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Abstract

In this paper, we are interested in the entropy of a non-negative random variable. Since the un-
derlying probability density function is unknown, we propose the use of Poisson smoothed histogram
density estimator in order to estimate the entropy. To study the performance of our estimator, we
run simulations on a wide range of densities and compare our entropy estimators with the existing
estimators that based on different approaches such as spacing estimators. Furthermore, we extend our
study to residual entropy estimators which is the entropy of a random variable given that it has been
survived up to time t.

Keywords: entropy estimator, information theory, residual entropy, density estimator, survival func-
tion.

1 Introduction

For a continuous random variable X, the differential entropy H(X) is defined as

H(X) = −
∫ ∞
−∞

f(x) log f(x)dx. (1)

In the literature, it is also often referred as Shannon entropy as it generalizes the concept of entropy for
a discrete random variable proposed by by Shanon (1948) in his landmark paper, that is given by

H(X) = −
n∑

x∈A
P(x) logP(x), (2)

where A is the set of possible values of X, and P(X) denotes its probability mass function (pmf). We will
simply refer to H(X) as the entropy of the random variable X.
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The concept of entropy takes a central place in statistical theory and applications (see Cover and
Thomas, 1991 Kapur, 1993 and Kapur and Kesavan, 1992). One of the well known applications of en-
tropy in statistics is the test of normality for a random variable because of the characterizing property
that the normal distribution attains the maximum entropy among all continuous distributions with a
given variance [see Vacicek, 1976 and an adaptation to testing exponentiality by Chaubey, Mudholkar
and Smethurst, 1993].

Ebrahimi (1996) provided an interpretation of H(X) as a measure of uncertainty associated with f.
In the context of life testing, X being the lifetime of a unit, knowing that the unit has survived up to
time t, a more appropriate measure for uncertainty in f is defined as

H(X, t) = −
∫
t

(
f(x)

R(t)

)(
log

f(x)

R(t)

)
, (3)

where R(t) = P(X > t) is the reliability or the survival function. H(X, t) is called residual entropy of X
given the event {X > t}. In this paper, we focus on estimating H(X) and more generally H(X, t) when
X is continuous and more specifically, when X is a non-negative. In recent decades, there exist a huge
literature on entropy estimators, which can be classified as follows.

(i) A naive approach is to discretize the support of the underlying density function into m bins, then
for each bin we compute the empirical measures, corresponding to pi =

∫
Ai
f(x)dx. That is if

X1, X2, ..., Xn are independently and identically distributed (i.i.d.) continuous random variables,
then p̂i = 1

n

∑n
j=1 1Ai(Xj), where {Ai}mi=1 are mutually disjoint subsets of R such that ∪mi=1Ai =

support(X). Clearly, p̂i is the maximum likelihood estimator (MLE) for pi. With this estimator p̂i,
a “naive” or “plug-in” MLE estimator of entropy is given as

ĤMLE(X) = −
m∑
i=1

p̂i log p̂i. (4)

It has been shown that this MLE estimator of entropy results in heavy bias. Consequently, the
problem of bias correction and the choice of m have drawn the attention of many researchers; see
Paninski (2003) for a detailed account.

(ii) One straightforward approach for entropy estimation is to estimate the underlying density function
f(x) by some well-known density estimator f̂n(x), then plug it into (??) to obtain the entropy
estimator

ĤPlugin(X) = −
∫ ∞

0
f̂n(x) log f̂n(x)dx. (5)

The fixed symmetric kernel density estimator f̂Fixed(x), which is already a well-known and popular
approach for estimating the pdf with an unbounded support, is an example of density estimator
which is defined as

f̂Fixed
n (x) =

1

nb

n∑
i=1

K

(
x−Xi

b

)
, (6)

where K is a symmetric density function with mean zero and variance one, and b is the smoothing
parameter, called the bandwidth. It is obvious that the performance of this plugin entropy estima-
tor totally depends on the density estimator f̂n. However, when dealing with non-negative random
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variables, this f̂Fixed
n (·) is shown to produce a heavy bias near the boundary. Consequently, it would

result in a better estimator if we replace f̂Fixed
n by some density estimators that is free of boundary

effect.

(iii) Motivated by the representation of entropy as an expected value

H(X) = −
∫ ∞

0
f(x) log f(x)dx = −E[log f(X)].

By the strong law of large number we have − 1
n

∑n
i=1 log f(Xi)

a.s.→ H(X). Thus we obtain a new

entropy estimator if we replace f(·) by an appropriate density estimator f̂n(·), as given by

ĤMeanlog(X) = − 1

n

n∑
i=1

log f̂n(Xi). (7)

(iv) The entropy can be estimated by another approach, called “spacing”, which is initiated by Vasicek
(1975). By the change of variable p = F (x), the entropy (??) can be expressed in the form

H(X) = −
∫ ∞
−∞

f(x) log f(x)dx =

∫ 1

0
log

{
d

dp
F−1(p)

}
dp.

To estimate H(X), the distribution F is replaced by the empirical distribution Fn, and the dif-
ferential operator is replaced by the difference operator. As a result, the derivative of F−1(p) is
estimated by n

2m(X(i+m) − X(i−m)) for (i − 1)/n < p ≤ i/n, i = m + 1,m + 2, ..., n − m, where
X(i)’s are the order statistics and m is a positive integer smaller than n/2. When p ≤ m/n or
p > (n−m)/n, one-sided differences are used. That is, (X(i+m) −X(1)) and (X(n) −X(i−m)) are in
place of (X(i+m)−X(i−m)) respectively. All together this leads to the following estimator of entropy

ĤV asicek(X) =
1

n

n∑
i=1

log

{
n

2m
(X(i+m) −X(i−m))

}
. (8)

Motivated by the idea of spacing, researchers have followed this direction and proposed other ver-
sions of entropy estimator, which are claimed to have a better performance. We will list some of
them in the next section. One of the greatest weakness of this spacing estimator is the choice of
spacing parameter m, which does not have the optimal form.

(v) Lastly, different from all above estimators, Bouzebda et al. (2013) presented a potentially stimator
of entropy based on smooth estimator of quantile density function. Their idea again starts with the
expression of the entropy

H(X) =

∫ 1

0
log

{
d

dp
F−1(p)

}
dp =

∫ 1

0
log

{
d

dp
Q(p)

}
dp =

∫ 1

0
log q(p)dp,

where Q(p) := inf{t : F (t) ≥ p} for 0 ≤ p ≤ 1 is the quantile function and q(p) := dQ(p)/dp =
1/f(Q(p)) is the quantile density function. Then a new entropy estimator can be obtained by
substituting q(·) by its appropriate estimator q̂n(·). That is

ĤQuantile(X) =

∫ 1

0
log q̂n(p)dp. (9)
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Bouzebda et al. (2013) were motivated by the work of Cheng and Parzen (1997), which introduced
a kernel type estimator q̂n(·) that has good asymptotic properties.

For estimating the residual entropy H(X, t) we can write (??) as suggested in Belzunce et al. (2001)

H(X, t) = log(R(t))− 1

R(t)

∫ ∞
t

f(x) log f(x)dx. (10)

Then the residual entropy can be estimated if we replace R(t) by an empirical or kernel estimator R̂(t),
and an estimator ĝn(x) = f̂n(x) log f̂n(x) in place of the functional g(x) = f(x) log f(x).

The organization of the paper is as follows. We propose our entropy and residual entropy estimators
corresponding to nonnegative random variables in Section 2. The first part of Section 3 is dedicated to
the entropy estimators comparison, in which we compare our entropy estimators to the existing entropy
estimators by running simulations on a wide range of densities. Finally, we perform the comparison of
our residual entropy with other estimators in the second part of Section 3.

2 Main results

2.1 Entropy estimators

In this sub-section, we will propose two entropy estimators based on the idea of (??) and (??). The
asymptotic properties of these estimators, such as asymptitic convergence and asymptotic normality in
the context of densities with non-negative support can be established along the same lines as in Hall and
Morton (1993) for estimators of type (??) and Eggermont and LaRiccia (1999) for estimators of type
(??). We defer the discussion of these in another publication.
Recall that the entropy of a random variable can be estimated by the direct plugin approach:

ĤPlugin(X) = −
∫ ∞

0
f̂n(x) log f̂n(x)dx,

or by the sample mean of log f(Xi), i = 1, 2, ..., n:

ĤMeanlog(X) = − 1

n

n∑
i=1

log f̂n(Xi).

We observe that both the entropy estimators presented above mainly depend on the density estimator,
so we would expect to obtain a good entropy estimator if the chosen density estimator is well-behaved.
In literature, regarding to non-negative random variable, there are so many candidates for the density
estimators with nice asymptotic properties. Among these, we especially focus on the Poisson smoothed
histogram density estimator, which has the following form (see Chaubey and Sen, 2009),

f̂Pois(x) = k

∞∑
i=0

[
Fn

(
i+ 1

k

)
− Fn

(
i

k

)]
e−kx

(kx)i

i!
, (11)

where Fn(·) is the empirical distribution function, and k = k(n) can be viewed as the smoothing param-
eter. This estimator f̂Pois(x) can be interpreted as a random weighted sum of Poisson mass functions.
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The asymptotic properties of f̂Pois(x) have been studied and its first weak convergence was proven by
Bouezmarni and Scaillet (2005) under the assumption lim

n→∞
kn = ∞ and lim

n→∞
nk−2

n = ∞. They also ob-

tained the weak convergence for the case of unbounded pdf f at x = 0. Later on, Chaubey et al. (2010)
filled the gap in the asymptotic theory of f̂Pois by proposing the asymptotic bias, asymptotic variance,
strong consistency and the asymptotic normality of the estimator. Particularly, under the assumptions
that kn = cnh for some constant c and 0 < h < 1, and f ′(x) satisfies the Lipschitz condition of order
α > 0. The asymptotic bias and variance of f̂Pois(·) are given by

Bias
[
f̂Pois(x)

]
≈ f ′(x)

2cnh
, (12)

V ar
[
f̂Pois(x)

]
≈ E[X]

2

√
c

2πx3
f(x)nh/2−1. (13)

For the strong consistency of f̂Pois(x), if E[X−2] <∞, f ′(x) is bounded and kn = O(nh), then

||f̂Pois(x)− f(x)|| a.s.→ 0.

For the asymptotic normality of f̂Pois(x), if E[X−2] <∞, kn = O(n2/5), and f ′(x) satisfies the Lipschitz
order α condition, then for x in a compact set I ⊂ R+,

n2/5(f̂Pois(x)− f(x))− 1

2δ2
f ′(x)

D→ G,

where G is the Gaussian process with covariance function γ2
xδxs, where γ2

x = E[X]
2 (2πx3)−1/2f(x)δ, δxs = 0

for x 6= s, δxs = 1 for x = s, and δ = lim
n→∞

(n−1/5k
1/2
n ).

Similar to the problem of bandwidth selection in kernel density estimators, the choice of the smoothing
parameter k strongly affects the performance of the resulting density estimators. In general, large values
of k correspond to over-smoothing, whereas small values of k correspond to under-smoothing.

With these nice asymptotic properties of f̂Pois(·), we propose here two entropy estimators of the form

ĤPlugin−Pois(X) = −
∫ ∞

0
f̂Pois(x) log f̂Pois(x)dx, (14)

ĤMeanlog−Pois(X) = −
n∑

i=1

log f̂Pois(Xi). (15)

2.2 Residual entropy estimator

Motivated by the well-behaviour of f̂Pois(·), we suggest a direct plugin residual entropy estimator where
the f̂Pois(x) is in place of f(x). That is, our proposed residual entropy estimator is of the form

ĤPlugin−Pois(X, t) = log(R̂(t))− 1

R̂(t)

∫ ∞
t

f̂Pois(x) log f̂Pois(x)dx, (16)

where R̂(t) =
∫∞
t f̂Pois(x)dx.
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3 Simulation studies and discussion

To study the performance of entropy and residual entropy estimators, we run simulations for a wide range
of densities which consists fifteen non-negative densities below. They are categorized into three groups:
monotone density, unimodal density, and bimodal density.

1. Monotone density

– Standard Exponential(1) with true H(X) = 1.

– Exponential(10) with true H(X) = − log 10− 1 ≈ −1.3026.

– Pareto(2,1) with true H(X) ≈ 0.8069.

– Log-Normal(0,2) with true H(X) ≈ 2.1121.

– Weibull(0.5,0.5) with true H(X) ≈ 0.4228.

2. Unimodal density

– Gamma(2,2) with true H(X) ≈ 0.8841.

– Gamma(7.5,1) with true H(X) ≈ 2.3804.

– Log-Normal(0,0.5) with true H(X) ≈ 0.7258.

– Maxwell(1) with true H(X) ≈ 0.9962.

– Maxwell(20) with true H(X) ≈ −0.5017.

– Weibull(2,2) with true H(X) ≈ 1.2886.

3. Bimodal density

– Mix Gamma: (1/2)Gamma(0.5,0.5)+(1/2)Gamma(2,2) with true H(X) ≈ 2.2757.

– Mix Lognorm: (1/2)Lognorm(0,0.5)+(1/2)Lognorm(0,2) with true H(X) ≈ 1.6724.

– Mix Maxwell: (1/2)Maxwell(1)+(1/2)Maxwell(20) with true H(X) ≈ 0.8014.

– Mix Weibull: (1/2)Weibull(0.5,0.5)+(1/2)Weibull(2,2) with true H(X) ≈ 1.1330.

The densities in the monotone group are chosen with different rates of decay, from the slowest standard
Exp(1) to the fastest Exp(10). The Pareto distribution is included here to show the effect of different
support [1,∞) on entropy estimation. On the contrary to the first group, the second group consists of
well-behaved densities from highly concentrated Maxwell(20) to widely spread Gamma(7.5,1). Lastly,
the simulations are extended to the bimodal densities where each density is a mixture of the same family
density but with different parameters. Note that for some densities with high rate of decay and small
variance like Exp(10) or Maxwell(20), the integrand f(x) log f(x) produces non-finite value for large value
of x in R software due to the round-up. However, since the contribution of the right tail of the integrand
to the entropy is insignificant for sufficiently large x, we obtain the approximately true value of entropy
by cutting of the negligible right tail of the integration. That is, instead of integrating over the entire
support of f(x) log f(x), we integrate up to a certain value at which the right tail is negligible.

3.1 Comparison of entropy estimators

In this sub-section, we run simulation experiments on different estimators which are classified into two
groups, namely, ‘spacing estimators’ and ‘non-spacing estimators’.
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3.1.1 Spacing estimators

1. Vasicek’s estimator by Vasicek (1976):

Ĥ1 =
1

n

n∑
i=1

log

{
n

2m
(X(i+m) −X(i−m))

}
. (17)

Vasicek showed that if the variance is finite, then as m→∞ and m/n→ 0,

ĤV asicek(X)
P→ H(X).

2. Ebrahimi’s estimator by Ebrahimi et al. (1992):

Ĥ2 =
1

n

n∑
i=1

log

{
n

cim
(X(i+m) −X(i−m))

}
, (18)

where

ci =


1 + i−1

m 1 ≤ i ≤ m
2 m+ 1 ≤ i ≤ n−m
1 + n−i

m n−m+ 1 ≤ i ≤ n
.

It was shown that ĤEbrahimi(X)
P→ H(X) as n,m → ∞, and m/n → 0. Also, its bias is smaller than

that of Vasicek’s estimator.

3. Van’s estimator by Van Es (1992):

Ĥ3 = − 1

n−m

n−m∑
i=1

log

{
n+ 1

m
(X(i+m) −X(i))

}
+

n∑
k=m

1

k
+ log

( m

n+ 1

)
. (19)

Van established, under certain conditions, the strong consistency and asymptotic normality of ĤV an(X).

4. Correa’s estimator by Correa (1995):

Ĥ4 = − 1

n

n−m∑
i=1

log

{∑i+m
j=i−m(X(j) − X̄(i))(j − i)
n
∑i+m

j=i−m(X(j) − X̄(i))

}
, (20)

where X̄(i) := 1
2m+1

∑i+m
j=i−mX(j). The resulting estimator of entropy is shown to attain a smaller mean

squared error (MSE) compared to that of Vasicek’s estimator.

5. WG’s estimator by by Wieczorkowski and Grzegorzewski (1999):

Ĥ5 = Ĥ1 + log
(2m

n

)
− n− 2m

n
Ψ(2m) + Ψ(n+ 1)− 2

n

m∑
i=1

Ψ(i+m− 1). (21)

where Ψ(k) =
∑k−1

i=1
1
i − γ is the di-Gamma function defined on integer set,

and γ = 0.57721566... is the Euler’s constant.
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6. Noughabi’s estimator (kernel-spacing) by Noughabi (2010):

Ĥ6 = − 1

n

n∑
i=1

log

{
f̂Fixed(X(i+m)) + f̂Fixed(X(i−m))

2

}
. (22)

where the bandwidth in f̂Fixed(x) is fixed to b = 1.06sn−1/5 and s is the sample standard deviation. Simi-
lar to ĤV asicek(X), Noughabi showed that ĤNoughabi(X) weakly converges to H(X) using the same proof.

3.1.2 Non-spacing estimators

To see how the Poisson smoothed histogram density estimator performs in the estimation of entropy,
we also run simulation on other direct plugin and mean of log entropy estimators that use the fixed
symmetric kernel density estimator f̂Fixed and the Gamma asymmetric kernel density estimator f̂Gam

which has the form

f̂Gam(x) =
1

n

n∑
i=1

KGam
x/b+1,b(Xi) =

n∑
i=1

X
x/b
i exp(−Xi/b)

bx/b+1Γ(x/b+ 1)
. (23)

Thus, we obtain another four entropy estimators to compare with our proposed estimators. They are

Plugin Fixed : Ĥ7 = −
∫ ∞

0
f̂Fixed(x) log f̂Fixed(x)dx, (24)

Meanlog Fixed : Ĥ8 = − 1

n

n∑
i=1

log f̂Fixed(Xi), (25)

Plugin Gam : Ĥ9 = −
∫ ∞

0
f̂Gam(x) log f̂Gam(x)dx, (26)

Meanlog Gam : Ĥ10 = − 1

n

n∑
i=1

log f̂Gam(Xi). (27)

The final entropy estimator we want to compare with is based on the quantile density estimator. Here
the quantile function is first estimated by the method of Bernstein polynomial of degree m, which is of
the form

Q̃n(p) =
m∑
i=0

Q̂n

(
i

m

)
b(i,m, p) p ∈ [0, 1],

where Q̂n(·) is the empirical quantile function, b(i,m, p) = P[Y = i] where Y follows the binomial(m, p),
and m is a function of n such that m → ∞ as n → ∞. Then the estimator of q(·) can be obtained by
differentiating Q̃n(·)

q̃n(p) =
dQ̃n(p)

dp
=

m∑
i=0

Q̂n

(
i

m

)
b(i,m, p)

[
i−mp
p(1− p)

]
. (28)

Indeed, q̃n(·) is the special case of the quantile kernel density estimator, proposed by Cheng and Parzen
(1997), which has the general form

q̃CP
n (p) :=

d

dp
Q̃CP

n (p) =
d

dp

∫ 1

0
Q̂n(t)Kn(p, t)dµn(t).
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As a result, the last entropy estimator is of the form: Ĥ11 =
∫ 1

0 log q̃n(p)dp.

Together, we label our estimators as Ĥ12 = ĤPlugin−Pois and Ĥ13 = ĤMeanlog−Pois.

The simulation study is organized as follows. For each density, 500 replicated data are generated for
three sample sizes: n = 10, n = 50, and n = 100. To obtain the entropy estimator, we need to assign
value to smoothing parameters. Particularly, since the optimal choice for m in spacing estimators is
still an opening problem, for each spacing estimator, we compute the sample entropies for all values of
m from 2 to n/2 − 1, then we use the optimal entropy with the smallest MSE to compare with other
entropy estimators. On the other hand, the bandwidth selection in f̂Fixed(·) is set to b = 1.06sn−1/5

while b = sn−2/5 is used in f̂Gam(·). The choice of the polynomial degree m in the quantile density
estimator q̃(·) is fixed to m = n/ log n. Lastly, for our estimators, we applied the smoothing parameter
k = n2/5 + 1. To compare the performance between estimators, for each density and each estimator, we
compute the point estimate and its MSE shown in the parentheses. The simulation results are shown in
the Table ?? to Table ??. Each column in the table corresponds to one density with the associated true
entropy right below, and the bold value in that column indicates the best estimator with the smallest
MSE for that density. By observing the simulation results below, we have some important remarks.

Remark 3.1. There does not exist the uniquely best entropy estimator in all cases.

It is clear from the simulation results that depending on the density and the sample size, the best
entropy estimator switches from one to another. When comparing entropy estimators, not only the
smallest MSE is considered, but the computation expense is also an important key to determine the best
estimator. Indeed, in terms of speed, the entropy estimators in the spacing group seem to dominate
estimators in the other group. For instance for the sample size n = 50, it takes at most two seconds
to obtain the spacing entropy estimators while it is up to thirty seconds for the direct plugin entropy
estimator to be computed. This totally makes sense because the amount of computations in the latter
estimators is much heavier than those in former estimators due to the presence of integration in their
form. Definitely, this could be the main reason why most of papers in literature only focus on spacing
estimators but a few in the direct plugin estimators.

Table 1: Simulation results for n = 10 of the monotone density group. The point estimate and MSE (in parentheses) are computed
for each estimator. The bold value is the best estimator with the smallest MSE.
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Table 2: Simulation results for n = 10 of the unimodal density group.The point estimate and MSE (in parentheses) are computed for
each estimator. The bold value is the best estimator with the smallest MSE.

Table 3: Simulation results for n = 10 of the bimodal density group. The point estimate and MSE (in parentheses) are computed for
each estimator. The bold value is the best estimator with the smallest MSE.

Table 4: Simulation results for n = 50 of the monotone density group.The point estimate and MSE (in parentheses) are computed for
each estimator. The bold value is the best estimator with the smallest MSE.
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Table 5: Simulation results for n = 50 of the unimodal density group. The point estimate and MSE (in parentheses) are computed
for each estimator. The bold value is the best estimator with the smallest MSE.

Table 6: Simulation results for n = 50 of the bimodal density group. The point estimate and MSE (in parentheses) are computed for
each estimator. The bold value is the best estimator with the smallest MSE.

Table 7: Simulation results for n = 100 of the monotone density group. The point estimate and MSE (in parentheses) are computed
for each estimator. The bold value is the best estimator with the smallest MSE.
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Table 8: Simulation results for n = 100 of the unimodal density group. The point estimate and MSE (in parentheses) are computed
for each estimator. The bold value is the best estimator with the smallest MSE.

Table 9: Simulation results for n = 100 of the bimodal density group. The point estimate and MSE (in parentheses) are computed
for each estimator. The bold value is the best estimator with the smallest MSE.

Remark 3.2. The direct plugin entropy estimators by means of f̂Fixed, f̂Gam, and q̃Quantile encounter
the convergence problem when computing the integral.

Another issue when we run the direct plugin entropy estimators is the convergence of the integral.
Perhaps, this is the greatest weakness of the direct plugin estimators. Indeed, in most cases, we could not
evaluate the integral in Ĥ7 = ĤPlugin−Fixed(X) and Ĥ9 = ĤPlugin−Gam(X) over the same interval that
we used to compute the true entropy because it produces non-finite values on the right tail. Thus, we
have to cut off the larger tail of the integral to a shorter finite interval up to the point that the value of the
integrand is finite. This issue, however, does not appear in our entropy estimator Ĥ12 = ĤPlugin−Pois, so
it makes our entropy estimator more favorable than other entropy estimators based on the direct plugin
approach.

Remark 3.3. Our entropy estimator by the mean of log of Poisson distribution based density estimator
Ĥ13 = ĤMeanlog−Pois seems to be the best entropy estimator when the sample size is small.

We see that most of the times, the MSE of Ĥ13 is the smallest comparing to that of others estimators
for small sample size in the same density. Note that we have to take into account that while the spacing
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entropy estimators are computed with the best optimal spacing parameter m, the smoothing parameter
in our estimators is set to k = n2/5 + 1, which may be far away from the optimal value. Still, our entropy
estimator Ĥ13 outperforms other entropy estimators in most cases.

Remark 3.4. As the sample size increases, the spacing entropy estimators, Ĥ2, Ĥ3, Ĥ4, and Ĥ5, perform
much better, and converge to the true value.

Although for a small sample size like n = 10 (Table ??-??), the performance of the entropy estimators
from spacing group is quite poor comparing to the estimators in other group, their rate of convergence,
however, pick up very fast as the sample size increases as in n = 100. For instance, the number of the
best entropy estimator that falls into the spacing group increase as the sample size increases from 10 to
100. Therefore, together with the fast computation, the spacing entropy estimators would be a better
choice in the case of large sample size.

In conclusion, there is a trade-off between the speed and the performance for the two groups of entropy
estimators. It is obvious that any spacing estimator (Ebrihami’s estimator, Van Es estimator, Correa’s
estimator, or WG estimator) would do a good job when dealing with large sample sizes due to its fast
rate of convergence and fast computation; though the answer to the question of what value of m would
be considered for a large sample size is still unknown. However, when sample size is small, the choice
of estimator for entropy becomes more difficult and requires careful studies. This is why in the small
sample size, the entropy estimators by means of density estimator come to handy because they give a
more precise result. Among non-spacing entropy estimators presented above, our mean of log of Poisson
density points Ĥ13 consistently performs better than the others.

3.2 Residual entropy estimators comparison

In this subsection, we want to see the performance of our proposed estimator for residual entropy function
as well as comparing it with the existing ones. Particularly, we still use the same set of testing distributions
in the previous section, and the set of estimators are

ĤBelzunce
1 (X, t) = log R̂(t)− 1

R̂(t)

∫ ∞
t

f̂Fixed(x) log f̂Fixed(x)dx,

ĤBelzunce
2 (X, t) = log R̂(t)− 1

R̂(t)

n∑
i=1

RK

(
t−Xi

b

)
log f̂Fixed

i (Xi),

ĤQuantile(X, t) = log(R̂Pois(t))− 1

R̂Pois(t)

∫ 1

F̂ (t)
log q̃n(p)dp,

ĤPois(X, t) = log R̂Pois(t)− 1

R̂Pois(t)

∫ ∞
t

f̂Pois(x) log f̂Pois(x)dx.

where the estimated survival function R̂(t) is computed based on the integration of f̂Fixed(·), the band-
width is fixed to b = 1.06sn−1/5 in f̂Fixed, the smoothing parameter k in f̂Pois is assigned to n2/5 + 1,
and the parameter m in q̃n(·) is set equal to n/ log n.
The setup of simulation study is as following. We present here both performance comparison by graphics
(for n = 50) and by mean intergrated squared error (MISE) (for n = 50, 100 and 500). In order to
produce the plots of residual entropy estimators, for each distribution, we run 500 replications, then
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we compute the sample mean residual entropy estimator functions of these 500 replications. As men-
tioned in Belzunce et al. (2001) that the behavior of residual entropy function is smooth up to certain
bound because R(t) → 0 very fast when t → ∞, it is recommended to stop the estimation at the time
t∗ = inf{t : R(t) ≤ 0.01}. Therefore, the MISEs are just computed on the interval [0, t∗] (for Pareto(2,1)
is [1, t∗]). Similarly, the MISEs comparison between estimators are done based on 500 replications for
sample size n = 50 and n = 100 for each distribution, but only 100 replications for sample size n = 500.
The plots and tables below show the performance of our estimators and the ones in Belzunce et al. (2001).

Figure 1: Plots of residual entropy estimators for n = 50. The true function is in black solid line, ĤPois(X, t) in red dotted-dashed

line, ĤQuantile(X, t) in black long dashed line, ĤBelzunce
1 (X, t) in blue dashed line, and ĤBelzunce

2 (X, t) in green dotted line. There
are some plots without the green dotted line because the function is not in the range.

14



Yogendra P. Chaubey and Nhat Linh Vu

Figure 2: Plots of residual entropy estimators for n = 50. The true function is in black solid line, ĤPois(X, t) in red dotted-dashed

line, ĤQuantile(X, t) in black long dashed line, ĤBelzunce
1 (X, t) in blue dashed line, and ĤBelzunce

2 (X, t) in green dotted line.

Table 10: MISEs of three estimators on 500 replications with sample size n = 50. The MISEs are computed on the indicated interval
for each distribution.
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Table 11: MISEs of three estimators on 500 replications with sample size n = 100. The MISEs are computed on the indicated interval
for each distribution.

Table 12: MISEs of three estimators on 100 replications with sample size n = 500. The MISEs are computed on the indicated interval
for each distribution.

To illustrate the rate of convergence of each estimators as the sample size increases, we also show the
following graphs which are MISEs as a function of sample size for each distribution.
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Figure 3: Residual entropy estimation MISE comparison with different sample size n = 50, 100 and 500. Where diamond-red is
ĤPois(X, t), square-blue is ĤBelzunce

1 (X, t), and triangle-black is ĤQuantile(X, t).
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Figure 4: Residual entropy estimation MISE comparison with different sample size n = 50, 100 and 500. Where diamond-red is
ĤPois(X, t), square-blue is ĤBelzunce

1 (X, t), and triangle-black is ĤQuantile(X, t).

Remark 3.5. ĤBelzunce
2 (X, t) performs very poor in most cases.

By the plot of residual entropy estimations from Figure ??-??, we see that ĤBelzunce
2 (X, t) is not

as good as the others among all estimators. It is even out of the range of MISE in some distributions.
Therefore, we decide to remove it out of our consideration.

Remark 3.6. All estimators tend to diverge away from the true residual entropy over the time in most
cases.

We notice that most of estimators have a quite good startup as t is small. However, as the time t
increases, in which the true survival function tends to zero rapidly, the estimators begin to diverge away
from the true residual entropy. How large of the time t this phenomenon happens depends on the true
distribution.

Remark 3.7. None of estimators outperforms the others in all cases. However, the ĤPois(X, t) estimator
seems to achieve a better estimation in most cases.

If we just focus on the performance comparison between estimators, we see that in most cases, our
estimator ĤPois(X, t) captures the trend of the true function throughout the plots and achieves better
precision in terms of MISE shown in the Table ??-??. It is defeated by ĤBelzunce

1 (X, t) only in Maxwell
distributions which have the bell-normal shape. Therefore, the ĤPois(X, t) is recommended in a small
sample size.

Remark 3.8. The rate of convergence of the estimator ĤQuantile(X, t) seems to be faster than other
competitors.

Similar to the entropy estimation, the residual entropy estimator, ĤQuantile(X, t) still has the fastest
rate of convergence in most cases as the sample size increases. We admit that for a small sample size,
ĤQuantile(X, t) does not show up to be a good estimator, and it is not recommended. However, if the
sample size is sufficiently large, it becomes one of the best potential choices for residual entropy estimator.
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93. Yogendra P. Chaubey, Naâmane Laib and Arusharka Sen, A Smooth
Estimator of Regression Function for Non-negative Dependent Random
Variables, March 2008

94. Alejandro Balbás, Beatriz Balbás and Antonio Heras, Optimal Rein-
surance with General Risk Functions, March 2008

95. Alejandro Balbás, Raquel Balbás and José Garrido, Extending Pricing
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