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Abstract

Machine Learning Based Detection of False Data Injection Attacks in
Wide Area Monitoring Systems

Christian Salem

The Smart Grid (SG) is an upgraded, intelligent, and a more reliable version of the tradi-

tional Power Grid due to the integration of information and communication technologies.

The operation of the SG requires a dense communication network to link all its compo-

nents. But such a network renders it prone to cyber attacks jeopardizing the integrity and

security of the communicated data between the physical electric grid and the control cen-

ters. One of the most prominent components of the SG are Wide Area Monitoring Systems

(WAMS). WAMS are a modern platform for grid-wide information, communication, and

coordination that play a major role in maintaining the stability of the grid against major dis-

turbances. In this thesis, an anomaly detection framework is proposed to identify False Data

Injection (FDI) attacks in WAMS using different Machine Learning (ML) and Deep Learn-

ing (DL) techniques, i.e., Deep Autoencoders (DAE), Long-Short Term Memory (LSTM),

and One-Class Support Vector Machine (OC-SVM). These algorithms leverage diverse,

complex, and high-volume power measurements coming from communications between

different components of the grid to detect intelligent FDI attacks. The injected false data is

assumed to target several major WAMS monitoring applications, such as Voltage Stability

Monitoring (VSM), and Phase Angle Monitoring (PAM). The attack vector is considered

to be smartly crafted based on the power system data, so that it can pass the conventional

bad data detection schemes and remain stealthy. Due to the lack of realistic attack data,

machine learning-based anomaly detection techniques are used to detect FDI attacks. To

demonstrate the impact of attacks on the realistic WAMS traffic and to show the effective-

ness of the proposed detection framework, a Hardware-In-the-Loop (HIL) co-simulation

testbed is developed. The performance of the implemented techniques is compared on the

testbed data using different metrics: Accuracy, F1 score, and False Positive Rate (FPR)

and False Negative Rate (FNR). The IEEE 9-bus and IEEE 39-bus systems are used as

benchmarks to investigate the framework scalability. The experimental results prove the

effectiveness of the proposed models in detecting FDI attacks in WAMS.
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Chapter 1

Introduction

1.1 Motivations

Energy infrastructures, in particular power systems, are one of the major critical infras-

tructures in a modern society [2]. The power system ensures the generation and distribu-

tion of electric energy among the consumers. Such a large-scale energy delivery system

is comprised of 3 main subsystems, namely, generation, transmission, and distribution.

The coordinated operation of these systems ensures the uninterrupted and stable produc-

tion, delivery, and consumption of electricity. However, the generation and transmission

systems can experience various types of instabilities and operational issues due to natural

causes and electrical malfunctions [3]. Consequently, analyzing the stability and operation

of transmission and generation systems is of paramount importance since these systems

cover large geographic areas that can span thousands of kilometers. As a result, any issue

in the operation of these systems may affect a huge number of consumers or even cause

blackouts. Therefore, the use of a monitoring and data acquisition system is necessary to

improve the operation of the system. In power system, the Supervisory Control and Data

Acquisition (SCADA) system is traditionally used for monitoring purposes. However, it

suffers from various limitations, such as very limited communication infrastructure, and
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low data sampling rates. Recently, in order to improve efficiency and reliability of the

power system, the smart grid concept is introduced. The majority of the advantages of

deploying the smart grid concept are the result of the integration of distributed renewable

energy generation systems and Information and Communication Technologies (ICTs) into

the conventional electric grid. As a result, power systems start to increasingly employ

significant amount of communication technologies and cyber devices [4]. WAMS benefit

from this cyber and communication layer to tackle the drawbacks of conventional SCADA

system [5]. This system is one of the major smart grid domains that monitors the grid op-

eration and provides real-time, highly-sampled, and time-synchronized data for the control

and protection layers of the power grid [6]. WAMS is composed of physical and cyber lay-

ers. The former comprises generators, buses and transmission lines of the grid, while the

latter encompasses the Phasor Measurement Units (PMU), the Phasor Data Concentrators

(PDC) and the communication links that connect them to the system operator. The design

of WAMS requires an extremely dense communication network and extensive deployment

of Intelligent Electronic Devices (IEDs), which renders it prone to cyberattacks [7]. These

attacks can have catastrophic consequences such as cascading failures and blackouts over

large areas. Recent events demonstrate the susceptibility of the cyber layer of smart grid

systems to cyber attacks, such as the Ukraine cyberattack [8]. It is worth mentioning that

various types of malware have been used to launch such attacks, e.g., BlackEnergy [9],

Industroyer [10], Duqu [11], Stuxnet [12]. One dangerous class of attacks is stealthy False

Data Inspection (FDI) attacks. FDI attacks manipulate the collected physical measurements

in order to mislead the decision-making process of the WAMS operator. Such attacks can

have grave consequences such as line overloads that can lead to large-scale blackouts [13].

Deep Packet Inspection (DPI) is a suitable approach to examine the communicated mea-

surements over the network since it allows the real-time extraction and analysis of these

measurements.
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1.2 Problem Statement

The purpose of this research is to design, implement, and evaluate a new platform for

WAMS security monitoring that utilizes DPI and ML-based anomaly detection methods in

order to identify stealthy FDI attacks.

1.3 Objectives

The objectives of this research are as follows:

• To assess the benefits of employing ML as a solution for WAMS security monitoring

with a focus on leveraging DPI-extracted features by anomaly detection models to

enhance the threat detection in WAMS.

• Develop a realistic WAMS cyber-physical testbed that integrates hardware, different

scenarios and WAMS-specific monitoring indices for evaluation of proposed ML-

based approach.

• Design and implement a real-time WAMS monitoring platform based on DPI and

ML anomaly detection to monitor and protect WAMS operations.

• Elaborate and compare multiple anomaly detection methods and evaluate their scal-

ability and effectiveness in attack identification.

1.4 Contributions

The contributions of this research are:

1. An investigation on the validity and effectiveness of DPI and ML for WAMS security

monitoring with a focus 2 WAMS-specific protocols IEEE C37.118 and IEC 61850-

90-5.
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2. A real-time, realistic, HIL WAMS co-simulation model is elaborated. The model

incorporates commercial hardware and takes into account different operational sce-

narios, applications, and system sizes.

3. A set of FDI attack scenarios is developed and implemented. The attacks are tai-

lored for WAMS-specific application in order to prompt erroneous behavior from the

control center.

4. An anomaly detection approach to the FDI attack problem is developed in order to

align the solution with the real-world operation of the smart grid where normal data

is abundant but attack data is scarce.

5. The performance and scalability of different anomaly detection techniques in identi-

fying FDI attacks in WAMS are evaluated and compared.

1.5 Thesis Structure

The remainder of this thesis if organized as follows. Chapter 2 of this thesis presents

background information and concepts on WAMS, its communication infrastructure, threat

models, and DPI. Chapter 3 provides a literature review on WAMS, FDI attacks targeting

them, and solutions against these threats. Chapter 4 describes the design of the proposed

DPI platform and details the different anomaly detection models developed. It also presents

the methodology that can be used to craft and launch the studied cyberattacks. Chapter 5

details the WAMS testbed architecture and its communications. Moreover, it details the

attack scenarios implemented and launched against the WAMS applications. Furthermore,

it presents the experimental results on the effectiveness of the proposed DPI platform at

detecting the attacks. Chapter 6 draws the conclusions and discusses the implications and

the insights gained, along with potential future research directions in the studied area.
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Chapter 2

Background

This chapter provides an overview of the concepts discussed in this research. First, legacy

SCADA systems are introduced. Second, the concepts related to WAMS are discussed

covering WAMS communication networks, protocols, and applications. Third, cyberattack

threats that can impact WAMS are presented. Fourth, the potential of DPI is explained with

respect to the proposed cybersecurity approach. Finally, anomaly detection is detailed.

2.1 Supervisory Control and Data Acquisition Systems

SCADA systems are widely-used automation control systems in many industries, including

power, water, oil and gas, among others [14]. Although IEDs are replacing legacy sensors

and actuators in SCADA systems, the incumbent SCADA systems will still provide a ma-

jority of monitoring and control capabilities to the smart grid in the near future, before

being eventually upgraded to or replaced by the WAMS [15].

An overview of the SCADA architecture is shown in Fig. 1 (adapted from [16]). In gen-

eral, SCADA encompasses two principal activities, the monitoring of processes and equip-

ment as well as the corresponding supervisory control, carried out by four components: the

Remote Terminal Units (RTUs), the communication systems, the Master Terminal Units

5



Figure 1: SCADA Network Architecture

(MTUs), and the Human-Machine Interface (HMI). The RTU acquires analogue measure-

ments from field sensors and converts them into digital signals to be sent to the MTU; it also

converts control commands received from the MTU to control actions executable by the ac-

tuators. The measurements and commands are exchanged as packet payloads through the

proprietary communication protocols between RTUs in the field and MTUs at the control

centers. A MTU collects and monitors the state of the grid with measurements received

from the RTUs and determines proper commands to be sent back through the feedback

control loop. An HMI allows SCADA operators to interact with the MTU and manage

the entire system [15]. Historians may also be deployed along with the MTU and HMI to

archive the measurements and event logs for further auditing and analysis.

In the smart grid, SCADA systems provide non-synchronous information of the system

at lower data sampling rates, normally less than one sample per second. Subsequently,

the control center is required to re-align the various measurements arriving at different

times within a certain time window - which can vary from 2 to 15 seconds depending on
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system configuration - and further down-sample the data. The lower sampling rate and re-

alignment thereby provides a low resolution view of the system compared to WAMS, with

benefit in terms of bandwidth requirement and energy consumption. Also, many legacy

SCADA systems were initially designed before the 2000s. As such, these systems do not

provide native or adequate support for security features like encryption. Recently, with the

increased adoption of PMUs, some studies have explored their integration into SCADA

systems in order to enhance the monitoring performance [17]. SCADA systems don’t usu-

ally rely on PMUs, however, with the introduction of PMUs to SCADA, we notice a step

towards the transition from legacy SCADA systems which are still more widely used to-

day, to novel real-time WAMS systems. It is important to note that SCADA and WAMS

are complimentary since they both serve the same purpose of monitoring the transmission

system and protecting it against faults and disturbances.

2.2 Wide Area Monitoring Systems

This section discusses concepts related to WAMS. It is broken down into four parts. The

first part explains the role that WAMS play in the SG. The second discusses the WAMS

digital communication system. The third part describes the WAMS protocols used in the

communication. The final part describes WAMS applications with a focus on three main

applications, namely PAM, Fast Voltage Stability Index (FVSI) and Impedance Stability

Index (ISI).

2.2.1 Role in Smart Grid

As an upgrade of the legacy SCADA system, WAMS is used to gather, process, and trans-

mit physical data to different applications for monitoring, control, and protection purposes
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of transmission systems. WAMS allow grid-wide, information, communication, and coor-

dination against major disturbances and blackouts [5]. WAMS rely on a dense hierarchical

communication network to transfer the data from the sensors in the field to the control cen-

ter. The transmitted data is used in different applications to reflect the state of the grid to

the operator. Accordingly, the operator will determine the appropriate course of action that

will maintain the stability and security of the grid [5]. The cyber components deployed in

WAMS structure provide real-time, accurate monitoring of the state of the grid allowing

for faster remedial actions in case of faults, disturbances, or performance degradation.

2.2.2 Communication System

In order to track the fast-dynamics of fault and failures in the smart grid, which may occur

for less than a second, WAMS relies heavily on advanced cyber infrastructure and dedi-

cated protocols to transmit data between control centers and field devices over hundreds

to thousands of kilometers. As the key innovative sensing technology, PMUs installed at

selected locations of the grid collect current, voltage, phase, and frequency measurements

and transmit them to PDCs that time-align and combine measurements coming from mul-

tiple PMUs, and forward them to higher level PDCs, and ultimately the control center.

The measurements are time-stamped and synchronized using Global Positioning System

(GPS) receivers with up to one microsecond accuracy [5]. The time-aligned measurements

provide high-resolution snapshots of interconnected smart grid system over spatial and

temporal domains. WAMS offers unprecedented granularity of steady states and transients

and enables advanced early warning against widespread disturbances. An overview of the

WAMS architecture is shown in Fig. 2. The volume and speed of data exchange in WAMS

also impose stringent latency constraints. While early WAMS standards requires as few

as 10 samples per second, the latest standards are setting forth real-time sampling rates up

to 12,800 Hz [18]. In order to accommodate the temporal resolution, dedicated protocols
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have been developed for WAMS systems to transmit data between PMUs and PDCs, which

include IEEE 1344, IEEE C37.118, and IEC 61850 [6].

Figure 2: WAMS Network Architecture

2.2.3 Communication Protocols

The communication of synchrophasor measurements from PMUs in the field to the control

center is done by using WAMS-specific communication protocols. With different regula-

tions pertaining to different regions, 2 main protocols have been developed for synchropha-

sor communication: The widely used IEEE C37.118 [19] and the newer IEC 61850-90-

5 [20]. Both establish data transmission formats for real-time synchrophasor data transfer.
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Figure 3: IEEE C37.118 Protocol Stack.

IEEE C37.118

IEEE C37.118 addresses the measurement and communication needs for synchrophasors,

which represent requirements for accuracy verification, data transmission formats and real-

time communication. IEEE C37.118 was first introduced in 2005 as the successor of the

IEEE 1344 protocol; in 2011, it was split into IEEE C37.118.1 for measurement-related

requirements and IEEE C37.118.2 for data transfer requirements [18].

The IEEE C37.118 protocol stack is illustrated in Fig. 3. IEEE C37.118.1 defines mea-

surements including synchrophasor, frequency, and Rate of Change of Frequency (RO-

COF); it also specifies the steady-state and dynamic performance requirements as well as

time synchronization and data rates [21]. However, it does not tackle the different frame

formats, their structures and functions, which are the main points of interest for DPI, be-

cause these attributes have to be leveraged by any DPI application to identify IEEE C37.118

packets, their type, and extract the information they carry. Such attributes are detailed in

IEEE C37.118.2, which specifies message types, use, contents, and data formats for real-

time communication between PMUs, PDCs, and other devices [18].

The IEEE C37.118 standard defines four types of messages related to the configuration

and data transfer for PMU/PDC communication: data, configuration, header, and command
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frames. The first three frame types (data, configuration, and header) are sent from a PMU or

a PDC, carrying synchrophasor measurements and configurations such as channel numbers

and readable descriptive information. The last frame type (command) can be sent to both

PMU and PDC for configuration and control purposes. All frame types share a common

structure that includes frame identification and synchronization, frame size, data stream ID,

timestamp, time quality, and Cyclic Redundancy Check (CRC) error check.

The data frames hold the measurement data, frequency and ROCOF collected and cal-

culated by the PMU or PDC, as well as other analog sample and digital values. The con-

figuration frames carry information and processing parameters of the data that the sender

IED is capable of and is currently broadcasting. The header frames carry human-readable

information about the PMU, the data sources, scaling and other related information. The

command frames are sent by data receiving devices to the sending devices, with requests

to start or stop transmission. These frames may also carry commands to send configuration

information or to change configuration.

IEC 61850

IEC 61850 is a comprehensive standard for substation-based smart grid communications

first published in 2004 [22]. As an Ethernet-based communication protocol intended

for IEDs in electrical substations, IEC 61850 identifies general and specific communica-

tion functional requirements, which include high-speed IED-to-IED communication, high-

availability, time requirements, multi-vendor interoperability, support for voltage and cur-

rent measurements data, support for file transfer, and support for security features, among

others [23]. The IEC 61850 defines abstract objects for the communication services using

the Abstract Communication Service Interface (ACSI), through which the abstract objects

are mapped to existing protocols.

This protocol-independent setup of data objects and services allows a mapping to any
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Figure 4: IEC 61850 Protocol Stack

new protocol that meets the defined data and service requirements [24]. This ensures the

compatibility of protocols between a variety of power system components.

An overview of the IEC 61850 protocol stack is shown in Fig. 4. Currently, the stan-

dard maps the abstract objects to three main protocols [25]: Generic Object Oriented Sub-

station Events (GOOSE), Sampled Values (SV), and Manufacturing Message Specification

(MMS). GOOSE and SV are time-critical protocols involved in the protection and control

of the substation; both GOOSE and SV operate on layer 2 of the OSI model to decrease

the communication overhead. MMS operates on layer 3 of the OSI model and deals with

substation devices management.
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GOOSE. GOOSE is used to send control signals and warnings in substations when time-

critical events take place [26]: as an example, protection commands are sent over GOOSE

to substation IEDs within a four-millisecond time window. Consequently, applying en-

cryption or authentication algorithms on GOOSE messages can be challenging because of

the strict time constraints. In order to assure the integrity of the transmitted information,

GOOSE will re-transmit the same message multiple times, which ensures receipt of the

message and allows the receiver to compare the different messages and detect potential

tampering or anomalies. GOOSE can also broadcast a wide range of data in a dataset

across the substation Local Area Networks (LAN). A GOOSE frame consists of fixed,

preset fields and variable fields in terms of length and content depending on the commu-

nicated information. Each frame can be divided into four parts: header MAC, priority tag

information, Ethernet Protocol Data Unit (PDU) and GOOSE Application Protocol Data

Unit (APDU) [26]. The header MAC, priority tag information and Ethernet PDU contain

standard protocol and routing information such as destination and source IDs, protocol and

virtual LAN identifiers, application identifier, and length [24]. The GOOSE APDU holds

the state and sequence numbers that ensure message synchronization between the GOOSE

sender and receiver.
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SV. SV is used to transmit numerically sampled real-time values of power system mea-

surements, such as line currents and voltages. It uses a publisher-subscriber model, where

registered PMUs publish their measurements in the substation network such that subscrib-

ing PDCs can collect them [24]. In addition, SV has a very high sampling rate that can

reach 4,800 messages per second. Consequently, encryption of the measurements may im-

pose a large overhead on the network and violate the preset time constraints. SV utilizes

different packet fields such as sequence number, sample count field and the time synchro-

nization field to ensure the alignment of the received packets by the subscriber IED and

the synchronization with the time source [27]. SV frames have a similar structure to that

of GOOSE, which are divided into header MAC, priority tag information, Ethernet PDU

and SV APDU. The measurements are encapsulated within the SV APDU, along with a

sequence number field, a sample count field and the time synchronization field.

MMS. MMS is a client-server protocol used to transmit status information and com-

mands for control, monitoring, and communication between user-interface systems and

IEDs. MMS maps ACSI models of IEC 61850 to lower levels to ensure correct interpre-

tation of information among IEDs [28]; the mapping includes a multitude of IEC 61850

objects, e.g., the data class, data-set and log classes. An MMS frame consists of a fixed

sized header that contains information pertaining to version and packet length, and a PDU

that holds a four-bit type specification field that indicates the type of the PDU, followed by

the payload [29].

IEC 61850-90-5. IEC 61850-90-5 [20] was introduced in 2012 as an extension to the

original IEC 61850 standard to address WAMS synchrophasor communications. It defines

Routable GOOSE (R-GOOSE) and Routable SV (R-SV) packets which are layer 3 versions

of the original GOOSE and SV protocols. These packets are used to establish connections,

and transfer synchrophasor data between PMUs and PDCs. Furthermore, IEC 61850-90-5
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emphasises communication security by introducing HMAC signature schemes and AES

symmetric encryption to protect the integrity and confidentiality of the messages. It also

offers a higher sampling rate than IEEE C37.118 that can reach 12000 samples/second.

Table 1 presents a comparison of the features of the protocols.

Table 1: Feature Comparison Between IEEE C37.118 and IEC 61850-90-5

Features IEEE C37.118 IEC 61850-90-5
Year 2005 2012

Protocol Stack Network Layer Network Layer
Sampling Rate 120 samples/second 12000 samples/second

Integrity CRC HMAC
Confidentiality None AES

Availability None None
Average Data Packet Size 112 bytes 305 bytes

2.2.4 WAMS Applications

WAMS applications improve on traditional SCADA systems with a faster, more dynamic

and proactive grid stability management approach. These applications help the grid opera-

tors improve the performance of the transmission and distribution networks by portraying

information about stability, system security and efficiency.

WAMS applications include phase angle monitoring, voltage stability monitoring, and

power oscillation monitoring among others. In this thesis we focus on 3 applications: PAM,

FVSI and ISI. Next we will define each application, and explain its role in the control center.
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Phase Angle Monitoring

PAM examines the active power going through a power line. It calculates the difference in

voltage phase angles between the two ends of the line. The index is calculated following

Equation 1.

Pr =
Vs × Vr
X

× sin∆ (1)

where Pr is the real power going through the line, Vs is the sending-end voltage, Vr

is the receiving-end voltage, X is the line impedance between the two buses, and ∆ is the

difference between the voltage angles αs and αr.

Based on the angle difference, the operator may initiate different actions to improve

the stability of the grid such as rescheduling generation or compensation of reactive power,

reconfiguration of system topology, and load shedding [30].

Fast Voltage Stability Index

FVSI is a line voltage stability index that can determine the maximum possible line load,

critical lines in inter-connected systems, and the point of voltage collapse [31]. It is calcu-

lated following Equation 2.

FV SIij =
4× Z2 ×Qj

V 2
i ×X

(2)

where Z is the line impedance, X the line reactance, Qi the reactive power at the receiving

end, and Vi the voltage at the sending end. FVSI can range from 0 to 1. An FVSI value

greater than 0.7 implies that the line is exhibiting instabilities. In such situations, the oper-

ator may disconnect the line or modify the generator’s supply to avoid further damages and

a possible system collapse.
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Impedance Stability Index

ISI is a bus voltage stability index that leverages the load impedance and Thevenin

impedance at a load bus to determine the point of voltage collapse [32]. It is calculated

following Equation 3.

ISI = 1− ∆Vj × Iji
Vj ×∆Iij

(3)

where ∆Vj and ∆Iij are the differences between two consecutive voltage and current mea-

surements reported by PMUs, respectively. Vj and Iji correspond to the voltage and current

values at load bus j. ISI can range from 0 to 1. An ISI value close to 0 indicates critical

voltage instability at the bus, which can lead the operator to inject reactive power, adjust

the generation or initiate load shedding.

2.3 Cybersecurity Threats in WAMS

The critical role of WAMS in the SG renders it an appealing target for cyber attackers.

In addition, the deployment of densely connected information systems increases the at-

tack surface that can be used to compromise WAMS. Attackers can take advantage of the

cyber-physical nature of WAMS and launch cyberattacks against the information system

and attacks against the physical assets in the grid. The closely connected physical and digi-

tal aspects of WAMS allow cyberattacks to have an impact on the physical operation of the

grid. Harmful impacts from such attacks include increase in cost, power loss, transmission

line tripping, unnecessary load shedding, and blackouts. Understanding an attacker’s per-

spective is often a key to the successful defense. As such, extensive efforts have been made

to investigate prominent cyber-physical attacks and develop DPI-based Intrusion Detection

Systems (IDS) taking into account the cyber-physical context [33]. In order to better dis-

cuss the discovered threat models in the context of DPI, this section will categorize the
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threats based on where the anomalous or malicious information is injected to affect the

packet payloads. Specifically, the threats addressed will be categorized based on whether

the intrusion is predominantly launched on the IEDs or in the communication channels. It

is notable that a large number of schemes can be launched on both targets.

2.3.1 Attacks on Endpoints

Attacks on IEDs aim to gain access to the endpoint devices and directly tamper with the

generation of the packets. To this end, attackers may exploit back-doors, firmware vulnera-

bilities, specialized malwares, phishing emails, or may attempt to physically access the IED

in remote sites. The targeted IEDs may range from Programmable Logic Controllers (PLC)

as in the Stuxnet attack [12] to control center workstations as in the Ukrainian power grid

attack [8], and all the RTUs, PMUs, intelligent relays, and PDCs in-between. It is notable

that many critical endpoint IEDs are protected behind industrial firewalls or demilitarized

zones. Also, the attackers may not be able to manipulate all packet payloads on a com-

promised device because of restricted access to overwrite in many fixed-function IEDs.

Nevertheless, from the attacker’s perspective, the IEDs may provide convenient capacity

and privilege for them to send legitimate messages at the full speed to inflict great impacts

on the grid with false commands and/or misleading information. The attacks in this class

include packet modification, false data injection, command injection, and fuzzing which

we will detail next.

Packet modification

Packet modification attacks assume that the attackers have gained access to the sensing

devices and can directly manipulate different packet fields to trigger improper behavior

in the system. As one of the most intuitive threat models, packet modification has been

investigated extensively in generic ICT networks, while a small number of studies have

18



been dedicated to the smart grid context.

False Data Injection

The term FDI can be used to describe an attack that injects any type of data in the system

such as measurements, commands, configuration information, etc. However, in this thesis,

we use the term FDI to refer to attacks that target solely the measurements as described

in [34] and we consider command injection attacks as a separate class of attacks.

FDI is a widely investigated threat that targets exclusively the measurements reported

for grid control decision-making. It can be viewed as a special case of packet modification

with significant impacts on the smart grid. As the term FDI may refer to any attack that

injects false data into the system, we specify two classes of FDI: the generic FDI and the

stealthy FDI. In the generic FDI, an attacker sends false measurements to the control center

without particularly leveraging the specific residual-based model vulnerability and grid

topology [34]. The stealthy FDI is a special data integrity attack first proposed by Liu et

al. [34] to exploit a mathematical model vulnerability in the power system state estimation.

While the threat has yet to be implemented as part of a practical scheme, numerous studies

have shown that the stealthy FDI scheme can exploit the knowledge of system topology to

manipulate the measurements, without being detected by the existing residual-based Bad

Data Detector (BDD) installed in control centers.

State estimation can be formulated by the linear function:

z = Hx+ n (4)

where z is the measurement vector, H is the topological Jacobian matrix, x is the state

vector to be estimated, and n is the noise vector. The estimated state x̂ can be given by:

x̂ = (HTR−1H)−1HTR−1z (5)
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where R is the covariance matrix of an assumptive zero-mean white Gaussian noise of the

sensors. The conventional BDD calculates the residual between observed and estimated

measurements:

z −Hx̂ (6)

to identify and eliminate a noisy data. With the knowledge of H and the ability to manipu-

late z, however, it has been shown [34] that an attacker can effectively bypass the BDD and

manipulate the measurements. While no incidences have been reported, extensive studies

have shown that the stealthy FDI can cause transmission congestion, mask line outages,

and obtain illegal gains in the electricity market, among others [35].

Command Injection

Command injection is one of the most impactful threats, where an attacker directly issues

a false command to the IEDs and actuators. For the smart grid, command injection can

cause immediate impact on critical systems and processes under control, especially when

limited response time is allowed for authentication or verification between the arrival and

execution of a command in many protection and control applications.

Fuzzing

Fuzzing is a common threat on packet generation. In this scenario, the attacker tries to

randomly modify the packet content to create invalid or unexpected packet fields. The

device receiving the modified packet is then observed to detect exceptions such as crashes

and memory leaks as a result of the received random information [36].

2.3.2 Attacks on Communication Channels

Compared to the endpoint IEDs, communication networks and channels constitute a large

attack surface over dispersed geographical areas, making them attractive targets to intercept
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the packets and manipulate their payloads. The low-speed, security-deficient SCADA net-

works and protocols have long been a target of cyber-attacks [37]; even in the high-speed

Industrial Control System (ICS) networks that allow limited time to tamper with the packet

payloads, skillful intrusions [38] and advanced persistent threats [39] can still effectively

compromise the network to inflict major disturbances into the interconnected power grids.

The threats in this category include scanning, sniffing, spoofing, Denial-of-Service (DoS)

and Distributed DoS (DDoS), Man-in-the-Middle (MITM), and replay attacks, whose de-

tails will be reviewed next.

Scanning Attack

Scanning is a common precursor for most cyberattacks. This information gathering tech-

nique has been increasingly employed by ICS and smart grid attackers [40] to gain high-

level intelligence of network topology, communication protocols, and traffic patterns to

conceive a sophisticated attack scheme, especially for power systems with proprietary net-

works, protocols, and ports.

Sniffing Attack

Sniffing is another early stage attack, where an attacker passively eavesdrops or examines

the content of packets. Records of packets of interest may be retained without manipulating

the traffic, providing detailed information on physical system environment, configuration

and behaviors to construct well-informed attacks [33]. In the smart grid, sniffing has been

shown to provide crucial in-depth intelligence of the interconnected systems and devices,

as shown in Fig. 5. The figure depicts an HMI screenshot of a power plant ICS intelli-

gence acquired by threat actors, reported in ICS-CERT Technical Alert 18-074A [38]. The

screenshot shows redacted information of a generator-turbine control panel with system

specifications and dynamic status [38].
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Figure 5: HMI Screenshot Sniffed by Threat Actors in the U.S. Energy Infrastructure
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Spoofing Attack

Spoofing is a critical threat in the smart grid [41], where an attacker infiltrates the network

by disguising as a legitimate user in order to initiate a trusted connection. A successful

spoofing can allow the attacker to inject malwares, bypass access controls, mislead honest

devices, and obtain confidential data. Spoofing attacks may also involve the connection

of an unidentified rogue device into the network to conduct scanning, sniffing, and other

schemes.

Denial-of-Service and Distributed DoS

DoS and DDoS are prominent cyber-threats [42,43] that can also significantly compromise

availability in the smart grid [44]. On the Internet, DoS/DDoS attacks like Mirai botnet [45]

prevented massive numbers of users from accessing network resources or hardware devices.

In the context of smart grid, DoS/DDoS can result in degraded, delayed, or completely

disconnected communication, impairing situational awareness and control capacity over

critical systems and processes in the smart grid.

Replay Attack

Replay attack is a widely-seen threat that records past packets and re-sends them at a future

time. The re-sent packets usually follow the same legitimate format except for outdated

sequence numbers or timestamps; as a result, checking and ensuring the freshness of the

received packets can mitigate such attacks. In the context of smart grid communication,

replay attack is mainly focused on synchrophasors, where the attacker would replay mea-

surements of recorded faults or disturbance to mislead the controller into adopting improper

responses against non-existent events.
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Man-in-the-Middle Attack

MITM attack is another common generic threat model in the smart grid. It refers to the

family of schemes where attackers are able to insert themselves in the network between the

sender and the receiver of a communication [46]. This can be leveraged to launch attacks

such as sniffing, spoofing, and replay attacks among others.

2.4 Deep Packet Inspection

2.4.1 Definition

DPI is a widely-used context-aware security monitoring technique for cybersecurity [47]. It

analyzes the payloads of packets passing network inspection points, e.g., firewalls, routers

or switches, in order to find matching patterns corresponding to a known misuse, intrusion,

or other incidences. Compared to common packet filtering techniques, the term “deep" in

DPI refers to the direct inspection of payloads, or the actual contents to be communicated,

for anomalous or malicious activities. Compared to packet headers and network flow statis-

tics, the payloads may carry more information on the context of communication and may

reveal additional traces of the activities of interest. Such advantage often makes DPI a pop-

ular choice to examine network application signatures, detect potential intrusions, identify

sensitive information leakage, manage network bandwidth, enforce copyright protection,

and censor digital contents, among others [48]. A typical DPI procedure consists of two

main functionalities, i.e., recognition and action [47]. During recognition, relevant infor-

mation such as application protocols and data units are extracted and compared to a set of

pre-defined anomalous or malicious patterns. If a match is found, actions may be triggered

to raise an alarm, drop the packet, log the event, and/or inform the administrator.
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2.4.2 Deep Packet Inspection in the Smart Grid

Most of the existing works on DPI applications in the smart grid focus on the recogni-

tion functionality due to the complexity of the action functionality: in the Internet and

other communication networks, actions by DPI can be determined within the context of

cyberspace; in the smart grid and other cyber-physical systems, however, most actions

are dependent on the physical system applications and requirements, which can involve

sophisticated physical system processes and responses. As opposed to traditional Informa-

tion Technology (IT) systems, the main focus in Operational Technology (OT) and cyber-

physical systems is on data availability and timeliness subsequently, DPI cyberattack detec-

tion measures should be accurate and fast in order avoid any delays in the communications.

Furthermore alerting should be real-time to allow for fast reaction in order to avoid damage

to physical assets. In addition, cyber-physical systems such as the SG have unique commu-

nication protocols with real-time performance demands that carry domain specific data like

voltage and current measurements [49]. In this thesis, we discuss detection and classifica-

tion as two critical tasks of DPI in smart grid security and we focus on anomaly detection

for a specific attack threat. In both tasks, the inspection of the payloads may foster the

discovery of otherwise stealthy attacks without knowing the context. To illustrate the im-

portance of DPI, consider an insider who launches a data integrity attack by modifying the

measurements, which may result in major consequences by evoking unnecessary control

responses without affecting the header fields. In practice, such attack can be launched by

a grudging employee who may access field devices and manipulate the readings. Simple

access control policies may not flag the access as anomalous; network and system manage-

ment tools may not detect abnormal behavior when traffic statistics, e.g. packet size, packet

delivery rate, and inter-arrival time, are not affected. The “shallow" packet inspection that

analyzes header fields like MAC addresses, IP addresses, and/or port numbers may also be

bypassed as these fields would remain normal to the system. With DPI that monitors the
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content of the network, however, anomalies against system models, predictable trends, or

safety margins could be flagged and reported for further investigation, thus restricting and

mitigating the potential impact of the attack [50].

2.5 Anomaly Detection

The abundance of cyber-physical data and the complexity of cyber-physical threats have

attracted significant interest and progress on the context-aware DPI methods for smart grid

security monitoring. In general, these methods can be categorized into two categories, i.e.,

anomaly detection and attack classification, which focus on the identification of anoma-

lous and malicious events, respectively. Based on the physical context utilized in the DPI

techniques, both categories can be further divided into rule-based and data-driven tech-

niques: the former leverages physical models and system specifications to derive rule sets

and attack signatures, while the latter employs data mining and machine learning methods

to derive new models that characterize anomalous or malicious patterns. The DPI-based

anomaly detection focuses on the segregation of anomalous data and events from normal

operations. The anomalies refer to the nonconforming patterns, which can be characterized

based on pre-defined physical models in rule-based techniques or measurement-based sta-

tistical models in data-driven techniques [51]. In this thesis we focus on anomaly detection

because anomaly detection methods only require normal data to train and develop which

aligns with the real-world operation of the smart grid where normal data is abundant but

attack data is scarce.While classification requires data corresponding to normal and attack

instances which is very hard to generate in a real setting because of the potential damage

such attacks can have.
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2.5.1 Rule-based Anomaly Detection

Rule-based anomaly detection depends on expert knowledge, standards and system specifi-

cations to set conditions that model the normal behavioral patterns. Subsequently, the rules

developed tend to be simple to understand and can be easily interpreted by the operator.

Anomalies are instances that break any one of the set rules. However, developing rules

that cover all possible normal scenarios in a complex system, such as the smart grid, can

become strenuous and almost unattainable.

2.5.2 Data-driven Anomaly Detection

Data-driven techniques employ data mining and machine learning methods such as statis-

tical inferences, unsupervised learning, and semi-supervised learning [52]. These methods

take complex data, such as PMU measurements, as input, and create models of normal op-

erations from the measurements. Data-driven techniques require sizeable training datasets

to produce robust, well-grounded models capable of capturing compound non-linear pat-

terns, in order to differentiate between normal system measurements and anomalies.

2.6 Classification

For classification of different attack scenarios, most works in the DPI literature also uti-

lize either the rules based on attack signatures and system specifications, or the data-driven

methods based on supervised machine learning. Similar to the rule-based anomaly detec-

tion, the rule-based attack classification rely on expert knowledge to develop the rules that

can classify a packet into the category of attacks, faults, and normal operations, or their po-

tential sub-types. The supervised machine learning also aims to achieve the same objective

by using measurement data labeled as normal, fault, and attack. When a sufficient amount

of labeled data is available, an accurate mapping can be generated such that unlabeled data
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can be assigned corresponding labels with high confidence [53]. As suggested by the term

supervised, labels must be pre-acquired to obtain the mapping through an adaptive train-

ing process, however, obtaining labeled data for large-scale, realistic datasets may be very

costly

2.6.1 Rule-Based Classification

Rule-based attack classification depends on expert knowledge to assign the classes through

rules, attack signatures and system specifications that must be obtained for different con-

ditions. Other than the simplicity and efficiency, one main advantage of rule-based DPI in

attack classification is the interpretability of labels, which allows the controller to precisely

investigate the misbehavior and take necessary action quickly. An instance is considered

an attack if it follows all the rules of specific attack signature. Consequently, rule-based

techniques usually produce a smaller number of false alarms because the rules are specifi-

cally tailored to each attack. However, developing such rules and signatures can be tedious

and hard, and might not scale up to large complex systems.

2.6.2 Data-Driven Classification

To address the growing complexity of attack classification in the smart grid, significant

interest has been drawn to the data-driven methods, particularly supervised machine learn-

ing and deep learning, for the development of DPI techniques. These models take large,

complex datasets that contain data from normal and attack scenarios in order to learn to

differentiate between them. Data-driven techniques require large datasets for training, and

usually perform better the larger the training dataset.
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2.7 Conclusion

This chapter provided an overview of the concepts and technologies related to the studied

research topic. These include legacy SCADA systems and modern WAMS. This chapter

discussed the difference between SCADA and WAMS, and the role of WAMS in the SG.

It also discussed the architecture of the communication system in WAMS, the WAMS-

specific communication protocols, and the different WAMS applications. Furthermore, this

chapter outlined the cybersecurity threats, their locations and types in WAMS. In addition,

this chapter outlined specific concepts related to DPI, classification, and anomaly detection,

which are used in the proposed solution of this research work tackling the problem of

WAMS security. The provided background information lays out a good foundation to better

understand the related work on WAMS and its cybersecurity.
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Chapter 3

Literature Review

This chapter presents a literature review on the topics of FDI attacks, anomaly detection,

and classification for the security of different areas of the SG. The background knowledge

on these topics represents an important element of this research work. The related work

on FDI attacks describes two types of FDI attacks: generic and stealthy. In addition, it

discusses recent surveys tackling FDI schemes and countermeasures, and it highlights dif-

ferent approaches utilized to detect FDI attacks. The related work on anomaly detection

describes the different anomaly detection models applied to detect cyberattacks in the SG.

It groups the approaches into two main categories: rule-based and data-driven, and each

category is further split into several subcategories. Similarly, classification models used

to characterize cyberattacks in the different SG domains are presented in the classification

section. They are also divided into rule-based and data-driven categories with each category

split into several subcategories. Fig. 6 shows the taxonomy of the studied DPI techniques

based on methodologies. Furthermore, we summarize all the works related to WAMS, in

the WAMS-specific section, where we highlight the benefits and limitations of each work,

and we present the different research gaps that can be addressed, which include the topic

tackled in this thesis.
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3.1 False Data Injection

FDI attacks can be categorized in two main classes as previously outlined in Section 2.3.1:

generic FDI and stealthy FDI. Generic FDI has been studied from the control side and from

the customer side of the SG. On the control side, the generic FDI has been the subject of

various DPI investigations with smart grid specific protocols, including Modbus [54, 55],

IEC 60870-5-104 [56], IEEE C37.118 [57], and IEC 61850 SV [58], among others. On the

customer side, the generic FDI attacks are often leveraged in energy theft, which manip-

ulate the smart meter readings to report a lower consumption and obtain a financial gain.

Attacks on Advanced Metering Infrastructures (AMIs) can target ANSI C12.19, C12.22,

IEEE 802.15.4, and other AMI-related protocols at various geographic locations [59, 60].

On the other hand, stealthy FDI was first introduced in [34] to exploit a vulnerability

in the mathematical model of the power system state estimation. It is directed exclusively

against the measurements used in the decision-making process of the system operator. In

recent years, interest has increased in stealthy FDI attacks and their detection, and this

can be seen by the large number of articles tackling this problem. As a result, recent

surveys have provided a comprehensive audit of the state-of-the-art FDI attacks and defense

strategies [61–64]. As stealthy FDI attacks manipulate the physical measurements directly,

most IDS employed against these FDI schemes will rely on DPI techniques to identify the

threats, although a small number of statistical methods have also been proposed, as can be

seen in these surveys. To date, different studies have investigated DPI solutions against

stealthy FDI threats for WAMS [65–67], substations [68], microgrids [69] along with other

studies that tackle this problem without specifying a particular domain of the SG [70–74].

Details and results of these studies are presented in Section 3.2.
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Anomaly
Detection

Rule-Based [54–56, 58, 75–95]

Data-Driven [66–70, 72, 89, 96–122]

Attack
Classification

Rule-Based [56, 94, 95]

Data-Driven [57, 65, 91, 96, 123–135]

Figure 6: Taxonomy of DPI Techniques Based on Methodologies.

3.2 Anomaly Detection

Based on the existing studies in the literature we split the anomaly detection techniques

into two large categories: Rule-based and data-driven. Both categories are unsupervised

learning approaches since the models learn the normal behavior of a system from reg-

ular, none-attack data points only. We further split rule-based approaches based on the

communication protocol they model. However, data-driven models are divided into five

subcategories: statistical inferences, clustering methods, decision trees, neural networks,

and kernel methods.

3.2.1 Rule-Based Deep Packet Inspection for Anomaly Detection

Rule-based anomaly detection has been mostly investigated based on protocols used in dif-

ferent applications of the smart grid. The rules are system-specific: for example, rule sets

for PMUs made by different vendors or installed for different monitoring purposes [136].

Subsequently, developing scalable or reusable rules for all possible normal scenarios can

become tedious for the interconnected and inter-operating devices in the smart grid. Nev-

ertheless, for fixed-function IEDs and small-scale systems, rule-based DPI-based anomaly

detection has been widely investigated. The works in this area will be reviewed below.
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Modbus Protocol

Rule-based anomaly detection has been shown to be highly effective on Modbus due to

the simplicity of the protocol. Morris et al. [54] described the conversion of Modbus RTU

to Modbus/TCP and develop 11 rules to detect intrusions in Modbus/TCP. The rules were

tested in two settings: in the passive setting, network traffic is logged and intrusion detec-

tion is performed offline; in the inline setting, the IDS takes the role of as an intrusion pre-

vention system (IPS) and drops anomalous packets. The simulations showed that the inline

IPS introduces time delays that can be acceptable depending on the system requirements.

The work was further extended to 50 IDS rules [79] using a comprehensive specification

of Modbus/TCP and Modbus over Serial Line protocol packet fields. Collectively, these

DPI rules examine the majority of packet fields, including transaction identifier, protocol

identifier, unit identifier and function code. Faisal et al. [75] used the Modbus specifi-

cation and expert knowledge to develop detection rules over Modbus/TCP function code

field and packet response time. The rules are customized for the communication require-

ments, which were tested on real-life datasets from a water storage facility and a university

campus power grid. The results demonstrated that the rule-based DPI is both more ac-

curate and efficient compared to conventional Deterministic Finite Automata (DFA) and

Discrete Time Markov Chains (DTMCs). A hybrid IDS automata was proposed in [55],

which combines the communication network rules with the physical system limits to detect

the anomalies. The method examines control commands, current measurements, circuit

breaker status, packet sequence, elapsed time between consecutive packets and physical

systems constraints to monitor the entire traffic and context of Modbus communication.

The results demonstrated that the hybrid automata can effectively detect malicious packet

injection, malicious transformer isolation, or imitation of the master controller’s behavior.
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DNP3 Protocol

Similarly to Modbus, DNP3 has the protocol simplicity that benefits rule-based detection

techniques. Wei et al. [76] proposed a role-based access control and deep packet inspec-

tion system for DNP3 in distribution substations. The IDS inspects the DNP3 function

code, source and destination station numbers, object group, as well as their variation and

index. The experiments showed that while effective at detecting and preventing illegiti-

mate access to IEDs, the approach added a round trip delay of five to twenty milliseconds

between master and slave. Lin et al. [86] also proposed a rule-based intra-packet and inter-

packet validation for DNP3. The intra-packet validation examines the fields in a single

packet (e.g., if the value of the length field is consistent with the real payload length) while

inter-packet rules investigate the sequence of packets. For example, a packet holding the

command “OPERATE" is almost always issued right after a “SELECT" command packet to

control the remote field devices chosen by the previous “SELECT" packet. This technique

was used to analyze real-life data coming from an Ohio electrical power grid utility. The

results showed that the DNP3 parser processed 30% more packets/second that the DNP3

analyzer. This is due to the costly analysis performed on almost all DNP3 fields.

IEC 61850 Protocols

IEC 61850 has been the most investigated standard for rule-based anomaly detection due

to its popularity, importance, and comprehensive specifications for monitoring, protection,

and control. Hong et al. [58] investigated rules over GOOSE and SV packets for host-based

and network-based IDS solutions. The host-based IDS examines device settings and logs,

while the network-based aspect evaluates GOOSE and SV packet fields such as sequence

and state numbers in GOOSE and message counts in SV. Under different attacks, both IDS

perform similarly well with false positive and false negative rates lower than 0.1%. The
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work also introduced an attack similarity index that leverages data from multiple substa-

tions to detect coordinated, multi-substation attacks. Kwon et al. [78] proposed statistical

rules for GOOSE and MMS packets using a multitude of flow features. These include the

rates of packets, bytes and connections, the recency, frequency and monetary aspect of

GOOSE packets, and the MMS messages such as confirmed response and unconfirmed re-

port. Each feature is weighted and they are all added to get an anomaly score. This method

was tested under multiple attack scenarios and reported an FP rate of 0% and an FN rate

of 1.1%. Yang et al. [77] developed an IEC 61850 substation-specific IDS. The design is

composed of four components: the access-based detection where Media Access Control

(MAC) address, IP address and port number are inspected; a protocol filter for specific

protocols such as GOOSE and MMS; an anomaly behavior detection that tracks the format

of different fields in the filtered protocol; and a remote signaling checker that inspects if

measurements are within a certain range and if MMS and GOOSE packet contents are con-

sistent. The work was further expanded in [87], where substation configuration language

(SCD) files and IEC 61850 traffic were included for inspections of sequence number incre-

ments in GOOSE, priority field in GOOSE and SV, and SV measurements ranges. The two

studies combine packet headers and payload data with access control, network configura-

tion, signal comparison, and substation settings, providing a holistic view of the substation

behavior in order to improve the detection performance. The results show that the proposed

technique effectively identified the different attack scenarios.

IEEE C37.118 Protocol

Despite its importance, IEEE C37.118 has been less investigated for anomaly detection due

to its complexity. The protocol employs different frames, each carrying different functions

and different data types, that are transmitted at different rates, making it difficult to formu-

late effective rules. Yang et al. [80] investigated behavior-based rules that inspect packet

35



protocol pattern, time synchronization of messages, range of physical measurements, and

length of packet fields. The results have shown that the rules were able to properly identify

scanning, sniffing, MITM, and DoS/DDoS attacks. Sprabery et al. [85] also proposed a

rule-based IDS for the IEEE C37.118 synchrophasors. The authors developed 36 single

and multi-packet rules to detect anomalous behavior in each of the four protocol frames.

The rules were tested against a protocol fuzzer in both online and offline settings without

generating any false positives.

Advanced Metering Infrastructure Protocols

DPI techniques have been extensively investigated for IDS in the AMI and smart meters,

especially for energy theft attacks. Berthier et al. [84] propose a rule-based IDS for ANSI

C12.19 and C12.22. The rules focus on identifying compromised meters and network ac-

tivity in Neighborhood Area Networks (NANs) by enforcing network-based, device-based,

and application-based constraints. The technique was able to detect all malicious meter

reading and connection requests in real-time. However, the sensors used do not handle

encryption, which is not the case in realistic setups. Jokar et al. [91] propose a rule-based

energy theft detection that compares the total electricity delivery to a neighborhood based

on transformer meter reading with the total consumption reported by the smart meters of

that neighborhood. A discrepancy between the two values will trigger an alarm signaling

possible theft. The checker is complemented by an support vector machine-based classifier

to confirm and localize the attack. The approach downsamples the data to preserve the

privacy of the customer without compromising the detection performance. Chakraborty et

al. [92] propose an IDS for a dedicated Distributed and Intelligent Energy Theft (DIET)

attack. The proposed IDS monitors a cluster of smart meters and compares the electricity

usage reported by a meter and its neighbors to the total usage calculated by the controller.

The cross-checking allows the IDS to identify inconsistencies and report the anomalies.
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Multiple Protocols

Some of the DPI techniques can be generalized to multiple protocols simultaneously. Yang

et al. [81] extended the work in [80] by including more protocols such as Modbus, DNP3,

IEC 61850, IEC 60870-5 and IEC 60870-6. The extension includes more rules for compli-

ance checks for the additional protocols. Notably, these additional checks can efficiently

monitor multiple protocols without incurring significant latency to the network traffic. Mor-

ris et al. in [83] explore cybersecurity requirements for synchrophasors in multiple proto-

cols. Requirements such as access control, audit requirement, continuity of operation, and

use of cryptography in Modbus and IEEE C37.118 protocols, were derived from the Na-

tional Institute of Standards and Technology (NIST) Inter-agency Report 7628 guidelines

for smart grid security, along with the Department of Homeland Security Cyber-Security

Procurement Language for Control Systems, and the utility internal requirements. The

rules were tested on commercial PMUs and PDCs from different manufacturers, under

DoS and fuzzing attacks. Limited testing results were provided due to confidentiality agree-

ments and ethical reporting requirements.

Bao et al. [88] present encryption for attack prevention and a state machine model for

detection. Elliptic curve digital signature algorithm [137] was implemented and was able to

prevent sniffing and MITM attack. The state machine method successfully detected inside

attackers that tampered with the measurements. However, the authors do not specify the

protocol they considered, they only state that they examined PMU measurements.

3.2.2 Data-Driven Deep Packet Inspection for Anomaly Detection

Data-driven DPI techniques have been effectively introduced in numerous IDS de-

signs [138], which utilize statistical inferences, unsupervised learning, semi-supervised

learning, and other machine learning techniques to create models of normal operations

from the measurements. The data-driven techniques usually require a large number of data
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to create reliable and robust models, which can capture complex nonlinear relations and

patterns that can pinpoint anomalies from system measurements. A variety of data-driven

anomaly detection algorithms have been proposed for DPI-based security monitoring in the

smart grid, which can be categorized into five main classes: statistical inferences, clustering

methods, decision trees, neural networks, and kernel methods. The details are presented

next.

Statistical Inference

Statistical methods are classical anomaly detection techniques that use probability distribu-

tion and statistical tools to identify outliers. In general, data points distant from the distribu-

tion of normal events are flagged as anomalous. Some of the classical statistical inferences

used for anomaly detection include Bloom filter [139], probability density functions and

Chi-square test [140], which are relatively lightweight, efficient, and less data-demanding

compared to other data-driven techniques. Among notable statistical inference-based DPI

techniques for smart grid communication, Kundur et al. [98] proposed a probabilistic IDS

for Modbus/TCP traffic using Bloom filter and n-gram analysis. The IDS inspects the

function codes and PDU collected from normal, remedial, and emergency states to iden-

tify the anomalies. The approach achieved a FNR between 2% and 6% and a FPR of 0%.

The statistical methods have also been shown to be effective against FDI attacks. Pal et

al. [100] proposed a Chi-square test against stealthy FDI attacks. The Gauss-Newton algo-

rithm [141] was used to estimate line parameters, e.g., resistance, inductance, capacitance,

and conductance, from PMU data. A Chi-square test is performed based on known and es-

timated line parameters to detect the anomalies. Chakhchoukh et al. [101] also proposed a

statistical inference approach for anomaly detection. Assuming that the samples observed

by the attacker are drawn from a changing distribution that is different than the one of

normal measurements, the work applies Density Ratio Estimation (DRE) [142] to identify
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anomalous instances. The method calculates the density ratio between the Probability Den-

sity Function (PDF) of normal operations and the PDF of a given observation, on which a

preset threshold determines if the latter represents a class of anomalies. Using stealthy FDI

attacks as the anomalous event, the approach outperforms Support Vector Machines (SVM)

and Gaussian methods under different tested scenarios. Esmalifalak et al. [102] compared

the Gaussian PDF and SVM for detection of stealthy FDI attacks. The Gaussian PDF cal-

culates the probability that a data point is similar to normal data and flags it as anomalous

if the probability is lower than a learned threshold. SVM is applied in a supervised learn-

ing setup. Gaussian PDF outperformed SVM on smaller training sets but performed worse

when the training set size was increased. In a similar work, Gu et al. [103] propose the

use of Kullback-Leibler (KL) divergence to compare dissimilarity between the probability

distributions of normal and attack incidences. Considering both FDI and replay attacks as

the unknown anomalies, the KL divergence achieved more accurate detection performance

than absolute distance. However, it was noted that FDI-induced anomalies on certain buses

were more difficult to detect when there are fewer lines connecting these buses to the rest

of the grid. In addition, the work of Liu et al. [70] introduces two statistical based tech-

niques, nuclear norm minimization and low rank matrix factorization for FDI detection.

These techniques were tested on multiple datasets and under different assumptions such as

missing measurements data and showed effectiveness in detecting FDI attacks with a True

Positive Rate (TPR) of varying between is 93% and 95%. In [72], the authors propose

using a Kalman filter along with a Chi-square detector and a Euclidean distance metric de-

tector to identify FDIs. The Chi-square detector failed to identify stealthy attacks while the

Euclidean distance metric technique succeeded in doing so. The authors in [73] also use a

Kalman filter along with a Chi-square detector which yields the same outcome as [72]. In

addition, [73] proposes a cosine similarity matching approach that was able to detect FDI.
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Clustering Methods

Clustering is a widely-used unsupervised method that groups data points into clusters with-

out knowing any ground truth (actual labels). In anomaly detection, clustering can be ap-

plied to form a group of closely-arranged normal data, outside which a more distant data

point will be considered as anomalous. Kundur et al. [66] propose a clustering-based DPI

against false PMU data injection. Expectation-Maximization (EM) clustering was utilized

to optimize intractable likelihood functions and find missing data points. On the IEEE 14-

bus system, the method was shown to be capable of detecting all false PMU data injected

at different locations of the grid.

Decision Trees

Decision trees are well-established machine learning algorithms. Originally developed for

classification, some of their variants are capable of performing unsupervised anomaly de-

tection. El Chamie et al. [99] propose a physics-based unsupervised and supervised learn-

ing framework to detect anomalies in distribution systems using the measurements. Tested

on an IEEE 34-bus test feeder system, the unsupervised isolation forests learn normal pat-

terns from unlabeled data and represent them with a pseudo-label; a random forest is then

created to map input features to the pseudo-label. A threshold is applied for anomaly de-

tection, which achieves an F1 score of 0.903 against single line to ground fault and breaker

tripping attacks in the distribution system.

Neural Networks

Neural Networks (NN) have seen much success in anomaly detection [138]. As complex

higher-order nonlinear models, NN-based DPI has shown the ability to accurately learn

the patterns of normal behavior out of data and differentiate them from abnormal actions.
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Valdes et al. [68] propose a SOM-based IDS to learn normal behavior patterns of SV mea-

surements in an IEC 61850 substation. In this work, a new class is learned if the feature

vector does not match any known pattern in the SOM. The model was tested using three

setups and achieved 0.01% FPR and 100% attack detection rate in some cases. Hariri et

al. [69] propose a time-series NN with one hidden layer for anomaly detection in micro-

grid SV packets. This lightweight technique achieved a FP rate of 0.5% over anomalies

caused by FDI attacks within the strict time requirements of the protocol. Wang et al. [67]

propose a DAE based anomaly detection against PMU data manipulation in the smart grid.

By inspecting the WAMS measurements, the DAE-based method outperformed other tech-

niques, including XGBoost and SVM, with an F1 score of 0.938. DAE allows to compress

the input into a smaller representation, then tries to reconstruct the initial input vector, by

decoding the information in the compressed representation. In addition, a delayed trig-

gering algorithm is applied to account for noise and reduce FPR. For stealthy FDI detec-

tion, Niu et al. [64] employ Convolutional Neural Network (CNN), a popular feed-forward

ANN, and LSTM neural networks, to account for time-related knowledge. This method ex-

amines measurements and flow features and achieves an accuracy between 80% and 100%

depending on the capabilities of the attacker. In [74], Recurrent Neural Networks (RNNs)

are applied to detect stealthy FDI attacks in the IEEE 14-bus systems. The applied tech-

niques are shown to be successful in detecting FDI attacks with high accuracy, achieving

an F1 score of 0.95.

Kernel Methods

Kernel methods like SVM aim to map the data with kernel functions a into higher dimen-

sions, where it would be easier to distinguish the difference among different distributions or

classes of data. The SVM is one the most widely used kernel algorithms, which constructs
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an optimized decision boundary to separate instances of different classes. The unsuper-

vised learning variant of SVM for anomaly detection, known as one-class SVM, has been

shown to be able to handle large, complex datasets in an efficient manner. Yoo et al. [97]

propose a one-class SVM for anomaly detection over the MMS and GOOSE traffic from a

real-life IEC 61850 substation in South Korea. The method processes both single packets

and combined packet sequences to extracted features including MMS message, GOOSE

sequence and state numbers and packet headers. The EM clustering and local outlier factor

(LOF) were applied during data preprocessing to remove outliers, before one-class SVM

was used to develop the normal-behavior model, which achieved a FPR between 0.01 and

0.06.

3.2.3 Deep Packet Inspection for Anomaly Detection

The surveyed research works include an abundance of rule-based anomaly detection tech-

niques in the smart grid. This may be attributed to the simplicity and popularity of some

protocols such as Modbus and DNP3. In addition, it is easier to model the normal behavior

of a system than modeling the malicious behavior of attacks, particularly when attack data

is difficult to obtain.

It was also observed that statistical inference approaches perform well on simple pro-

tocols like Modbus but the number of attack scenarios addressed was relatively small. The

majority of the surveyed statistical methods only focused on anomalies in a single protocol

or those caused by only the FDI attack. In contrast, other data driven methods like ANNs

and SVM have demonstrated convincing performance on larger systems and with more

protocols and attack scenarios. As the smart grid demonstrates increasing non-linearity,

uncertainty, and time-variance, there is a growing interest in moving from rule-based and

statistical DPI toward more advanced data-driven methods.

All the reviewed techniques demonstrated a high accuracy on a variety of datasets or
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testbeds. Some of the articles used real-world smart grid communication traffic from a

university grid [75] or a field substation [87, 97]. A number of recent works leveraged

HIL testbeds for SCADA systems [55, 98], WAMS [96], Substation Automation Systems

(SAS) [58, 68, 77, 78], and microgrids [69]. Software-based simulations were conducted

in the MATLAB/Simulink environment, using standardized test systems like IEEE 14-

bus [66, 67], 34-bus [99], and 118-bus [101, 102] systems to generate the measurements.

The diversity of research works offers an extensive coverage of different operation and

attack scenarios while leaving a significant gap with respect to benchmarking the perfor-

mance among different works.

3.3 Classification

Similarly to anomaly detection, we split the existing classification studies in the literature

into two categories: Rule-based and data-driven. Both categories fall under the supervised

learning class since the models learn from both normal and attack behavior of a system.

We further split rule-based approaches based on the communication protocol they model.

However, data-driven models are divided into four subcategories: statistical methods, near-

est neighbors, decision trees, neural networks, and kernel methods. In addition, some works

present a number of less common ML algorithms along with other works providing com-

parative studies on classification methods on smart grid datasets.

3.3.1 Rule-Based Deep Packet Inspection for Classification

Rule-based DPI techniques for attack classification have also been developed for different

smart grid protocols. Similarly to rule-based anomaly detection, rule-based attack classifi-

cation techniques still face major difficulties to scale up in larger systems or to be reused in

more complicated scenarios. This, coupled with the lack of known attack signatures in the
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SG context, results in a notably reduced number of research works aimed in this direction.

IEC 60870-5-104 Protocol

Compared to other modern protocols for smart grid communication, IEC 60870-5-104 is

one of the least complicated, which allows for easier development of rules based on the

system behavior and attack signatures. Yang et al. [56] developed signature-based and

model-based attack classification, respectively, for IEC 60870-5-104. The signature-based

checker matches observations against an attack signatures database; it also contains rules

that look for unauthorized interrogation commands sent to a server. The model-based

checker inspects the transmission cause, length field and TCP port number of the agent

initiating connections. This allows to create rules based on system specifications and to

classify misuses against these rules.

IEEE C37.118 Protocol

IEEE C37.118 packets carry heterogeneous yet critical information for control, measure-

ments, and configuration settings, which has attracted significant research efforts and was

accompanied by notable results. Khan et al. [94] propose a rule-base classifier for the IEEE

C37.118 synchrophasors based on the NIST-recommended security architecture. The sys-

tem is expected to be deployed in different IEDs, local networks, and wide area networks

in the smart grid. Behavioral patterns of known malicious signatures from all systems will

be collected to classify the data and ongoing events. The design also creates validity rules

that check the range of the physical measurements and rules that track the packet sequences

over time. The rules are shown to be able to accurately identify several attacks on the IEEE

C37.118, including GPS spoofing, MITM, packet injection, and packet drop. The work was

further extended in [95] to include signatures of more sophisticated attacks and new rules to

detect stealthy data manipulation attacks, which gradually modify physical measurements
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over an extended time. The results of this work were validated on a HIL microgrid testbed

and demonstrate that simple rules remain effective against the extended list of attacks.

3.3.2 Data-Driven Techniques

Data-driven classification techniques utilize supervised machine learning techniques to cre-

ate robust models, from labeled datasets, able to distinguish between normal and attack in-

stances. Similar to anomaly detection, data-driven DPI in attack classification also include

statistical methods, nearest neighbors, decision trees and neural networks. As in the case

if anomaly detection, some works present a number of less common ML algorithms while

other works provide comparative studies on classification methods on smart grid datasets.

Subsequently, we detail the work done in each of these classes.

Statistical Methods

Statistical methods, most notably probabilistic graphical models [143], have been intro-

duced for DPI-based attack classification due to their advantage in representing complex

probabilistic relationships using graphical representations. The graphs aim to create a con-

cise encoding of a high-dimensional feature space that expresses the conditional dependen-

cies between features. The main advantage is the use of domain knowledge to create an

intuitive representation of the features and their dependencies, which reduces the compu-

tational overhead for inference and scales up to large, high-dimensional datasets. In this

direction, Pan et al. [57] proposed a Bayesian network for the classification of attacks and

faults in WAMS. The Bayesian network examines current measurements and event logs

under a combination of two fault and four attack scenarios. With a clear depiction of the

dependencies and interdependencies between features, the Bayesian network model is able

to correctly classify all test cases defined in the study.
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Nearest Neighbors

Nearest neighbors are simple, efficient classification techniques that assign a label to an

incoming data sample based on the labels of the nearest data points. The approach does not

need to retain or update a complex model, making it ideal for attack classification at end-

point devices. Adhikari et al. [126] proposed an IDS that creates Non-Nested Generalized

Exemplars (NNGE) from a State Tracking and Extraction Method (STEM). The STEM

pre-processes raw PMU measurements and event logs to generate a continuous stream of

states with low storage overhead. The NNGE, a nearest-neighbor-like algorithm, is trained

on the state stream to extract generalized exemplars. The exemplars are then used as sig-

natures to classify the incoming data into corresponding classes. This hybrid approach

achieved a 98% accuracy in binary classification between benign and malignant events and

a 94% accuracy for multi-class classification among different types of faults, attacks, and

normal operations.

Decision Trees

As mentioned earlier, decision trees are widely used in classification tasks, using a tree

structure that resembles human reasoning and decision-making process to assign the class

labels. They generally rely on entropy measures when segmenting the dataset and building

the tree. The interpretable nature of decision trees is favorable for security applications,

as it provides explainable decision support. For smart grid security monitoring, classic

decision trees are often combined with other pre-processing techniques to improve their

performance over the complex cyber-physical data.

Adhikari et al. [123] propose a DPI-based attack classifier with Hoeffding Adaptive

Trees (HAT), augmented with the Drift Detection Method (DDM) and Adaptive Window-

ing (ADWIN). Using HAT as the base classifier, the approach addresses the fast-dynamics
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and slow-drifts in smart grids by introducing the DDM as a change detector and the AD-

WIN as a model re-trainer. Once significant changes have been identified, ADWIN will

prompt the re-training or fine-tuning of a well-trained HAT to retain its classification per-

formance among normal, fault, and attack classes.

Wang et al. [127] propose an attack classifier against FDI attacks with consideration

of imbalanced data. Assuming that attack incidences are much more scarce than nor-

mal and fault data, the method leverages the Synthetic Minority Over-Sampling Technique

(SMOTE) and Edited Nearest Neighbors (ENN) to create a balanced dataset that is aimed

to boost the classification performance. SMOTE is first applied to randomly select minor-

ity data points and interpolate new data between a selected minority point and its neigh-

bors [144]. The ENN is then applied to clean the oversampled data by removing noisy

outliers in the minority class. With the re-balanced data, XGBoost [145], a more recent

technique that leverages an ensemble of decision trees to improve classification perfor-

mance, is used to classify the FDI attacks. Overall the approach achieves a 0.891 F1 score.

Neural Networks

Instead of trying to learn a representation of normal patterns for anomaly detection, NNs

can also be directly trained to assign class labels to a data sample based on the predicted

likelihood that it belongs to different classes. The prediction is provided through a multi-

layered non-linear mapping between the features and the label of the data sample. The

NN’s ability to extract complex context and relations from measurements to determine the

situation translates well to DPI-based monitoring for the smart grid. He et al. [128] pro-

posed a deep learning-based IDS against stealthy FDI attacks under different conditions

like meter fault, and measurement noise among others. A Conditional Deep Belief Net-

work (CDBN) is developed by stacking multiple Restricted Boltzmann Machine (RBM)
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layers over a Conditional Gaussian-Bernoulli RBM (CGBRBM) layer that integrates tem-

poral information into the model. The attack data in the dataset are up-sampled using

Fourier transform and Principal Component Analysis (PCA) [146] to obtain an adequate

number of compromised instances for training. The CDBN is shown to outperform sim-

ple SVM and NN classifiers, with an accuracy over 90% under simulated attack scenarios.

Hamedani et al. [130] propose Delayed Feedback Networks (DFN) for stealthy FDI de-

tection. The DFN is used as a Reservoir Computing (RC) system to process the data as a

temporal sequence [147]. By taking into account the time-domain information, DFN also

outperformed the SVM and NN classifiers against both generic and stealthy FDI attacks

under different attack scenarios.

Other Data-Driven Deep Packet Inspection for Attack Classification

Other than the well known machine learning techniques, a Common Path Mining (CPM)

technique was also proposed by Pan et al. in two DPI-based attack classifier designs [96,

125]. The CPM creates a generic stateful signature of known scenarios in the smart grid.

In [125], CPM uses system measurements and relay status as features. Against simulated

one-line-ground fault and command injection attacks, CPM achieved a 95% accuracy. In

contrast, when the one-line-ground faults were diversified with different fault locations

and system loads, CPM’s accuracy dropped to 87.6%. Moreover, when four additional

short-circuit faults and three cyberattacks were introduced, CPM accomplished a 93.2%

accuracy. The work was extended in [96] where CPM was evaluated against 25 fault and

attack scenarios. When all scenarios were present in the training set, CPM achieved a

90.4% accuracy with a 0.8% FP rate. Meanwhile, it is notable that CPM performance could

drop to 73.47% when some of the scenarios were randomly removed from the training set,

showing a limited capacity to generalize against some zero-day threats.
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Comparative Studies

Given the popularity and variety of data-driven techniques, some researchers have con-

ducted comparative studies to establish performance benchmarks of well-known data-

driven classifiers. Hink et al. [124] compared the performance of seven different classi-

fication algorithms with different faults and attacks in the smart grid. The models were

tested in three different settings, including a binary case with normal and abnormal (fault

and attack) classes, a ternary case with normal, fault, and attack classes, and a multi-class

case with 37 attack and fault scenarios. Among these three settings, a combination of

AdaBoost [148] and JRip [149] had achieved the highest accuracy of over 90%, followed

by decent performance of JRip and Random Forest that varied between 70% and 80%,

and less-desirable performance of Naive Bayes, SVM, Nearest Neighbor and OneR that

was less than 30% [124]. Comparative studies have also been conducted against FDI at-

tacks. Yan et al. [65] tackled FDI by implementing SVM, k-Nearest Neighbor (kNN) and

extended-Nearest Neighbor (eNN) for classification of stealthy and generic FDI on bal-

anced and unbalanced datasets. SVM consistently outperformed the other techniques in all

scenarios, while kNN and eNN had comparable results in all scenarios. Ozay et al. [129]

provide a comparative study of 11 machine learning-based classifiers against false data

injection. The techniques include supervised, semisupervised, decision-level and feature-

level fusion, as well as online learning methods. The supervised techniques tested include

perceptron, kNN, SVM, and Sparse Logistic Regression (SLR); S3VM was implemented

as the semisupervised approach; AdaBoost and Multiple Kernel Learning (MKL) have

been utilized for decision-level and feature-level fusion, respectively. Online learning tech-

niques include Online Perceptron (OP) and OP with weighted models, online SVM, and

online SLR were also tested. The methods have been evaluated on variants of FDI that

differ in the attack strength, and the results have shown that kNN was the best-performer in

small-sized systems but conceded to SVM in large-scale systems. The study has also found
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that semi-supervised methods are more robust than supervised methods when dealing with

sparse data. Also, fusion methods were more robust against variations in data sparsity and

system size. Furthermore, online learning and offline batch algorithms achieved similar

results.

3.3.3 Deep Packet Inspection for Smart Grid Attack Classification

Attack classification requires the IDS to not only inform on events that are anomalous

but also to identify those that are malicious, which is generally more challenging than the

anomaly detection. As attack incidences are scarce and effective rules can become highly

sophisticated, we observed a reduced number of rule-based DPI in attack classification.

A lack of attack signature databases in the smart grid may also have limited the research

efforts and progress. Meanwhile, the scarcity of attack data also poses challenges to data-

driven techniques, despite the growing interests with the recent development of deep learn-

ing and other advanced artificial intelligence technology. Pre-processing techniques have

been one of the major innovations in this direction: it has been shown that the efficacy of

predictive models, especially decision trees, is heavily affected by the balance of labeled

training data [150]. The proposed classifications techniques in the literature are validated

on different datasets. Some of the works used WAMS HIL testbeds such as [96, 123, 125],

while others utilized substation HIL testbeds [77, 80, 81]. Additionally, in two other stud-

ies [56,87], data from real-life electric utilities was leveraged to test the classification meth-

ods. Other works have also resorted to datasets of simulated power systems such as the

IEEE 9-bus system [127,129] and IEEE 118-bus system [128,129], among others. Similar

to the case of anomaly detection, the diversity of approaches offers the coverage of more

scenarios while also making it difficult to compare their respective performance.
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3.4 Wide Area Monitoring Systems Specific Works

In the literature, we found 10 research works that tackle attack detection and classification

in WAMS using DPI extracted features. Figure 7 presents a taxonomy of the works based

on the protocol studied. To the best of our knowledge, no research work investigated the

IEC 61850-90-2 protocol. Table 2 details the surveyed works based on the testbed, simu-

lated scenarios, extracted features, proposed technique, and detection performance. Table

3 provides a list of the scenario acronyms used in Table 2. Next, we compare the works

based on each of these aspects.

First, with regards to the testbeds used, we notice that most works [57, 83, 85, 96, 123, 125,

126, 131] rely solely on small HIL testbeds (3-bus and 9-bus systems) and only 2 research

initiatives [67, 151] test their approach on larger systems although their setup does not in-

clude HIL. Including hardware devices in the simulation is critical because this renders it

more realistic and aligned with the operation of real utilities. Moreover, testing the pro-

posed approach on both small and large systems such as the IEEE 30-bus system asses the

scalability of the detection technique and further validates it if the results are consistent.

Therefore, having a HIL setup in addition to evaluating the approach on small and large

systems is essential in order to align the work with real-life grid operation.

Second, the WAMS articles consider different attack and fault scenarios. 5 works

[57,96,123,125,126] simulate a wide array of attack and fault scenarios that include com-

mand injection, relay tripping, over current fault, and line to line fault. Simulating multiple

attack and operational scenarios allows for the collection of large labeled datasets contain-

ing a variety of classes, knowing that such datasets are very rare and not usually shared by

utilities. Subsequently, these works take advantage of a large number of available scenarios

by developing classification models that differentiate between the distinct classes. On the

other hand, the work in [67,83,85,131,151] focuses on 1 or 2 scenarios only. Some of these

works [67, 131, 151] tackle attacks that target the physical measurements directly such as
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FDI and fault replay attacks while others [83, 85] concentrate on fuzzing and DoS.

Third, in most articles except [151], the protocol used is IEEE C37.118 and the extracted

measurement features involve voltage, current, frequency, and ROCOF. Some approaches

[57, 96, 123, 125, 126, 131] combine the physical measurements with network and device

logs in order to get a holistic view of the communications in the network. On the other

hand, the articles studying fuzzing [83, 85] extract all the fields in the IEEE C37.118 and

Modbus packets such as IP source and destination, port numbers, trigger reason, command,

etc. and compare their values to preset rules. Wei et al. [151] specify the WAMS domain

and the features without mentioning which protocol is used. Although all these articles

focus on WAMS, we can see that the features that can be collected in this domain are nu-

merous and heterogeneous, conveying information on different aspects of WAMS. Thus

combining both data-driven and rule-based techniques to monitor the physical features, de-

vice logs, and network communications can be very advantageous.

Fourth, with regards to detection techniques, most articles [57, 96, 123, 125, 126, 131, 151]

focus on classification of attack and fault scenarios using different data-driven techniques

that include statistical inference, tree algorithms, CPM, nearest neighbor, and neural net-

works. The performance of these techniques is similar, ranging between 87% and 99% ac-

curacy, however, it is difficult to directly compare their results and decide which approach

is better because of the differences in the experimental setup, the simulated scenarios and

the evaluation metrics used. Also, one work [96] combined classification and anomaly de-

tection to differentiate zero-day events from known attacks, however, the technique was not

very accurate. On the other hand, only 3 works [67, 83, 85] tackle anomaly detection, 2 of

which [83, 85] are rule-based that focus on fuzzing and the other [67] uses DAE to detect

FDI attacks. The research initiative in [83] modeled normal behavior while the one in [95]

developed attack signatures to monitor all fields in all four IEEE C37.118 frames but did

not provide the rules or detailed results. However, the authors test these rules against simple
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attacks in the context of a microgrid, without providing a detailed validation of the results.

In addition, some of these attacks can be stopped by the security measures implemented in

the IEC 61850-90-5 protocol.

Moreover, we notice a lack of works utilizing machine learning anomaly detection models

against FDI attacks in WAMS. Notably, the initiative in [67] proposes a DAE approach to

detect data manipulation attacks in WAMS, however, their approach requires the collec-

tion of PMU measurements from both sides of each line, which can be very costly because

it requires the deployment of a large number of PMUs. Moreover, the aforementioned

work focused on data manipulation attacks that randomly change the reported values, with

limited focus and analysis of stealthy FDI attacks. Finally, to the best of our knowledge,

there are no works that focus on anomaly detection of stealthy FDI in realistic environ-

ments while linking the attacks to WAMS applications in order to examine their perceived

impact.

WAMS
Research Works

IEEE C37.118 [57, 67, 83, 85, 96, 123, 125, 126, 131]

Modbus [83]

Unspecified [151]

Figure 7: Taxonomy of DPI Techniques in WAMS Based on Protocols.

3.5 Gap Analysis

Extensive effort has been made to advance the state of DPI-based security monitoring in

the smart grid. In this section, we provide a gap analysis of the smart grid applications

and communication protocols, threat models, and DPI techniques. Based on the identified

gaps, we reflect on the challenges and future research opportunities.
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3.5.1 Applications and Protocols

Applications coverage

The majority of existing works have investigated SCADA and AMI applications, while

SAS, WAMS, and microgrids are less investigated. Other emerging applications in the

smart grid, such as renewable energy plants, distributed energy resources, demand re-

sponse, distribution automation, among others, have not been investigated. DPI for mi-

crogrids also requires additional attention and exclusive investigations due to their lower

system inertia, higher distributed energy resource installation, and different contexts be-

tween grid-connected and islanded modes. While the technological maturity, especially

the availability of high-resolution physical measurements, may have a strong impact on the

efforts and progress, many of these important applications still require significant enhance-

ments to the security monitoring capacity under the increasing cyber-physical integration.

Protocol Coverage

Smart grid applications are supported by multiple protocols, while the existing coverage in

the DPI literature is still relatively limited. Studies on SAS mostly focused on individual

IEC 61850 protocols, while the incorporation of GOOSE, SV, and MMS messages simul-

taneously may provide additional context for the IDS. Within the IEEE C37.118 protocol,

other frames (configuration, header, command) may also provide the communication sys-

tem context in addition to the data frame. This would provide a holistic view of the WAMS

communication between sensors and controllers and help identify more complex attacks

and faults by integrating communication control information and configuration informa-

tion into the detection models. Moreover, existing DPI works on AMI covered a diverse

set of protocols, mostly due to the availability of public AMI datasets, but few have been

evaluated and validated on a HIL testbed like other applications.
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Protocol Overlap and Discrepancy

With the difference in standard requirements and regional regulations, the same functional-

ity in a smart grid application may be covered by different standards and protocols. As an

example, both IEEE C37.118 and IEC 61850-90-5 specify the requirement and protocol for

synchrophasor communication in WAMS/WAMPACS [18]. To date, most DPI studies for

WAMS focused on IEEE C37.118, which was released earlier than IEC 61850-90-5. Al-

though IEEE C37.118 is currently the most widely used protocol for synchrophasor com-

munication, it lacks security features to ensure confidentiality and strong integrity. IEEE

C37.118 employs CRC checks to ensure integrity of the messages. An attacker knowledge-

able of the CRC algorithm can modify the packet content and re-calculate the CRC field,

allowing it to bypass future CRC verifications. IEC 61850-90-5 was introduced to address

these security shortcomings. To guarantee confidentiality and integrity, IEC 61850-90-5

proposes the use of secret keys – shared and periodically refreshed by a key distribution

center – for symmetric encryption and signature schemes. The proposed security features

can help prevent attacks previously discussed such as sniffing, packet modification, packet

injection, and replay attacks. IEC 61850-90-5 also offers a higher sampling rate through

its R-SV protocol. R-SV has a sampling rate up to 4800 messages/second, compared to up

to 120 messages/second for IEEE C37.118. This would provide the controller with a more

detailed image of the system for real-time monitoring and diagnosis. However, due to the

high sampling rate, encryption and signature schemes, and the bigger size of packets, IEC

61850-90-5 would also require more resources to implement, which calls for more efforts

to investigate given its importance in future WAMS and WAMPACS applications.
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3.5.2 Threat Models

Threat Details

The threat models addressed in the DPI literature contained certain levels of details, but

most did not specify to the level of attack trees similar to the ones shown in Fig. 13, which

illustrates the ways an attacker can compromise a circuit breaker at a SAS. Such level of

granularity and visualization provides illustrative information and penetration paths of the

threat to design and deploy security monitoring capacities at the most proper locations.

From the attacker’s perspective, many threat models assumed only the worst-case scenario,

while in practice an attacker may not have full access the power grid’s dynamic topology,

operating points, or even the physical models, which will affect the actual impact. A de-

tailed model on the knowledge and resource used to launch a successful intrusion, along

with the projection of potential impacts, will provide a clear picture of cyber-physical vul-

nerabilities and threat intelligence to develop the needed security monitoring capacity for

the smart grid.

Threat Timing and Persistence

The frequent sampling in smart grid communications not only affects the time window to

launch an attack but also the success of a launched threat. Consider the example of FDI:

a high sampling rate would require the attacker to tamper with a large number of packets

over a relatively long period of time to effectively mislead the control actions, as a few

modified SV packets may be simply discarded as outliers without triggering the emergency

response. Therefore, a successful FDI on the SV packets will have to be an advanced

persistent attack, which might not always be possible due to constraints on the attacker’s

resources and the countermeasures in the system. Even if the attacker targets protocols with

low sampling rates like GOOSE, if the allowable packets exchange rate was not obeyed,

the attempt may still be easily detected. As an example, an attacker may inject multiple
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GOOSE commands into the network to trip a targeted relay, which will increase the number

of GOOSE messages received by the subscribed IEDs. This deviation may be exposed

by other context-aware security monitors, such as the Network and System Management

(NSM) devices, who may report to the system manager for further inspection [152].

3.5.3 DPI Methodologies

Online Monitoring

Most data-driven methods have assumed an offline training/building process before online

deployment. However, only a minority of them actually evaluate the performance in the ac-

tual online setting. The works in [54, 69, 85, 123] implemented the DPI in a HIL testbed to

run the evaluations with limited fault and attack conditions. Only one study explored real-

time classification over a wide array of scenarios [123]. In practice, online performance

is critical to the success of security monitoring, especially for the smart grid where a long

time-to-detection may result in a failed remedial effort on the physical side. The ability

to adapt when changes occur in the system will also be critical in the online environment,

as both the system dynamics and threat models may change over time and result in a de-

graded performance. Considering the affordability and availability of field test sites, HIL

co-simulation testbeds [153] and digital twins [154] may provide the most cost-effective

online platform for research and development of DPI-based security monitoring.

Advanced Data-driven Techniques

Another aspect that has attracted growing attention but was not fully addressed is the ma-

chine learning and deep learning algorithms for DPI approaches. Deep learning is a rel-

atively new field that has been proven to be effective in many challenging tasks; the high
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dimensionality and complexity of smart grid data make deep learning a promising, cus-

tomizable solution for advanced DPI solutions. However, the explainability and trustwor-

thiness of deep learning in security decision-making and safety-critical applications remain

to be fully demonstrated.

Hybrid DPI Techniques

While rule-based and data-driven techniques have been widely investigated, few have been

combined to offer a multifaceted attack detector/classifier with rules defined by human

experts and learned from machine intelligence. The rule-based techniques are suitable

to simpler protocols like Modbus and DNP3, where normal and attack behaviors can be

accurately modeled using rules; the machine learning techniques are highly effective for

measurements over SV or IEEE C37.118 protocols because of the complexity and uncer-

tainty of the physical system reflected in the measurements. A hybrid DPI may retain

the accuracy from existing knowledge and the adaptability for incoming variants, combing

the best from both sides for better context-aware security monitoring. As an example, to

monitor the full behavior of the IEEE C37.118 protocol, all of the four frame types may

be examined. The configuration, command, and header frames will demonstrate relatively

simple behaviors over a small number of packets; subsequently, a set of rules may be able

to characterize the normal behavior of packets and specify potential attack signatures. On

the other hand, the data frame of the IEEE C37.118 protocol carries physical measure-

ments of the power system; these data points may be impossible to model with simple rules

due to the non-linearity, uncertainty, and time-variance. The challenges will call for more

advanced data-driven techniques.
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Combined Detection-Classification DPI

Finally, we identify the lack of combined classification-detection techniques that can ac-

curately classify previously seen instances and flag zero-day behavior. Among the re-

viewed works, only two studies performed anomaly detection and classification simulta-

neously [91, 96], while the rest are investigating classification and anomaly detection sep-

arately. A hierarchical design or a collaborative pipeline may combine both detection and

classification to offer enhanced robustness against real-world threats in the smart grid.
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Table 3: Acronyms of Simulated Scenarios

Scenario Acronym
Single/Double Relay Trip Command Injection CI

Fault Replay FR
Single Relay Disabled Fault Attack RD

Single/Double Relay Disabled Line Maintenance Attack LMA
Double Relay Disabled with 1LG Fault Attack 1LF

Aurora Attack AA
Denial of Service DoS

Physical Trip of Relay at Faceplate PT
Data Injection DI

Breaker Failure BF
1/2/3 Line Ground Fault (LGF) LGF

Line to Line Fault LL
Line Maintenance LMF
Over current fault OCF
Short Circuit Fault SCF
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Chapter 4

Methodology

In this chapter we detail the experimental framework that covers the developed benchmark

power models used in the HIL co-simulation testbed, along with the communication pro-

tocols and tools used in the real-time simulation of the power system. Furthermore, we

present the extracted features used, the threat model, and the implemented anomaly detec-

tion algorithms.

4.1 Hardware-in-the-Loop Co-simulation Testbed Setup

The WAMS co-simulation testbed is made of two parts: the real-time power model simula-

tor and the communication network that connects the power model simulator with physical

and virtual IEDs found in the network. The simulated model includes simulated equip-

ment such as PMUs and PDCs that can send and receive messages over the network to

communicate with Virtual Machines (VMs) and other IEDs. As a result, the information

generated by the power model simulator can be shared with other devices deployed on the

communication network for further analysis. Fig. 8 shows a high-level view of the WAMS

co-simulation testbed.
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Figure 8: WAMS Co-simulation Testbed

4.1.1 Power Model

In this thesis, we develop the electric power models using Hypersim DRTS [155] developed

by OPAL-RT Technologies. Hypersim DRTS can integrate HIL and different SG-specific

communication protocols into the real-time simulation of the power grid, allowing real

IEDs to act as part the power model simulation. Hypersim constructs electrical power sys-

tem models using modular components that include simulated power generation sources,

line equipment, control functions, control signals, and input and output nodes for commu-

nication with real IEDs connected to the simulation. These features of Hypersim provide

the ability to monitor the operation of the power system under different conditions i.e. in-

stabilities, faults, etc. Furthermore, Hypersim provides simulated real-time power system

measurements like voltage, current and frequency. To achieve a co-simulation framework,

power systems simulated in Hypersim can send and receive messages using SG-specific

communication protocols over communication networks connected to the simulator. This
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allows the integration of real IEDs into the simulation that can exchange information and

possibly impact the behavior of the simulated system. In this chapter, we construct two

real-time transmission power models using Hypersim: IEEE 9-bus system and IEEE 39-

bus system. The capabilities provided by Hypersim render it appropriate to evaluate the

performance of DPI-based detection schemes against cyber-physical attacks in WAMS.

Details on the constructed testbed are provided in the subsequent sections.

IEEE 9-bus System

The IEEE 9-bus system, also known as the P.M. Anderson 9 bus system, represents an

approximation of the Western System Coordinating Council (WSCC) system. It comprises

9 buses, 3 generators, 3 power transformers, 6 lines and 3 loads. The base voltage levels

are 13.8 kV, 16.5 kV, 18 kV, and 230 kV and the line capacities are between 100 and 150

MVA [156]. The active power of the loads ranges from 90 MW to 125 MW, and the reactive

power ranges from 30 to 50 MVar. A single line diagram of the system is shown in Fig. 9

Figure 9: IEEE 9-bus System
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IEEE 39-bus System

The IEEE 39-bus system, also known as the 10-machine New-England Power System,

contains 39 buses, 32 transmission lines, 24 transformers, 10 generators and 19 loads. The

complete system parameters are presented in [157]. A single line diagram of the system is

shown in Fig. 10

Figure 10: IEEE 39-bus System

4.1.2 Communication Model

We implement a communication network in the testbed in order to facilitate the transmis-

sion of digital messages carrying commands and physical measurements within the WAMS

simulation. The communication network is a local IP network with configurable routing.

Since we simulate different cyberattacks compromising the communication channels in this

research work, having such an insulated and controllable network allows us to safely run
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cyberattack experiments without the risk of damaging publicly accessible devices and com-

munication channels. We employ a server with an IP communication network to connect

the Hypersim simulator with VMs, and real IEDs. VMs are deployed within the network

and are used to collect and analyze packets in real-time. On the other hand, the Hyper-

sim simulator uses built-in network interfaces to connect to the communication network.

A physical switch connects the IP network and the Hypersim simulator through which

they communicate. The communication network used in the testbed is built using Open-

Stack [158]. OpenStack is a software networking tool that provides the means to create

and manage IP communication networks. It can create VMs and virtual network switches

within the network, and configure communication channels between different machines,

routers, and switches. The virtual switches allow subnetting of the VMs into different

subnets with access to each subnet regulated by routing and firewall rules. In this work,

we choose to use OpenStack to setup the communication network because it can easily

integrate Hypersim into the IP network, create VMs that contain custom code for data col-

lection and analysis, and configure access to different subnets. It is mandatory to integrate

Hypersim into the IP network in order transport the physical measurements generated by

the transmission power model to the WAMS applications and attack detection models in

real-time. To perform traffic monitoring and launch cyberattacks, network bridges between

different subnets are set up. These bridges contain custom code that captures and modifies

packets coming from PMUs to PDCs on the fly and forwards them to other VMs that an-

alyze the packet contents. This monitoring setup allows us to launch online cyberattacks,

analyze their impact, and detect them in real-time.

4.1.3 Simulated Scenarios

In our experiments, we consider multiple scenarios as normal in our training set, and we

use data from all of them to train our anomaly detection models. We use a load flow to

66



simulate the normal behavior of the system over 24 hours as shown in Table 4 for the

9-bus system. This step is a very important aspect of our research because simulating the

power model with varying loads over time renders our experiments more realistic. As such,

they would resemble the behavior of real power models where loads are always changing.

Furthermore, physical measurements under constant loads will show very little variation,

rendering any change in their values very obvious thus not requiring advanced detection

methods to spot attacks. Fig. 11 shows the voltage variation as the load varies over 24

hours, as measured by the PMU placed on bus 6 of the IEEE 9-bus system, under different

conditions that include an increase of 50% of the load for a certain period of time, an

increase in a generator’s voltage and a decrease in a generator’s voltage at different times

of the day. Similarly, Fig. 12 shows the voltage variation as the load varies over 24 hours in

the IEEE 39-bus system under normal conditions, an increase of 50% of the load, increase

in a generator’s voltage and a decrease in a generator’s voltage at different times of the day.

We collect the data of these scenarios and feed it to the anomaly detection algorithms for

training. We include multiple variations of scenarios in our training set in order to depict

the dynamic nature of the smart grid where we can see different, fast-changing behaviors

that correspond to a safe state but are nevertheless very distinct.

4.1.4 Optimal PMU Placement

PMUs are becoming more and more an integral tool for monitoring and control in the SG.

They provide instantaneous, time-aligned voltage, current and frequency measurements at

the buses and lines connected to them. However, PMUs are expensive and require a dense

communication infrastructure to deploy, which can increase the attack surface. Therefore,

it is inadvisable and sometimes impossible to place PMUs at all buses of the grid for mon-

itoring purposes. Subsequently, it is necessary to find the minimum number of PMUs that

can provide full system observability to the control center. The Optimal PMU Placement
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Table 4: IEEE 9-bus System Load Variation Over Time

Hour Load 1 MW Load 2 MW Load 3 MW Load 1 MVAR Load 2 MVAR Load 3 MVAR
0 67.2 84.1 60.5 23.5 33.6 20.2
1 62.6 78.3 56.4 21.9 31.3 18.8
2 59.8 74.8 53.9 20.9 29.9 18
3 58.1 72.6 52.3 20.3 29 17.4
4 57.7 72.1 51.9 20.2 28.9 17.3
5 59.1 73.8 53.1 20.7 29.5 17.7
6 63 78.8 56.7 22.1 31.5 18.9
7 71.2 89.1 64.1 24.9 35.6 21.4
8 78.5 98.2 70.7 27.5 39.3 23.6
9 84.6 105.7 76.1 29.6 42.3 25.4
10 90 112.5 81 31.5 45 27
11 93.6 117 84.3 32.8 46.8 28.1
12 96.2 120.3 86.6 33.7 48.1 28.9
13 98.5 123.1 88.7 34.5 49.3 29.6
14 99.3 124.1 89.4 34.8 49.7 29.8
15 100 125 90 35 50 30
16 99.7 124.7 89.8 34.9 49.9 29.9
17 99.9 124.9 89.9 35 50 30
18 99.4 124.2 89.4 34.8 49.7 29.8
19 97.2 121.5 87.5 34 48.6 29.2
20 93.5 116.8 84.1 32.7 46.7 28
21 91.8 114.7 82.6 32.1 45.9 27.5
22 85.9 107.4 77.3 30.1 43 25.8
23 77.7 97.1 69.9 27.2 38.8 23.3

Figure 11: Load Variation in IEEE 9-bus System
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Figure 12: Load Variation in IEEE 39-bus System

Table 5: Optimal Locations of PMUs for the IEEE 9-bus and IEEE 39-bus Systems

Test System Minimum Number of PMUs PMU Locations (Bus)
IEEE 9-Bus 3 5,6,8
IEEE 39-Bus 13 2, 6, 9, 10, 11, 14, 17, 19, 20, 22, 23, 25, 29

(OPP) problem tackles this issue and aims to find the minimal suitable set of locations

where PMUs can be installed in order to ensure system observability. In this research

work, we choose not to collect the physical measurements from all possible buses, rather

we opt to install a restricted number of PMUs on select buses only, in order to ensure a

realistic setup. This approach aligns with real deployments of the smart grid previously

outlined. The buses that hold PMUs are selected by solving the optimal PMU placement

problem [159] that ensures system observability. The PMU locations for the 9-bus and

39-bus systems are taken from [160] and [161] respectively and are shown in Table 5.
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4.2 Feature Extraction

Before training the anomaly detection models, feature extraction is necessary. This is a

vital task in this research work because it can have an immense impact on the final result

of the approach. In this chapter, we focus on applying anomaly detection algorithms on

DPI-based features. Subsequently the features we use as input to these algorithms are

extracted from the payloads of the IEEE C37.118 packets sent over the communication

network. More specifically, the features we extract are the physical measurements collected

by PMUs in the field and forwarded to the control center. These features include voltage

phasors at the bus where PMUs are installed, current phasors for each line connected to

the bus, frequency and ROCOF. After extracting the features, we perform 2 preprocessing

steps: data cleaning and feature scaling. In data cleaning, we remove the instances that

only have zeros for all the features. These correspond to dropped packets which happens

occasionally over the network. Furthermore, we simulate each scenario for a specific time

period beyond which the loads become constant at a generic value thus we extract all the

instances that correspond to the simulated scenario by disregarding from the dataset all data

collected before starting the simulation of the scenario and after the end of the simulation.

All collected features are continuous variables that vary in different ranges. For example,

voltage magnitude features vary between 120,000 and 150,000 while voltage phase angles

oscillate between -180 and +180. Other features such as frequency show less variability,

keeping a value close to 60 with small variations over time. In order to ensure optimal

performance of the proposed models, we choose to scale our input data features to the range

of [0, 1]. We do so because having features with different scales can mislead the learning

algorithms, since features with larger scales can have a bigger influence on the outcome

than those with smaller ranges, and this can lead to unsatisfactory detection results. To

perform the scaling for each feature, we use the following formula:
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Xscaled =
Xoriginal −Xmin

Xmax −Xmin

(7)

where Xoriginal is the raw measurement collected from the packet, Xmin is the smallest

value for a particular feature, and Xmax is the largest value for a particular feature. Apply-

ing this transformation for each feature in the dataset individually will result in changing

the range of all the features to [0, 1].

Finally, the resulting feature vector coming from the 3 PMUs deployed in the 9-bus

system is composed of 78 features collected and the feature vector of the 39-bus has 356

features collected from 13 PMUs.

4.3 Threat Model

WAMS and their applications play a vital role in securing and ensuring the stability of the

electrical grid as shown by the reliance on these indices by grid operators when taking

control decisions. Subsequently, attackers looking to cause significant harm to the grid

find that targeting the measurements reported to these applications is very appealing. By

altering the measurements, along with a sufficient knowledge of the grid, the attacker can

portray a different scenario to the operator that might trigger unnecessary, harmful control

actions, or hide real instabilities in the grid. For example, attacks on PAM by tampering

the reported phase angles can lead to an increase in cost, power loss, and transmission line

tripping. Also attacks on FVSI by modifying the reported voltage phasors can lead to load

shedding, and blackouts. Furthermore, hiding an increase in the value of these indices can

lead to equipment damage, blackouts, etc. because the operator would not notice any insta-

bility and subsequently would fail to issue commands to bring the grid back to its normal

operation.

In addition, the WAMS-specific protocols do not offer the necessary security features to
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stop such attacks. IEEE C37.118 is the most widely used protocol currently, and it lacks

confidentiality and robust integrity features since it only offers CRC error checking. A

knowledgeable attacker can modify the measurements in the packet and recalculate the

CRC field, bypassing future integrity verifications. IEC 61850-90-5 was introduced with

added security features to address these shortcomings. It proposes the establishment of a

key distribution center to share and periodically refresh secret keys among different IEDs

for symmetric encryption and signature schemes. The proposed features enhance the secu-

rity of the communications but attackers with sufficient capabilities can still bypass them

and execute their attack successfully.

Fig. 13 shows the attack tree for successfully tampering with the reported measurements.

The attacker has 2 paths to achieve his goal: attacking the communication network or at-

tacking the PMUs directly. By gaining access to the communication network and establish-

ing a MITM, the attacker can modify the measurements and the corresponding CRC while

they are being transported over the network. However, the security measures introduced by

IEC 61850-90-5 can stop such an attack because the attacker needs the secret encryption

key to decrypt and sign the content of the packet. The second branch of the attack tree

depicts a direct attack on the PMUs in the field. This is possible via installing a malware

on the PMU, or by physically connecting to it and gaining access, which is a reasonable

assumption given that these devices are often deployed in remote, unattended locations or

in the case of an insider attack. In this scenario, both protocols are unable to deter the

attacker because the integrity and confidentiality features implemented are compromised

since the attacker controls the device and the keys stored on it. Thus, the currently used

protocols are still vulnerable to stealthy FDI attacks that can lead to severe consequences

for the smart grid.

In this research, we study 6 different stealthy FDI attacks. First we investigate attacks tar-

geting the PAM, FVSI, and ISI applications where the attacker manipulates the reported
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measurements in order to portray an instability through the attacked application. Second,

we investigate masking attacks whereby the attacker manipulates the reported measure-

ments in a manner that portrays a normal operation of the grid while one of the applica-

tions is indicating an instability. Thus the term masking suggests that the attacker tries to

hide/mask the instabilities from the controller.

4.4 Deep Autoencoders

Autoencoders are a subdivision of neural networks that are trained to predict the input they

are given. In order to do so, an autoencoder has 3 main components: encoder, decoder

and a bottleneck layer that separates the encoder and the decoder. The architecture of an

autoencoder is symmetrical with respect to the bottleneck layer, that is there are the same

number of hidden layers in the encoder and the decoder and the same number of neurons in

each layer. And since the network is trained to predict the input, both the input and output

layers have the same number of neurons. The encoder takes the input x and compresses

it, using a smaller number of neurons, to get a representation of the initial feature vector y

such that

y = φ(x) = σ(Wx+ b) (8)

where σ() is the activation function used, W is the weight matrix and b is the bias vector of

the encoder.

The compressed representation of the input layer y is known as the bottleneck layer.

The decoder is trained to take the information in the bottleneck layer and reproduce the

input layer using the information condensed in the bottleneck [162].

x̂ = ψ(y) = σ̂(Ŵy + c) (9)
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Figure 13: FDI Attack Tree
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where σ̂() is the activation function used, Ŵ is the weight matrix and c is the bias vector

of the decoder. Parameters W, b, Ŵ and c are regulated during training in order to find a set

that minimizes the reconstruction error such that

φ, ψ = argmin
φ,ψ
L(x, x̂) (10)

where L(x, x̂) is the reconstruction error. The smaller the reconstruction error, the

better the performance of the autoencoder network. To test if an instance is anomalous, we

check if its reconstruction error is greater than a set threshold. If so, the instance is flagged

as anomalous. Fig. 14 shows an overview of the architecture of an autoencoder.

Figure 14: Deep Autoencoder
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4.5 Windowed Deep Autoencoders

Windowed-Deep Autoencoders (w-DAE) are a variation of DAE neural networks that in-

corporate temporal information inherent in time-series data. w-DAE have a similar struc-

ture to DAE whereby they are comprised of 3 components: encoder, decoder, and the

bottleneck layer that divides the network symmetrically with respect to the number of hid-

den layers and the number of neurons in each layers. However, they differ from traditional

DAE in that they are not trained to reconstruct the input at their output layer. Rather, w-

DAE takes a window of consecutive samples as input and attempts to reconstruct the last

sample of the window in the output layer with the smallest reconstruction error possible.

w-DAE employs a sliding-window that covers n samples, the encoder takes this input xn

and compresses it to get a representation of the time window yn such that

yn = φ(xn) = σ(Wxn + b) (11)

where σ() is the activation function used, W is the weight matrix and b is the bias vector of

the encoder.

The decoder takes the bottleneck layer and is trained to reconstruct the last sample of

the sliding-window such that

x̂i = ψ(yn) = σ̂(Ŵyn + c) (12)

where x̂i is the prediction of the last sample of the sliding window, σ̂() is the activation

function used, Ŵ is the weight matrix and c is the bias vector of the decoder. Parame-

ters W, b, Ŵ and c are regulated during training in order to find a set that minimizes the

reconstruction error such that

φ, ψ = argmin
φ,ψ
L(xi, x̂i) (13)
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where L(x, x̂) is the reconstruction error. Similarly to DAE, an instance is considered

an anomaly if its reconstruction error is higher than the set threshold. Fig. 15 shows an

overview of the architecture of a windowed-autoencoder.

Figure 15: Windowed Deep Autoencoder

4.6 Long Short-Term Memory

RNNs [163] are a subdivision of neural networks that specialize in processing sequential

data i.e. they base their prediction on a sequence of consecutive past events. They differ

from traditional neural networks in that they handle time-series variables x0, x1 ... xt−1, xt.

RNN predict the hidden states using the following formula:

h(t) = f(h(t− 1), x(t)) (14)

where h represents the state, h(t-1) represents the past states, and x(t) represents the input at

time t. At each time step, RNNs take input x(t) and compute a new state h(t) by concate-

nating the previous state h(t−1) with the input, applying a linear map to the concatenation,
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and passing the result through a logistic Sigmoid function.

However, RNNs face serious limitations when handling long-rage sequences because

of the repeated application of Sigmoid functions that causes a large decay in the error signal

over time [164]. This problem is termed as the vanishing gradient problem.

LSTM neural networks [165] are a subdivision of RNNs designed to overcome the

shortcomings of traditional RNNs, most notably the vanishing gradient problem. LSTM

has an additional memory cell ct which is a linear combination of the previous state and

the input. In addition, LSTMs have 3 multiplicative gates that regulate the proportion of

the input that is passed to the memory cell it, and the proportion of the previous memory

cell to ignore ft. The memory cell value for input xt is computed as:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi) (15)

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf ) (16)

ct = ft ⊗ ct−1 + it ⊗ tanh(Wcxxt +Wchht−1 + bc) (17)

where σ is the component-wise logistic Sigmoid function, and⊗ is the component-wise

Hadamard product.

Finally, the current state ht at each time step is governed by the third gate ot that is

calculated by:

ot = σ(Woxxt +Wohht−1 +Wocct−1 + bo) (18)

ht = ot ⊗ tanh(ct) (19)
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Fig. 16 shows an LSTM cell adapted from [166].

Figure 16: Structure of LSTM Cell

4.7 One-Class SVM

SVM is a supervised learning technique that separates the data instances by a hyperplane

or a set of hyperplanes. The hyperplane is constructed in a way that provides the greatest

margin of separation among the classes of the data. The margin is the sum of the shortest

distances from the nearest data point of each class to the hyperplane. This design of the

hyperplane, that underlines the differences between the categories, helps the model gener-

alize better when classifying unseen data, thus doing so correctly. Equation 20 shows how

the margin is calculated in order to construct the optimal hyperplane:

f(x) = β0 +
n∑
i=1

αi(x, xi) (20)
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where β0 is the bias term, x is the new instance, xi is an instance from the training set, and

αi with i = 1, ...n are the set parameters.

In addition, SVM is effective in handling nonlinearly separable datasets because it maps

the data points (which are represented by vectors), from the input space to a higher dimen-

sional feature space where they become linearly separable. This is done by using a kernel

function that takes two vectors from the input space and projects the resulting vector to the

feature space. Some popular kernel functions are polynomial kernel, radial basis function

kernel and sigmoid kernel [167].

OC-SVM is a version of SVM that is used for unsupervised learning. OC-SVM trains

on one class label only and it aims to find a boundary that separates the instances of that one

class from everything else. Thus it is considered an anomaly detection technique because

it separates instances belonging to the only class it was trained on, from all other instances

which will be considered abnormal with respect to the learned class. Fig. 17 shows a two

dimensional example of anomaly detection using OC-SVM.
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Figure 17: Two Dimensional Representation of OC-SVM [1]
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Chapter 5

Experimental Results and Analysis

In this chapter, we explain the experimental setup used and we give details regarding the

datasets collected from our testbed. Furthermore, we explain the evaluation metrics used to

validate the anomaly detection methods and we present the results of the anomaly detection

techniques tested on the 6 FDI scenarios we implemented. Finally, we end this chapter with

an analysis of the experimental results.

5.1 Experimental Setup

We develop a HIL testbed to simulate the real-time behaviour of the power grid. We focus

on having different hardware coming from actual vendors, and a real-time aspect to our

experiments in order to have a simulation that is as close to real world smart grid operations

as possible. We implement our power model in Hypersim [155], the physical measurements

in the simulation are transported using the IEEE C37.118 protocol [19] over a network

emulated using OpenStack [158], where they are ultimately captured and decoded using

Wireshark [168] before further analysis.

We train our anomaly detection models on a dedicated server with Intel(R) Xeon(R) CPU

E5-2630 v3 @ 2.40GHz, 300 GB RAM, and Nvidia Titan X GPU. The implementation of
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WAMS applications, and the anomaly detection models is done using Python programming

language [169]. In addition we use Elasticsearch [170] as a database for data analytics.

Kibana [171] is used in addition to Elasticsearch for visualization on the dashboard.

5.1.1 Datasets

The training, validation, and testing datasets collected from the testbed have the same size

for both the IEEE 9-bus system and the IEEE 39-bus system. The training dataset is made

up of 35,000 normal samples and the validation set is made up of 24,000 samples. The

testing dataset is imbalanced with 75% normal and 25% attack, because of the difficulty of

collection of FDI attack instances in realistic setups. Furthermore, we take into considera-

tion different attack capabilities by testing the performance of the techniques for different

number of PMUs attacked ranging from just 1 attacked PMU to all possible compromised

PMUs. As explained in Section 4.2, the features extracted include voltage, current, fre-

quency and ROCOF measurements collected by the PMUs. These measurements are pre-

processed and normalized to the range of [0, 1] to account to the different magnitudes and

avoid misleading the training algorithms. Figures 18, 19, 20 and 21 show the raw voltage,

current, frequency and ROCOF measurements respectively, collected from a PMU. From

the figures we can see that the variability of the values of these features differs, for ex-

amples, the values of frequency are mainly constricted in the range of 60 as opposed to

voltage where the values vary between 136,000 and 139,000 volts over time. Moreover,

figures show that the relation between certain features is visible whereas other features

don’t show such characteristic. For example, we see that current increases when voltage

decreases and vice versa, however we don’t see such a relation between voltage and fre-

quency. Similarly, Figures 22, 23, 24 and 25 show the corresponding normalized voltage,

current, frequency and ROCOF measurements from the same PMU.
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Figure 18: Raw Voltage Measurements

Figure 19: Raw Current Measurements
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Figure 20: Raw Frequency Measurements

Figure 21: Raw ROCOF Measurements
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Figure 22: Scaled Voltage Measurements

Figure 23: Scaled Current Measurements
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Figure 24: Scaled Frequency Measurements

Figure 25: Scaled ROCOF Measurements
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To further explore these relationships, we plot the correlation matrix of these features.

Fig. 26 shows the correlation matrix of measurements collected from the same PMU.

We see that there is a strong correlation between measurements coming from same PMU

like voltage and current where the correlation measure reaches about -0.75. This shows a

strong negative relationship between the 2 measurements, which means that these features

vary inversely consistently. On the other hand, we notice a correlation measure close to

0 between voltage and frequency which asserts that these features don’t exhibit a strong

relationship.

Figure 26: Correlation Matrix of PMU 9 Measurements

Furthermore, we investigate the correlation of measurements coming from different

PMUs in the same system. Fig. 27 shows the correlation of measurements between 2

PMUs in the 9-bus system. We notice that there are also correlations between measure-

ments coming from different PMUs. Voltage measurements coming from different PMUs
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show a strong positive correlation among themselves and voltage and current measurements

exhibit a strong negative correlation. Furthermore we notice that there is a weak correlation

between voltage and frequency coming from different PMUs.

Figure 27: Correlation Matrix of PMU 9 and PMU 10 Measurements

5.2 Parameter Tuning

Hyperparameters play an important role when developing machine learning algorithms.

They are the parameters that govern the training process of the algorithm. Usually, ma-

chine learning algorithms depend on multiple hyperparamteres that need to be tuned in

order to achieve optimal results. In this work, we perform hyperparameter tuning on the

tested techniques in order to find the set of hyperparamters that results in the best outcome.

89



Next, we will showcase the hyperparameter tuning process and present the set of hyper-

paramters chosen for each used method. We test the DAE with 1, 3, 5, 7, 9, 11, 13 and 15

hidden layers, and for different activation functions that include Tanh, Sigmoid, Relu, Elu,

Softsign, Linear, and Selu functions. Finally, we pick the architecture-activation function

combination that performs best on the validation set. The same process is followed for the

other algorithms. First we train a DAE with one hidden layer with the different activation

function. Fig. 28 shows the reconstruction error for the different activation functions. Fig.

29 shows the log of the error in order to get a clearer view of the results.

Figure 28: Reconstruction Error of Different Functions with 1 Hidden Layer

We then train a DAE with 5, 11, and 15 hidden layer with the different activation func-

tion. Figures 30, 31 and 32 shows the log of the reconstruction error for the different

architectures respectively.

From the previous experiments Tanh, Selu, and Elu functions have consistently outper-

formed the rest of the other activation functions and have showed similar reconstruction

errors. To choose between them we compare the run time for each activation function

for different network architectures. Fig. 33 shows a comparison of the run-time of the 3
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Figure 29: Log (Reconstruction Error) of Different Functions with 1 Hidden Layer

Figure 30: Log (Reconstruction Error) of Different Functions with 5 Hidden Layers

activation functions for different network architectures.

Based on the previous experiments we conclude that Tanh, Selu, and Elu activation

functions have similar performance and that Tanh is faster than Selu and Elu across different

network architectures
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Figure 31: Log (Reconstruction Error) of Different Functions with 11 Hidden Layers

Figure 32: Log (Reconstruction Error) of Different Functions with 15 Hidden Layers

Next, we test the Tanh function with more network architectures. Fig. 34 shows the

result of this experiment.

From Fig. 34 we see that the performance doesn’t ameliorate by going from 11 to 13

or 15 hidden layers (~2.5e-04). To choose between them we compare the run time of Tanh
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Figure 33: Run Time for Different Network Architectures

Figure 34: Reconstruction Error with Different Number of Hidden Layers

for 11, 13, and 15 hidden layers. Fig. 35 shows the result of this time comparison.

Finally, based on all the previous experiments, the best parameter combination for DAE

is 11 hidden layers with Tanh activation function since it balances between performance and

running time.
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Figure 35: Run Time for Different Network Architectures

The same process is repeated for the other techniques to reach the optimal set of hy-

perparamaters. Table 6 shows the hyperparamaters of the implemented DAE, w-DAE and

LSTM models. Table 7 shows the hyperparamaters of the implemented OC-SVM models

Table 6: Hyperparameters of DAE, w-DAE, and LSTM models

Model Hidden Layers Activation Function Optimizer
9-bus DAE 11 Tanh Adam

9-bus w-DAE 11 Tanh Adam
39-bus DAE 11 Tanh Adam

39-bus w-DAE 13 Tanh Adam
9-bus LSTM 4 Tanh Adam

39-bus LSTM 8 Tanh Adam

Table 7: Hyperparameters of OC-SVM models

Model Kernel Gamma Nu
9-bus OC-SVM RBF 0.1 0.01

39-bus OC-SVM RBF 0.1 0.01
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5.2.1 Evaluation Metrics

To evaluate the performance of detection techniques, a confusion matrix is calculated. A

confusion matrix is a table that summarizes the prediction results of a technique. Confusion

matrices generally have two rows and two columns: the columns represent the actual class

and the rows represent the predicted class. Furthermore, they portray the total number of

errors made by the model, and it highlights the types of the made errors. Table 8 shows an

example of a confusion matrix.

Table 8: Generic Confusion Matrix

Class 0
Actual

Class 1
Actual

Class 0
Predicted TN FN

Class 1
Predicted FP TP

Four counts are calculated in a confusion matrix: True positive (TP), true negative (TN),

false positive (FP) and false negative (FN):

• TP indicates when an instance is positive and it is predicted to be positive.

• TN indicates when an instance is negative and it is predicted to be negative.

• FP indicates when an instance is negative and it is predicted to be positive.

• FN indicates when an instance is positive and it is predicted to be negative.

Different evaluation metrics can be derived from a confusion matrix. In this research

work, we evaluate the performance of our proposed techniques using 4 metrics: Accuracy,

False Positive Rate, False Negative Rate, and F1. These metrics defined next.
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Accuracy

Accuracy is calculated by dividing the number of correct predictions over the total number

of predictions as defined in Equation 21. Accuracy gives the same weight to both FPs and

FNs which can mislead the interpretation of the result. This is especially important in cases

of unbalanced datasets where one class occurs significantly more than the other because

errors in the minority class might get overshadowed by the majority class.

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

False Positive Rate

FPR is calculated by dividing the number of false positives over all the negative cases in

the dataset as defined in equation 22. In other words, FPR is the probability of false alerts

being raised.

FPR =
FP

FP + TN
(22)

False Negative Rate

FNR is calculated by dividing the number of false negatives over all the positive cases in

the dataset as defined in equation 23. In other words, FNR is the probability of missing

actual positive events.

FNR =
FN

FN + TP
(23)

F1

F1 is the weighted average of recall and precision. F1 takes into account both FPs and

FNs while giving them different weights as opposed to accuracy where both errors have
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the same weight. In order to calculate F1, precision and recall should be calculated first.

Precision is the number of TPs divided by all the predicted positive cases as defined in

Equation 24. Precision shows how often the model is correct when predicting a positive

class.

precision =
TP

TP + FP
(24)

Recall is the number of TPs divided by all the actual positive cases as defined in Equa-

tion 25. Recall shows how many of the actual positive cases are predicted by the model.

recall =
TP

TP + FN
(25)

Finally, F1 is calculated using equation 26

F 1 =
2 · precision · recall
precision+ recall

(26)

5.3 Results

In this section, we will discuss each attack individually, we will show the WAMS applica-

tion index under normal conditions and under FDI attack, and finally we will present the

detection results for different number of compromised PMUs.

5.3.1 IEEE 9-bus System

In this section we discuss the attacks and detection results for all the tested models in the

IEEE 9-bus system. In the tables we present all 4 metrics for the different number of

compromised PMUs. Table 9 presents the results for the FDI attacks on the IEEE 9-bus

applications, and Table 10 presents the results for the masking attacks in the IEEE 9-bus

97



system. Next we detail attacks on each application with figures showing their impact and

the detection results.

Attack on PAM

The stealthy FDI attack on the PAM application in the 9-bus system targets line 2. Fig. 36a

shows the PAM index of line 2 under normal conditions and Fig. 36b shows the same

index under FDI attack. The attacker modifies the measurements to gradually increase the

perceived transferred power by 2 MW. Fig. 37 presents the performance, evaluated using

the F1 measure, of the studied anomaly detection algorithms in detecting this attack.

Figure 36: PAM Experiment on Line 2 of IEEE 9-bus System
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Figure 37: F1 for Different Number of Compromised PMUs

Attack on FVSI

The stealthy FDI attack on the FVSI application in the 9-bus system targets line 4. Fig. 38a

shows the FVSI index of line 4 under normal conditions and Fig. 38b shows the same

index under FDI attack. The attacker modifies the measurements to gradually increase the

perceived FVSI until it reaches a critical value (0.8). Fig. 39 presents the performance,

evaluated using the F1 measure, of the studied anomaly detection algorithms in detecting

this attack.
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Figure 38: FVSI Experiment on Line 4 of IEEE 9-bus System

Figure 39: F1 for Different Number of Compromised PMUs

Attack on ISI

The stealthy FDI attack on the ISI application in the 9-bus system targets bus 6. Fig. 40a

shows the ISI index of bus 6 under normal conditions and Fig. 40b shows the same index

under FDI attack. The attacker modifies the measurements to gradually decrease the per-

ceived ISI until it reaches a critical value (0.2). Fig. 41 presents the performance, evaluated

using the F1 measure, of the studied anomaly detection algorithms in detecting this attack.
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Figure 40: ISI Experiment on Bus 6 of IEEE 9-bus System

Figure 41: F1 for Different Number of Compromised PMUs

Masking Attack on PAM

In the masking FDI attack against PAM in the 9-bus system, the attacker hides an instability

on line 2 where the transferred power increases by 2 MW. When the attacker notices this

instability in the system, he starts modifying the reported measurements to display normal

operation, thus hiding the instability from the controller. This attack is the opposite of the

previous attack on the PAM application. Fig. 42 presents the F1 performance of the studied

anomaly detection algorithms in detecting this attack.
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Figure 42: F1 for Different Number of Compromised PMUs

Masking attack on FVSI

In the masking FDI attack against FVSI in the 9-bus system, the attacker hides an instability

on line 4 where the index increase to 0.8. When the attacker notices this instability in

the system, he starts gradually modifying the reported measurements to display normal

operation, thus hiding the instability from the controller. This attack is the opposite of the

previous attack on the FVSI application. Fig. 43 presents the performance, evaluated using

the F1 measure, of the studied anomaly detection algorithms in detecting this attack.
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Figure 43: F1 for Different Number of Compromised PMUs

Masking attack on ISI

In the masking FDI attack against ISI in the 9-bus system, the attacker hides an instability

on bus 6 where the index decreases to 0.2. When the attacker notices this instability in

the system, he starts gradually modifying the reported measurements to display normal

operation, thus hiding the instability from the controller. This attack is the opposite of the

previous attack on the ISI application. Fig. 44 presents the performance, evaluated using

the F1 measure, of the studied anomaly detection algorithms in detecting this attack.
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Figure 44: F1 for Different Number of Compromised PMUs

Table 9: Detection Results for FDI Against Applications in the IEEE 9-bus System.

PAM FVSI ISI

Metrics # of Compromised
PMUs w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM

Accuracy
1 0.986 0.973 0.922 0.886 0.997 0.997 0.992 0.922 0.971 0.961 0.929 0.848
2 0.975 0.97 0.947 0.824 0.997 0.997 0.989 0.922 0.973 0.966 0.938 0.849
3 0.732 0.734 0.734 0.731 0.632 0.634 0.634 0.557 0.362 0.365 0.364 0.346

F1

1 0.974 0.947 0.831 0.734 0.996 0.995 0.989 0.904 0.976 0.968 0.941 0.869
2 0.95 0.941 0.891 0.524 0.996 0.996 0.985 0.904 0.978 0.973 0.949 0.8708
3 0.013 0.001 0.015 0.021 0.006 0.001 0.01 0 0.003 0 0.008 0.0121

FPR
1 0.001 0.0006 0.004 0.0086 0.0002 0.0002 0.0037 0.1197 0.0004 0.0004 0.0082 0.0614
2 0.001 0.0006 0.0042 0.0086 0.0002 0.0002 0.0037 0.1197 0.0004 0.0004 0.0082 0.0614
3 0.001 0.0006 0.0016 0.0086 0.0002 0.0002 0.0009 0.1197 0.0004 0.0004 0.0049 0.0614

FNR
1 0.0477 0.0995 0.2808 0.4063 0.0084 0.0088 0.0161 0.00321 0.0457 0.0611 0.107 0.2032
2 0.0922 0.1106 0.1874 0.6368 0.0068 0.0072 0.0225 0.00321 0.0427 0.0529 0.0929 0.20143
3 0.9934 0.9994 0.9923 0.9889 0.9972 0.9996 0.9952 1 0.9984 0.9998 0.9958 0.9936

Table 10: Detection Results for Masking FDI Attacks in the IEEE 9-bus System.

PAM FVSI ISI

Metrics # of Compromised
PMUs w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM

Accuracy
1 0.986 0.973 0.922 0.886 0.997 0.997 0.992 0.922 0.971 0.961 0.929 0.848
2 0.975 0.97 0.947 0.824 0.997 0.997 0.989 0.922 0.973 0.966 0.938 0.849
3 0.732 0.734 0.734 0.731 0.632 0.634 0.634 0.557 0.362 0.365 0.364 0.346

F1

1 0.974 0.947 0.831 0.734 0.996 0.995 0.989 0.904 0.976 0.968 0.941 0.869
2 0.95 0.941 0.891 0.524 0.996 0.996 0.985 0.904 0.978 0.973 0.949 0.8708
3 0.013 0.001 0.015 0.021 0.006 0.001 0.01 0 0.003 0 0.008 0.0121

FPR
1 0.001 0.0006 0.004 0.0086 0.0002 0.0002 0.0037 0.1197 0.0004 0.0004 0.0082 0.0614
2 0.001 0.0006 0.0042 0.0086 0.0002 0.0002 0.0037 0.1197 0.0004 0.0004 0.0082 0.0614
3 0.001 0.0006 0.0016 0.0086 0.0002 0.0002 0.0009 0.1197 0.0004 0.0004 0.0049 0.0614

FNR
1 0.0477 0.0995 0.2808 0.4063 0.0084 0.0088 0.0161 0.00321 0.0457 0.0611 0.107 0.203
2 0.0922 0.1106 0.1874 0.6368 0.0068 0.0072 0.0225 0.00321 0.0427 0.0529 0.0929 0.2014
3 0.9934 0.9994 0.9923 0.9889 0.9972 0.9996 0.9952 1 0.9984 0.9998 0.9958 0.9936
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5.3.2 IEEE 39-bus System

In this section we discuss the attacks and detection results for all the tested models in the

IEEE 39-bus system. In the tables we present all 4 metrics for the different number of

compromised PMUs. Table 11 presents the results for the FDI attacks on the IEEE 39-bus

applications, and Table 12 presents the results for the masking attacks in the IEEE 39-bus

system. Next we detail attacks on each application with figures showing their impact and

the detection results.

Attack on PAM

The stealthy FDI attack on the PAM application in the 39-bus system targets line 32.

Fig. 45a shows the PAM index of line 32 under normal conditions and Fig. 45b shows

the same index under FDI attack. The attacker modifies the measurements to gradually

increase the perceived transferred power by 1 MW. Fig. 46 presents the performance, eval-

uated using the F1 measure, of the studied anomaly detection algorithms in detecting this

attack.

Figure 45: PAM Experiment on Line 32 of IEEE 39-bus System
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Figure 46: F1 for Different Number of Compromised PMUs

Attack on FVSI

The stealthy FDI attack on the FVSI application in the 39-bus system targets line 27.

Fig. 47a shows the FVSI index of line 27 under normal conditions and Fig. 47b shows

the same index under FDI attack. The attacker modifies the measurements to gradually

increase the perceived FVSI until it reaches a critical value (0.7). Fig. 48 presents the per-

formance, evaluated using the F1 measure, of the studied anomaly detection algorithms in

detecting this attack.
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Figure 47: FVSI Experiment on Line 27 of IEEE 39-bus System

Figure 48: F1 for Different Number of Compromised PMUs

Attack on ISI

The stealthy FDI attack on the ISI application in the 39-bus system targets bus 20. Fig. 49a

shows the ISI index of bus 20 under normal conditions and Fig. 49b shows the same index

under FDI attack. The attacker modifies the measurements to gradually decrease the per-

ceived ISI until it reaches a critical value (0.3). Fig. 50 presents the performance, evaluated

using the F1 measure, of the studied anomaly detection algorithms in detecting this attack.
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Figure 49: ISI Experiment on Bus 20 of IEEE 39-bus System

Figure 50: F1 for Different Number of Compromised PMUs

Masking Attack on PAM

In the masking FDI attack against PAM in the 39-bus system, the attacker hides an instabil-

ity on line 32 where the transferred power increases by 1 MW. When the attacker notices

this instability in the system, he starts gradually modifying the reported measurements to

display normal operation, thus hiding the instability from the controller. This attack is the

opposite of the previous attack on the PAM application. Fig. 51 presents the performance,
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evaluated using the F1 measure, of the anomaly detection algorithms in detecting this at-

tack.

Figure 51: F1 for Different Number of Compromised PMUs
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Masking attack on FVSI

In the masking FDI attack against FVSI in the 39-bus system, the attacker hides an insta-

bility on line 27 where the index increase to 0.7. When the attacker notices this instability

in the system, he starts gradually modifying the reported measurements to display normal

operation, thus hiding the instability from the controller. This attack is the opposite of the

previous attack on the FVSI application. Fig. 52 presents the performance, evaluated using

the F1 measure, of the studied anomaly detection algorithms in detecting this attack.

Figure 52: F1 for Different Number of Compromised PMUs
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Masking attack on ISI

In the masking FDI attack against ISI in the 39-bus system, the attacker hides an instability

on bus 20 where the index decreases to 0.3. When the attacker notices this instability in

the system, he starts gradually modifying the reported measurements to display normal

operation, thus hiding the instability from the controller. This attack is the opposite of the

previous attack on the ISI application. Fig. 53 presents the performance, evaluated using

the F1 measure, of the studied anomaly detection algorithms in detecting this attack.

Figure 53: F1 for Different Number of Compromised PMUs
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Table 11: Detection Results for FDI Against Applications in the IEEE 39-bus System.

PAM FVSI ISI

Metrics # of Compromised
PMUs w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM

Accuracy

1 0.933 0.935 0.804 0.859 0.999 0.996 0.948 0.995 0.956 0.957 0.928 0.96
2 0.973 0.972 0.846 0.899 0.999 0.999 0.954 0.995 0.981 0.981 0.939 0.974
3 0.989 0.993 0.859 0.922 0.998 0.999 0.962 0.995 0.991 0.988 0.97 0.993
4 0.989 0.993 0.864 0.929 0.998 0.999 0.961 0.995 0.998 0.999 0.971 0.997
5 0.99 0.993 0.876 0.932 0.998 0.999 0.961 0.995 0.998 0.999 0.973 0.997
6 0.99 0.993 0.884 0.935 0.998 0.999 0.961 0.995 0.998 0.999 0.973 0.997
7 0.991 0.993 0.899 0.939 0.998 0.999 0.961 0.995 0.998 0.999 0.974 0.997
8 0.989 0.993 0.909 0.944 0.998 0.999 0.961 0.995 0.998 0.999 0.974 0.997
9 0.988 0.993 0.905 0.947 0.998 0.999 0.961 0.995 0.998 0.999 0.983 0.998

10 0.955 0.993 0.771 0.921 0.998 0.999 0.962 0.995 0.998 0.999 0.982 0.998
11 0.918 0.86 0.742 0.91 0.999 0.999 0.962 0.995 0.998 0.999 0.982 0.998
12 0.779 0.756 0.726 0.899 0.998 0.999 0.962 0.995 0.998 0.999 0.982 0.998
13 0.761 0.761 0.734 0.816 0.997 0.998 0.852 0.955 0.998 0.999 0.982 0.998

F1

1 0.837 0.842 0.445 0.595 0.998 0.993 0.921 0.992 0.934 0.936 0.893 0.941
2 0.939 0.938 0.608 0.739 0.998 0.999 0.931 0.992 0.973 0.973 0.911 0.963
3 0.977 0.985 0.676 0.81 0.997 0.999 0.943 0.993 0.987 0.983 0.958 0.99
4 0.977 0.985 0.691 0.83 0.997 0.999 0.943 0.993 0.997 0.999 0.96 0.996
5 0.978 0.985 0.724 0.838 0.997 0.999 0.943 0.993 0.997 0.999 0.962 0.996
6 0.98 0.985 0.747 0.848 0.997 0.999 0.943 0.992 0.997 0.999 0.962 0.996
7 0.981 0.985 0.786 0.858 0.997 0.999 0.943 0.993 0.997 0.999 0.963 0.996
8 0.977 0.985 0.811 0.87 0.997 0.999 0.943 0.992 0.997 0.999 0.964 0.996
9 0.975 0.985 0.804 0.879 0.997 0.999 0.943 0.992 0.998 0.999 0.976 0.997

10 0.899 0.985 0.343 0.808 0.997 0.999 0.943 0.993 0.998 0.999 0.976 0.997
11 0.8 0.597 0.191 0.776 0.998 0.999 0.943 0.993 0.998 0.999 0.976 0.997
12 0.181 0.001 0.094 0.74 0.997 0.999 0.943 0.993 0.998 0.999 0.976 0.997
13 0.016 0 0.067 0.399 0.996 0.998 0.837 0.944 0.997 0.999 0.976 0.997

FPR

1 0.00057 0 0.04563 0.0029 0.00065 0 0.05378 0.00629 0.00161 0.0001 0.02479 0.00343
2 0.00057 0 0.04563 0.0029 0.00065 0 0.05378 0.00629 0.00252 0.0001 0.02479 0.00343
3 0.00059 0 0.05709 0.0029 0.00131 0 0.0553 0.00629 0.00252 0.0001 0.02479 0.00343
4 0.00059 0 0.05709 0.0029 0.00174 0 0.05595 0.00629 0.0023 0.0001 0.02479 0.00343
5 0.00059 0 0.05729 0.0029 0.00174 0 0.05595 0.00629 0.0023 0.0001 0.02502 0.00343
6 0.00059 0 0.05729 0.0029 0.00174 0 0.05595 0.00629 0.0023 0.0001 0.02502 0.00343
7 0.00059 0 0.05729 0.0029 0.00174 0 0.05595 0.00629 0.0023 0.0001 0.02502 0.00343
8 0.00059 0 0.05729 0.0029 0.00174 0 0.05595 0.00629 0.0023 0.0001 0.02502 0.00343
9 0.00059 0 0.05807 0.0029 0.00174 0 0.05595 0.00629 0.00252 0.0001 0.0264 0.00343

10 0.00157 0 0.05886 0.002923 0.00239 0 0.05595 0.00629 0.00252 0.0001 0.0264 0.00343
11 0.00157 0 0.05866 0.0029 0.00218 0 0.05595 0.00629 0.00275 0.0001 0.0264 0.00343
12 0.00157 0 0.05866 0.0029 0.00261 0 0.05595 0.00629 0.00275 0.0001 0.0264 0.00343
13 0.00191 0 0.04754 0.0029 0.00399 0.00142 0.2381 0.0724 0.00298 0.0001 0.0264 0.00343

FNR

1 0.27869 0.273 0.67274 0.5732 0.00232 0.01302 0.04928 0.00232 0.12085 0.12085 0.15698 0.10507
2 0.11293 0.117 0.4997 0.4086 0.00232 0.00232 0.02929 0.00232 0.04859 0.05233 0.12542 0.06645
3 0.0425 0.029 0.39891 0.3127 0.00232 0.00232 0.00186 0.00139 0.02076 0.03281 0.04028 0.01453
4 0.0425 0.029 0.37948 0.2848 0.00232 0.00232 0.00186 0.00139 0.00249 0.00249 0.03571 0.00249
5 0.04068 0.029 0.33212 0.272 0.00232 0.00232 0.00186 0.00139 0.00249 0.00249 0.03198 0.00208
6 0.03825 0.029 0.29751 0.2568 0.00232 0.00232 0.00139 0.00186 0.00249 0.00249 0.03032 0.00208
7 0.03461 0.029 0.2374 0.2417 0.00232 0.00232 0.00139 0.00139 0.00249 0.00249 0.02865 0.00208
8 0.04311 0.029 0.19672 0.2228 0.00232 0.00232 0.00139 0.00186 0.00249 0.00249 0.02824 0.00208
9 0.04675 0.029 0.20765 0.2095 0.00186 0.00232 0.00139 0.00186 0 0.00249 0.00125 0

10 0.18033 0.029 0.75531 0.316333 0 0.00232 0.00046 0.00093 0 0.00208 0.00166 0
11 0.3303 0.575 0.87553 0.3607 0 0.00232 0.00046 0.00093 0 0.00208 0.00208 0
12 0.89982 0.999 0.94171 0.4074 0 0.00232 0.00046 0.00139 0 0.00208 0.00208 0
13 0.99211 1 0.95993 0.7486 0.00186 0.00232 0.00139 0.00093 0 0.00208 0.00208 0
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Table 12: Detection Results for Masking FDI Attacks in the IEEE 39-bus System.

PAM FVSI ISI

Metrics # of Compromised
PMUs w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM w-DAE DAE LSTM OC-SVM

Accuracy

1 0.738 0.737 0.725 0.833 0.997 0.998 0.852 0.955 0.995 0.997 0.872 0.933
2 0.96 0.915 0.785 0.743 0.997 0.998 0.852 0.955 0.996 0.997 0.872 0.933
3 0.963 0.961 0.82 0.828 0.997 0.998 0.852 0.955 0.996 0.997 0.872 0.933
4 0.965 0.964 0.838 0.867 0.997 0.998 0.852 0.955 0.996 0.997 0.872 0.933
5 0.986 0.964 0.876 0.891 0.997 0.998 0.852 0.955 0.996 0.997 0.872 0.933
6 0.988 0.964 0.902 0.896 0.997 0.998 0.852 0.955 0.996 0.997 0.872 0.933
7 0.988 0.964 0.915 0.897 0.997 0.998 0.852 0.955 0.996 0.997 0.872 0.933
8 0.988 0.964 0.91 0.886 0.997 0.998 0.852 0.955 0.996 0.997 0.872 0.933
9 0.987 0.964 0.907 0.876 0.997 0.998 0.852 0.955 0.996 0.997 0.871 0.932

10 0.987 0.964 0.852 0.904 0.998 0.998 0.852 0.954 0.996 0.997 0.865 0.932
11 0.962 0.874 0.782 0.892 0.998 0.998 0.852 0.954 0.98 0.981 0.85 0.919
12 0.801 0.737 0.745 0.845 0.998 0.998 0.852 0.954 0.977 0.973 0.789 0.893
13 0.73 0.73 0.73 0.719 0.62 0.62 0.5 0.579 0.596 0.598 0.479 0.534

F1

1 0.064 0.045 0.101 0.584 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
2 0.921 0.812 0.412 0.174 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
3 0.927 0.921 0.552 0.566 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
4 0.931 0.928 0.613 0.696 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
5 0.973 0.928 0.73 0.763 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
6 0.976 0.928 0.796 0.775 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
7 0.976 0.928 0.829 0.778 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
8 0.976 0.928 0.818 0.75 0.996 0.998 0.837 0.944 0.994 0.996 0.862 0.922
9 0.976 0.928 0.81 0.722 0.996 0.998 0.837 0.944 0.995 0.996 0.861 0.921

10 0.976 0.928 0.66 0.798 0.997 0.998 0.837 0.943 0.995 0.996 0.853 0.921
11 0.925 0.695 0.405 0.766 0.997 0.998 0.837 0.943 0.974 0.975 0.835 0.905
12 0.421 0.046 0.222 0.624 0.997 0.998 0.836 0.943 0.971 0.966 0.751 0.871
13 0.01 0 0.14 0.023 0.009 0 0.1 0.016 0.007 0 0.029 0.006

FPR

1 0.0009 0 0.02742 0.02016 0.00399 0.00142 0.2381 0.0724 0.0064 0.0036 0.21242 0.11228
2 0.0009 0 0.02742 0.02016 0.00399 0.00142 0.2381 0.0724 0.00612 0.0036 0.21242 0.11228
3 0.0009 0 0.02742 0.02016 0.00399 0.00142 0.23838 0.0724 0.00612 0.0036 0.21242 0.11228
4 0.0009 0 0.02742 0.02016 0.00399 0.00142 0.23867 0.0724 0.00612 0.0036 0.21242 0.11228
5 0.0009 0 0.02742 0.02016 0.00399 0.00142 0.23838 0.0724 0.00612 0.0036 0.21242 0.11228
6 0.0009 0 0.02742 0.02016 0.00399 0.00142 0.23838 0.0724 0.00612 0.0036 0.21242 0.11228
7 0.0009 0 0.02742 0.02016 0.00371 0.00142 0.23838 0.0724 0.00612 0.0036 0.21269 0.11228
8 0.0009 0 0.02742 0.02016 0.00371 0.00142 0.23867 0.0724 0.00612 0.0036 0.21269 0.11228
9 0.0009 0 0.02742 0.02016 0.00371 0.00142 0.23895 0.0724 0.0064 0.0036 0.21242 0.11228

10 0.00202 0 0.02944 0.02016 0.00371 0.00142 0.23895 0.0724 0.0064 0.0036 0.21242 0.11228
11 0.00202 0 0.02944 0.02016 0.00371 0.00142 0.23895 0.0724 0.00612 0.0036 0.21242 0.11228
12 0.00202 0 0.02944 0.02016 0.00371 0.00142 0.23838 0.0724 0.00612 0.0036 0.21242 0.11228
13 0.00202 0 0.02944 0.02016 0.00285 0.00142 0.23838 0.0724 0.00612 0.0036 0.21242 0.11228

FNR

1 0.96661 0.97693 0.94293 0.56466 0.00186 0.00232 0.00093 0.00093 0.00208 0.00208 0.00208 0
2 0.14511 0.31694 0.72131 0.89982 0.00186 0.00232 0.00046 0.00046 0.00208 0.00208 0.00208 0
3 0.13358 0.14572 0.59077 0.58349 0.00232 0.00232 0.00046 0.00046 0.00208 0.00208 0.00166 0
4 0.12629 0.13418 0.5258 0.43716 0.00232 0.00232 0.00046 0.00046 0.00208 0.00208 0.00166 0
5 0.04979 0.13418 0.38312 0.34973 0.00232 0.00232 0.00046 0.00046 0.00208 0.00208 0.00166 0
6 0.04372 0.13418 0.29022 0.33273 0.00232 0.00232 0.00046 0 0.00208 0.00208 0.00166 0
7 0.04372 0.13418 0.23983 0.32908 0.00232 0.00232 0.00046 0 0.00208 0.00208 0.00166 0
8 0.04372 0.13418 0.25744 0.36733 0.00232 0.00232 0.00046 0 0.00208 0.00208 0.00166 0
9 0.04432 0.13479 0.26897 0.40437 0.00232 0.00232 0.00046 0 0.00042 0.00208 0.00374 0.00208

10 0.04129 0.13479 0.46873 0.29994 0.00046 0.00232 0.00093 0.00232 0.00083 0.00249 0.02035 0.00249
11 0.13479 0.46691 0.72617 0.34487 0.00046 0.00232 0.00093 0.00232 0.04153 0.04319 0.05606 0.03447
12 0.73163 0.97632 0.86521 0.52155 0.00046 0.00232 0.00186 0.00232 0.04776 0.06146 0.20764 0.09884
13 0.99514 1 0.91864 0.98786 0.99535 1 0.92701 0.9907 0.99668 1 0.98048 0.99668
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5.4 Result Analysis

From the presented results, we can see that DAE has the best performance across all exper-

iments, followed by w-DAE, then LSTM and OC-SVM. LSTM and OC-SVM performed

similarly in most cases with some instances where LSTM outperformed OC-SVM and

others where OC-SVM outperforming LSTM. In particular, we notice that LSTM’s perfor-

mance slightly deteriorate on the IEEE 39-bus system where it falls below OC-SVM which

was able to scale better on the bigger system.

Additionally, we notice that including time information in the feature vector does not im-

prove the detection results: DAE and w-DAE had almost the same performance, and they

both had better results than LSTM in all test cases.

Furthermore, we see that the detection performance increases when more PMUs are com-

promised. This is especially evident in the 39-bus system where the number of PMUs is

bigger. Such a limited attack will not be capable of showing an effect on the targeted ap-

plication serious enough to illicit a reaction from the controller or that is consistent across

different areas in the grid. The tested methods perform worse on these limited attacks than

more dangerous attacks because the subtle alterations to the small number of measurements

results in a reconstruction error that may not be big enough to cross the threshold in most

instances of the attack. This is caused by the fact that the reconstruction errors of all fea-

tures are summed and averaged which can lead to suppressing errors coming from the small

number of subtle variations.

Moreover, we notice low FPR especially for DAE and w-DAE. Low FPR shows a low

number of false alerts raised. False alerts are a significant problem that cyberattack de-

tection teams face because, when numerous, false alerts can become overwhelming and

time-costly and subsequently they will lower the confidence of the operators in the detec-

tion models. As a result, operators will start to ignore raised alarms which can be very

dangerous in case the alarm is accurate and corresponds to a real cyberattack. Therefore,

114



low FPR is a very important indicator of the good performance of the detection model.

On the other hand, we see in attacks on the PAM application that once the attacker has con-

trol of most of the system, the detection performance deteriorates until it reaches almost 0

when all PMUs are compromised. This is due to the fact that increasing the load by 50%

can lead to an increase in PAM indices of some lines. Therefore if the attacker alters most

or all measurements in the system to show an increase in PAM indices, he will be portray-

ing to the controller an operational scenario where there is a 50% increase in some loads,

which is a scenario that is included in the training set. To this point, we also notice sim-

ilar behavior with the masking attacks because in those scenarios, the attacker is altering

the measurements to show the normal behavior of the grid, effectively portraying a normal

scenario that was also included in the training set. This shows that the techniques avoid

over-fitting and are able to generalize. However, we don’t see this pattern of behavior for

attacks on FVSI and ISI because the scenario that shows an instability in these applications

is not included in the training scenarios, thus the models won’t recognize it and will flag it.

Most notably, the detection results are consistent for the 9 and 39-bus systems which attests

for the scalability of the proposed technique, and the robustness of the results. In addition,

we measure the required detection time for each incoming packet and the results show that

it is in the order of milliseconds, varying between 0.06 seconds and 0.15 seconds for the

different models. This shows that the detection process doesn’t cause any significant delay

on the communication and is suitable for high-rate protocols used in WAMS.
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Chapter 6

Conclusion

Smart Grid security is a crucial research topic that is always evolving and attracting more

research effort due to the importance of protecting critical infrastructures against the new

threat of cyberattacks. In this research work, we present a comparative study of data driven

anomaly detection techniques for identifying stealthy FDI attacks in WAMS. We design,

implement, and evaluate a new platform for WAMS security monitoring that utilizes DPI

and anomaly detection methods in order to identify cyberattacks. We formulate the FDI

problem as an anomaly detection problem to account for the sparsity of attack data in real-

istic setups. Furthermore, we focus on linking the attacks to specific WAMS applications

in order to observe the impact such attacks can have on the grid. The features used for

anomaly detection are extracted from WAMS-specific protocols via DPI. We emphasise

on performing the experiments in a realistic environment by incorporating real hardware

in the simulations, and by limiting the number of PMUs in the system. The studied tech-

niques proved to be effective in detecting FDI attacks under different attacker conditions.

Moreover, the techniques demonstrated that they are scalable by exhibiting consistent per-

formance on both the 9-bus and the 39-bus systems. By accomplishing this work, our

research contributions consist of:
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1. Building a realistic WAMS testbed that utilizes hardware from commercial vendors,

simulates different operational scenarios, and monitors multiple stability indices.

2. Developing FDI attacks that target WAMS applications and showing the impact that

those attacks can have on the grid.

3. Formulating the FDI attack detection problem as an anomaly detection problem in or-

der to account for the lack of FDI attack data found in the real facilities thus aligning

the solution with realistic setups.

4. Testing and comparing the performance and scalability of four anomaly detection

techniques in identifying FDI attacks by analysing DPI-based features.

Our work can be improved in the future from different aspects. First, FNR is signifi-

cantly higher than FPR, this is due to the fact that the attacker modifies the measurements

gradually to achieve the ultimate goal so when the attack is launched there is a phase where

the measurements are being modified but they are still very similar to the normal mea-

surements. Although this slight variation in the measurements is not enough to portray an

instability to the controller, it is nevertheless considered as an attack instance and the pro-

posed algorithms are not able to flag such subtle changes. Further experimentation can help

in resolving this issue and lowering the FNR. Second, supplementing DPI-based features

with other sources of knowledge such as network system management (NSM) information

and device logs can possibly improve the detection performance because it provides a holis-

tic view of the network behavior. For example, in the FDI attack tree presented, the attacker

can either infiltrate the network or take control of the PMU. Including NSM features in the

attack detection model would provide more information on the communication network

such as packet interarrival time and number of opened and closed connections. This infor-

mation can be leveraged to detect rogue devices and MITM setups in the network which are

used to launch FDI attacks. In addition, including device logs can detect when a PMU in the
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field is compromised, physically or via malware, by monitoring the processes running on

the PMU and this could convey to the detection model that the measurements received are

modified at the level of the PMU. Third, combining anomaly detection and classification

can help in identifying the anomalous behavior and eradicating it. The anomaly detection

model would flag any abnormal behavior and pass it to the classification model in order to

determine the exact nature of the attack. Furthermore, this approach can be expanded to dif-

ferentiate between zero-day attacks and known attacks: zero-day attacks would be flagged

by the anomaly detection model but the classification model would not be able to confi-

dently associate it with a know attack, while known attacks would be flagged as anomalous

and classified with high confidence. This would enhance the security of WAMS by provid-

ing the operator with more information regarding the event taking place however it requires

the simulation and collection of numerous attack scenarios. Fourth, combining rule-based

and data-driven anomaly detection to monitor the different protocol frames can enhance the

security of WAMS communications. For example, IEEE C37.118 has four different frames

that are used to establish the connection between the IEDs, set/change the configuration of

the packets, and carry the measurements. In this work we focused on monitoring the data

frames that carry the measurements using data-driven techniques. However, future work

can expand on this effort by monitoring the configuration, command, and header frames us-

ing rule-based anomaly detection, because the behavior of these frames is simpler and the

information they carry can be modeled using rules developed based on the specifications in

the protocol and the sequential behavior of these frames. Fifth, to ensure the safe deploy-

ment of the SG, research effort should focus on monitoring the security of the different SG

domains such as substations, distribution systems, microgirds, etc. The security monitoring

approaches of the different domains would compliment each other and ensure a more se-

cure SG. For example, an attack on the transmission system can be linked to another attack
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on the distribution system launched by the same cyberattackers. By monitoring both sys-

tems, the controller can draw a link between both cyberattacks, increasing the controller’s

awareness of the situation and facilitating the response and recovery process.
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