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ABSTRACT 
 

 
Physiological Influences of Active and Passive Acute Mental Stress on Cardiac Repolarization: 

  
A Preliminary Investigation into Pathophysiological Mechanisms of Adult Cardiac Arrhythmias 

 
Candace Raddatz 

 

Background: Adult cardiac arrhythmias cause adverse health effects including death. While the underlying 

mechanisms of arrhythmiogenesis have yet to be elucidated, the cardiac autonomic nervous system (ANS) is 

suggested to play a notable role. As part of the stress response the cardiac ANS is activated under conditions 

of acute mental stress, yet, little is known about the cardiac ANS stress response and adult arrhythmiogenesis 

in acute mental stress conditions. This systematic review offers insight into the influences of acute mental 

active and passive stress and their potential roles in generating proarrhythmic environments, and provides a 

primary foundation for future clinical research investigating prospective arrhythmiogenic pathophysiological 

pathways for the prediction, prevention and treatment of adult arrhythmias. 

Methods: An extensive literature search was performed by two independent reviewers using Pubmed, 

PsycINFO, and Scopus electronic databases (up to December 2018).  All English language articles which 

assessed adult cardiac electrophysiological, autonomic, and hemodynamic responses, to acute mental stress 

conditions were included.  

Results: Eleven studies were identified; 5 studies included active stress tasks, 3 studies included passive 

stress tasks, and 3 studies included both active and passive stress tasks. Both active and passive stress were 

associated with pro-arrhythmic electrocardiographic changes, along with increased hemodynamic and 

autonomic responses.  

Conclusions: Active and passive stress create a pro-arrhythmic environment through repolarization 

alterations, increased sympathetic nervous system activity, and concurrent diminished parasympathetic 

activity. Further studies should include distinctions between active and passive stress cardiac 

electrophysiology profiles to better understand how mental stress contributes to cardiac arrhythmia etiology.
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1.0! Introduction 

1.1 Cardiac Arrhythmias 

Broadly defined, cardiac arrhythmias are disruptions in the normal rate and/or rhythm of the heart 

where they can manifest as bradycardia (<60 bpm), tachycardia (>100 bpm), irregular rhythms, or a 

combination thereof. Proper cardiac contractions, from atria to ventricle, are perpetuated by electrical 

impulses that follow a specific electrical pathway, see Figure 1 (1). Initiated by an action potential 

depolarizing the sino-atria node (SA node) a cascade of depolarizations propagates the electrical signal to the 

atrio-ventricular node (AV node) to the left and right bundles and terminates at the purkinje fibres(2). The 

electrical impulse stimulates the timely sequence of atrial to ventricular contractions, however when the 

normal duration of these cyclic myocyte depolarizations, repolarizations, and refractory periods is changed, 

an arrhythmiogenic state is fostered. The topography of the cardiac electrical pathway allows arrhythmias to 

originate in the atria, ventricle, or AV node, yielding many different types of arrhythmias manifesting as rate 

and/ or rhythm irregularities (3).

Figure 1. Significant Structures for the Electrical Conduction of the Heart 

 

       Action Potentials start in the SA node, travel to the AV node, 
through the left and right bundles, and terminates at the Purkinje fibres (4). 

Reprinted from EXCI 259 Lab Manual. Figure use permission from publisher, Concordia University (Appendix C) 
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1.1.1 Cardiac Arrhythmia Risks Factors and Outcomes 

Each type of arrhythmia changes the normal cardiac electrical conductivity differently, producing 

distinguishable wave patterns that can be identified through an electrocardiograph (ECG) see Figure 2 (5). 

The various arrhythmias differ in prevalence between age groups, however arrhythmias are less common in  

children (6) and most common in older adults, with a greater risk of arrhythmia occurring with aging (7). 

Internally initiated arrhythmic risk factors include: underlying structural heart disease (8); congestive heart 

failure; hypertension; and diabetes (9), while externally initiated risk factors include: exercise (10) and 

psychological stress (11).   The spectrum of severity for arrhythmias ranges from harmless to fatal, with more 

serious and life-threatening arrhythmias causing brain, heart, and organ damage, and/or death, due to the 

hearts impeded ability to circulate sufficient blood throughout the body (9, 10).  A potential, yet lethal 

arrhythmic outcome is sudden cardiac death (SCD).  Sudden cardiac death is defined to be an unexpected 

death due to an abrupt loss of cardiac function within a short period (< 1 hour) of symptom onset, where the 

mechanism is a perturbation in cardiac electrical stability leading to fatal cardiac arrhythmias such as 

ventricular fibrillation and ventricular tachycardia (12-14). While antecedent arrhythmiogenic activity is 

sometimes difficult to determine in SCD, it is accepted that the majority of SCD cases occur via cardiac 

arrhythmias (15-17). Globally, SCD and arrhythmias account for 15-20% of all deaths, and in the US the 

annual incidence is approximately 180,000-300 000/ year (18-20). 
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Figure 2. Summary Chart of Arrhythmias  
 

  
Summary chart of various cardiac arrhythmias including where the conduction disorder originates, the risks, and sample ECG image. (5) 

ECG images taken from www.practicalclinicalskills.com. Image use permission from publisher, Medical Training and Simulation LLC Copyright ©2019 (Appendix C) 
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1.2 Acute Mental Stress 

 

Stress can be defined as a real or anticipated disturbance to one’s physiological and /or psychological 

homeostasis (21).  Stress can be categorized as chronic or acute, where acute can be defined as a time-limited 

stressful event (22).  Acute stress can be classified into active or passive. Active stress can be considered as 

stimuli where the individual has the ability to influence the outcome to some degree using psychological or 

behavioural coping methods (23-25). Passive stress is stimuli where the individual has no opportunity to 

influence the outcome using active coping methods (25, 24, 26).  The ambiguity of the term “stress” creates 

different conceptualizations across scientific disciplines, making a precise one-size fits all definition 

challenging. Within the literature on stress and arrhythmias, psychological stress, mental stress, emotional 

stress, stress event, psychosocial factors, and emotional states have been used interchangeably. However, 

after some scrutiny, certain studies associate arrhythmiogenesis with the stressor/stimulus, which is the actual 

cause of stress, e.g. work, natural disaster, isolation (27). Others refer to the stress responses, which are the 

mental and physical changes elicited from the stressors e.g. anger, fear, loneliness (27). Therefore, for the 

review with in this thesis, a definition of stress was created such that it was broad enough to include the 

heterogenous terminology found with in studies, but with enough precision to remain exclusive to the 

aforementioned terms and reviewed articles. From here on, the term acute mental stress will be used and is 

defined as a short-term (< 1 week) experience causing an abrupt change in one’s current psychological state, 

without an equivalent increase in metabolic demand relative to physiological reactivity.  

 

1.2.1 Acute Mental Stress and Cardiac Arrhythmias 

It is well known and accepted that acute mental stress contributes to adverse cardiac events and 

cardiovascular disease progression (14, 28, 29) and that cardiovascular reactivity to acute mental stress is 

associated with cardiovascular disease risk (30). It has also been shown that acute mental stress can precede 

arrhythmic events (31, 32). In patients with implanted cardioverters (ICD’s), active mental stress tasks such 
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as anger recall tasks and mental arithmetic tasks precipitated changes in T-wave patterns indicative of 

changes in the cardiac electrophysiology (33). Electrophysiological changes and increases in arrhythmic 

activity have also occurred during periods of physical stress, as increases in ICD shock administration have 

been observed (34). In efforts to investigate the underlying mechanism between acute stress and 

arrhythmiogenic activity, Critchley and colleagues used neuroimaging during acute mental and physical 

stress tasks and found asymmetrical mid brain activation suggesting that this disrupts efferent cardiac activity 

and could cause problems in cardiac repolarizations, inducing potential arrhythmic activity (35).    

 

1.3 Cardiac Autonomic Nervous System 

 

The cardiac autonomic nervous system (ANS) modulates cardiac electrophysiology. A brief overview 

of cardiac neuroanatomy is necessary in understanding the ANS role in arrhythmiogenesis. The heart is 

innervated by both the extrinsic and intrinsic ANS.  The extrinsic ANS is the primary relay between the heart 

and central nervous system, where the intrinsic ANS mediates inter autonomic cardiac information to the 

extrinsic ANS (36).  The extrinsic cardiac ANS is a paravertebral structure of both sympathetic nervous 

system (SNS) and parasympathetic nervous system (PNS) fibers situated on the surface of the heart, that 

receive bilateral efferent and afferent input. Sympathetic nerves originate in the stellate, cervical and thoracic 

ganglia and are dispersed throughout the heart in a gradient format, with a higher density in the atria and 

apex compared to the ventricles (37). Stimulation of the SNS increases heart rate and cardiac contractility via 

interactions of the neurotransmitter norepinephrine on alpha (α) and beta (β) adrenergic receptors. 

Parasympathetic innervation is from the vagus nerve originating in the medulla, with high localization around 

the SAN and AVN, and liberally distributed throughout the atria. Stimulation of the PNS decreases heart rate 

and cardiac contractility by interactions of acetylcholine and cardiac receptors, see Figure 3 (37-39).  
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Sympathetic innervation originates from stellate, cervical and thoracic ganglia. 
Parasympathetic innervation originates from the vagus nerve (40). 

Figure taken from Shen et al 2014. Figure use permission from publisher, Springer Nature (Appendix C) 
 

The intrinsic ANS is a complex system of autonomic nerve fibers within the pericardium. Extrinsic 

nerves entering at the heart hilum become intrinsic nerves. Intrinsic nerves from the arterial portion of the 

hilum tend to proceed to the ventricles, whereas nerves from the venous portion continue to both the atria and 

ventricles. Human hearts have approximately 43000-94000 intrinsic neurons, depending on age. These 

neurons lie predominantly on the epicardium and are arranged into collections of ganglionic plexi (GP) that 

are concentrated throughout various regions of the heart. There are seven identified sub-plexuses that 

innervate specific cardiac areas; Left Coronary (LC), Right Coronary (RC), Ventral Right Atrial (VRA), 

Ventral Left Atrial (VLA), Left Dorsal (LD), Middle Dorsal (MD), Dorsal Right Atrial (DRA). Two sub 

plexuses innervate the right atrium, three sub plexuses innervate the left atrium, the right ventricle is 

innervated by one sub plexus the left ventricle is innervates by two sub plexuses, see Figure 4. While the 

Figure 3. Cardiac Autonomic Innervation  
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topography of the sub plexuses remains consistent throughout the lifespan, the structure of each has an age-

related variability (41, 42).  Both the intrinsic and extrinsic neural circuits function intra-dependently as well 

as an interdependently of which propagates an extremely complex network of efferent and afferent feedback 

loops.  

 

 

 

General schematic of intrinsic GP arrangement within the human heart (41). 
Figure taken from Pauza at al 2000. Figure use permission from publisher, John Wiley and Sons (Appendix C) 

 

1.3.1 Cardiac Autonomic Nervous System and Cardiac Arrhythmias  

It is accepted that the SNS play a part in arrhythmiogenic mechanisms (43, 44) and the intricacy of 

the cardiac SNS and PNS interplay may impact the complexity of arrhythmic activity.  It has been 

shown that the SNS  is generally pro-arrhythmic for both atrial and ventricular chambers due to the similar 

effects SNS stimulation has on atrial and ventricular myocytes (45).  In cases of atrial fibrillation (AF), 

animal studies have shown that simultaneous activation of the SNS and PNS precedes AF episodes, (46, 47) 

and this relationship has been observed in human AF as well (48-50). However, in ventricular fibrillation 

(VF) the SNS has been observed to be pro-arrhythmic and the PNS has been anti-arrhythmic (51, 52).  

Figure 4. Ganglionic Plexi (GP) of Human Heart  
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Cardiac arrhythmias arising from genetic predisposition, known as inherited arrhythmia syndromes (IAS), 

such as brugada syndrome and J-wave syndrome seem to have SNS stimulation that is anti-arrhythmic, (53-

55)  but in other IAS such as long QT syndrome (LQTS), the SNS appears to be pro-arrhythmic. (40)  The 

pro-arrhythmic SNS role depends on its influence on ventricular repolarization.  In ventricular fibrillation the 

SNS has been shown to be responsible for changes in repolarizations that can reduce the fibrillation threshold 

in the ventricles, which can trigger ventricular fibrillation (51). This has also been observed in long QT 

syndrome (LQTS), as SNS stimulation causes prolonged QT intervals, again, the ventricular repolarizations 

and depolarizations are affected, potentially leading to VF and sudden cardiac death (40). Adding another 

layer of complexity is the understanding that the pro arrhythmic nature of the SNS may be modified by the 

disease status of the heart (i.e. healthy or unhealthy) (40).  In a normal healthy heart, the SNS can cause 

shortened action potentials,(44) can reduce transmural dispersion of repolarization (longest depolarization 

time in the left ventricle (LV)- shortest depolarization time in the LV) and shortens QT intervals (56). 

However in unhealthy hearts, it has been shown that the SNS increases ventricular dispersion of 

repolarization, which can be pro-arrhythmic (57). These ventricular effects seem to be enhanced in damaged 

myocardium (i.e. ischemia) because of changes in SNS innervation density in different cardiac regions (58).    

 

1.3.2 Cardiac Autonomic Nervous System and Acute Mental Stress 

It is known that stress influences cardiac ANS activity (59). Often, physical and mental stress can be 

differentiated between the degree of reactivity relative to the metabolic demand, where demand tends to 

equate to reactivity for physical stressors but are inconsistent in mental stress (60).  As part of the stress 

response, the SNS is activated causing a coordinated cascade of reactive physiologic events to mitigate the 

stress effects, see Figure 5. Briefly, the basic cardiac responses under sympathetic stimulation are increased 

heart rate and stroke volume, vascular responses are increased, e.g., blood pressure, while endocrine 

responses lead to catecholamine release. Cardiac parasympathetic outcomes are demonstrated by decreased 

heart rate, which is achieved through the inhibitory action of the vagus nerve (61). After exposure to an acute 
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stressor, the SNS can be activated by cells in the medulla via the hypothalamus, known as the 

sympathomedullary pathway (SAM), or directly by afferent neurons synapsing in the spinal cord (61). The 

adrenal medulla is stimulated and releases the hormones adrenaline and noradrenaline into the blood stream. 

Noradrenaline is also released as a neurotransmitter by adrenergic neurons. Both adrenaline and 

noradrenaline can bind to adrenergic receptors on the effector tissue (62).  Adrenergic receptors are classified 

as α receptors and β receptors which can further be broken down into α-1,2 and β-1,2(60). Activation of α-1 

and β-1 causes excitation of visceral tissues; conversely activation of α-2 and β-2 causes inhibition of 

visceral tissues. Adrenaline binds to α and β receptors and noradrenaline binds primarily to α receptors (63). 

It is the binding of adrenaline and noradrenaline on the receptors of cardiac tissue that produces the increased 

chronotropic (rate) and inotropic (contractility) effects of the heart (62). This increase in HR and SV 

increases the cardiac output. The large amounts of adrenaline and noradrenaline in the blood act as general 

constrictors of peripheral vessels and vasodilators of coronary arteries. This vasoconstriction of the 

peripheral vasculature increases the total peripheral resistance (TRP), this, coupled with increased cardiac 

output causes an increase in blood pressure (63).  The sympathetic stress response as described above is a 

general depiction of the cardiovascular reactivity, and although cardiovascular responses tend to have the 

same directional end point (HR increases, BP increases), differences in the patterns of response between 

active mental and passive physical stress have been observed (64, 65). For example, pattern differences in 

BP, CO, HR and TPR between mental arithmetic tasks (active mental stress) and cold pressor tasks (passive 

mental stress) have been observed.  Cardiovascular patterns in active mental stress tasks have had evidence 

of combined α- and β-adrenergic activity, where the passive mental stress tasks have had evidence of 

primarily α -adrenergic activity (61).  Winzer and colleagues administered mental arithmetic tasks and cold 

pressor tasks in placebo and beta-blockade conditions, and found the cardiovascular responses to the mental 

arithmetic differed in beta blockade conditions, where cold pressor tasks did not (65). In an analogous study, 

Ring and colleagues investigated the stress tasks with alpha-blockade and found different cardiovascular 

response profiles within cold pressor tasks (64). These results agree with prior theories that the pattern 
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differences in achieving the overall stress response may be due to greater beta-adrenergic activity and 

decreased parasympathetic stimulation in active stress tasks, and passive stress tasks arousing greater alpha-

adrenergic activity and increased parasympathetic stimulation (63). 

 

       Figure 5. The Stress Response  

 

          Overview of the stress response and the levels at which they occur.(66) 
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1.4 Rationale 

 

There is evidence linking cardiac arrhythmias to acute mental stress, with studies suggesting that the 

cardiac ANS is a mediating factor, yet there are many unknowns about the precise arrhythmiogenic 

mechanisms that acute mental stress initiates. While risk factors such as pre-existing heart disease and 

physical exertion can be directly measured, acute mental stress has a less empirical nature making it an 

enigmatic risk factor and prompting further research of how it contributes to the etiology of cardiac 

arrhythmias. Previous studies have observed different physiological response profiles between active and 

passive stress, suggesting that active and passive stress influence the cardiac ANS differently. Therefore, it is 

proposed that if active and passive stress have independent impacts on the cardiac ANS, then perhaps this 

can be used as a pathophysiological stimuli to help elucidate how the cardiac ANS influences and generates 

proarrhythmic cardiac environments during acute mental stress conditions. 
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1.5 Research Objectives and Hypotheses 

 

1) To investigate if any notable differences exist between acute mental active stress and acute mental 

passive stress’s relationship with the potential for cardiac arrhythmias in adults. It is hypothesized that 

acute mental active stress will have a greater impact on arrhythmiogenesis compared to acute mental 

passive stress. 

 

2) To observe how the electrocardiographic, hemodynamic and autonomic responses differ between 

acute mental active stress and acute mental passive stress tasks. It is hypothesized that 

electrocardiographic, hemodynamic and autonomic responses will be amplified in acute mental active 

stress compared to passive stress. 

 

3)  To observe the relative relationships between electrocardiographic, hemodynamic and autonomic 

responses in both acute mental active and acute mental passive stress to discern differences that may 

lead to plausible arrhythmiogenic mechanisms.  This objective is exploratory and as such, there are no 

potential hypotheses. 
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2.1 Abstract 

 

Objective: Research demonstrates a link between acute mental stress and cardiac arrhythmias; however, 

the pathophysiological mechanism is unknown. Different physiological response patterns have been observed 

between acute mental active and passive stress suggesting that these stressors may have independent impacts 

on cardiac electrophysiology. This systematic review summarizes and evaluates available evidence of acute 

active and passive mental stress effects and their roles in potentiating arrhythmiogenic environments. 

 

Methods: A systematic literature review was conducted by two independent authors in PubMed, 

PsycInfo, and Scopus databases (up to December 2018). All English language publications consisting of 

laboratory acute mental stress tasks and cardiac electrophysiological outcomes in adults were eligible for 

review.  

 

Results:  Eleven studies were identified; 5 studies included active stress tasks, 3 studies included passive 

stress tasks, and 3 studies included both active and passive stress tasks. Studies indicated that active stress is 

associated with increased heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), t-

wave amplitude (T-amp), t-wave area (T-area), t-wave residua (TWR) and circulating epinephrine (EPI) and 

norepinephrine (NE) levels, and simultaneous shortened QT intervals and high frequency (HF) component 

decreases. Passive stress tasks, appeared to have less impact on electrocardiographic, hemodynamic and 

autonomic responses compared to active stress tasks. 

 

Conclusions: The literature suggests that acute mental active and passive stress creates a pro-arrhythmic 

environment through repolarization alterations, increased sympathetic nervous system activity, and 

concurrent diminished parasympathetic activity. Further studies should include distinctions between active 

and passive stress cardiac electrophysiology profiles to better understand how mental stress contributes to 

cardiac arrhythmia etiology. 

 

 This Systematic review is registered through PROSPERO  

Registration number: CRD42017062698 

Key Words: Arrhythmia, acute mental stress, active stress, passive stress,  
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2.2  Introduction 

Cardiac arrhythmias are disruptions in normal cardiac electrical conductance, impairing automaticity, 

and rhythmicity. The sequence of atrial and ventricular contractions occurs via action potentials depolarizing 

in the sino-atria node (SAN), propagating electrical signals to the atrioventricular node (AVN), the left and 

right bundles, and terminating at the purkinje fibres. When the duration of myocyte depolarizations, 

repolarizations and refractory periods is changed, an arrhythmiogenic state is fostered (67).  Arrhythmic 

severity ranges from harmless (e.g., premature atrial contractions) to fatal (e.g., ventricular tachycardia), with 

potential complications including syncope, stroke, heart failure, cardiac arrest, developing other life 

threatening arrhythmias, and sudden cardiac death (68) (12). It estimated that cardiac arrhythmias are 

responsible for 250,000 deaths annually in the US (69) (13). Cardiac electrophysiological mechanics coupled 

with the neuronal topography of the heart, gives a variety of arrhythmias with different outcomes, making 

arrhythmias a diverse yet pertinent health care issue (70). However, the knowledge gap of arrhythmic 

pathogenesis  impedes risk stratification and prevention measures of many types of arrhythmia (13, 71) 

 

Acute mental stress preceding arrhythmic episodes and events is well documented in animal and 

human studies (31, 32, 72-75). Epidemiological studies and post mortem investigations reported acute 

disturbances from real-life stressors, such as natural disasters and war, as the cause of sudden cardiac death 

(SCD) (76-80).  While antecedent arrhythmiogenic activity is sometimes difficult to determine in SCD, it is 

accepted that the majority of SCD cases occur via cardiac arrhythmias (16, 17, 81). Holter monitoring and 

implantable cardioverter defibrillator (ICD) studies have found associations between every day, real-life 

acute mental stress and increased arrhythmic event frequency. (31, 32, 72, 34, 82). In another example, 

Hansson et al reported that 54% of arrhythmias were caused by acute mental stress (83). The heterogeneity of 

populations and stress conditions discussed above is evidence that acute mental stress is a potential putative 

precipitant of arrhythmiogenesis.  
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The pathophysiological connection between acute mental stress and arrhythmia lies within the cardiac 

autonomic nervous system (ANS), with both the extrinsic and intrinsic ANS being core mediators in 

inducing proarrhythmic states (42- 49).The extrinsic ANS is the primary relay between the heart and central 

nervous system, whereas the intrinsic ANS mediates inter autonomic cardiac information to the extrinsic 

ANS (36). The paravertebral structure of the extrinsic cardiac ANS has both sympathetic nervous system 

(SNS) and parasympathetic nervous system (PNS) fibers situated on the surface of the heart, receiving 

bilateral efferent and afferent input. After exposure to acute mental stress the SNS is activated by afferent 

neurons synapsing in the spinal cord (61) or by the sympathomedullary pathway, with epinephrine and 

norepinephrine being released into the blood stream, binding to alpha and beta adrenergic receptors on 

effector tissues (60, 62, 84) .  Increased SNS activity causes chronotropic and inotropic cardiac effects, 

measurable by changes in heart rate, stroke volume, total peripheral resistance, and blood pressure (60).   

Although cardiovascular reactivity responses to acute mental stress tend to have the same directional 

end-point (HR increases, BP increases), different response profiles between active (stimuli where the 

individual influences the outcome through physical or mental effort, such as public speaking, or solving 

arithmetic problems (24)) and passive (stimuli where there is no opportunity to influence the outcome, such 

as recalling events that induce negative emotions such as anger or fear (25)) mental stress have been 

observed (64, 65). For example, stress response pattern differences in BP, cardiac output (CO), HR and TPR 

between mental arithmetic tasks (active stress) and cold pressor tasks (passive stress) have been documented 

(64, 65).  Cardiovascular reactivity patterns in active stress tasks reveal combined alpha- and beta-adrenergic 

activity along with decreased parasympathetic stimulation, whereas passive stress tasks are driven primarily 

by alpha-adrenergic activity and increased parasympathetic stimulation (61, 63). Applying this concept to 

arrhythmias, differential cardiac electrophysiological changes and concomitant hemodynamic and autonomic 

changes between acute active and passive stress may help disentangle stress-induced arrhythmiogenic 

mechanisms. This review assesses the differential impact of laboratory induced acute active and passvie 
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mental stress on cardiac electrophysiology, hemodynamic and autonomic responses and their  potential roles 

in generating arrhythmic activity. 

 

2.3 Methods 

 

The present systematic review was registered in PROSPERO (record CRD42017062698) and conducted 

per the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines (85). A literature 

search was conducted August 01 2016, and updated December 01 2018, in Pubmed, PsycInfo and Scopus. 

Keywords searched were a combination of: “acute stress”; “stress response”; “arrhythmia”; and 

“dysrhythmia” (see online supplement for details). The search was conducted by an independent reviewer 

(CR). Eligibility criteria for this review included; adult populations, non-exercise laboratory induced stress, 

baseline or resting period, and a defined cardiac arrhythmia status. Laboratory induced stress was categorized 

into active and passive stress using the definitions above (24). Cardiac arrhythmia status was determined by 

electrocardiograph assessments and/or specific arrhythmia identification during stress conditions. Two 

independent reviewers (CR and ED) read and screened abstracts with the following exclusion criteria; 1) Not 

Human; 2) Not English; 3) Not Adults; 4) No Laboratory Mental Stress; 5) Only Exercise Stress; 6) No 

Arrhythmia/ECG data; and 7) Case Study’s, Reviews, or Meta-Analysis. Bibliographies of prospective 

studies and relevant reviews were examined for additional potential studies. Following abstract screening, the 

full text of eligible studies was read and assessed by CR and ED with an inter-rater reliability (IRR) score of 

1 on the agreement of the included studies. A flow chart of the identified and reviewed articles for final 

inclusion can be found in Figure 6. Data extraction was independently performed (CR and ED), with 

discrepancies resolved by third party (SLB). Authors were contacted to obtain the missing data, seven 

authors were contacted (86, 35, 87-91) with one response (89), where means and SD were unavailable. 
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2.4  Results 

 

A total of 6,906 articles were identified in databases and 3 articles were found in bibliographic records of 

prospective studies, 831 were duplicates and an abstract screen eliminated 6078 articles. The remaining 32 

full text articles were assessed for eligibility where 21 articles were excluded for the following reasons: ten 

did not have laboratory induced stress (92, 93, 31, 94-100), seven did not report baseline measures (101-107), 

two were sub-analysis studies of an already included study (108, 109), one was an editorial (110), and one 

was a case study (111).  Finally, 11 studies met all inclusion criteria for this review (86, 35, 87, 88, 112, 89, 

90, 113, 91, 114, 115). 

 

2.4.1  Study Characteristics  

As seen in Table 1, three studies (88, 91, 115) used a control group defined as healthy participants 

with no history of CAD or other cardiac conditions. Seven studies included both men and women (86, 35, 88, 

112, 89, 113, 91) with 4 including only men (87, 90, 114, 115). Average ages of participants ranged from 25 

(90) to 64 years (112) with one study not reporting age (114). Seven studies included participants taking 

antiarrhythmic medications (86, 35, 87, 88, 112, 113, 91). Five studies reported if participants had previous 

arrhythmic episodes (35, 88, 89, 113, 115). Seven studies (86, 35, 87, 88, 112, 89, 91) included participants 

with pre-existing heart disease 
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Table 1 Study Characteristics 

 
 

First 
Author 
(year) 

 
 

Location 
 

N of total Patients 
 

 
Age 

(years)             
M 

(SD) 
 

% 
Women 

 

ICD 
 

 
Type of 

Anttiarrhythmic 
Medication 
(% patients) 

 
N Patients with 

Previous 
Arrhythmia 

 

 
N Participants 

with Heart 
Disease 

 

 
N of 

Stress 
Tasks 

 

Type of Stress Task 
 

 
Study 

Quality 
Score 

 

Abisse  
(2011) USA 56 63.6 

(11.9) 12 Yes Beta-Blocker (86) n/a 54 1 Serial Seven Subtraction (A) 14 

Critchley  
(2005) UK 10 57 

(6.6) 20 No Beta-Blockers (70) 1 13 2 Serial Seven Subtraction (A) 
Isometric Hand Grip Squeeze* 12 

Gray  
(2007) UK 10 59 (11) 0 No Beta-Blockers (90)                              

Ca-Blockers (40) n/a 24 1 Serial Seven Subtraction (A) 12 

Kop 
 (2004) USA ICD     23 

Controls     17 

62.1 
(12.3) 
54.2 

(12.1) 

9 
47 

Yes                       
No Beta-Blockers (56) 23 62 3 

Serial Seven Subtraction (A)        
  Ironson Anger Recall (P)                        

Bicycle Ergometry* 
13 

Lache  
(2007) Germany 55 64 (12) 15 Yes Beta-blockers (58)                                           

Sotalol (18) n/a 55 2 Serial Seven Subtraction (A)             
 Anger Recall (P) 9 

Lampert  
(2005) USA 33 58.8 

(12.7) 25 Yes Beta-Blockers (88) 17 29 2 Serial Seven Subtraction (A)         
  Anger Recall (P) 11 

Souza  
(2013) Brazil 50 25.4 

(5.99) 0 No  n/a  2 

Trier Social Stress Test Speech 
(A)                                                   

Trier Social Stress Test Mental 
Arithmetic (A) 

11 

Suresh  
(2017) USA 148 39.5 

(13.1) 29 No Beta-Blockers (0.7) 6  1 Human Centrifuge (P) 18 

Taggart 
 (2009) UK CAD**     14 

Controls**    14 

42 
(n/a) 
64 

(n/a) 

21 
14 No Beta-Blockers (71)                                         

Ca+-Blockers (21) n/a 14 2 Serial Seven Subtraction (A)                 
 Speech (A) 16 

Whinnery 
(1988) USA 24 n/a 0 No  n/a  1 Human Centrifuge (P) 11 

Whinnery 
(1983) 

 
USA 

Stress Panel   20 
Nondysrhythmia 20 
 Dysrhythmia     20 

27 (9) 
36.6 
(8) 

37.8 
(7) 

0 No  n/a  2 Human Centrifuge (P)         
Treadmill Testing* 14 

CAD: Coronary Artery Disease, ICD: Implantable Cardio Defibrillator, MI: Myocardial Infarction, VF: Ventricular Fibrillation, VT: Ventricular Tachycardia, A; Active 
Stress Task, P; Passive Stress Task, * The exercise stress component of this study was not considered for this review, ** Study included placebo and NTG conditions, but 
this data was not considered for the review. 
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2.4.2  Stress task characteristics 

Five studies included active stress (86, 35, 87, 90, 91), three included passive stress (113-115) and 

three included both stress tasks (88, 112, 89). Two studies included an exercise stress task, which was not 

included in the current review (35, 88). One study had a placebo and nitro-glycerin condition for each stress 

task, however only the placebo data was used for this review (91). Mental arithmetic (Serial Seven 

Subtraction and TSST Mental Arithmetic component) was the most common active stress task. Passive stress 

tasks included anger recall and human centrifuge (acceleration stress). The average duration of active stress 

tasks was 4.7 minutes (±0.76; range 3-5 minutes) and 4.5 minutes (±0.71; range 3-7 minutes) for passive 

stress. The average duration of baseline was 5.6 minutes (±4.1; range 1-15 minutes).  

 

2.4.3  Study Quality 

Study quality was assessed using an adapted version of the Downs and Black checklist (116). Items 

13, 15, 19, 23 and 24 were not used as they applied to studies with interventions and/or treatments, leaving a 

possible 21 points for scoring. The power item was modified to a binary score (1=study addressed power 

calculation, 0=study did not address power calculation). Overall scores ranged from 9- 18 with a M ± SD 

score of 12.8 ± 2.6. See Appendix A for further details. 

 

2.4.4  Outcomes 

Overall electrocardiographic responses, hemodynamic responses, and autonomic nervous system responses 

are summarized in Figure 7. Only findings which were consistent in two or more studies were included. 
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Figure 7. Overall Electrocardiographic, Hemodynamic and Autonomic Outcomes 

 

 

 

2.5  Electrocardiographic Responses 

Electrocardiographic responses during active and post active stress tasks are summarized in Tables 2 

and 3, respectively, and during passive and post passive stress tasks summarized in Table 4 and 5, 

respectively. Due to the broad range of ECG measurements throughout the studies, the electrocardiographic 

measurements are trichotomized into cardiac depolarization, cardiac repolarization indices, and arrhythmia 

occurrence. 
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Table 2 Electrocardiographic Measures During Active Stress 

   Depolarization  
Indices 

Repolarization  
Indices 

Author 
(year) 

Group Active 
Stressor 

QRS QT ∆ 
QT 

Tamp ∆ 
Tamp 

Tamp 
Var. 

Tarea ∆  
Tarea 

TCRT Twave TWR TWA HP ST 

Abisse (2011) All 
Patients 

Serial Seven 
Subtraction 

↑ x 
 
↓↓ 

 

 
↓x 

 

 
↑ x 

 

 
↑ x 
 

 
↑ x 
 

 
↑ x 
 

 
↑ x 
 

 

     

Critchley 
(2005) 

All 
Patients 

Serial Seven 
Subtraction 

  
      ↓  

 
↑ 
 

  
 

Gray (2007) All 
Patients 

Serial Seven 
Subtraction    

 
↑↑ 

 
        ↑↑ 

 

 

Kop (2004) ICD 
 

Controls 

Serial Seven 
Subtraction 

           ↑* 
 
↑ 

  

Lampert (2005) All 
Patients 

Serial Seven 
Subtraction 

 ↓** 
  ↑↑** 

   
↑↑ 
** 
 

  -** 
 

↑↑ 
 

↑↑ 
  

- 
** 
 

Taggert (2009) CAD 
 

Controls 
 

CAD 
 

Controls 

 
 

Serial Seven 
Subtraction 

 

? 
 
? 
 
? 
 
? 

  
↑ 
 
↓ 
 
↑ 
 
↓ 
 
 

  
↑ 
 
↓ 
 
↑ 
 
↓ 
 

    

QRS; QRS interval (ms), QT; QT interval (ms), deltaQT; change in QT interval, Tamp: T- wave amplitude (mV), deltaTamp; change in T-wave amplitude, Tampvar; varaiance of T-
wave amplitude, Tarea; T-wave area (ms x mV), deltaTarea; change in T-wave area, TCRT; total cosine R to T, TWR; T-wave residua, HP; Hill parameter, TWA; T-wave alternans, ST; 
ST segment,  ↑; Increased and no report on significance, ↓; Decreased and no report on significance, ↑ x; increased and not significant , ↓x; Decreased and not significant, ↑↑; increased 
and significant, ↓↓; Decreased and significant  *; significantly higher compared to control group,**; combined active and passive stress task results  ?; no comparison to baseline 
measurements reported, -; no change relative to baseline   
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Table 3 Electrocardiographic Measures Post Active Stress Tasks 

   Depolarization  
Indices 

Repolarization  
Indices 

Author 
(year) 

Group Active 
Stressor 

QRS QT ∆  
QT 

Tamp  ∆  
Tamp 

Tamp 
Var. 

Tarea ∆ 
Tarea 

TCRT Twave TWR TWA HP ST 

Abisse 
(2011) 

All 
Patients 

Serial Seven 
Subtraction ↓x 

 
↑ x 
 

 
↓x 
 

 
↓ x 

 

 
↑x 
 

 
↓x 
 

 
↓x 
 

 
↓ x 
 

 
     

Kop 
(2004) 

ICD 
 

Controls 

Serial Seven 
Subtraction 

           Remained 
Elevated 

  

QRS; QRS interval (ms), QT; QT interval (ms), deltaQT; change in QT interval, Tamp: T- wave amplitude (mV), deltaTamp; change in T-wave amplitude, 
Tampvar; varaiance of T-wave amplitude, Tarea; T-wave area (ms x mV), deltaTarea; change in T-wave area, TCRT; total cosine R to T, TWR; T-wave 
residua, HP; Hill parameter, TWA; T-wave alternans, ST; ST segment,  ↑; Increased and no report on significance, ↓; Decreased and no report on 
significance, ↑ x; increased and not significant , ↓x; Decreased and not significant, ↑↑; increased and significant, ↓↓; Decreased and significant  *; 
significantly higher compared to control group,**; combined active and passive stress task results  ?; no comparison to baseline measurements reported, -; 
no change relative to baseline 
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Table 4 Electrocardiographic Measures During Passive Stress Tasks 

   Depolarization 
Indices 

Repolarization  
Indices 

Arrhythmia 
Occurrence 

Author 

(year) 

Group Active 

Stressor 

QRS QT PR Tamp Tarea Twave  TWA ST Atrial Junctional RB Ventricular Other 

Kop 
(2004) 

ICD 
 

Controls 

Ironson 
Anger 
Recall 

       
↑ 
 
↑ 

      

Lampert 
(2005) All Patients Anger 

Recall  ↓** 
  ↑↑** 

 
↑↑** 

 
-** 

 
 
 

↑↑ 
 

-** 
      

Suresh 
(2017) All Patients Centrifuge            ↑ 

   

Whinnery 
(1998) All Patients Centrifuge ↓ 

 
↓ 
 

↓ 
            

Whinnery 
(1983) 

Stress Panel 
 

Non-
Dysrhythmia 

 
Dysrhythmia 

Centrifuge          

↑ 
 
? 
 
? 

↓ 
 
? 
 
? 

 

↑ 
 
? 
 
? 

↑ 
 

? 
 
? 

Atrial; atrial dysrhythmias including premature atrial contractions, ectopic atrial rhythm, sinus arrhythmia, and atrial tachycardia, Junctional; junctional dysrhythmias 
including premature junctional contractions and supraventricular tachycardia, Ventricular; ventricular dysrhythmias, QRS; QRS interval (ms), QT; QT interval (ms),Tamp: T- 
wave amplitude (mV), Tarea; T-wave area (ms x mV), TWA; T-wave alternans, ST; ST segment, ↑; Increased and no report on significance, ↓; Decreased and no report on 
significance, ↑ x; increased and not significant , ↓x; Decreased and not significant, ↑↑; increased and significant, ↓↓; Decreased and significant  *; significantly higher 
compared to control group,**; combined active and passive stress task results  ?; no comparison to baseline measurements reported, -; no change relative to baseline 
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Table 5 Electrocardiographic Measures Post Passive Stress Tasks 

   Depolarization 
Indices 

Repolarization  
Indices 

Arrhythmia 
Occurrence 

Author 
(year) 

Group Active 
Stressor 

QR
S 

QT PR Tamp Tarea Twave TWA ST Atrial Junctional RB Ventricular Other 

Kop 
(2004) 

ICD 
 

Controls 

Ironson 
Anger 
Recall 

      Remain 
Elevated       

Suresh 
(2017) 

All 
Patients Centrifuge           ↓ 

   

Whinnery 
(1988) 

All 
Patients Centrifuge ↑ 

 
↓ 
 

↑ 
           

Whinnery 
(1983) 

Stress 
Panel 

 
Non-

Dysrhythm
ia 
 

Dysrhythm
ia 

Centrifuge         

↓ 
 
↓ 
 
↓ 

↑ 
 
↓ 
 
↓ 

 

↓ 
 
↓ 
 
↓ 

↓ 
 
↓ 
 
↓ 

 Atrial; atrial dysrhythmias including premature atrial contractions, ectopic atrial rhythm, sinus arrhythmia, and atrial tachycardia, Junctional; junctional 
dysrhythmias including premature junctional contractions and supraventricular tachycardia, Ventricular; ventricular dysrhythmias, QRS; QRS interval (ms), QT; 
QT interval (ms),Tamp: T- wave amplitude (mV), Tarea; T-wave area (ms x mV), TWA; T-wave alternans, ST; ST segment, ↑; Increased and no report on 
significance, ↓; Decreased and no report on significance, ↑ x; increased and not significant , ↓x; Decreased and not significant, ↑↑; increased and significant, ↓↓; 
Decreased and significant  *; significantly higher compared to control group,**; combined active and passive stress task results  ?; no comparison to baseline 
measurements reported, -; no change relative to baseline 
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2.5.1  Active Stress Responses 

Three studies included measures of cardiac depolarization (86, 89, 91). The time of ventricular 

depolarization measured by the QRS complex increased, yet not significantly, during active stress (86). The 

time of ventricular depolarization to ventricular repolarization, measured by the QT interval was found to 

shorten significantly in two studies (86, 89), see Table 3. One study (Table 4) found that both the QRS and 

QT interval reverted towards baseline levels post active stress (86). A variety of indices were used to 

measure cardiac repolarization. The most common were T-amp, T-area and TWA. T-amp and t-area measure 

ventricular repolarization and provide different facets of ventricular repolarization. T-amp reflects transmural 

dispersion of repolarization and T-area is the repolarization across the epicardium only (117-119). TWA  

measures beat-to-beat fluctuations in the T-wave, and is a diagnostic tool with high negative predictive 

values for ventricular arrhythmias (120). All six studies measuring cardiac repolarization reported acute 

stress-induced changes towards proarrhythmic states (86, 35, 87-89, 91), see Table 3. T-wave amplitude 

increased in patient cohorts with heart disease (86, 87, 89, 91), yet decreased in patient cohorts free of heart 

disease (91), with similar results for T wave area (86, 89, 91). Active stress increased TWA (88, 89) with 

significantly larger increases in ICD patients compared to health participants. In addition, the Total Cosine R 

to T decreased, and the T-Wave Residual (35), the Hill Parameter, and T-wave alterations increased (87) 

during active stress conditions, all indicating a proarrhythmic change. As seen in table 4, post active stress 

cardiac repolarization measures were in two studies (86, 88), where T-amp and T-area decreased (86) and 

TWA remained elevated in ICD patients’ compared to controls (88). 

 

2.5.2  Passive Stress Responses 

As seen in table 5, two studies included measures of cardiac depolarization during passive stress tasks 

(89, 114), with both reporting a significant decrease in QT interval, and one finding that the QRS and PR 

intervals significantly decreased during passive stress tasks (114).  
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Post passive stress task, the QRS complex and PR intervals increased towards basal values, though, QT 

interval remained significantly shorter, see Table 6, (114). Two studies measured cardiac repolarization 

during passive stress tasks (88, 89), both observing TWA increases, with one of the studies also seeing 

increases in T-amp and T-area, see Table 5 (89). As seen in Table 5, TWA remained elevated in ICD 

patients compared to controls post passive stress (88).  

 

2.5.3  Active vs. Passive Stress 

The above studies demonstrate that active and passive stress have similar impacts on the QT interval 

causing a quicker rate of ventricular depolarization to ventricular repolarization during both stressors. Only 

one study measured the QRS response to active stress and a separate study measured the passive stress 

response with seemingly different effects on the time of ventricular depolarization. Additionally, the 

contrasting QT recovery responses between post active and post passive stress tasks indicate again that active 

and passive stress may impact arrhythmia etiology differently. Collectively, active and passive stress tasks 

produce proarrhythmic tendencies in cardiac repolarization, and these proarrhythmic shifts diminished post 

stress.  As per Kop et al (88), active stress appears to induce a larger magnitude of proarrhythmic change 

compared to passive stress. Of note, evidence suggests that cardiac disease status is a factor in the 

proarrhythmic vulnerability regardless of stress task type.   

 

Two studies measured arrhythmia type outcome during passive stress tasks (113, 115), with increases in 

relative bradycardia RB episodes (113) and atrial, ventricular and other dysrhythmias, but decreases in 

junctional arrhythmias (115). However, it should be noted that both these studies did not report baseline 

values, thus it is unknown if the quantity of arrhythmic episodes increased, decreased, or did not change 

relative to baseline (115).  
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2.6 Hemodynamic Responses 

 

A summary of the reported hemodynamic responses from each study can be found in Table 6. 

 

2.6.1  Active Stress Responses 

As would be expected, there were active stress-induced increases in HR, systolic blood pressure (SBP), and 

diastolic blood pressure (DBP), which returned to baseline levels post stress (86, 35, 87, 88, 112, 89-91). 

Interestingly, one study found no significant difference in stress-induced HR increases between the CAD and 

control group (91). One study found left ventricular ejection fraction (87), an index of sympathetic activity, 

and another found cardiac index (CI) (112), a measure of cardiac output relative to body surface area, to 

significantly increase in response to stress. Additionally, CI decreased towards baseline during the post stress 

period. 

 

2.6.2  Passive Stress Responses 

There was also passive-stress induced increases in HR, SBP, and DBP, which returned to baseline levels post 

stress (88, 112, 89, 114, 115). One study noted that recovery SBP and DBP remained higher for the ICD 

group compared to the control group, suggesting that heart disease status may impact the efficiency of blood 

pressure recovery (88) . 

 

2.6.3  Active vs. Passive Stress  

Both stress tasks were associated with significant increases in HR, SBP and DBP. Though three studies used 

both kinds of tasks, due to the nature of reporting, comparing the magnitude of change between tasks was 

limited. However, there is a suggestion that active stress tasks may increase the magnitude of hemodynamic 

change more than passive stress tasks (112).   
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                    Table 6 Hemodynamic Measures During and Post Active and Passive Stress Tasks 
Author(year) Group Measurement Time Active Stress Task HR SBP DBP Passive Stress Task HR SBP DBP 
Abisse (2011) All Patients During 

 
Post 

Serial Seven Subtraction ­­ 
 

¯¯ 

      

Critchley (2005) All Patients During Serial Seven Subtraction ­       
Gray (2007) All Patients During Serial Seven Subtraction ­ ­ ­     

Kop (2004) ICD 
 
 
 
Control 

During  
 

Post 
 

During 
 

Post 

Serial Seven Subtraction ­ 
 
¯ 
 
­ 
 
¯ 

­ 
 
¯ 
 
­ 
 
¯ 

­ 
 
¯ 
 
­ 
 
¯ 

Ironson Anger Recall ­ 
 
¯ 
 
­ 
 
¯ 

­ 
 
¯* 

 
­ 
 
¯ 

­ 
 
¯* 

 
­ 
 
¯ 

Lache (2007) All Patients During 
 

Post 

Serial Seven Subtraction ­ 
 
¯ 

­ 
 
¯ 

­ 
 
¯ 

Anger Recall ­ 
 
¯ 

­ 
 
¯ 

­ 
 
¯ 

Lampert (2005) All Patients During** Serial Seven Subtraction ­ ­ ­ Anger Recall ­ ­ ­ 
Sousza (2013) All Patients During 

 
Post 

 
During 

 
Post 

 
Trier Social Stress Task Speech 

 
Trier Social Stress Task Arithmetic 

­ 
 
¯ 
­ 
 
¯ 

      

Taggert (2009) CAD 
 
Control 
 
CAD 
 
Control 

 
During 

 
 
 

During 

 
Serial Seven Subtraction 

 
 

Speech 

­ 
 
­ 
 
­ 
 
­ 

      

Whinnery (1988) All Patients During 
 

Post 

    Centrifuge ­ 
 
¯ 

  

Whinnery (1983) Stress- Panel 
 
Dysrhythmia 
 
Non-Dysrhythmia 

During 
 

During 
 

During 

    Centrifuge ? 
 

? 
 

? 

  

 
 HR; Heart Rate, SBP; Systolic Blood Pressure, DBP; Diastolic Blood Pressure, LVEF; Left Ventricular Ejection Fraction, CI; Cardiac Index, ↑; Increased and no 

report on significance, ↓; Decreased and no report on significance, ↑↑; increased and significant, ↓↓; decreased and significant *; higher compared to control group, 
**; based on maximum response out of both tasks and did not distinguish between active and passive stressor ?; no comparison to baseline measurements reported 
-; no change relative to baseline  
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2.7  Autonomic Responses 

 

An overview of the autonomic responses to active and passive stress are summarized in Table 7.  

 

2.7.1.  Active Stress Responses 

There was a general suggestion that active stress increased sympathetic drive (86, 35, 112, 89, 90) as 

demonstrated by increases in epinephrine, norepinephrine, and the ratio of low frequency and high frequency 

components of heart rate variability (LF/HF) (86, 35, 89). There also seemed to be a parasympathetic 

withdrawal (121), with stress-induced decreases in HF power (89, 112) and root mean square of successive 

RR intervals (RMSSD) (90) being observed. The post-stress period was characterised by a still elevated 

sympathetic drive (86) with a return to normal  parasympathetic levels (112, 90). 

 

2.7.2  Passive Stress Responses 

As with active stress, the two studies which assessed passive stress (112, 89) indicate that it leads to 

increased sympathetic drive (increases in epinephrine and norepinephrine) and parasympathetic withdrawal 

(decreased HF), and that post-stress there was a normalisation of parasympathetic activity (89).  

 

2.7.3  Active vs Passive Stress 

Overall, both active and passive stress tasks increased sympathetic stimulation with simultaneous decreases 

in parasympathetic activity, with no indication of either type of stress having a greater magnitude of change 

compared to the other during the stress tasks. However, after the removal of active and passive stress stimuli, 

parasympathetic drive resumed baseline function yet sympathetic stimulation still persisted for active stress, 

suggesting that active stress has a longer lasting impact on autonomic responses compared to passive stress. 
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                Table 7 Autonomic Measures During and Post Active and Passive Stress Tasks 

Author 
(year) Group Measurement Time Active 

Stressor EPI HF RMSSD LF/ 
HF NE Passive Stressor EPI HF RMSSD NE 

Abisse (2011) All Patients 

 
During 

 
Post 

 
Serial Seven Subtraction 

↑↑  
 
↑ ↑ 

 
 
 

 
 
 

 
 
 

 
↑ ↑ 

 
↑ ↑ 

 

 
 
 

 
 
 

   

Critchley (2005) All Patients During Serial Seven Subtraction    ↑     
 
 
 

 

Lache 
(2007) All Patients 

During 
 

Post 
Serial Seven Subtraction  

↓ 
 
↑ 

   Anger Recall  
↓ 
 
↑ 

  

Lampert (2005) All Patients During Serial Seven Subtraction ↑ 

 
↓* 

 
 

  ↑ Anger Recall 
 ↑ ↓* 

 
 
 

 
↑ 
 

Sousza (2013) All Patients 

During 
 

Post 
 
 

During 
 

Post 

Serial Seven Subtraction 
 

Trier Social Stress Task 
Arithmetic 

  

 
↓ 
 
↑ 

 
↓ 
 
↑ 
 
 

  

↑ 
 
↓ 
 
↑ 
 
↓ 
 

    

EPI; Epinephrine (pmol/L), HF; High-Frequency component, HF-HRV%; High-Frequency Percentage Heart Rate Variability, HRV; Heart Rate 
Variability, LF/HF; Low Frequency to High Frequency ratio, NE; Norephinephrine (mmol/L) ↑; Increased and no report on significance, ↓; Decreased, 
↑↑; increased and significant ,*; reported maximum response out of both tasks and did not distinguish between active or passive stressor 
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2.8  Electrocardiographic, Hemodynamic, And Autonomic Relationships  

 During Acute Mental Stress 

 

Relationships between electrocardiographic, hemodynamic, and autonomic responses were assessed. Factors 

from each of these physiological response systems, that had consistent outcomes in two or more studies were 

used for this evaluation. 

 

During active stress tasks, observed increases in electrocardiographic responses measured by T-amp, T-area 

and TWA (88, 89) were associated with increases in hemodynamics, measured by HR, SBP, and DBP (89, 

112, 88, 87). These elevated electrocardiographic and hemodynamic responses were associated with 

increased autonomic responses, measured by higher circulating epinephrine and norepinephrine(86, 89). 

Additionally, these aforementioned increases correlated with shortened QT intervals (electrocardiographic), 

and HF component (autonomic) reductions (112, 89, 114). Overall, these interactions demonstrate higher 

sympathetic drive with corresponding reduction in parasympathetic activity during active stress. 

 

Throughout passive stress tasks, similar relationships were found compared to active stress tasks. Increased 

electrocardiographic responses represented by TWA, were associated with increased hemodynamic responses 

(HR, SBP, DBP) and decreased HF component. Although there is less evidence surrounding passive stress 

task responses, there is still a suggestion that passive stress causes amplified sympathetic activity with a 

simultaneous decrease in parasympathetic drive.   

 

Correlations between hemodynamic, electrocardiographic and autonomic parameters were unable to be 

evaluated for post active and post passive active stress conditions due to limited data.  
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2.9 Discussion 

 

This review’s purpose was to assess all available literature on cardiac electrophysiological changes in 

response to acute mental active and passive stress and the simultaneous hemodynamic and autonomic 

changes, to better understand how acute stress may contribute to arrhythmia etiology. Overall, both kinds of 

stress cause shifts in cardiac depolarization and repolarizations towards a proarrhythmic state with 

simultaneous increases in hemodynamics and sympathetic drive. These influences were more pronounced in 

diseased hearts. The results also demonstrate that active stress had a larger impact on the magnitude of 

hemodynamic increase and proarrhythmic change than passive stress. Additionally, the findings indicate that 

active and passive stress have differential effects on the timing of ventricular depolarization.  

 

2.9.1  Stress Influences on Arrhythmiogenesis 

Active stress tasks were associated with cardiac repolarization changes. This is strongly connected to 

arrhythmias as inhomogeneous repolarization generates electrical instability, temporally and/or spatially, 

promoting arrhythmiogenic environments (122-125) and preceding arrhythmic episodes in animals and 

vulnerable patients (126-128). Furthermore, active stress repolarization inhomogeneity has been associated 

with subsequent arrhythmic events in ICD patients (33), as well as ventricular arrhythmias and SCD (129, 

130). Thus, active stress proarrhythmic repolarization changes is a supported link in the pathophysiology of 

acute mental stress-induced arrhythmiogenicity. However, why repolarization inhomogeneity occurs remains 

unclear, though it is suggested that it is due to shifts in ANS balance (131). Our results reflect this as HR, BP, 

and catecholamines increased, while QT interval decreased concurrently with repolarization changes, all of 

which are manifestations of SNS activity. Additionally, there was simultaneous parasympathetic withdrawal 

as evidenced by the decreases in HF and RMSSD. This kind of ANS pattern has been associated with 

proarrhythmic repolarization instability and initiating lethal arrhythmias in other studies (132, 98, 133, 88, 

89, 134, 135). 
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In addition to the SNS-PNS balance, the extrinsic and intrinsic cardiac neuroanatomy may also play a 

role. The extrinsic ANS is the primary relay between the heart and central nervous system, and the intrinsic 

ANS mediates inter-autonomic cardiac information to the extrinsic ANS (36). Extrinsic cardiac sympathetic 

nerves are distributed in gradient format, with a higher density in the atria and apex compared to the 

ventricles(37)  while parasympathetic nerves are highly localized around the SAN and AVN, and liberally 

distributed throughout the atria (37-39).  This heterogeneous arrangement of cardiac autonomic nerves is 

very influential on ANS efferent activity, and spatially effects cardiac repolarization (136). Furthermore, the 

intrinsic cardiac nervous system functions independently from the extrinsic cardiac nervous system and can 

produce autonomous chemical and mechanical changes based on efferent input from the extrinsic nervous 

system (42).  Individual intrinsic cardiac nervous system ganglionic plexi not only have local cardiac region 

influence, but are also capable of remote cardiac effects from overlapping other intrinsic plexes inputs.  

These inter- and intra–plexes interactions within the intrinsic cardiac nervous system can cause changes in 

local electrophysiology, ultimately altering cardiac performance, and therefore generating an extremely 

complex network of feedback loops both within and between the intrinsic cardiac nervous system and 

extrinsic cardiac nervous system, which may temporally effect cardiac repolarization (42, 37). 

 

Passive stress tasks demonstrated similar patterns of repolarization changes and concomitant 

hemodynamic increases, SNS increases, and PNS decreases (88, 89, 112, 114) as active stress. We speculate 

that alterations in cardiac repolarization from passive stress is mechanistically similar to active stress, except 

that passive stress did not impact repolarization inhomogeneity as much as active stress. This may be 

consequence of the brain-heart link and the laterality hypothesis. Brain lateralization influences cardiac 

control (137) and cortical mapping studies have shown that brain-lateralization has a role in 

arrhythmiogenesis, with disproportionate mid-brain activation disrupting efferent cardiac activity causing 

problems in cardiac repolarizations and therefore being proarryhthmic (35, 87). In the context of emotions, it 

is well established that left and right brain lateralization occurs (138) and that different emotions elicit 
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distinctive autonomic patterns (139-143). Asymmetric brain activity patterns likely differ in response to 

active and passive stress. In animal studies, distinctive neural circuits have been identified in active stress and 

passive stress that are both functionally and anatomically different (144). If this is also the case in humans, 

then perhaps different cortical processes contribute to a range of phenotypes of ANS imbalances and in turn 

cause different inhomogeneous repolarization profiles that vary in magnitude. This may explain why it 

appears that passive stress has less of an arrhythmiogenic foot print than active stress. However, with few 

studies including passive stress tasks, an assessing their cardiac repolarization effects is limited. 

 

2.9.2  Cardiac Pathology Influences and Arrythmiogenesis 

The pathological condition of cardiac tissue may exacerbate these above ANS imbalances making it a 

potential mediating factor in arrhythmiogenesis. Our results support this as repolarization changes differed 

between CAD and healthy aged matched participants, for example, there were exaggerated repolarization 

changes, both in magnitude and duration, in ICD participants compared to healthy participants (88, 91). A 

plausible explanation for this is cardiac tissue remodelling (57, 145), which causes alterations in the electrical 

pathway, resulting in heterogeneous repolarizations and increased arrhythmia vulnerability (44). Generally, 

increased SNS activity is pro-arrhythmic for both atrial and ventricular chambers (45, 132), yet the PNS 

appears to be pro-arrhythmic only in the atria (146, 147, 81) and anti-arrhythmic in the ventricles (44, 148, 

149). Therefore, if cardiac tissue remodelling occurs, then perhaps these differential chamber-dependent 

arrhythmiogenic effects from each arm of the cardiac ANS are altered and produce a variety of 

electrophysiological phenotypes.  Previous studies have observed that in the presence of a previous injury 

(e.g., ischemia) or a pre-existing condition (e.g., Long QT Syndrome) the SNS appears to have an intensified 

proarrhythmic effect as evidenced by changing repolarization duration and magnitude and decreasing the 

threshold at which fibrillation can occur (150, 151, 57). The apparent exacerbated SNS proarrhythmic 

influence may be from alteration in cardiac nerve density (152, 153). The autonomic innervation in CAD 

patients tends to be even more non-uniform, due to nerve damage and regional hyper-innervation, thus 
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causing excessive uneven sympathetic activity where healthy subjects have relatively evenly increased 

sympathetic activity due to uniform innervation dispersion (57, 91). Although this difference between patient 

cohorts was a consistent observation, it was only investigated among a few of the included studies with 

varying methodology and inconsistent repolarization analysis techniques.   

 

2.10  Limitations and Future Directions 

 

This systematic review provides a broad understanding of the impact of active and passive stress on 

arrhythmiogenesis, yet there are several limitations to consider. Firstly, there were a limited amount of 

studies eligible for the review. Secondly, the included studies have small sample sizes. Thirdly, many of the 

studies were a one group design and lacked control groups, which is evident by the low internal validity–

confounding score in the Downs and Black checklist. Fourthly, while most of the studies scored fairly well 

individually in the reporting sub scale according to Downs and Black, the lack of consistent measures and 

analyzed physiological indices between studies limit the comparability of results, including an inability to 

conduct any meaningful meta-analyses.  Finally, many of the studies included only active stress tasks, a 

smaller number included only passive stress tasks, with only a few including both tasks. Among the few 

studies with analagous methodology, the general outcomes appeared to be consistent. While the general 

finding is that active stress causes fluctuations in cardiac repolarization that are proarrhythmic, to fully 

determine the differential role of active and passive stress tasks in arrythmiogenesis, further research is 

required with larger sample sizes, consistent methodologies, and the use of constant repolarization indices. In 

spite of the limitations, this review has some notable strengths. Firstly, to the best of our knowledge this is 

the first systematic review assessing laboratory active stress and passive stress in arrhythmiogenesis. 

Secondly, the assessment of multiple physiological responses allowed for a broad understanding of the 

systemic relations and their relevant roles in stress induced arrhythmias. Thirdly, this review addressed gaps 

within the literature and made recommendations for future research. 
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Identified gaps within the literature that should be addressed, include: Directly assessing the impact of 

passive stress on arrhythmias; Comparing the proarrhythmic difference between active and passive stress in 

the same cohort; and Comparing the difference in the degree of active and passive stress proarrhythmic 

influences between heart-healthy patients and cardiac patients.  

 

2.11  Conclusion 

 

The findings from this systematic review suggest that acute active and passive stress trigger 

proarrhythmic shifts in cardiac electrophysiology by altering repolarization homogeneity. This seems to 

occur via ANS imbalances, specifically, increased SNS activity with simultaneous decreased PNS reactivity, 

which may be exacerbated by naturally occurring disparities in cardiac neuro-anatomy. The amplified 

proarrhythmic response within CAD and ICD patients compared to healthy patients, suggests that cardiac 

tissue pathology acts as a substrate in arrhythmiogenesis. However, the lack of studies including and 

differentiating results between active and passive stress tasks, the small sample sizes, and inconsistent 

analysis techniques weakens the strength of these conclusions. It would be beneficial for future studies to 

include more passive stress tasks and focus on investigating the different electrophysiological, autonomic, 

and hemodynamic effects arising from active and passive stress tasks to advance the knowledge of 

underlying arrhythmiogenic mechanisms. 
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4.0 APPENDIX A: Study Quality Assessment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Studies were assessed for risk of bias using a modified version of Downs & Black checklist.  
Items 13, 15, 19, 23 and 24 were not used as they applied to studies with interventions 

  and/or treatments, leaving a possible 21 points for scoring 
 
 

 

First Author 

(year) 

Reporting 

(10) 

External 

Validity 

(2) 

Internal 

Validity 

Bias 

(4) 

Internal Validity 

Confounding 

Selection Bias (4) 

Power 

(1) 

Total 

(21) 

Abisse (2011) 9 0 3 2 0 14 

Critchley 

(2005) 
7 2 3 0 0 12 

Gray (2007) 7 2 3 0 0 12 

Kop  (2004) 7 0 3 1 0 11 

Lache (2007) 7 2 3 1 0 13 

Lambert 

(2005) 
6 0 3 0 0 9 

Souza (2013) 6 2 3 0 0 11 

Suresh (2017) 9 1 4 3 1 18 

Taggart 

(2009) 
7 2 4 3 0 16 

Whinnery 

(1988) 
6 2 3 0 0 11 

Whinnery 

(1983) 
6 2 4 2 0 14 

Table.1 Study Quality Assessment for Included Studies 
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4.1 APPENDIX B: Data search strategies presented by database 
 
PubMed 

In Advanced Search Builder 

Choose Title/Abstract for all search words 

Search Term #1: Acute Mental stress OR Acute Psychological Stress OR Acute Stress OR Mental Stress OR 

psychological stress OR Stress OR Stress Reactivity OR Stress Response OR Stressor 

Search Term #2: Arrhythmia OR Atrial fibrillation OR Atrial flutter OR Conductance disorder OR Couplet OR 

Dysrhythmia OR Heart Rate Variability OR Triplet 

Search Term #3: Combine Search Term #1 AND Search Term #2 

 

PsycINFO 

Advanced Search 

Choose Abstract for all search words 

Search Term #1: Acute Mental stress OR Acute Psychological Stress OR Acute Stress OR Mental Stress OR 

psychological stress OR Stress OR Stress Reactivity OR Stress Response OR Stressor 

Search Term #2: Arrhythmia OR Atrial fibrillation OR Atrial flutter OR Conductance disorder OR Couplet OR 

Dysrhythmia OR Heart Rate Variability OR Triplet 

Search Term #3: Combine Search Term#1 AND Search Term #2 

 

Scopus 

Search 

Choose Article title, Abstract, Keywords for all search words 

Search Term #1: Acute Mental stress OR Acute Psychological Stress OR Acute Stress OR Mental Stress OR 

psychological stress OR Stress OR Stress Reactivity OR Stress Response OR Stressor 

Search Term #2: Arrhythmia OR Atrial fibrillation OR Atrial flutter OR Conductance disorder OR Couplet OR 

Dysrhythmia OR Heart Rate Variability OR Triplet 

Search Term #3: Combine queries #1 AND #2 
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4.2 APPENDIX C:  Figure Use Permission 
 
 
4.2.1 Figure 1 Significant Structures for the Electrical Conduction of the Heart Permission 
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4.2.2 Figure 2. Summary of Arrhythmias Permission 
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4.2.3 Figure 3. Cardiac Autonomic Innervation Permission 
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4.2.4 Figure 4. Ganglionic Plexi (GP) of Human Heart Permission 

 




