatively assigns its seats according to its choice

function. Any remaining applicants are rejected.

The algorithm terminates when each student is either tentatively assigned to some

school or has been rejected by each school that is acceptable to the student, in which

case the student remains unassigned.

A PRP rule is a choice-based DA rule with a choice function Chc for each school

c ∈ C which selects among students as a function of the given partitions of priorities and

preferences. Given a partition of the priority rankings for school c, the priority (rank)

for each school. We will discuss how to start from naturally arising coarse priorities in Section 9.
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classes, and given a partition of the preferences for each student, the preference

(rank) classes, school c first selects students from its applicant pool in its highest

priority class(es). If this does not determine the selected set of students, where the

selected number of students is up to the fixed capacity qc of the school, given that

priority classes are not necessarily singletons, the choice function then considers the

partitioned preferences, and selects students who have school c in their highest possible

preference class(es) relative to each other. If the preference partitions still do not

determine the selected set of students for school c, then the choice is resolved based on

the strict priority ordering �c. This last round based on the strict priority orderings

can be seen as tie-breaking. This defines a choice function for each school c ∈ S, that

is, it determines unambiguously the set of selected students up to the school capacity

from any given applicant pool S ′ ⊆ S for each �c and preference profile P . This, in

turn, defines a PRP matching rule.

In sum, the school choice functions select students from the applicant pool lexico-

graphically in the following order:

1. based on the priority classes;

2. based on the preference classes;

3. based on the tie-breaker given by the strict priority ordering.

Given their central role in the definition of PRP rules, we now define priority and

preference rank classes formally. For all c ∈ C, let the cardinalities of the priority

rank classes be denoted by v1
c , v

2
c , . . . , starting with the top-ranked students, such that∑

t v
t
c = n. The coarsest priority rank partition is when v1

c = n includes all students

and the partition has one member only, and the finest priority rank partition is

given by (v1
c , . . . , v

n
c ) = (1, . . . , 1) with n classes, where each class contains one student.

More generally, the rank partition is the finest or coarsest, respectively, whenever the

resulting matching rule is outcome equivalent with the above. Given that a school

capacity may be greater than one, this implies that a priority rank partition for school

c is the finest if the students in priority ranks qc + 1, qc + 2, . . . , n are in their own
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singleton priority classes, and the priority classes of ranks 1 to qc are irrelevant (may

or may not consist of singletons).

Given a priority profile �, for all c ∈ C, let �1
c be the set of students ranked by �c

between 1 and v1
c and, for all t ≥ 2, let �tc be the set of students ranked by �c between∑t−1

l=1 v
l
c + 1 and vtc. Note that for all t ≥ 1, | �tc | = vtc. Let vc = (v1

c , . . .) denote the

priority rank class list for school c ∈ C, and let v = (vc)c∈C be the priority rank class

profile.

For all s ∈ S, let the cardinalities of the preference rank classes be denoted by

p1
s, p

2
s, . . ., starting with the top-ranked schools, such that

∑
t p

t
s = m. The coarsest

preference rank partition is when p1
s = m includes all schools and the partition has

one member only, and the finest preference rank partition is given by (p1
s, . . . , p

m
s ) =

(1, . . . , 1) with m classes, where each class contains one school. Given our general

remark above, technically the preference rank partition is also coarsest if having more

than one preference class always leads to the same matching as having just one. For

example, if n ≤
∑

c∈C qc then no student is rejected by her mth-ranked school, and thus

p1
i = m− 1 also yields a coarsest partition.

Given a preference profile P , for all s ∈ S, let P 1
s be the set of acceptable schools

ranked by Ps between 1 and p1
s and, for all t ≥ 2, let P t

s be the set of acceptable schools

ranked by Ps between
∑t−1

l=1 p
l
s + 1 and pts. Note that for all t ≥ 1, either |P t

s | = pts, if all

schools are acceptable to student s, or if some schools are unacceptable then there exists

t̂ such that for all l = 1, . . . , t̂−1, |P l
s| = pls and |P t̂

s | < pt̂s, and for all l > t̂, P l
s = ∅. Let

ps = (p1
s, . . .) denote the preference rank class list for student s ∈ S, and let p = (ps)s∈S

be the preference rank class profile.

Using the above notation, each PRP matching rule is determined by a priority and

a preference rank class profile (v, p). This is not to be confused with the profile (�, P ),

a pair of a strict priority profile and a strict preference profile, which determines a

specific problem and is a primitive of our model, while (v, p) is part of the matching

rule. We will indicate explicitly the priority and preference rank class profiles for a
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PRP matching rule and denote it by f v,p. Thus, f v,p(�, P ) = µ indicates that the PRP

rule f v,p assigns matching µ to profile (�, P ).

We can now formally define the choice function Chc for each school c ∈ C for a

PRP rule f v,p. Fix c ∈ C and let S ′ ⊆ S. As already stated, the set of students T ⊆ S ′

is selected from applicant pool S ′ based on priority rank classes first, then based on

preference rank classes, and finally based on the tie-breaker given by strict priorities.

Formally, if |S ′| > qc then Chc(S
′) = T if the following are satisfied:

• T ⊂ S ′, |T | = qc

• there exists k ≥ 1 such that for all s ∈ T , s ∈
⋃k
t=1 �tc;

• for all ŝ ∈ S ′ \ T , if ŝ ∈
⋃k
t=1 �tc then ŝ ∈�kc ;

• for all s ∈ T and ŝ ∈ S ′ \ T such that s, ŝ ∈�kc , if there is no k′ ≥ 1 such that

c ∈
⋃k′

t=1 P
t
s and c /∈

⋃k′

t=1 P
t
ŝ , then s �c ŝ.

Example 1 (PRP choice functions). Consider the following matching problem with

four students and four schools (n = 4,m = 4). The preferences are given in the table

below, in which the bars indicate the preference rank classes for the PRP rule. That

is, p1 = (1, 2, 1), p2 = (1, 2), p3 = (3, 1), p4 = (1, 3).

P1 P2 P3 P4

b b d b

c a b a

a d a d

d 0 c c

Let �a= (1, 2, 3, 4) indicate the strict priorities in descending order for school a, and

let va = (3, 1). Assume that school a has capacity 1. Let the applicant pool for school

a be {1, 3, 4}. Student 4 is eliminated based on the priority rank classes of school a,

since {1, 3} ⊂�1
a and 4 ∈�2

a. This leaves students 1 and 3. Student 3 is selected based
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on the preference rank classes, since 1 ranks a in the second highest preference class

and 3 ranks a in the highest preference class: a ∈ P 2
1 and a ∈ P 1

3 .

Now consider the same problem with a slightly different PRP rule, where student

3’s preference rank classes are different: p3 = (2, 1, 1). Given applicant pool {1, 3, 4}

for school a, student 4 is eliminated based on the priority rank classes of school a,

as before, and given the new preference rank classes for student 3, now the selection

cannot be made between 1 and 3 based on the preference rank classes, since both rank

a in their second preference class: a ∈ P 2
1 and a ∈ P 2

3 . Thus, we apply the tie-breaker

strict priority order �a and student 1 is selected, since 1 �a 3.

PRP choice functions satisfy standard properties of choice functions that are asso-

ciated with choice-based DA rules, such as Acceptance, Monotonicity, Substitutability

and Consistency (Ehlers and Klaus, 2016), but these properties only hold when the

preference profile is fixed. This is in contrast to typical choice functions used in con-

junction with the DA, such as when quotas are specified for different types of agents,

and the choice function is not a function of the preferences. This is the most salient

feature of PRP rules, namely, that the choice functions of the schools depend on the

students’ preferences, and specifically on the students’ preference rank classes, which is

why we call these matching rules Preference Rank Partitioned rules. Thus, in contrast

to choice-based DA rules which use choice functions that are independent of the stu-

dents’ preferences, this feature of PRP rules accounts for the loss of strategyproofness

(see Theorem 3 in Section 8).

If both the priority rank partition for each school and the preference rank partition

for each student are the coarsest, then the PRP rule relies only on the strict priorities

as tie-breakers, and therefore this rule is the standard Deferred Acceptance rule, which

simply selects the top priority students from each applicant pool. Equivalently, we can

let the priority rank partition be arbitrary. As long as the preference rank partition is

the coarsest, the PRP rule is the DA. Hence, as there may be multiple representations

(v, p) of the same PRP rule, we will use the convention that the role of the tie-breaker
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should be minimized as much as possible by making the priority partition finer. As

a consequence, given a finer priority partition, the preference partition should be left

as coarse as possible, which clarifies the impact of the preferences. This specification

of a PRP rule delineates which information is used by the choice function, whether it

is the priority partition or the preference partition, and specifically which rank classes

may play a role in any particular selection. In the case of the standard DA rule, this

means that we let the priority partition be the finest for each school, so as to entirely

eliminate tie-breaking, which then clarifies that the preference partitions don’t play

any role in the choice function, since all selections can be made based on the priority

partitions, and therefore we can let each student’s preference partition be the coarsest.

Consequently, this convention not only lets us have a unique representation of each

PRP rule, but it also provides an intuitive representation.

Formally, we can find the unique representation of a PRP rule f based on this

convention as follows. Fix the priority profile �∈ Π. Let c ∈ C and s, ŝ ∈ N such

that ŝ �c s. If there exists a preference profile P ∈ P such that fs(�, P ) = c and

cPŝfŝ(�, P ) then let s and ŝ be in the same priority class, and let all students s̃ such

that s �c s̃ �c ŝ be also in the same priority class, and otherwise let each student for

school c be in a separate priority class. This determines the priority rank partition

profile v which satisfies the convention that vc is as fine as possible for each school c.

Note that since f is a PRP rule, we would get the same v using any priority profile

�∈ Π.

In order to determine the preference rank partition profile p, let c ∈ C such that

there is at least one priority class according to vc with a minimal size of 2, that is,

the priority class in vc contains at least two ranks: vkc ≥ 2 for some k ≥ 1. If there is

no such a school then all school priority partitions vc are the finest and all preference

partitions ps are the coarsest, and f is the DA. Let students s, ŝ ∈ S occupy these two

ranks in the same priority class of vc : s, ŝ ∈�kc . Then, from the construction of v, there

exists a priority profile �∈ Π with ŝ �c s and a preference profile P ∈ P such that
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fs(�, P ) = c and cPŝfŝ(�, P ). Find such a profile (�, P ) which maximizes rs(c) and

minimizes rŝ(c). Let rs(c) ∈ pts and rŝ(c) ∈ pt̂ŝ, where t + 1 = t̂. If we repeat the same

exercise for pairs of students s, ŝ with an arbitrary school c for different profiles (�, P )

that meet the above specifications in terms of vc then we can trace out the preference

rank classes for each student and get a unique preference rank class profile p for the

fixed PRP rule f such that p satisfies the convention that ps is as coarse as possible for

each student s, given the uniquely specified priority rank class profile v which is as fine

as possible.

3.4 Special Subclasses of PRP Matching Rules

As already noted, the standard DA rule is a PRP rule, which is described by the

finest priority partition profile and the coarsest preference partition profile. Another

well-studied PRP rule besides the DA rule is the Boston (Immediate Acceptance) rule

(Abdulkadiroǧlu and Sönmez, 2003, [2]). The Boston rule is a PRP rule with the

coarsest priority rank partition and selects among students based on the finest prefer-

ence rank partition, hence tie-breaking is only necessary when students have the same

ranking for a school: if students s and ŝ are competing for school c then s is chosen

over ŝ if s ranks a better than ŝ (i.e., rs(c) < rŝ(c)) or if s and ŝ rank c equally (i.e.,

rs(c) = rŝ(c))and s �c ŝ.

Previously studied classes of matching rules that belong to the set of PRP rules

include the Application-Rejection rules (Chen and Kesten, 2017, [16]) used in China,

the First Preference First rules (Pathak and Sönmez, 2013, [46]) that were banned

in England, the Secure Boston rules and their generalizations proposed by Dur et al.

(2019, [21]) to replace the Boston rule, and a special member of the French Priority

rule introduced by Bonkoungou (2019, [12]), which corresponds to a broad class of PRP

rules in our setting and includes all the previously mentioned rules (see more on this

in Section 9), while in Bonkoungou’s setup it is a single rule, based on the given coarse
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priorities.4

We list some further notable subfamilies of PRP rules in Table 1 which have not

been studied before. The Deferred Boston rules include both the standard DA and the

Boston rules and allow for any homogeneous priority partition profile (i.e., the same

priority partition for each school), while the preference partitions are the finest. If

both the preference and priority partition profiles are homogeneous then we have a

Homogeneous PRP rule. All Deferred Boston rules are Homogeneous PRP rules, but

the French Priority rules in general are not Homogeneous PRP rules, and specifically the

First Preference First and the Secure Boston rules are not Homogeneous PRP rules. On

the other hand, the Application-Rejection rules are Homogeneous PRP rules. The class

of Equitable PRP rules, characterized by a homogeneous preference partition profile,

is even larger than the class of Homogeneous PRP rules, and contains all of the above

mentioned rules and families of PRP rules. Lastly, to give a specific class of PRP rules

which does not belong to the class of Equitable PRP rules, we included on the table

the family of Favored Students rules, which allow for different treatments of students.

Specifically, Favored Students rules have the coarsest priority partition profile, and each

student is either favored or not, favored students have the coarsest preference partition,

and not favored students have the finest.

4A previous version of the paper, Bonkoungou (2017, [11]), introduces a larger set of rules, which
has the French Priority rule as one of its distinct members. This larger set of rules, which we will
refer to as the class of General French Priority rules, is defined in Appendix A, where we clarify the
relationship between PRP rules and the General French Priority rules of Bonkoungou (2017, [11]).
We show that although the two families of rules have some important members in common, neither
families of rules contains the other.
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PRP Matching Rules Priority Partition Preference Partition

Deferred Acceptance (DA) Finest Coarsest

Boston Coarsest Finest

Deferred Boston Homogeneous Finest

First Preference First Equal-preference schools: finest Finest

Preference-first schools: coarsest

Secure Boston For each school c: Finest

finest for top qc, then coarsest

French Priority Arbitrary Finest

Application-Rejection Coarsest Homogeneous

Taiwan Deduction Coarsest Homogeneous

Homogeneous PRP Homogeneous Homogeneous

Equitable PRP Arbitrary Homogeneous

Favored Students Coarsest Favored students: coarsest

Non-favored students: finest

Although we defined PRP matching rules by using first the priority rank partition

when selecting students, note that for the PRP matching rules that have the coarsest

priority partition the priority rankings do not play any role in the selection of students

up front (such as the Boston rule and more generally the Application-Rejection rules),

and we understand intuitively that these rules make selections based on the preference

rank partitions primarily, and the strict priorities are used for tie-breaking only when

needed. In general, the PRP rules which don’t have the coarsest priority partition

profile, such as the Deferred Boston rules (excluding the Boston rule) or the First
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Preference First rules, the priority rank partitions play a role in student selection.

3.5 Stability and Optimality of PRP Matching Rules

The dependence of PRP choice functions on student preferences, which is the most

notable general feature of PRP rules, accounts for violating typical stability conditions

that are independent of the preferences. Given that when preference partitions are the

coarsest the preferences play no role in choosing among applying students, and given

that the only such PRP rule is the standard DA, this is the only rule which satisfies

the standard stability axiom in the class of PRP matching rules.

We will now consider a stability concept inspired by PRP rules, which we call rank-

partition stability. Given the rank partition profiles (v, p), for each profile (�, P ) we

construct a strict priority profile �̄ as follows. For each school c the orderings of students

across priority rank classes based on �c and vc remain the same in �̄c((�, P ), (v, p)),

and within priority rank classes we order students according to the preference rank

partition of P based on p. If ties remain, then we use the strict priority ordering �c as

a tie-breaker. More formally, let s, ŝ ∈ S, let k, k′ ≥ 1 such that s ∈�kc , ŝ ∈�k
′
c , and let

t, t′ ≥ 1 such that c ∈ P t
s and c ∈ P t′

ŝ . If k 6= k′ then s and ŝ are in different priority

rank classes and s�̃cŝ if and only if s �c ŝ. If k = k′ then s and ŝ are in the same

priority rank class. Then, if t 6= t′ then if t < t′ then s�̄cŝ, and if t > t′ then ŝ�̄cs.

Finally, if k = k′ and t = t′ then s�̄cŝ if and only if s �c ŝ. Note that the priority

profile �̄ is a function of the preference profile P and thus it can change as preferences

vary. From now on we will refer to �̄(�, P (v, p)) as the constructed priority profile.

A matching rule ϕ is rank-partition stable if there exists a pair of rank partitions

(v, p) such that ϕ(�, P ) is stable with respect to the constructed priority profile

�̄((�, P ), (v, p)) at each profile (�, P ) and, for all �,�′∈ Π, if �̄((�, P ), (v, p)) =

�̄((�′, P ), (v, p)) then ϕ(�, P ) = ϕ(�′, P ). We will also say that a matching rule ϕ is

rank-partition stable with respect to (v, p).
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If a matching rule assigns a matching to each pair of priority and preference profiles

(�, P ) which is stable with respect to the constructed priority profile �̄((�, P ), (v, p)),

and if the selection of a stable matching only depends on this constructed priority profile

at each preference profile then the matching rule is rank-partition stable.

Rank-partition stability can be seen as a straightforward stability property of PRP

rules, based on stability with respect to the appropriately constructed priority profile

at each preference profile. A similar stability property is used by Bonkongou (2019,

[12]) for French Priority rules.

We provide an example below to illustrate the construction of the preference-profile-

specific constructed priority profile �̄(�, P (v, p)).

Example 2 (A constructed priority profile for rank-partition stability). Con-

sider the following matching problem with five students and four schools (n = 5,m = 4).

The preference profile P and the priority profile � are given below, and the rank par-

titions (v, p) are specified by the bars in the two tables.

Student preferences School priorities

P1 P2 P3 P4 P5 �a �b �c �d

b b b b d 4 3 4 4

c c a a b 1 1 1 5

a a d c a 2 4 5 3

d d c d c 3 2 2 1

5 5 3 2

Constructed priority profile �̄

�̄a �̄b �̄c �̄d

1 3 1 5

2 1 4 4

4 4 5 3

5 2 2 1

3 5 3 2
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It is easy to see that each PRP rule is rank-partition stable. Moreover, it is straight-

forward to verify that each PRP rule is optimal within the set of rules that are rank-

partition stable with respect to a given (v, p) due to a classic result by Gale and Shapley

(1962, [30]), which implies in our setting that for each pair of priority and preference

rank partition profiles (v, p) and for each profile (�, P ) there exists a rank-partition

stable matching which is stable with respect to the priorities in the constructed priority

profile �̄(�, P (v, p)) for (v, p) at (�, P ), and each student weakly prefers this matching

to any other matching which is stable with respect to �̄(�, P (v, p)) at preference profile

P . We call this matching the (v,p)-optimal matching at (�, P ). On can easily verify

that the PRP rule f v,p is rank-partition stable with respect to (v, p) and f v,p(�, P ) is

the (v, p)-optimal matching at each profile (�, P ). We summarize these findings below.

Proposition 1. Each PRP rule f v,p is rank-partition stable and selects the unique

(v, p)-optimal rank-partition stable matching at each profile (�, P ).

This representation of PRP rules and the underlying stability concept serve as a

foundation for later results, as they highlight the parallel features between PRP rules

and the standard DA rule, and allow us to see the PRP rules as optimal rules within the

set of rank-partition stable rules, which are stable with respect to the modified priority

profile at each preference profile, where the modifications of the priorities correspond

to the selections made by PRP choice functions. Note also that Proposition 1 implies

that PRP rules are individually rational and non-wasteful.

3.6 Equitable PRP Matching Rules

Not all PRP matching rules treat students symmetrically with respect to their pref-

erences. We call the subfamily of PRP rules which treat students symmetrically in

terms of their preference partitions Equitable PRP rules, which can be described

in terms of a homogeneous partition of preferences across students (i.e., the preference
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partition for each student is the same). We call these rules equitable since, for example,

if student s has a coarser preference partition than student ŝ then s gets a preferential

treatment compared to student ŝ, given a fixed priority profile �. Although a PRP

rule with the same preference partition for each student treats students equitably in

terms of their preference rankings, we note that these rules only treat the preferences

of students equally, but students may still be treated differently based on the school

priority partition profile v.

Formally, a preference rank partition profile p is homogeneous if for all s, s′ ∈ S, ps =

ps′ . Since the priority and preference rank partitions that describe a PRP rule are not

always unique, as already discussed, we can follow the specified convention to determine

if a PRP rule is an Equitable PRP rule. More generally, the requirement is that there

exists at least one homogeneous preference rank partition (along with a priority rank

partition) which yields the PRP rule. In other words, no matter which homogeneous

preference rank partition profile and which arbitrary priority rank partition profile are

used, for at least one pair of preference and priority rank partition profile (v, p) the

outcome does not correspond to the outcome prescribed by the PRP rule.

To aid our analysis, we propose a general stability property of matching rules,

called PP-stability, which weakens the standard stability axiom by basing the matching

on a comparison of students’ preference ranks of a school that they compete for, in

addition to the students’ priority rankings by this school. Characterizations of the

Boston rule, such as the ones given by Kojima and Ünver (2014, [40]) and Doǧan and

Klaus (2018, [17]), rely on axioms comparing the preference ranking of alternatives,

which are similar to the idea for this stability concept, since the Boston rule makes

matches primarily based on the preference rankings. Our concept combines a priority-

based and a preference-based justification for students to have justified envy, and this

stronger justified envy is ruled out by our new stability concept. We can readily see

that this is a stronger justified envy concept, since it is justified on the grounds that

neither the priorities nor the preference rankings can explain the selection of one student
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over another at a school to which both students have applied. Afacan (2013, [6]) uses

a similar property combining priority and preference rankings, but his axiom makes

explicit use of the school capacity.

Preference and Priority Rank Stability (PP-Stability): Student s has PP-

justified envy at µ, given (�, P ), if there exist school c and student ŝ such that cPsµs,

s �c ŝ, rs(c) ≤ rŝ(c), and µŝ = c. Student s has PP-justified envy for c, given that ŝ is

matched to c and ŝ has both lower priority for c than s and ranks c the same or higher

than ŝ. A matching µ is PP-stable at (�, P ) if it is individually rational, non-wasteful,

and there is no student who has PP-justified envy at µ, given P . A matching rule is

PP-stable if it assigns a PP-stable matching to each profile (�, P ).

It may appear at first that all PRP rules are PP-stable, but this is not the case.

The following example shows a Favored Students PRP rule which is not PP-stable.

Example 3 (A Favored Students PRP rule which is not PP-stable). Consider

the following matching problem with five students and four schools (n = 5,m = 4).

Schools a, b, c have a capacity of one, and school d has a capacity of two. The preferences

and priorities are below, with bars indicating the preference partitions in the preference

profile.

Student preferences School priorities

P1 P2 P3 P4 P5 �a �b �c �d

b b b b d 4 3 1 4

c c a a b 1 1 2 1

a a d c a 2 4 3 5

d d c d c 3 2 4 2

5 5 5 3

In this example students 1 and 2 are so-called favored students, which means that

there is only one preference rank class for these students, which includes all the schools

(the coarsest preference rank partition), while the non-favored students, 3, 4, and 5, have

the finest preference rank partition: p1
1 = p1

2 = 4, and ps = (1, 1, 1, 1) for s ∈ {3, 4, 5}.
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The rounds of the specified Favored Students rule at the given profile are summarized

in the table below, with the selected students in each round underlined.

Round a b c d

1 1, 2, 3, 4 5

2 4 3 1, 2 5

3 2, 4 3 1 5

4 2 3 1, 4 5

4 2 3 1 4, 5

In this example r4(a) = 2 < 3 = r2(a) and 4 �a 2. Since aP4d and µ2 = a, this rule is

not PP-stable.

First we verify that PP-stability is independent of rank-partition stability. This is

not surprising, but since both concepts weaken the standard stability axiom, it is in

order. The Favored Students rules are rank-partition stable PRP rules by Proposition 1,

but are not PP-stable, as seen in Example 3. A matching rule which assigns a non-

PRP matching (e.g., the outcome of the Top Trading Cycles rule) at each profile (�, P )

where this matching is PP-stable and otherwise assigns the DA outcome is PP-stable

but not rank-partition stable.

We remark that both the DA and Boston rules are PP-stable. Since stability implies

PP-stability, the DA is clearly PP-stable. The Boston rule is also PP-stable, since if

either rs(c) < rŝ(c) or if rs(c) = rŝ(c) and s �c ŝ, in both cases ŝ cannot be assigned

to c unless s is also assigned to school c̃, whenever c̃Rsc. Indeed, the Boston rule is

preference-rank stable in the sense that whenever rs(c) < rŝ(c), s does not envy ŝ when

ŝ is assigned c. PRP rules in general are not preference-rank stable in this stronger

sense. In fact, it is easy to check that the Boston rule is the only such preference-rank

stable rule within the class of PRP rules. On the other hand, the DA rule is the only

priority-rank stable (i.e., stable) rule in the class of PRP rules.

While not all PRP rules satisfy PP-stability, as demonstrated by Example 3, the

subfamily of PRP rules which satisfy PP-stability is much larger than just the DA and
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Boston rules, and we will show in the next proposition that it exactly corresponds to the

Equitable PRP rules. We remark that all previously studied PRP rules are Equitable

PRP rules.5 Proposition 2 below provides an explanation for this, since it demonstrates

that all the studied rules are PP-stable, which is an intuitive feature of matching rules

and an attractive attribute in school choice.

Proposition 2. A PRP rule is PP-stable if and only if it is an Equitable PRP rule.

Proof.

Claim 1: An Equitable PRP matching rule is PP-stable.

Let f v,p be an Equitable PRP rule. That is, f v,p is a PRP rule and p is homogeneous

across students. Suppose that there exists a profile (�, P ) such that f v,p(�, P ) is not

PP-stable. Then there exist s, ŝ ∈ S and c ∈ C such that rs(c) ≤ rŝ(c) at P , s �c ŝ, and

s envies ŝ at (�, P ) for being assigned to c. That is, f v,pŝ (�, P ) = c and cPsf
v,p
s (�, P ).

Let t, t′ ≥ 1 such that c ∈ P t
s and c ∈ P t′

ŝ . Then, given rs(c) ≤ rŝ(c), since p is

homogeneous across agents, t ≤ t′. Let k, k′ > 0 such that s ∈�kc and ŝ ∈�k′c . Then

s �c ŝ implies that k ≤ k′. Given that f v,pŝ (�, P ) = c and cPsf
v,p
s (�, P ), k ≤ k′ implies

that k = k′. Then t ≤ t′ implies that t = t′. Hence, the tie-breaker �c would be used

by f v,p to select between s and ŝ at school c, but s �c ŝ implies that f v,pŝ (�, P ) 6= c

when cPsf
v,p
s (�, P ), which is a contradiction.

Claim 2: A PP-stable PRP rule is an Equitable PRP rule.

Let f v,p be a PP-stable PRP rule. Suppose that f v,p is not an Equitable PRP rule, that

is, p is not homogeneous across students. Then there exist (�, P ) ∈ P , c ∈ C, s, ŝ ∈ S

and t, t′ ≥ 1 such that

1. f v,pŝ = c and cPsf
v,p
s (�, P )

2. rs(c) ≤ rŝ(c) at P

5The General French Priority rules of Bonkoungou (2017), which also use preference rankings in
the schools’ choice functions are not all PP-stable, but these are also not PRP rules in general, as we
show in Appendix A. Bonkoungou (2017) focuses on the Simplified French rule which corresponds to
a subclass of PRP rules that we call the French rules, and these rules are PP-stable.
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3. t > t̂, where c ∈ P t
s and c ∈ P t̂

ŝ

4. s and ŝ are in the same priority rank class for c, given �c and vc : there exists

k ≥ 1 such that s, ŝ ∈�kc .

Since f v,p is PP-stable , ŝ �c s. Note that f v,p selects ŝ over s for school c based on

the preference rank classes, since t > t̂, not based on priority rank classes, given that

s and ŝ are in the same priority rank class for c. The fact that ŝ �c s is irrelevant,

since the choice is not based in the tie-breaking. Let �̄c be the same as �c except for

the position of student ŝ: place student s directly above ŝ in �̄c, and leave all other

orderings in �̄c the same as in �c.

Let �̄′ ≡ (�̄c,�−c). Then f v,p(�′, P ) = f v,p(�, P ), as we will show. Note first

that only �c is changed to �̄c, so the only difference can be in the selections made

by school c. Note that since s and ŝ were in the same priority class at �c and since

vc remains the same, the students in the priority rank classes of c have not changed.

Specifically, s and ŝ are still in the same priority class at �̄c, and so are all s̄ ∈ S such

that ŝ �c s̄ �s s. Thus, �kc= �̄kc , and for all k′, �k′c = �̄k′c . Therefore, all selections of

school c based on the priority rank classes are the same, and subsequently all selections

based on preference rank classes are the same at (succ′, P ) and at (�, P ). Thus, Chc

makes the same selections at �̄c as at �c, and f v,p(�̄, P ) = f v,p(�, P ), as desired.

Therefore, f v,p(�̄, P ) = c and cPsf
v,p(�′, P ). Since rs(c) ≤ rŝ(c) at P and s�̄cŝ, f v,p

is not PP-stable. This is a contradiction, which implies that f v,p is an Equitable PRP

rule.

We will say that a matching rule is equitable-rank-partition stable if the defi-

nition of rank-partition stability for this rule is satisfied based on (v, p), where p is ho-

mogeneous. Equivalently, if there is a homogeneous preference rank partition p across

students, that can be used in the construction of the priority table �̃((�, P ), (v, p)) at

each profile (�, P ). Then the matching rule equitable-rank-partition stable. Clearly,

equitable-rank-partition stability implies rank-partition stability of a matching rule.
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The next result clarifies the relationship between rank-partition stability and equitable-

rank-partition stability. The proof of this theorem and all subsequent omitted proofs

are in Appendix B.

Theorem 1. A rank-partition stable matching rule is PP-stable if and only if it is

equitable-rank-partition stable.

It is not difficult to see that each Equitable PRP rule is equitable-rank-partition

stable. As in the case of PRP rules, we can easily verify that the Equitable PRP

rule f v,p is equitable-rank-partition stable, that is, rank-partition stable with respect to

(v, p) where p is a homogeneous preference rank partition profile, and f v,p(�, P ) is the

(v, p)-optimal matching at each profile (�, P ). Thus, we can state a similar result to

Proposition 1 for Equitable PRP rules: each Equitable PRP rule f v,p is equitable-rank-

partition stable and selects the (v, p)-optimal rank-partition stable matching at each

profile (�, P ). Therefore, Theorem 1 is a generalization of Proposition 2. We provided

a separate proof of Proposition 2 to give some intuition for the result which cannot

easily be gleaned from the proof of Theorem 1.

3.7 Efficiency of PRP Matching Rules

PRP rules select the optimal rank-partition stable matching at each profile, as seen in

Section 5. This implies that if the selected matching is not Pareto-efficient, it can only

be Pareto-dominated by a matching that is not rank-partition stable. We know that the

DA matching is in general not Pareto-efficient (Gale and Shapley, 1962, [30]; Balinski

and Sönmez, 1999, [?]) so PRP rules, which choose the DA matching for the constructed

priority profile, as stated by Proposition 1, are generally not Pareto-efficient. One

notable exception is the Boston rule, which is Pareto-efficient (Abdulkadiroǧlu and

Sönmez, 2003, [2]), due to the fact that it assigns the school seats based primarily on

the student preferences, and uses the school priorities only for tie-breaking, and thus

cannot be Pareto-dominated by a matching which is not rank-partition stable. One
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may therefore conjecture that the only Pareto-efficient PRP rule is the Boston rule,

but it turns out that a somewhat larger set of PRP rules is Pareto-efficient. Namely,

there may be one student whose preference rank partition is not necessarily the finest,

and may be chosen arbitrarily, but all other students’ preference partitions have to be

the finest. We call this class of rules, including the Boston rule, Near-Boston rules.

Near-Boston rules are PRP rules such that:

1. each school has the coarsest priority partition;

2. there exists sj ∈ S such that each student s ∈ S \ {sj} has the finest preference

partition (and student sj has an arbitrary preference partition).

Theorem 2. A rank-partition stable rule is Pareto-efficient if and only if it is a Near-

Boston rule.

Corollary to Theorem 2. An equitable-rank-partition stable rule is Pareto-efficient

if and only if it is the Boston rule.

This is an immediate corollary to Theorem 2, since if the rule is equitable-rank-

partition stable then the rule uses a homogeneous preference rank partition profile p,

and thus Theorem 2 implies that all students have the finest preference rank partition.

This corollary generalizes the result of Chen and Kesten (2017, [16]) which shows that

only the Boston rule is Pareto-efficient within the class of Application-Rejection rules.

3.8 Incentive Properties of PRP Matching Rules

Since PRP rules are generally not strategyproof, it is important to study their incentive

properties.

For matching rule ϕ, given a profile (�, P ), if there is a student s ∈ S and an

alternative preference ranking P ′s ∈ Ps such that ϕs(�, (P ′s, P−s))Ps ϕs(�, P ) then s

can manipulate ϕ at P via P ′s, and rule ϕ is manipulable at P . We will also say
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that s can manipulate at P to obtain school ϕs(�, (P ′s, P−s)). If a rule is not manipulable

at any preference profile then the rule is strategyproof.

The standard Deferred Acceptance rule is well-known to be strategyproof when

only the students’ incentives are taken into account (Dubins and Freedman, 1981, [18];

Roth, 1982, [47]). However, we can find examples of preference profiles where a PRP

rule (other than the DA) is manipulable, and we prove a negative result for all PRP rules

excluding the DA rule. This makes sense intuitively: the DA is the only strategyproof

rule in the class of PRP matching rules, since it is the only PRP rule for which the

school choice functions are independent of the preferences. This result extends a similar

result by Chen and Kesten (2017, [16]) for Application-Rejection rules.

Theorem 3. A rank-partition stable rule is strategyproof if and only if it is the Deferred

Acceptance rule.

Although PRP rules are not strategyproof in general, we can compare them based

on their manipulability, using a simple comparison criterion that was first put forward

by Pathak and Sönmez (2013, [46]) and subsequently studied by Chen et al. (2016,

[15]).

Given a matching rule ϕ, for all students s ∈ S and all profiles (�, P ), let

I(s, ϕ, (�, P )) = {ϕs(�, (P ′s, P−s)) : P ′s ∈ Ps, ϕs(�, (P ′s, P−s))Psϕs(�, P )}. A matching

rule ϕ is less manipulable than matching rule ψ if for all s ∈ S and all profiles (�, P ),

I(s, ϕ, (�, P )) ⊆ I(s, ψ, (�, P )) and there exists a profile (�̄, P̄ ) for which I(s, ϕ, (�̄, P̄ ))

⊂ I(s, ψ, (�̄, P̄ )).

A PRP rule and all other rules which satisfy rank-partition stability with respect to

the same (v, p) are comparable in terms of how vulnerable to manipulability they are

according to the above definition, and the PRP rule stands out as the least manipulable

in this class of rules. Formally, each PRP rule f v,p is less manipulable than any other

matching rule which is rank-partition stable with respect to (v, p). A similar result

has been obtained by Bonkoungou (2019, [12]) for the French Priority rules. These

results follow from a general relationship between weak Pareto-domination and relative
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manipulability, as shown by Chen et al. (2016, [15]). According to their results, if a

rule ϕ weakly Pareto-dominates another one rule ψ, then ϕ is less manipulable than ψ.

Thus, the result follows from the optimality of PRP rules.

The following theorem is our main theorem on the incentive properties of PRP rules.

The theorem says that when a PRP matching rule is used, a student cannot manipulate

to obtain a seat at school c by placing c in the same or a lower preference rank class than

the preference rank class where c belongs truthfully. This theorem has some interesting

and wide-ranging implications for PRP rules, as we will explain below.

Theorem 4. Let f v,p be a PRP rule and fix a profile (�, P ). Let s ∈ S and c ∈ C such

that cPsf
v,p
s (�, P ). Let P ′s ∈ Ps such that c is in the same or lower preference rank

class in P ′s than in Ps, given p. Then f v,ps (�, (P ′s, P−s)) 6= c.

By this theorem, a seat at a school can only be obtained by manipulation when

reporting the school to be in a higher preference class than it truthfully is, regardless

of what the reported preferences are otherwise. This gives a good idea about how the

PRP rules are manipulable in general. The theorem also offers an intuitive explanation

for two well-known results: why the DA rule is not manipulable, and why the Boston

rule is so markedly manipulable (see, for example, Troyan and Morrill, 2019, [53]).

Notably, given that the standard DA rule is the PRP rule with the coarsest preference

partition for each student, this theorem implies that the Deferred Acceptance rule

is strategyproof, since there is only one preference class for each student, and thus no

school can be obtained by manipulation at any profile. At the other extreme, the Boston

rule is the PRP rule with the finest preference partition for each student combined with

the coarsest priority partition for each school (so priorities are only used to break ties),

and thus the theorem sheds light on why the Boston rule is so manipulable: each change

in the reported preferences results in placing at least one school in a higher preference

class, and the top-ranked school may be the only one which cannot be obtained by

manipulation when the Boston rule is used.

PRP rules between the DA and Boston rules are moderately manipulable, and
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the extent depends on how coarse their preference partitions are. For example, the

Application-Rejection rules have homogeneous preference rank classes, and larger pref-

erence rank classes would imply, based on the theorem, that there is generally less

room for manipulation. Indeed, this exact result is shown by Chen and Kesten (2017,

[16]), although this is not a direct implication of Theorem 4. When the preference rank

partition is not homogeneous, that is, the PRP rule is not an Equitable PRP rule, the

extent to which the PPR rule is vulnerable to manipulation varies with the student. In

the extreme case of Favored Students rules, where each student has either the coarsest

or the finest preference rank partition, it follows from the theorem that the favored

students with the coarsest preference partitions cannot manipulate at all. However,

the non-favored students, having the finest preference partitions, have lots of room to

manipulate, according to the theorem.

We obtain the following results immediately from Theorem 4.

Corollary to Theorem 4. Let f v,p be a PRP rule.

1. For all s ∈ S, if some school c is ranked in s’s top preference rank class at some

preference profile P , given p, then s cannot manipulate to obtain school c at P

when using rule f v,p.

2. For all students s ∈ S, if ps = (n) then student s cannot manipulate f v,p at any

profile (�, P ).

The first result in the corollary says that a school which is ranked in the top pref-

erence class of a student cannot be obtained as a result of successful manipulation

by this student. This implies the result by Bonkoungou (2017, [11]) that a student

cannot obtain his first-ranked school by manipulating any French Priority rule, and

specifically the Boston rule. Our corollary is more general, since it allows for coarse

preference partitions and thus for multiple schools in the top preference class that can-

not be profitably obtained by misreporting the preferences. This, in turn, is further

generalized by Theorem 4, since it also shows that trying to manipulate by ranking a
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school in a preference class that is either the same or below the preference class of the

school to which a student would be matched otherwise is futile. Note that Theorem 4

is unrelated to the incentive analysis of Bonkoungou (2019, [12]), since he studies the

given coarse priorities of French Priority rules, and compares the matching rules using

a new criterion based on how fine the priority partitions are, while our results concern

the preference partitions.

The second result in the corollary states that if a student has the coarsest preference

partition then this student cannot manipulate any PRP rule. This is because in this

case the student has every school in her top preference class. This is the case for all

students in the DA rule, and this also holds for all favored students in Favored Students

rules.

3.9 Coarse Priorities: An Extension

PRP matching rules can be extended naturally to the case where the given priorities are

coarse (i.e., given by a weak order), as would be typical for New York City high schools

(Abdulkadiroǧlu et al., 2009, [1]). Another well-known example is Boston, where school

priorities are set up based on older siblings attending the school and walk-zone priorities

(Abdulkadiroǧlu et al., 2005, [4]). In international refugee assignment, countries may

have mandated priorities based on the level of danger faced by refugees, or may prioritize

specific vocational or language skills, which leads to coarse priorities, given the number

of refugees who are looking for asylum (Jones and Teytelboym, 2017, [34]). If priorities

are coarse, a strict priority ordering �c that is consistent with the given coarse priorities

would be determined by a lottery for each school c and used for tie-breaking only if

the choice function cannot make the required selection based on the coarse priorities

and the preference rank partitions. Then the given coarse priorities for schools would

be primitives of the model, not part of the specification of the rule, and the randomly

selected strict priority profile �, which is consistent with the coarse priorities, would
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become part of the matching rule as a tie-breaker. This would imply that each member

of the family of PRP rules is associated with the strict tie-breaker priority profile �

and the preference rank partition profile p. This is the setup of Bonkongou (2019, [12]),

since universities in France only have weak priorities over students.

This lends additional applicability to PRP rules and makes the current study rel-

evant to situations where coarse priorities arise naturally. We could further enhance

the applicability of PRP rules by combining the primary and secondary interpretations

(strict versus coarse priorities as primitives) in a natural manner, which would allow

for coarse priorities as primitives but let the matching rule further partition the prior-

ity rankings within the priority rank classes given by the fixed coarse priorities, while

breaking the ties randomly over the remaining weak priorities to create a tie-breaker.

Our results extend to all these “hybrid” cases as well in a natural manner, but in the

interest of a more accessible exposition we omit the formal presentation of this more

general setup.

3.10 Conclusion

We have explored PRP rules, which are generalized Deferred Acceptance rules that

allow students’ preference rankings to play a role in the schools’ choice functions, that

is, the selection among competing applicants for a school is based partially on how

high students rank the particular school in their preferences, and not only on their

priority rankings by this school. Since we consider a large class of matching rules that

includes many previously known rules, in addition to interesting new rules that are

studied here for the first time, this paper offers a unified approach to these rules and

establishes results that apply to all of them. As a foundation for our analysis that ties

together all PRP rules, we show that all these matching rules can be understood as

the DA matching selected on the basis of an appropriately modified priority profile at

each preference profile, where the modifications of the priorities reflect how PRP school
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choice functions select students based on preference ranks (Proposition 1). Thus, each

PRP rule is optimal in this sense, just like the Deferred Acceptance rule.

We have proved that the only Pareto-efficient PRP rules are the so-called Near-

Boston rules (Theorem 2), a class of rules which includes the Boston rule and other

similar rules which only differ in the preference rank partition of one student from the

Boston rule. We have also shown that the only strategyproof PRP rule is the standard

Deferred Acceptance rule (Theorem 3). These two results underline the difficulty of

obtaining matching rules with both good incentives and strong efficiency properties,

when it is desirable to allow the preferences of students to directly affect their chances

of being accepted by the school, but the students’ priorities are also taken into account.

We explore the classic tension among stability, efficiency, and incentive properties in

our setup, which has been studied by a vast array of papers in various matching models

and settings. Our main contribution to this literature is to show the specifics of this

tension within the class of PRP rules, that is, when student selection by schools takes

into account the preference rankings, and Theorems 2 and 3 can be best understood

in terms of trade-offs. Namely, when the school priorities have a small impact (mainly

used for tie-breaking), we get more efficiency, since the matching rule relies primarily on

the preference rankings, as in the Boston rule and similar PRP rules. When the school

priorities have a large impact, preference rankings play only a small role in the schools’

selection, and the incentive properties are improved, but it is only in the extreme case

of the DA rule, when the preferences have no impact on the school choice functions,

that full strategyproofness can be achieved.

The main trade-off is between efficiency and incentives when rank-partition stabil-

ity is required, a stability condition which allows matchings to be based on student

preference rankings in addition to school priorities in a systematic manner: namely,

depending on the preference rank classes, students who place the school in question in

a higher preference rank class have a higher priority for the school. As we have seen,

we get some extreme rules only in the family of PRP rules or, more broadly, among
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rank-partition stable rules, that satisfy efficiency (the Near-Boston rules) and, similarly,

only the DA rule satisfies strategyproofness among PRP or rank-partition stable rules.

The Boston and DA rules can be seen as the two extreme members of the family of

PRP rules. The intuition is that as we place more emphasis on the preferences, we

attain more efficiency and get closer to the Boston rule, and as we place more emphasis

on the priorities, we get better incentives and get closer to the DA rule. This already

gives a general idea to the designer about how to select among PRP rules, depending

on the relative importance of the objectives: is efficiency more desirable, or are correct

incentives more preferable? If efficiency comes first, choose coarser priority partitions

and finer preference partitions, and if incentives are more important then choose finer

priority partitions and coarser preference partitions.

One may argue, however, that incentives should always come first, given that if

preferences are not reported accurately then efficiency cannot be enforced, since any

normative criterion can only be based on the reported preferences, the only input into

the mechanism regarding student welfare. But, especially in light of the substantial

trade-offs, this argument also has some limitations, and thus the extent and specifics of

manipulation are of considerable interest to the designer. Our main result on incentives

(Theorem 4) provides guidance on this, as it sheds light on how students can manipulate

PRP rules: we show that this is only possible by placing a desired but unattainable

school in a higher preference rank class in the reported preferences than it is truthfully.

This theorem also clarifies the different potential extent of manipulation for different

PRP rules, both in terms of how and whether a school can be obtained by manipulation,

depending on its preference rank classes as reported by different students, and also

regarding the scope of manipulation which may differ widely among students, even for

Equitable PRP rules.

Theorem 4 therefore provides insight and contributes to a more sophisticated un-

derstanding of PRP rules than afforded by the rough comparison of the Boston and DA

rules themselves. Between the extremes of the DA and Boston rules, several different

54



dimensions may be considered when searching for an appropriate matching rule, as

evidenced by the fact that the family of PRP rules encompasses multiple subfamilies

of PRP rules that bridge these same two matching rules, such as the First Preference

First rules (or more generally the generalized Secure Boston rules), the Deferred Boston

rules, the Application Rejection (or Taiwan Deduction) rules and the Favored Student

rules. Given that quite a few members of the class of PRP rules are being used in

real-life school choice and student placement, our theoretical analysis provides practi-

cally relevant policy insight. Therefore, our findings should be helpful for the design

of assignment mechanisms that rely on the preference rankings directly when choosing

among competing applicants.
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3.11 Appendix A: Comparison of PRP and General

French Priority Rules

We show below that PRP rules are not a subset of General French Priority (GFP) rules,

and GFP rules are not a subset of PRP rules.

Claim 1. PRP 6⊂ GFP

Proof. Let the priority profile � be given as below, and let all priority partitions be the

coarsest for a fixed PRP rule f . Each school has a capacity of one.

�a �b �c

1 2 3

3 1 4

3

Consider preference profile P = (P1, P2, P3, P4), where the bar indicates the homo-

geneous preference partitions. The unspecified preferences are arbitrary.

P1 P2 P3 P4

b b a c

a b

c

PRP procedure at P

Round a b c

1 3 1, 2 4

2 1, 3 2 4

3 1 2, 3 4

4 1 2 3, 4

The rounds of the PRP procedure at P are displayed in the table above. Note that

in round 4 the choice function of school c for PRP rule f selects student 4 over 3. If
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students 3 and 4 were not tied, then any GFP rule would select 3 over 4, given 3 �c 4.

Thus, 3 and 4 are tied for c in this example if the rule is a GFP rule.

Now consider preference profile P ′ = (P ′1, P
′
2, P

′
3, P

′
4), where the bar indicates the

same homogeneous preference partitions as before for PRP rule f .

P1 P2 P3 P4

a b a c

c

PRP procedure at P ′

Round a b c

1 1, 3 2 4

2 1 2 3, 4

The first two rounds of the PRP procedure f at P ′ are displayed in the table above.

Given that students 3 and 4 are tied for school c for any GFP rule, a GFP rule would

select student 4 over 3 for school c, since 4 ranks c first, while 3 ranks c second. Thus,

if school a is in the same category for the GFP rule as school c, 4 would be selected by

c over 3 based on the relative ranking of c, and if school a is not in the same category

for the GFP rule as school c, 4 would be selected by c over 3 based on the absolute

ranking of c. This proves that the specified PRP rule is not a GFP rule, since the PRP

rule chooses 3 over 4.

More generally, note that matching rules which allow for coarse preference partitions

(not the finest) are generally not GFP rules. For example, the class of Application-

Rejection rules of Chen and Kesten (2017) is not a subclass of GFP rules. Note that

our example is an Application-Rejection rule, with the coarsest priority partition profile

and homogeneous preference partitions. This also demonstrates that there are Equitable

PRP rules which are not GFP rules.

Claim 2. GFP 6⊂ PRP
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Proof. Consider a GFP rule ϕ with the following two categories: category {a, b} and

category {c, d}. Let the priority profile � be given as below, and let all priority parti-

tions be the coarsest for GFP rule ϕ. Each school has a capacity of one.

�a �b �c �d

4 5 4 3

2 2 1 1

1 1 2

Consider preference profile P = (P1, P2, P3, P4, P5). The unspecified preferences are

arbitrary.

P1 P2 P3 P4 P5

d b d c b

c a

a c

b d

GFP procedure at P

Round a b c d

1 2, 5 4 1, 3

2 2 5 1, 4 3

3 1, 2 5 4 3

The first three rounds of the GFP procedure at P are displayed in the table above.

Note that in round 3 the choice function of school a for GFP rule ϕ selects student 1

over 2, based on the relative ranking of a in category {a, b}. This selection implies for

any PRP rule that p1
1 ≥ 3 and p1

2 = 1.

Now consider preference profile P ′ = (P ′1, P
′
2, P

′
3, P

′
4, P

′
5).
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P ′1 P ′2 P ′3 P ′4 P ′5

d b d a b

c a

a c

b d

GFP procedure at P

Round a b c d

1 4 2, 5 1, 3

2 2, 4 5 1 3

3 4 5 1, 2 3

The first three rounds of the GFP procedure at P ′ are displayed in the table above.

Note that in round 3 the choice function of school c for GFP rule ϕ selects student 2

over 1, based on the relative ranking of d in category {c, d}. Since for any PRP rule

p1
1 ≥ 3 and p1

2 = 1, as shown above, c ∈ P 1
1 and c /∈ P 1

2 . This implies that any PRP

rule would select 1 over 2 for school c. This proves that the specified GFP rule is not

a PRP rule.

However, the class of French Priority (FP) rules, for which there is only a single

category (or alternatively, each school is in its own category), is a strict subclass of

PRP rules. Indeed, in our example the GFP rule is not an FP rule, since there are two

categories with two schools in each category.
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3.12 Appendix B: Proofs

Proof of Theorem 1

Theorem 1. A rank-partition stable matching rule is PP-stable if and only if it is

equitable-rank-partition stable.

Proof.

Claim 1.1: An equitable-rank-partition stable matching rule is PP-stable.

Proof: Let ϕ be an equitable-rank-partition stable matching rule. Suppose that there

exists a profile (�, P ) such that ϕ(�, P ) is not PP-stable. Then there exist s, ŝ ∈ S and

c ∈ C such that rs(c) ≤ rŝ(c) at P , s �c ŝ, and s envies ŝ at (�, P ) for being assigned

to c. That is, ϕŝ(�, P ) = c and cPsϕs(�, P ). Let ϕ be equitable-rank-partition stable

with respect to (v, p). Then p is homogeneous across students. Given p, let t, t′ ≥ 1

such that c ∈ P t
s and c ∈ P t′

ŝ . Given v, let k, k′ ≥ 1 such that s ∈�kc and ŝ ∈�k′c . Let �̃

denote the constructed strict priority profile �̃((�, P ), (v, p)). Suppose k < k′. Then

s�̃cŝ and s has justified envy at ϕ(�, P ) based on �̃c. This contradicts the fact that

ϕ is equitable-rank-partition stable. Thus, k ≥ k′. If k > k′ then ŝ �c s would follow,

which is a contradiction. Therefore k = k′.

Now suppose t < t′. Then, since k = k′, s�̃cŝ, and s has justified envy at ϕ(�, P )

based on �̃c. This again contradicts the fact that ϕ is equitable-rank-partition stable,

and thus t ≥ t′. Then, since rs(c) ≤ rŝ(c) and p is homogeneous across students, it must

be the case that t = t′. But then s �c ŝ implies that s�̃cŝ, since the tie-breaker is

applied in the construction of �̃c when determining the relative positions of s and ŝ in

�̃c. This implies that s has justified envy at ϕ(�, P ), based on �̃c, which contradicts

the fact that ϕ is equitable-rank-partition stable. Therefore, ϕ(�, P ) is PP-stable, and

since this holds for all (�, P ), ϕ is PP-stable.

Claim 1.2: If a rank-partition stable matching rule is PP-stable then it is equitable-

rank-partition stable.
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Proof: Let ϕ be a rank-partition stable matching rule which is PP-stable. Let ϕ be

rank-partition stable with respect to (v, p). Suppose that p is not homogeneous across

students. Then there exist (�, P ), c ∈ C and s, ŝ ∈ S such that

1. ϕŝ(�, P ) = c and cPsϕs(�, P )

2. rs(c) ≤ rŝ(c) at P

3. t > t′, where c ∈ P t
s and c ∈ P t′

ŝ

4. s and ŝ are in the same priority rank class for c, given �c and vc: there exists

k ≥ 1 such that s, ŝ ∈�kc .

Let �̃ denote the constructed priority profile �̃((�, P ), (v, p)). Since ϕ is PP-stable,

given rs(c) ≤ rŝ(c), we have ŝ �c s. Since s and ŝ are in the same priority rank class for

c, given �c and vc, and since t > t′, ŝ�̃cs. Let �′c be the same as �c, except for the

positions of ŝ, s and students ranked between ŝ and s in �c. Let s �′c ŝ, and for all s̄

such that ŝ �c s̄ �c s, if c ∈ P t′
s̄ , let ŝ �′c s̄, and if c ∈ P t

s̄ , let s̄ �′c s. Leave all other

orderings in �′c as in �c and specifically keep the set of students in the priority class of

s and ŝ the same.

Let �′≡ (�′c,�−c). Let �̃′ denote the constructed priority profile �̃′((�′, P ), (v, p)).

We will show that �̃′ = �̃. Given that both are a function of (�, P ) and (v, p), and

that only �c has changed, the only possible difference is between �̃′c and �̃c, while

�̃′−c = �̃−c.

We will show that �̃′−c = �̃−c. Given the difference between �̃′c and �̃c, all students

are still in the same priority rank class for school c at �̃′c as at �̃c, and since the

preference profile is unchanged, given t > t′ and ŝ�̃′cs. Note that whenever the selection

is based on the preference rank classes among the students in �′kc , the strict priority

order �′c of the students within this set is irrelevant. Moreover, if the choice is based on

the tie-breaker, the relevant orderings are preserved by construction. Thus, �̃′c = �̃c,

which implies that �̃′ = �̃. Since s �′c ŝ and rs(c) ≤ rŝ(c) at (�, P ), PP-stability
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of ϕ implies that ϕ(�′, P ) 6= ϕ(�, P ). However, since �̃′ = �̃, the rank-partition

stability of ϕ implies that ϕ(�′, P ) = ϕ(�, P ), and we have a contradiction. Thus, p is

homogeneous and ϕ is equitable-rank-partition stable.

Proof of Theorem 2

Theorem 2. A rank-partition stable rule is Pareto-efficient if and only if it is a Near-

Boston rule.

Proof.

Claim 2.1: A Near-Boston rule is rank-partition stable and Pareto-efficient.

Proof: A Near-Boston rule is a PRP rule, and thus it is rank-partition stable by Propo-

sition 1. We need to show that Near-Boston rules are Pareto-efficient. Let f v,p be

a Near-Boston rule and fix a profile (�, P ). We will prove that f v,p(�, P ) is Pareto-

efficient.

Let µ ≡ f v,p(�, P ). Note that since f v,p is a Near-Boston rule, all priority partitions

are the coarsest and there exists j ∈ S such that for for all s ∈ S \ {j}, s’s preference

partition is the finest. Choose a permutation σ of the set of students S which follows

the order of when the assignments are made in the f v,p procedure at (�, P ). Formally,

for all s ∈ S, let ts denote the round in the f v,p procedure at (�, P ) in which s is

accepted by µs for the first time, and let σ be such that for all i, l ∈ S, σ(i) ≤ σ(l)

if and only if ti ≤ tl. It is well-known (see, for example, Balinski and Sönmez (1999,

[9]) and Svensson (1999, [50])) that if σ is a permutation of S such that if students

choose their favorite school with remaining seats following the order specified by σ and

the resulting matching is µ, that is, if σ is used as in a Serial Dictatorship fσ, then µ

is Pareto-efficient. Clearly, σ has this property if f v,p is the Boston rule, that is, if j

has the finest preference partition along with all other students, since in this case there

are no temporary assignments in the procedure: once a school accepts a student, the

assignment is final. If σ does not have this property then there exist i, l ∈ S such that

σ(i) < σ(l) and µlPiµi. This implies that student i applied for school µl in some round
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t < ti and got rejected, which in turn implies that µl was already filled to capacity in

round t. Since t < ti ≤ tl and l is assigned to µl in round tl, it must be the case that

l = j. Let h ∈ S be the student who is assigned µj in round t, but µh 6= µj. Then h

is selected over i in round t by school µj, but since in round tj student j is assigned

to µj, h is only temporarily assigned to µj and is rejected by µj in round tj, where j

is selected by µj over h. Note that h is unique since only pj is a preference partition

which is not the finest, and h 6= i, j.

Suppose, by contradiction, that µ is not Pareto-efficient. Then, given that whenever

i, l ∈ S are such that σ(i) < σ(l) and µlPiµi, we have l = j, as we have shown, there

must be an envy chain from j to such a student i, that is, there exists student î who is

assigned µî in round t̂i, where ti ≤ t̂i ≤ tj and µîPjµj. Note that î 6= j, h but î = i is

possible. Thus, rj(µî) < rj(µj). Moreover, µî ∈ P
t̂i
î

, since î 6= h, given that t < t̂i.

Since pi = ph = (1, . . . , 1), for all c ∈ C, c ∈ P ri(c)
i and c ∈ P rh(c)

h . Moreover, in each

round k where a student gets rejected by a school prior to round tj, the student ranks the

school in the kth position. Since h is selected over i in round t by µj, ri(µj) = t, µj ∈ P t
i

and thus, given that all school priorities are the coarsest, µj ∈ P t′

h , where t′ ≤ t.

Since µj ∈ P t′

h and j is selected over h in round tj by µj, we have µj ∈ P t′′
j

such that t′′ ≤ t′, given that all the priority partitions are the coarsest. Then, since

rj(µî) < rj(µj), µî ∈ P t̄
j such that t̄ ≤ t′′. Observe that t̄ ≤ t′′ ≤ t′ ≤ t < ti ≤ t̂i.

Therefore, t̄ < t̂i. Since µî ∈ P
t̂i
î

and µî ∈ P t̄
j , where t̄ < t̂i, it is not possible that î

is selected over j by µî, and we have a contradiction. Thus, µ is Pareto-efficient and

Claim 2.1 is proved.

Claim 2.2: A rank-partition stable and Pareto-efficient rule is a Near-Boston rule.

Proof: We will show that a Pareto-efficient PRP rule is a Near-Boston rule. Note that

this is sufficient to prove the claim since a PRP rule chooses the optimal rank-partition

stable matching at each profile (�, P ), which Pareto-dominates all other rank-partition

stable matchings at this profile.

Step A: We show that if f v,p is a Pareto-efficient PRP rule then each school has the
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coarsest priority partition.

Let f v,p be a Pareto-efficient PRP rule. Suppose that there exists a ∈M such that

va is not the coarsest. For now we assume that qa = qb = qc = 1 and thus n ≥ 4.

Specify (�, P ) as follows. Let i, j, l, h ∈ N such that

• l has the top-priority for a and j has the lowest priority for a in �a. Note that this

implies that l ∈ v1
a and j /∈ v1

a, given our assumption that va is not the coarsest.

• i has the lowest priority for a in �a, except for j. Thus, i �a j.

• j has the top priority for b and i has the lowest priority for b in �b .

• h has the top priority for c in �c.

All other priorities in � are arbitrary.

Case A.1 : v1
a = n− 1

Let P be given as shown in the table below.

Pi Pj Pl Ph

c a c c

b b b

a 0

Assume that further preferences for i, j, l, h ∈ S are arbitrary at P , and for all students

h′ ∈ S \ {i, j, l, h}, Ph′ ∈ (0) (i.e., they don’t have any acceptable school). Assume

without loss of generality that p1
i ≤ p1

l ≤ p1
j . The rounds of the f v,p procedure at

(�, P ) are displayed below.
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Round a b c

1 j i, l, h

2 j i, l h

3 i, j l h

4 i j, l h

In round 1, h is selected over i and j by c, since either h is in a higher priority class

than i and l for c, or h wins on the tie-breaker, given that ri(l) = rl(c) = rh(c) = 1 and

h �c i, l.

In round 2, l is selected over i by b, since either l is in a higher priority class

than i for b, or l is selected based on preference rank classes, given that p1
i ≤ p1

l and

ri(b) = rl(b) = 2, or if neither the priority classes nor the preference classes provide a

basis for selecting l over i, then l wins on the tie-breaker, given that l �b i.

Note that since v1
a = n− 1, i ∈ v1

a and i ∈ v2
a, given �a. Thus, in round 3 student i

is selected over j by a based on the priority rank classes.

In round 4, j is selected over l by b, since either j is in a higher priority class than

l for b, or j is selected based on the preference rank classes, given that p1
l ≤ p1

j and

rj(b) = rl(b) = 2, or if neither the priority classes nor the preference classes provide a

basis for selecting j over l, then j wins on the tie-breaker, given that j �b l.

Now note that since i is assigned a and j is assigned b, i and j would prefer to trade

their assignments and thus we have a contradiction to Pareto-efficiency.

Case A.2 : v1
a < n− 1

Let P be given as shown in the table below.
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Pi Pj Pl Ph

a a c c

b b b

0 a

Assume that further preferences for i, j, l, h ∈ S are arbitrary at P and for all

students h′ ∈ N \ {i, j, l, h}, Ph′ ∈ (0). Assume without loss of generality that p1
l ≤

p1
i ≤ p1

j . The rounds of the f v,p procedure at (�, P ) are displayed below.

Round a b c

1 i, j l, h

2 i j, l h

3 i, l j h

4 l i, j h

In round 1, i is selected over j by a, since either i is in a higher priority class than

j for a, or i wins on the tie-breaker, given that ri(a) = rj(a) = 1 and i �a j. Similarly,

h is selected by c over l.

In round 2, j is selected over l by b since j has top priority for b, and thus j may be

selected based on the priority classes. If j does not get selected based on the priority

classes, then p1
l ≤ p1

j and rj(b) = rl(b) = 2 imply that j may be selected based on

preference classes. Finally, if j is not selected based on either the priority or preference

classes, then j wins on the tie-breaker, since j �b l.

In round 3, l is selected over i by a based on the priority classes, since l ∈ v1
a and

i /∈ v1
a, given that v1

a < n− 1.

In round 4, j is selected over i by b, since either j is in a higher priority class

than i for b, or j is selected based on the preference classes, given that p1
i ≤ p1

j and

ri(b) = rj(b) = 2, or if neither the priority classes nor the preference classes provide a

basis for selecting j over c, then j wins on the tie-breaker, given that j �b i.

66



Now note that since l is assigned a and j is assigned b, l and j would prefer to trade

their assignments and thus we have a contradiction to Pareto-efficiency.

In order to relax the assumption that qa = qb = qc = 1 and generalize both Case

A.1 and Case A.2, since there exist a, b, c ∈ C such that qa + qb + qc < n, we can

introduce additional students with the top priorities for the relevant schools such that

each student with the top priority for a relevant school ranks the school first, and this

would allow for getting the same contradiction in both cases as before. Since this is a

straightforward extension, we omit the tedious details. Finally, note that since va is not

the coarsest, Cases A.1 and A.2 cover all possible cases and thus Step A is completed.

Step B: We show that if f v,p is a Pareto-efficient PRP rule then it is a Near-Boston

rule.

Suppose that f v,p is Pareto-efficient but it is not a Near-Boston rule. Then there

exist j, l ∈ N with at least one preference class each which are minimally size 2. Since

the preference classes which are larger than size 1 have to be relevant, that is, there

must exist a profile where these sizes matter, it means that there are enough students

who can have top priorities at relevant schools, and since we can assume that these

students will rank their top-priority schools first, to reduce the technical details we can

assume without loss of generality that the size 2 preference classes are the top preference

classes for students j and l, and by a similar argument we can assume without loss of

generality that qa = qb = qc = 1 for schools a, b, c ∈ C, where qa + qb + qc < n.

We specify (�, P ) as follows. Let the preferences for i, j, l ∈ S be given as shown in

the table below.

Pi Pj Pl

a a b

b a

Note that student j has both a and b in the top preference class, and so does

student l: a, b ∈ P 1
j and a, b ∈ P 1

l .
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Let l �a i �a j and j �b l. Note that all priority partitions are coarse by Step A,

since f v,p is a Pareto-efficient rule. The rounds of the PRP rule applied to (�, P ) are

displayed below, with the selections underlined in each round.

Round a b

1 i, j l

2 i j, l

3 i, l j

Now note that since l is assigned a and j is assigned b, l and j would prefer to trade

their assignments and thus we have a contradiction to Pareto-efficiency.

Proof of Theorem 3

Theorem 3. A rank-partition stable rule is strategyproof if and only if it is the Deferred

Acceptance rule.

Proof.

Step 1: The only strategyproof PRP rule is the DA.

Let f v,p be a PRP rule which is not the DA. Suppose that f v,p is strategyproof.

Since f v,p is not the DA, there exists c1 ∈ C such that vc1 is not the finest, and there

exists s∗ ∈ S such that p∗s is not the coarsest. Then there exists rank r ≥ qc1 , such

that the students ranked in the rth and (r + 1)th positions are in the same priority

rank class according to vc1 . Thus, note that qc1 < n. Let sn ≡ s∗. Fix �c1 with ranks

rc1(s∗) = r, rc1(s1) = r + 1, and for all i = 2, . . . , qc1 , rc1(si) < r. Let c2, c3, . . . , cm be

arranged in ascending order of their capacities, that is, qc2 ≤ qc3 ≤ . . . ≤ qcm . Let � be

such that for all t = 2, . . . ,m, �ct ranks s∗ last: rct(s
∗) = n.

Consider each seat of each school as a separate item, denoted by c̄1, . . . , c̄m̄, where

m̄ ≡
∑

c∈C qc. For all t = 1, 2, . . . ,m, let Qt ≡
∑t

l=1 qcl . Moreover, let c̄1, . . . , c̄qc

denote the seats at school c1, and for all t = 2, . . . ,m, let c̄Qt−1+1, . . . , c̄Qt denote the

seats at school ct.
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• Case 1: n ≤ m̄

Let m̃ ≥ 2 be such that Qm̃ ≥ n and Qm̃−1 < n. Let Ps∗ ∈ (c2, c3, . . . , cm̃−1, c1, cm̃),

and for all i = 1, . . . , n− 1, let Psi ∈ (c̄i).

The rounds of the PRP procedure at (�, P ) are as follows.

Round 1: The only conflict is for c2, among students sqc1+1, . . . , sqc1+qc2
and s∗.

Based on �c2 , since �c2 ranks s∗ last, either students sqc1+1, . . . , sqc1+qc2
are se-

lected or all students applying to c2 are selected, depending on vc2 . If it is the

latter, then since all students in the applicant pool rank c2 first, regardless of P

the selection is based on the tie-breaker �c2 . Given that �c2 ranks s∗ last, stu-

dents sqc1+1, . . . , sqc1+qc2
are selected by c2 in this case, too. In sum, s∗ is rejected

by c2 and all other applications are accepted in round 1.

Round 2: s∗ applies to c3, and the only conflict is for c3, among students sqc1+qc2+1,

. . . , sqc1+qc2+qc3
and s∗. Here again s∗ is rejected by c3, and all the previous ten-

tative acceptances remain. The arguments are similar to the round 1 arguments,

except that since s∗ ranks c3 second, while all other students in the applicant pool

for c3 rank c3 first, depending on p, s∗ could be rejected based on the preference

rank classes, if s∗ was not rejected already based on the priority rank classes of

c3, given that �c3 ranks s∗ last. Again, if s∗ is not rejected based on priority or

preference rank classes by c3, then s∗ is rejected by c3 based on the tie-breaker

�c3 .

And so on, we can repeat similar arguments for Rounds 3 to m̃− 2 : s∗ applies to

schools c4, ...., cm̃−1 in these rounds, respectively, and gets rejected in each round,

while all other students remain tentatively matched to their first-choice school.

Round m̃ − 1 : s∗ applies to c1, and the only conflict is for c1, among students

s1, . . . , sqc and s∗. Since for all i = 2, . . . , qc1 , rc1(si) < r, rc1(s∗) = r and rc1(s1) =

r+ 1, and since according to vc1 students s∗ and s1, are in the same priority rank

class, each student in the applicant pool of c1 is selected, given �c1 . Now note
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that, given qc2 ≤ qc3 ≤ . . . ≤ qcm and Qm̃ ≥ n, s∗ is guaranteed to be assigned at

worst the m̃th-ranked school under any reported preferences of s∗. Then, since

ps∗ is not the coarsest, c1 /∈ P 1
s∗ . Since s1, . . . , sqc1 rank c1 first, s∗ is rejected by

c1 based on the preference rank classes. This implies that f v,ps∗ (�, P ) = cm̃ and

c1Ps∗f
v,p
s∗ (�, P ).

Now let P̃s∗ ∈ (c1). In round 1 of the PRP procedure at (�, (P̃s∗ , P−s∗)) based

on the priority rank classes specified by vc, none of the students in the applicant

pool for c1, namely s1, . . . , sqc and s∗ are rejected, as shown before. Since all

students rank c1 first in this applicant pool, none of them are rejected based on

the preference rank classes. Therefore, the selection is based on the tie-breaker

�c1 . Given that for all i = 2, . . . , qc, rc1(si) < r, rc1(s∗) = r and rc1(s1) = r + 1,

s1 is rejected and all other applying students are tentatively matched to c1. Since

Ps1 ∈ (c1), individual rationality of f v,p implies that the procedure stops after

round 1 at (�, (P̃s∗ , P−s∗)), and thus f v,ps∗ (�, (P̃s∗ , P−s∗)) = c1. This means that s∗

can manipulate at P via P̃s∗ , which contradicts the strategyproofness of f v,p.

• Case 2: n > m̄

Let s∗ ≡ sm̄+1 and let Ps∗ ∈ (c2, c3, . . . , cm−1, cm, c1). For all i = 1, . . . , m̄, let

Psi ∈ (c̄i), and for all i = m̄ + 2, . . . , n, let Psi ∈ (si). For this case we can

use a similar argument as for Case 1, given the above modifications. Since c1 is

ranked last by s∗ and Ps∗ is not the coarsest, c1 /∈ P 1
s∗ . Therefore, we have f v,ps∗ (�

, P ) = 0 and c1Ps f
v,p
s∗ (�, P ). Moreover, we can show similarly to Case 1 that

f v,ps∗ (�, (P̃s∗ , P−s∗)) = c1, where P̃s∗ ∈ (c1). This means that s∗ can manipulate at

P via P̃s∗ , which contradicts the strategyproofness of f v,p.

Step 2: The only strategyproof rank-partition stable rule is the DA.6

Suppose that ϕ is a rank-partition stable rule which is strategyproof, and suppose

that ϕ is not the DA. Let ϕ be rank-partition stable with respect to (v, p). Then, by Step

6Given Step 1, this step also follows from Alva and Manjunath (2019, [8]). We provide a direct
proof of this step for completeness.
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1, ϕ is not the PRP rule f v,p. Thus, there exists (�, P ) such that ϕ(�, P ) 6= f v,p(�, P ).

Then Proposition 1 implies that f v,p(�, P ) Pareto-dominates ϕ(�, P ).

For all s ∈ S, let P̃s be the same as Ps from the first-ranked school to f v,ps (P ), and let

all other schools (schools ranked below f v,ps (�, P ) ) be unacceptable to s at preferences

P̃s. In other words, P̃s is the truncation of Ps directly below f v,ps (�, P ). Let P̄ be any

preference profile in which for all s ∈ S, P̄s ∈ {Ps, P̃s}. Then it easy to see that for all

such P̄ ∈ P , f v,p(�, P̄ ) = f v,p(�, P ).

Let s1 ∈ S such that f v,ps1 (�, P ) 6= ϕs1(�, P ). Then f v,ps1 (�, P )Ps1ϕs1(�, P ). Note

that f v,p(�, P ) = f v,p(�, P̃ 1), where P̃ 1 ≡ (P̃s1 , P−s1). Since ϕ is strategyproof and

individually rational, ϕs1(�, P̃ 1) = 0. Now suppose that, for all s ∈ S \ {s1}, f v,ps (�

, P̃ 1) = ϕs(�, P̃ 1). Then ϕs1(�, P̃ 1) 6= 0, otherwise ϕ would be wasteful, which contra-

dicts our assumption that ϕ is rank-partition stable. Hence, there exists s2 ∈ S \ {s1}

such that f v,ps2 (�, P̃ 1) 6= ϕs2(�, P̃ 1). Then, by Proposition 1, f v,ps2 (�, P̃ 1)Ps2ϕs2(�, P̃ 2).

Note that f v,p(�, P̃ 1) = f v,p(�, P̃ 2), where P̃ 2 = (P̃s1 , P̃s2 , P−s1,s2). Now suppose that

for all s ∈ S \ {s1, s2}, f v,ps (�, P̃ 2) = ϕs(�, P̃ 2). Then

ϕs1(�, P̃ 2) 6= 0 and ϕs2(�, P̃ 2) 6= 0, otherwise ϕ would be wasteful, which contradicts

our assumption that ϕ is rank-partition stable. Hence, there exists s3 ∈ S \ {s1, s2}

such that f v,ps3 (�, P̃ 2) 6= ϕs3(�, P̃ 2). And so on, if we keep iterating the same argument

then, due to the finiteness of S, we run out of students. This is a contradiction, which

shows that if ϕ is rank-partition stable but not the DA then ϕ is not strategyproof.

Proof of Theorem 4

Theorem 4. Let f v,p be a PRP rule and fix a profile (�, P ). Let s ∈ S and c ∈ C such

that cPsf
v,p
s (�, P ). Let P ′s ∈ Ps such that c is in the same or lower preference rank

class in P ′s than in Ps, given p. Then f v,ps (�, (P ′s, P−s)) 6= c.

Substitutability: If student s is chosen from some applicant pool S ′ ⊆ S by a school,

then student s would still be chosen from the applicant pool T by this school where T

is a strict subset of S ′ and s is a member of T . Formally, a choice function Ch satisfies
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substitutability if s ∈ T ⊆ S ′ ⊆ S and s ∈ Chc(S
′) then s ∈ Chc(T ). It is easy to

verify that PRP choice functions satisfy substitutability.

Proof. Let f v,p be a PRP rule and fix a profile (�, P ). Let s ∈ S, and c, d ∈ C

such that f v,ps (�, P ) = d and cPsd. Let P ′s ∈ Ps. Let �̄ denote the constructed

priority profile for ((�, P ), (v, p)) and let �̄′ denote the constructed priority profile for

((�, (P ′s, P−s)), (v, p)).

Case 1: Assume that P ′s is different from Ps only by reshuffling schools within s’s

preference rank classes only. For the constructed priority profile only the set of schools

in each preference class is relevant, while the ordering of the schools within a preference

class is irrelevant. Thus, �̄ = �̄′. By Proposition 1, f v,p(�, P ) = fDA(�̄, P ) and

f v,p(�, (P ′s, P−s)) = fDA(�̄′, (P ′s, P−s)). Then f v,p(�, (P ′s, P−s)) = fDA(�̄, (P ′s, P−s)).

Therefore, given that cPsf
v,p
s (�, P ) and thus cPsf

DA
s (�̄, P ), by the strategyproofness

of the DA, we have fDA (�̄, (P ′s, P−s)) 6= c. This means that f v,p(�, (P ′s, P−s)) 6= c.

Case 2: Assume that P ′s exchanges two schools (a and b) only when compared to Ps

such that a and b are in two adjacent preference rank classes. Specifically, assume that

a is the bottom-ranked school in its preference rank class, and b is the top-ranked school

in the preference rank class just below the one a is in. Otherwise P ′s is the same as Ps,

including the preference rankings within each preference rank class.

First note that only the priority rankings of a and b are different in the constructed

priority profile �̄′ compared to �̄, while the priorities for the remaining schools are the

same. Moreover, only the position of student s may change, as follows: s has the same

or higher ranking in �̄′b compared to �̄b, while s has the same or lower ranking in �̄′a

compared to �̄a. All other students have the same relative rankings in �̄′b versus �̄b,

as well as in �̄′a versus �̄a.

Claim 4.1. Let school e be ranked directly above school a by Ps. Then for all ẽ ∈ C

such that ẽRse, if f v,ps (�, P ) = ẽ then f v,ps (�, (P ′s, P−s)) = ẽ and otherwise

f v,ps (�, (P ′s, P−s)) 6= ẽ.
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Proof. Note first that school e is ranked directly above school b by P ′s. Then each

round of the PRP procedure in which student s proposes to school ẽ such that ẽRse

(and consequently also ẽR′se), the PRP rounds at (�, P ) and at (�, (P ′s, P−s)) are

identical, given that ẽPsa, b, ẽP
′
sa, b and only Cha and Chb have changed with respect

to the selection of s only, when the two preference profiles are compared.

Case 2a: dPsa. By Claim 3.12, f v,ps (�, (P ′s, P−s)) = f v,ps (�, P ) = d.

Case 2b: d = a. Given Claim 3.12, since cPsd, f v,ps (�, (P ′s, P−s)) 6= c. Claim 3.12 also

implies that we have one of the following scenarios:

scenario (i): f v,ps (�, (P ′s, P−s)) = d = a

scenario (ii) : f v,ps (�, (P ′s, P−s)) = b (note: b 6= c, since cPsdPsb)

scenario (iii): dPsf
v,p
s (�, (P ′s, P−s))

Case 2c: d = b. Given Claim 3.12, for all ẽ ∈ C such that ẽRse, f
v,p
s (P ′s, P−s) 6= ẽ.

Suppose that s is rejected by school d = b in the PRP procedure at profile

(�, (P ′s, P−s)). Then, since the PRP rule is not wasteful, there exists at least

one student ŝ ∈ S such that f v,pŝ (�, (P ′s, P−s)) = b and f v,pŝ (P ) 6= b. Since

f v,pŝ (�, (P ′s, P−s)) = b and bPsf
v,p
s (� (P ′s, P−s)), given that the PRP rule f v,p is

stable with respect to the constructed priority profile at each preference profile

by Proposition 1, ŝ�̄′bs. Since s cannot have a lower position in �̄′b compared to

�̄b, while all other students’ relative positions are unchanged, this implies that

ŝ�̄bs. If bPŝf
v,p
ŝ (�, P ), then since ŝ�̄bs and f(�, P ) is stable with respect to �̄,

we have a contradiction. Thus, since f v,pŝ (�, P ) 6= b, we have f v,pŝ (�, P )Pŝb. Note

that this implies that ŝ does not apply to school b in the f v,p procedure at P .

Assume that s is rejected by e in round k−1 of the f v,p procedure applied to both

(�, P ) and (�, (P ′s, P−s)). This is without loss of generality due to Claim 3.12.

Then s applies to school a in Step k at (�, P ), and s applies to school b in round k

at (�, (P ′s, P−s)). Let T ⊂ S be the set of students who apply to b in any round
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after round k − 1 in the f v,p procedure at (�, P ), and let T ′ ⊂ S be the set of

students who apply to b in any round after round k − 1 in the f v,p procedure at

(�, (P ′s, P−s)). We will show that T ′ ⊆ T .

It follows from Claim 3.12 that in round k at (�, P ) each student except s applies

to the same school as in round k at (�, (P ′s, P−s)). If student s gets rejected by

school a at (�, P ) in round k then there is no difference in applicants to b at the

two profiles after round k and T ′ = T , due to the substitutability property of the

school choice functions. If student s gets accepted and some other student gets

rejected by a at (�, P ) who is not rejected by a at (�, (P ′s, P−s)) then this student

applies to her next most-preferred school, which in turn my cause another student

to be rejected by a school at (�, P ) who is not rejected at (�, (P ′s, P−s)), etc.,

creating a rejection chain at (�, P ). Therefore, all students who applied to b at

(�, (P ′s, P−s)), and potentially more students, apply to b at (�, P ) after round k,

since all students involved in this rejection chain get a lower-ranked school at

(�, P ) than at (�, (P ′s, P−s)), given the substitutability property of the school

choice functions. Thus, if t ∈ T ′ then t ∈ T , as claimed. Note, however, that this

contradicts the existence of student ŝ since, as shown above, ŝ ∈ T ′ \ T .

Case 2d: bPsd. Note that b 6= c, since c is either in the same or a lower preference

rank class in P ′s than in Ps, given the fixed ps. We will show that one of the

following three scenarios holds:

scenario (i): f v,ps (�, (P ′s, P−s)) = d;

scenario (ii): f v,ps (�, (P ′s, P−s)) = b;

scenario (iii): dPsf
v,p
s (�, (P ′s, P−s)).

By Claim 4.1, for all ẽ ∈ C such that ẽRse, f
v,p
s (�, (P ′s, P−s)) 6= ẽ. If

f v,ps (�, (P ′s, P−s)) = b then we are done, as scenario (ii) holds in this case. Thus,

we can assume that f v,ps (�, (P ′s, P−s)) 6= b. Then bPsf
v,p
s (�, (P ′s, P−s)).

First we show that f v,ps (�, (P ′s, P−s)) 6= a. Suppose that f v,ps (�, (P ′s, P−s)) = a.
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Then we can show that f v,ps ((�, P )) = a, using a similar argument to the one for

Case 2c. For Case 2c we showed that if f v,ps (�, P ) = b then f v,ps (�, (P ′s, P−s)) = b,

and here we can use a similar argument applied to a instead of b, to show that

f v,ps (�, P ) = a, which contradicts f v,ps (�, P ) = d, since aPsbPsd. Therefore,

f v,ps (�, (P ′s, P−s)) 6= a, and thus we have shown so far that aP ′sf
v,p
s (�, (P ′s, P−s)).

Claim 4.2. Assume that P ′s is different from Ps only by the ordering of schools

within s’s preference rank class which contains the school assigned to s at (�, P ),

say school c, that is, when f v,ps (�, P ) = c. Assume furthermore that the upper

contour set of school c in this preference class is weakly smaller at P ′s than at Ps,

that is, if c′ is in the same preference class in Ps as c, and if c′P ′sc then c′Psc.

Then f v,ps (�, (P ′s, P−s)) = c.

Proof. As noted in the argument for Case 1, for the constructed priority profile

only the set of schools in each preference class is relevant, while the ordering of the

schools within a preference class is irrelevant. Thus �̄ = �̄′. Then f v,p(�, P ) =

fDA(�̄, P ) and f v,p(�, (P ′s, P−s)) = fDA(�̄′, (�, (P ′s, P−s))) = fDA(�̄, (P ′s, P−s)).

Therefore, if f v,ps (�, P ) = c, or equivalently fDAs (�̄, P ) = c, by strategyproofness

of the DA, fDAs (�̄, (P ′s, P−s)) = c or, equivalently, f v,ps (�, (P ′s, P−s)) = c.

Given Claim 4.2, we show next that if f v,ps (�, (P ′s, P−s)) 6= b then dRs

f v,ps (�, (P ′s, P−s)). Since a, bPsf
v,p
s (�, P ), a, bP ′sf

v,p
s (�, (P ′s, P−s)), and only the

order of a and b has changed between Ps and P ′s, where a and b are adjacent in

the preference ordering, suppose that there exists c ∈ C such that bPscPsd and

f v,ps (�, (P ′s, P−s)) = c. This means that aP ′scP
′
sd.

Consider P ′′s which is the same as P ′s, except that c is lifted to be ranked directly

below a (note: if c was already ranked directly below a by P ′s, then P ′s = P ′′s ).

Since this change only affects the preference class that contains a, c and d, while all

other orderings in P ′s are preserved, Claim 4.2 implies that f v,ps (�, (P ′′s , P−s)) =

c. Consider P̂s which is the same as Ps, except that c is lifted to the top of
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the preference class that contains b, c and d, while all other orderings in Ps are

preserved.

Now consider P ′′s versus P̂s. Given that f v,ps (�, (P ′′s , P−s)) = c, Claim 4.1 implies

that for all ẽR′′se, f
v,p
s (�, (P̂s, P−s)) 6= ẽ. Now suppose that f v,ps (�, (P̂s, P−s)) 6= a.

We will show that then f v,ps (�, (P ′′s , P−s)) = c implies that f v,ps (�, (P̂s, P−s)) = c.

Suppose that s is rejected by school c in the f v,p procedure at profile (�, (P̂s, P−s)).

Then, since the PRP rule is not wasteful, there exists at least one student

s̃ ∈ S such that f v,ps̃ (�, (P̂s, P−s)) = c and f v,ps̃ (�, (P ′′s , P−s)) 6= c. Since f v,ps̃ (�

, (P̂s, P−s)) = c and cPsf
v,p
s (�, (P̂s, P−s)), given that the PRP rule f v,p is stable

with respect to the constructed priority profile at each preference profile by Propo-

sition 1, s̃�̂cs, where �̂ is the constructed priority profile at (�, (P̂s, P−s)). Thus,

since c is in the same preference class in P ′′s and in P̂s, we also have s̃ �′′c s, where

�′′ is the constructed priority profile at (�, (P ′′s , P−s)). If cPs̃f
v,p
s̃ (�, (P ′′s , P−s)),

then since s̃ �′′c s and f(�, (P ′′s , P−s)) is stable with respect to �′′, we have a

contradiction. Thus, f v,ps̃ (�, (P ′′s , P−s))Ps̃c, which implies that s̃ does not apply

to school c in the f v,p procedure at (�, (P ′′s , P−s)).

Assume that s is rejected by e in round k − 1 of the f v,p procedure applied

to (�, (P ′′s , P−s)) and to (�, (P̂s, P−s)). Then s applies to school b in round k

at (�, (P ′′s , P−s)) and to school a at (�, (P̂s, P−s)). Let V ⊂ S be the set of

students who apply to c in any round after round k − 1 in the f v,p procedure

at (�, (P ′′s , P−s)) and let V ′ ⊂ S be the set of students who apply to c in any

round after round k−1 in the f v,p procedure at (�, (P̂s, P−s)). We will show that

V ′ ⊆ V .

It follows from Claim 4.1 that in round k at (�, (P ′′s , P−s)) each student except

s applies to the same school as in round k at (�, (P̂s, P−s)). If student s gets

rejected by school b at (�, (P ′′s , P−s)) in round k then there is no difference in

applicants to a at the two profiles after round k, which implies that V ′ = V ,
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due to the substitutability property of the school choice functions. If student s

gets accepted by b at (�, (P ′′s , P−s)) and some other student gets rejected after

round k − 1 who is not rejected by b at (�, (P̂s, P−s)), then this student applies

to her next most-preferred school, which in turn my cause another student to be

rejected by a school at (�, (P ′′s , P−s)) who is not rejected at (�, (P̂s, P−s)), etc.,

creating a rejection chain at (�, (P ′′s , P−s)). Therefore, all students who applied

to c at (�, (P̂s, P−s)), and potentially more students, apply to c at (�, (P ′′s , P−s)),

since all students involved in this rejection chain get a lower-ranked school at

(�, (P ′′s , P−s)) than at (�, (P̂s, P−s)), again due to the substitutability property

of the school choice functions. Thus, if v ∈ V ′ then v ∈ V , as claimed. This,

however, contradicts the existence of student s̃ since, as shown above, s̃ ∈ V ′ \V .

Therefore, f v,ps (�, (P̂s, P−s)) ∈ {a, c}. Finally note that, given Ps, Claim 4.2

implies that f v,ps (�, (P̂s, P−s)) = d. This is a contradiction. Therefore,

f v,ps (�, (P ′s, P−s)) 6= c and it follows that either f v,ps (�, (P ′s, P−s)) = d or

dPsf
v,p
s (�, (P ′s, P−s)), corresponding to scenarios (i) and (iii) respectively.

Conclusion of the proof :

By repeatedly applying the transformation of Ps in Case 1, which allows for the

reshuffling of schools within the preference rank classes of students, as well as the

transformation of Ps in Case 2, which allows for exchanging two adjacent schools in

the ordering which switches the preference rank classes in which these two schools

are, we can transform Ps into an arbitrary P̌s such that c is never moved to a higher

preference rank class in any round of the transformation. Thus, based on the proofs

for the individual cases above, we can conclude that one of the following three cases

holds for f v,ps (�, (P ′s, P−s)) for each intermediate round P ′s when transforming Ps into

an arbitrary P̌s :

1. f v,ps (�, (P ′s, P−s)) is the same as in the previous round, denoted by d, and thus

does not equal c in Case 1, Case 2a, Case 2b scenario (i), Case 2c, and Case 2d
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scenario (i).

2. f v,ps (�, (P ′s, P−s)) becomes the school which moves up to a higher preference rank

class, denoted by b, where b 6= c, since c never moves to a higher preference rank

class in any round of the transformation. This happens in Case 2b scenario (ii),

and Case 2d scenario (ii).

3. f v,ps (�, (P ′s, P−s)) is less preferred than the school assigned in the previous outcome

which is denoted by d: dPsf
v,p
s (�, (P ′s, P−s)), where cPsd. Thus, f v,ps (�, P ′s, P−s) 6=

c. This happens in Case 2b scenario (iii) and in Case 2d scenario (iii).

In sum, for arbitrary P̌s such that c is in the same or lower preference rank class in

P̌s than in Ps, f
v,p
s (�, (P̌s, P−s)) 6= c.
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Chapter 4

Deferred Acceptance with

Efficiency Improvements

4.1 Introduction

We study the school choice problem (Abdulkadiroǧlu and Sönmez, 2003, [2]) that assign

students to schools based on priorities of the schools over the students. Our main in-

terest is in studying the trade-offs between fairness, efficiency, and incentive properties

in the context where the rules are Pareto-improvements over the DA assignment, and

we study a class of rules which implement Pareto-improving trades starting from the

student-proposing Deferred Acceptance outcome as endowments for the students. A

notable rule in this class is EADAM, introduced by Kesten (2010, [37]), which allows

for Pareto improvements over the DA outcome by iteratively removing interrupters,

students who interfere with the efficiency of the DA algorithm based on their prior-

ity ranking for certain schools, but cannot themselves be assigned to these schools.

The original algorithm of EADAM provided by Kesten (2010, [37]) has been simpli-

fied by Tang and Yu (2014, [51]), who show that if we iteratively remove students

with underdemanded DA endowments and re-run the DA then the resulting procedure

is outcome-equivalent to the EADAM. Another equivalent alternative description of
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EADAM based on a trading graph has been proposed by Dur et al. (2019, [19]).

Alternative justifications and results related to EADAM have also been offered by

several recent papers, including Ehlers and Morrill (2019, [25]) and Troyan et al. (2020,

[52]). Further papers concerning Pareto-improvement over the DA in various contexts

include Abdulkadiroǧlu et al. (2009, [1]), Alcalde and Romero-Medina (2015, [7]),

Bando (2014, [10]), Cantala and Pápai (2014, [14]), and Erdil and Ergin (2008, [27]).

In the school choice model alternative matching rules have been put forward to the

TTC (Abdulkadiroglu and Sönmez, 2003, [2]) by Hakimov and Kesten (2014, [31]) and

Morrill (2015, [42]), arguing that TTC may not be the best strategyproof and efficient

rule in terms of fairness properties when schools have capacities.

Another matching rule in the class of Pareto-efficient rules that weakly Pareto-

dominate the DA besides EADAM is the DA-TTC rule, and we study a new class

of matching rules, called Deferred Acceptance with Improvement Trading Cycles (DA-

ITC), whose extreme members are EADAM and DA-TTC. The DA-ITC rules start with

the DA outcome, and if it is not Pareto-efficient then it carries out Pareto-improving

trading cycles iteratively until no more such trading cycles can be found and thus a

Pareto-efficient outcome is reached.

We first revisit EADAM and show that a simple algorithm which re-traces cycles

in the DA procedure in a backward order of the rejections in the DA rounds and

restores these cycles in this backward order is equivalent to the EADAM rule. We

call this simple trading algorithm the DA-BCR (DA with Backward Cycle Restoration)

procedure, which identifies in an intuitive manner the trading cycles that are carried

out, starting from the DA endowments, in order to reach the EADAM outcome. This

algorithm is simpler than that of Dur et al. (2019, [19]) and follows closely the original

EADAM algorithm of Kesten (2010, [37]).

The class of DA-ITC rules are parameterized by k, where k is the number of the

rounds in the DA in which cycles are restored in the backward restoration step fol-

lowing the DA, and when k is not large enough to ensure that the resulting matching
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is Pareto-efficient then the TTC rule is applied to the current endowments to reach

Pareto-efficiency. This set of rules includes the DA-TTC as one of its extreme mem-

bers (when k = 0) and EADAM as the other extreme member (when k is allowed to

be as large as needed to achieve Pareto-efficiency). Matching rules between these two

extreme members combine features of both the DA-TTC and EADAM. All of these

rules are Pareto-efficient by construction, and it is well-known that none of them are

strategyproof since they all produce Pareto-improving outcomes over the DA outcome

(Kesten, 2010, [37]; Abdulkadiroǧlu et al. 2009, [1]). Although not strategyproof and

hence manipulable, all such rules are shown to be non-obviously manipulable by Troyan

and Morrill (2020, [53]).

4.2 Model

Let N be the set of n students, and let M be the set of m schools. Each school x ∈M

has a capacity (or quota) qx, which is the number of identical school seats at school

x that can be assigned to a student. Each student i ∈ N is matched to at most one

school, and each school x ∈ M may be matched to at most as many students as qx.

Each student i ∈ N has a strict preference ordering over the schools in M . For x, y ∈M

if x is strictly preferred to y then we will write xPiy, where Pi denotes strict preferences.

Weak preferences are written as xRiy, which holds if either xPiy or if x = y, given that

preference orderings are strict. The preferences of student i will be denoted by Ri in

general, and a preference profile of the students is R = (Ri)i∈N , where R ∈ R and R

denotes the set of preference profiles consisting of strict preferences.

Each school x has a strict priority ordering �x of students in N . Let Π be the set

of all priority orderings and let Πm = Π× . . .×Π denote the m-fold Cartesian product

of Π. A priority profile of the schools is �= (�x)x∈M , where �∈ Πm. In the following

we will assume that the priority profile � is fixed, along with N and M and (qx)x∈M .

Thus, a matching market is determined by simply a preference profile R ∈ R.
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A matching µ : N → M is an assignment of students to schools, where µ(i)

indicates the assignment of student i ∈ M . For ease of notation we let µi denote µ(i)

and µx denote µ−1(x) such that |µi| ≤ 1 for all i ∈ N and |µx| ≤ qx for all x ∈ M . If

a student i is unassigned in matching µ, we will write µi = 0, where 0 represents being

unassigned. Similarly, if no student is assigned to school x in µ, we will write µx = 0.

Let the set of matchings be denoted by M.

A matching µ is non-wasteful if there is no student i and school x such that xPiµi

and |µx| < qx. Student i ∈ N has justified envy at µ, given R, if there exist school

x ∈ M and student j ∈ N such that xPiµi, i �x j, and µj = x. We will say that

student i has justified envy for x, given that j is matched to x.

A matching µ is fair at preference profile R, if it is non-wasteful and if there is no

student i ∈ N who has justified envy at µ, given R.

A matching µ is Pareto-efficient if there is no ν ∈ M such that for all i ∈ N ,

νiPiµi and, for some j ∈ N , νjPjµj. A matching is constrained efficient if it is not

Pareto-dominated by another stable matching.

Given a fixed priority profile �, a matching rule assigns a matching to each

preference profile: f : R → M. A matching rule is fair if it assigns a fair matching

to each preference profile. A matching rule is Pareto-efficient if it assigns a Pareto-

efficient matching to each preference profile.

4.3 EADAM Revisited

Kesten (2010, [37]) introduced the EADAM rule (Efficiency Adjusted Deferred Accep-

tance Mechanism), which starts with the DA algorithm and then it carries out efficiency

adjustments based on relevant students consenting to give up their priorities for relevant

schools. This leads to an iterative Pareto improvement over the DA outcome when-

ever it is not Pareto-efficient, while simultaneously relaxing the fairness requirement

by allowing for priority violations for the relevant consenting students as they appear
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sequentially in the efficiency adjustment process.

DA with Backward Cycle Restoration (DA-BCR)

Step 1 - DA step: Run the DA algorithm.

Step 2 - Efficiency adjustment step: Backward Cycle Restoration (BCR)

If the DA outcome in Step 1 is Pareto-efficient, it becomes the final outcome. If

the DA outcome in Step 1 is not Pareto-efficient, let the DA assignments be the

endowments of the students, and find the graph of trading by moving backward

in the DA-table (i.e., from a table which indicates the rounds of the initial DA

algorithm) in the order of rejections as they occurred in the rounds of the Deferred

Acceptance procedure in Step 1, where each rejected student i points to the

students who were accepted by the school in the current round that rejected

student i in the same round. Once any cycle is found, carry out the corresponding

trade. If multiple cycles are completed in the same round of the DA procedure

while moving backwards through the DA rounds, then carry out all such cycles

simultaneously. Note that, given the multiple school seats for the same school,

cycles may be selected differently when multiple cycles occur, but regardless of

how these cycles are selected the resulting assignments are always the same.

Since trading once does not result in a final assignment (unlike in the TTC),

keep both the students and schools in the market after trading, but update the

endowments of the trading students to reflect the trade that has just been carried

out. Continue similarly backwards in the DA-table by having students point to

the school that rejected them in the previous round, and keep finding pointing

students until a cycle is completed. Then carry out the resulting trading cycles,

and keep repeating until no more Pareto-improvement can be made and we get

back to round 1 of the DA algorithm in Step 1.

We remark that this is a very simple algorithm: it does not require re-running the
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DA multiple times, unlike the original algorithm of Kesten (2010, [37]) or the simplified

algorithm of Tang and Yu (2014, [51]). It is also a much simpler trading cycle algorithm

than the one proposed in Dur et al. (2019, [19]), since in their algorithm it takes much

more preparation to find out where the students are pointing and how to identify

trading cycles. In the DA-BCR algorithm one can simply read off the sequence of

pointing by students from the Step 1 initial DA-table. This simplicity makes perfect

sense and underlines the intuition behind the EADAM procedure: it simply restores

the cycles working backwards that were created in the process of DA algorithm. While

we could choose trading cycles differently when starting from the DA endowments,

and this cycle selection and its consequences is the focus of this paper, the DA-BCR

procedure seems to “organically” choose the trading cycles to be carried out, based

on the the DA algorithm, which makes a lot of intuitive sense in view of the findings

of a growing recent literature that seems to frequently single out and revisit Kesten’s

EADAM, even when starting from seemingly quite different premises (see, for example,

Dur et al. (2016, [19]), Ehlers and Morrill (2018, [25]), and Troyan et al. (2020, [52]).

Theorem 5. The DA-BCR rule is outcome equivalent to the EADAM rule.

Proof. Fix the preference profile R, and take the first completed cycle in the DA-BCR

rule, as defined, starting from the last round of the DA algorithm. If there are multiple

such cycles then select one. As described, if cycles can be selected in different ways

(which only occurs if schools have multiple seats) then any such cycle can be selected.

Since this is a cycle and students can trade their school assignments along this cycle, it

must be the case that the cycle is completed when it returns to a student, for the first

time, who has the same school as a school prior to this in the cycle. Let this school be

school x and let the round where the cycle returns to x be round t, while the round

where the cycle originates is round t′ > t in the DA algorithm. Note that the student

who points to a student who is assigned to school x, call this student i, is not going

to be part of this cycle, since the backward chain is initiated by this rejected student

in round t′. Moreover, students in the cycle form a rejection chain in the sense that if
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we start with the student in this cycle who is rejected by school x in round t, then all

subsequent students in the cycle (that is, working backwards in the cycle compared to

how we constructed the cycle in the DA-BCR procedure, and hence working forward

in the cycle in terms of rounds in the DA) are rejected in a row, subsequently to each

other, due to the proposal of the student before them in this cycle. Now note that

student i, who is the pointing student in the BA-BCR procdure that initiates this cycle

but not part of the cycle, is rejected by school x in round t′ of the DA, and for the

cycle to be completed, had to be accepted by school x in round t, that is, this student’s

application to school x has initiated the rejection chain corresponding to this cycle that

started in round t. This implies that the interrupter for this cycle is student i, and

accordingly (i, x) form an interrupting pair in round t′ in the DA. Therefore, i is an

interrupter in the DA.

If i is an interrupter in the last round of the DA where there is at least one inter-

rupter, then this exactly corresponds to Kesten’s procedure of removing school x from

student i’s preferences and re-running the DA. Multiple simultaneous cycles can be

handled the same way, as it is straightforward to see that the EADAM would handle

multiple interrupters in the same round similarly. Finally, if i is not an interrupter

in the last round of the DA (but in a prior round), then this interrupter and the cor-

responding cycle are independent of the cycles associated by the last interrupters, as

found by the DA-BCR procedure, and will be taken care of the EADAM procedure in

a later step.

For iterations of the DA-BCR procedure, note that each round of the DA-BCR

creates a new setup that corresponds to the same DA algorithm but with fewer rounds,

compared to the orgininal DA algorithm with all rounds. So the table for the DA in

Step 1 is now truncated and stops at the relevant round. The reason this table is the

same is because trading along any cycle in the DA-BCR restores earlier temporary

assignments of students in the DA algorithm. Therefore, if we run each iteration of the

DA-BCR procedure procedure, it corresponds to the EADAM procedure.
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As the proof shows and the following example demonstrates, we can easily identify

the interrupting pairs of the original EADAM algorithm by simply noting that the

last pointing student from the outside of a trading cycle that will emerge from this

procedure, who points to a student in the cycle, the student who points directly to the

student who starts a cycle and with whom the cycle ends, forms the interrupting pair

with the school that the student is endowed to whom the interrupter is pointing.

We provide an example to illustrate the DA-BCR procedure.

Example 4. Consider the following matching problem with six students and five

schools. This is a close variant of Example 3 in Kesten (2010) with a unit capacity

for each school. The EADAM outcome is

 s1 s2 s3 s4 s5 0

i4 i1 i2 i3 i5 i6



Student Preferences

i1 i2 i3 i4 i5 i6

s2 s3 s3 s1 s1 s4

s1 s1 s4 s2 s5 s1

s3 s5 s2 s4 s3

s2

s5

School Priorities

s1 s2 s3 s4 s5

i2 i3 i1 i4 .

i1 i6 i6 i3 .

i5 i4 i2 i6 .

i6 i1 i3 .

i4 . . . .

i3 . . . .
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Step 1

Round s1 s2 s3 s4 s5

1 i4, i5 i1 i2, i3 i6 ∅

2 i5 i1, i4 i2 i3, i6 ∅

3 i5 , i1, i6 i4 i2 i3 ∅

4 i1 i4 i2 , i6 i3 i5

5 i2, i1 i4, i6 i3 i5

6 i2 i4, i1, i6 i3 i5

7 i2 i6, i4 i1 i3 i5

8 i2 i6 i1 i4, i3 i5

9 i2 i3, i6 i1 i4 i5

10 i2 i3 i1 i4 i5
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Round 1

i1s3 i2s1

i3s2

i4s4

i6 i5s5

students i3 and i4 trade. The interrupting pair is (i6, s2).

Round 2

i1s3 i2s1

i3s4

i4s2

i6 i5s5

students i1 and i2 trade. The interrupting pair is (i6, s3).

88



Round 3

i1s1 i2s3

i3s4

i4s2

i6 i5s5

students i1 and i4 trade. The interrupting pair is (i5, s1).

Round 4

i1s2 i2s3

i3s4

i4s1

i6 i5s5

There are no more trading cycles. Thus, the DA-BCR rule leads to the same matching

as EADAM. In this example it also has the same rounds and the same interrupting

pairs in each round as the EADAM, but this need not be the case in general.

Next, we introduce another trading cycle rule which starts with the DA endowments,
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the DA with Bottom Trading Cycles (DA-BTC) rule. This rule may appear similar to

the DA-BCR rule, but we will show via a counterexample below that this is not the

case.

DA with Bottom Trading Cycles (DA-BTC)

Step 1 - DA step: Run the DA algorithm.

Step 2 - Efficiency adjustment step: Bottom Trading Cycles (BTC)

If the outcome in Step 1 is Pareto-efficient, it becomes the final outcome. If

the outcome in Step 1 is not Pareto-efficient, let this be the endowments of the

students, and let each student point to the student who is endowed with their

next-preferred school compared to their current endowment. That is, instead of

pointing for their top-ranked school, as in the DA-TTC, students point to the next

best school that is ranked above their current endowment, if any. Identify the

“bottom trading cycles” this way and let students trade their schools accordingly.

Since trading once does not result in a final assignment (unlike in the TTC),

keep both the students and schools in the market after trading, but update the

endowments of the trading students to reflect the trade that has just been carried

out. Continue similarly with the next highest-ranked school for each student,

until no more bottom trading cycles can be found.

Note that the main difference between the DA-BCR and DA-BTC algorithms is

that the DA-BCR follows the order of rejections in the DA-table starting from the last

round of the DA and working backwards, while the DA-BTC does not rely on the DA

algorithm (apart from the initial endowments), and can be carried out directly based

on the preference profile of the students, which is similar for the DA-TTC.

The following example shows that DA-BTC is not equivalent to the DA-BCR rule,

and thus to EADAM.
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Example 5. Consider the following matching problem with five students and five

schools. The preferences and priorities are as follows:

Student Preferences

1 2 3 4 5

b c b a d

a a c c e

b d

School Priorities

a b c d e

1 2 3 4 5

2 3 4 5

4 1 2 3

The DA-BTC results in the following matching:

 1 2 3 4 5

b a c d e


However, the DA-BCR (and EADAM) matching is the following:

 1 2 3 4 5

a c b d e


4.4 Deferred Acceptance with Improvement Trad-

ing Cycles

We now introduce a new set of rules, called Deferred Acceptance with Improve-

ment Trading Cycles, or DA-ITC rules, as we will refer to them. This set of rules

is parameterized by k ∈ {0, 1, . . ., where k is the number of the rounds in the initial

DA algorithm from which cycles are recovered in the Backward Cycle Restoration step

(Step 2) in the DA-BTC procedure, which is shown to be equivalent to EADAM by

Theorem 1.

k-DA with Improvement Trading Cycles (k-DA-ITC)

Step 1 - DA step: Run the DA algorithm.
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Step 2 - Efficiency adjustment step: Improvement Trading Cycles (ITC)

If the DA outcome in Step 1 is Pareto-efficient, it becomes the final outcome. If

the DA outcome in Step 1 is not Pareto-efficient, let the DA assignments be the

endowments of the students, and find the graph of trading by moving backward

in the DA-table (i.e., from a table which indicates the rounds of the initial DA

algorithm) in the order of rejections as they occurred in Step 1 in the Deferred

Acceptance procedure, where each rejected student points to the school that re-

jected the student in that round. Move back up to at most k rounds in the DA

algorithm, but do not let any student point to an school that rejected it in a round

that is more than k rounds counting from the end of the algorithm. Once a cycle

is found, carry out the corresponding trade. If multiple cycles are completed in

the same round of the DA procedure while moving backwards through the DA

rounds, then carry out all such cycles simultaneously.

Since trading once does not result in a final assignment (unlike in the TTC),

keep both the students and schools in the market after trading but update the

endowments of the trading students to reflect the trade that has just been carried

out. Continue similarly backwards in the DA-table by having students point to

the school that rejected them in the previous round, and keep finding pointing

students until a cycle is completed, but making sure that no more than k rounds in

the DA algorithm in Step 1 from the end of the algorithm are taken into account

for pointing students. Carry out the resulting trading cycles, and keep repeating

until k rounds are reached.

Once k rounds counting from the end of the algorithm are reached, stop the BCR

procedure. Given the current endowments of the students in this round, apply

the TTC algorithm to this market to complete the procedure.

One extreme member of the class of DA-ITC rules is EADAM, when k is the max-

imum number of rounds that is possible for the DA for any particular model with N
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and M , that is, when all rounds of the DA are taken into account for Bottom Cycle

Restoration, in which case the DA-ITC rule is identical to the DA-BCR rule and is

therefore equivalent to EADAM by Theorem 1. Another extreme member of the class

of DA-ITC rules is DA-TTC, when k = 0, since in this case Step 2 of the procedure is

simply the TTC, which is applied to the DA endowments, given that no trading cycles

are restored from the DA algorithm when k = 0. Other members of the DA-ITC class

are “hybrid” members that have some features in common with both EADAM and

DA-TTC.

4.5 Properties of DA-ITC Rules

The following proposition immediately follows from the construction of the DA-ITC

rules.

Proposition 3. For all k ≥ 0, the k-DA-ITC rule is Pareto-efficient and weakly Pareto-

dominates the DA rule.

Based on already existing results on the strategyproofness of rules which Pareto-

dominate the DA, we can state that none of the DA-ITC rules are strategyproof. This

follows from Abdulkadiroǧlu et al. (2009, [1]) directly, and from a more general result

by Alva and Manjunath (2019, [8]) as well. Kesten (2010, [37]) shows that that there

is no Pareto-efficient matching rule which selects the fair and Pareto-efficient matching

at every profile where it exists, which also implies the negative result below, given that

all k-DA-ITC rules select the DA outcome at each profile where it is Pareto-efficient.

Proposition 4. For all k ≥ 0, the k-DA-ITC rule is not strategyproof.

Although DA-ITC rules are manipulable, a weaker incentive property introduced

by Troyan and Morrill (2020, [53]), called obvious manipulability, does not hold for

DA-ITC rules.

Proposition 5. For all k ≥ 0, the k-DA-ITC rule is not obviously manipulable.
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Turning to the fairness properties of DA-ITC rules, the following conjecture implies

that the closer the rule to EADAM, the fewer justified envy instances will there be for

those students who might be Pareto-improvable.

The envy graph of a matching µ at preference profile R ∈ R is a directed graph in

which the students are the nodes and there is a directed edge from student i to student

j if and only if µjPiµi. We will call a student Pareto-unimprovable at a matching

µ and preference profile R ∈ R if the student is not in a cycle in the envy graph of µ

at R.

Conjecture 1. For each preference profile R ∈ R, disregard all justified envy instances

(i.e., blocking pairs of students and schools) that involve a Pareto-unimprovable student

at the DA outcome at profile R. Then for all k ≥ 0, the k-DA-ITC rule has at least as

many justified envy instances remaining as does EADAM at each preference profile R.

Given a fixed priority profile �, a matching rule f has less justified envy than

matching rule g at preference profile R ∈ R if for any justified envy instance (i, x) at

f(R), (i, x) is also a justified envy instance at g(R), and f has strictly less justified

envy than g at preference profile R if in addition there exists (j, y) that is a justified

envy instance at g(R) but not at f(R). Given a class of rules, a matching rule f

is justified-envy minimal in this class if there is no other rule in the class that

has strictly less justified envy than f at some profile R′ and less justified envy at all

preference profiles R ∈ R. Note that this comparison of justified envy instances is

based on an inclusion relation between two sets of justified envy instances, instead of

counting them. This notion was introduced by Abdulkadiroǧlu et al. (2017, [3]).

Our last conjecture concerns the justified-envy minimality of DA-ITC rules.

Conjecture 2. For all k̄ ≥ 0, the k̄-DA-ITC rule is justified-envy minimal in the class

of k-DA-ITC rules with 0 ≤ k ≤ k̄.
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4.6 Conclusion

In this paper we first revisit EADAM and show that a simple algorithm which re-traces

cycles in the DA procedure in a backward order of the rejections, following the DA

rounds starting from the last round, and restores these cycles in this backward order,

is equivalent to the EADAM rule. We also introduce a new class of matching rules,

called Deferred Acceptance with Improvement Trading Cycles (DA-ITC), which start

with the DA, and if the DA outcome is not Pareto-efficient then there is an iterated

improvement trading cycle phase which allows for Pareto-improvements until a Pareto-

efficient outcome is reached. This family of matching rules includes the EADAM and

DA-TTC rules as the two extreme members of this class, and this makes it a novel set

of rules, since EADAM and DA-TTC are the only two rules that have been identified

in the literature so far among rules that are Pareto-improvements over the DA. This

class of rules, the DA-ITC rules, are Pareto-efficient and non-obviously manipulable,

and have interesting fairness criteria according to our conjectures. DA-ITC rules allow

the market designer to improve the efficiency when the DA is not Pareto-efficient by

choosing from a menu of different options that span the well-studied EADAM rule, and

the not so well-studied but conceptually simple DA-TTC rule.
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Chapter 5

Degrees of Stability in Matching

5.1 Introduction

The standard stability notion in matching requires that if agent i prefers an object

to the object she is assigned at the given matching then agent j who is assigned the

preferred object has a higher priority for this object than i does, when priorities are

strict. This stability notion also corresponds to fairness in the model where on one

side of the market there are active strategic students with preferences over objects, and

on the other side there are objects to be consumed, which have mandated priorities

(as opposed to preferences) over students. In this context fairness means the lack of

justified envy for any agent at any preference profile, where an agent i has justified

envy if i prefers an object to the object she is assigned at the given matching and any

agent j who is assigned the preferred object has a lower priority for this object than i

does. Given this equivalence of the notions of stability and fairness in the two contexts

(which often includes, additionally, the standard axioms of individual rationality and

non-wastefulness), we will use the terminology of stability in this paper.

It is well-known that stability and Pareto-efficiency cannot be reconciled in this

setting, and there are various strands of the literature which study the inevitable trade-

offs. One particular approach is to relax stability and thereby increase efficiency. The
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standard stability concept can be relaxed in many ways. One interesting and natural

way to relax it is to simply consider “small” priority violations acceptable. For example,

the priorities might be based on some criterion that is subject to random variation

or inaccuracy of measurement, such as a test score. Or consider the idea of consent

introduced by Kesten (2010, [37]). Instead of unconditional consent (which may be ideal

to increase efficiency), one can easily imagine that a potentially consenting party may

agree to consent only if the priority violation is deemed small. This type of weakening

of the standard stability notion is the focus of this paper. This more relaxed stability

depends on the size of the priority violation measured by the distance in the priority

ranking, assuming strict priorities to begin with. For example, test scores of 88 and 89

out of 100 may be considered close enough to deem the difference insignificant and thus

allow for a priority violation in the matching, by letting the applicant with 88 points

be matched to a university over the applicant with 89 points, while the latter applicant

prefers this university to the university he is matched to, but if this applicant had, say,

92 points then a similar violation would not be allowed, since a 4-point difference is

no longer considered small. We refer to this as the degree of stability and define the

concept of k-stability which specifies the allowed size of the priority violation. In the

above example, 4-stability would be violated if an applicant with 92 points had justified

envy in the described situation, but 4-stability would be satisfied if this applicant’s test

score was 91. In other words, k-stability means that a gap of k − 1 is allowed for

priority violation. Thus, 1-stability coincides with standard stability, while 2-stability

requires a more relaxed degree of stability that allows for a small priority violation,

namely, when two students’ priority rankings are adjacent for the object in question.

Clearly, a larger degree of stability is associated with a smaller k-stability (minimally

1), and a smaller degree of stability requires a larger k-stability. At one extreme we

have standard stability when k = 1 and at the other extreme k = n, where n is the

number of students, and this means that there is no stability implication since any

priority violation is acceptable.
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Our paper consists of studying two different classes of matching rules satisfying k-

stability. In the first part of our paper, we assume that each object has one copy only

and we introduce the k-Consent rules, which are generalizations of Kesten’s (2010, [37])

EADAM rule using different degrees of stability. The papers that are closest to the first

part of our paper are Kesten (2010, [37]), Tang and Yu (2014,[51], and Dur et al.(2019,

[21]). Kesten (2010, [37]) proposes the idea of consent in school choice, in which each

agent is asked whether she consents to give up her priority at a desired object, or

equivalently whether she allows other students to violate her priorities if doing so does

not hurt her own assignment but potentially improves the assignment of other students.

Our work differs in that we consider the case where an agent does not necessarily give

up her entire priority even if she consents but, rather, she consents to have her priority

violated up to a k − 1 priority gap at each object. Kesten (2010, [37]) proposes the

EADAM rule which is efficient when all students consent, and constrained efficient

otherwise. Tang and Yu (2014, [51]) introduces the notion of underdemanded objects

and defines the Simplified EADAM rule, which is shown to be outcome equivalent

to Kesten’s EADAM rule. It is simpler and more intuitive than Kesten’s original

definition. Dur et al.(2019, [21]) seeks to improve agent welfare by allowing certain

priority violations, relaxing the standard notion of stability (or fairness) and study

partial stability. Partial stability generalizes the idea of consent in Kesten (2010, [37])

by allowing each agent to consent to a violation of her priorities at select objects, instead

of consenting at all objects. They define the Top Priority rule and prove that it is also

outcome equivalent to EADAM. We define equivalent k-Consent rules corresponding to

all three of the above definitions of EADAM.

In the matching model with multiple copies, that is, in the school choice model of

Abdulkadiroǧlu and Sönmez (2003, [2]), we define the k-DA rules, which generalize the

celebrated Deferred Acceptance (DA) rule of Gale and Shapley (1962, [30]). At one

extreme, when k = 1, the k-DA rule coincides with the DA (and so does the k-Consent
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rule), and at the other extreme, when k = n, it becomes the Boston rule (Abdulka-

diroǧlu and Sönmez, 2003, [2]). While k-Consent rules are constrained efficient, the

k-DA rules are not, which is due to the fact that a k-DA rule may satisfy a lower-

degree (i.e., higher) stability than k. However, these are intuitive rules which satisfy

k-stability and provide a new class of rules which bridge the DA and the Boston rules.

Known classes of matching rules that do the same are the Application-Rejection rules

of Chen and Kesten (2017, [16]) and the First Preference First rules of Pathak and

Sönmez (2013, [46]).

There are a number of papers on weakening stability in some manner, such as Klijn

and Massó (2003, [38]), Kesten (2004, [36]), Alcalde and Romero-Medina (2015, [7]),

Cantala and Papai (2014, [14]), Papai (2015, [43]), Morrill (2014, [41], 2016, [42]),

without intending to provide an exhaustive list. The only one that uses a concept

closely related to k-stability is Huang et al. (2017, [33]). They study school choice

problems where students have ordinal preferences over schools, but their priorities are

cardinal, such as scores, and this way the intensity of priority violations is quantified.

Thus, their epsilon-stability concept is inspired by the same intuition as k-stability, the

only difference being that they measure the stability relaxation in terms of cardinal

intensity, while we measure it in terms of the distance in ordinal rankings. Theirs is in

the same spirit as our concept, since Huang et al. (2017, [33]) also consider the case

of conditional consent where a student who becomes Pareto-unimprovable instead of

consenting to give up her priorities at schools that she desires to all students with lower

scores than hers, she consents only to priority violations by students whose scores are

lower but are within ε difference. Huang et al. (2017, [33]) calls this concept ε-stability,

which requires that when student j violates student i′s priority at a school, consent is

only given if the score of j at this school is no less than i′s minus ε. They propose

the ε-EADAM which is a variation of the EADAM rule, and Huang et al. (2017, [33])

prove that ε-EADAM is constrained efficient within the set of ε-stable matching rules.

Our results in the first part of the paper on the k-Consent rules partially correspond

99



to theirs in the respective settings, but we also look at two additional representations

of k-Consent rules, based on the Simplified EADAM rule and the Top Priority rule.

5.2 Model

Let S denote the set of n students and let C be the set of m schools. Each student i ∈ S

has a strict preference relation Pi over C ∪{0}, where 0 represents being unassigned for

both students and schools. Relation Ri denotes the weak counterpart of Pi and, since

the preferences are strict, cRic
′ implies either cPic

′ or c = c′. Let R denote the set

of all preference relations and let Rn = R× .... ×R (n-fold Cartesian product of R).

A preference profile of the students is denoted by R = (Ri)i∈S, where R ∈ Rn. Each

school has a strict priority ordering �c of all the students in S, and the priorities for

all schools (�c)c∈C are denoted by �. The priority table � is assumed to be fixed.

The outcome of a matching problem is an assignment of students to schools: a

matching is µ : S → C where µ(i) indicates the assignment of student i. For ease

of notation we let µi denote µ(i) and µc denote µ−1(c). Let the set of matchings be

denoted by M .

A matching µ is blocked by student s ∈ S if s prefers being single to being

matched to µs, that is, sPsµs. A matching is individually rational if it is not blocked

by any student. A matching µ is non-wasteful if no student prefers an unassigned

school to his assignment at µ, that is, for all s ∈ S and c ∈ C, if cPsµs then µc 6= 0.

Student i has justified envy at µ, given R, if there exist school c ∈ C and student

j ∈ S such that:

• cPiµi

• i �c j

• µj = c

We will say that student i has justified envy for c, given that j is matched to c.

100



A matching µ is stable at µ, given R, if it is individually rational, non-wasteful and

there is no student i ∈ S who has justified envy at µ, given R.

Let i �kc j denote that i is at least k places above j in the priority ranking �c of

school c ∈ C, where k ∈ {1, . . . n}. Thus, i �1
c j is identical to i �c j.

Student i has k-justified envy at µ, given R, if there exist school c ∈ C and

student j ∈ S such that:

• cPiµi

• i �kc j

• µj = c

A matching µ is k-stable at R if it is individually rational, non-wasteful and there

is no student i ∈ S who has k-justified envy at µ, given R. Note that if a matching is

1-stable it means that it is stable (i.e., 1-stability is simply standard stability), while

the requirement of n-stability has no implication. As k increases, k-stability becomes

less and less demanding.

Remark 1. By the definition of k-stability, for all k ∈ {1, . . . , n− 1}, if a matching is

k-stable at R then it is also k′-stable at R for all k′ > k.

Given the fixed priority table �, a matching rule assigns a matching to each

preference profile f : R→M . A matching rule is stable if it assigns a stable matching

to each preference profile. A matching rule is k-stable if it assigns a k-stable matching

to each preference profile.

A matching µ is Pareto-efficient if it is not Pareto-dominated by another matching.

Matching µ ∈M is Pareto-dominated by another matching η ∈M if for all i ∈ S, ηiRiµi

and for some j ∈ S, ηjPjµj. A matching is k-constrained efficient if it is not Pareto-

dominated by another k-stable matching. A matching rule is Pareto-efficient if it

assigns a Pareto-efficient matching to each preference profile. A matching rule is k-

constrained efficient if it assigns a k-constrained-efficient matching to each preference

profile.
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5.3 The k-Consent Rules

Following the definition of Kesten (2010, [37]), if student s is tentatively accepted by

school c in some round t in the DA procedure, and if s is later rejected by school c in

some round t′ > t, and at least one other student is rejected by school c in some round

l such that t′ > l ≥ t, then student s is an interrupter for school c in round t′, and

the pair (s, c) is an interrupting pair in round t′.

k-Consent Rules

Fix a preference profile R, and recall that the fixed priority table is �.

Let �1:=�

Let t := 1 and do step t.

Step t:

Run the DA using �t.

• If the DA matching is Pareto-efficient, stop, and let this matching be the final

outcome.

• Otherwise, check for interrupters and find all of them in the last step of the DA

in which there are any interrupters.

• Apply k-consent to each interrupting pair (s, c) in this step: move interrupter s

down in �c by k− 1 positions, (or less, if moving s down by k− 1 positions is not

possible). Skip any interrupter who is an interrupter for the second time for the

same school. Call this updated priority table �t+1.

• If �t+1=�t, stop, and let this DA matching be the final outcome. Otherwise let

t := t+ 1 and repeat step t.

Extreme cases of the k-Consent rule:

k = 1 implies that the k-Consent is the DA. Since 1-consent means no consent: run the

DA once, stop.
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k = n implies that the k-Consent is the EADAM. Each student fully consents.

The following example illustrates how the k-Consent rule works.

Example 6. Consider a matching problem with five students and five schools. The

preferences and priorities are as follows:

Student Preferences

R1 R2 R3 R4 R5

b c a a c

c a b c d

a b c d e

d

School Priorities

a b c d e

1 2 3 1 1

4 3 4 4 2

3 1 1 5 5

2 5 5 3 4

5 4 2 2 3

Assume k = 2.

k-Consent procedure:

Step 1

Round a b c d e

1 3, 4 1 2, 5 0 0

2 4, 2 1, 3 5 0 0

3 4 2, 3 1, 5 0 0

4 4 2 1 , 3 5 0

5 1, 4 2, 3 5 0

6 1 2, 3, 4 5 0

7 1 2, 3 4, 5 0

8 1 2, 3 4 5

Note that the interrupters are indicated by the squares. In Round 5 of the DA

algorithm student 4 was an interrupter for school a, so we move student 4 down in the
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priorities for school a by 1 position, given k = 2. The school priority table becomes the

following:

School Priorities

a b c d e

1 2 3 1 1

3 3 4 4 2

4 1 1 5 5

2 5 5 3 4

5 4 2 2 3

Step 2

Round a b c d e

1 3, 4 1 2, 5 0 0

2 3, 2 1 4, 5 0 0

3 3 1, 2 4 5 0

4 1, 3 2 4 5 0

5 1 2, 3 4 5 0

6 1 2 3, 4 5 0

7 1 2, 3 4, 5 0

8 1 2, 3 4 5

In round 6 of the DA algorithm student 4 was an interrupter for school c, so move

student 4 down in the priorities for school c by 1 position. The school priority table

now becomes the following:
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School Priorities

a b c d e

1 2 3 1 1

3 3 1 4 2

2 1 4 5 5

4 5 5 3 4

5 4 2 2 3

Step 3

Round a b c d e

1 3, 4 1 2, 5 0 0

2 3, 2 1 4, 5 0 0

3 3 1, 2 4 5 0

4 3 2 1, 4 5 0

5 3 2 1 4, 5 0

7 3 2 1 4 5

In round 4, student 4 is an interrupter for school c again. Thus, the final matching

is the one found in Step 3. Note that applying k-consent in this case would violate

k-stability. Accordingly, the k-Consent rule gives the following matching:

 1 2 3 4 5

c b a d e


When the same student is an interrupter for the second time for the same school, we

skip the student (student 4 in the example) and move to the next interrupter, student

5, we find the following. Student 5 is an interrupter for school c, so moving 5 down by

1 position the priority table becomes the following:
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School Priorities

a b c d e

1 2 3 1 1

3 3 1 4 2

2 1 4 5 5

4 5 2 3 4

5 4 5 2 3

Step 3

Round a b c d e

1 3, 4 1 2, 5 0 0

2 3 1 2 , 4, 5 0

3 3, 2 1 4 5 0

4 3 2, 1 4 5 0

5 3 2 1, 4 5 0

6 3 2 1 4, 5 5

7 3 2 1 4 5

In this example we can see that stopping and skipping gives the same outcome.

We will say that �̃c satisfies k-priority with respect to �c if for all i, j ∈ N , i �kc j

implies i�̃cj. Let �̃ = (�̃c)c∈C and �= (�c)c∈C . If �̃c satisfies k-priority with respect

to �c for all schools c ∈ C then we will say that �̃ satisfies k-priority respect to �.

Proposition 6. For all k ∈ {1, . . . , n}, the k-Consent rule is k-stable.

Proof. By the construction of k-Consent rules, if the same student is an interrupter

again for a school that she was an interrupter for in a previous round in the last step

of the DA in which there are any interrupters, then modifying the priorities for this

student would violate k-priority with respect to �c since if k ≥ 2 then 2(k − 1) ≥ k.

Thus, by stopping the procedure in such a case the priority table �T used in the last
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round T satisfies k-priority with respect to �. Thus the DA applied to �T will satisfy

k-stability with respect to �. They are also individually rational since there is no

student such that sPsµs. Finally, k-Consent rules are non-wasteful. This follows from

the standard DA being non-wasteful. Hence, k-Consent rules satisfy k-stability.

Matching η ∈ M weakly Pareto-dominates another matching µ ∈ M if for all

i ∈ S, ηiRiµi. We will say that a matching rule weakly Pareto-dominates another

matching rule if the matching assigned by one weakly Pareto-dominates the matching

assigned by the other one at every preference profile.

A student is in a Pareto-improving cycle with respect to a particular assignment

µ if there is a way to exchange assignments among students such that the resulting

assignment Pareto-dominates the original assignment. A student is inactive in a par-

ticular round of the DA procedure if the student is not in any Pareto-improving cycle,

considering the temporary assignments of all students in that round of the procedure.

Proposition 7. For all k ∈ {1, . . . , n}, the k-Consent rule weakly Pareto-dominates

the DA.

Proof. Suppose, by contradiction, that there is a preference profile R, a step t ≥ 1 of

the k-Consent rule, and a student i ∈ S such that the school student i receives in step

t is worse for him than the school he receives in step t− 1. We consider two cases:

1. Student i is not a last interrupter in step t− 1.

Assume without loss of generality that student i is the first student to apply to a

school which is worse for him than the school he receives in step t − 1. Let b be

i’s school in step t− 1. Since student i is not a last interrupter in step t− 1, his

priorities are the same in step t and step t−1. Thus, since the DA is non-wasteful,

there exists a student j who is placed at b in step t. However, since there is no

justified envy in the DA in Step t, this implies that j�̄bi, where �̄ is the priority

table in step t. Let c be the school that j had in step t− 1.

We consider the following cases:
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(a) bPjc: Then j�̃bi, where �̃b is the priority table in step t− 1, given that i is

not a last interrupter in Step t− 1. Thus, student j has justified envy for b,

since j is assigned b in step t. This is a contradiction, since the DA has no

justified envy.

(b) cPjb: This contradicts the assumption that student i is the first student to

apply to a school which is worse for him than the school he receives in step

t− 1.

2. Student i is a last interrupter in step t− 1.

We show in Proposition 6 that a last interrupter is an inactive student in that step.

This implies that i receives the same school in steps t− 1 and t, a contradiction.

Thus, we have a contradiction in both cases.

Next, we will show that the k-Consent rules is not strategyproof for k ≥ 2. This

is not too surprising, since it is well known that EADAM is not strategyproof Kesten

(2010, [37]). Note that k = 1 is not included in the statement, since the DA is strate-

gyproof.

It is well-known that there is no strategyproof rule which Pareto-dominates the DA

(Abdulkadiroǧlu et al., 2009, [1]). Thus, the previous Proposition implies that the k-

Consent rule is not strategyproof for k ≥ 2. We will demonstrate this in the following

example.

Example 7. Consider a matching problem with three students and three schools. The

preferences and priorities are as follows:

Student Preferences

R1 R2 R3

c1 c1 c3

c2 c2 c1

c3 c3 c2

School Priorities

c1 c2 c3

3 2 2

1 3 1

2 1 3
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Let k ≥ 2.

Since, there are no interrupters, the k-Consent rule produces the following matching:

 1 2 3

c1 c2 c3


Now consider the following preference profile:

Student Preferences

R1 R′2 R3

c1 c1 c3

c2 c3 c1

c3 c2 c2

Step 1

Round c1 c2 c3

1 1, 2 0 3

2 1 0 2, 3

3 3, 1 0 2

4 3 1 2

Student 1 is the only interrupter in round 3, and since he is an interrupter for school c1,

we move student 1 down in the priorities for school c1 by k − 1 positions which means

moving 1 to the last position in �c if k ≥ 2. The school priority table becomes the

following:

School Priorities

c1 c2 c3

3 2 2

2 3 1

1 1 3
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Applying the DA to this priority table, the k-Consent rule produces the following

matching:

Step 2

Round c1 c2 c3

1 1, 2 0 3

2 2 1 3

Thus, student 2 can manipulate. The intuition is that student 2 can render student

1 an interrupter for c, and then student 2 gets higher priority than 1 for c1.

Note that we could easily extend this example to include any number of schools by

making additional schools ranked below the current schools, and by adding students

who have lower priority for each of the schools than the current students. This would

constitute an independent proof of the manipulability of k-Consent rules for k ≥ 2.

5.4 The k-Top Priority (k-TP) Rules

Dur et al. (2019b, [21]) give an alternative definition of EADAM, called the Top Priority

(TP) rule, which selects trading cycles to be carried out when the endowments are the

DA assignments. We give a similar definition of k-TP rules, which extends the TP rule

by allowing consent to be partial, that is, k-consent.

Let G = (V,E) be a directed graph where the set of vertices is the set of students

(V = N), and the set of directed edges E consists of a set of ordered pairs of V . For

si, sj ∈ N , let sisj ∈ E denote that there is a directed edge in G from si to sj. A trail

is an ordered set of distinct directed edges (s1s2, s2s3, ....sv−1sv). We will call a trail a

path if the vertices s1, s2, ..., sv are distinct. A path is called a cycle if all vertices are

distinct except that s1 = sv.

We will show how the k-TP rule selects the matching at preference profile R for a

fixed k. The k-TP rule determines the final matching at R as a result of the following
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iterative procedure. At step 0 the initial matching µ0 is given by the DA outcome at

R. At each step t ≥ 1, there exists a matching µt−1 which is determined in the previous

step t− 1.

For all t = 1.... we define the Envy Graph Gt = (N,Et) based on µt−1 as follows:

for all i, j ∈ N , i 6= j, let ij ∈ Et if µt−1
j Piµ

t−1
i .

A directed edge ij ∈ Et is active in Gt if ij is contained in a cycle in Et. Otherwise

ij is inactive in Gt.

A vertex j ∈ N is active in Gt if there exists i ∈ N such that ij ∈ Et is active in

Gt. Otherwise, the vertex (student) is inactive in Gt.

We will define the Trade Graph Γt = (V̄t, Ēt) for all t = 1.... based on the Envy

Graph Gt. Γt is a subgraph of Gt in the sense that its vertex set is V̄t ⊆ N and its edge

set is Ēt ⊆ Et. The vertex set V̄t of Γt is the set of active vertices (students) in Gt. We

will identify the set of directed edges Ēt in Trade Graph Γt as follows. Let ij ∈ Et be

a directed edge in Gt. Then ij ∈ Ēt if and only if for all l ∈ N such that lj ∈ Et and l

is inactive in Gt, we do not have l �k
µtj
i. Thus, if there exists l ∈ Vt such that lj ∈ Et

and l is inactive in Gt, and l �k
µtj
i, then ij /∈ Ēt, and otherwise ij ∈ Ēt. Note that this

determines which directed edges point to each active vertex j ∈ V̄t , if any, in ΓT and

thus it defines the set of directed edges Ēt, where Γt = (V̄t, Ēt).

Now that we have defined for all t both the Envy Graph Gt = (N,Et) and the Trade

Graph Γt = (V̄t, Ēt), we are ready to define the iterative algorithm for the k-TP rule.

k-TP Rules

Fix a preference profile R, and recall that the fixed priority table is �.

Let µ0 be the DA outcome. For arbitrary t ≥ 0 we will specify how to find µt+1 at step

t.

Step t:

• Given the matching µt, let each student i ∈ N be endowed with µti.

• If there is no cycle in the envy graph Gt based on µt then let µt+1 = µt.
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• Otherwise, if there is at least one cycle in Gt, then consider the Trade Graph Γt

based on Gt and do a Top Priority cycle selection in Γt as follows.

• Construct Γct = (V̄t, Ēc
t ), which is a subgraph of Γt = (V̄t, Ēt) in the sense that

Ēc
t ⊆ Ēt. For each j ∈ V̄t, let ij ∈ Ēc

t if and only if ij ∈ Ēt and for all l ∈ V̄t with

lj ∈ Ēt, where l 6= i, i �µt−1
j

l. Note that this implies that each vertex in V̄t has

an in-degree (the number of incoming edges) of at most one in Γct . Thus, cycles

do not intersect in Γct . Select all the cycles in Γct , if there are any, and carry out

all the corresponding trades of endowments, given µt−1. Update µt−1 accordingly,

and call the resulting matching µt.

• If there is no cycle in Γct , then µt = µt−1.

• Repeat until there is a T > 0 such that µT−1 = µT . The final matching is µT .

The following example illustrates how the k-TP rule works.

Example 8. Consider the matching problem with five students and five schools from

Example 6.

The DA rule produces the following matching:

 1 2 3 4 5

a b c d e


Assume k = 2.

Envy Graph
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1a 2b

3c

5e

4d

Active students:

1-a:

2-b:

3-c: 2→ 3 (remove), since this violates the k-priority of student 4 for school c.

Trade Graph

1a 2b

3c

Envy Graph

1a 2b

Active students:
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1-c:

2-b: 2 → 1 (remove), since this violates the k-priority of student 4 for school c.

There is no trade and the procedure stops.

The k-TP rule produces the following matching:

 1 2 3 4 5

c b a d e


This is the same as for the k-Consent rule, as seen in Example 6.

Note that EADAM yields the following matching:

 1 2 3 4 5

b c a d e


Proposition 8. For all k ∈ 1, ...., n, the k-TP rule is k-stable.

Proof. Suppose not. Then there exists a preference profile R such that the k-TP rule

results in µ at R, where µ is not k-stable, given a fixed k ∈ (1, . . . , n− 1). Thus, there

exists i, j ∈ N such that µjPiµi and i �kµj j. This means that i �µj j.

Let t ∈ (0, 1, ...) be the first step in the k-TP algorithm at which µtj = µj. Since

µiRiµ
t
i, we have µtjPiµ

t
i. Then i �µj j implies that t 6= 0, since µ0 is the DA outcome

which is stable. Thus, t > 0 and µt−1
j 6= µtj = µj

Let sl ∈ N such that µt−1
l = µtj. Then l 6= j and since µtjPiµ

t
iRiµ

t−1
i , l 6= i. Moreover

since µt−1
l Piµ

t−1
i , il ∈ Et−1

If i is inactive in Gt−1 then i �k
µt−1
l

j implies that jl /∈ Ēt−1 and thus, given Ēc
t−1 ⊆

Ēt−1, jl /∈ Ēc
t−1. If i is active in Gt−1 then i �µt−1

l
j implies that jl /∈ Ēc

t−1. Therefore,

in both cases we have a contradiction to µt−1
l = µtj. This proves the proposition.

Remark 2. By the construction of the k-TP rule, for k ≥ 2, . . . , n this rule weakly

Pareto-dominates the DA.
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Extreme cases of the k-TP rule:

k = 1 implies that the k-TP is the DA, that is, the 1-TP rule is the DA rule.

Suppose k = 1 and µT 6= µ0. Then, given the definition of the k-TP rule, µT

Pareto dominates µ0. Since k = 1, µT is 1-stable, that is, µT is stable. By Gale

and Shapley (1962), µ0 is the student-optimal stable matching and cannot be

Pareto-dominated by another stable matching. Hence, we have a contradiction

and µT = µ0. This means that 1-TP is the DA, as desired.

k = n implies that the k-TP is EADAM, that is, the n-TP rule is the EADAM rule.

If k = n, the inactive students in Gt will not play a role for any t ≥ 0 and thus

Et = Ēt. Then the k-TP algorithm reduces to the TP algorithm of Dur et al

(2018), and they show that the TP rule is equivalent to EADAM.

Theorem 6. : The k-TP rule is constrained efficient within the set of k-stable matching

rules.

Proof. Let µ be the matching obtained by the k-TP algorithm. We will show that there

does not exist a k-stable matching which Pareto-dominates µ. Suppose, by contradic-

tion, that there exists a k-stable matching η which Pareto dominates µ. That is, ηiRiµi

for all i ∈ S and ηjPjµj for some j ∈ S. Then in the last step of the k-TP there is at

least one cycle which transforms µ to η. However, none of the cycles will be carried out

in the k-TP procedure. This implies that for each cycle there exist students i, j ∈ S

such that µi 6= ηi and student j is inactive, while j �kηi i. Thus, since j is an inactive

student, µj = ηj and η is not k-stable, which is a contradiction.

Student i gives k-consent in the k-TP procedure if he allows l-justified envy with

l < k but not l’-justified envy with l′ ≥ k when consent is called for in the procedure.

We will show next that the k-TP rule is k-consent-proof in the following sense.
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Proposition 9. Given any preference profile R, for each i ∈ S and c ∈ C, if student i

gives k-consent for c then the student does not get a better assignment by not giving

k-consent for c in the k-TP rule.

Proof. By the definition of the k-TP rule, at each step t k-consent is only relevant for

inactive students at µt−1. Let student i be an inactive student in step t − 1 and be

assigned to c. Since student i is inactive at step t − 1 of the k-TP procedure, at each

step t ≥ t − 1 she is assigned to c, as she is not a part of any cycle. Hence, each

inactive student is assigned the same school under the k-TP rule in each step after

the student becomes inactive. Thus, the decision about consent does not affect the

student’s assignment in the k-TP rule.

5.5 The Simplified k-Consent Rules

Following Tang and Yu (2014, [51]), we also define a set of rules based on k-consent

that simplifies the original EADAM procedure.

Simplified k-Consent Rules

Fix a preference profile R, and recall that the fixed priority table is �.

Round 0: Run the DA and let the resulting matching be denoted by µ0. Let P 0 := P .

For k ≥ 1, given µk−1 and P k−1, determine µk and P k as follows.

Round k: (k ≥ 1)

• Identify all the inactive students at round k− 1 based on µk−1 and Rk−1, and let

µk−1
i be ranked first by all inactive students i.

• Call the schools of the active students active. For each inactive student i, active

school c, and active student j such that i �kc j and i prefers c to his assigned

school µk−1 at the end of round k − 1, let µk−1
j Rt

jc such that c is ranked directly

below µk−1
j and all other orderings for j remain the same (i.e., let Rk

j be the same

otherwise as Rk−1
j ). For all remaining students h ∈ N , let Rk

h = Rk−1
h .
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• Finally, run the DA for preference profile Rk and let the resulting assignment be

µk.

The procedure ends when there are no more active students, that is, the trade graph

has no cycles.

Remark 3. In the Simplified k-Consent rule, in the envy graph there will be at most

the same or fewer incoming edges to each student at step t compared to step t−1, since

active students can only get the same or higher-ranked schools at step t compared to

their matchings at step t − 1. Since none of the inactive students at step t − 1 were

in a cycle at step t − 1, this implies that they cannot be in a cycle at step t. Thus,

inactive students remain inactive from step t − 1 to step t. Also, active students may

become inactive from step t − 1 to step t if they were in a cycle at step t − 1 but not

at step t. Therefore, there exists a finite T ≥ 1 such that none of the students are in a

cycle in the envy graph at the end of step T , and hence the simplified k-Consent rule

terminates in a finite number of steps.

The following example illustrates how a Simplified k-Consent rule works.

Example 9. Consider the matching problem in Example 1.
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Step 1

Round a b c d e

1 3, 4 1 2 5 0

2 4 1, 3 2 5 0

3 4 3 1, 2 5 0

4 4 2, 3 1 5 0

5 4 2, 1 , 3 5 0

6 1, 4 2, 3 5 0

7 1 2, 3, 4 5 0

8 1 2, 3 4, 5 0

9 1 2, 3, 5 4 0

10 1 2, 3 4 5

Envy Graph

1a 2b

3c

5e

4d

Active students: 1, 2, 3

Inactive students: 4, 5

Next we change the preferences for inactive students 4 and 5, as well as for student 2
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(since student 4 prefers c to d and consents for 2-priority only). The student preferences

become the following:

Student Preferences

R1 R′2 R3 R′4 R′5

b b a d e

c c b a d

a c c c

d

Step 2

Round a b c d e

1 3 2, 1 0 4 5

2 3 2 1 4 5

Note that this yields the same matching as the k-Consent and the k-TP rules, as

seen in Examples 1 and 3.

5.6 Equivalence Results

Before we state the equivalence of the different matching rules, we will prove a key result

that relates interrupters to inactive students, which will be used in the equivalence

proofs.

Proposition 10. Given preference profile R, the lastly rejected interrupters in the DA

are inactive students at (R, µDA).

Proof. Let round t be the last round in the DA procedure at which interrupters are

rejected. Assume that student i is an interrupter for school a and the pair (i, a) is an

interrupting pair in round t. Suppose i is active at µDA.
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Let β be the matching where the trading cycle for S is carried out where S =

(i1, . . . , iv̄). Leti1 : i and ∀v ∈ 1, . . . , v̄, βiv = µDAiv+1
, mod v̄, µDAiv+1

Pitµ
DA
iv . Thus,

∀j ∈ N \ S, βj = µDAj .

Specifically, µDAi1 Piv̄ . µDAiv̄ . Thus, iv̄ is rejected by µDAi . As shown, iv̄ is rejected by

µDAi in round tv̄ ≥ t′. We have µDAi2 Pi1µ
DA
i1

. Since i2 is matched to µDAi2 , student i1 was

rejected by µDAi2 before round t′ in favor of some other student l, say in round t1, so

t1 < t′. We have tv̄ ≥ t′ > t1 and thus tv̄ > t1.

For all v ∈ (1, . . . , v̄), student iv is rejected by µDAiv+1
in step tv. Let µDAv̄ Pv̄−1µ

DA
v̄−1

and assume that tv̄ > tv̄−1. This implies that there exist some other student l such that

l �µDA
v̄

v̄− 1. Hence the acceptance of v̄ at µDAv̄ implies that student l is an interrupter

at round t′ > t. A contradiction that round t is the last round at which interrupter is

rejected.Thus tv̄−1 > tv̄. Applying the same argument iteratively to each pair in the

cycle as to tv̄ and tv̄−1. We have t1 > t2 > t3 > . . . > tv̄ > t1. A contradiction.

Theorem 7. For all k ∈ {1, . . . , n}, the k-Consent rule is outcome equivalent to the

simplified k-Consent rule.

Proof. We define the Modified k-Consent rule, which can be shown to be equivalent

to both the k-Consent rule and the Simplified k-Consent rule.

Modified k-Consent rule

Fix a preference profile R. Let t := 1 and do step t.

Step t:

• Run the DA using Rt: the DA matching is Pareto-efficient, stop, and let this

matching be the final outcome. Specifically, if there are no more interrupters,

stop. Similarly, if P t = P t+1 for t ≥ 2 then let this matching be the final outcome.

• Otherwise check for interrupters and find all of them in the last round of the DA

in which there is any. If (i, c) is an interrupting pair, let µt−1
i be ranked first by

i. For all other students j such that i �ka j for all a such that aP tµt−1
i remove a
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from j’s preferences, that is let µt−1
j P t

ja, move a down to below µt−1
j and let P t

j

be the same otherwise as P t−1
j . Call the updated preference profile Rt+1.

Let t := t+ 1 and repeat step t.

Note that by the construction of the modified k-Consent rule, the preference profile

RT used in the last step T satisfies k-priority with respect to R. Thus, the DA applied

to RT will satisfy k-stability with respect to R. Hence, this rules satisfies k-stability.

It is straightforward to verify that the Modified k-Consent rule is equivalent to the

k-Consent rule. In order to see that the Modified k-Consent rule is also equivalent

to the Simplified k-Consent rule, we need to apply Proposition 10 to each step of the

Modified k-Consent rule.

Theorem 8. For all k ∈ {1, . . . , n}, the Simplified k-Consent rule is outcome equivalent

to the k-TP rule.

Proof. Fix a preference profile P and let µ and η, respectively denote the matching

obtained by the simplified k-Consent rule and the k-TP rules respectively. We need to

show that µ(R) = η(R). Let IAt ⊆ S denote the set of inactive students in round t.

For t = 0, since µ and η Pareto-dominate the DA, µj(R) = ηj(R) = DAj(R) for all

j ∈ IA0. We will now show that for each t ≥ 1 if, for all j ∈ IA0 ∪ IA1 ∪ . . . IAt−1,

µj(R) = ηj(R), then for all j′ ∈ IAt, µj′(R) = ηj′(R), for all t ≥ 0.

Let t = 1. Since j ∈ IA0, j cannot be in a cycle at step 1 and hence j ∈ IA1. In the

Simplified k-Consent rule for each inactive student j, active student i such that j �kc i

for some and j prefers c to his assigned school, we remove c from i’s preferences, that is,

we let µ0
iP

1
i c. In the k-TP algorithm for each inactive student j we remove the active

edges for which j �kc i. Therefore, the set of inactive students at the end of step 1 is

the same for the Simplified k-Consent and the k-TP rules. The same argument can be

applied iteratively to each step.

Note that in the last step t of the k-Consent rule (as well as the k-TP) all students

are inactive. Therefore, none of them are in a cycle in the Envy Graph at the end
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of step t and hence the trade graph is the empty graph. We can thus conclude that

µj′(R) = ηj′(R). Therefore, µ(R) = η(R).

As a corollary to previous results, we will summarize our main findings in the the-

orem below.

Theorem 9. For all k ∈ {1, . . . , n}, the k-Consent, the Simplified k-Consent, and

the k-TP rules are equivalent. Moreover, all three matching rules are k-stable and

constrained efficient within the set of k-stable matching rules.

5.7 The k-Deferred Acceptance Rules

In this section we introduce the k-DA rules in a model where schools are allowed to

have multiple seats. Accordingly, we let qc ≥ 1 be the capacity of school c ∈ C.

Let G = ((Sp, St)E) be a bipartite graph with vertex set Sp ∪ St and edge set

E. Sp represents the newly proposing students, St represents the tentatively matched

students, and E is the set of edges which are given by the pairs where a tentatively

matched student will be rejected in favor of a newly proposing student, given the k-

constraint, that is, a student i can only be rejected in favor of another student j by

school c if j �kc i.

We can find the maximum cardinality matching in G using the max (min) method

which is defined as follows. Start with the highest (lowest) priority newly proposing

student and hypothetically reject the highest (lowest) priority tentatively assigned stu-

dent that satisfies the k-constraints. Do this repeatedly in order to determine how

many students can be rejected at most. Let that number be mmax(mmin).

Lemma 1 clarifies how to find the maximum number of matchings in G.

Lemma 1. The maximum cardinality of matching in the bipartite graph G = (Sp, St, E)

has cardinality mmax = mmin = m.

Proof. Let Emax ⊆ E such that Emax is the set of edges found by the max method in

G. Then mmax matches in Emax will be incident to the mmax highest priority newly
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proposing students in Sp. Let’s suppose that mmax is less than the maximum number

of matchings in G. This means that there is at least one more edge that we can find

which is independent of the edges in Emax. It must be the case that the mmax + 1st

highest priority student in Sp would have an edge to a tentatively matched student in

St satisfying the k-constraints. Let this student in St be the highest priority such that

in Emax there is no edge that is incident to this student. But then this edge would have

been found by the max method and would be in Emax. Hence, we have a contradiction.

Similarly, let Emin ⊆ E such that Emin is the set of edges found by the min method

in G. Then mmin matches in Emin will be incident to the mmin lowest tentatively

matched students in St. Let’s suppose that mmin is less than the maximum number

of matchings in G. This means that there is at least one more edge that we can find

which is independent of the edges in Emin. It must be the case that mmin + 1st lowest

priority student in St would have an edge to a newly proposing student Sp satisfying

the k-constraints. Let this student in Sp be the the lowest priority such that in Emin

there is no edge that is incident to this student. But then this edge would have been

found by the min method and would be in Emin. Hence, we have a contradiction.

k-DA Rules

Fix a preference profile R, and recall that the fixed priority table is �.

Step 1: Each student applies to his first-ranked school. Each school tentatively accepts

as many students as possible, up to its capacity, among the current applicants,

following its priority order, and rejects the rest.

Step t: Each rejected student in the previous step applies to his highest-ranked school

that has not rejected him yet. For each school c ∈ C :

• Determine mc, the maximum cardinality matching in G.

• Given mc ≤ |Sp|, let S ′p = {s ∈ Sp : s is among the m highest priority

students in Sp}. Note that |S ′p| = mc.
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• Let S̄ = S ′p ∪ St and choose the qc highest priority students in S̄ to be

tentatively matched at c. Note, that this is the same as rejecting the mc

lowest priority students.

The algorithm terminates when every student is tentatively assigned to some school

or has been rejected from each of his acceptable schools.

Using S ′p can be interpreted as “pre-screening”. This pre-screening gets rid of the

lower-ranked newly proposing students who will not be accepted.

Remark 4. For k = 1 this procedure yields the same as the standard DA. The reason

is that the pre-screening does not affect the outcome when k = 1, that is, the top qc

students are the same in Sp ∪ St and S ′p ∪ St. Note, however, that Sp 6= S ′p in general.
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The following example illustrates how the k-DA rule works.

Example 10. Consider a school choice problem with eleven students and two schools.

Let q1 = 3 and q2 = 1. Assume k = 5. The preferences and priorities are as follows:

Student Preferences

a b c d e f g h i j k

c2 c2 c2 c2 c2 c2 c1 c1 c1 c1 c1

c1 c1 c1 c1 c1 c1 c2 c2 c2 c2 c2

School Priorities

q1 = 3 q2 = 1

c1 c2

a k

f f

g g

b a

h b

c c

i i

d j

e d

j e

k h

Step 1 Students g, h, i, j, k apply to school c1 and as a result the lowest-priority stu-

dents j and k are rejected . Similarly, students a, b, c, d, e, f apply to school c2

and as a result the lowest-priority students a, b, c, d, e are rejected.

Step 2 Students a, b, c, d and e apply to school c1. Determine m1 for school c1:
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a

b

c

d

e

g

h

i

Sp

St

m1 = 1

Thus, for school c1, students b, c, d, e are rejected. Since S̄ = {a, g, h, i}, student

i is also rejected.

Students j and k apply to school c2. Determine m2 for school c2:

j

k

f

Sp

St

Since m2 = 0 for school c2, students j and k are rejected.

Thus, the k-DA rule yields the following assignment:

 c1 c2

a, g, h f


The following can be verified directly from the construction of the k-DA rules.

Theorem 10. For all k ∈ {1, . . . , n}, the k-DA rule is k-stable.
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Unfortunately the k-DA rule is not constrained efficient, that is, there may be

a preference profile at which the k-DA matching is Pareto-dominated by a k-stable

matching.

Example 11. Consider a school choice problem with five students and five schools,

each with one seat. The preferences and priorities are as follows.

Student Preferences

1 2 3 4 5

b a a a e

a c c d

b b

d

School Priorities

a b c d e

1 2 3 4 5

5 3 2

4 1 5

3

2

Assume k = 2. The k-DA rule yields the following assignment:

 a b c d e

1 2 3 4 5


However, this is Pareto-dominated by the following k-stable matching.

 a b c d e

3 1 2 4 5


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However, we can show the following.

Theorem 11. The k-DA rule is not Pareto dominated by the DA.

Proof. Fix a preference profile R and let µ be the matching obtained by the k-DA

algorithm at this profile. Let γ be the matching obtained by the DA algorithm at R.

We will show that γ does not Pareto-dominate µ. Suppose by contradiction that γ

Pareto-dominates µ. That is, γjRjµj for all j ∈ S and γiPiµi for some i ∈ S.

Let γi = c. Then µi 6= c and NcPiµi. this means that i must have applied to school c

before he applied to school µi. Since µi 6= c, i must have been rejected in step t of the

k-DA procedure in favor of some other student j such that µj = c and j �1
c i. Assume

without loss of generality that t is the first step in the k-DA algorithm such that a

student i gets rejected from γi. We consider the following cases:

Case 1: γjPjc. We have a contradiction since this means that j was rejected in the k-DA

algorithm before step t.

Case 2: cPjγj. Since γ is the matching obtained by the DA algorithm and γi = c we have

i �1
c j. This, however, contradicts j �1

c i.

Thus, we have a contradiction in each case.

Since it is possible that the outcome of the k-DA rule satisfies k′-stability at some

profile where k′ < k, we conjecture that the k-DA rule is constrained efficient at each

preference profile R with respect to the lowest k′ for which it is k′-stable.

Example 12. The k-DA rules are not strategy-proof (for k ≥ 2).

Consider a school choice problem with five students and five schools, each with one

seat. The preferences and priorities are as follows:
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Student Preferences

R1 R2 R3 R4 R5

c1 c2 c1 c4 c5

c2 c1 c4 c3 c4

c3 c5 c5 c2 c1

c4 c3 c2 c1 c2

c5 c4 c3 c5 c3

School Priorities

c1 c2 c3 c4 c5

2 1 4 5 3

3 2 5 4 5

1 3 1 3 2

4 5 2 1 4

5 4 3 2 1

Assume k = 2. The k-DA mechanism yields the following assignment:

 c1 c2 c3 c4 c5

3 2 1 4 5


Now consider the following preference profile:

Student Preferences

R′1 R2 R3 R4 R5

c2 c2 c1 c4 c5

c3 c1 c4 c3 c4

c1 c5 c5 c2 c1

c4 c3 c2 c1 c2

c5 c4 c3 c5 c3
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The k-DA yields the following assignment:

 c1 c2 c3 c4 c5

3 1 2 4 5


Thus, student 1 can manipulate.

We know that the DA rule is k-stable for all k ∈ {i, . . . , n} and it is strategyproof.

Interestingly, when k = n− 1, the TTC rule is also k-stable and strategyproof.

Next, we demonstrate that there is no unique optimal k-stable matching.

Example 13. Consider a school choice problem with five students and five schools,

each with one seat. The preferences and priorities are as follows:

Students Preferences

1 2 3 4 5

b a a a e

a c c d

b b

d

Schools Priorities

a b c d e

1 2 3 4 5

5 3 2

4 1 5

3

2

Assume k = 3. The 2-stable k-DA matching gives:

 a b c d e

3 1 2 4 5


130



However, this is not Pareto dominated by the following 3-stable matching, and in

fact neither matching Pareto-dominates the other.

 a b c d e

2 1 3 4 5


Since a 2-stable matching is also 3-stable, this demonstrates that there is no unique

optimal 3-stable matching.

5.8 Conclusion

We analyzed a set of matching rules between the DA and Kesten’s EADAM rule, which

exhibit gradually lower degrees of stability but become generally more efficient. The

trade-offs are thus clear: at one extreme we can choose the DA which is fully stable and

least efficient, and at the other extreme we can choose EADAM which has the lowest

degree of stability but is fully efficient. The set of k-Consent rules allows the market

designer to choose among a whole range of matching rules between these two extreme

rules where the trade-off is between stability and efficiency.

We have provided different definitions of the k-Consent rules that allow for small

priority violations, and have shown that these different definitions are equivalent. These

equivalences clarify the rules well, and provide us with a rare flexibility when presenting

and working with this set of rules.

Furthermore, we have shown that each k-Consent (or Simplified k-Consent or k-

TP) rule satisfies k-stability, the corresponding notion of relaxed stability in terms of

the maximum size of the acceptable priority violation, where k determines the degree

of stability. Moreover, we have also proved that each k-Consent rule is constrained

efficient within the set of k-stable matching rules. These result are well-known for the

two extreme members: the Deferred Acceptance rule is constrained efficient within the

set of stable rules, and EADAM is fully efficient. Our results show that the matching
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rules between these two rules, which represent gradually lower degrees of stability as

they become gradually more efficient, have similar features.

We have also studied k-stability in the school choice model and introduced the

class of k-DA rules, which has the DA and Boston rules are the two extreme members.

However, unlike our k-Consent rules, the k-DA rules are not constrained efficient within

the set of k-stable rules, albeit, not Pareto dominated by the DA. The trade-offs are

thus clear again: at one extreme we can choose the DA which is fully stable and least

efficient, and at the other extreme we can choose the Boston rule which has the lowest

degree of stability but is fully efficient.

We assume that the allowed size of the priority violations is uniform across the

schools, which is an assumption that can be relaxed quite easily, we believe, and our

current results would generalize.

In future work we are planning to analyze the incentive properties of k-Consent

rules. As shown here, these rules are not strategyproof, with the notable exception of

the DA rule. But the EADAM rule has some interesting incentive properties which

may be carried over to other k-Consent rules as well. We cannot say the same about

k-DA rules, since the Boston rule is highly manipulable. However, these rules have a

clearer structure and thus could be more popular in applications. Note that to date the

EADAM rule is yet to be used, whereas the Boston rule is used widely, even though

several negative aspects of the Boston rule have been discussed in the literature. Finally,

we would like to provide characterizations of all of these rules in terms of their normative

and incentive properties.
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[17] B. Doǧan and B. Klaus. Object allocation via immediate acceptance: Characteri-

zations and an affirmative action application. Journal of Mathematical Economics,

79:140–156, 2018.

[18] L. E. Dubins and D. Freedman. Machiavelli and the Gale-Shapley algorithm.

Mathematical Monthly, 88(7):485–494, 1981.
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