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Abstract

Anonymization of Event Logs for Network Security Monitoring

Alis Rasic

A managed security service provider (MSSP) must collect security event logs from their cus-

tomers’ network for monitoring and cybersecurity protection. These logs need to be processed by

the MSSP before displaying it to the security operation center (SOC) analysts. The employees gen-

erate event logs during their working hours at the customers’ site. One challenge is that collected

event logs consist of personally identifiable information (PII) data; visible in clear text to the SOC

analysts or any user with access to the SIEM platform.

We explore how pseudonymization can be applied to security event logs to help protect indi-

viduals’ identities from the SOC analysts while preserving data utility when possible. We compare

the impact of using different pseudonymization functions on sensitive information or PII. Non-

deterministic methods provide higher level of privacy but reduced utility of the data.

Our contribution in this thesis is threefold. First, we study available architectures with differ-

ent threat models, including their strengths and weaknesses. Second, we study pseudonymization

functions and their application to PII fields; we benchmark them individually, as well as in our ex-

perimental platform. Last, we obtain valuable feedbacks and lessons from SOC analysts based on

their experience.

Existing works[42, 43, 47, 38] are generally restricting to the anonymization of the IP traces,

which is only one part of the SOC analysts’ investigation of PCAP files inspection. In one of the

closest work[46], the authors provide useful, practical anonymization methods for the IP addresses,

ports, and raw logs.
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Chapter 1

Introduction

1.1 Background and Motivation

The ever-decreasing computation and storage costs today enable more data to be collected and

processed than ever before. Many technology companies are now relying on cloud services (e.g.,

AWS, GCP, Azure) and distributed big data tools to offer better services while improving the scal-

ability of their solution and keeping costs low. On the other hand, the increased collection of data

and easier access to data also lead to more frequent incidents of data breaches and privacy viola-

tions. The public may suffer from the risks of identity theft as a result of data breaches, and public

or private enterprises are frequently affected by data breaches resulting in millions of personally

identifiable and sensitive data being disclosed to the public incurring costs of millions of dollars

damaging organizations’ reputation [13, 14, 15, 17]. In a recent high profile case, when Cambridge

Analytica collected personal data of millions of Facebook users to manipulate public opinion, they

were able to influence the decisions of many peoples on political views during the 2016 elections in

the US.

Therefore, both non-profit and commercial organizations have the responsibility to protect col-

lected private or personal information. In particular, this thesis examines this issue within the spe-

cific context of Network security monitoring (NSM). Today’s small to medium-sized companies
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who cannot afford to hire dedicated security experts are increasingly benefiting from Managed Se-

curity Service (MSS) provided by third party Security Operation Centres (SOC) to tackle network-

wide threats. The advantages include cost-effectiveness, skilled security experts, appropriate facil-

ities, and up to date security awareness. In addition, the 24 hours continuous service encourages

different companies to outsource their security services rather than having in-house security em-

ployees.

Network security monitoring (NSM), which is typically defined as “the collection, analysis, and

escalation of indications and warnings to detect and respond to intrusions”, was born as a different

term to specify the new feature of MSS for continuous monitoring of networks by human experts

rather than just installing security appliances. In order to provide NSM services, an MSS provider

deploys various sensors in the client site, e.g., Intrusion Detection Systems (IDS), to gather various

information such as suspicious alerts from each client’s computer network and ship them back to the

Security Operation Center (SOC). Then, SOC analysts correlate and analyze the alerts to confirm

whether they are successful exploits. Once a security incident is detected and confirmed as True

Positive (TP), the results of the analysis need to be reported to decision-makers in a process called

escalation.

In order to support network security monitoring services, the provider must collect security

event logs from their customers’ network for monitoring and cybersecurity protection. These logs

need to be processed by the provider before displaying it to the SOC analysts. The employees

generate event logs during their working hours at the customers’ site. The collected event logs

usually consist of personally identifiable information (PII) data, which is visible in clear text to the

SOC analysts or any user with access to the Security information and event management (SIEM)

platform. This unavoidably leads to a challenge in protecting the customer’s privacy, while still

allowing the SOC analysts to perform their investigation.

There exist a rich literature on anonymization of network-traces and netflows works [42, 43,

47, 38, 49], which is every similar to the anonymization of the event logs. For instance, in [46],

the authors provide practical anonymization methods for sensitive fields such as IP addresses, ports,

and raw logs. Another more recent work [48] proposes the anonymization of events logs to protect

employees with higher privileges become victims of attacks which sometimes result in data breach.
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In [50], the authors are interested to anonymize event logs data before outsourcing to the cloud for

data mining, and they suggest four approaches: 1) k-anonymity model, 2) randomization-based, 3)

encryption-based, and differential privacy-based approaches.

1.2 Objectives and Contributions

In this thesis, we study how data anonymization can be applied to security event logs to help

protect individuals’ privacy from the SOC analysts while preserving data utility to facilitate the

analysts’ investigation tasks whenever possible. Specifically,

• We base our study upon real world practices in network security monitoring at a leading

managed security service provider (MSSP). We hold frequent meetings and discussions with

real-life SOC analysts in order to understand their daily tasks, and to solicit their feedback on

the applicability of various solutions for data anonymization.

• We collect detailed information about typical investigation tasks performed by those SOC

analysts, and we then formally model such tasks as several representative use cases, which

will form the basis of further research.

• Based on the use cases, we compare the impact of using different pseudonymization functions

on sensitive information or PII, e.g., non-deterministic methods provide a higher level of

privacy but reduced data utility.

• We also propose three different architectures and compare the strengths and weaknesses of

those architectures for applying cryptographic masking methods to protect PII while enabling

the security operation center (SOC) analysts to perform security log monitoring services.

• Based on our study of the architectures and pseudonymization functions, we have imple-

mented a SIEM platform to apply and integrate different anonymization techniques for net-

work security monitoring, and we report lessons learned from the implementation.

Our contribution in this thesis is threefold. First, based on real-world use cases, we study avail-

able architectures with different threat models, including their strengths and weaknesses. Second,
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we study pseudonymization functions and evaluate their application to PII fields. Last, we im-

plement our SIEM platform and obtain valuable feedbacks and lessons from real-world analysts.

Finally, those solutions and lessons we present in the context of cybersecurity monitoring can po-

tentially also be used in other business sectors, such as finance, health, or marketing, which might

provide additional benefits.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Background: In this section, we provide some background information on cybersecurity

monitoring tools and methods in the context of cybersecurity monitoring.

• Related works: We review related works in log auditing, GDPR and HIPPA compliances,

personally identifiable information (PII), and privacy by design. We also describe in this

section available cryptographic schemes for pseudonymization and influential searchable en-

cryption schemes.

• SOC analyst use cases and extraction of PII fields: In this section, we study five use cases

of real-life SOC analysts, and we extract the corresponding PII fields in each use case. For

each identified sensitive PII field, we study the application of a cryptography-based masking

function.

• Threat model and proposed architectures: In this section, we present our threat model with

all entities that are involved. We propose three architectures and compare their strengths and

weaknesses.

• Secure SIEM platform: In this section, we detail the implementation of our SIEM platform,

which is designed to enable the anonymization of PIIs. We describe our architecture with

used software and used libraries. We also conduct experiments to study the CPU and memory

usage with and without pseudonymization.

• Conclusion: We share our lessons, thoughts, results and draw conclusion.
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Chapter 2

Background

In this section, we provide necessary background information on cybersecurity monitoring, dif-

ferent types of IDS techniques and concepts related to pseudonymization. We describe the problems

we try to solve, the importance of privacy, the parties that are involved, and whose data we are trying

to protect, and from whom.

2.1 Intrusion detection system (IDS)

In 1980, Anderson [3] first discussed IDS. In his work, he provides solutions using IDS to detect

attacks such as masquerading, accessing to systems outside normal working hours, and he raises

challenges against attackers who hide their tracks after successfully intruding targeted unauthorized

systems. At that time, this was more efficient than to store these audit log records in tapes and

redistribute them for analysis. In 2000, S. Axelsson [4] published a survey and taxonomy for two

known detection methodologies: anomaly-based IDs and signature-based IDS, which we review in

the following.

2.1.1 Signature-based IDS

Signature-based IDS works by analyzing network traffic and relies on rules which are con-

structed by security researchers by extracting unique signatures that match a malicious activity
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uniquely. For IDS to detect attacks rules must be updated frequently (i.e., every day). The advan-

tage of this detection method is that it can achieve a low false-positive rate, but the weakness is

that rules must be up to date to detect attacks, and 0-day vulnerabilities cannot be detected because

there exist no rules for them until they are publicly available. Another limitation is that if mon-

itored network traffic is encrypted, only analysis of packet headers can be performed as headers

are un-encrypted while the payload cannot be analyzed because data is scrambled (encrypted using

secret-key). It implies that the majority of signature-based rules become no longer useful in such a

case. Known tools for signature-based IDS are Snort 1 and Suricata 2.

2.1.2 Anomaly-based IDS

Anomaly-based IDS are based on statistics and are designed to work in two steps. The first step

implies creating a profile of regular activity based on various types of information such as system

usage activity (i.e., CPU, memory, disk usage), type of system calls and rate, network activity or

the number of emails that a user sends in average. The second step involves detecting activity

that diverges from established profiles, generally when configurable threshold limits are reached.

The advantage of using anomaly-based IDS is that it can detect 0-day exploits (i.e., a malicious

program which exploits a weakness in a software or a system and for which there exists no patches

or fixes for mitigation) if the malware generates activity outside of normal behavior. On the other

hand, anomaly-based methods require more time to deploy and efforts to tune the profiles. It also

can generate a higher rate of false-positive alerts, missing well-known attacks. Related work on

anomaly-based IDS methods are reviewed in the survey [12].

2.1.3 Types of IDS methodologies

There exist many types of IDS. In [5], four types of IDS methods are described and compared:

Network-based IDS (NIDS), Host-based IDS (HIDS), Wireless-based (WIDS) and network behav-

ior analysis (NBA) IDS. Each of these types has its strengths and weaknesses and are used for
1Snort is an open-source, free and lightweight network intrusion detection system (NIDS) software for Linux and

Windows to detect emerging threats: https://www.snort.org
2Suricata is a free and open source, mature, fast and robust network threat detection engine. The Suricata engine is

capable of real-time intrusion detection (IDS): https://suricata-ids.org/
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different types of problems. We describe them as follows:

• Network-based IDS: Network-based IDS is used in a context where we want to collect net-

work flows (packet headers) and perform deep packet inspection (DPI) on packet payloads.

The main advantage of NIDS is that it is easy to deploy. It can collect metadata about who

communicates with whom, even if communication is encrypted. It can also be used to per-

form rule-based IDS or deep packet inspection (DPI) when signature rules are updated. DPI

requires communication to be in an un-encrypted or readable state. If a network intrusion

detection system (NIDS) is deployed in passive mode, it can be connected to a mirror port

of the switch and is receiving broadcast communications from all ports implying that attacks

cannot be blocked in real-time, but only detected. If it is deployed in “inline” mode or active

mode, the two network interfaces are connected in bridge mode, and all the traffic that is go-

ing through allows the sensor to monitor network traffic actively and drop or block potential

attacks in real-time.

• Host-based IDS: Host-based IDS is also known as agent-based IDS, which is a software

installed on the end-point devices (e.g., desktop, laptop, servers). HIDS has more advantages

over NIDS because more information can be collected about a host. For example, end-to-

end communication can be analyzed in an unencrypted format, system calls can be extracted

and more accurate information about the OS, installed updates, and list of installed software,

including their version can be identified. On the other hand, HIDS requires more effort to

deploy because they need to be installed on each device and consumes more resources from

the host where it has been installed.

• Wireless-based IDS: A survey [7] by I.Butun, D. Morgera and R. Sankar describes security

concerns in wireless networks and various types of attacks. Detection techniques are similar

to network-based IDS, but attacks can be detected with dedicated sensors for WiFi protocols.

There exist various types of attacks, such as evil twin access-point (AP) attacks [8], rogue AP,

DoS attacks [10] or clone attacks [9].

• Network Behavior Analysis (NBA): Network behavior analysis system analyzes network
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traffic flows which can detect unusual network activity such as DoS attacks, a malware at-

tempting to spread in the local network, a high rate of new incoming and outgoing connections

originating from external networks, unusual network activity outside usual working hours or

policy violations such as hosts trying to connect to critical servers. NBA can detect sophis-

ticated attacks and stealthy network discovery scans and can be deployed across the whole

network. Its weaknesses are that it can be slower to react when it needs to detect known

attacks.

2.1.4 Security Monitoring

Collected raw logs can be parsed and analyzed on the sensor level, which is located at the cus-

tomer’s network or it can be transmitted as raw logs through a secure communication channel such

as a virtual private network (VPN) from customers networks to the MSSP’s data flow component for

parsing and processing. There exist many tools for log parsing and normalization such as rsyslog 3,

syslog-ng 4, fluentd 5 or liblognorm 6.

Raw logs are collected from sensors and aggregated to a centralized system for the processing,

which involves parsing, normalizing, analyzing, and correlating. Identified attacks or potential

threats are displayed to the SOC analysts as alerts. Other security controls can also be applied to

improve protection (e.g., firewalls) and detection (e.g., performing vulnerability scans routinely,

honey-pots).

Raised alerts are displayed on the user interface by the security information and event manage-

ment (SIEM) centralized platform, which is used by the SOC analysts during their duty hours. In S.

Kumar’s work [6], four different activity states are described: intrusive and anomalous, not intrusive

but anomalous, not intrusive, and not anomalous, intrusive and not anomalous:

• True-positive (intrusive and anomalous): when a real attack is accurately identified by an

intrusion detection system (IDS).
3RSYSLOG is the rocket-fast system for log processing: https://www.rsyslog.com/
4syslog-ng is an enhanced log daemon, supporting a wide range of input and output methods: syslog, unstructured

text, message queues, databases (SQL and NoSQL alike), and more: https://github.com/balabit/syslog-ng/
5Fluentd: Open-Source Log Collector: https://github.com/fluent/fluentd
6Briefly described, liblognorm is a tool to normalize log data: https://www.liblognorm.com/
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• False-positive (not intrusive but anomalous): when a benign activity caused an alert to be

raised.

• True-negative (not intrusive and not anomalous): when a benign activity is successfully

identified as benign where no alerts are raised.

• False-negative (intrusive but not anomalous): when real attacks have occurred but were

considered as benign or were not detected by the IDS. This state is usually considered to have

the most serious consequences.

Analysts must investigate and analyze alerts and events to decide if there are enough facts to con-

clude the presence of successful attacks or threats.

An incident is created when sufficient facts are gathered pointing to an attack or threat and all

related information (i.e., alerts, events, vulnerabilities) are linked to this incident.

Figure 2.1 shows an example where MSSP deploys its sensors on the customers’ site for cyber-

security monitoring.
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Figure 2.1: MSSP deploying its sensors at the strategic locations to monitor customers network

2.2 Managed Security

Managed Security Service Providers (MSSP) are organizations specialized in providing cyber-

security monitoring services. Since not all companies might have sufficient time, money or ex-

pertise to build its in-house cybersecurity team, small to medium companies can usually choose to

outsource this responsibility to MSSP which is specialized in cybersecurity protection by offering

its services 24/7 [1].

2.2.1 Managed Security

Cybersecurity firms offering managed security services consist of identifying critical assets that

need to be protected and monitored, which is located on the customer’s network infrastructure.
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Data generated by these devices are then collected, analyzed, and escalated to respond to intrusions,

which were defined by Richard Bejtlich as “Network Security Monitoring” (NSM) [2]. MSSPs

offers NSM services by employing intrusion detection systems (IDS) tools to detect cybersecurity

attacks and protect against unauthorized access to systems or networks.

Sensors that are analyzing the traffic in real-time are called Intrusion prevention system (IPS)

and are characterized when two network interfaces are “bridged”, where all traffic passes through

the sensor for packet analysis. It enables the sensor to take action in real-time by dropping packets

characterized as potential attacks. Sometimes, one network interface is used for management and

one for events and alerts transmission. Sensors can also be used to forward logs generated by

customer’s monitored devices for analysis and correlation on MSSP’s infrastructure.

2.2.2 Data breaches

Since security monitoring may involve accesses to sensitive information, it may lead to data

breaches. Latest breaches have cost millions of dollars in damage and millions of private identifiable

information (PII) leaked to the public. Yahoo data breach in 2013 has resulted in over three billions

of accounts being compromised [13]. Equifax reported 143 millions of US customers being affected

consisting of names, SSN, addresses, birth dates and in some cases, driving license [14]. In 2016,

Uber reported that 57 million customers and drivers, which includes names, email addresses, mobile

phone numbers and within that number, 600,000 names and driving license were affected [15].

In 2016, Linkedin discovered that additionally 100 million email addresses and hashed password

(unsalted SHA-1) was disclosed [16], instead of 6.5 million as believed first, currently totalling 165

million [17]. Additionally, many organizations were selling sensitive personal information to other

organizations who were willing to pay without customers consent. A website haveibeenpwned.com

7 offers users for free to verify if they have been victim of the data breach by checking if their email

address exists in the breached data sets.
7Have I Been Pwned: Allows you to verify if your email address has been compromised in a data breach:

https://haveibeenpwned.com/
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We assume the parent company owns the Security Provider (SP). Any other user would have

insufficient permission to read data which includes PII in clear-text format. Any individual or

organization might be interested to steal sensitive collected data by the Security Provider systems,

directly or indirectly. Here stealing directly could be by attacking the SP’s platform or infrastructure,

and stealing indirectly could be by attacking the SP through its customers’ or any user having

permissions into the systems.
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2.3 Privacy

2.3.1 Privacy and PII

Ross Andreson8, compares the difference between confidentiality and privacy as follows:

“Confidentiality involves an obligation to protect some other persons or organizations

secrets if you know them. Privacy is the ability and/or right to protect your personal

secrets; it extends to the ability and/or right to prevent invasions of your personal space

(the exact definition varies quite sharply from one country to another). Privacy can

extend to families but not to legal persons such as corporations.” 9

NIST references United States Code (U.S.C.) to define confidentiality:

“Preserving authorized restrictions on information access and disclosure, including

means for protecting personal privacy and proprietary information.”10

Personally identifiable information (PII)

Since our work focuses on protecting data with PII, we look at how PII is described in the

following privacy laws and directives:

• The Personal Information Protection and Electronic Documents Act (PIPEDA) in Canada

• The Health Insurance Portability and Accountability Act (HIPAA) in United-States (US)

• General Data Protection Regulation (GDPR) in European Union (EU)

• National Institute of Standards and Technology (NIST), Guide to Protecting the Confidential-

ity of Personally Identifiable Information (PII), SP 800-122

PIPEDA is a Canadian law that governs how private businesses should collect, use and disclose

personal information11. In PIPEDA, PII is defined as follows:
8R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems, Wiley, 2001
9Anderson, p. 10

1044 United States Code, Section 3542(b)(1)(B), 2008
11Personal Information Protection and Electronic Documents Act, S.C. 2011, c. 5 3 (Can.). PIPEDA regulates the use

13



“Personal information is data about an “identifiable individual”. It is information that

on its own or combined with other pieces of data, can identify you as an individual.”12

Examples of PII are given as:

• race, national or ethnic origin, religion,

• age, marital status,

• medical, education or employment history,

• financial information,

• DNA,

• identifying numbers such as your social insurance number, or drivers licence,

• views or opinions about you as an employee.

Health Insurance Portability and Accountability Act (HIPAA) establishes policies for maintain-

ing privacy and security of individually identifiable health information in U.S. It consists of HIPAA

Privacy Rule and Security Rule. Under Privacy Rule, it regulates the use and disclosure of what

is known as protected health information (PHI), similar to PII. Examples of PHI are: Individuals

past, present, or future physical or mental health or condition Provision of health care to the indi-

vidual Medical record, laboratory report, or hospital Names Addresses Birth dates, Social Security

Numbers.

On the official website (HSS.gov - Methods for De-identification of PHI 2015), a guidance is

given on how to proceed with de-identification of PHI in accordance of HIPAA. HIPAA Privacy

Rule gives its citizens rights to inspect, review, and receive a copy of its medical and billing records

which are held by health plans and health providers.

National Institute of Standards and Technology has published a guide “Guide to Protecting the

Confidentiality of Personally Identifiable Information (PII) (SP 800-122)”, and according to their

guide, PII is defined as follows:

of personal information by federal organizations and data flows between Canadian provinces. Id. 23(1)23(3).
12Summary of privacy laws in Canada, Office of the Privacy Commissioner of Canada: https://www.priv.gc.
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“PII is any information about an individual maintained by an agency, including (1)

any information that can be used to distinguish or trace an individuals identity, such as

name, social security number, date and place of birth, mothers maiden name, or bio-

metric records; and (2) any other information that is linked or linkable to an individual,

such as medical, educational, financial, and employment information.” 13

NIST goes further by providing details on how to quantify PII in an organization because a breach

of 25 records does not have the same impact as 25 million records. It also provides details about the

importance as SSN is more sensitive than a phone number or a ZIP code. NISTs guide also provides

a concrete example of network monitoring with its second example of “Intranet Activity Tracking”,

section 3.3.2. Here are some examples of PII fields that can be collected from intranet networks:

• The user’s IP address

• The Uniform Resource Locator (URL) of the web site the user was viewing immediately

before coming to this web site (i.e., referring URL)

• The date and time the user accessed the website

• The web pages or topics accessed within the organization’s web site (e.g., organization’s

security policy).

General Data Protection Regulation (GDPR) is a regulation about data protection on the privacy

of all individuals within European Union countries. It takes the place of previous known Data

Protection Directive and is suppose to take effect starting from 25th May 2018. GDPR main goal

is to protect and give control of personal data to EU citizens by encouraging companies to follow

“privacy by design” approach during the software development life cycle (SDLC). This regulation

affects companies outside of EU, such as Facebook or Google, because they are managing personal

data from individuals within the EU.

In GDPR, it is suggested to use pseudonymization and encryption of personal data. Pseudonymiza-

tion is defined under GDPR as:

ca/en/privacy-topics/privacy-laws-in-canada/02_05_d_15/#heading-0-0-1/
13This definition is the GAO expression of a amalgam of the definitions of PII from OMB Memorandums 07-16 and
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pseudonymization means the processing of personal data in such a manner that the

personal data can no longer be attributed to a specific data subject without the use

of additional information, provided that such additional information is kept separately

and is subject to technical and organizational measures to ensure that the personal

data are not attributed to an identified or identifiable natural person;

GDPR’s definition of PII

GDPR defines personal data as follows:

“’personal data’ means any information relating to an identified or identifiable natu-

ral person (’data subject’); an identifiable natural person is one who can be identified,

directly or indirectly, in particular by reference to an identifier such as a name, an iden-

tification number, location data, an online identifier or to one or more factors specific

to the physical, the physiological, genetic, mental, economic, cultural or social identity

of that natural person;”14

Defense of Homeland Security (DHS) has published its Handbook for Safeguarding PII and

it has grouped them in two categories: direct(stand-alone) PII and indirect(if paired with another

identifier).

2.4 Anonymization, pseudonyimzation and searchable encryption

2.4.1 Pseudonymization and anonymization

There is a subtle difference between pseudonymization and anonymization. NIST defines anonymiza-

tion as follows:

06-19. GAO Report 08-536, Privacy: Alternatives Exist for Enhancing Protection of Personally Identifiable Information:
http://www.gao.gov/new.items/d08536.pdf.

14European Parliament and Council, ”Regulation (EU) 2016/679 of the European Parliament and of the Coun-
cil of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text
with EEA relevance), Chapter 1, Article 4,” May 2016. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX 32016R0679&from=EN#d1e1489-1-1
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“process that removes the association between the identifying dataset and the data sub-

ject.” 15

with a more detailed explanation in reference to ISO’s ISO/TS 25237:2008(E).

“NOTE Anonymization is another subcategory of de-identification. Unlike pseudonymiza-

tion, it does not provide a means by which the information may be linked to the same

person across multiple data records or information systems. Hence reidentification of

anonymized data is not possible.”

Definition of pseudonymization and comparison with anonymization is given by ISO 16 as fol-

lows:

Pseudonymization (from pseudonym) allows for the removal of an association with

a data subject. It differs from anonymization (anonymous) in that, it allows for data

to be linked to the same person across multiple data records or information systems

without revealing the identity of the person. The technique is recognized as an impor-

tant method for privacy protection of personal health information. It can be performed

with or without the possibility of re-identifying the subject of the data (reversible or

irreversible pseudonymization).

While GDRP’s definition of pseudonymization is as follows:

’pseudonymization’ means the processing of personal data in such a manner that the

personal data can no longer be attributed to a specific data subject without the use of

additional information provided that such additional information is kept separately and

is subject to technical and organizational measures to ensure that the personal data are

not attributed to an identified or identifiable natural person.
15ISO (International Organization for Standardization). Health informatics-Pseudonymization. Geneva, Switzerland:

ISO; 2008. (ISO/TS 25237:2008).
16International Organization for Standardization - ”Pseudonymization” new ISO specification supports privacy pro-

tection in health informatics: https://www.iso.org/news/2009/03/Ref1209.html
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Definition of anonymization has stronger ties to privacy than pseudonymization because it sup-

poses that the re-identification of anonymized data is impossible even if the attacker attempts to link

data to the same person across multiple data records, as defined in NIST’s guide which implies a

reduction in data utility.

Pseudonymization, on the other hand, can be achieved by using encryption schemes such as

AES encryption scheme adapted for deterministic encryption because we need to keep consistency

between the individual’s data.

We conclude that pseudonymization is weaker than anonymization because of two reasons. First,

because it is deterministic, but anonymization should be non-deterministic for higher confidentiality.

Second, pseudonymized information can be de-anonymized to its original value based on a secret

key(i.e., two-way function encryption function) while we consider anonymization as a one-way

function and once anonymized, cannot be de-identified or de-anonymized.

2.4.2 Anonymization

Anonymization is a process of de-identification of data about an individual on a dataset. It

is generally applied before publishing data to the public. Anonymization of health-care data has

been done very often in the past for research studies. Two known algorithms for anonymization are

k-anonymity [26] and Differential Privacy(DP) [28].

k-Anonymity

A dataset is said to have k-anonymity of at least k-1 when each record is indistinguishable from

the other k-1 records. This is achieved through suppressing, generalizing or aggregating fields for

which a set of policies have been set. [26, 27] anonymization consists of the following policies:

• Suppression: fields are replaced with a constant or are completely dropped.

• Generalization: fields are replaced with more generic values such as a range of approximate

general value
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Differential Privacy

The authors [35] describe Differential Privacy(DP) as “Differential privacy is a formal math-

ematical framework for guaranteeing privacy protection”. DP has been created to provide more

robust protection against de-anonymization attacks such as adversaries with auxiliary databases or

information, against linkage attacks. Linkage attack is defined in [28] as follows: “re-identification

of one or more records in a de-identified dataset by uniquely linking a record in a de-identified

dataset with identified records in a publicly available dataset.” The intuition behind DP is to output

data in a way that even if data about one individual is added or removed, anonymized results will

not deviate too much from the original dataset. DP is a probabilistic anonymization technique and

uses Laplace distribution for noise calibration.

2.4.3 Searchable encryption

Searchable encryption (SE) is another line of research. SE enables users to store data on a

remote database server in an encrypted format while preserving searching capabilities. Data and

indexed keywords are encrypted from the client-side and are sent to the server residing on the

cloud. The secret key always resides on the client-side and is never shared with the server. The user

can query the server by re-encrypting his/her keywords and sends them to the server to be searched

on the encrypted index. Finally, matched results are returned to the client-side to be decrypted.

Generally, a symmetric encryption (e.g., AES) type is used because it can achieve better encryption

and decryption performances. Many works rely on deterministic encryption so that ciphertexts can

be compared to each other inside the databases. Searchable encryption is useful in contexts where

sensitive data is stored to a cloud provider, who is a trusted but curious party.

Order Preserving Encryption (OPE)

Order preserving encryption (OPE) was introduced in [56] in 2004. OPE algorithm is con-

structed based on “hypergeometric distribution”, a discrete probability distribution used in statis-

tics. Their scheme is limited because it is only applicable to numeric data and has not provided any
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provable security definition. Boldyreva et al. [57] presented their OPE scheme with IND-OCPA (in-

distinguishability under ordered plaintext attack) and came with an ideal goal as: order-preserving

encryption should not leak anything other than the order of clear text messages and ciphertexts. In

other means, if message a > b, then enc (a) > enc (b) . This implies that OPE scheme is weaker

than the deterministic encryption (DET) scheme because it leaks the order of plaintexts. In 2013,

Boldyreva et al. [58] published an improved version of OPE scheme where they described that their

previous scheme [57] leak not only the order between cleartexts and ciphertexts but also the dis-

tance and location between them. They proposed a new Modular OPE scheme which adds a secret

modulo on the message space during message encryption hiding the location data points. Popa et al.

[59] came with a mutable Order Preserving Encryption (mOPE) which essentially modifies some

encrypted ciphertext for some message values, more specifically when B-Tree data structure used in

mOPE need to be balanced during the merge or split operations of a node. P. Grubbs et al. [66] and

N. Mohammad et al. [68] have published attacks and raised many further concerns in previously

published OPE schemes.

Format Preserving Encryption (FPE)

Format-preserving encryption (FPE) is an encryption scheme that generates output (i.e., cipher-

text) in the same format as the input in plaintext [61, 62]. The motivation behind FPS originates

from problems where legacy systems require a specific format of inputs to be provided to operate,

for example, the social security numbers or credit cards used in banking systems. Credit card num-

ber consists of 16 digit numbers (e.g., 1234567890123456) only whereas AES encryption scheme

generates binaries which are encoded into base64 (e.g., MTIzNDU2Nzg5MDEyMzQ1Ng==) or

hexadecimal value (e.g., 0x313233343536373839303132333435360a) which are alphanumeric and

different lengths. Format-Preserving Encryption, they describe as FPS as follows:

The goal is this: under the control of symmetric key K, deterministically encrypt a

plaintext X into a ciphertext Y that has the same format as X

Brightwell and Smith have been the first to introduce formal FPE in 1997 [61]. Today, this area

of research is also more active because the demand for FPE has increased dramatically in the last
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years. Black and Rogaway have contributed by introducing three methods: “Prefix Cipher”, “Cycle-

Walking Cipher” which is similar to prefix cipher and “Generalized-Feistel Cipher” based on Feistel

construction and Data Encryption Standard (DES) as the underlying pseudo-random function (PRF).

Improved version of FPE are constructed based on Feistel network AES instead of DES, which of-

fers better security. There exist already three modes of FPE schemes submitted to National Institute

of Standards and Technology (NIST). They are abbreviated as FF1, FF2 and FF3 which were sub-

mitted to NIST under the name FFX[Radix] , VAES3 and BPS respectively. FF1, FF2 and FF3 are

Feistel-based encryption modes, but the National Security Agency (NSA) has advised NIST that

FF2 did not provide the expected 128 bits of security strength which resulted in its removal and has

been confirmed by NIST cryptographers later. On 12 April 2017, NIST concluded that FF3 is also

no longer safe because of the vulnerability which has been identified by B. Durak and S.Vaudenay.

Hashing SHA-2

Hash function is a one-way (i.e., hash value cannot be decrypted to get back to the original value)

function which generates a fixed-size hash value. We do not rely on hash function because in some

use cases, customers (data owners) might request to be able to see data in a clear text format. This

case causes conflicts with hash functions because once sensitive information is hashed and stored in

a database, we cannot get back the original value if we do not store somewhere the original value. In

our case, we might get original value from a raw log field. Keyed-hashing (secret information) and

salts (public information) can be used as measures to reduce attacks on small domains, or guessing

attacks using precomputed hash tables.

Deterministic encrytion

Deterministic (DET) encryption is a form of encryption where for the given two same inputs:

message m and secret-key sk, will output identical ciphertext c. It is generally used in searchable

encryption schemes so that encrypted indexed keywords can be matched when user submits a query

(search)[74, 64]. Searching on encrypted indexes requires an encryption scheme to be deterministic

and can be used in AES-CBC mode by fixing the initialization vector (IV) to the same consistent

value, which makes it insecure a result. The reason is that it does not meet semantic security and
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does not resist a chosen-plaintext attack (CPA) attack model of cryptanalysis, in which the attacker

can choose his/her arbitrarily plaintext to encrypt and will receive its ciphertext. Deterministic

encryption is vulnerable to statistical attacks, inferencing and when cross-referencing but has been

used very often in searchable encryption [67] and searchable encrypted databases [64].

IP traces anonymizers

Greg Minshall proposed TCPDpriv in 1996 to anonymize IP traces which are collected by mon-

itoring and listening on network interfaces. One way to collect network traces is by using Tcpdump,

a command-line packet-analyzer available on Unix-like operating systems. TCPDpriv keeps track

of a pair of original and anonymized IP addresses in a table. When a new IP address is encountered,

it looks in its cache to check if it has ever been seen earlier. When a match occurs, the prefix of

the IP address is anonymized using the same longest prefix of the existing anonymized prefix and

the remaining parts of the IP addresses are generated randomly. This implies that anonymized IP

addresses are generated non-deterministically [37].

Crypto-PAn [51] was later introduced as an improvement to TCPDpriv. Crypto-PAn is a crypto-

graphic prefix-preserving pseudonymization tool. It relies on AES symmetric cryptography-based

encryption scheme to anonymize IP addresses which implies that it uses a secret key to anonymize

an IP address. Prefix-preserving property is necessary to preserve the utility of the IP traces by pre-

serving the relationship of IP addresses to their network segments. Crypto-PAn generates outputs

deterministically, which is a useful attribute if searching functionality is needed. Crypto-PAn has

only a one-way function and this is why we do not consider it as a pseudonymization function, since

we cannot get the original IP address value based on the anonymized IP address and its secret key.

CryptopANT [31] is an updated version of Crypto-PAn based algorithm which has been imple-

mented by University of Southern California (USC)/ISI ANT project with many additional features.

It offers a two-way function, implying that with a correct secret-key, we can anonymize an IP ad-

dress or de-anonymize the already anonymized IP address back to its original state. CryptopANT
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offers other functionalities such as pseudonymization of IPv6 and MAC addresses, caching for bet-

ter performances and multiple encryption functions such as Blowfish, AES, SHA1SUM, MD5SUM.

It is written in C language, and its source code is available from its official website [31] and GitHub

[32]. The drawback is that there is no official document that describes its limitations, weaknesses

or formal security analysis. We prefer CryptopANT over Crypto-PAn because CryptopANT is a

two-way function allowing us to retrieve the original value from the pseudonymized one, whereas

with Crypto-PAn we cannot.

Active attacks as demonstrated in [39] can defeat anonymizers such as Crypto-PAn or Cryp-

topANT because of their deterministic attributes. We refer this attack to the chosen-plaintext attack

(CPA) model in cryptanalysis.

The anonymization of IP traces can be useful in situations were signature based IDS are used

to detect attacks and which will also record related packets. The analysts will then use any packet

analyzer to do their analysis to learn more about the attack. However, as these packets consist of

sensitive information, we also must not anonymize fields that might contain sensitive personal data.

This refers to the action step 9 from the SOC analysts activity diagram (Section 5.1).

SCRUB-tcpdump [38] is an anonymization tool that extends multiple functionalities to Tcpdump.

It offers different types of settings and granularity to which various fields can be anonymized and

not only limited to the IP address field as in many other related works. For example, fields that can

be anonymized are MAC addresses, network types, PCAP timestamps, IP addresses, IP transport

protocol, ports, and various data types found in the payload such as IP address, hostname, URLs,

filenames, email addresses, common people’s names, DNS queries, DHCP queries, ARP requests,

HTTP/HTTPS headers, SMTP headers RTP/RTCP information, FTP fields, IM information. For

each of these fields, different anonymization options are available such as: left alone (no anonymiza-

tion), black marker, random shifts (for timestamps), values set to 0 (for numeric values). They cite

the work [40] by Coull et al. in which they describe that between 28% and 100% of targeted servers

were de-anonymized by using 1) sensitive network topology and 2) monitored hosts behavior infor-

mation such as DNS records, public information from search engines. These two information was
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extracted using only anonymized IP addresses and ports and this is why SCRUB-tcpdump focuses

on offering a wide range of fields that can be anonymized. In [42], the authors proposed a tool

called “Framework for Log Anonymization and Information Management” (FLAIM) to anonymize

collected network traces [43] to measure the utility and privacy tradeoffs. They concluded that it is

mostly the question of which sensitive field was anonymized and not which anonymization method

was applied that affects the utility of anonymized network traces. The most important fields were

the IP addresses and ports.

In a more recent research work by Mohammady et al. [47], they present a multi-view based

solution to solve Crypto-PAn’s vulnerability to semantic security cryptanalysis. In their work, they

shift the tradeoffs from privacy and utility to privacy and computational costs. The intuition behind

their work is to create fake views (groups of packets) with fake collisions that share prefix-preserved

IP addresses becoming indistinguishable to the attacker from real views. Their work is inspired by

differentially-privacy (DP) methodology.

We believe that their approach is too limited because they focus solely on the IP address field

to protect user’s privacy, which is rarely the case in the real world use case scenarios. As described

in [42, 68], other fields such as ports, payloads and other packet’s signatures can tell a lot about

monitored devices and relying only on IP address is not sufficient for privacy protection. It re-

quires deeper analysis with a more holistic approach by taking other fields (i.e., potential indirect

identifiers) into consideration.

There exist many de-anonymization works [44, 45] showing that anonymization is harder than

thought because even when sensitive data is anonymized, other attributes, such as full name, phone

number, address, institutional identifiers or any other field could still lead to personal identification.

Researchers were still able to single out records and apply to cross-referencing on available auxiliary

information.
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Chapter 3

Related works

Anonymization on security logs

In [46], Zhang et al. present how collected security monitoring logs with sensitive PII can be

anonymized. In their work, they present three methods for each of the following fields they consider

as PII: IP address, timestamps and open ports.

Specifically, for the IP address field, they propose:

• Truncation: This technique is based by dropping the rightmost (least significant) bits of the

IP address so that the network range is preserved, but the exact device cannot be identified.

• Random permutation: This method will generate a random IP address in a deterministically

based on the seed. The weakness is that the prefix of the IP address is not preserved means

that two IP addresses from the same network will not result in the anonymized IP address

with a shared network range.

• Prefix-preserving pseudonymization: Prefix-preserving algorithms already exist such as Crypto-

PAn [51], TCPdpriv [29] and CANINE [30]. They are used for different use cases, for

example, TCPdpriv anonymizes private information from Tcpdumps whereas Crypto-PAn

anonymizes IP address but is a one way function because it does not offer the possibility to

retrieve an original IP address with the secret key.

For the field timestamp, they propose:
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• Time unit annihilation: Timestamps and duration units such as year, month, day, hour, minute

and seconds can be dropped. In the case of minute unit annihilation of a timestamp, related

durations must be adjusted accordingly.

• Random time shifts: In random time shifts, all related timestamps events can also be shifted

so that relative date and time are preserved in the relation of each event. Relative date and

time are of greater value than knowing exactly when an event has occurred.

• Enumeration: This method consists of applying random time on the earliest event timestamp

and shifts all following events timestamps equidistantly and retaining the same sequence order

of the events. One weakness when applying this method is if collected event logs are not

arriving in pre-sorted time.

Also for the field ’open ports’, they propose three types of anonymization methods:

• Bilateral classification: If the open port number is smaller than the port 1024 (well-known

ports), they are classified as ’known services’ and greater than the port number 1024 is con-

sidered as ’ephemeral ports’. This method is analogous to IP address ’truncation’ method.

• Black marker: In this method, open ports are replaced with a constant such as no port number

information is revealed.

• Random permutation: Random permutation implies replacing any port number (0 to 65,535)

to another mapped port number. The authors also warn that the weakness of this method is

that the adversaries are able to determine the real port number by analyzing port patterns or

by analyzing their frequency. For example, any frequent random port number can be mapped

to open port 80 or 433, because these are well-known ports which are used when users are

navigating the web.

Searchable encryption

The first practical SE scheme was introduced in [69] in 2000; the authors demonstrate how to

construct a SE scheme in a single-writer and single-reader setting. It encrypts each word in the same

order as they are encountered in the document without the use of any index, making it inefficient
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for searching but more simple because no index needs to be updated. The size of the ciphertext also

increases very quickly because it needs to be normalized to a fixed-size length (e.g., 32 bytes). The

weaknesses are that the attacker can discover which document has which words after several queries

due to statistical attacks and the access location of the encrypted words in the encrypted document

are leaked, but the authors are aware of this issue and propose to randomize the ciphertexts location

for each word.

An index-based keyword search was introduced in 2003 by Goh [70] and by Chang and Mitzen-

macher [71] in 2005. This solves the problem of fixed-size ciphertext length. Their works greatly

improved searching performance to constant time. Goh uses a secure z-index data structure for the

index per document built on top of Bloom filters and pseudorandom functions PRF. Bloom filters

enable searches in constant time and are practical for applications that need to search on a large

amount of data. On the other, Bloom filters have only the function append (or add) and can return

false positive results because it verifies if the searched value is: (1) possibly in the set or (2) certainly

not in the set.

Chang and Mitzenmacher [71] on the other hand make use of masked index based on cryp-

tographic primitives (e.g., Pseudorandom Function PRF and Pseudorandom Permutation PRP) in

which for each document we can find a set of all words from all documents. Each document will

have a pseudorandom string Gri (1) XOred to a binary 0 or 1 depending on the presence of n word

in the document. If “1” is returned, then the server will return “E(k, D1)” as output. Because each

document will have the same number of encrypted words for all documents, the attacker is not able

to deduce the size of keywords in each document.

In 2006, Curtmola et al. [72] introduced an inverted index with key as unique words and value

as sequence of document identifier (e.g., “word1”:[“identifier1”], “word2”:[“identifier1”, “identi-

fier2”]). Their cryptographic scheme offers search time in a sublinear time. They achieve a stronger

security threat model with an adaptive adversarial model. Their data structure consists of an array of

distinct keywords w(i) which contains a linked list of documents of node consisting of (documen-

tId—key(i,j)—nextNodePtr) where documentId is the document’s identifier, key(i,j) for i-th word
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of j-th document and nextNodePtr, a pointer to the next node. This design and structure restricts

parallel computation and is of great complexity for implementation.

In 2013, David Cash et al. [73] proposed a scalable SSE protocol which can scale to a very large

data sets. It supports sub-linear searching capabilities with conjunctive and boolean queries. Their

structure relies on the hardness of the decisional diffie-hellman (DDH) problem by precomputing

the encrypted database index to achieve oblivious computation. Using this method, their client can

achieve a single round of interaction with the server, thus reducing the leakage to the adversary on

the server-side.

A survey by Bösch et al. [74] provides a general overview of SE with two main techniques:

Searchable Symmetric Encryption (SSE) and Public Key Searchable Encryption (PKSE) whereas

the recent survey Poh et al. [75] covers SSE more in-depth, which also provides excellent general

high-level categorization.

Homomorphic Encryption

Homomorphic Encryption (HE) was first introduced in 1978 by Ronald L. Rivest et al. [76] at

the MIT shortly after R. Rivest, A. Shamir, and L. Adleman have invented the asymmetric cryp-

tographic algorithm, RSA R. L. Rivest et al. [77]. HE is a powerful form of encryption, enabling

computation on encrypted data directly, which generates new encrypted results that when decrypted

will match as if the evaluation has been executed on clear data. HE is one of the most desired kinds

of encryption because it is the most general solution that can be applied in many different contexts.

In 2009, Craig Gentry introduces a first viable solution [78] to Fully Homomorphic Encryption

(FHE) problem for his phD dissertation. He describes FHE as follows: “At a high-level, the essence

of fully homomorphic encryption is simple: given ciphertexts that encrypt π1, π2, . . . , πt , fully

homomorphic encryption should allow anyone (not just the key-holder) to output a ciphertext that

encrypts f(π1, π2, . . . , πt) for any desired function f, as long as that function can be efficiently

computed. No information about π1, π2, . . . , πt or f(π1, π2, . . . , πt), or any intermediate

plaintext values, should leak; the inputs, output and intermediate values are always encrypted.” [78]

In previous research works, lots of contributions were made on Partially Homomorphic Encryp-

tion (PHE) or Somewhat Homomorphic Encryption (SHE), a weaker set of HE. All previous works
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allowed one type of operation: addition or multiplication, characterizing them as PHE, whereas

SHE combines addition and multiplication but is limited in the number of operations that can be

performed and this is why PHE and SHE are a weaker type of encryption. This is why Craig Gen-

try’s breakthrough has been significant awakening the research community to explore more deeply

the FHE line of research. HE has been used in searchable encryption problems but has been less at-

tractive because HE imposes high computational costs. Consequently, interests are shifting to other

cryptographic schemes (i.e., SSE, OPE/ORE, ORAM) which are less secure but more practical and

efficient.
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Chapter 4

Threat model and architectures

In this section, we first provide an overview, and then explain our threat model and present our

architectures

A main challenge to the existing practice by MSSPs is that a large volume of event logs are col-

lected and recorded or persisted by MSSPs without applying any de-identification mechanisms or

privacy protections. A large number of collected event logs consist of personally identifiable infor-

mation that is not sufficiently protected in case of data breaches (a few data breaches are mentioned

in the section below).

It is a challenging problem because security operation center (SOC) analysts sometimes need to

see sensitive information in clear while at the same time such information clearly requires to be

protected against privacy violations, a problem implies tradeoffs between privacy and utility.

Collected logs are analyzed by the SOC analyst team to identify any potential attacks and mitigate

them when necessary. SOC analysts are not required to see PII information in the clear at all the

time during their duty. We will explore in detail how frequently the SOC analysts might need to

know sensitive information about its customers and in which situations.

This problem is important since the disclosure of sensitive information may have serious legal

and financial consequences. For instance, under General Data Protection Regulation (GPDR), com-

panies can be fined of up to 2 million euros or %4 of annual global turnover, whichever is higher
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if they do not comply. GDPR is more strict and general privacy regulation than “Health Insurance

Portability and Accountability Act” (HIPAA) because it affects businesses across all sectors, while

HIPPA affects only the health sector in the US. Organizations must be GDPR compliant if they are

doing business in the EU and are collecting sensitive information about citizens living in the EU.

More specifically, in article 25 of GDPR [18], entitled “Data protection by design and by default”

organizations that are processing sensitive data must implement appropriate technical measures to

reduce any risks or likelihood affecting natural person rights and freedom. This requirement is sim-

ilar to “privacy by design” 1 principles. These measures include data minimization, collecting only

data about individuals that are needed for a specific purpose, privacy settings need to be activated

as default settings and use encryption and pseudonymization to protect collected sensitive data. It

also requires organizations to implement measures such that by default, sensitive data is protected

and available only to a limited number of people that are required to see collected sensitive data for

a specific amount of time.
1A. Cavoukian.: Privacy by design the 7 foundational principles. Technical report, Information and Privacy Commis-

sioner of Ontario (January 2011) (revised version)
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4.1 Objectives

Our main goal is to protect any personally identifiable information in logs while facilitating the

security analysis. A large number of event logs and security systems logs collected by the security

provider from its customers’ network consist of PII. These PII can be found in network flows even if

the communication is encrypted. PII can be found in software and application logs, system security

logs and other middleware devices logs such as firewalls or VPNs.

In our context, we focus principally on event logs that are generated by individuals and employ-

ees during their work time (e.g., browsing the Internet, email communications, instant messaging

communication, connecting to VPNs). PIIs that are collected by the security provider from its

customers can also originate from cloud providers (e.g., Amazon Web Services, Google Cloud,

Microsoft Azure) if the customer has critical, valuable assets that need cybersecurity monitoring

protection.

Sensitive logs can contain information from customers’ clients too. For example, a security

provider’s customer could be a vehicle insurance company or a telecommunication company that

might be willing to share its logs relating its customers against insider threat attacks to be monitored.

These might include PII from a car owner consisting of names, addresses, vehicle identification

number (VIN), plate numbers.

Sensitive PII information such as names, IP addresses, URLs, GPS locations or browser signa-

tures collected from various data sources are not always initiated by an individual’s activity or cannot

be related to an individual. Today as we have increasingly more automated software (programs) and

IoT devices designed to exchange data and are triggered based on a recurring time schedule and

based on a specific event from the external world detected by its sensors. We cover more in detail

other identified fields based on the use cases in section 6.1.
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4.2 Threat model description

As seen below, our threat model consists of four components. The first component, “Security

Provider”, is considered as trusted (in green) and it collects sensitive personal data from multiple

organizations, which are its customers.

The third-parties are providing REST API solutions for threat intelligence. This component

interacts with Security Providers’ platform by querying the third-party services to verify if any sen-

sitive personal information has been breached or has any relations with any malicious adversary.

“Parent Company of SP” would require to have access to the security providers platform for the

general overview and security posture of its customers and in order to be able to track the perfor-

mance of its analysts.

In our threat model, we consider that analysts are honest but curious, and we explore the area if

analysts are still going to be able to analyze collected security logs that are anonymized. Similarly,

for users or managers from sister or parent company or third-party services’ are not trusted and

should not have the permission to see data in clear, but only anonymized. Trusted users, in green

colour, can read all data in a clear data format, including sensitive PII data. Trusted users need

to have access to the platform to consult monthly reports, see collected events and raised alerts or

consult incidents. Trusted users are generally in a limited number per team, with higher privileges

and higher roles than, for example, SOC Analysts.

The platform simulates data ingestion from its sensors and events logs are transmitted through

Apache Kafka. It processes them in Apache Spark and persists them in Cassandra database. We

also built a user interface web application in Angular to retrieve data from the Apache Cassandra

database using Java Spring Framework REST API. Our main goal is to examine the possibility of

allowing analysts to analyze collected security event logs enabling them to continue to do their duty

as SOC analysts they usually would.
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4.2.1 Threat model

We assume that collected event logs in clear text, which orginate from customers’ systems and

networks, needs to be protected against the following users or systems:

• SOC Analysts

• Third-party services

• Parent or sibling organizations

• Any other malicious or unauthorized user

We also assume that the SOC analysts that are honest but curious in the sense that they might be

motivated to look into sensitive data about other people which could lead to cause them harm (i.e.,

impersonation, blackmailing, disclosure of private information, manipulation of their opinion). This

also applies to users with insufficient privileges from the customers’ site.

Figure 4.1: General overview of our threat model
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In our threat model, we have two types of users.

• Trusted user are users with a role such as a SOC manager and are allowed to read any

sensitive data in the clear-text from their console.

• Semi-trusted user with a role such as SOC analysts is not allowed to read sensitive data in

the clear-text; they can only see anonymized or pseudonymized data.
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4.3 Presenting architectures

4.3.1 Architecture 1 - Classical architecture (without anonymization)

As shown in Figure 4.2, in this architecture, raw logs are collected from the customer’s site, and

are forwarded by the sensor to the cloud providers infrastructure without any anonymization. The

information in the logs is mapped into each field and are persisted. A web application collects the

logs from DB to be displayed to the analysts.

Figure 4.2: Classic architecture - private keys managed by MSSP
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4.3.2 Architecture 2 - Anonymization on SIEM

As shown in Figure 4.3, in this architecture, raw logs are collected from the customer’s site and

are forwarded by the sensor to the cloud provider’s infrastructure. After the raw logs are collected

in the security providers infrastructure, each information is mapped into each field. Extracted PII

fields can be identified to which anonymization functions are applied. After the PII fields have been

anonymized, they are persisted. A web application collects the logs from DB to be displayed to the

analysts.

Figure 4.3: Classic architecture - private keys managed by MSSP

In this architecture, secret keys are stored and managed by the security provider’s infrastructure,

and as anonymization functions are applied on each field and are persisted in the database, they also

need to be decrypted for the users who need to be able to see that data in the clear text format. Secu-

rity Provider holds the secret key and customer’s do not have a guarantee that collected monitoring

data which consists of sensitive PII has not been accessed in clear.

An attacker that has breached in the Security Provider’s system and is listening passively on the

customer’s infrastructure can also see data in clear before it is being encrypted or anonymized using

a secret key.
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4.3.3 Architecture 3 - Private key managed on the sensor

As shown in Figure 4.4, in some instances, customers might like data never to leave their net-

work. When data collected by the sensor is persisted on the sensor’s database, we call those “on-site”

architecture because collected data is never persisted outside of the customer’s network.

Figure 4.4: Architecture 3 - private keys managed on the sensor (MSSP)

4.3.4 Architecture 4 - Private keys managed by the customer

In this architecture, more computational effort is shifted to the customer. As shown in Figure

4.5, the software needs to run on the customer’s site and the client must have full control of the

software code, which receives event logs and extracts the fields. PII fields are then identified, and

anonymized or encrypted using secret-key only known by the customer. Sensitive PII fields values

are then encrypted on the client’s site and are forwarded to the sensor, which redirects them to the

security provider’s infrastructure.
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Figure 4.5: Architecture 4 - private keys managed by the customer

Secret keys that are used to encrypt sensitive PII are stored in the DB and are encrypted so that

even the Security Provider does not have access to them. The secret key is then retrieved from

SIEM’s database and is decrypted to be used by the SOC Manager or specific SOC analysts who

need to be able to decrypt sensitive PII data in order to access them in a clear text format.
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Chapter 5

Modelling use cases

5.1 Real-world use case study of network security monitoring

Our research is based on the user case scenarios of a real-world Network Security Monitoring

(NSM) provider. To understand and model such scenarios, we have obtained first-hand information

and experiences from the analysts of the NSM provider through extensive meetings and discussions.

We then analyze the obtained information to categorize them info different use case scenarios.

Finally, we devise our models to more precisely depict such scenarios to facilitate further studies.

We present and describe available actions by the analysts from their platform/console. We then

detail the investigation types by describing each of them with five use cases as follows:

• Use case 1: Data breach through malicious code execution (MC)

• Use case 2: External vulnerability scan (EVS) / Reconnaissance

• Use case 3: Insider attack

• Use case 4: Distributed Denial-of-Service (DDoS)

• Use case 5: Policy violations

In each use case, based on the analysis of the raised alerts, the analyst will be analyzing the alerts

and looking for true positive which could lead to a potential threat undermining client’s security.
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5.2 The use case scenarios

In modeling the use case scenarios, our goal is to understand and determine if the analysts will

be able to perform their analysis work based on pseudonymized or anonymized PII fields as if they

were visible in cleartext and if not, we must understand why. We are interested in two types of

privacy protection: pseudonymization and anonymization, as described in tables 5.1 and 5.2, and

Figure 5.1.

Action ID Description

A Analyst visualizes General Overview with live alerts (alerts to be analyzed) for a client. Alerts are

grouped/aggregated ordered by severity, time, rule name, src/dst IP or Port with other fields. They can

be represented in different forms (listed, grouped, in charts or geographical maps)

B Analyst selects grouped alerts or single alert and clicks on Acknowledge classifying the alert as false

positive (FP).

C Analyst clicks on Show more details for the selected grouped alerts to display detailed View of the

alerts payload, raw logs including all fields available fields (e.g., timestamps, protocol, URL, username,

) depending on the alert or event type.

D Analyst selects a single alert, set of alerts or grouped alerts that he/she classifies as a true-positive attack

(or even a potential threat) and clicks on Create New Incident or Add to existing Incident if an Incident

already exists for the same investigation. This will inform the client of the situation.

E An analyst can see alerts payload in their preferred packet analyzer client (e.g., Wireshark) in order to

understand more deeply the communication that has caused the alert to raise.

F Analyst requests more information from a client. For example, if the analyst does not have enough facts

to confirm if the attack is a true-positive, he can ask a client for more information.

G Search the web for more information about threat intelligence feeds [2] for specific IP address, domain,

or even online analysis of unknown files. These features are today generally integrated part of the SIEM

or NSM platform which enriches more useful information to the analyst.

H The analyst performs an advanced custom search on archived alerts with specific conditions such as

source type (e.g., NIDS/HIDS, firewall log, application logs, router logs), fields/attributes conditions

(e.g: IP, Port, Protocol, Payload/Content, Message) and/or regex keyword search.
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I Requests to display all related information to the network device such as last activity (last time it was

exchanging network data), open ports, services, OS, last scans and discovered vulnerabilities.

Table 5.1: List of action IDs with their descriptions

Figure 5.1: Activity diagram of the SOC analysts
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Investigation

Abbreviation Investigation

Type Name Investigation Type Description

BFA Brute Force Attack Brute-force-attack consists of trying as many possible password

combinations until a match is found, generally by trying all com-

binations. It is also considered as the least efficient way to crack a

password.

DDoS Distributed Denial of Service DDoS is a type of attack in which the attacker overwhelms victims

targeted system(s) resources (e.g., bandwidth, memory, CPU) result-

ing in downtime or degradation of its services.

EVS External Vulnerability Scan The attacker is scanning all “open ports” from its target in order

to identify exploitable vulnerability so that get can gain access and

control.

MC Malicious Code Attackers’ malicious program (e.g., worm, malware, trojan-horse)

that is successfully installed on a victims computer allowing the at-

tacker to have control of it.

AA Abnormal activities Four categories of Snort alerts [25]; miscellaneous activity, miscella-

neous attack, access to vulnerable web applications, and detection of

TCP connection in the clients network are grouped together forming

this category.

PV Policy Violation Alerts that are raised because adult contents were accessed or be-

cause peer-to-peer (P2P), social network websites were accessed.

OTH Others Alerts that are not part of any listed category (uncategorized).

Table 5.2: Investigation types with descriptions
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In the next section, we detail five use cases with their step sequence identifier, action ID, which

corresponds to the table 5.1 and involved fields. Involved fields will only be mentioned the first time

and will not re-appear if they were mentioned in one previous section to reduce field repetitions.

For our use case scenarios, consider the following network ranges, where no anonymization is

applied:

• Internal network or monitored IP range is: 1.0.0.0/8

• Attacker IP’s host range is: 9.9.9.0/24

• Any other network range is considered as external network range, which is not monitored.
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5.2.1 Use case 1 - Data breach through malicious code execution (MC)

Figure 5.2: Data exfiltration by sending to the victim a forged email message with attached mali-
cious PDF file (malware).

Step

Seq

Action

Id

Description Involved Fields

1 A Alerts with high severity are raised from source IP

1.2.1.2 (Internal IP) and remote black-listed domain

name (malicious-domain-name.com) resolving to IP

9.9.9.18 (attacker’s server).

domain-name, src/dst

IP, Timestamp, pro-

tocol, service HTTP,

URL, severity

2 C Analyst inspects details/payloads of the alerts and con-

firms multiple HTTP POSTs on a blacklisted domain

name in an attempt to transmit data from a local vic-

tim’s computer.

file location, file size,

3 G Analyst searches on the Internet feed (Threat Intel-

ligence) to find more information relating the raised

blacklisted domain name and IP and finds that there is

a new malware that is spreading on the Internet linked

with the attacker’s IP and domain name.

antivirus name: ver-

sion, last update

(timestamp), malware

family name, URL
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4 H The Analyst performs searching on all archived alerts

(up now) and events with condition generated by

the host 1.2.1.2. Some of the matching results in-

clude events indicating that the antivirus services have

stopped running on the victim’s local computer.

hostname, process

name,

5 C Analyst inspects alerts details related to Anti-

Virus Application log data source shows: (1)

scanned email attachments, (2) victim’s antivirus

services shuts-down less than 3 seconds after.

email address, process

id, status id

6 D Analyst selects related alerts and events and marks

them to a new Incident. He specifies Incident classifica-

tion type as Malicious Code and describes the case urg-

ing the client to shut-down the possibly infected com-

puter and requesting investigation to confirm if it has

effectively been infected and possibility of data exfil-

tration by the attacker.

Incident description,

Incident classification,

involved alerts Ids

with incident, incident

intervention, incident

severity

Table 5.3: Use case 1 - Data breach through malicious code execution (MC)

Analyst 3 - based on the use case 1 (data breach through malicious code execution)

The analyst starts his/her analysis by exploring the alert raised by the Firewall - blocked out-

bound connection to external host - (9.9.9.18) originating from internal network 1.2.1.2. Involved

fields are: IP address, hostname, username. Analyst needs to perform a forensic search based on in-

volved IP addressees (9.9.9.18,1.2.1.2) and domain-name (malicious-domain-name.com) to verify

if any other devices have been compromised by trying to reach outside the network.

Conclusion on analysts’ search/forensic fields

Our conclusion is if pseudonymization is performed deterministically, then searching could

work as usual, but if non-deterministic pseudonymization function is used, then searching would

not work because no matches could be found in the database.
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5.2.2 Use case 2 - External Vulnerability Scan - Heartbleed

Figure 5.3: Attacker performing horizontal vulnerability scans followed by execution of heartbleed
vulnerability

Step

Seq

Action

Id

Description Involved Fields

1 A Analyst views grouped alerts generated by Snort IDS

“SERVER-OTHER TLSv1.1 large heartbeat response

- possible ssl heartbleed attempt”A.14 targeting host

with IP 1.1.1.2 (victim) originating from 9.9.9.2 (at-

tacker IP).

snort Rule Name

snort Rule Id (sid, rev)

src/dst IP URL

query parameters

(key-value),

2 C Analyst validates the payload (data) with rule’s signa-

ture and confirms that it is a true positive.

HTTP status code,

HTTP service

3 I Looking at the targeted victim’s server logs, analyst

confirms vulnerability exploitation by the attacker, but

needs more investigation on what information was ex-

tracted exactly from the vulnerable computer.

services/port, vulner-

ability Plugin name,

Severity, CVE-ID,

CVSS score.
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4 H The Analyst performs a search on all stored logs (from

all data sources) with source IP 9.9.9.2 and destination

IP 1.1.1.2 and confirms multiple occurrences of the at-

tack.

username (victim)

5 D Analyst creates an Incident classifying the case as Ex-

ternal Vulnerability Scan and Sensitive data exfiltration

including all related alerts by commenting possibility

of exploitation[2].

Table 5.4: Use case 2 - EVC (External Vulnerability Scan/Reconnaissance and exploitation) - Heart-
bleed

Further investigations (searching relating IP communications, amount of data exchanged be-

tween) are required if any other devices has been compromised and if the any sensitive information

has been exfiltrated. Sample of a heartbleed snort rule:

Analyst 1 - based on the use case 2 (external vulnerability scan and exploitation)

The analyst focues on three sensitive fields: source IP and destination IP address, and payload.

According to the SOC analyst, to validate if this attack is a true positive, he must look into the

payload of the raised alert. If the payload is readable in cleartext and can confirm that the private

keys or session keys have been exfiltrated from servers, he can then confirm that the attack is a

true positive. In this context, the source IP (i.e., attacker’s IP) and the destination (i.e., victim’s IP

which needs to be monitored) can both be anonymized (non-deterministically) or pseudonymized

(deterministically).

Conlusion on non-deterministic anlaysis fields

For this use case, the analysts will need to rely on IP traces anonymizers because he will need

to inspect the payload from PCAP files. If the IP address is anonymized non-deterministically, then

the analyst will not be able to know which device has been targeted by the attacker because multiple

alerts will always result in different IP addresses even if the same device is being been targeted. It

will imply that the analyst will not be able to determine how many devices were affected.
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5.2.3 Use case 3 - Insider attack

Figure 5.4: Insider attack - employee altering customer bank balance data without authorization

Step

Seq

Action

Id

Description Involved Fields

1 A Analyst analyze the alert with low severity originat-

ing from a database server (SQL) server (1.1.1.3) data

source. Alert is raised for policy violations involving

SQL query (Insert/Update/Delete) on behalf of a user-

name ’bob’.

username, SQL query

2 C Analyst displays grouped event payloads (raw logs,

SQL queries) and can see suspicious SQL Query: “UP-

DATE user balance set balance = balance + 500 where

user id = 1432”.

SQL (user, roles,

schema, database

name, table name),

Account Id

3 H Analyst performs an advanced search on keywords con-

taining ’UPDATE’ and .

log source, site/do-

main

4 D Analyst escalates the case informing the client of unau-

thorized data alteration.

Table 5.5: Use case 3 - Insider attack
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Analyst 2 - based on the use case 3 (insider attack)

The analyst makes the point that it is critical to understand which networks needs to be protected

and which networks should be considered as non-trusted or external. This information is useful to

determine if the attacker has already breached inside customer’s internal networks.

Conclusion on prefix-preserving

If the anonymization is used in which prefix of the IP addresses is not preserved (i.e., the most

significant bits-group of the IP addresses is lost), it would then be impossible to determine which

device should be considered as trusted, and that would need to be protected. If it is prefix-preserving

but non-deterministic (i.e., where the least siginificant bit changes all time), then the analyst would

not be able to know how many devices are affected by the attacks because non-deterministic func-

tions will always generate different IP addresses limiting searching capabilities during their investi-

gation.

5.2.4 Use case 4 - Distributed denial of service attack

Figure 5.5: DDoS attack on a bank1.com website.
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Step

Seq

Action

Id

Description Involved Fields

1 A The analyst is receiving alerts indicating unusual net-

work usage (specifically amount of data transmitted).

Higher amount of data

transmitting (kb/s)

2 C In data payload, the analyst reads thousands of HTTP

requests originating from monitored client’s network

(1.1.2.2, 1.1.1.2, 1.1.3.5, 1.2.1.2) targeting bank1.com

(5.5.5.10). Some of the log records shows HTTP GET

requests towards twitter.com’s website. Analyst in-

spects full path’s URL of twitter.com website con-

taining a tweet message: “attack bank1.com” where

Tweeter is being used as intermediate to communi-

cate with its botnet (client’s infected hosts) to attack

bank1.com

GPS location -

city- (source IPs -

destination IP), tracer-

oute/ping response,

URL, HTML

3 E Alerts indicating massive HTTP requests to the tar-

geted bank1.com domain name (which resolves to

IPs 5.5.5.10-15) using monitored client’s network

(1.1.0.0/16 and 1.2.1.0/24) resources and unreachabil-

ity are being attached to a new Incident. Its classifi-

cation is DDoS attack with explanations on how many

requests and strength of the attack (requests per second,

how many source IP are involved). The analyst is also

trying to understand and communicate with the client if

they have received any threats[3] from the attacker.

Firewall rules, Net-

work routing, Net-

mask, Bandwidth,

Throughput, Packet

status, response time

Table 5.6: Use case 4 - Distributed denial of service attack
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5.2.5 Use case 5 - Data breach through MC (data exfiltration)

Step

Seq

Action

Id

Description Involved Fields

1 A Alerts with an unusual amount of data transmitted from

1.1.1.2 (Internal IP - running file shared service) to a

remote server 9.9.9.15 over FTP.

FTP data transmitted

2 C Analyst analyzes the quantity of data that has been

transmitted from 1.1.1.2 to 9.9.9.15 and find multiple

hundreds of Megabytes (MB).

3 H Analyst searches network logs having IP 1.1.1.2 as

SRC or DST and can see that machine with IP 1.1.1.2

has received a great amount of data from 1.1.1.15,

1.1.1.16 and 1.1.1.17 (all POS databases categorized as

high criticality assets) over a file shared service in the

last hours.

4 H Analyst investigates system logs from POS database

server with IP (1.1.1.15) and finds abnormal processes

running such as “POSWDS” (malware named as a nor-

mal process). The analyst also finds that a user with an

unusual username has been connecting recently having

admin privileges.

process name, last lo-

gin time

5 H Analyst investigates system logs from POS database

server with IP (1.1.1.15) and finds that a user with an

unusual username has been connecting recently having

admin privileges.

username

6 D Analyst selects related alerts and events and marks

them to a new Incident. He requests further investiga-

tions to confirm the attacks because all symptoms seem

to indicate a breach.

Incident title and

description, Incident

classification, in-

volved alerts Ids with

incident

Table 5.7: Use case 5 - Data breach through malicious code execution (MC) and Anomaly Network
behavior (ANB)
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Chapter 6

Applying anonymization techniques

6.1 Fields and anonymization techniques

Name of the field Description Encryption/anonymization

techniques

Full name Individual’s last name and first name AES-SIV encryption

Home address Street address, City, Province/State, Postal

code or zip-code

AES Synthetic Initialization

Vector (SIV) encryption

Customer’s name Name of the customer or organization

which is paying for its cyber-security mon-

itoring services.

AES-SIV

SSN, CCN, VIN, Pass-

port number

Social Security Number (SSN), Credit

Card Number (CCN) or Vehicle Identifica-

tion Number (VIN)

Format-Preserving Encryp-

tion (FPE), AES-SIV

Biometrics Physical metrics identifying uniquely an

individual E.g., fingerprint, face, iris,

retina recognition, hand-geometry, voice

and more

AES-SIV encryption

Date of Birth Time and date of birth Format-Preserving Encryp-

tion or by generalizing

Place of birth City or/and country of birth Format-Preserving Encryp-

tion
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Phone Number Consists of a country code, three-digit area

code, three-digit central office and four-

digit station code

Format-Preserving Encryp-

tion (FPE) or AES-SIV

encryption

GPS location

(< 100meters)

Global Positioning System (GPS) is a

satellite navigation system used to deter-

mine an object’s position on the ground

Higher precision reduces privacy.

GeoHash or by generalizing

(reducing precision)

GPS location

(> 100meters)

Lower precision increases privacy GeoHash or by generalizing

(reducing precision)

IP address A numerical label assigned to a device

when it connects to a computer network.

It consists of source and destination IP ad-

dresses

CryptoPAn, cryptopANT or

Order Preserving Encryption

(OPE)

Hostname (Device

name)

Label (name) assigned to a device on a net-

work

FPE or AES-SIV

E-mail address Consists of two parts, first part, before @,

the name of the mailbox which is generally

the username and the second part is the do-

main name.

FPE or AES-SIV

MAC Address Physical address of the network interface FPE

Username, Accoun-

t/User id

Identification used by a person to access

computer/network

AES-SIV

Operating System Device fingerprint can be used to identify-

ing uniquely an device.

No anonymization or AES-

SIV if needed

Browser signature Browser fingerprint’s can be used to iden-

tify uniquely a specific browser across dif-

ferent websites1. (i.e., User-agent, version,

language, plugins, platform)

AES-SIV if needed

HTTP Cookie HTTP cookie is a string generated by web

server to user’s browser to remember its

browsing history or state.

AES-SIV

Timestamp (date and

time)

Time and date when an event has occurred. Time (backward or foreward)

shifting or by generalizing

(reducing precision)
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Device Id (i.e., Serial

Number, UUID)

Device identifier which can be unique. FPE

Open Service/Port

(http/80,443)

Running services or daemons on local ma-

chine must open a specific port to accept

packets to provide any type of services

(i.e., FTP, ssh, http).

No anonymization or Order

Preserving Encryption (OPE)

if needed

Vulnerability name Short description of a vulnerability.2 No anonymization

Correlation alert or rule

name

Short name of the alert No anonymization

Vulnerability CVE-ID Common Vulnerabilities and Exposures

(CVE) used to identify a specific vulner-

ability.

No anonymization

URL Uniform Resource Locator is a web ad-

dress references the location of a remote

server’s resource.

AES-SIV

Network activity rate A network data transfer rate (rate kbps or

pkt/s).

No anonymization

Table 6.1: Fields and encryption or anonymization techniques

6.1.1 The choices of encryption or randomization methods

The anonymization techniques we apply per field can be explained as follows. From our sys-

tem perspective (e.g., database, applications) we believe that there are fields that must conform to

specific formats or standards in order for them to support the analysis. For example, IP addresses,

dates and times, various ID numbers (e.g,: passports, driving license, credit-card numbers, serial

numbers), phone numbers and other group of fields, require to comply to specific formats and are

less restrictive such as first name or last name and other names.

• IP address: There exists many anonymization functions such as CryptoPan[33] or cryptopANT[31]

which are also prefix-preserving and is why they were chosen.

• MAC address: cryptopANT offers anonymization of MAC addresses. FPE could also be
1https://amiunique.org/
2https://cve.mitre.org/cve/list_rules_and_guidance/cve_assignment_information_

format.html
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drawn on this field by specifying policies.

• Hostname: As mentioned in RFC-11783, page two: “While computers aren’t quite analogous

to people, their names are.”. We believe that AES encryption could be applied or FPE[61] as

long as the output generates alpha-numeric value.

• GPS locations: The algorithm GeoHASH[34] generates approximative GPS location deter-

ministically by generalizing GPS location.

• E-Mail address: A valid e-mail address must consists of two parts, the first part (i.e., before )

is generally a username and the second part (i.e., after ) is the domain name. AES encryption

can be applied on siem platforms that supports values which do not contain ’@’, otherwise

we propose FPE. More detailed specification is described under the RFC-53224.

• Social-security number (SSN), Credit-card number (CCN), Vehicle identification number,

Passport number: We propose FPE because these fields will generate outputs with same for-

mat of the provided input identifier.

• First name, last name, customer name or username: We suggest AES encryption for these

fields because software systems in general do not require any specific format.

3D. Libes, “Choosing a Name for Your Computer”, Request for Comments RFC 1178, Internet Engineering Task
Force, Aug. 1990.

4P. Resnick, Ed. “Internet Message Format”, Request for Comments RFC 5322, Internet Engineering Task Force,
Oct. 2008.
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6.1.2 Quasi-identifier-based attacks and defence

Indirect-identifiers are also known as quasi-identifiers. Quasi-identifiers do not identify any

individual by themselves, but when they are combined together can lead to singling out of the

records which can point to a person’s identity. Many attacks are going through quasi-identifiers that

are not carefully protected as we have mentioned in the section data breaches 2.2.2.

Our assumption on the IP address fields is described as follows. The IP protocol header consists

of source IP address and destination IP address. Our assumption is that if the source IP address of

the packet is part of the internal network which needs to be monitored and protected by the SOC

analyst and destination IP address is external (not monitored), then source IP address is direct PII

that could be linked to an individual whereas destination IP address will be considered as indirect

or quasi-identifier PII, similar to other fields which when combined, can lead to signling-out an

targeted individual.

Figure 6.1: Grouped quasi-identifiers and direct identifiers among all identifiers fields from col-
lected event logs

The relation between quasi-identifiers (indirect identifiers) and meta-data is almost alike. For ex-

ample, in TCP/IP communication protocol, even if network traffic payload is encrypted, the packet

headers might consist of meta-data which might tell a lot about a person that is browsing the web

and which might consists of very useful information to the adversaries. In [22, 23], the authors
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demonstrate how meta-data can be used to extract useful information about individual’s. Network-

flows consists of the following fields: timestamps, source and destination IP addresses and ports,

amount of packets and data exchanged is considered as metadata. A similar analogy of network

flow communications can be applied with recorded GPS locations or phone call history and call

duration.

Examples of active attacks

The analyst could deduce the original values from anonymized IPs, URLs based on time or

chronology. The analyst could infer related information about a device or user based on rule names,

vulnerabilities, services (ports), leading to data inference attacks.

Proposed solutions to the active attacks

• Apply timestamps shifting (forward or backward) randomly during events ingestion to

reduce the likelihood of time-based attacks by the adversary. It must be consistent across the

platform in order to keep the order of the events chronologically. This technique has been

mentioned in [46] where they propose shifting of the event timestamps. As they describe,

the relative time of the events has greater important than knowing the exact date and time of

when the events have occurred.

Challenges: If there is a data breach, the sequence of the recorded events must be preserved.

For example, if the adversary typically follows the pattern “cyber kill chain” methodology[41]

and the sequences of events must be preserved.

• Dropping unique events that are returned after the query. We propose a method that drops

uniqe events with probability of 50 precent to reduce odds of an adversary that tries to single

out events. It could apply only for events that have never been linked to potential attacks or

have very high certainty of false positive.

• Create similar events that are returned after query. We propose creation of similar events that

can be duplicated with few random anonymized IP addresses in such a way that the impact

is low (e.g,: low severity alerts), and the analyst cannot deduce which one has been truly
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generated.

• Add random noise using middleware devices (servers), IoT and other devices which do not

receive direct inputs from humans as decorators or shadows for targeted devices used by the

employees to browse the Internet, write emails or communicate with someone. Queries that

return singled out records with single anonymized direct identifiers are sensitive and can be

targeted.

6.2 Benchmarks of anonymization techniques

In this section, we perform four types of benchmarking. The first type is on the throughput,

which consists of measuring the number of calls that can be made per second. It is based on the

Java library, Java Microbenchmark Harness (JMH)[79]. In this experiment, no field is anonymized.

The hashing functions “MD5” and “SHA-256” were benchmarked only as a reference point for our

anonymization methods.

The second type is on the execution time, where we measure the execution runtime (in ms) with

datasets closer to real-world scenarios. The following six columns or fields were anonymized per

record: source IP address, destination IP address, hostname, username, raw log and email address.

Each field value was randomized to reduce optimizations by caching. It consisted of five test cases

with sample sizes from 100 records of up to 1 million records.

In the third and fourth types, we collected measures based on the memory usage and CPU usage,

respectively. In each case, we took measures on memory and CPU usage every 30 seconds interval

when 1 million records are anonymized. For each experiment, two series of results can be found,

one with and one without application of anonymization functions so that they can be compared.

In the second, third and fourth methods, the following anonymization methods were used: AES

encryption CTR mode, cryptoPAnt, CryptoPAn and FPE, which are based on the use cases we have

discussed in section 6.1.
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The hardware we used for benchmarks:

• CPU: Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz

• RAM Memory: 16 GB DDR3 - 1600MHz

• Hard-disk: Model ST500DM002-1BD142, 500GB SSD SATA 6Gb/s

The software we used:

• OS: 16.04.5 LTS (64 bits)

• Java: 1.8.0 201 (64 bits)

• Apache Spark version: 2.4.1

6.2.1 Throughput (Op/s) comparison

We used the library Java Microbenchmark Harness (JMH)[79] to perform our benchmarking on

all of the anonymization functions. The anonymization function that we have used are all written

in Java language, except cryptopANT, which is in C language and for which we wrote our custom

JNI to interact. We used JMH’s throughput mode, which measures how many times per second the

function or the method can be executed (i.e., Op/s). Our goal in this experiment is to compare and

rank them in terms of calls per second. Our benchmarks consisted of 100 iterations per second,

preceded with ten iterations of warmup that were not considered in the metrics.

In the table 6.2 below, we present averaged results based on 100 iterations. They are sorted

from most efficient on the top to the least on the bottom. The two first ranked hash functions were

benchmarked for the reference point. The column “Decryption Ops/s” is empty for some masking

methods are only one-way functions and decryption is not available.

“MD5” is outperforming all other functions with over 3.9M operations per second on aver-

age, followed by “SHA-256” with 2.2M Op/s, which are expected to perform better than the other

encryption-based schemes. Surprisingly, the cryotopANT outperformed CryptoPAn and AES en-

cryption schemes with our implementation of Java Native Interface (JNI), which enables calls from
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Name Encryption Ops/s Decryption Ops/s

MD5 3942565 Not applicable
SHA-256 2234214 Not applicable
cryptopANT 1096619 94065
CryptoPAn 586451 Not applicable
AES-CTR 261082 249930
FPE 18572 18688

Table 6.2: Averages of anonymization benchmarks overhead in terms of operation per seconds

programs written in Java language to be made to cryptopANT program, written in C language.

FPE could only do ten thousand operations per second, which is due to the poor performance in

the function “com.idealista.fpe.component.functions. prf.DefaultPseudoRandomFunction.apply()”

based on “JVisualVM” CPU profiler analysis. When we executed the encryption of FPE in debug-

ging mode, we noticed that over 99% of the computation time was spent in the function “makeSes-

sionKey” of com.sun.crypto.provider.AESCrypt, a low-level class for AES Symmetric encryption.

The com.idealista.fpe.algorithm.ff1.FFA1Algorithm class, which performs the encryption, is cur-

rently configured to perform ten rounds in a for-loop, implying ten calls to AES encryption to en-

crypt only one single message. No anonymization has been yet applied to any of the fields. In all of

the anonymization functions, we anonymized a string “helloworld” except for cryptoPAn and cryp-

topANT. For this benchmarks, we used a fixed IP address “10.2.1.23” as the value to anonymize.

6.2.2 Execution runtime

We present two types of benchmarks. The first benchmark is performed in a simple Java pro-

gram without relying on any other framework or technology to reduce any extra overhead. In the

second type of benchmarks, we use Apache Spark, a large scale data processing engine, which is

what we have used in our SIEM platform.

In our experiment, we evaluate the performance of two encryption algorithms, FPE (FF1)[60] and

AES symmetric encryption (see Appendix), which we have used on the fields: username, hostname

and email. Our goal is to compare and evaluate the scalability of the two algorithms using input

strings of similar lengths of those fields. The benchmarks consist of 100 rounds where each round

has 10000 iterations of each encryption algorithms, preceded with warmups of 20 rounds to obtain
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more consistent execution time measures. The execution time is measured in milliseconds, after

every 10000 iterations of every round, and averaged over 100 rounds. After every 100 rounds, the

input size length(X-Axis) is increased with ten random alphanumeric characters in lowercase.

The Figure 6.2 depicts the benchmark results of FPE and AES anonymization functions.
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Figure 6.2: Averaged execution runtime (in ms) with and without anonymization

As we can see, the FPE algorithm’s function performance results (Y-Axis) are closer to exponen-

tial increase rather than linear even with increments of input messages of ten random alphanumeric

characters (X-axis). Therefore, we do not consider the FPE algorithm as scalable, but that’s no

surprise because it is not an implementation that originates from a trusted source. As we see, AES

is constant in time and performs in constant time with input message strings that are not too large.
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Our second type of benchmarking is performed on top of Apache Spark. We choose Apache

Spark because this framework is very popular in the software industry, which has to deal with big

data problems such as monitoring the cybersecurity log. Apache Spark has two types of operations5:

transformation and action. New transformations (i.e., map, filter, join, groupByKey) are created

from an existing one and are lazily evaluated for better performances, whereas actions (i.e., reduce,

count, foreach) will trigger the launch of a Spark job. In our case, we trigger our action by calling a

“foreach()” function, which will evaluate each record and apply pseudonymization functions on the

dataset.

In Spark, statistical measures can be retrieved after each stage has completed. In our case, we have

“executor run time” and “CPU Time” when anonymization functions are invoked and are collected

by overriding the method “onStageCompleted()”. Tests were performed over 150 iterations each,

and a mean average was calculated. Five first iterations were excluded for warmup. The events per

second (EPS) were calculated based on the sample size and the executor time (in ms) from which

we solved the proportions. For example, if we know that it takes 11ms to process 100 records, we

then deduce using proportional relationship that 12836 events are processed in one second. Our

benchmark results are shown in the table 6.3 below.

Case Sample

(# log

entries)

exec. time w/o

anon.

exec. time w/

anon.

exec.

diff.

(in %)

EPS w/o

anon.

EPS w/

anon.

1 100 11ms 22ms +100% 12836 4636

2 1000 25ms 149ms +496% 40558 6730

3 10000 201ms 1436ms +601% 50342 6997

4 100000 2229ms 14481ms +550% 45347 6930

5 1000000* 25403ms 168979ms +565% 41152 6143

Table 6.3: Benchmarks of anonymization overhead in terms of “executor run time (in ms)”

We can see that the overhead when anonymization is applied is approximately between 500%
5RDD Programming Guide - Spark 2.4.4. Documentation: https://spark.apache.org/docs/latest/

rdd-programming-guide.html#rdd-operations
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and 600% increase, which is significant. The reason is that we are using FPE function to anonymize

email addresses, which had poor performance. Another reason is that we are anonymizing all fields,

as mentioned in section 6.2.2, with another extra field, “raw log”, which contains sensitive informa-

tion that also needs to be anonymized. The most optimal sample size to anonymize is with a sample

size of 10000 log entries, with an estimated 50342 EPS. Another remark is that the test case #5 has

failed to reach 150 iterations per sample size because maximum (13548m) Java heap memory was

reached. In both attempts, it reached 55 and 66 iterations at most.

6.2.3 Memory usage

Memory usage has been evaluated based on one million records. We made sure that these fields

were randomly generated so that optimizations or caching would be minimized during the compu-

tation process. In the first case, no pseudonymization was applied, and statistics were collected for

the JVM current heap memory and used heap memory (by the objects). In the second instance, we

applied anonymization on the following columns: source/destination IP, username, hostname and

email address and raw data (raw log).

Statistics information has been collected using “jstat”, a tool for Java virtual machine statistics

monitoring6. These measures were collected with the help of a Python code that would find the Java

process and pass it to ’jstat’ program to generate statistics. These statistics would then be processed

and stored in a file. Our results are visible in the Figure 6.3 below.

We can notice large memory fluctuation; this is because 1 million records are loaded in Spark’s

dataset on which anonymization functions are computed with our custom user-defined functions

(UDFs). One of the explanation for poor performance is that the algorithm that has been used

to anonymize data on CrytopANT is calling the original code written in C language from Java

code using Java Native Interface (JNI). It enables Java code to create a bridge allowing it to call

native applications written in C, C++ or assembly, but it creates some overheads, and we also have

experienced issues when many parallel calls are performed to pseudonymize IP address from our
6jstat - Java Virtual Machine Statistics Monitoring Tool, https://docs.oracle.com/javase/7/docs/technotes/tools/share/jstat.html,

accessed on 2019 Oct 14th.
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Figure 6.3: Benchmarks of anonymization overhead with and without anonymization in terms of
memory usage

Java code.

6.2.4 CPU usage

We compare CPU usage similarly as in the previous experiments, with and without anonymiza-

tion. This time, the sample dataset size of the benchmarks are of 1 million records. For CPU mea-

sure, we relied on JVMTOP7, an open-source library, which relies on OperatingSystemMXBean8.

The displayed CPU usage is in percentage and is collected every second after the process started

to run. We can notice in both instances, with anonymization and without anonymization that until

the first approximate 115 seconds, Apache Spark is loading 1 million records in a dataset. We can

observe that the CPU usage is similar in both cases until the dataset sample creation is completed.

In the case where no anonymization has been applied, the process finishes quickly, after approxi-

mately 25 seconds according to the table 6.3. In the second case, when anonymization is applied,

it takes over 150 extra seconds to complete after a dataset sample is created, with CPU usage of
7Java monitoring for the command-line, profiler included: https://github.com/patric-r/jvmtop
8Monitoring and Management Interface for Java Platform: https://docs.oracle.com/javase/8/docs/

technotes/guides/management/overview.html
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Figure 6.4: Benchmarks of CPU usage with and without anonymization on a dataset of 1 million
records

approximately 26% because only one single core is used during the anonymization process.

We created another benchmark with CPU usage sample that can be seen in the Figure 6.5.

The goal is to compare efficiency on CPU usage when FPE is disabled. We observe a signifi-

cant improvement of approximately 90 seconds in time reduction, from 270 to 180 seconds, when

anonymization using FPE on the email field is deactivated.
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Figure 6.5: Benchmarks of CPU usage with and without anonymization on a dataset of 1 million
records

6.2.5 Conclusion on benchmarks

As we have seen from various collected metrics from our benchmarks, the one anonymization

function that affects the performance of our SIEM platform is FPE (FF1), as shown in Figures 6.2

and 6.5. Based on Figure 6.3, the estimated 6143 EPS is too low when anonymization is applied

in six different fields using three anonymization algorithms: cryptopANT[31], AES symmetric en-

cryption and format-preserving encryption[60] (FF1) on 1 million records. As we have noticed in

Table 6.2, the anonymization function FPE is not scalable. In 6.3, when anonymization is applied,

the performance is reduced dramatically. We believe that better results could be achieved if hard-

ware resources were used at full capacity such as multi-threading and if cryptopANT algorithm

would be used directly without having to rely on JNI implementation.
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Chapter 7

Integration into a SIEM platform

In this section, we describe our implementation of a SIEM platform, the integration of the

pseudonymization techniques into the platform, and lessons learned.

7.1 The architecture of our platform

with PII pseudonymization

Our implementation relies on five components and technologies:

• Apache Kafka1 is used to stream collected raw logs from the sensor.

• Apache Spark Stream2 receives raw logs from Apache Kafka for processing, parsing, normal-

izing and anonymization.

• Apache Cassandra3 database is used to stored processed data.

• Front-end implementation was done in Angular platform4, which generates REST APIs queries

from users (i.e., via web browsers).
1Apache Kafka: A Distributed Streaming Platform., https://kafka.apache.org/, accessed on 2020 Feb 11th.
2Apache Spark is a unified analytics engine for large-scale data processing., https://spark.apache.org/, accessed on

2020 Feb 11th.
3Apache Cassandra, Apache Cassandra is a NoSQL database for scalability, high availability, reliability and perfor-

mance, http://cassandra.apache.org/, accessed on 2020 Feb 11th.
4Angular is a platform for building mobile and desktop web applications., https://angular.io/, accessed on 2020 Feb

11th.
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• The backend web services are written in Java language with Spring Boot5 framework. This

service invokes queries to the Cassandra database and returns the results back to the user who

has triggered the request initially.

We rely on Apache Spark, Kafka and Cassandra, because these are the latest technologies, which

can enable us to perform large scale data processing in near real-time.

7.1.1 Description of our architecture

As shown in Figure 7.1, our SIEM platform works as follows.

• First, the event logs that are generated by the customers’ devices are transmitted to our plat-

form to be processed. These are raw logs collected in JSON format and forwarded to the

Kafka data pipeline.

• Second, we process the logs using Apache Spark Stream, which ingests logs from Kafka in

near real-time and applies the normalization part and anonymization.

• Third, these processed events are stored in Apache Cassandra database. Note that the logs are

pseudonymized before they are being stored in the database.

• Fourth, the RESTful web service component queries Apache Cassandra database and returns

the results to the fifth component, which is the front-end component implemented in Angular.

The Figure 7.1 shows the data flow from the Sensor to the SOC analysts. Also, a more detailed

view of the Apache Spark component is visible in the left part of the figure.

7.1.2 Implementation

The implementation of the pseudonymization techniques is mainly based on the Apache Spark

Stream. This is where the parsing, normalization and processing the pseudonymization processing

happens. The code is mainly developed in Java programming language by relying on custom user-

defined function (UDF) from Apache Spark.
5Spring Boot, Spring Boot is an open source Java-based framework used to create a micro Service.
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Figure 7.1: Architecture of our SIEM platform

The pseudonymization functions we have used are mostly symmetric key-based cryptographic

encryption schemes, which allows our platform to achieve better performances than public key-

based encryptions.

Log generation

To make our experiments more realistic, we generate various types of logs in JSON format.

Specifically, five types of logs are generated, i.e., OSSEC6, Snort7, Argus’ netflows 8, and Nessus

vulnerabilities 9 and Nmap 10. For our tests, we mainly follow OSSEC to create alerts such that they

consisted of the most diverse data types or field (OSSEC is a host-based IDS that generates alerts

based on correlation rules). These logs will be sent to the Kafka for real-time processing.

https://spring.io/projects/spring-boot, accessed on 2020 Feb 11th.
6OSSEC is a scalable, multi-platform, open source Host-based Intrusion Detection System (HIDS):

https://www.ossec.net/
7Snort - Network Intrusion Detection & Prevention System: https://www.snort.org/
8ARGUS - Auditing Network Activity: https://qosient.com/argus/
9Nessus - Vulnerabiltiy Assessment: https://www.tenable.com

10Nmap - Nmap (”Network Mapper”) is a free and open source (license) utility for network discovery and security
auditing: https://nmap.org/
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Based on the JSON formats of those five types of logs, our script can generate log entries con-

sisted of randomly assigned IP addresses, emails, usernames. The log are sent to the Kafka topic

for Apache Spark processing. Log generator source code in Python can be found in the Appendix

Section A.12, and A.13. A sample of Snort logs in JSON format can be found in the Appendix,

Section A.11

To generate a Snort type of logs, we relied on the rule2alert 11 open source project. This program

allows us to generate alerts based on Snort rules. To convert these logs to JSON format, we used

another script, u2json, which is part of idstools project12.

The other approach we used to generate data is by redirecting events from Argus net-flows, OS-

SEC or Nessus from JSON format to Kafka. To redirect Argus net-flows, Kafka producer on topic

test is launched by creating a netcat listening port 2552 as follows:

nc -vv -l 0.0.0.0 2552 | ./bin/kafka-console-producer.sh \

--broker-list 192.168.2.4:9092 --topic test

Using ra, the argus client, logs are forwarded to netcat listening port 2552, which pipes data to

Kafka producer as follows:

ra -L 0 -u -c ’,’ -S 192.168.2.14:561 | nc localhost 2552

Apache Spark Stream net-flow anonymization

In Figure 7.2, two datasets samples are displayed, each containing 20 records. We can also see

collected net-flows using Argus client which is piped through Kafka to Apache Spark Stream for

processing in near real-time, with window execution time set to every five seconds.

In the first dataset in Figure 7.2, a sample of 20 records is shown before any pseudonymization.

In the second dataset, we can see that IP addresses are being anonymized by preserving the prefix

(i.e., 192.168.2.0/24 − > 198.167.74/24) using CryptopANT masking function.

11Rule2Alert parses snort rules and generates packets on the fly that would alert the IDS. It can either write the packets
to a pcap or send the packets directly to the IDS: https://github.com/pevma/rule2alert, accessed on 2019 Jun 2nd.

12u2json - A unified2 to JSON converter: https://idstools.readthedocs.io/en/latest/tools/u2json.html, accessed on 2019
Jun 2nd.
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Figure 7.2: Apache Spark Net-flows

Presentation view

In this section, we show three different views of our SIEM platform to demonstrate its function-

ality, i.e., alerts in two screen captures, net-flows, and Nessus vulnerability scan views. The column

hostname is encrypted under the AES symmetric encryption adapted such that generated ciphertexts

remain deterministic, see listing A.1 of the Appendix. As the outputs of ciphertexts are in bytes,

we are encoding the results using base64. The source code of symmetric encryption and decryption

UDFs can be found in listings of A.4 and A.5

The source IP 159.187.99.79 is the anonymized IP address and is prefixed with a constant value

“*src ip*” to simplify the identification of the type of the value which has been pseudonymized. It

is not always obvious to determine the nature of the pseudonymized value in other contexts with

another type of raw logs. The raw data column is showing the anonymized values of the raw log.

The column message is entirely encrypted using AES symmetric encryption before storing it in
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Cassandra database, which is not indexed or searchable.

Only IP addresses are anonymized deterministically as in all other views, using the same secret

key which is stored on the same server where Apache Spark is running. Ports are not anonymized

to ease the utility of the data.

Figure 7.3: Net-flow view

The vulnerability scans view shown in Figure 7.4 also has only IP address pseudonymized.

We can notice that the pseudonymized IP address “198.167.74.144” is also found in net-flow view

allowing referencing between two different data types, net-flows and found vulnerabilities.

Figure 7.4: Nessus vulnerability scan view
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7.1.3 Lessons learned

Based on our research, we have learned many practical lessons and received numerous feed-

backs from real life SOC analysts. For instance, an important lesson we have learned is the follow-

ing:

• The IDs of the items/records in front-end views can leak sensitive information about logs or

devices (hosts) if these are not handled or managed in a careful way.

We also had many discussions with analysts about practical use cases based on their analysis

work during their duty time, through which we have learned that:

• It is important to know which network range is external and which network range is internal,

which needs to be monitored for protection. This step is crucial during their analysis work.

• Anonymizing (non-deterministically) IP addresses reduce the utility of event logs and alerts

because they cannot be cross-referenced or linked (vulnerable IP addresses with the IP ad-

dresses of true attack alerts).

• For the SOC analysts, some functionalities may become limited in a SIEM platform where

PIIs are anonymized. For example, searching on Google for more information on whether the

IP address has been blacklisted would not be possible.

The reseach has demonstrated why privacy is important and about its origins. We have exam-

ined and compared multiple definitions and explanations about privacy and personally identifiable

information (PII) from disciplines such as philosophy and laws. We have seen many different def-

initions and examples of PII privacy laws and directives, which helped us to better understand its

relation with cybersecurity monitoring and network security monitoring (NSM).
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Chapter 8

Conclusion

In this thesis, we have performed a case study on the application of anonymization techniques to

real-world security monitoring practice. Specifically, we have created high-level use cases based on

the SOC analyst’s daily work, and we tried to understand which information is important in the secu-

rity monitoring logs from the SOC analyst points of view. We then extracted fields from logs that are

considered sensitive (PII) and applied a suitable anonymization technique per field and tried to val-

idate if the analyst is still able to perform his work under different circumstances. Those techniques

include AES in CTR mode, CryptopANT by relying on JNI to call the program in C language,

CryptoPAN, and Format-Preserving-Encryption (FPE). We have compared different anonymiza-

tion techniques and performend benchmarks to evaluate their performances in terms of CPU and

memory usage, execution runtime, and throughput (operations per second). We also designed, and

implemented a platform that includes front-end views for our experiments using scalable technolo-

gies (Kafka, Apache Spark Stream, Cassandra) by applying anonymization and pseudonymization

techniques and comparing them. Finally, we shared our lessons learned.

We are aware that this approach does not provide sufficient security and privacy against active

attackers, a stronger threat model. Nevertheless, our examination of existing pseudonymization

methods can provide insights when applying anonymization techniques in large scale data ingestion

applications. One limitation lies in the FPE algorithm which was only achieving approximately 10

000 encryptions per second. However, we believe that this is due to inefficient or un-optimized

Java implementation we used for our benchmarks, which will be improved in our future work. As
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another future direction, it is necessary to explore differential privacy (DP) using synthetic data [36]

because it could improve privacy in security monitoring logs for stronger threat models. We believe

that this would be a promising direction because analysts need to analyze individual events and not

grouped or aggregated events as it is the case with k-anonymity and DP.
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Appendix A

Listing A.1: Definition of SYMMETRIC ENCRYPTION UDF
@Override

public String encrypt(final String message) {

try {

byte[] r = CryptoPrimitives.generateCmac(key, 0 + message);

byte[] cipherText = CryptoPrimitives.encryptAES_CTR_String(key, r, message);

return Base64.getEncoder().encodeToString(cipherText);

} catch (UnsupportedEncodingException ex) {

Logger.getLogger(AESEncryption.class.getName()).log(Level.SEVERE, null, ex);

} catch (Exception ex) {

Logger.getLogger(AESEncryption.class.getName()).log(Level.SEVERE, null, ex);

}

return "encryption failed..";

}

/* This source code sample originates from Clusion github projec:

https://github.com/encryptedsystems/Clusion/blob/master/src/main/java/org/crypto/sse/CryptoPrimitives.java#L232 */

public static byte[] encryptAES_CTR_String(byte[] keyBytes, byte[] ivBytes, String message)

throws InvalidKeyException, InvalidAlgorithmParameterException, NoSuchAlgorithmException,

NoSuchProviderException, NoSuchPaddingException, IOException, IllegalBlockSizeException, BadPaddingException {

IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);

SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");

Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding", "BC");

cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);

ByteArrayInputStream bIn = new ByteArrayInputStream(message.getBytes());

CipherInputStream cIn = new CipherInputStream(bIn, cipher);

ByteArrayOutputStream bOut = new ByteArrayOutputStream();

int ch;

while ((ch = cIn.read()) >= 0) {

bOut.write(ch);

}

byte[] cipherText = concat(ivBytes, bOut.toByteArray());

return cipherText;

}
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Listing A.2: Definition of SYMMETRIC DECRYPTION UDF
@Override

public String decrypt(final String cipherText) {

try {

byte[] r = CryptoPrimitives.generateCmac(key, 0 + cipherText);

byte[] decrypt = CryptoPrimitives.decryptAES_CTR_String(key, r, Base64.getDecoder().decode(cipherText));

return new String(decrypt);

} catch (UnsupportedEncodingException ex) {

Logger.getLogger(AESEncryption.class.getName()).log(Level.SEVERE, null, ex);

} catch (Exception ex) {

Logger.getLogger(AESEncryption.class.getName()).log(Level.SEVERE, null, ex);

}

return "decryption failed..";

}

/* This source code sample originates from Clusion github projec:

https://github.com/encryptedsystems/Clusion/blob/master/src/main/java/org/crypto/sse/CryptoPrimitives.java#L342 */

public static byte[] decryptAES_CTR_String(byte[] key, byte[] ivBytes, byte[] encryptedMessage)

throws InvalidKeyException, InvalidAlgorithmParameterException, NoSuchAlgorithmException,

NoSuchProviderException, NoSuchPaddingException, IOException {

byte[] cipherText = new byte[encryptedMessage.length - 16];

System.arraycopy(encryptedMessage, 0, ivBytes, 0, ivBytes.length);

System.arraycopy(encryptedMessage, ivBytes.length, cipherText, 0, cipherText.length);

IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);

SecretKeySpec secretKeySpec = new SecretKeySpec(key, "AES");

Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding", "BC");

// Initalization of the Cipher

cipher.init(Cipher.DECRYPT_MODE, secretKeySpec, ivSpec);

ByteArrayOutputStream bOut = new ByteArrayOutputStream();

CipherOutputStream cOut = new CipherOutputStream(bOut, cipher);

cOut.write(cipherText);

cOut.close();

return bOut.toByteArray();

}
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Listing A.3: Definition of Pseudo Random Function (PRF) used with AES encryption and decryp-

tion
/**

* This method acts as Pseudo Random Function (PRF) which essentially

* generates deterministically a ciphertext from two inputs:key and message.

* source code origin:

https://github.com/encryptedsystems/Clusion/blob/master/src/main/java/org/crypto/sse/CryptoPrimitives.java#L81

* @param key secret key

* @param msg message in clear

* @return ciphertext

* @throws UnsupportedEncodingException

*/

public static byte[] generateCmac(byte[] key, String msg) throws UnsupportedEncodingException {

CMac cmac = new CMac(new AESFastEngine());

byte[] data = msg.getBytes("UTF-8");

byte[] output = new byte[cmac.getMacSize()];

cmac.init(new KeyParameter(key));

cmac.reset();

cmac.update(data, 0, data.length);

cmac.doFinal(output, 0);

return output;

}

Listing A.4: Definition of SYMMETRIC ENCRYPTION UDF
public static final UDF1 AES_CTR_ENCRYPTION = new UDF1<String, String>() {

public String call(final String string) throws Exception {

if(!ANONYMIZE){

return string;

}

// automatically generates a nonce

//System.out.println("encrypting string = "+ string);

String encrypt = aesEncryption.encrypt(string);

STATS_MAP.put(Constants.SYMMETRIC_ENCRYPTION, STATS_MAP.get(Constants.SYMMETRIC_ENCRYPTION)+1);

//System.out.println("base64 = "+ encrypt);

return encrypt;

}

};
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Listing A.5: Definition of SYMMETRIC DECRYPTION UDF
public static final UDF1 AES_CTR_DECRYPTION = new UDF1<String, String>() {

public String call(final String string) throws Exception {

final byte[] plaintext = string.getBytes(StandardCharsets.UTF_8);

String msg = aesEncryption.decrypt(new String(plaintext));

return msg;

}

};

Listing A.6: Definition of ANONYMIZE IP UDF
public static final UDF1 ANONYMIZE_IP = new UDF1<String, String>() {

public String call(String str) throws Exception {

if(str == null) {

return null;

}

if(!InetAddresses.isInetAddress(str)){

if(VERBOSE)

System.out.println("not a valid IP address = " + str);

return null;

}

if(VERBOSE)

System.out.println("anonymizeIP = " + str);

if(!ANONYMIZE || !DO_ANONYMIZE_IP){

return str;

}

String outputs = cryptopANT.anonymize(str);

if(outputs != null && outputs.equalsIgnoreCase(str)){

outputs = null;

}

// used for statistics

STATS_MAP.put(Constants.ANONYMIZE_IP, STATS_MAP.get(Constants.ANONYMIZE_IP)+1);

return outputs;

}

};

Listing A.7: Applying ANONYMIZE IP UDF on src and dst IP
net_flows = net_flows.select(

col("*"),

callUDF(Constants.ANONYMIZE_IP, col("src_ip_validated")).as("src_ip"),

callUDF(Constants.ANONYMIZE_IP, col("dst_ip_validated")).as("dst_ip")).

drop("src_ip_validated").

drop("dst_ip_validated");
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Listing A.8: CryptopANTJNI Java JNI class that uses CryptopANT code in C
public class CryptopANTJNI {

private boolean textBased = true;

private String keyFile = "/home/alis/gitlab/cryptopANT/cryptopANT-1.0.3_modified/secret_key";

private String pass4 = "--pass4=5";

private CryptopANTJNI cryptopANT;

private native void setup(String msg);

private native String encrypt(String msg);

private native String decrypt(String msg);

static {

System.loadLibrary("cryptopant");

}

public CryptopANTJNI(){

}

public CryptopANTJNI(String keyFileLocation){

cryptopANT = new CryptopANTJNI();

}

public CryptopANTJNI build() {

CryptopANTJNI cryptopANT = new CryptopANTJNI();

String textBasedArg = (textBased) ? " -t " : "";

String args = "./program " + pass4 + textBasedArg + keyFile;

cryptopANT.setup(args);

return cryptopANT;

}

public String anonymize(String ipAddress) {

return encrypt(ipAddress);

}

public String denonymize(String ipAddress) {

return decrypt(ipAddress);

}

Listing A.9: Implementation of setup method declared in scramble ips.c which calls main() function

JNIEXPORT void JNICALL Java_maskingtechniques_CryptoANTJNI_setup(JNIEnv *env, jobject thisObj, jstring inJNIStr) {

char *inCStr = (*env)->GetStringUTFChars(env, inJNIStr, NULL);

char array[100][100];

int i = 0;

int s = 0;

char *pArgs = strtok(inCStr," ");

while((pArgs = strtok(NULL, " ")) != NULL) {

int k;

for(k=0; k<strlen(pArgs);k++){

array[s][k] = *(pArgs + k);
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}

array[s][k] = ’\0’;

s++;

}

int argc = s;

char* argv[argc + 1];

int position;

for(position=0;position<s;position++){

argv[position] = array[position];

}

int status = main(argc, argv);

}

Listing A.10: Implementation of native encryption and decryption methods declared in scram-

ble ips.c file

JNIEXPORT jstring JNICALL Java_maskingtechniques_CryptoANTJNI_encrypt(JNIEnv *env, jobject thisObj, jstring inJNIStr) {

// Step 1: Convert the JNI String (jstring) into C-String (char*)

char *inCStr = (*env)->GetStringUTFChars(env, inJNIStr, NULL);

ipIn = inCStr;

char cbuf[BUFSIZE];

char cbuf2[BUFSIZE];

strncpy(cbuf, ipIn, strlen(ipIn));

cbuf[strlen(ipIn)] = ’\0’;

anon_ip4_txt(cbuf, cbuf2);

return (*env)->NewStringUTF(env, cbuf2);

}

JNIEXPORT jstring JNICALL Java_maskingtechniques_CryptoANTJNI_decrypt(JNIEnv *env, jobject thisObj, jstring inJNIStr) {

// Step 1: Convert the JNI String (jstring) into C-String (char*)

char *inCStr = (*env)->GetStringUTFChars(env, inJNIStr, NULL);

ipIn = inCStr;

char cbuf[BUFSIZE];

char cbuf2[BUFSIZE];

strncpy(cbuf, ipIn, strlen(ipIn));

cbuf[strlen(ipIn)] = ’\0’;

reverse_mode = 1;

anon_ip4_txt(cbuf, cbuf2);

reverse_mode = 0;

return (*env)->NewStringUTF(env, cbuf2);

}
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Listing A.11: Log sample of Snort alerts - snort.unified2.1537860154.json
1 {"type": "event", "event": {"impact": 0,"generator-id": 1,"protocol": 1,"dport-icode": 0,"signature-revision": 7,

"classification-id": 14,"signature-id": 2100368,"sensor-id": 0,"impact-flag": 0,"sport-itype": 8,"priority": 3,

"event-second": 1537860157,"pad2": null, "destination-ip": "192.168.2.1", "event-id": 1,"mpls-label": null,

"vlan-id": null, "source-ip": "192.168.2.119", "event-microsecond": 95888,"blocked": 0}}

2 {"type": "packet", "packet": {"packet-second": 1537860157,"linktype": 1,"sensor-id": 0,"packet-microsecond": 95888,

"event-second": 1537860157,"length": 98,"data":

"ROndUGqkpHczpCD2CABFAABUAABAAEABtODAqAJ3wKgCAQgApvEPRAABPeKpW2+IAAAICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc=",

"event-id": 1}}

3 {"type": "event", "event": {"impact": 0,"generator-id": 1,"protocol": 1,"dport-icode": 0,"signature-revision": 8,

"classification-id": 14,"signature-id": 2100366,"sensor-id": 0,"impact-flag": 0,"sport-itype": 8,"priority": 3,

"event-second": 1537860157,"pad2": null, "destination-ip": "192.168.2.1", "event-id": 2,"mpls-label": null,

"vlan-id": null, "source-ip": "192.168.2.119", "event-microsecond": 95888,"blocked": 0}}

4 {"type": "packet", "packet": {"packet-second": 1537860157,"linktype": 1,"sensor-id": 0,"packet-microsecond": 95888,

"event-second": 1537860157,"length": 98,"data":

"ROndUGqkpHczpCD2CABFAABUAABAAEABtODAqAJ3wKgCAQgApvEPRAABPeKpW2+IAAAICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc=",

"event-id": 2}}

5 {"type": "event", "event": {"impact": 0,"generator-id": 1,"protocol": 1,"dport-icode": 0,"signature-revision": 7,

"classification-id": 14,"signature-id": 2100368,"sensor-id": 0,"impact-flag": 0,"sport-itype": 8,"priority": 3,

"event-second": 1537860158,"pad2": null, "destination-ip": "192.168.2.1", "event-id": 3,"mpls-label": null,

"vlan-id": null, "source-ip": "192.168.2.119", "event-microsecond": 108994,"blocked": 0}}

6 {"type": "packet", "packet": {"packet-second": 1537860158,"linktype": 1,"sensor-id": 0,"packet-microsecond": 108994,

"event-second": 1537860158,"length": 98,"data":

"ROndUGqkpHczpCD2CABFAABUAABAAEABtODAqAJ3wKgCAQgAx78PRAACPuKpW025AAAICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc=",

"event-id": 3}}

7 {"type": "event", "event": {"impact": 0,"generator-id": 1,"protocol": 1,"dport-icode": 0,"signature-revision": 8,

"classification-id": 14,"signature-id": 2100366,"sensor-id": 0,"impact-flag": 0,"sport-itype": 8,"priority": 3,

"event-second": 1537860158,"pad2": null, "destination-ip": "192.168.2.1", "event-id": 4,"mpls-label": null,

"vlan-id": null, "source-ip": "192.168.2.119", "event-microsecond": 108994,"blocked": 0}}

8 {"type": "packet", "packet": {"packet-second": 1537860158,"linktype": 1,"sensor-id": 0,"packet-microsecond": 108994,

"event-second": 1537860158,"length": 98,"data":

"ROndUGqkpHczpCD2CABFAABUAABAAEABtODAqAJ3wKgCAQgAx78PRAACPuKpW025AAAICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc=",

"event-id": 4}}

9 {"type": "event", "event": {"impact": 0,"generator-id": 1,"protocol": 6,"dport-icode": 22,"signature-revision": 2,

"classification-id": 16,"signature-id": 2019876,"sensor-id": 0,"impact-flag": 0,"sport-itype": 58271,"priority": 3

,"event-second": 1537860172,"pad2": null, "destination-ip": "192.168.2.4", "event-id": 5,"mpls-label": null,

"vlan-id": null, "source-ip": "116.31.116.42", "event-microsecond": 134142,"blocked": 0}}

10 {"type": "packet", "packet": {"packet-second": 1537860172,"linktype": 1,"sensor-id": 0,"packet-microsecond": 134142,

"event-second": 1537860172,"length": 81,"data":

"xDRrUaaKROndUGqkCABFAABDFelAADAGidZ0H3QqwKgCBOOfABZkhzT5VptU/4AYAOU/xAAAAQEIChoOIV8Brh+IU1NILTIuMC1QVVRUWQ0K",

"event-id": 5}}

11 {"type": "event", "event": {"impact": 0,"generator-id": 1,"protocol": 1,"dport-icode": 0,"signature-revision": 7,

"classification-id": 14,"signature-id": 2100368,"sensor-id": 0,"impact-flag": 0,"sport-itype": 8,"priority": 3,

"event-second": 1537860187,"pad2": null, "destination-ip": "192.168.2.1", "event-id": 6,"mpls-label": null,

"vlan-id": null, "source-ip": "192.168.2.119", "event-microsecond": 507704,"blocked": 0}}

12 {"type": "packet", "packet": {"packet-second": 1537860187,"linktype": 1,"sensor-id": 0,"packet-microsecond": 507704,

"event-second": 1537860187,"length": 98,"data":

"ROndUGqkpHczpCD2CABFAABUAABAAEABtODAqAJ3wKgCAQgAWCYPxwABW+KpW5nQBgAICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vMDEyMzQ1Njc=",

"event-id": 6}}
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Listing A.12: Log generator (main)
#!/usr/bin/env python

import sys

import configurations as cnf

from configurations import logger

from generate_snort_logs import GenerateSnortLogs

from generate_ossec_logs import GenerateOSSECLogs

from generate_nessus_logs import GenerateNessusLogs

from generate_nmap_logs import GenerateNmapLogs

from generate_incident_logs import GenerateIncidentLogs

class LogGenerator:

’’’General Log generator class’’’

path = "../logs/"

log_types = {

"types":[

{"type":"ossec", "path": path+"ossec/"},

{"type":"correlation", "path": path+"correlation/"},

{"type":"incident", "path": path+"incidents/"},

{"type":"nessus", "path": path+"nessus/"},

{"type":"snort", "path": path+"snort/"},

{"type":"nmap", "path": path+"nmap/"}

]

}

def __init__(self):

print("Which type of logs do you wish to generate ?\n")

options = {}

for key,value in self.log_types.items():

for index, record in enumerate(self.log_types[key], start=1):

options[index] = record

print(str(index)+")"+record["type"])

while True:

selected_option = input("Enter the number of the selected option: ")

if type(selected_option) == int and selected_option in options:

print("genearting logs of type "+options[selected_option]["type"] + ", path

="+options[selected_option]["path"])

break

else:

print("entered invalid option! please enter a valid option.")

while True:

quantity = input("Enter a number of records: ")

if type(quantity) == int:

print("generating " + str(quantity) + " records.")

break

else:

print("entered invalid option! please enter a valid option..")

if options[selected_option]["type"] == "snort":

GenerateSnortLogs(options[selected_option]["path"], quantity)

if options[selected_option]["type"] == "ossec":
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GenerateOSSECLogs(options[selected_option]["path"], quantity)

if options[selected_option]["type"] == "nessus":

GenerateNessusLogs(options[selected_option]["path"], quantity)

if options[selected_option]["type"] == "incident":

GenerateIncidentLogs(options[selected_option]["path"], quantity)

if options[selected_option]["type"] == "nmap":

GenerateNmapLogs(options[selected_option]["path"], quantity)

if options[selected_option]["type"] == "correlation":

GenerateCorrelationLogs(options[selected_option]["path"], quantity)

def main():

LogGenerator()

if __name__ == "__main__":

print("python version: "+str(sys.version))

main()

Listing A.13: Log generator (snort type or alerts)
#!/usr/bin/env python

from configurations import *

from kafka import KafkaProducer, KafkaConsumer

class GenerateSnortLogs:

’’’ https://github.com/dpkp/kafka-python/blob/master/example.py’’’

def __init__(self, path, quantity):

self.producer = KafkaProducer(bootstrap_servers=KAFKA_ADDRESS+":"+KAFKA_PORT)

self.path = path

if (quantity%2) == 0:

print("quantity is even")

else:

print("quantity is odd, adding 1")

quantity+=1

self.quantity = quantity

files = os.listdir(self.path)

self.total_lines = 0

print("generating " + str(quantity) + " of snort logs.")

for file_name in files:

self.parse_file(file_name)

logger.info("parsed "+str(self.total_lines))

def parse_file(self, file_name):

if file_name.endswith(".json"):

logger.info("parsing : " + self.path + file_name)

for line in self.read_lines(self.path +file_name):

json_line = load_line_in_json(line)

if not json_line:

break

json_line["data_type"] = "snort"

#randomnizing ips

if "event" in json_line:

json_line["event"]["source-ip"] = str("10.2.") + str(’.’.join([str(randint(0,255)) for x in range(2)]))

json_line["event"]["destination-ip"] = str("10.2.") + str(’.’.join([str(randint(0,255)) for x in

range(2)]))

line_str = json.dumps(json_line)
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if(self.total_lines >= self.quantity):

break

line_str = json.dumps(json_line)

if(self.total_lines >= self.quantity):

break

self.send_to_kafka(line_str)

self.total_lines +=1

def read_lines(self, file):

with open(file, ’r’) as f:

for line in f.readlines():

yield line

def send_to_kafka(self, line):

print "using topic " + KAFKA_TOPIC

self.producer.send(KAFKA_TOPIC, line)

self.producer.flush()

Listing A.14: Snort rule signature for heartbleed attack

alert tcp $HOME_NET 443 -> $EXTERNAL_NET any (msg:"SERVER-OTHER

TLSv1.1 large heartbeat response - possible ssl heartbleed attempt";

flow:to_client,established; content:"|18 03 02|"; depth:3;

byte_test:2,>,128,0,relative; detection_filter:track by_dst, count 5,

seconds 60; metadata:policy balanced-ips drop, policy security-ips

drop, service ssl; reference:cve,2014-0160; classtype:attempted-recon;

sid:30516; rev:3;)
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