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Abstract

Enhanced Image-Based Visual Servoing Dealing with Uncertainties

Ahmad Ghasemi, Ph.D.

Concordia University, 2020

Nowadays, the applications of robots in industrial automation have been considerably in-

creased. There is increasing demand for the dexterous and intelligent robots that can work in

unstructured environment. Visual servoing has been developed to meet this need by integra-

tion of vision sensors into robotic systems. Although there has been significant development

in visual servoing, there still exist some challenges in making it fully functional in the indus-

try environment. The nonlinear nature of visual servoing and also system uncertainties are

part of the problems affecting the control performance of visual servoing. The projection of

3D image to 2D image which occurs in the camera creates a source of uncertainty in the sys-

tem. Another source of uncertainty lies in the camera and robot manipulator’s parameters.

Moreover, limited field of view (FOV) of the camera is another issues influencing the control

performance. There are two main types of visual servoing: position-based and image-based.

This project aims to develop a series of new methods of image-based visual servoing (IBVS)

which can address the nonlinearity and uncertainty issues and improve the visual servoing

performance of industrial robots.

The first method is an adaptive switch IBVS controller for industrial robots in which the

adaptive law deals with the uncertainties of the monocular camera in eye-in-hand config-

uration. The proposed switch control algorithm decouples the rotational and translational

camera motions and decomposes the IBVS control into three separate stages with different

gains. This method can increase the system response speed and improve the tracking per-

formance of IBVS while dealing with camera uncertainties. The second method is an image

feature reconstruction algorithm based on the Kalman filter which is proposed to handle the

situation where the image features go outside the camera’s FOV. The combination of the

switch controller and the feature reconstruction algorithm can not only improve the system

response speed and tracking performance of IBVS, but also can ensure the success of servo-

ing in the case of the feature loss. Next, in order to deal with the external disturbance and
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uncertainties due to the depth of the features, the third new control method is designed to

combine proportional derivative (PD) control with sliding mode control (SMC) on a 6-DOF

manipulator. The properly tuned PD controller can ensure the fast tracking performance

and SMC can deal with the external disturbance and depth uncertainties. In the last stage of

the thesis, the fourth new semi off-line trajectory planning method is developed to perform

IBVS tasks for a 6-DOF robotic manipulator system. In this method, the camera’s velocity

screw is parametrized using time-based profiles. The parameters of the velocity profile are

then determined such that the velocity profile takes the robot to its desired position. This

is done by minimizing the error between the initial and desired features. The algorithm for

planning the orientation of the robot is decoupled from the position planning of the robot.

This allows a convex optimization problem which lead to a faster and more efficient algo-

rithm. The merit of the proposed method is that it respects all of the system constraints.

This method also considers the limitation caused by camera’s FOV.

All the developed algorithms in the thesis are validated via tests on a 6-DOF Denso robot

in an eye-in-hand configuration.
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Chapter 1

Introduction

Nowadays, robots are an essential part of the automation industry. However, they are

generally limited to operate in structured environments. Conventional robots use open-

loop kinematic calculations to determine the end-effector position with respect to a known

reference frame. The target object position must also be known with respect to the same

coordinate frame. The issue is that any uncertainty of the relevant parameters would cause

the task to fail. Vision sensors can deal with these uncertainties by providing non contact

and real time measurements of the environment to determine position of the end-effector

and target object with respect to each other and the reference frame. Closed-loop position

control of the end-effector by exploiting the vision signal as a feedback is referred to as

“visual servoing”- the term that appeared to be first used in 1979. In visual servoing, the

robot uses the image captured by the camera to determine the position of the end-effector

and the target object and uses it as a feedback to control the position of the robotic system

[8, 9].

Since early 80’s, this topic has been the subject of study among academic researchers

aiming to increase the intelligence and dexterity of robotic systems. This research topic is

the fusion of many areas such as high speed image processing, kinematics, dynamics, control

theroy and real-time computations [10]. Visual servoing has been adopted in a wide range of

applications such as robotic welding, teleoperation, missile tracking cameras, fruit picking,

robotic ping-pong, juggling, car steering and even aircraft landing [9].

Putting the visual servoing of industrial robots into operation in real unstructured en-

vironment is challenging. Since the vision system projects the 3D space into 2D space, one

dimension data of the environment which is the depth of the object is lost. This loss of data
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along with the nonlinearities in the projection leads to difficulties in the integration of vision

and robotic systems. Thus, there are some inherent deficiencies that prevent it from being

fully applicable. Moreover, industrial application of visual servoing in many cases requires

high speed of the task and adequate robustness to uncertainties and camera’s limitations.

The uncertainties include camera parameters and depth of the features and the main cam-

era limitation is its field of view (FOV). This research work aims to develop a group of new

methods to improve the performance and overcome the limitations and deficiencies of visual

servoing to make it more feasible to be used in industrial applications.

1.1 Visual Servoing Applications

One main application of visual servoing is in industrial robots. Vision signal is employed as

feedback such that the pose (position and orientation) of the robot end-effector is controlled

with respect to that of the object until the desired end-effector pose is reached. Some

examples of this application are painting, positioning, object grasping (Figure 1.1), assembly

and disassembly of mechanical parts [11–13]. In another effort, visual servoing is used in

micro and nano positioning as well [14–16].

(a) (b)

Figure 1.1: Visual servoing applications in robotics: (a) Grasping objects on conveyor belts [1], (b)
Robotic fruit picking [2]

Visual servoing techniques is also used in mobile robot navigation (Figure 1.2) where the

vision signal from a camera mounted on the robot provides feedback from the environment

enabling the controller to guide the robot through the desired path [17, 18].

2



Figure 1.2: Visual servoing used in unmanned ground vehicle [3]

Medical surgery is another area where visual servoing is used (Figure 1.3). One example

is the usage of ultrasonic images as feedback in order to guide a robot carrying the ultrasonic

probe to a desired position [19, 20]. Another example is in the laparoscopic surgery where

visual servoing can assist the surgeon by automatically guiding the robot carrying the surgical

tools to the desired position with respect to the concerned organ [21, 22]

Figure 1.3: Visual servoing used in medical applications [4]

Visual servoing is also employed in the control of unmanned aerial vehicles (UAV) (Figure
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1.4). Various applications are in automatic take-off and landing [23, 24], monitoring the

structures and bridge inspection [25], cooperative exploration [26], etc.

Figure 1.4: Visual servoing used in UAV applications [5]

The fusion of vision and force measurements has been used in some applications ranging

from medical application to human-robot interaction. Examples of the medical applications

are ear surgical device [27] and robotic cell injection [28] where the force feedback alongside

the vision based motion compensation are used to guide the robot to accomplish the task.

Vision and force fusion is used for accurate localization of the grasped object which is used in

applications such as part mating or component insertion [29, 30]. Another example is in the

area of human-robot interaction in which a guided robot moves securely while cooperating

with a human [31, 32].

1.2 Fundamentals of Visual Servoing

Visual servoing has been the subject of research for more than four decades [33] and the

phrase ”Visual Servoing” first was used in 1979 [34]. However, it is only in recent years that

the significant progress in processing speed has made it functional in real-time industrial

applications. Considering the literature, visual servoing may be classified into different

categories. In this section, a general classification of visual servoing will be presented, then

a more detailed review on the control strategy and control algorithm will be given.
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1.2.1 General classification of visual servoing

Visual servoing can be classified based on various features such as the visual servoing strategy,

the type of controller, the number of cameras, the camera configuration, the type of image

features and the target situation. This classification is summarized in Table 1.1.

Based on the way the vision feedback signal is employed to control the robot, visual

servoing can be classified into main two types Position-Based Visual Servoing (PBVS) and

Image-Based Visual Servoing (IBVS). Also the combination of these two is known as Hybrid

Visual Servoing. Visual servoing strategy will be reviewed in more detail in the next section.

Regarding the control algorithm, various types are studied in the literature. However,

proportional control, adaptive control and model predictive control are the three main types.

In another classification, visual servoing is categorized into eye-in-hand and eye-to-hand

based on the camera configuration (Figure 1.5). If the camera is mounted on the end-effector

it is called “eye-in-hand” and if it is installed in a fixed position looking toward the the robot,

it is called “eye-to-hand”.

(a) (b)

Figure 1.5: Camera configurations in visual servoing: (a) Eye-in-hand (b) Eye-to-hand [6]

Even though eye-to-hand gives wider field of view, some image information may be ir-

relevant. On the other hand, camera in eye-in-hand focuses on the object with less field of

view. The chance that the image taken by the camera is occluded is higher in eye-to-hand

than that in eye-in-hand configuration because the robot or other obstacles may block the

object image. In both configurations, camera calibration must be performed prior to the

task to acquire the intrinsic parameters of the camera such as focal length, resolution and
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the principle point [9]. The calibration process is normally time consuming. Therefore it

has motivated some researchers to investigate some techniques that are robust to camera

calibration [35–37]. It has been shown that eye-to-hand configuration is more sensitive to

camera calibration. In this thesis, the eye-in-hand configuration is used which allows the

camera to focus on the object in the work space.

Visual servoing tasks can be performed using a single camera (monocular), two cameras

(stereo vision) or more than two cameras (multiple cameras). A comprehensive survey on

these categories can be found in [38]. Single camera needs the least processing time to extract

the visual information among these categories. Since each point in the 2D image is related

to a line in 3D space, the single camera cannot provide a proper estimation of the distance

between the object and the camera (depth of the object). Stereo camera system can resolve

this issue by providing more precise depth of the object. The depth computation is done

by comparing the differences in different views of the same scene which is considered as a

challenge that researchers are actively working on [39–41]. Since the stereo vision system

only can use the shared part of the images, its field of view would be less than the monocular

vision system. The third and rarest option is using multiple cameras. Although, this system

may provide more vision information and better depth estimation compared to the other

types, it acquires more time for image processing. The situations that using this type are

reasonable are where the object is too large to be fully seen by a mono or stereo vision

system, parts of the object are occluded/shadowed or multiple or deforming objects are

tracked. Some related work on this system is mentioned in [38]. In this thesis, a monocular

vision system is used to obtain faster image processing.

Image feature is another aspect in visual servoing classification. Image feature is defined

as a specific piece of information in the image. The control signal is generated by comparing

the current image features with the desired ones to reduce the error. The desired features are

taken when the robot is in its desired position with respect to the object, then visual servoing

task is defined to match the desired and actual image features. Points, lines and segments

are the usual image features used in visual servoing. Despite the ease of use and detection,

these features are prone to be getting lost in case of occlusion by obstacles which causes

the failure of the operation. Recently, several novel features have been used to increase the

robustness in visual servoing. While image moments have been widely used in computer

vision for pattern recognition, they have recently been adopted in visaul servoing [42]. In

this thesis, point features are used as image features.
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Visual servoing may be employed to catch moving or stationary objects. In the case of

a moving object, trajectory planning is also necessary that poses more challenges. Visual

servoing is responsible to keep the object in the field of view and simultaneously reduce the

error between the desired and actual position until the object is caught. Various studies

have focused on the challenges of catching a moving object [43–47]. This thesis is focused in

the stationary object situation.

Table 1.1: Visual servoing classification

Categories Main types

Visual servoing strategy Position-based

visual servoing

(PBVS)

Image-based

visual servoing

(IBVS)

Hybrid visual

servoing

Visual servoing

controller

Proportional

controller

Adaptive

controller

Model predictive

controller

Camera configuration Eye-to-hand Eye-in-hand

Number of cameras Mono vision Stereo vision Multiple cameras

Image feature Point features Line features Image moment

features

Target situation Static object Moving object

1.2.2 Visual Servoing Strategy

One major classification of visual servoing is done according to visual servoing strategy,

namely “ position-based visual servoing (PBVS)” and “ image based visual servoing (IBVS)”.

In PBVS, the image features (that could be area of a region, length of a line, position of the

center of a region, etc.) are extracted from the camera image. These extarcted information

along with information of target geometry and camera model are used to estimate the pose

of the camera with respect to the target object. This estimated pose is compared with the

desired one to create pose error. In IBVS, error signal is generated directly by comparing

the image features and desired ones in the image plane [9]. In the following two sections,
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the two mentioned methods are explained in detail.

Position-based visual Servoing

Figure 1.6 shows a schematic of position-based servo. Two main parts can be identified in

the figure. First part is responsible for taking the image by the camera, extracting of the

features from the image and feature interpretation which are in fact reconstruction of 3D

information from 2D image information. Second part is PBVS controller which is in charge

of generating control signal for the robot using reference position signal and actual position

signal.

In this method, the reference point is the relative position and orientation between the

object and robot hand. The relative position and orientation are calculated from the images

taken by the camera which may be installed on the robot hand (eye-in-hand configuration)

or may be installed besides the manipulator (eye to hand configuration).

The robot control problem is well established in robotics community so far. Thus the

main topic of research in the field is fast and robust computation of the object pose. In fact,

reconstructing 3D information using 2D images information is the main issue for which some

algorithms have been developed using various approaches [48].

Figure 1.6: PBVS structure

The photographic measurement uses the size and shape of the object to reconstruct

the position and orientation of the object and the stereo measurement uses two or more

cameras simultaneously. Actually this method is based on comparison of the images taken
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by cameras. This task is not usually easy in real time applications.

Image-based visual servoing

In the image-based method, the reference signal is defined in the image plane. This scheme

is also called feature-based visual servoing. It means that some features are extracted from

the image and are compared with the desired reference signal. Figure 1.7 shows the concept

of image-based visual servoing. Various quantities could be taken as object feature. The

quantities like area of a region, length of a line, position of the center of a region, etc., can

be used as features, which could be extracted by applying simple image processing.

Figure 1.7: IBVS structure

1.2.3 Image-Based Visual Servoing Basics

Since IBVS is referred in all chapters of the thesis, in this section the basics of the IBVS is

introduced and related formulations are derived.

The structure of the visual servoing is shown in Figure 1.8. As it is illustrated, it consists

of a visual servoing controller block and a robot controller block. A camera mounted on the

end-effector captures images and sends the information to an algorithm which extracts image

features. These features are compared with desired ones and the difference between them is

fed to the visual servoing controller as the feature error. This controller creates a velocity

command for the end-effector to compensate this error. Then the velocity command is sent

to the robot controller block and compared with the current velocity of the end-effector to
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create the velocity error. The robot controller could be either a single joint controller or

computed torque controller. In the first case, the controller generates separate joint angle

commands and in the second one torque command in order to reduce the velocity error.

Figure 1.8: IBVS structure- visual servoing controller vs robot controller

In IBVS, the extracted features are compared with desired ones and feature error is

computed. Desired features are extracted from the camera image when it is located in the

desired position and orientation with respect to the object. Thus, when the current image

is matched with the desired one, it means the end-effector is located in the desired pose

with respect to the object and the rest of the task can be catching the object or performing

other operation on the object. Therefore the IBVS task is defined as the guidance of the

end-effector (camera) in a way that the desired features are matched with the current ones

(Figure 1.9).
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(a) (b)

Figure 1.9: Visual servoing task: a) Robot in IBVS operation b) Desired and actual features are
matched [7]

In IBVS, the object with (X, Y, Z) coordinates with respect to camera has the projected

image coordinates (x, y) in the camera image (Figure 1.10).

Figure 1.10: Schematic of the camera model [7]

n features are denoted as si(t) = [xi(t) yi(t)]
T , and sdi = [xdi ydi]

T as the desired image

features’i th coordinates in the image space (i = 1, .., n). The velocity of the camera is

defined as Vc(t). The relation between velocity of the camera and image feature velocity can

be expressed as:

ṡ(t) = Jimg(t)Vc(t), (1.1)
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where,

s(t) =


s1(t)

...

sn(t)

 , sd(t) =


sd1(t)

...

sdn(t)

 (1.2)

and

Jimg(t) =


Jimg(s1(t), Z1(t))

...

Jimg(sn(t), Zn(t))

 (1.3)

is called the image Jacobian matrix and Z1(t), . . . , Zn(t) are the depth of the features

s1, ..., sn.

Note: In this study, the system is set up in eye-in-hand configuration and the number of

features is n = 4. It is assumed that the largest distance between features is much less than

the depth of the features. Thus, it is inferred that all the features have the same depth Z.

Hence, for the i th feature, the image Jacobian matrix is given as [9]:

Jimg(si(t)) =

[
f
Z(t)

0 −xi(t)
Z(t)

−xi(t)yi(t)
f

f2+x2i
f

−yi(t)
0 f

Z(t)
−yi(t)
Z(t)

−f2−yi(t)2
f

xi(t)yi(t)
f

xi(t)

]
, (1.4)

where f is the focal length of the camera and xi(t) and yi(t) are the projected feature

coordinates in the camera frame which are directly related to the camera intrinsic parameters

as follows [49].

xi(t) = (ui(t)− cu)/fβ (1.5)

and

yi(t) = (vi(t)− cv)/fβ, (1.6)

where ui(t) and vi(t) are the pixel coordinates in image plane, cu and cv are the principal

point coordinations and β is the scale factor.

The velocity of the camera can be calculated by manipulating (1.1):

Vc(t) =
+

Jimg(t)ṡ(t), (1.7)

where
+

Jimg(t) is the pseudo-inverse of the image Jacobian matrix. The error signal is defined

as s̃(t) = s(t) − sd and let ˙̃s(t) = −Ks̃(t). Then the conventional IBVS control law can be
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designed as:

Vc(t) = −K
+

Jimg(t)s̃(t), (1.8)

where K is the proportional gain.

1.3 Literature Survey

In addition to the type of control strategy corresponding to the feedback type used in visual

servoing, various types of controllers have been employed to perform the visual servoing

tasks.

Visual feedback in the control loop has aimed to fulfill the need for more dexterous and

efficient robots. In many visual servoing applications, a control system with high accuracy

and strong robustness is needed, such as cell injection [50], robotic systems [51], automated

fault insertion test [52], car steering, aircraft landing and even missile tracking [53].

Between the two major visual servoing control strategies, IBVS has these advantages

over PBVS. IBVS directly uses image feature errors to calculate the control signal which

reduces computational delay and becomes less sensitive to the camera calibration and target

model errors [9, 54]. However, IBVS is still subjected to some parameter uncertainties due

to intrinsic and extrinsic parameters [55]. The camera intrinsic parameters include focal

length, principal point and camera scaling factors which are estimated through calibration.

The extrinsic parameters are due to the estimated depth which introduces the inaccuracy in

the image interaction matrix.

Despite the great amount of development of visual servoing technology in the last two

decades, it still suffers from a number of problems which prevent it from wide industrial use.

High nonlinearity of a visual servoing system is the main cause for its problems. In [56],

some potential problems of implementing visual servoing are presented. The most prominent

deficiencies of visual servoing, preventing it from practical employment, are listed as follows;

1. Long convergence time

2. Largely dependent on accuracy of camera parameters

3. Interaction matrix singularity

4. Features leaving the FOV or feature loss
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5. Lack of robustness to the uncertainties

6. Unknown path of the robot prior to the tasks and lack of 3D space control

7. Poor response to large travels

Various methodologies such as proportional-integral-derivative (PID) control [15, 57, 58],

sliding mode control (SMC) [55] and adaptive control [59] have been presented in literature

to overcome some of the deficiencies. Image moment features were introduced to deal with

the interaction matrix singularity and local minima problem [60–62]. Model predictive visual

servoing controller was introduced to deal with the constraints of the system and prevent

the features from leaving the FOV [63]. Augmented image-based visual servoing (AIBVS)

was presented to make the visual servoing smoother and reduce the risk of features leaving

the field of view [64].

The main concept in the above mentioned methods is to generate a velocity or acceler-

ation command as the control input to guide the end-effector smoothly and accurately to

the desired position. In the following, a literature survey is given regarding the strategies

developed in this research work.

1.3.1 Adaptive Switch Image-Based Visual Servoing

In order to have an effective IBVS which is feasible for practical robotic applications, a fast

response system with proven stability is needed. Various studies have been conducted to

address and overcome shortcomings of IBVS and enhance its efficiency [56, 65–68]. However,

most of the reported IBVS tend to have an overly long converging time that does not meet

the demand of industrial applications. Increasing the gain values in the control law is one

obvious way to reduce the response time of IBVS. However, there is a limitation on this

value because the high gain in IBVS controller tends to make the robotic system shaky and

unstable [64]. Moreover, the stability of traditional IBVS system is proved only in a region

around the desired position [56]. Also, when the initial feature configuration is far away

from the desired one, the converging time is long and possible image singularities may lead

to IBVS failure.

On the other hand, one main issue in IBVS is that its performance is dependent on the

accuracy of camera calibration. To elaborate, the image Jacobian matrix (Jimg) relating

the image features velocity to the camera velocity, contains the camera intrinsic parameters
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and depth of the features. The camera parameters can be obtained by calibration process.

However, in some cases they may be unreliable especially in industrial applications since they

may change during the task. Although many reported IBVS methods have improved the

tracking performance by using image moments as features [69] or by optimizing the trajectory

planning [68, 70, 71], they have not considered the uncertainties of camera parameters and

assume the camera is well calibrated. Some studies have been carried out to deal with

the uncertain camera parameters [72–74]. However, in most of these studies, the controller

design is kinematic-based, i.e. they consider the robot as an accurate positioning device with

negligible dynamics. The kinematic-based controller neglects the dynamics of the robot and

render less complex control system. It is easier to implement kinematic-based visual servoing

[75] compared with the dynamic-based control method. However, the dynamic-based method

considers the dynamic model in the controller design and hence can deliver better control

performance in terms of convergence time and robustness with guaranteed stability compared

to the kinematic-based one. In recent years, some studies have tried to introduce methods

to deal with camera parameter uncertainties by considering dynamics of the robot [76, 77].

However, in these studies, as it is shown in Eq. (1.4), the term associated with depth ( 1
Z(t)

)

cannot be factorized from the whole image Jacobian matrix. It means Eq. (58) in [76] and

Eq. (1) in [77] are not valid formulas and the proposed methods are not applicable to IBVS

method. Other similar studies such as [78, 79] are either on stereo eye-to-hand configuration

or only verified for 3-DOF robots. Besides the improvement of efficiency and the speed

of the proposed controllers over traditional IBVS are not verified. Thus, for eye-in-hand

configuration, there is still a lack of research work on a stable fast response method of IBVS

to be used in industrial applications with the capability to deal with camera uncertainties.

1.3.2 Visual Servoing dealing with Feature loss

An efficient IBVS feasible for practical robotic operations requires a fast response with strong

robustness to feature loss. In fact, feature loss caused by the camera’s limited field of view

(FOV) prevents the IBVS method from being fully efficient and being applicable to real

industrial robots.

The visual features contain much information such as the robots’ pose information, the

tasks’ states, the influence of the environment, the disturbance to the robots, etc. The

features are directly related to the motion screw of the end-effector of the robot. The

completeness of the feature set during visual servoing is key to fulfilling the IBVS task
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successfully. Many features have been used in visual servoing such as feature points, image

moments, lines, etc. The feature points are known for the ease of image processing and

extraction. It is shown that at least three image points are needed for controlling a 6-DOF

robot [9]. Hence, four image points are usually used for visual servoing. However, the feature

points tend to leave the FOV during the process of visual servoing. A strategy is needed to

handle the situation where the features are lost.

There are two main approaches to handle feature loss and/or occlusion caused by the

limited FOV of the camera [49]. In the first approach, the controller is designed to avoid

occlusion or feature loss, while in the second one, the controller is designed to handle the

feature loss.

In the first approach, several techniques have been developed to avoid the feature loss or

occlusion. In [80], occlusion avoidance is considered as the second task besides the primary

visual servoing task. In [81], a reactive unified convex optimization-based controller was

designed to avoid occlusion during tele-operation of a dual-arm robot. Some studies have

been carried out in visual trajectory planning considering feature loss avoidance [46, 82, 83].

Model predictive control methods have been adopted in visual servoing to prevent feature

loss due to its ability to deal with constraints [84–88]. In [89], predictive control is employed

to handle visibility, workspace, and actuator constraints. Despite the success of the studies

on preventing feature loss, they suffered from the limited maneuvering workspace of the

robot, due to the conservative design required to satisfy many constraints.

In the second approach, the controller tries to handle the feature loss instead of avoiding

it. When the loss or occlusion of features occurs, if the remaining visible features are sufficient

to generate the non-singular inverse of the image Jacobian matrix, the visual servoing task

can still be carried out successfully. In this situation, the rank of the relative Jacobian matrix

must be the same as the degrees of freedom [90]. However, this method is no longer effective

when the number of remaining visible features become too small to guarantee the full-

rankness of the image Jacobian matrix. As studied in [91], another solution is to foresee the

position of the lost features and to continue the control process using the predicted features

until they become visible again. This method allows partial or complete loss or occlusion

of the features. In the second approach [90, 91], the classical IBVS control is employed as

the control method, which does not usually provide a fast response. In this research work,

an enhanced switch image-based visual servoing (ESIBVS) method is presented to make the

switch IBVS control robust in reaction to feature loss.

16



1.3.3 Enhanced IBVS Controller Using Hybrid PD-SMC Method

PID control has a wide application because of its simplicity and effectiveness. The con-

vergence property of P or PD controller is also satisfactory. However, sometimes sudden

variation or small shakiness occur due to image noise or motion vibration. Acceleration

input command has been used in some research to reduce these issues [58]. Despite the

relative effectiveness of this technique, it is not applicable in all situations because in some

robotic systems, only velocity signal can be accepted as control input. Model Predictive

Control (MPC) is also used to reduce the error at the end of the prediction horizon [92].

However, the MPC controller is known for its heavy computational burden, which poses

challenge for the fast dynamic robot system. In [93], a predictive control method consider-

ing visibility constraints and actuator limitations has been proposed and applied in 6-DOF

IBVS robotic system. This method provides an efficient solution to the problem of 3D lim-

itations and large displacements. But it does not address the system uncertainty problem

due to unknown depth. It is known that SMC has strong robustness for the system model or

parameteric uncertainty [94–96]. In recent year, using SMC in IBVS or PBVS to guarantee

the robotic system’s strong robustness and good tracking performance has been reported in

some literature [97–100]. Nonetheless, SMC also has the chattering problem, which could

not be neglected completely in some special situations. Meanwhile, some of IBVS control

schemes have been only verified on 2-DOF or 3-DOF manipulator in the experiment due to

its simple configuration [55, 99, 100]. In this research work, a new hybrid way that combines

PD control with SMC in IBVS is proposed to generate the better velocity profile to control

the 6-DOF robotic manipulator.

1.3.4 Image-Based Visual Servoing Using Trajectory Planning

Although, lots of researches have been devoted to solve one or two of the above mentioned

problems, a reliable and general solution to guarantee the success of visual servoing cannot

be found in literature. As the visual servoing problem persist, the researchers aimed to

integrate machine vision techniques with trajectory planning techniques to overcome the

problems. Trajectory and path planning techniques search and provide the best solution or

solutions to accomplish a specific task. These paths are mostly different from the ones that

a controllers would produce. Chesi et al. [101] proposed a trajectory planning method for

position-based visual servoing. Homogeneous forms were used to parameterize the path and
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an LMI optimization is carried out to calculate the parameters. Moreover other techniques

were also used in PBVS path planning [102]. An adaptive trajectory regeneration method

was proposed in [103] for visual servoing in an unstructured environment. Later on navigation

guidance technique were integrated with visual servoing to achieve fast visual servoing [104,

105].

Although, the reported trajectory planning techniques demonstrate good performance in

executing visual servoing tasks, they were designed for position-based visual servoing. Thus,

they suffer from PBVS drawbacks such as sensitivity to model and camera calibration errors.

This gap motivated the researchers to develop a trajectory planning technique in an IBVS

system [106, 107]. Potential field methods were used to perform IBVS on-line trajectory

planning in robotic systems [108, 109]. Potential field techniques are useful in the presence

of obstacles and when the system is subjected to constraints. However, both IBVS and

PBVS trajectory planning algorithms based on potential field techniques have the following

disadvantages. Since, potential field techniques are an on-line planning technique which

investigate and plan a path based on the local information, it only considers a constraint

when it gets close to it. However when the robot is close to its constraints, it is not possible

to go back and choose another path. In addition, potential field techniques suffer from local

minima when the attraction force magnitude is equal the repelling force on the robot in the

opposite direction.

Generally, in an IBVS trajectory planning, a reference path is produced by the trajectory

planner or path planner considering the goals and constraints of the image and the robot. A

small controlling error will be defined for each small segment of the trajectory to be followed

by the IBVS controller. In such algorithms, the main challenge is to find a path in image space

which corresponds to a feasible path in task space. The most basic method developed for

solving this problem is using stereo vision and the epipolar geometry constraint between two

camera images. Utilizing the privilege of epipolar geometry an image trajectory is generated

on both images in a way that corresponds to a feasible or even straight line trajectory in

Cartesian space [110, 111]. High load of processing and also decreasing the usable field of

view area in cameras are the problems of such solutions. Moreover, using the probabilistic

methods for path planning, as reported in some researches [112, 113], is a useful approach,

however the computational load of such planning makes it very time consuming.

In this research work, a new image-based trajectory planning algorithm is proposed to

overcome the visual servoing deficiencies and develop a reliable algorithm to perform visual
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servoing tasks.

1.4 Research Objectives and Scopes

Industrial application of visual servoing in many cases requires high speed of the task and

adequate robustness to uncertainties and camera limitations. Uncertainties include camera

parameters and depth of the features and the main camera limitation is its field of view

(FOV). Thus, the main objective of this thesis is to develop a series of new IBVS methods to

simultaneously increase the speed of the task and improve its robustness to the mentioned

uncertainties and limitations while keeping the stability of the controller. In addition, this

thesis aims to find the solution to preventing the feature loss and guaranteeing the success

of visual servoing through trajectory planning.

The objectives and scopes of this thesis can be summarized as follows:

1. Develop adaptive switch method of IBVS to deal with camera parameter uncertainties

2. Design switch IBVS that can deal with feature loss

3. Further improve the IBVS robustness by combining PD control with sliding mode

control (SMC)

4. Develop semi-off -line trajectory planning method for IBVS method.

1.5 Contributions of the Thesis

This PhD research work is carried out in different stages. The contributions of each stage of

the research work are summarized as follows:

First, an IBVS adaptive controller is designed which is capable of dealing with camera

parameter uncertainties. In contrast with most of IBVS controllers which are kinematic-

based, the proposed controller is designed with considering the dynamics of the robot. The

dynamic-based method considers the dynamic model in the controller design and hence

can deliver better control performance in terms of convergence time and robustness with

guaranteed stability compared to the kinematic-based one. Moreover, a switching scheme

is proposed and adopted in the controller design: the controller switches between rotational

and translational movements of the end-effector and separate gains are defined for each stage.
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This technique provides the chance to overcome the nonlinearity caused by depth parameter

and enables us to employ the adaptive methods to estimate the camera parameters in eye-

in-hand configuration. Besides, the proposed switching scheme can increase the speed of the

visual servoing task by providing different gains for different stages which can be adjusted

separately. The stability of the proposed controller is fully investigated by using Lyapunov

theory.

Second, a new method is proposed to overcome the shortcomings caused by limited field

of view (FOV) of the camera in eye-in-hand IBVS. The designed method in the first stage

is effective in increasing the speed of the visual servoing task and dealing with camera

uncertainties. However, feature loss caused by the camera’s limited FOV still prevents the

method from being fully efficient and being applicable to real industrial robots. To resolve

this issue, an enhanced switch image-based visual servoing (ESIBVS) method is presented in

which a Kalman filter-based feature prediction algorithm is proposed and is combined with

the proposed switch method in the first stage to make the switch IBVS control robust in

reaction to feature loss. The switch control with the improved tracking performance along

with the robustness to feature loss makes it more feasible for industrial robotic applications.

Third, a new hybrid method that combines PD control with sliding mode control (SMC)

in IBVS is proposed. The controller deals with the uncertainties in depth of the features

and generates better velocity profile to control the 6-DOF robotic manipulator compared

to traditional IBVS. The main feature of the proposed hybrid PD-SMC is its less compu-

tation burden, compared to the adaptive or predicted control approaches. In addition, it

not only can achieve better convergence performance with guaranteed stability, but also

owns stronger robustness against uncertainty and disturbance, compared to either IBVS PD

or SMC system. Lyapunov direct method is used to prove the stability of the proposed

controller.

Last, a new semi off-line trajectory planning method is developed to perform image-based

visual servoing (IBVS) tasks for a 6-DOFs robotic manipulator system. The new trajectory

planning technique parametrized the camera’s velocity screw using time-based profile. The

parameters of the velocity profile are then determined such that the velocity profile takes

the robot to its desired position. This is done by minimizing the error between the initial

and desired features. A depth estimation algorithm is proposed to provide the trajectory

planning algorithm with a good estimation of the initial depth. The algorithm for planning

the orientation of the robot is decoupled from the position planning of the robot. This allows
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a convex optimization problem which lead to a faster and more efficient algorithm. The merit

of the proposed method is that it respects all of the system constraints. By integrating this

technique, the proposed image-based trajectory planning can overcome the above mentioned

deficiencies to a great extent.

The performance of all the proposed methods is examined by a 6-DOF robot manipulator

with monocular eye-in-hand vision system and their performance is compared with that of

traditional IBVS.
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are listed below [68, 114–119]:

1. A. Ghasemi, P. Li, and W.-F. Xie, “Adaptive switch image-based visual servoing for in-

dustrial robots,” International Journal of Control, Automation and Systems, [Online].

Available: https://doi.org/10.1007/s12555-018-0753-y

2. A. Ghasemi, P. Li, W.-F. Xie, and W. Tian, “Enhanced switch image-based visual

servoing dealing with featuresloss,” Electronics, vol. 8, no. 8, p. 903, 2019.

3. S. Li, A. Ghasemi, W.-F. Xie, and Y. Gao, “An enhanced ibvs controller of a 6dof ma-

nipulator using hybrid pd-smc method,” International Journal of Control, Automation

and Systems, vol. 16, no. 2, pp. 844-855, 2018.

4. M. Keshmiri, W.-F. Xie, and A. Ghasemi, “Visual servoing using an optimized tra-

jectory planning technique for a 4 dofs robotic manipulator,” International Journal of

Control, Automation and Systems, vol. 15, no. 3, pp. 1362-1373, 2017.

5. S. Li, A. Ghasemi, W.-F. Xie, and Y. Gao, “Sliding mode control (smc) of image-

based visual servoing for a 6dof manipulator,” in Recent Developments in Sliding Mode

Control Theory and Applications. InTech, 2017.

6. A. Ghasemi and W.-F. Xie, “Adaptive image-based visual servoing of 6 dof robots

using switch approach,” in 2018 IEEE International Conference on Information and

Automation (ICIA). IEEE, 2018, pp. 1210-215.

21



7. A. Ghasemi and W.-F. Xie, “Decoupled image-based visual servoing for robotic man-

ufacturing systems using gain scheduled switch control,” in Proceedings of 2017 Inter-

national Conference on Advanced Mechatronic Systems (ICAMechS). Xiamen, China,

2017, pp. 94-99.

Besides the above mentioned publications, the results of research work in another subject
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1.7 Outline

This thesis starts with an introduction and literature review on visual servoing along with the

research scope and objectives of the thesis. In Chapter 2, the new adaptive switch IBVS is

presented. In Chapter 3, the enhanced switch IBVS dealing with feature loss is introduced.

In Chapter 4, the PD-SMC method for IBVS is proposed. The new trajectory planning

technique is presented in Chapter 5 and the conclusion and future work are explained in

Chapter 6.
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Chapter 2

Adaptive Switch Image-Based Visual

Servoing

2.1 Introduction

This chapter is focused on presenting a new technique of IBVS using a mono camera in eye-

in-hand configuration. As it was discussed in 1.3.1, for eye-in-hand configuration, there is

still a lack of research work on a stable fast response method of IBVS to be used in industrial

applications with the capability to deal with camera uncertainties. To address this issue,

a switching scheme for IBVS is proposed in this chapter: the controller switches between

rotational and translational movements of the end-effector and separate gains are set for

each stage. On the other hand, the proposed adaptive law deals with the uncertainties in

the camera parameters.

2.2 Problem Statement

As it is seen in (1.4), the image Jacobian matrix value is dependent on camera intrinsic

parameters and hence the uncertainties in these parameters affect the performance of the

controller. Considering the fact that camera calibration process could be time-consuming,

the goal of this work is to propose a dynamic-based adaptive controller to deal with camera

parameters uncertainties and to reduce the response time of the system to make it feasible

for industrial applications.

The task aims to move the robot end-effector with an eye-in-hand camera towards the

23



target in order to match the desired image features with the actual image features. When

the goal is reached, many further operations can be done by the robot on the target object

such as assembling, welding, etc.

2.3 Adaptive Switch Method

It is noticed that the first 3 columns of the image Jacobian matrix (1.4), is related to

translational movement of the end-effector and the next 3 columns to rotational part. If the

movement is decoupled to translational and rotational phases, the term ( 1
Z(t)

) appearing in

the translational part can be factorized from image Jacobian matrix in translational phase.

This technique provides the chance to overcome the nonlinearity caused by depth parameter

and enables us to employ the adaptive methods to estimate the camera parameters in eye-

in-hand configuration. Thus, in this chapter, the switching idea is employed to divide the

motion of the robot end-effector into three stages: pure rotation, pure translation and the

fine tuning stage which consists of both rotation and translation movements. Another merit

of switch method is the chance of setting different gain values in control stages, which

improves the tracking performance and speed of the controller while maintaining the overall

system stability. Also this method overcomes some inherent drawbacks of IBVS, such as its

inability to make pure 180◦ rotation of the camera around its center, etc. This three-stage

gain scheduled switch control also considers the nonlinear robot dynamics. An intuitive

feature (the angle between desired and actual features) is proposed for determining the

switch condition in control laws. The switch method is combined with an adaptive scheme

for estimating the camera parameters and adaptive switch method is introduced. Thus,

adaptive switch control method breaks the movement of the end-effector into three separate

movements and applies different control gains K to each of them while estimating the camera

parameters cu, cv, f and β (1.5, 1.6).

2.3.1 Adaptive Switch Controller Design

A 6-DOF robot manipulator with the camera installed at the end effector is considered. The

dynamic equation of the robot manipulator is shown as:

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +G(q(t)) = τ, (2.1)
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where q(t) and q̇(t)) are the robot joint positions and velocities, M(q(t)) is the inertia matrix,

C(q(t), q̇(t)) is the Coriolis force, G(q(t)) is the gravitational force and τ is the joint torque.

Vc(t) = [Vct(t) Vcr(t)]
T ∈ R(6×1) is defined as the velocity screw of the camera consisting

of the translational velocity Vct(t) ∈ R(3×1) and rotational velocity Vcr(t) ∈ R(3×1).

JR(t) = [JRt(t) JRr(t)]
T ∈ R(6×6) is also defined as the robot Jacobian which is decom-

posed to the translational part JRt(t) ∈ R(3×6) and rotational part JRr(t) ∈ R(3×6).

Thus, the camera velocity can be expressed as:

VC(t) = JR(t)q̇(t) =

[
Vct(t)

Vcr(t)

]
=

[
JRt(t)q̇(t)

JRr(t)q̇(t)

]
, (2.2)

where q̇(t) ∈ R(6×1) is the robot joint velocity.

With the assumption that all features have the same depth Z, for the i th feature, the

image Jacobian matrix in (1.4), can be decomposed to translational part Jt(t) and rotational

part Jr(t):

Jimg(t) =
[
Jt(t) Jr(t)

]
, (2.3)

where,

Jt(t) =

[
f
Z(t)

0 −xi(t)
Z(t)

0 f
Z(t)

−yi(t)
Z(t)

]
(2.4)

and

Jr(t) =

[
−xi(t)yi(t)

f
f2+xi(t)

2

f
−yi(t)

−f2−yi(t)2
f

xi(t)yi(t)
f

xi(t)

]
. (2.5)

where, the feature coordinates in the image space xi(t) and yi(t) related to the intrinsic

camera parameters are expressed in (1.5) and (1.6).

Equation (3.3) can be represented as:

Jt(t) =
1

Z(t)
Jt
′(t), (2.6)

where,

Jt
′(t) =

[
f 0 −xi(t)
0 f −yi(t)

]
. (2.7)

By considering (3.1), (3.3) and (2.5), one can rewrite (1.1) for the i th feature ṡi(t) ∈ R(2×1)
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as:

ṡi(t) =
[
Jt(t) Jr(t)

] [Vct(t)
Vcr(t)

]
= Jt(t)Vct(t) + Jr(t)Vcr(t)

= Jt(t)JRt(q(t))q̇(t) + Jr(t)JRr(q(t))q̇(t).

(2.8)

The adaptive controller is designed based on the switch method, which includes three

different stages of camera movement. In the first stage, only rotation command of the camera

is turned on. In the second stage, only translational movement is active. In the third stage,

the classic IBVS control is adopted where both camera rotation and translation are turned

on.

In the first stage, the translation is turned off (Vct = 0). Therefore Eq.(2.8) becomes as

the following:

ṡi = Jr(t)JRr(q(t))q̇(t). (2.9)

In the second stage, the rotation is turned off (Vcr = 0), thus Eq. (2.8) becomes:

ṡi(t) =
1

Z(t)
Jt(t)

′JRt(q(t))q̇(t). (2.10)

Finally, in the third stage both translation and rotation movements of the camera are

switched on. Thus one has:

ṡi(t) =
1

Z(t)
Jt(t)

′JRt(q(t))q̇(t) + Jr(t)JRr(q(t))q̇(t). (2.11)

The adaptive controller generates the robot joint torques as the control commands and an

adaptive law is developed to estimate the camera parameters. After a transient adaptation

process, the feature points reach to the desired ones in the image space.

In the first stage, the camera is in pure rotation. Consider i th feature. Referring to (2.2),

the robot Jacobian matrix is represented as:

JR(t) =


a11(t) . . . a16(t)

...
. . .

...

a61(t) . . . a66(t)

 . (2.12)

Using the “ˆ” notation for the uncertain camera parameters and considering (1.5), (1.6) and

(2.12), the first element of the i th feature ṡi(t) ∈ R(2×1) in (2.9) is:
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ṡi1(t) =
6∑

k=1

[
a5k(t)q̇k(t)+

(
1

f̂ 2β̂2
)[a4k(t)ui(t)vi(t)q̇k(t)− a5k(t)ui(t)2q̇k(t)]+

(
ĉu

f̂ 2β̂2
)[−a4k(t)vi(t)q̇k(t) + 2a5k(t)ui(t)q̇k(t)]−

(
ĉv

f̂ 2β̂2
)[−a4k(t)ui(t)q̇k(t)] + (

ĉuĉv

f̂ 2β̂2
)a4k(t)q̇k(t)−

(
ĉu

2

f̂ 2β̂2
)a5k(t)q̇k(t) + (

1

f̂ β̂
)a6k(t)vi(t)q̇k(t)−

(
ĉv

f̂ β̂
)a6k(t)q̇k(t)

]
.

(2.13)

The second element can be expressed in the following.

ṡi2(t) =
6∑

k=1

[
a4k(t)q̇k(t)+

(
1

f̂ 2β̂2
)[a4k(t)vi(t)

2q̇k(t)− a5k(t)ui(t)vi(t)q̇k(t)]+

(
ĉu

f̂ 2β̂2
)[a5k(t)vi(t)q̇k(t)]+

(
ĉv

f̂ 2β̂2
)[−2a4k(t)vi(t)q̇k(t) + a5k(t)ui(t)q̇k(t)]−

(
ĉuĉv

f̂ 2β̂2
)a5k(t)q̇k(t)− (

1

f̂ β̂
)a6k(t)ui(t)q̇k(t)+

(
ĉu

f̂ β̂
)a6k(t)q̇k(t) + (

ĉv
2

f̂ 2β̂2
)a4k(t)q̇k(t)

]
.

(2.14)

The uncertain parameters can be decoupled from the known values in above equation.

Thus, for i th image feature, Eq. (2.9) can be represented as the linear combination of the

regression matrix and the estimated parameters as follows:

˙̂si(t) = Ĵr(t)JRr(q(t))q̇(t) = Y1(q(t), q̇(t), s(t))θ̂(t) =

[
Y1(1,1) . . . Y1(1,10)

Y1(2,1) . . . Y1(2,10)

]
θ̂1
...

θ̂10

, (2.15)
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where Y1(q(t), q̇(t), s(t)) ∈ R(2×10) is the regression matrix which is independent of the camera

parameters, θ̂(t) ∈ R(10×1) including all the estimated parameters is represented in this form:

θ̂(t) = [1
1

f̂ 2β̂2

ĉu

f̂ 2β̂2

ĉv

f̂ 2β̂2

ĉuĉv

f̂ 2β̂2

ĉu
2

f̂ 2β̂2

1

f̂ β̂

ĉv

f̂ β̂

ĉu

f̂ β̂

ĉv
2

f̂ 2β̂2
]

T

. (2.16)

Three main camera parameters can be extracted from the above equation as ĉv, ĉu and

f̂ β̂.

In this study it is assumed that depth Z is constant and known. Thus, by referring

to equations (2.10) and (2.11), it is noted that similar formulation can be expressed for

the second and third stages as well. In the second stage, a similar update law continues

estimating the camera parameters. For brevity, the derivation of corresponding equations

to (2.13) and (2.15) is omitted here. In the third stage, the controller switches back to

conventional IBVS and uses the estimated camera parameters in the two previous stages to

calculate the image Jacobian matrix.

In order to fulfill the switch between stages, a criteria is needed to facilitate the decoupled

movement. One criteria is defined as the norm of feature errors in [121]. In this research

work, a more intuitive and effective criteria is proposed as the angle between the desired and

actual features. Thus, a new feature α is defined as the angle between the desired features

and the actual features as illustrated in Figure 2.1. This feature is used as the criteria of

switching between stages. Once the angle α reaches the predefined threshold, the control

law is switched to the one in the next stage.
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Figure 2.1: New feature–angle α- the angle between the desired and actual features

The overall control law is proposed as the following,
τs1 = G(q(t))−Kv1q̇(t)− (Ĵr(t)JRr(q(t))

TKp1s̃(t), |α| ≥ α0

τs2 = G(q(t))−Kv2q̇(t)− (Ĵt(t)JRt(q(t))
TKp2s̃(t), α1 ≤ |α| < α0

τs3 = G(q(t))−Kv3q̇(t)− ( ˆJimg(t)JR(q(t))TKp3s̃(t), otherwise

, (2.17)

where s̃(t) = s(t)−sd is the position error of n feature points and Kvi and Kpi are symmetric

positive definite gain matrices at each stage and τsi (i = 1, 2, 3) is the calculated torque for

robot’s joints, α0 and α1 are two predefined thresholds for the control law to switch to the

next stage.

The uncertain camera parameters θ̂(t) are estimated only in the first and second stage.

In the third stage the camera parameters are not updated and the previous values are used

in the control law. Thus the update law is proposed as follows:
˙̂
θ(t) = K−1a Y T

1 Kp1s̃(t), |α| ≥ α0

˙̂
θ(t) = K−1a Y T

2 Kp2s̃(t), α1 ≤ |α| < α0

˙̂
θ(t) = 0, otherwise

, (2.18)

where Ka and KPi (i = 1, 2) are positive definite diagonal matrices, Y1 is the regression

matrix for the first stage as it is shown in (2.15) and similarly Y2 is the regression matrix for
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the second stage. The block diagram of the proposed control method is shown in Figure 2.2.

Figure 2.2: Block diagram of the proposed adaptive switch controller

2.4 Stability Proof

Regarding the robot dynamic equation (2.1), the following property is satisfied [122]:

property 1. The matrix Ṁ(q(t))− 2C(q(t), q̇(t)) is skew-symmetric. It means:

δT [Ṁ(q(t))− 2C(q(t), q̇(t))]δ = 0, (2.19)

for all δ ∈ Rn.

Theorem 1: Consider a 6-DOF robot with an eye-in-hand camera installed at the end-

effector (2.1). The proposed adaptive switch controller (2.17) with the update law (2.18)

makes the feature error s̃(t) asymptotically converge to zero, i.e. lim
t→∞

s̃(t) = 0.

proof:

Considering the first stage of control, a Lyapunov function candidate is defined as:

V (t) =
1

2
[q̇(t)TM(q(t))q̇(t) + s̃(t)TKp1s̃(t) + θ̃(t)TKaθ̃(t)], (2.20)

where θ̃(t) = θ(t) − θ̂(t) is the difference between real camera parameters θ(t) and the
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estimated one θ̂(t). Differentiating the above equation yields:

V̇ (t) = q̇(t)TM(t)q̈(t) +
1

2
q̇(t)TṀ(t)q̇(t) + s̃(t)TKp1ṡ(t)− θ̃(t)TKa

˙̂
θ(t). (2.21)

By substituting dynamic equation (2.1), one can rewrite the above equation as:

V̇ (t) = q̇(t)T (τ −G(q(t)) +
1

2
q̇(t)T [Ṁ(t)q̇(t)− 2C(q(t), q̇(t))]q̇(t)

+s̃(t)TKp1ṡ(t)− θ̃(t)TKa
˙̂
θ(t).

(2.22)

Now Property 1 is used and the value of τ is substituted from the first stage of adaptive

control law (2.17). Therefore, one has:

V̇ (t) = q̇(t)T (−Kv1)q̇(t)− q̇(t)T [Ĵr(t)JR(q(t))]TKp1s̃(t) + s̃(t)TKp1ṡ(t)− θ̃(t)TKa
˙̂
θ(t).

(2.23)

Using (2.9) and first stage of update law(2.18), one obtains:

V̇ (t) = q̇(t)T (−Kv1)q̇(t)− θ̂(t)TY T
1 Kp1s̃(t) + θ(t)TY T

1 Kp1s̃(t)− θ̃TY T
1 Kp1s̃(t). (2.24)

Then one has:

V̇ (t) = q̇(t)T (−Kv1)q̇(t) ≤ 0. (2.25)

Thus, according to Barbarat’s Lemma [123], one can infer that lim
t→∞

s̃(t) = 0. Therefore

the stability of the proposed adaptive controller is proved for the controller in the first stage.

For the second stage, by following the similar procedure, one can have:

V̇ (t) = q̇(t)T (−Kv2)q̇(t)− θ̂TY T
2 Kp2s̃(t) + θTY T

2 Kp1s̃(t)− θ̃(t)TY T
2 Kp2s̃(t). (2.26)

It is assumed that Kp1 = Kp2 +Kα. Thus the above equation is simplified as:

V̇ (t) = q̇(t)T (−Kv2)q̇(t) + θTY T
2 Kαs̃(t) = q̇(t)T (−Kv2)q̇(t) + ṡ(t)TKαs̃(t). (2.27)

The above equation can be also represented as:

V̇ (t) = −2V (t) + ε1, (2.28)
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where ε1 is defined:

ε1 = q̇(t)T (−Kv2)q̇(t) + ṡTKαs̃(t) + 2V (t)

= q̇(t)T (−Kv2)q̇(t) + ṡ(t)TKαs̃(t) + q̇(t)TM(q(t))q̇(t) + s̃(t)TKp1s̃(t) + θ̃(t)TKaθ̃(t),

(2.29)

which can be simplified as:

ε1 = q̇(t)T (M(q(t))−Kv2)q̇(t) + ṡ(t)TKαs̃(t) + s̃(t)TKp1s̃(t) + θ̃(t)TKaθ̃(t). (2.30)

Kv2 is chosen so that M(q(t)) − Kv2 ≥ 0. The following inequality can be inferred from

(2.30):

ε1 ≤ q̇(t)T (M(q(t))−Kv2)q̇(t) +
∣∣ṡ(t)TKαs̃(t)

∣∣+ s̃(t)TKp1s̃(t) + θ̃(t)TKaθ̃(t) = ε̄1, (2.31)

in which ε̄1 is positive. Thus the following inequality holds:

V̇ (t) ≤ −2V (t) + ε̄1. (2.32)

Therefore from the boundedness theorem, the stability of the system in the second stage is

proved.

In the third stage, the similar procedure is followed and one can have:

V̇ (t) = q̇(t)T (−Kv3)q̇(t)− θ̂(t)TY T
3 Kp3s̃(t) + θTY T

3 Kp1s̃(t). (2.33)

It can be assumed: Kp1 = Kp3 +Kβ. Thus the above equation is simplified:

V̇ (t) = q̇(t)T (−Kv3)q̇(t) + θ̃(t)TY T
3 Kp3s̃(t) + θTY T

3 Kβ s̃(t)

= q̇(t)T (−Kv3)q̇(t) + θ̃(t)TY T
3 Kp3s̃(t) + ṡ(t)TKβ s̃(t).

(2.34)

The above equation can be represented as:

V̇ (t) = −2V (t) + ε2, (2.35)

where ε2 is defined:
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ε2 = q̇(t)T (−Kv3)q̇(t) + θ̃(t)Y T
3 Kp3s̃(t) + ṡ(t)TKβ s̃(t)

+2V (t) = q̇(t)T (−Kv3)q̇(t) + θ̃(t)Y T
3 Kp3s̃(t) + ṡ(t)TKβ s̃(t)

+q̇(t)TM(q(t))q̇(t) + s̃(t)TKp1s̃(t) + θ̃(t)TKaθ̃(t),

(2.36)

which can be simplified as:

ε2 = q̇(t)T (M(q(t))−Kv3)q̇(t) + θ̃(t)Y T
3 Kp3s̃(t) + ṡ(t)TKβ s̃(t) + s̃(t)TKp1s̃(t) + θ̃(t)TKaθ̃(t).

(2.37)

Kv3 is chosen so that M(q(t)) − Kv3 ≥ 0. The following inequality can be inferred from

(2.37):

ε2 ≤ q̇(t)T (M(q(t))−Kv3)q̇(t) +
∣∣ṡ(t)TKβ s̃(t)

∣∣
+
∣∣∣θ̃(t)Y T

3 Kp3s̃(t)
∣∣∣+ s̃(t)TKp1s̃(t) + θ̃(t)TKaθ̃(t) = ε̄2,

(2.38)

in which ε̄2 is positive. Thus the following inequality holds:

V̇ (t) ≤ −2V (t) + ε̄2. (2.39)

From the boundedness theorem, the stability of the system in the third stage is proved.

2.5 Experimental set-up

In this research work, the proposed methods in all chapters are tested and validated experi-

mentally using the following test-bed.

The experimental set-up includes a VS-6556G Denso robot and a camera mounted on

the end-effectors (Figure 2.3). The robot has 6-DOFs and its repeatability is ±0.02 mm in

each of x, y and z directions. A camera is used as the vision system, mounted on the robot’s

end-effector. The camera model is Logitech Webcam HD 720p, which captures the video

with a resolution of 1280 × 720 pixels and the capture rate of 30 frames per second. Other

camera characteristics are given in Table 2.1.

33



(a) (b)

Figure 2.3: Experimental set-up: 6-DOF Denso robot

The mechanical parameters of the robot links (Figure 2.3) are given in Table 2.2. Ix, Iy

& Iz are the moments of inertia of the links around x, y & z axis of the frame attached to

the center of gravity of the links respectively.

Table 2.1: Camera parameters

Parameter Value

Focal length (f) 0.004 (m)

X axis scaling factor (β) 110000 (pixel/m)

Y axis scaling factor (β) 110000 (pixel/m)

Principal point of x axis (cu) 120 (pixel)

Principal point of y axis (cv) 187 (pixel)
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Table 2.2: Mechanical parameters of Denso robot links

Mass(kg)
Moments of Inertia (kg.m2)

Ix Iy Iz

Link 1 3.1 0.013 0.0051 0.0125

Link 2 2.2 0.0054 0.0168 0.0155

Link 3 2.0 0.0053 0.0079 0.0044

Link 4 1.3 0.0054 0.0017 0.0054

Link 5 0.8 0.001 0.001 0.00037

Link 6 0.2 7× 10−5 7× 10−5 0.0001

The experimental setup also consists of a controller and two computers through a double

PC bilateral teleoperation (Figure 2.4). PC No.1 (Master PC) communicates with the master

robot and transmits the commands to the Slave PC (PC No.2) over the communication

network. The slave PC also communicates with the slave robot (Denso robot) and obtains

the camera data and sends it back to the master PC over the communication network [124].

The image data taken by the camera is sent to an image processing program written by

using Computer Vision Toolbox of MATLAB. This program extracts the center coordinates

of the features with the rate of 0.001 seconds, which serve as the feedback signal to the visual

servoing controller.
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Figure 2.4: Experimental set-up structure

2.6 Experimental Results

In this section the efficiency of the adaptive switch method is evaluated with the experimental

set-up described in 2.5. Performance of the adaptive switch method is compared with that of

switch IBVS [118, 121] and conventional IBVS, three experiments are conducted with three

different initial angles between desired and actual features (α in Figure 2.1). The threshold

angles of switching between control stages (α0 and α1 in (2.17)) are set as 10.3◦ and 8.5◦.

The objective of all these tests is to lead the end-effector in a way that the actual extracted

image features match the desired ones. In all these tests, the number of image features is

chosen as four. The initial and desired feature point positions of the four features are given

in Table 3.3. The controller gains (Kp1, Kp2, Kp3, K1, K2 and K3) are tuned by trial and

error to obtain the acceptable performance. However, the optimal values can be obtained

by an optimization process, which is beyond the scope of this research.

The norm of feature errors (NFE) is defined as below,

NFE =

4∑
i=1

√
(xi − xdi)2 + (yi − ydi)2, (2.40)
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where xi and yi are the i th feature coordinates and xdi and ydi are i th desired feature

coordinates in image plane. In all the tests, the threshold value of NFE is set as 0.005, and

when NFE reaches this value, the robot stops. Also to evaluate the tracking performance,

Integral Time-weighted Absolute Error index (ITAE) is defined as below:

ITAE =

∫ ∞
0

t |NFE| dt, (2.41)

in witch t is the execution time of the test.

Test 1: the initial angle α between the actual features and desired one is 50. Kp1, Kp2

and Kp3 values in (2.17), are 9× 10−5 × I8, 9× 10−4 × I8 and 9× 10−3 × I8 respectively (I8

is 8× 8 identity matrix). While K1, K2 and K3 in switch method (Eq. (14) of [118]) are 1,

0.1 and 0.05 respectively and constant K in (1.8) for traditional IBVS is set as 0.05. Figure

2.5 indicates the performance of the adaptive switch method. Figure 2.5b shows the eight

feature errors’ changes with time. The path of features from initial position to final one is

illustrated in Figure 2.5a. The feature coordinates are represented in pixel unit. The robot

joint angles during the task are shown in Figure 2.5c. Figure 2.6 compares the performance

of adaptive switch with that of traditional IBVS and switch method. Figure 2.6a compares

NFE (in pixels) of traditional IBVS and adaptive switch IBVS and Figure 2.6b shows the

performance comparison between switch IBVS and adaptive switch IBVS. As illustrated in

the figure, adaptive switch IBVS demonstrates 74% and 62% shorter response time compared

to traditional IBVS and switch IBVS respectively.

Test 2: the initial angle α between the actual features and desired one is 117◦. KP1,

KP2, KP3, K1, K2, K3 and K values are the same as those in Test 1. Figure 2.7 shows the

performance of adaptive switch method and Figure 2.8 represents the comparison of adaptive

switch IBVS with traditional IBVS and switch IBVS. It is noted that adaptive switch has a

28% faster response compared to the switch method, while traditional IBVS is not able to

complete the task.

Test 3: the initial angle α between the actual features and desired one is 180◦. All

the designed parameters are kept the same as those in the previous tests. Similar to pre-

vious tests, Figure 2.9 shows the performance of adaptive switch method and Figure 2.10

demonstrates the performance comparison of adaptive switch IBVS with switch method and

traditional IBVS. The results show that the proposed method is able to overcome one of the

inherent drawbacks of IBVS and perform the 180◦ rotation of the camera around its center
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(a) Feature positions (b) Feature errors

(c) Robot joint angles

Figure 2.5: Test 1 (α = 50)- adaptive switch IBVS performance
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(a) Norm of feature errors-IBVS vs adaptive switch (b) Norm of feature errors-switch vs adaptive switch

Figure 2.6: Test 1 (α = 50)- performance comparison of adaptive switch vs traditional IBVS &
switch method

successfully.

The results of the experiments are summarized in Tables 2.4 and 2.5. In Table 2.4 the

response time of conventional IBVS, switch and adaptive switch IBVS are given for the three

tests.

It is worth mentioning that in the performed tests the estimated camera parameters may

not necessarily converge to the real values due to the property of the signals. However, the

convergence of the parameters to the real values is the indication of controllers’ performance.

In the experiment, the IBVS task is to move the end-effector so that the image features match

the desired ones which cannot guarantee the richness of the signal. However, adaptive control

system can deliver good control performance because of its time-varying nature and well-

tuned control gains.
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(a) Feature positions (b) Feature errors

(c) Robot joint angles

Figure 2.7: Test 2 (α = 117)- adaptive switch IBVS performance
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(a) Norm of feature errors-IBVS vs adaptive switch (b) Norm of feature errors-switch vs adaptive switch

Figure 2.8: Test 2 (α = 117)- performance comparison of adaptive switch vs traditional IBVS &
switch method

Table 2.3: Initial (I) and Desired (D) feature point positions in pixel

Point 1 Point 2 Point 3 Point 4

(x, y) (x, y) (x, y) (x, y)

Test 1
I 146 107 172 76 200 99 175 131

D 232 82 272 82 272 119 233 119

Test 2
I 189 150 170 114 203 96 222 132

D 232 82 272 82 272 119 233 119

Test 3
I 191 148 151 149 150 111 190 110

D 143 76 183 76 184 114 142 113
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(a) Feature positions (b) Feature errors

(c) Robot joint angles

Figure 2.9: Test 3 (α = 180)- adaptive switch IBVS performance
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(a) Norm of feature errors-IBVS vs adaptive switch (b) Norm of feature errors-switch vs adaptive switch

Figure 2.10: Test 3 (α = 180)- performance comparison of adaptive switch vs traditional IBVS &
switch method

Table 2.4: Comparison of response time for IBVS, switch & proposed adaptive switch method

Response Time(s)

Test 1 Test 2 Test 3

IBVS 26.58 NA NA

Switch 17.69 18.5 58

Adaptive Switch 6.86 11.54 24.76
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Table 2.5: Comparison of tracking performance (ITAE index) for IBVS, switch & proposed adaptive
switch method

ITAE

Test 1 Test 2 Test 3

IBVS 9.18× 103 NA NA

Switch 3.18× 103 6.16× 103 2.7× 104

Adaptive Switch 472.5 4.7× 103 5.3× 103

The proposed adaptive switch method is proved to be capable of performing the task for

all α angles including 180◦. Its response time is 48-78% less than that of switch method. In

comparison to conventional IBVS, it is proved to have around 75% faster response for the α

angles below 90◦. In the case where this angle exceeds 90◦, the conventional IBVS fails to

complete the task while adaptive switch performs it successfully and better than the switch

IBVS does. Table 2.5 compares the tracking performance of the three methods. It is shown

that adaptive Switch has the least ITAE which means the best tracking performance. Also,

Switch method shows better performance compared to conventional IBVS.

2.7 Summary

In this chapter, an adaptive switch IBVS is proposed for an industrial robot with monocular

camera in eye-in-hand configuration. A three stage control scheme is proposed to realize the

decoupled rotational and translational movement. The update laws have been developed

for estimating the camera intrinsic parameters. The designed controller can overcome some

of the inherent drawbacks of traditional IBVS and switch IBVS. The proposed method has

been tested in a 6-DOF robotic system with an eye-in-hand camera installed at the end-

effector. The experimental results show that response time of this method is almost 75%

less than that of traditional IBVS and 48-78% less than that of switch method. Moreover,

in the cases where the angle between initial and desired image features is greater than 90◦,

IBVS normally cannot perform the task while the adaptive switch method performs the task

successfully. Especially in the tasks where 180◦ rotation of the camera around its center

is needed, adaptive switch method finishes the task successfully while IBVS fails and the
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switch IBVS does it with slower response. It is shown that the tracking performance of the

proposed method has been improved compared with the switch method and traditional IBVS.

The results validate the effectiveness of the proposed adaptive switch method in industrial

applications.
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Chapter 3

Enhanced Switch Image-Based Visual

Servoing Dealing with Features Loss

3.1 Introduction

As it was discussed in previous chapters, many studies have been conducted to overcome the

weaknesses of IBVS and improve its efficiency [65, 68, 116, 125]. However, the performance of

most reported IBVS is not sufficiently high to meet the requirements of industrial applications

[126]. An efficient IBVS feasible for practical robotic operations requires a fast response with

strong robustness to feature loss. In the previous chapter, an adaptive switch method was

proposed and demonstrated that the controller was able to improve the speed and tracking

performance of IBVS and avoid some of its inherent drawbacks. However, feature loss caused

by the camera’s limited field of view (FOV) still prevents the method from being fully efficient

and being applicable to real industrial robots.

In this chapter, an enhanced switch image-based visual servoing (ESIBVS) method is

presented in which a Kalman filter-based feature prediction algorithm is proposed and is

combined with the proposed switch method in previous chapter to make the switch IBVS

control robust in reaction to feature loss. The feature prediction algorithm can predict

the lost feature points based on the previously-estimated points. The switch control with

the improved tracking performance along with the robustness to feature loss makes it more

feasible for industrial robotic applications. To validate the proposed controller, extensive

simulations and experiments have been conducted on a 6-DOF Denso robot with a monocular

eye-in-hand vision system.
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3.2 Problem Statement

While guiding the robot end-effector to make the desired image features match the actual

ones, some unexpected situations may occur in IBVS. The first case is feature loss: i.e.,

some or all of the image features may go beyond the camera’s FOV (Figure 3.1). The second

case is feature occlusion: i.e., some or all of the image features temporarily become invisible

to the camera due to obstacles. The goal of this chapter is to improve the performance of

IBVS in terms of response time and tracking performance, while dealing with the feature loss

situation. To reach this goal, the performance of the switch method [118, 121] is enhanced

when it is combined with the proposed feature reconstruction algorithm.

Figure 3.1: Desired and initial feature positions inside and outside the camera’s field of view.

3.3 Feature Reconstruction Algorithm

The velocity of the camera Vc ∈ R(6×1) can be divided into the translational velocity Vct ∈
R(3×1) and rotating velocity Vcr ∈ R(3×1). Therefore, it can be expressed as:

Vc =

[
Vct

Vcr

]
=



Vx

Vy

Vz

ωx

ωy

ωz


. (3.1)
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Furthermore, for the nth feature (n = 1, 2, .., 4), the image Jacobian matrix in (1.4) can be

divided into the translational part Jt(sn) and the rotating part Jr(sn):

Jimg(sn) =
[
Jt(sn) Jr(sn)

]
, (3.2)

where,

Jt(sn) =

[
f
Z

0 −xn
Z

0 f
Z
−yn

Z

]
(3.3)

and:

Jr(sn) =

[
−xnyn

f
f2+x2n
f

−yn
−f2−y2n

f
xnyn
f

xn

]
, (3.4)

where xn and yn are the feature coordinates in the image space.

In the design of the switch controller, the movement of the camera during the control

task is divided into three different stages [118, 121]. In the first stage, the camera has only

pure rotation. In the second stage, the camera has only translational movement. Finally, in

the third stage, both camera rotation and translation are used to carry out the fine-tuning.

Considering (1.1), (3.1), (3.3), and (3.4), the feature velocity in the image plane can be

expressed as:

In the pure translational stage (first stage):
ẋn = f

Z
Vx − xn

Z
Vz

ẏn = f
Z
Vy − yn

Z
Vz

. (3.5)

In the pure rotating stage (second stage):{
ẋn = −xnyn

f
ωx + f2+x2n

f
ωy − ynωz

ẏn = −f2+y2n
f

ωx + xnyn
f
ωy + xnωz

, (3.6)

and in the fine-tuning stage (third stage):
ẋn = f

Z
Vx − xn

Z
Vz − xnyn(t0)

f
ωx + f2+x2n

f
ωy − ynωz

ẏn = f
Z
Vy − yn

Z
Vz − f2+y2n

f
ωx + xnyn

f
ωy + xnωz

. (3.7)
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To remove the noise in the image processing and feature extraction, a feature state estimator

is designed based on the Kalman filter algorithm.

In the formulations below, k denotes the current time instant and k + 1 the next time

instant, while Ts represents the sampling time. The estimated states are denoted by ˆ

notation. Considering four features, the feature state at the current instant (kth sample) is

defined as:

X(k) = [x1(k), y1(k), ...x4(k), y4(k), ẋ1(k), ẏ1(k), ..., ẋ4(k), ẏ4(k)]T , (3.8)

or with consideration of (1.3):

X(k) = [s(k), ṡ(k)], (3.9)

where the elements of the vector can be obtained from (3.5), (3.6), or (3.7). Furthermore, the

measurement vector represents the vector of the image feature points’ coordinates extracted

from the images of the camera:

M(k) = [xm1(k), ym1(k), ...xm4(k), ym4(k), ẋm1(k), ẏm1(k), ..., ẋm4(k), ẏm4(k)]T . (3.10)

First, the prediction equations are:

X̂(k|k − 1) = AX̂(k − 1|k − 1)

P (k|k − 1) = AP (k − 1|k − 1)AT +Q(k − 1),
(3.11)

where A is a 16 × 16 matrix whose diagonal elements equal one, Ai,i+8(i = 1, 2..., 8) are

equal to sampling time Ts, and the rest of the elements are zero, P (k|k − 1) represents the

current prediction of the error covariance matrix, which gives a measure of the state estimate

accuracy, while P (k−1|k−1) is the previous error covariance matrix, and Q(k−1) represents

the process noise covariance computed using the information of the time instant (k − 1).

Second, the Kalman filter gain D(K) is:

D(k) = P (k|k − 1)(P (k|k − 1) + R(k − 1)−1, (3.12)

where R(k − 1) is the previous measurement covariance matrix.
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Third, the estimation update is given as follows:

X̂(k|k) = X̂(k|k − 1) +D(k)(M(k)− X̂(k|k − 1)

P (k|k) = P (K|k − 1)−D(k)P (k|k − 1).
(3.13)

When the features are out of the FOV of the camera (i.e. xmj(k) = 0, ymj(k) = 0,

j = 1, 2...4), the feature reconstruction algorithm is proposed to provide the updated esti-

mation vector under this circumstance. Since the features are out of FOV, the measurement

vector will have some elements with zero values. This measurement vector will not lead to

a satisfactory performance of switch IBVS. In order to improve the performance, instead

of having zero values of the elements of M(k) in (3.10), it is reasonable to assume that

the nth feature that goes outside of FOV keeps its velocity at the moment (t0) of leav-

ing (ṡn(t0)) during the period of feature loss. Hence, its position (i.e., point coordinates

sn(t0) = [xmn(t0), ymn(t0)]) can be generated by integrating the velocity over the time. This

means that the elements of M(k) can be represented by this formulation:

M(k) = [(Kad

b∑
l=0

ṡn(t0)Ts + sn(t0)), ṡn(t0)], (3.14)

where (l = 0, 1, 2, .., b) represents the number of time samples during the feature loss period,

Ts is the sampling period, and kad is an adjusting coefficient. Once the feature is visible to

the camera again, the actual value of M(k) provided by the camera is used to replace the

state estimation (3.14).

3.4 Controller Design

The IBVS controller is designed using the switch scheme. This method can set distinct gain

values for the stages of the control law to achieve a fast response system while preserving

the system stability.

In order to design the switch controller, the movement of the camera during the control

task is divided into three different stages [118, 121]. A criterion is needed for the switch

condition between stages. In [121], the norm of feature errors is defined as the switching

criterion. In this thesis (as it is described in 2.3), a more intuitive and effective criterion

is used. As is shown in Figure 2.1, the switch angle criterion α is introduced as the angle
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between actual features and the desired ones. As soon as the angle α meets the predefined

value, the controller law switches to the next stage.

Based on this criterion, the switching control law is presented as follows:
Vcs1 = −K1J

+
r e(s), |α| ≥ α0

Vcs2 = −K2J
+
t e(s), α1 ≤ |α| < α0

Vcs3 = −K3J
+
imge(s), otherwise

, (3.15)

where Vcsi (i = 1, 2, 3) is the velocity of the camera in the ith stage, Ki is the symmetric

positive definite gain matrix at each stage, and α0 and α1 are two predefined thresholds for the

control law to switch to the next stage. The block diagram of the proposed algorithm is shown

in Figure 3.2. Furthermore, the flowchart of the whole process of feature reconstruction and

control is illustrated in Figure 3.3.

Figure 3.2: Block diagram of the proposed enhanced switch image-based visual servoing (ESIBVS)
controller.
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Figure 3.3: Flowchart of the Kalman filter feature reconstruction and control algorithm.

It is expected that in comparison with switch IBVS, the proposed method would ensure

the smooth transition of the visual servoing task in the case of the feature loss and provide

a better convergence performance.
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3.5 Simulation Results

To evaluate the performance of the proposed method, simulation tests are carried out by us-

ing MATLAB/SIMULINK software with the Vision and Robotic Toolbox. A 6-DOF DENSO

robot with a camera installed in eye-in-hand configuration is simulated. The coordinates of

the initial and desired features in the image space are given in Table 3.1. The camera

parameters are as shown in Table 2.1.

Table 3.1: Test 1: simulation. Initial (I) and Desired (D) feature point positions in pixels.

Point 1 Point 2 Point 3 Point 4

(x, y) (x, y) (x, y) (x, y)

Test 1
I 376 757 202 621 20 814 218 969

D 612 312 612 512 812 512 812 312

The task is to guide the end-effector to match the actual features with the desired ones

in the camera image space. To simulate the condition where the features go outside FOV

of the camera in real applications, the FOV of the camera is defined as the limited area

shown in Figure 3.4a,b. When the features are in the defined FOV, they had actual position

coordinates, and when they went outside FOV, the position coordinates of the features are

set to zero. In this case, the proposed feature reconstruction algorithm is activated, and an

estimate of the feature positions is generated. The norm of feature errors (NFE) is defined

as below,

NFE =
4∑

n=1

√
(xn − xdn)2 + (yn − ydn)2, (3.16)

where xn and yn are the nth feature coordinates and xdn and ydn are the nth desired feature

coordinates in the image plane.

In the simulation test, we set the initial feature coordinates and the desired ones in a way

that the image features are out of FOV. Figures 3.4 and 3.5 demonstrate the performance

comparison of the two methods. The paths of image features in the image space are given in

Figure 3.4a,b. Figure 3.5a,b shows how the feature errors change with time in the proposed

ESIBVS and switch method. Figure 3.5c,d demonstrates the norm of the feature errors’

change with time in both methods. As shown in the figures, ESIBVS is able to reduce the

norm of the errors to the preset threshold, while in the switch method, the norm of the errors
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did not converge. The summary of the simulation test is shown in Table 3.2. The results

demonstrate how the proposed method is able to handle the situation in which the features

went outside of the camera’s FOV and completed the task successfully, while the switch

method is unable to do so.

(a)

(b)

Figure 3.4: Test 1: simulation. Image space feature trajectory comparison of enhanced switch
IBVS and switch IBVS. (a) Image space feature trajectory in enhanced switch IBVS; (b) Image
space feature trajectory in switch IBVS.
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(a) (b)

(c) (d)

Figure 3.5: Test 1: simulation. Performance comparison of enhanced switch IBVS vs. switch IBVS.
(a) Feature errors in enhanced switch IBVS; (b) Feature errors in switch IBVS; (c) Norm of feature
errors in enhanced switch IBVS; (d) Norm of feature errors in switch IBVS.

Table 3.2: Test 1: Comparison of simulation results between ESIBVS and switch IBVS.

Time of Convergence (s) Final Norm of Feature Errors (Pixel)

ESIBVS Switch IBVS ESIBVS Switch IBVS

Test 1 12 Does not converge 1.5 Does not converge
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3.6 Experimental Results

In this section, to further verify the effectiveness of the proposed method, some experiments

are carried out on the set-up described in 2.5 and the results are presented. Four feature

points are used in the control task. The goal is to control the end-effector so that the actual

features are matched the desired ones.

To evaluate the efficiency of ESIBVS, its performance is compared to that of the switch

IBVS method. In all the tests, the threshold value of NFE is set to 0.005 (equivalent to

four pixels). When NFE is reached this value, the robot is stopped, and the servoing task

is fulfilled. The initial angle α between the actual and desired features (Figure 2.1) is 50◦.

K1, K2, and K3 in (3.15) are set to 1, 0.4, and 0.3, respectively.

Test 2: In this test, the initial and desired features are set such that they go outside of

the FOV of the camera during the test. The initial and desired feature coordinates in the

test are given in Table 3.3. Figure 3.6 demonstrates the movement of actual features during

the test of ESIBVS. It illustrates how the features go outside of FOV, then are reconstructed,

go back to FOV, and finally are matched the desired features.

Table 3.3: Test 2: experiment, Initial (I) and desired (D) feature point positions in pixels.

Point 1 Point 2 Point 3 Point 4

(x, y) (x, y) (x, y) (x, y)

Test 2
I 251 132 278 102 306 127 279 157

D 232 82 272 82 272 119 233 119

Figures 3.7–3.9 show the comparison results between ESIBVS and switch IBVS. Figure

3.7 shows the paths of features in the image space from the initial positions to the desired

ones, as well as the camera trajectory in Cartesian space. In the proposed method, the

actual and desired features are matched, while in switch IBVS, the actual features do not

converge to the desired ones. Figure 3.8 demonstrates the robot joint angles in ESIBVS and

switch IBVS. Figure 3.9 shows the comparison regarding the feature errors. The feature

errors and the norm of feature errors in the proposed method successfully converge to the

desired values (Figure 3.9a,c), while in the switch IBVS, the task could not be completed,

and thus, the feature errors do not converge (Figure 3.9b,d).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Test 2: Snap shots of the camera image during the enhanced switch IBVS test: (a)
Desired and actual feature positions at the start. (b) Actual features are out of FOV. (c–e) Features
are reconstructed and returned to FOV. (f ) Final match of the desired and actual features.
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(a) (b)

(c) (d)

Figure 3.7: Test 2: experiment: Image space feature trajectory and 3D camera trajectory in
enhanced switch IBVS and switch IBVS. (a) Image space feature trajectory in enhanced switch
IBVS; (b) Image space feature trajectory in switch IBVS; (c) Camera 3D trajectory in enhanced
switch IBVS; (d) Camera 3D trajectory in switch IBVS.
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(a) (b)

Figure 3.8: Test 2: experiment. Robot joint angles in enhanced switch IBVS and switch IBVS. (a)
Joint angles (degree) in enhanced switch IBVS; (b) Joint angles (degree) in switch IBVS.
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(a) (b)

(c) (d)

Figure 3.9: Test 2: experiment. Comparison of the feature errors and the norm of feature errors in
enhanced switch IBVS and switch IBVS. (a) Feature errors in enhanced switch IBVS; (b) Feature
errors in switch IBVS; (c) Norm of feature errors in enhanced switch IBVS; (d) Norm of feature
errors in switch IBVS.

In order to further validate the performance of ESIBVS regarding the repeatability, the

same test is repeated in 10 trials. The time of convergence and the final norms of feature

error are shown in Table 3.4. The variations of feature error norms with time in 10 trials of

ESIBVS are illustrated in Figure 3.10. As shown in the results, ESIBVS is able to overcome

the feature loss and complete the task in each trial, while Switch IBVS is stuck in a point

and did not converge.
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Table 3.4: Test 2: experiment. Repeatability comparison results.

Time of Convergence (s) Final Norm of Feature Errors (Pixel)

ESIBVS Switch IBVS ESIBVS Switch IBVS

Trial 1 19.95 Does not converge 3.4 Does not converge

Trial 2 18.99 Does not converge 3.1 Does not converge

Trial 3 17.75 Does not converge 2.8 Does not converge

Trial 4 17.94 Does not converge 3.7 Does not converge

Trial 5 19.37 Does not converge 3.6 Does not converge

Trial 6 18.29 Does not converge 2 Does not converge

Trial 7 20.34 Does not converge 3.1 Does not converge

Trial 8 19.03 Does not converge 3.4 Does not converge

Trial 9 18.77 Does not converge 2.4 Does not converge

Trial 10 18.74 Does not converge 3.4 Does not converge

Figure 3.10: Test 2: experiment. The time variations of feature error norms in 10 trials of ESIBVS.

Test 3: In this test, the performance of ESIBVS is compared with that of switch IBVS in

the situation where the features do not leave the FOV of the camera. The initial and desired

features are set in a way such that the features do not go outside of FOV (Table 3.5).
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Table 3.5: Test 3: Experiment. Initial (I) and Desired (D) feature point positions in pixels.

Point 1 Point 2 Point 3 Point 4

(x, y) (x, y) (x, y) (x, y)

Test 3
I 108 127 130 97 136 148 158 118

D 232 82 272 82 272 119 233 119

Similar to the previous tests, ESIBVS and switch IBVS are compared, and the results

are shown in Figures 3.11–3.13 and Table 3.6. As shown in the figures, ESIBVS has a 38%

shorter convergence time than switch IBVS does, which is owed to the superior noise-filtering

ability of the designed Kalman filter.

The experimental results shows the efficiency of ESIBVS in dealing with feature loss while

keeping the superior performance of the switch IBVS over traditional IBVS. As it is shown in

[11, 118], the switch method is proven to have a better performance in its response time and

its tracking performance, making it more feasible for industrial applications in comparison

with the conventional IBVS. However, it suffers the drawback of weakness in dealing with

feature loss. The proposed ESIBVS solves this problem and make switch IBVS more robust

by using the Kalman filter to reconstruct the lost features.
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(a) (b)

(c) (d)

Figure 3.11: Test 3: experiment. Image space feature trajectory and 3D camera trajectory in
enhanced switch IBVS and switch IBVS. (a) Image space feature trajectory in enhanced switch
IBVS; (b) Image space feature trajectory in switch IBVS; (c) Camera 3D trajectory in enhanced
switch IBVS; (d) Camera 3D trajectory in switch IBVS.
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(a) (b)

Figure 3.12: Test 3: experiment. Robot joint angles in enhanced switch IBVS and switch IBVS.
(a) Feature errors in enhanced switch IBVS; (b) Feature errors in switch IBVS.
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(a) (b)

(c) (d)

Figure 3.13: Test 3: experiment. Comparison of feature errors and the norm of feature errors in
enhanced switch IBVS and switch IBVS. (a) Feature errors in enhanced switch IBVS; (b) Feature
errors in switch IBVS; (c) Norm of feature errors in enhanced switch IBVS; (d) Norm of feature
errors in switch IBVS.

Table 3.6: Test 3: Comparison of experimental resuts between ESIBVS and Switch IBVS.

Time of Convergence (s) Final Norm of Feature Errors (Pixel)

ESIBVS Switch IBVS ESIBVS Switch IBVS

Test 3 8 12.5 3.4 3.6
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3.7 Summary

In this chapter, an enhanced switch IBVS for a 6-DOF industrial robot is proposed. An image

feature reconstruction algorithm based on the Kalman filter is proposed to handle feature loss

during the process of IBVS. The combination of a three-stage switch controller and feature

reconstruction algorithm improve the system response speed and tracking performance of

IBVS and simultaneously overcame the problem of feature loss during the task. The proposed

method is simulated and then tested on a 6-DOF robotic system with the camera installed in

an eye-in-hand configuration. Both simulation and experimental results verify the efficiency

of the method.
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Chapter 4

Enhanced IBVS Controller Using

Hybrid PD-SMC Method

4.1 Introduction

In this chapter, considering the respective advantages of PD and SMC mentioned in 1.3.3,

a new hybrid way that combines PD control with SMC in IBVS is proposed to generate the

better velocity profile to control the 6-DOF robotic manipulator. The proposed controller

can deal with the uncertainties in depth and Lyapunov direct method is used to prove the

stability of the proposed controller. The main feature of the proposed hybrid PD-SMC is

its less computation burden, compared to the adaptive or predicted control approaches. In

addition, it not only can achieve better convergence performance with guaranteed stability,

but also owns stronger robustness against uncertainty and disturbance, compared to either

IBVS PD or SMC system [58]. The proposed IBVS scheme has been extensively tested on

a 6-DOF manipulator.

4.2 System Description

The control problem can be expressed by obtaining the relation between the derivative of

the image features and the camera spatial velocity in IBVS [54, 57].

Considering a 6-DOF manipulator, at least three feature points are necessary to avoid

the Jacobian matrix singularities and the multiple global minima [57, 58]. For this reason,

we use four feature points to control 6-DOF in the image space. Thus, we may rename the
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Jacobian matrix Jimg for four features as Lv4 and the equation (1.1) in Chapter 1 can be

expressed as follows:

ė = ṡ = Lv4Vc (4.1)

where Lv4 is the Jacobian matrix for four features and e is representing the feature errors.

Lv4 =


Lv| s=s1

Lv| s=s2

Lv| s=s3

Lv| s=s4

 , (4.2)

and s = s1, · · · , s4 are the image feature points. Since the image Jacobian matrix largely

depends on the depth Z and camera intrinsic parameters such as focal length f , there

exist some uncertainties in these parameters. In this thesis, we focus on dealing with the

uncertainties on the depth. The range of the depth of the visual servoing system is assumed

as Zmin ≤ Z ≤ Zmax. The estimated Jacobian matrix (L̂v4) is used in the viusal servoing

control design.

4.3 Visual Servoing Controller Design

The most basic design approach of a visual servoing controller is using proportional control

to generate the control signal. This controller is also applied to the conventional IBVS, which

has the following form,

Vc = −KL̂+
v4ė(t), (4.3)

where L̂+
v4 is the pseudo inverse of the estimated Jacobian matrix, K is a positive definite

matrix.

The proportional control is an efficient and easily tuned control method. However, this

method sometimes cannot achieve the desired dynamic response by only tuning the propor-

tional gain. In this thesis, a properly tuned PD control is used to replace the proportional

control, which can improve the control performance with faster control convergence speed
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and smaller feature errors. Meanwhile, in order to improve the system stability, the slid-

ing mode control is also adopted to compensate the uncertainties of the system. This is

an enhanced approach which combines PD control with SMC in IBVS, so-called the hybrid

PD-SMC method.

Define the sliding surface S, which will converge to 0 when the image feature errors go

forward and stay on it all the time [94, 127].

S = e = s(t)− sd(t), (4.4)

where s = [si, i = 1, 2, ...4] is the image plane feature, sd = [sid, i = 1, 2, ...4] is the desired

value of the feature, e is the vector of four feature errors between the obtained image features

and desired image features. The basic visual servoing controller of IBVS is designed based

on the above proportional controller [54], and it is described as the following first order

equation,

ė+Kpe = 0. (4.5)

To guarantee the tracking performance of the visual servoing system subjected to the

uncertain depth, a robust controller is designed to handle such uncertainties. Adding the

sliding mode control [55, 128], the above equation is written as

Vc = L̂+
v4(−Kpe(t)−Kssgn(S)), (4.6)

where Ks is a positive definite matrix, sgn(·) is the signum function.

Applying PD control to the visual servoing system [100], the modified control law should

be considered as

Vc = L̂+
v4(−Kdė(t)−Kpe(t)−Kssgn(S)). (4.7)

In general, the above control scheme leads to chattering phenomenon. In order to smooth

the chattering, a saturation function is used to replace the sign function. Hence, the control

law is described as

Vc = L̂+
v4(−Kdė(t)−Kpe(t)−Kssat(S)), (4.8)
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where sat(·) is the saturation function, which is defined as follows.

sat(S) =

{
S if |S| 6 1

sgn(S) otherwise
. (4.9)

This control law is a hybrid method which combines PD control and SMC together. The

structure of the designed controller is shown in Figure 4.1. Since SMC is well known for its

robustness [24, 98–100], by combining the PD and SMC together, it is expected that this

hybrid controller will achieve better robustness, faster convergence rate and higher accuracy.

This will be demonstrated in both Simulation and Experiment sections.

d/dt
Inverse

Jacobian

Joint

controller

Feature

extraction

encoder feedback

camera

Desired

feature
robot

u udesired joint

Visual Servoing Controller Robot Controller

sat(s)

Kp

Kd

Ks

Lv4
+

+

e

Figure 4.1: Visual servoing system with eye-in-hand configuration

4.4 Stability Analysis

The stability analysis of the proposed controller is based on Lyapunov direct method[94].

Due to the uncertainties in depth, the estimated Jacobian matrix is subjected to the following

constraints.

(I + ∆min) ≤ Lv4L̂
+
v4 ≤ (I + ∆max), (4.10)

where ∆min is a matrix of the uncertainties associated with lower bounds of estimated depth

Zmin and ∆max is a matrix of the uncertainties associated with the upper bounds of the

estimated depth Zmax. The relationships between ∆min , ∆max with the bounds of depth
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are illustrated in the Appendix.

Definition 4.4.1 Assume that the feature points are in the field view, under the control of

the controller, the image error of the feature point P converges to zero, i.e.,

lim
t→+∞

e(t) = 0. (4.11)

Proof: A Lyapunov function is constructed as

V =
1

2
STS. (4.12)

The time derivative of the above Lyapunov function is obtained as

V̇ = ST Ṡ. (4.13)

By substituting (4.8) into (4.1), the following system error dynamic equation is obtained

Ṡ(t) = ė(t) = Lv4L̂
+
v4(−Kdė(t)−Kpe(t)−Kssat(S))− sd(t). (4.14)

Moving the term associated with ė to the left of the equation yields,

ė = (I +KdL̂v4L
+
v4)
−1Lv4L̂

+
v4(−Kpe(t)−Kssat(S))− (I +KdL̂v4L

+
v4)
−1sd(t). (4.15)

Then the time derivative of Lyapunov function becomes:

V̇ = (I +KdLv4L̂
+
v4)
−1Lv4L̂

+
v4(−eTKpe−Ks|S|)− (I +KdLv4L̂

+
v4)
−1ST sd(t). (4.16)

It is noted that the rank of Lv4L
+
v4 is 6, and Lv4L

+
v4 has two null vectors that satisfy

Lv4L
+
v4x = 0. Matrix Lv4L

+
v4 has the maximum rank of 6, and Lv4L

+
v4 has two null vectors

that satisfy {Lv4L+
v4x = 0, x ∈ R8, x 6= 0}. Assuming that x does not belong to the null

space of Lv4L
+
v4 [57, 58], we have

Lv4L
+
v4 > 0. (4.17)
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If Kd is chosen as a positive definite matrix, one has

Kd > 0. (4.18)

In this way, one can ensure

(I +KdLv4L̂
+
v4)
−1Lv4L̂

+
v4 > 0. (4.19)

Also, Ks is chosen as

Ks > λmax(I + ∆max)/λmin(I +Kd∆min)−1sd(t) + η, (4.20)

where η is a diagonal positive definite matrix whose elements determine the decay rate of

V (t) to zero.

Then the time derivative of Lyapunov function becomes:

V̇ <(I +KdLv4L̂
+
v4)
−1Lv4L̂

+
v4(−eTKpe− η|S|) < 0. (4.21)

According to Barbalat’s lemma, we have V̇ = 0 when t → ∞ . And the image features

error e(t)→ 0 when t→∞. Hence, the stability of visual servoing system using the hybrid

PD-SMC controller is ensured.

4.5 Simulation results

In this section, computer simulations have been conducted on a Puma 560 robot model by

using MATLAB Robotics Toolbox and Machine Vision Toolbox [54].

4.5.1 Simulation analysis

A 6-DOF Puma 560 arm is chosen as the manipulator and the camera is mounted on the

end effector which assumes no transformation between the end effector and the camera [12].

The camera characteristics are shown in Table 4.1. The maximum linear velocity of Puma

560 is 0.5 (m/s) according to the robot user manual [129, 130].
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Table 4.1: Camera parameters used in simulations

Parameter Value

Focal length 0.008 (m)

Principal point (512, 512)

Camera resolution 1024× 1024

To analyze and compare the performance of hybrid PD-SMC IBVS with the conventional

IBVS, four simulation tests is conducted, including pure translation (Test 1) and pure ro-

tation (Test 2) of features, hybrid translation and rotation test (Test 3), and disturbance

rejection test (Test 4). In these tests, the depth range is 1.6 < Z < 2.2 meters. The diagnol

elements of two parameter matrices Kd, Ks are 1, 3 respectively.

Four feature points are used in visual servoing control. The initial and desired positions

of the image features are given in Table 4.2.

Table 4.2: Initial and desired positions

Point 1 Point 2 Point 3 Point 4

(x1 y1) (x2 y2) (x3 y3) (x4 y4)

Tests 1&4
Initial (360 401) (361 611) (570 610) (573 402)

Desired (412 412) (412 612) (612 612) (612 412)

Test 2
Initial (360 401) (361 611) (570 610) (573 402)

Desired (362 506) (466 612) (572 506) (466 403)

Test 3
Initial (389 382) (350 587) (556 625) (594 420)

Desired (390 390) (430 590) (630 550) (590 350)

4.5.2 Simulation results by MATLAB

In Test 1, the manipulator moves from initial position to desired position and the trajectory

is a pure translational motion. Fig. 4.2 shows the feature position error of proportional

(P) control, PD control, SMC control (sign function is used) and hybrid PD-SMC control

respectively. Fig. 4.3 shows the joint velocity variations of P control, PD control , SMC

control and hybrid PD-SMC control respectively. It can be observed that the system of
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hybrid PD-SMC owns the fastest convergence rate compared to P control or PD control.

The SMC control system utilizing sign function exhibits the chattering phenomenon, so the

hybrid PD-SMC system owns better performance. Therefore, only proportional (P) control

and hybrid PD-SMC systems are discussed in the following tests. Fig. 4.4 demonstrates the

feature trajectories of four feature points in image space of PD-SMC method.

In Test 2, a pure rotational movement of the manipulator is completed. Feature position

error variation and Cartesian velocity of the conventional IBVS and hybrid PD-SMC method

are compared during a spin, and the results are shown in Fig. 4.5 and Fig. 4.6. It is observed

that the results of the hybrid PD-SMC method are better than those of IBVS. Fig. 4.7 shows

the initial position, and desired position and rotational trajectories of the feature points.
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Figure 4.2: Feature error variations in pure translation test (Test 1).
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Figure 4.3: Joint velocity variations in pure translation test (Test 1)
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Figure 4.4: Feature trajectories in image space of pure translation test (Test 1)
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Figure 4.5: Feature error variations in pure rotation test (Test 2)
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Figure 4.6: Joint velocity variations in pure rotation test (Test 2)
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Figure 4.7: Feature trajectories in image space of pure rotation test (Test 2)

To further verify the effectiveness of the proposed method, the hybrid translational and

rotational motion around a point is conducted in Test 3. Compared to the pure translational

or rotational motion, the hybrid translational and rotational motion is a more complicated

process. The results in Fig. 4.8, Fig. 4.9 and Fig. 4.10 demonstrate the hybrid PD-SMC

owns higher convergence rate and more accurate trajectory.
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In Test 4, a chirp signal as a disturbance is added near to the desired position and the

manipulator is controlled to move from the initial position to the desired position under the

added disturbance. This test aims at demonstrating the robustness of the system. Feature

position error variation and joint velocity are shown in Fig. 4.11 and Fig. 4.12. The results

demonstrate that the system using hybrid PD-SMC method has the better stability and

robustness.
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Figure 4.8: Feature error variations in translation and rotation test (Test 3)
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Figure 4.9: Joint velocity variations in translation and rotation test (Test 3)
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Figure 4.10: Feature trajectories in image space of translation and rotation test (Test 3)
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Figure 4.11: Feature error variations with disturbance test (Test 4)
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Figure 4.12: Joint velocity variations with disturbance (Test 4)

From the above simulation results, the accuracy and robustness of the system performance

can be summarized in Table 4.3. It is shown that the settling time of Hybrid PD-SMC is

shorter than that of IBVS. The added external disturbance has less effect on hybrid PD-SMC

controller.

To further compare the performance of IBVS and Hybrid PD-SMC, the performance

index ISE (Integrate Square Error) is adopted, which is defined as

ISE =

∫ T

0

e2(t)dt. (4.22)

The results are summarized in Table 4.4, where the “ISE Total” represents the total

Integrate Square Error of feature error x1, x2, x3, x4 and feature error y1, y2, y3, y4. Results

show that the ISE of the hybrid PD-SMC is smaller than that of the IBVS in the tests.
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Table 4.3: Performance comparison of IBVS and Hybrid PD-SMC

IBVS Hybrid PD-SMC

Test 1
Settling time (seconds) 14 4

Peak value (pixels) 0 0

Test 2
Settling time (seconds) 11 3.5

Peak value (pixels) 0 0

Test 3
Settling time (seconds) 10 2.5

Peak value (pixels) 0 0

Test 4
Settling time (seconds) 10 3

Peak value (pixels) 1 0.2

Table 4.4: ISE values of IBVS and Hybrid PD-SMC

ISE Total

IBVS Hybrid PD-SMC

Test1 1.7875× 104 5.3609× 103

Test2 4.5601× 105 1.6251× 105

Test3 1.2518× 105 1.4727× 104

Test4 1.7639× 104 5.3348× 103

4.6 Experimental results

To further validate the performance of the proposed method, three experimental tests are

conducted on 6-DOF Denso robot (described in 2.5) including long distance translation and

pure rotation of features, and hybrid translation-rotation test. In these tests, the depth

range is 0.5 < Z < 0.7 meters. The diagonal elements of two parameter matrices Kd, Ks are

0.01, 0.26 respectively. Four feature points are used in visual servoing control. The initial

and desired positions of the image features are given in Table 4.5.
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Table 4.5: Initial and desired positions

Point 1 Point 2 Point 3 Point 4

(x1 y1) (x2 y2) (x3 y3) (x4 y4)

Test 5
Initial (57 150) (57 57) (146 63) (146 148)

Desired (595 270) (595 175) (684 177) (686 275)

Test 6
Initial (454 213) (385 146) (447 81) (516 148)

Desired (602 270) (600 174) (688 179) (691 273)

Test 7
Initial (103 136) (196 105) (225 187) (134 220)

Desired (447 203) (540 189) (557 278) (461 292)
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(b) Hybrid PD-SMC

Figure 4.13: Feature error variations in a long distance translational motion (Test 5)

Test 5 is performed to examine the convergence of image feature points when the desired

position is far away from the initial one, which needs a long distance translational motion.

Fig. 4.13 shows that the feature position errors converge to zero. Fig. 4.14 shows the initial

and desired positions captured by the camera. Fig. 4.15 shows the feature trajectories in

image space of a long distance translational motion. Fig. 4.16 shows the camera trajectory

in Cartesian space.
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(a) Initial position (b) Desired position

Figure 4.14: Feature position (Test 5)
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(b) Hybrid PD-SMC

Figure 4.15: Feature trajectories in image space of a long distance translational motion (Test 5)

It is shown that the performance of hybrid PD-SMC is better than that of IBVS. The

settling time of the hybrid PD-SMC method is shorter than that of conventional method.

Furthermore, in hybrid PD-SMC method, the feature trajectory is straighter in image plane

and the camera trajectory in Cartesian space is smoother.
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Figure 4.16: Camera trajectory in Cartesian space (Test 5)

Test 6 is performed to examine the rotation performance of the proposed method, a

pure rotation of image feature points has been completed. Fig. 4.17 shows that the feature

position errors converge to zero. Fig.4.18 shows the initial and desired positions which are

captured by the camera. Fig. 4.19 shows the feature trajectory in image plane. Fig. 4.20

shows the camera trajectory in Cartesian space.
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Figure 4.17: Feature error variations in a pure rotational motion (Test 6)
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(a) Initial position (b) Desired position

Figure 4.18: Feature position (Test 6)
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(b) Hybrid PD-SMC

Figure 4.19: Feature trajectories in image space of a pure rotational motion (Test 6)
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Figure 4.20: Camera trajectory in Cartesian space (Test 6)

It is obvious that the test is successfully performed to validate the superior performance

of hybrid PD-SMC. Fig. 4.17, Fig. 4.18, Fig. 4.19 and Fig. 4.20 show the comparison of

experimental results, which is in agreement with those of Test 5.

Test 7 is a hybrid translational-rotational motion process. In this experimental test, the

translational and rotational motions of features are incorporated in one process. In the initial

stage of the movement, the translational motion is implemented. In the final stage of the

movement, the rotational motion is performed. Fig. 4.21 shows the feature position error

variations of IBVS and hybrid PD-SMC. It is observed that the hybrid PD-SMC system

owns the higher convergence rate. Fig. 4.22 shows the six joints’s velocity of IBVS and

hybrid PD-SMC respectively. The joint velocity variations using hybrid PD-SMC method

have regularly changing pattern and smaller shaking phenomenon.

87



0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

time(sec)

pi
xe

ls
Feature position error

 

 
error of x1
error of x2
error of x3
error of x4
error of y1
error of y2
error of y3
error of y4

(a) IBVS

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

time(sec)

pi
xe

ls

Feature position error

 

 
error of x1
error of x2
error of x3
error of x4
error of y1
error of y2
error of y3
error of y4

(b) Hybrid PD-SMC

Figure 4.21: Feature error variations (Test 7)

Fig. 4.23 (a) and Fig. 4.23 (b) show the image feature points from initial position to final

position and the trajectory by using IBVS and hybrid PD-SMC respectively. It is observed

that the hybrid PD-SMC performs better in the final stage than IBVS in terms of smoothness

and length of its trajectories in image plane.
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Figure 4.22: Joint velocity of using IBVS and hybrid PD-SMC (Test 7)
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Figure 4.23: Features trajectories (Test 7)
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Figure 4.24: Three dimensional trajectory of the camera (Test 7)

Fig. 4.24 (a) and Fig. 4.24 (b) show the camera trajectory in 3D space of IBVS and

hybrid PD-SMC respectively. It can be seen that the camera trajectory of hybrid PD-SMC

system is smoother and straighter.

The above experimental results on the system performance are summarized in Table 4.6.

It is noted that the settling time of Hybrid PD-SMC is less than that of IBVS. Furthermore,
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external disturbances may exist during the movement in real experiments. The robustness

against the random disturbances during the experiment is demonstrated in movement. By

comparing the feature trajectories in image space in Fig. 4.15, Fig. 4.19 and Fig. 4.23, one

notices that the interference effect was significant on the final stage of the movement. When

reaching this stage, the feature trajectories in image space of the hybrid PD-SMC system

are smoother and straighter than those of conventional IBVS. By comparing the camera

trajectory in 3D space in Fig. 4.16 and Fig. 4.20, it can be observed that the trajectory

in hybrid PD-SMC system is more preferred in critical converted position. By comparing

the camera trajectory in 3D space in Fig. 4.24, especially on the stage close to the desired

position, one can draw the conclusion that the hybrid PD-SMC system has better robustness

and efficiency.

The performance index ISE (Integrate Square Error) is also used to further compare the

performance of IBVS and Hybrid PD-SMC. The results are described in Table 4.7, where

the “ISE Total” represents the total Integrate Square Error of feature error x1, x2, x3, x4 and

feature error y1, y2, y3, y4. Table 4.7 shows that the ISE of the hybrid PD-SMC is smaller

than that of the IBVS in three tests.

Table 4.6: Performance comparison of IBVS and Hybrid PD-SMC

Settling time (seconds)

IBVS Hybrid PD-SMC

Test 5 146 91

Test 6 143 89

Test 7 111 71

Table 4.7: ISE values of IBVS and Hybrid PD-SMC.

ISE Total

IBVS Hybrid PD-SMC

Test5 1160.6 791.5

Test6 112.6 92.7

Test7 438.6 296.8
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Therefore, one can see that the accuracy and robustness of the hybrid PD-SMC system are

better than those of IBVS system. The effectiveness of the proposed controller is validated

in three experimental tests.

4.7 Summary

An enhanced IBVS which combines PD control with SMC is presented in this chapter. The

purpose of this approach is to improve the visual servoing performance by taking advantages

of PD control and SMC so that the proposed hybrid PD-SMC controller owns good robust-

ness against the disturbance and uncertainties due to the estimated depth. Also it has fast

convergence rate. The stability of the enhanced IBVS system is proven by using Lyapunv

function method. Simulation and experimental tests demonstrate that the proposed hybrid

PD-SMC IBVS excels greatly the classic IBVS controller.
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Chapter 5

Image-Based Visual Servoing Using

Trajectory Planning

5.1 Introduction

In previous chapters of this research work, several methods are proposed that could deal with

system uncertainties and increase the visual servoing task speed. On the other hand, they

could successfully overcome some of the mentioned deficiencies. Specifically switch method

could overcome the weakness of IBVS about pure rotation around camera’s center. Sliding

method and switch method increase the stability of the system in long distance tasks and

ESIBVS tackles the problem of features leaving the field of view. However, still some of

these deficiencies still remained unsolved.

In this chapter, a new image-based trajectory planning algorithm is proposed to overcome

the visual servoing deficiencies and develop a reliable algorithm to perform visual servoing

tasks. In this approach, a trajectory is generated based on the information received from the

image plane. However the trajectory is in the Cartesian space and relates the end effector

velocity to the motion of the features in image space. For this matter, the camera’s velocity

screw is separated into elements. Each velocity element is parameterized using a time based

function which is refereed to as the velocity profiles. The velocity profile parameters are

determined through an optimization process which minimizes the features errors. In order

to facilitate and speed up the optimization technique, some new features are introduced. Due

to the highly coupled behavior of the features due to the motion of camera, the optimization

problem is a non-convex problem. By decoupling the orientation planning from positioning
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problem the problem becomes a convex problem. A convexity analysis is performed to show

the convexity of the optimization problem. Similar to other IBVS systems, depth estimation

plays an important role in the performance of the proposed trajectory planning algorithm.

A primary depth estimation technique is introduced. Having the initial depth, the object

depth could be integrated during the visual servoing task. By integrating this technique, the

proposed image-based trajectory planning can overcome IBVS deficiencies to a great extent.

In addition, this method eliminates the field of view constrains exist in conventional IBVS

systems. This technique exploits the benefits of global off-line planning in visual servoing.

However high speed of the algorithm allows the fast and easy execution of the algorithm.

Calibration error could deviate the robot from its ideal path. However, the robot is

taken to a situation close enough to the desired location. The desired location will then

be reached using an augmented image-based visual servoing (AIBVS) controller [64]. In

other words, the trajectory planning algorithm is switched to a controller at the end of its

path to compensate for any inaccuracy of the system performance. In summary, the whole

visual servoing procedure consist of 3 stages. The first stage is the depth estimation stage.

The second stage is the trajectory planning stage. Finally, in the third stage the trajectory

planning block switches to a visual servoing controller block.

Experimental tests are performed on a 6-DOFs Denso robot to validate the proposed

method. The results show that in the situations where the visual servoing task fails using

traditional method, it performs successfully using the proposed method in this thesis.

5.2 Visual Servoing System

In this chapter, the goal is to develop a trajectory planning algorithm for an imaged-based

visual servoing task. Image-based visual servoing is performed based on the difference be-

tween the current image features and the desired ones. A picture is taken of the object when

the robot’s end-effector is in desired position with respect to the object. This picture is used

as the desired picture. The IBVS controller generates a velocity or acceleration command to

eliminate the existing error. The visual servoing task is complete when the image features

match the target features.

All the system modeling is based on a 6-DOFs robotic system with a pinhole CCD camera

mounted on its end effector. Let Fb be the robot base frame, Fe be the end-effector frame and

Fc be the camera frame (5.1). The object is stationary in the workspace and is characterized
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Figure 5.1: Denso robot

by 4 feature points on its four corners. A mentionable merit of IBVS is that it does not

require the object frame. Having the projection of a 3D points on the image plane of the

camera (Figure 1.10) the relation between the motion of the camera and the motion of the

features could be calculated from 5.1.

ṗ = Ls
cVc, (5.1)

where

Ls =

[
− 1
Z

0 x
Z

xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy −x

]
(5.2)

is the Jacobian matrix, x and y represent the point coordinates in image plane in meter

represented in camera frame, Z is the depth of the object with respect to the camera and
cVc = [vx vy vz ωx ωy ωz]

T is the camera’s velocity screw represented in camera frame.

5.3 Trajectory Planning

The robot could perform 6 degrees of motion to reach any desired pose (including position

and orientation). The effect of each motion could be calculated using equation (5.2). Figure

5.2 shows how each motion affects the feature point position.

95



(a) Velocity field for vx motion (b) Velocity field of vy motion

(c) Velocity field of vz motion (d) Velocity field of ωx motion

(e) Velocity field of ωy motion (f) Velocity field of ωz motion

Figure 5.2: Velocity field of the features subject to camera velocities
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The first two elements of the velocity screw create linear motions in the same direction

for all features (Figures 5.2a and 5.2b). These two camera motions are used for displacing

the features in x and y direction of the image plane. A camera motion in Zc direction creates

an outward motion for the features which is in the direction of line connecting the center of

the image to the image feature (Figure 5.2c). A negative motion in Z direction will create

an inward motion for the features. This motion could compensate the distances between

the features. The fourth and fifth element of the velocity screw create a complicated motion

in the features. It creates an inward motion for features in one side of the image and an

outward motion for the features on the other side of the image (Figures 5.2d and 5.2e). The

last element of the velocity screw rotates the features about the center of image (Figure 5.2f).

The concept behind the trajectory planning is that any target features could be reached

by using a combination of shown feature motions. Six basic velocity profiles are generated for

each of the camera’s velocity screw elements. The effect of the generated velocity screw can

be calculated using equation (5.2). In other words, by superposing the velocity fields caused

by each element of the velocity screw, the final position of the features could be calculated.

The parameters of the camera velocity are then determined by minimizing the error between

the image features and the target ones.

The features velocity in image space could be written as a function of velocity screw

elements, given by

ẋi = −1
Z
vx + xi

Z
vz + xiyiωx − (1 + x2i )ωy + yiωz

ẏi = −1
Z
vy + yi

Z
vz + (1 + yi)

2ωx − xiyiωy − xiωz,
(5.3)

where ẋi and ẏi are the velocities of the ith image feature in x and y direction, respectively.

Consequently, the image feature position could be calculated as

xit =

∫ t

t0

(ẋi(t))dt+ xi0

yit =

∫ t

t0

(ẏi(t))dt+ yi0,

(5.4)

where xi0 and yi0 are the initial coordinates of the image features and xit and yit are the

locations of the image features at time t. Thus, by knowing the initial position of the features

and the velocity of the camera the position of the features can be calculated at each time.
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5.3.1 Image Features

The Jacobian matrix achieved for point features (equation (5.2)) is highly nonlinear and

coupled. In order to facilitate the optimization process some new features are presented in

this research. The new set of image features is as

sn =
[
xc yc pz θx θy θz

]T
, (5.5)

where xc and yc are the centers of the feature points and pz is the perimeter of the lines

connecting each consecutive feature point which are given as

xc =
∑4

i=1 xi(t)

4

yc =
∑4

i=1 yi(t)

4

pz =
∑4

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2

. (5.6)

θx(t), θy(t) and θy(t) are defined based on the deformation that is made in the features by

rotating the camera about cXc,
cYc and cZc. These features are given by

θx = θ11+θ12
2

θy = θ21+θ22
2

θz = θ31+θ32
2

, (5.7)

where θ11, θ12, θ21, θ22, θ31, θ32 are shown in the Figure 5.3.
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(a) Fourth image feature (b) Fifth image feature

(c) Sixth image feature

Figure 5.3: Last three image features definition

5.3.2 Depth Estimation

To accurately calculate the location of the feature points, the distance between the object and

the camera is required. The motion of the camera in Zc direction is known from vz element

of the velocity screw which is given as a parameterized equation of time (vtpz = fz(t)). Thus

the depth Z can be calculated at any time t from

Zt =

∫ t

t0

fz(t) + Z0, (5.8)

where, Z0 is the initial depth of the object with respect to the camera coordinates. If the

initial depth of the object is estimated, accurately, the depth in the rest of the times could

be calculated. Let us recall that using a stereo camera the depth of the object could be
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calculated [131–133]. This is done by applying the epipolar geometry constraint that exist

between the features in images planes of each camera. In a simple case where the two cameras

are mounted parallel to each other (Figure 5.4), the depth of the object with respect to the

cameras can be calculated using the disparity of the images from equation (5.9).

Figure 5.4: Stereo camera model

Zc =
b

xl − xr
, (5.9)

where Zc is the depth of the object in the camera coordinates, xr and xl are the features x

coordinates in left and right cameras, respectively and b is the distance between the cameras.

We can conclude that by having two image of an object from a camera from which the second

image is taken at a location with a displacement of b along Xc from the first location of the

camera, the same equation could be used to calculate the object depth. Thus, by moving

the camera along Xc by a small displacement b and using the initial and the final image

feature position and the depth of the object could be calculated from equation (5.9), This

procedure takes about 1 second to complete which is feasible in experiment.

5.3.3 Parameterizing the Velocity Profile

A general predefined velocity profile is selected and named Vt(t). In a visual servoing task

which deals with a stationary object, the robot starts from stationary situation and ends in
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a stationary situation. Thus, the selected profile needs to satisfy the following conditions.

Vt(0) = 0

Vt(tf ) = 0
, (5.10)

where tf is the final time which we planned to have the robot at the target position. Some

examples of these functions could be a trapezoid function, a polynomial function or half

cycle of a sinusoidal wave. However, more complicated trajectories with more parameters

could be used such as higher order polynomial especially for the cases where other objective

functions such as energy or path length are used for optimization.

In this research, half cycle of a sinusoidal profile is used to parameterize the velocity

profile. The velocity profile could be shown as follows

Vt(t) = vm sin(πt
tf

) 0 ≤ t ≤ tf , (5.11)

where vm is the vector of maximum speed that the camera reaches within the profile and it

is given as;

vm =
[
vmx vmy vmz vmωx vmωy vmωz

]T
, (5.12)

where vmx,vmy,vmz, vmωx , vmωy and vmωz are the maximum velocity of each element in the

velocity screw, respectively. The final time, tf , is selected by the user depending on the

desired speed of the task. Thus, each profile have only one parameter to be designed and

the overall number of design parameters of the system is six.

5.3.4 Decoupling Orientation Planning from Position Planning

Testing the trajectory planning as explained above shows that the system is highly nonlinear

and the optimization process is not convex. In some cases the process doesn’t converges

and in other cases their is no guarantee that it converges in a reasonable time. Due to

the important role that the convergence time plays in feasibility of the algorithm for an

industrial application, it is proposed to decouple the orientation planning from position

planning. Decoupled visual servoing controller is presented in [11]. In this thesis decoupled

trajectory planning is investigated.

Decoupling is performed as explained at follows. First, the last three velocity screw

elements are planned in the optimization process so that they take the last three feature
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set elements to their desired values. Second, the first three elements of the velocity screw is

planned to eliminate the error existing in the first three elements of the feature set. The last

three joints of the robot is responsible for the fixing the orientation and the first three joints

of the robot is responsible for positioning. As it is investigated in the next section, using the

selected features and decoupling the planning process creates a convex optimization process.

5.4 Optimization and Convexity Analysis

Let us define the objective function as the quadratic form of the selected features error, given

by

OF = (sn(tf )− snd)
TQ(s(tf )− sd), (5.13)

where Q is an orthogonal matrix introducing the desired weight of each error in the opti-

mization process. An important point that needs to be considered, is that the trajectory

planning procedure must be completed in a reasonable time. Otherwise, the method would

be useless for real word applications because of the delay that is imposed to the system. One

important factor that leads to fast convergence of the optimization problem is the convexity

of the optimization problem. In this section the convexity of the problem is investigated. To

start, let us review the following main theorems regarding convexity of a problem.

Theorem 1: If f(x∗) is a local minimum for a convex function f(x) defined on a convex

feasible set S, then it is also a global minimum [134].

Theorem 2: A function of n variable f(x1, x2, ..., xn) is defined on a convex set S is convex

if and only if the Hessian matrix of the function is positive semidefinite or positive definite

at all points in the set S [134].

Proving the convexity of the objective function given in equation (5.13) requires the

Hessian matrix of OF . Chinneck [135] introduced a method to discover the convexity of a

program using numerical method. Accordingly, a code is generated to numerically calculate

the Hessian matrix ([136]) of the objective function for a desired span of the desired param-

eters. The design parameter range depends on the physical limitations of the robot. In this

case, the design parameters are the maximum velocity of the end-effector in the associated

DOF. Knowing the speed limits of the robotic system, this could be identified. In our test
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the following ranges have been used,

−0.1 ≤ vmx ≤ 0.1 (m/sec)

−0.1 ≤ vmy ≤ 0.1 (m/sec)

−0.1 ≤ vmz ≤ 0.1 (m/sec)

−0.1 ≤ vmωx ≤ 0.1 (rad/sec)

−0.1 ≤ vmωy ≤ 0.1 (rad/sec)

−0.3 ≤ vmωz ≤ 0.3 (rad/sec)

. (5.14)

To demonstrate the results of this investigation, without the loss of generality, we chose

the initial and desired locations such that the robot needs a motion in all the 6-DOFs to

reach the desired position. The final time tf is selected as 10 (sec). The changes to the

objective function for different values of the design parameters are shown in Figure 5.5. To

be able to show these variations in 3D plot format, the variation of the objective function is

shown due to the changes in two parameters at each figure. All available combinations are

presented. The variation of the objective function due to changes in vmx and vmy are shown

in Figure 5.5a. The variation of the objective function due to the changes in vmx − vmz is

shown in Figure 5.5b. Because of the similarity in behavior of the system due to change

in vmx and vmy all the diagrams related to changes in vmy are omitted here and one can

refer to the figures showing the variations due to the changes in vmx. Moreover, due to

the fact that the trajectory planning is decoupled, the orientation never interfere with the

positioning. Thus, it is not required to check the convexity of the system due to a combined

linear and angular motion. To check for the convexity of the system due to the angular

motions the changes in the objective function is introduced due to the changes in ωmx−ωmy
and ωmx − ωmz. These changes are shown in Figures 5.5c and 5.5d. The convexity of the

objective function is clearly demonstrated in the Figures 5.5.
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(a) OFn versus vmx and vmy (b) OFn versus vmx and vmz

(c) OFn versus ωmx and ωmy (d) OFn versus ωmx and ωmz

Figure 5.5: Objective function due to different parameters’ changes

5.5 Constrains

One of the main issues in conventional visual servoing is that it does not limit the robot

within the system constraints. In addition, by just limiting the system within the constraints

the convergence of the system to the target point cannot be guaranteed. The highly coupled

nature of visual servoing system could cause the controlling law to take the robot toward

and beyond its boundaries while IBVS is attempting to fix the camera’s orientation. This

can be easily observed in a visual servoing task using a conventional controller. Thus,
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limiting the system motion like a model predictive controller would do, is not sufficient

to stabilize the system [137]. On the other hand, in a trajectory planning algorithm, the

generated trajectory could be examined beforehand to guarantee that reaches the target

while respecting the constraints. Two main constraints are considered in this research. The

first constraint is associated with the robots working space. The second constraint is the

robot joint limits. These constraints are discussed in details in the following sections.

It is good to note that, limiting the system to keep the features inside the field of view

of the camera is vital to the success of the task in an IBVS conventional visual servoing.

The proposed method integrates the equation of motion and predicts the features position

at different time moments. Thus, it only requires the initial and the final positions of the

features. Consequently, limiting the features inside the field of view is not necessary in this

method.

5.5.1 Working Space Constraint

The planned trajectory is feasible only if it is inside the robot working space at all times.

Every robot has its own working space. The typical working space of a serial manipulator

is a part of sphere with the radius equal to the length of the arms when they are aligned in

the same direction. This could be formulated in a polar system as follows,

Xc = Rc cos(θc) cos(αc) 0 < Rc ≤ Rcmax

Yc = Rc cos(θc) sin(αc) and θcmin
< θc ≤ θcmax

Zc = Rc sin(θc) αcmin
< αc ≤ αcmax

, (5.15)

where, Pc = [Xc, Yc, Zc]
T and Ppc = [Rc, θc, αc]

T are the cameras coordinates in Cartesian

and polar systems, Rcmax is the maximum possible length of the robot’s arm, θcmin
and θcmax

are the minimum and maximum angles of the robot’s arm about its base X axis, αcmin
and

αcmax are the minimum and maximum angles of the robot’s arm about its base Z axis.

5.5.2 Joints Space Constraint

Keeping the robot inside the working space is not enough to accomplish a visual servoing

task. In addition to work space constraint, it is necessary to make sure the robot respects its
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joint limits and does not collide with itself. These constraints can be formulated as follows.

qmin ≤ q ≤ qmax, (5.16)

where q is the robot joint vector and qmin and qmax are defined as the robot’s joint limits.

The end-effector position is known at all time during the servoing. A function is required

to transform the robot’s end-effector coordinates to robot joints’ value. This function is the

inverse kinematic of the robot. The constraint could be written as

qmin ≤ I(Pc) ≤ qmax, (5.17)

where I(Pc) is the inverse kinematic function of the robot.

In order to have a completely convex optimization problem the constraints should also

be convex functions. The convexity of these functions are investigated in reference [101].

5.6 Visual Servoing Controller

In the cases where there are some uncertainties in the system model, the generated trajectory

locates the features with a small error with respect to the target position. To compensate

for such errors, a visual servoing controller is required. To design the controller, the relation

between the robots end effector acceleration and the features is required. This relationship

can be obtained by taking double time derivatives of both sides equation as follows[
ẍ

ÿ

]
=

[
Ẍ
Z
− Z̈X

Z2 − 2 ŻẊ
Z2 + 2 Ż

2X
Z3

Ÿ
Z
− Z̈Y

Z2 − 2 ŻẎ
Z2 + 2 Ż

2Y
Z3

]
. (5.18)

We shall use the well-known kinematic equations (5.19) and (5.20), to find the relationship

between the camera motion and the features.

Ṗ = −v − ω ×P, (5.19)

P̈ = −a− α×P + 2ω × v + ω × (ω ×P), (5.20)

where v and a are camera’s velocity and acceleration vectors, ω and α are camera’s

angular velocity and acceleration vectors, respectively. Applying equation (5.19) and (5.20)
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to equation (5.18) and repeating it for all four features, we obtain

s̈4 = La4A + Lv4, (5.21)

where A is the cameras acceleration screw which is given as A = [ax ay az αx αy αz]
T and

La4 =
[
La|p=p1 . . . La|p=p4

]T
, (5.22)

Lv4 =
[
Lv|p=p1 . . . Lv|p=p4

]T
, (5.23)

and

La =

[
− 1
Z

0 x
Z

xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy x

]
. (5.24)

Lv is obtained by imposing the two last terms of equation (5.19) to equation (5.20) and

can be written as

Lv =

[
VTOxV

VTOyV

]
, (5.25)

where V is the camera’s velocity screw which is given as V = [vx vy vz ωx ωy ωz]
T and Ox

and Oy can be calculated from

Ox =



0 0 f
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and

Oy =


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Defining the controller error as

e = s4 − sd4, (5.28)
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where sd4 is the desired feature points on the image plane, the following controlling law could

eliminate the error due to an exponential decrease given in equation (5.30).

Ac = L+
a4(−λvė− λpe− Lv4), (5.29)

where Ac is the acceleration command. L+
a4 is pseudo inverse of the image Jacobian matrix.

λv and λp are the derivative and proportional gains.

ë + λvė + λpe = 0, (5.30)

where e, ė and ë are the features position and velocity and acceleration errors. The stability

of this controller is proven in [138].

5.7 Experimental Results

In this section, the results of the experimental tests of the proposed algorithm on DENSO

robot (Figure 5.6) are presented. Full specifications of the experimental setup are described

in 2.5. A cubic shape object is used as the target object. Four corners of the top plane of

the object is used as the features. Harris algorithm is used to extract the cube corners [139].

Figures 5.6b shows the picture of the cube taken by the camera and the extracted features.
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(a) Denso robot in operation (b) Image of the cubic object taken by the camera

on the robot

Figure 5.6: Experimental setup and the object

The object is stationary in the working space. The visual servoing task is finished when

the image features match the desired features. Each complete test consists of four stages.

First, the depth estimation algorithm moves the end-effector in Xc direction by 5cm to take

the stereoscopic image and estimates the depth of the object. Second, using the current image

features, desired image features and the initial depth of the object, the trajectory planning

algorithm generates the appropriate angular velocity through optimization to reorient the

camera to a parallel plane as the object plane. This is done by matching the three last

selected features. After that, the positioning trajectory is generated by matching the first

three selected features. Due to the nonlinearity of the selected objective function, an interior

point algorithm [140] is used to solve the optimization problem. In the third stage, the

generated velocity is applied to the robot to take it to the desired position. At the fourth

stage, an AIBVS [138] controller is executed to compensate for any difference between the

image features and the desired image features caused by the uncertainties in system model.

As it is shown in the results, most of the tests may not require the last stage, since the

trajectory planning exactly matches the features with the desired ones. The flowchart for

the trajectory planning procedure is provided in Figure 5.7. Four different tests with different

strategies have been performed to ensure the algorithms validity.
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Figure 5.7: Flowchart for the trajectory planning

Test 1

In the first test, our aim is to show the performance of the system on performing a relativity

simple visual servoing task. The initial and desired locations of the features are given in the

Table 5.1.
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Table 5.1: Initial(I) and Desired(D) location of feature points in pixel

Point1 Point2 Point3 Point4

(x y) (x y) (x y) (x y)

Test 1
I 248 163 283 185 262 219 227 195

D 138 99 179 99 179 136 138 137

Test 2
I 32 106 75 12 242 83 155 181

D 139 100 179 98 180 135 139 136

Test 3
I 137 99 178 99 179 136 138 137

D 190 154 129 154 128 98 190 98

Test 4
I 107 210 16 206 26 133 114 137

D 291 212 203 229 187 154 276 136

The trajectory planning algorithm generates the velocity profiles shown in Figure 5.8e.

Applying the velocities to the robot, the robot is taken to the desired position. The first sine

cycle is related to the orientation planning and the second part is related to the positioning.

The features trajectory in image space and the camera trajectory in 3D space are shown

in Figures 5.8c and 5.8d. The half sphere in this figure shows the workspace of the robot.

The robot joint angles during the robot motion are shown in Figure 5.8f. Since, the system

model is sufficiently accurate, the desired position is reached using the velocity profiles and

the fourth stage of the algorithm is not required for this test. In the first stage of the

algorithm, the robot moves the camera by 10cm in Xc direction and the depth estimation

is 0.4m. The optimization process in this test takes less than a second to complete using a

Intel Xeon E31220 3.10GHz CPU.
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.8: Results for Test 1
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Test 2

In the second test, some of the advantages of the proposed method to IBVS controller are

shown. A relatively complicated task is chosen for this matter. The initial and final position

of the robot is given in Table 5.1. The results of this test is given in Figures 5.9. The

optimization process creates the velocity profile given in Figure 5.9e. The first part of the

velocity profile is to orient the camera to be parallel to the object’s feature plane. These

velocity profiles only moves the three last joints. This cause the features to move out of the

FOV. however since this algorithm is an off line planning it only depends on the initial and

desired location of the features. Within the algorithm it is assumed that the camera FOV

is unlimited. The features eventually return to the real FOV of the camera as the robot

completes the created path. The constant lines in the feature error and selected features

error in Figures 5.9a and 5.8b are related to the time that the features are out of camera’s

FOV. It is shown that the task is completed keeping the robot in its workspace. The joint

angles are also shown in Figure 5.9f.
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.9: Results for Test 2
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The same task is done using an IBVS controller. The results are given in Figure 5.10

(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

Figure 5.10: Results for Test 2 for IBVS

As shown in Figure 5.10c, the rotation required for this task takes the features out of the

field of view. The IBVS controller depends on the features position at each instant. As soon

as the features run out of the field of view the controller have false data from the features

position and it cause the task to fail.
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Test 3

For the third test, another common problems of IBVS is investigated using the proposed

method. The visual servoing fails when a 180 degrees rotation of the camera is required

to reach its desired position [141]. A test is prepared including a 180 degrees rotation in

the end effector motion. The initial and desired locations of the feature points are given in

Table 5.1. The result of this test is shown in Figure 5.11. The same test is conducted using

IBVS controllers. The results are shown in Figures 5.12. The results show that, similar to

the previous test, the IBVS controller tries to match the features through the shortest path

available which results in a motion of camera in the Zc direction. This continues until the

end-effector reaches its physical limits and the robot stops, as shown in Figure 5.12d.
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.11: Results for Test 3
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

Figure 5.12: Results for Test 3 for IBVS

Test4

Another challenges in conventional visual servoing is the local minima problem. In an IBVS

controller, the Jacobian matrix is a 8x6 matrix. The inverse of this matrix, which is used to

produce the controlling law, is a 8x6 matrix and has two vector of null space. If the features

error vector is a factor of these null space vectors the controller generates a zero velocity

vector as the controlling command. This cause the system to get stuck in that spot. In the

trajectory planning algorithm, the inverse of the Jacobian matrix is not used. consequently,

118



the local minima problem is solved. The next test demonstrates this ability in the proposed

algorithm. The initial and desired locations of the feature points are given in Table 5.1. The

desired features are chosen so that the vector of feature position error is in the null space of

the Jacobian matrix. The results are shown in Figures 5.13. We can see that the proposed

algorithm produces a velocity profile to take the robot to the desired position while the IBVS

controller produces a zero velocity vector.
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.13: Results for Test 4
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(a) Features position error (b) Selected features error

Figure 5.14: Results for Test 4 using IBVS controller

5.8 Summary

In this chapter, a novel visual servoing technique using optimized trajectory planning is

proposed. An optimized trajectory is planned from the initial robot’s position to a position

where the image features match the desired ones. The trajectory is based on a predefined

trajectory which satisfies the system’s initial and final conditions. The trajectory parameters

are determined through an optimization procedure by minimizing the errors between the

image features and the desired ones. In order to speed up the optimization process, four

new features are introduced. Using these features, the optimization problem becomes a

convex problem. A depth estimation method is proposed to provide the object depth to the

trajectory planning algorithm. An AIBVS visual servoing controller is used to compensate for

any probable errors appeared in matching the features with the desired ones. Experimental

tests validate the proposed method and exhibit its advantages over IBVS controllers. The

results show the reliability of the proposed method compared to IBVS techniques. Moreover,

the optimization problem is designed so that it could converge to solution in one second.

The optimization process time is less than a second in all tests. Therefore, the method could

be easily used in an industrial application.
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Chapter 6

Conclusion and Future Works

6.1 Summary of the thesis

Integration of vision and robotic systems has increased the dexterity and intelligence of

industrial robots. This thesis focuses on image-based visual servoing (IBVS) which uses the

features taken by the vision system as a feedback in a robotic system to guide the robot

to the desired pose. Researchers have introduced various methods in visual servoing to

improve its performance. In this thesis, a series of new methods are proposed to overcome

the current shortcomings. The proposed methods aim to increase the robustness of the IBVS

to uncertainties and camera limitations and also overcome some of its drawbacks. In the

following, the proposed methods are summarized:

1. Adaptive Switch Image-Based Visual Servoing

An adaptive switch IBVS for an industrial robot with monocular camera in eye-in-

hand configuration is proposed. A three stage control scheme is proposed to realize

the decoupled rotational and translational movement. The update laws are developed

for estimating the camera intrinsic parameters. The designed controller can overcome

some of the inherent drawbacks of traditional IBVS and switch IBVS. The proposed

method is tested in a 6-DOF robotic system with an eye-in-hand camera installed

at the end-effector. The results validate the effectiveness of the proposed adaptive

switch method in industrial applications. The experimental results show that response

time of this method is much less than that of traditional IBVS and less than that of

switch method. Moreover, in the cases where the angle between initial and desired
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image features is greater than 90◦, IBVS normally cannot perform the task while the

adaptive switch method performs the task successfully. Especially in the tasks where

180◦ rotation of the camera around its center is needed, adaptive switch method finishes

the task successfully while IBVS fails and the switch IBVS does it with slower response.

It is shown that the tracking performance of the proposed method has been improved

compared with the switch method and traditional IBVS.

2. Enhanced Switch Image-Based Visual Servoing Dealing with Features Loss

An enhanced switch IBVS for a 6-DOF industrial robot is proposed. One problem that

may occur during IBVS tasks is the features loss or occlusion due to the limited field of

view of the camera. An image feature reconstruction algorithm based on the Kalman

filter is proposed to handle feature loss during the process of IBVS. The combination of

a three-stage switch controller and feature reconstruction algorithm improves the sys-

tem response speed and tracking performance of IBVS and simultaneously overcomes

the problem of feature loss during the task. The proposed method is simulated and

then tested on a 6-DOF robotic system with the camera installed in an eye-in-hand

configuration. Both simulation and experimental results verifies the efficiency of the

method.

3. Enhanced IBVS Controller Using Hybrid PD-SMC Method

An enhanced IBVS which combines PD control with SMC is presented. The purpose

of this approach is to improve the visual servoing performance by taking advantages

of PD control and SMC so that the proposed hybrid PD-SMC controller owns good

robustness against the disturbance and uncertainties due to the estimated depth. Also

it has fast convergence rate. The stability of the enhanced IBVS system is proven by

using Lyapunv function method. Simulation and experimental tests demonstrate that

the proposed hybrid PD-SMC IBVS excels greatly the classic IBVS controller.

4. Image-Based Visual Servoing Using Trajectory Planning

A novel visual servoing technique is proposed. This technique is performed by planning

a trajectory from the initial robot’s position to a position where the image features

match the desired ones. The trajectory is based on optimizing a predefined path which

satisfies the system’s initial and final conditions. The trajectory parameters are iden-

tified through an optimization procedure by minimizing the error between the image
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features and the desired ones. In order to speed up the optimization process, four new

features are introduced. Moreover the planning procedure is decoupled to two stages

of orientation planning and position planning. This is necessary to have a convex

problem. A depth estimation method is proposed to provide the object depth to the

trajectory planning algorithm. After performing the velocity profile generated from

the trajectory planning algorithm, A visual servoing controller is used to compensate

for any probable errors appeared in matching the features with the desired ones. Ex-

perimental tests validate the proposed method and exhibits its advantages over IBVS

controllers. The results show that in cases where the IBVS controller is unable to

complete the visual servoing task, the proposed algorithm is successful.

6.2 Future work

This thesis focuses on introducing new methods of IBVS. The next step can be adopting the

proposed techniques in vision and force fusion to be used in applications such as deburring

and welding. In this thesis, for simplicity it is assumed that depth of the features are the

same. It is useful to develop similar methods to consider the situation the depths of the

features are different. Extending the proposed methods to catch moving objects is also

another potential work.

In the adaptive switch method, the proposed method can be extended to include simul-

taneous estimation of the depth parameter Z, robot dynamic parameters along with the

camera parameters in the adaptive switch control design. Again all the unknown parameters

including depth, camera and dynamic parameters can be collected in a vector similar to θ̂

in (2.16) and the proposed method may be extended to estimate them during the on-line

control process. In the case where there are considerable differences in depths of the fea-

tures, stereo cameras can be used to estimate the depths and a similar control method can

be developed for this case.

The enhanced switch IBVS method may be extended to make it more robust to uncer-

tainties such as the depth of features and camera parameters. In addition, the effect of

different sampling periods on the performance of the proposed ESIBVS may be investigated.

The developed methods in the thesis are applicable for static objects. In the future work

these methods may be modified to be used for moving objects as well.
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Appendix

The relationships between ∆min , ∆max with the bounds of depth are illustrated as follows.

To simplify the case, we only consider the translational motions of the robot since they are

most affected by the uncertainties of the depth. Thus we have:
ẋ1

ẏ1
...

ẏ4

= L̂v4T

vcxvcy
vcz
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where

L̂v4T =
1

Ẑ
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0 −f y1
...

...
...

0 −f y4
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and

L̂v4T1 =


−f 0 x1

0 −f y1
...

...
...

0 −f y4

 (A.3)

Then the pseudo inverse of L̂v4T is,

L̂+
v4T = Ẑ(L̂Tv4T1L̂v4T1)

−1L̂Tv4T1 (A.4)
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And one has

Lv4T L̂
+
v4T1 =

Ẑ

Z
(L̂Tv4T1L̂v4T1)

−1L̂Tv4T1 (A.5)

Thus, the estimated interaction matrix relating to the translation motion is subjected to the

following constrains.

(I + ∆minT ) ≤ Lv4T L̂
+
v4T ≤ (I + ∆maxT ) (A.6)

where matrices ∆minT , ∆maxT satisfy the following equations.

∆minT =
Ẑmin
Z

[(L̂Tv4T1L̂v4T1)
−1L̂Tv4T1 − I] (A.7)

∆maxT =
Ẑmax
Z

[(L̂Tv4T1L̂v4T1)
−1L̂Tv4T1 − I] (A.8)

For the 6DOF motions of the robot, it can be infered that matrix ∆min is associated with

the lower bound of depth Ẑmin and ∆max is associated with the upper bound of the depth

Ẑmax.
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