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Abstract

Utilizing Computer Vision and Data Mining for Predicting Road Traffic
Congestion

Mohsen Amoei

Traffic Congestion wastes time and energy, which are the two most valuable commodi-

ties of the current century. It happens when too many vehicles try to use a transportation

infrastructure without having enough capacity. However, researches indicate that adding

extra lane without studying the future consequences does not improve the situation. Our

goal is to add another layer of information to the traffic data, find which type of vehicles

are contributing to road traffic congestion, and predict future road traffic congestion and

demands based on the historical data.

We collected more than 400,000 images from traffic cameras installed in Autoroute

40, in the city of Montreal. The images were collected for five consecutive weeks from

different locations from April 14, 2019, up until May 18, 2019. To process these images

and extract useful information out of them, we created an object detection and classification

model using the Faster RCNN algorithm. Our goal was to be able to detect different types

of vehicles and see if we have traffic congestion in an image. In order to improve the

accuracy and reduce the error rate, we provided multiple examples with different conditions

to the model. By introducing blurry, rainy, and low light images to the model, we managed

to build a robust model that could do the detection and classification task with excellent

accuracy.

Furthermore, by extracting the information from the collected images, we created a

dataset of the number of vehicles in each location. After analyzing and visualizing the

data, we find out the most congested areas, the behavior of the traffic flow during the day,

peak hours, the contribution of each type of vehicle to the traffic, seasonality of the data,

and where we can see each type of vehicle the most.

Finally, we managed to predict the total number of congestion incidents for seven days

based on historical data. Besides, we were able to predict the total number of different types

of vehicles on the road as well. In order to do this task, we developed multiple Regression,
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Deep Learning, and Time Series Forecasting models and trained them with our vehicle

count dataset. Based on the experimental results, we were able to get the best predictions

with the Deep Learning models and succeeded in predicting future road traffic congestion

with excellent accuracy.

Keywords: Computer Vision, Data Mining, Time Series Forecasting, Road Traffic
Congestion, Deep Learning
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Chapter 1

Introduction

"The two most valuable commodities of the 21st century are time and energy; traffic con-

gestion wastes both" (Pan et al., 2012). Traffic is one of the most critical problems of major

cities like Montreal. Our goal is to add another layer of information to the traffic data, find

which type of vehicles are contributing to road traffic congestion, and predict future road

traffic congestion and demands based on the historical data.

We collected more than 400,000 images from traffic cameras installed in Autoroute

40, in the city of Montreal. The images were collected for five consecutive weeks from

different locations from April 14, 2019, up until May 18, 2019. To process these images

and extract useful information out of them, we created an object detection and classification

model using the Faster RCNN algorithm. Our goal was to be able to detect different types

of vehicles and see if we have traffic congestion in an image. In order to improve the

accuracy and reduce the error rate, we provided multiple examples with different conditions

to the model. By introducing blurry, rainy, and low light images to the model, we managed

to build a robust model that could do the detection and classification task with excellent

accuracy.

Furthermore, by extracting the information from the collected images, we created a

dataset of the number of vehicles in each location. After analyzing and visualizing the
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data, we find out the most congested areas, the behavior of the traffic flow during the day,

peak hours, the contribution of each type of vehicle to the traffic, seasonality of the data,

and where we can see each type of vehicle the most.

Finally, we managed to predict the total number of congestion incidents for seven days

based on historical data. Besides, we were able to predict the total number of different types

of vehicles on the road as well. In order to do this task, we developed multiple Regression,

Deep Learning, and Time Series Forecasting models and trained them with our vehicle

count dataset. Based on the experimental results, we were able to get the best predictions

with the Deep Learning models and succeeded in predicting future road traffic congestion

with excellent accuracy.

1.1 Research Objective

We are all familiar with traffic congestion and experience it in our daily commutes. Traffic

congestion happens when too many vehicles try to use a transportation infrastructure with-

out having enough capacity (Papageorgiou et al., 2003). However, researches indicate that

adding extra lane without studying the future consequences does not improve the situation

(Duranton and Turner, 2011).

In order to study the data in a more granular fashion, we decided to process the image

data instead of sensor or GPS collected data. By using the image dataset, we will have all

the data we need, but we have to find a way to extract information and use them in our

favor. In this research, without installing new equipment, we managed to create a valuable

image dataset and used state-of-the-art algorithms to convert the data into information.

By adding another layer of information to the traffic data, we will be able to understand

the contribution of each type of vehicle to the traffic, analyze the demand, and the behavior

of traffic flow in more detail and predict future events with more accuracy. This way, we can

prioritize the locations which need more infrastructure and find more insightful information
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about the general distribution and the balance of the resources and the demand in the city

of Montreal.

1.2 Contributions

The contributions of this research are divided into three main sections:

• Data Collection, Cleaning, and Preprocessing As we mentioned in previous para-

graphs, our goal in this thesis is to predict traffic congestion by using image datasets

instead of GPS or sensor-generated data. In the first step, We built an image dataset

from the Autoroute 40 in the city of Montreal traffic cameras. We collected more

than 400,000 images for five consecutive weeks. After analyzing the data, we de-

veloped an image classifier to clean the data and reduce the amount of noise in the

image dataset. The main contribution of this step is a clean image dataset from the

traffic cameras.

• Implementing Object detection and Classification Models The next step after

building the image dataset is extracting information out of them. We trained an object

detection and classification model using the Faster RCNN algorithm and managed to

detect each type of vehicle and traffic congestion in an image. We applied this model

to the entire image dataset and created a vehicle count dataset. After analyzing the

data, we managed to find the contribution of each type of vehicle (personal car, bus,

truck) to the traffic, traffic flow behavior, peak hours, and trends for each type of

vehicle. The main contribution of this step alongside the mentioned results is a clean

vehicle and congestion count dataset with a time series relationship.

• Developing Multiple Time Series Forecasting Models After creating the vehicle

count dataset, we can use this dataset to predict future demand and traffic congestion.
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In order to do this task, we developed multiple time series forecasting models with

different Regression, Deep Learning, and time series forecasting algorithms. We

researched to find the best model and how we can get the best prediction results with

different architectures. The main contribution of this step is predicting future traffic

congestion, the total number of each type of vehicle, and the best model to do this

task.

1.3 Thesis Structure

In this thesis, first, we start with definitions about the algorithms and tools we are going

to use for this research and get familiar with them. Moreover, we review the researches

that are related to the work we are doing in this thesis. Later, we discuss our methodology

and how we implement our models. After the methodology, we go over the results that we

obtained from each approach and compare them. In the end, we discuss the overall results

and the next steps for this research.
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Chapter 2

Background

2.1 Introduction

In this section, we discuss the materials we need to develop this thesis. In our research in

each step of the works, we use different platforms and different libraries, which we go over

them and get familiarized with them. Furthermore, we explore the ways that we can utilize

them in our favor to get the best results. First, we explore the deep learning platforms

and libraries and discuss the advantages and disadvantages of each of them. Later, we

explore the performance metrics and see how we can evaluate our models. After discussing

performance metrics, we explore the object detection and classification algorithms and get

to know more about their architecture and capabilities. In the end, we discuss the time

series forecasting algorithms and explore some of the existing libraries for these kinds of

tasks as well.

2.2 Road Traffic Congestion

We are all familiar with traffic congestion and experience it in our daily commutes. It

wastes energy and time and has lots of negative effects on the environment. (Bharadwaj
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et al., 2017) conducted a field study in order to find the relationship between fuel consump-

tion and the greenhouse gas emission. The results of this study shows that the more travel

time under road traffic congestion is significantly responsible for moreCO2 emissions from

the fuel consumption. On the other hand it has negative impacts on the public heath as well.

(Levy et al., 2010) evaluate the public health impacts of being exposed to fine particulate

matter concentrations associated with traffic congestion. The analyses shows that the public

health impact is significant enough and should be considered when evaluating new policies

for alleviating the traffic situation.

Traffic congestion happens when too many vehicles try to use a transportation infras-

tructure without having enough capacity (Papageorgiou et al., 2003). However, researches

indicate that adding extra lane does not necessarily improve the situation. (Duranton and

Turner, 2011) investigated the effect of lane kilometers of roads on vehicle-kilometers

travel for different types of road in the US cities and provided direct evidence that the

extension of most major roads resulted in a proportional increase in traffic.

Based on the TomTom Traffic indexing (TomTom, 2019) congestion level of the city

of the Montreal is ranked third in the Canada, tenth in North America and 138th Globally.

TomTom collects data from GPS devices based on the actual driven trips. In figure 1 we

can see an screenshot of the TomTom website, informing the current traffic situation of the

city of Montreal.

2.3 Deep Learning Platforms and Libraries

To create different models from simple Regression models to more complex deep neural

network models, we need to use some external libraries and platforms. Our goal in this

section is to explore our options and get familiar with the advantages and disadvantages of

each one. Later, we see how we can utilize them in our research to get the best results.
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Figure 1: Traffic status of the city of Montreal on 18:36 February 25th, 2020. Courtesy of
(TomTom, 2019)

Tensorflow Or Tf in short, is an open-source platform for machine learning. It was de-

veloped by Google and has a comprehensive stes of tools, which makes it one of the best

libraries for machine learning studies. Tensorflow computations are exposed as data flow

graphs and have a unique tool called Tensorboard, which plots all the necessary graphs dur-

ing and after the training phase. One of the disadvantages of Tensorflow is the complexity

and difficulty of creating a simple model and deploying it. (Tensorflow, 2019).

Keras In the previous paragraph, we explained what is Tensorflow and for what purposes

we can use it. We mentioned that one of the disadvantages of Tensorflow is the complexity

of developing simple neural networks and create a model from them. Keras, which is a

high-level neural network API, is the solution to this problem. It was written in Python

programming language, and it is capable of running on top of the platforms like Tensor-

flow.(Keras, 2019).

Keras has different libraries with predefined neural network models and algorithms. We

can create a simple neural network by just calling the library and put them into the desired

order and architecture. We use Keras mainly for training our deep learning models for time
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series traffic forecasting.

Scikit-Learn Scikit-Learn or Sklearn is a free machine learning library developed for

Python programming language and features many regression, classification, and clustering

algorithms. We mainly use the Sklearn for our regression analysis task and evaluating our

predictions with the performance metrics available in the library (Scikit-learn, 2019).

Numpy When we are dealing with data, most of the time, they are in the form of big

matrices or arrays. On the other hand, most of the complicated calculations happen when

we are dealing with a large amount of data, so we need a library not only to handle these

calculations correctly but also do it in the shortest time possible. Numpy is a library written

mostly in the C language and developed for different languages to carry out large-scale and

multidimensional mathematical calculations. Most of the libraries dealing with large scale

data or massive calculations use Numpy in the back-end. We use Numpy for a variety of

tasks from getting mean or median to transform an image data to a three-dimensional array

of values to process it (Numpy, 2019).

Pandas Python has a long history of being one of the best programming languages for

data manipulation and preparation, but not for data analysis and modeling. Python Data

Analysis Library or Pandas is an open-source library that provides high-performance data

structures and data analysis tools for the Python programming language. As mentions in

the previous paragraph, Pandas is one of the libraries that use Numpy for handling all the

large-scale calculations and data manipulation. We mainly use Pandas for creating different

data frames, data manipulations and performing data transformations (Pandas, 2019).

Matplotlib Data visualization can help us get better insights into our data. It is easier to

understand the differences and catch the essential information in one glance. Matplotlib

is one of the best libraries developed for python language for data visualization purposes.
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It offers a variety of 2D and 3D plots with different shapes and lots of configurations.

Creating plots and fugues alongside, providing different text information and changing the

color map of the plots is not a hard task in Matplotlib. We use this library mainly for

visualizing our datasets, creating images with bounding-boxes on them and plotting the

predictions next to the target values for time series forecasting models (Matplotlib, 2019).

Seaborn Seaborn is a Python library which is built on top of Matplotlib to create more

colorful plots. (Seaborn, 2019).

LabelImg Our image dataset consists of images with lots of information in them. It

would be hard for the model to understand each type of vehicle on its own from these

images. To help the model understand what exactly it should look for, we annotate each

type of vehicle in the image and create another file with coordinates of the mentioned

annotations in it. The new file is in the XML format and has the same name as the image.

To do this task, we used a graphical annotation tool called LabelImg. LabelImg is written

in Python programming language and uses the QT library for its graphical interface, which

makes it easy for us to annotate all the images that we need for the training purposes. In

Figure 2 you can see the environment of the LabelImg (Tzutalin, 2015).

Figure 2: LabelImg Platform Environment
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2.4 Performance Metrics

Regardless of the model and its purpose, we are always curious to see how the model

performs on the test dataset. Our goal in this section is to explore different performance

metrics that we can use to evaluate our models. Since there are different performance

metrics for different tasks, we separate them into two different subsections to explore them

based on their architecture and their results. First, we explore how we can measure the

performance of a classification task, and later we discuss different prediction performance

metrics and how we utilize each of them.

2.4.1 Estimation and Prediction Performance Metrics

In the previous section, we discussed the performance metrics that can help us get a better

understanding of the performance of our classification models. In this section, we explore

the metrics that we can use to know the performance of our regression and time series

forecasting models. We what are the advantages and disadvantages of each metrics and see

how we can utilize them to understand our models better.

Mean Squared Error Mean Squared Error, which also called Mean Squared Deviation,

is an estimator measure the average of the squares of the errors. The errors in our case are

the distance between the target values and predicted values. Mean Squared error can be

calculated as follows:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (1)

One thing that we can notice from (1) is that the distance between the target and the pre-

dicted value is squared so that the total value can accumulate to a large value.
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Mean Absolute Error Mean Absolute Error, like MSE, measures the distance between

the target and predictions.

MAE =
1

n

n∑
i=1

|Yi − Ŷi| (2)

R2 Score We explored two different ways to measure the distance between the target

values and prediction values in previous paragraphs. One of the problems with the previous

approaches is that since we are concerned with the distance of two values, we are not

considering their scale into the equation. This means that for larger values, we have bigger

errors, which does not necessarily represent the performance of the model. To solve this

issue and get a better understanding of the model’s performance, we can use R squared,

which is defined as follows:

SStot =
n∑

i=1

(yi − ŷi)2 (3)

(3) represents the total sum of the squares which is proportional to the variance of the

data.

SSres =
∑
i

(yi − fi)2 =
∑
i

e2i (4)

(4) is the sum of the squares of the residuals.

R2 = 1− SSres

SStot

(5)

(5) is one of the most general definitions of the R2 score or the coefficient of determi-

nation. We can see the R2 score can be ranging from minus infinity to one. The bigger the

value of R2 score is, the better the model can explain the behavior of the data, or in other

words, The closer the R2 score value is to one, the more accurate the model is.
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2.5 Object Detection and Classification Algorithms

In this section, we discuss object detection and classification methods that we can use to

train our vehicle detection model. First, we explore the Convolutional Neural Network

(CNN) and its advantages in detail. Later we discuss Faster Region-based Convolutional

Neural Network (Faster R-CNN) and explore why we are building our model with this

algorithm.

2.5.1 Convolutional Neural Networks (CNN)

CNN was inspired based on the research of Hubel and Wisel on the visual cortex of a

cat (Hubel and Wiesel, 1962). They proposed two different complexity for the cell structure

of neurons in the visual cortex of the cat. One activates when the cat sees a simple shape.

The other one activates when the cat sees a shifted or rotated version of the original object.

In 1998, Le Cunn, Bottou, Bengio, and Haffner in the handbook of brain theory and neural

networks proposed CNNs (LeCun et al., 1995).

Although the idea of CNN is not new, it became popular relatively recently. The main

reasons contributing to the recent usage of CNNs are(Koirala et al., 2018):

• The exponential growth in processing power

• Data collection devices like cameras and sensors

In order to be able to utilize a CNN model and get good results, you need to have a

huge amount of data and enough computational power to process it. The mentioned factors

helped cover these problems.

Moreover, the publication of Krizhevsky’s article (Krizhevsky et al., 2012) showed a

massive improvement for object detection and image recognition using ImageNet Deng

et al. (2009) dataset, which drew a lot of attention from the researchers to the potential of

CNN in the image recognition area (Yosinski et al., 2014).
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In this thesis, we will discuss on the applications of CNN for object detection and

classification task and time series forecasting task as well. Later in this chapter, we describe

a specific type of the CNN family, R-CNN, and explain how this type, in particular, helps

us develop a vehicle classifier.

2.5.2 Region-Based Convolutional Neural Networks (R-CNN)

We discussed how CNN became famous for its capabilities in image processing. In this

section, we will discuss an approach that made a huge improvement in this area. Gir-

shick (Girshick et al., 2014) named the approach R-CNN: Regions with CNN features and

the reason behind it was the fact that they combined region proposals with CNNs. In fig-

ure 3, we can see the architecture of the RCNN in four steps. This approach combined two

key insights:

1. Enables applying high-capacity CNN to bottom-up region proposals to localize and

segment objects

2. In case of scarce labeled training data, supervised pre-training for auxiliary task fol-

lowed by domain-specific fine-tuning yields a significant performance boost.

Figure 3: Object detection system overview for R-CNN, Courtesy of (Girshick et al., 2014)

The proposed object detection model consists of three modules. The objective of the

first module is to generate category independent region proposals. These proposals are
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regions that are fed to the next module as the areas that are most likely to find an object.

The next module is a CNN that looks into each of the proposed regions to extract a fixed-

length feature vector. The third module is a set of class-specific linear Support Vector

Machines (SVMs). R-CNN also managed to achieve a mean average precision(mAP) of

53.7% on PASCAL VOS 2010. (Girshick et al., 2014) Although the accuracy of R-CNN

is good, it has some major drawbacks, which makes it challenging to use. Some of these

drawbacks are (Girshick, 2015):

1. Multi-stage pipeline for training the model

2. Training the model requires lots of space and time

3. Applying the model on images for object detection is slow

In the next paragraph we will explore a way to improve speed and accuracy of the

R-CNN model.

Fast R-CNN In the previous paragraph, we discussed how R-CNN works and what are

the advantages and disadvantages of this algorithm. One of the significant drawbacks of

R-CNN is the speed for the training of using the model for object detection. The main

reason that the R-CNN is slow is due to the fact that it operates a ConvNet forward pass for

each of the object proposals without sharing the computations(Girshick, 2015). The goal

of Fast R-CNN is to fix the mentioned problems with the R-CNN. In figure 5, we can see

the architecture of the new approach. An input image and the multiple regions of interest

are input into a fully convolutional neural network. There is a fixed-sized feature map for

each region of interest (ROI). Each ROI is pooled into the mentioned feature map and then

mapped into a feature vector by fully connected layers. For each ROI, there are two output

vectors in the network:

• Softmax probabilities
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• Per-class bounding box regression offsets.

Figure 4: Fast R-CNN architecture, Courtesy of (Girshick, 2015)

The advantages of Fast RCNN are (Girshick, 2015):

1. The Higher detection quality(mAP) than previous methods

2. Training is no longer a multi-stage and using a multi-task loss

3. Training can update all network layers

4. No disk storage is required for feature caching

Faster R-CNN In the previous paragraphs, we explored the state-of-art approaches for

object detection and classification. First, we discussed the advantages and disadvantages of

R-CNN and how Fast R-CNN answered those issues. In this paragraph, we explore another

approach that tried to improve these models from both speed and accuracy perspective.

The Faster R-CNN approach tries to reduce the training and testing time of the model by

improving the region proposal computations. The new region proposal network (RPN)

shares full-image convolutional features with the detection network resulting in cost-free

region proposals(Ren et al., 2015). The architecture of the new RPN can be seen in the

figure 5.

The results in terms of both speed and accuracy for the Faster R-CNN object detec-

tion system was 73.2% mAP on PASCAL VOC 2007 and 70.4% mAP on PASCAL VOC
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Figure 5: Region Proposal Network (RPN) architecture, Courtesy of (Ren et al., 2015)

2012(Ren et al., 2015). Since we have a limited amount of computational resources, we

need a model to do the calculations fast while not sacrificing the accuracy, which with

Faster R-CNN, we can achieve these goals.

2.6 Time Series Forecasting Algorithms and Models

In this section, we discuss different time series forecasting algorithms and explore the

mathematical idea behind each of them. First, we talk about different regression analy-

sis algorithms, explore their differences and similarities, and discuss the advantages and

disadvantages of each of them based on their capabilities. Later, we explore different neu-

ral network models and try to understand how each architecture of these networks work

and what are the ways to find the fine-tuned models. In the end, we explore two different

models that are mainly developed for different time series forecasting tasks and talk about

how they work and what could be achieved using them.
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2.6.1 Regression Analysis

There are many different types of regression available to study, but in this thesis, we mainly

focused on three different regression analysis algorithms. First, we start with the simplest

form of regression, which is Linear Regression, and then we explore the Polynomial Re-

gression. At last, we see what Random Forest Regression is and how we can improve our

predictions with it.

Linear Regression Linear regression is the simplest form of regression analysis, which

studies the linear relationship between two variables. The linear regression equation (6) is

a straight line that defines the effect of independent variable X on the dependent variable

Y .

Y = aX + b (6)

In (6), a is the slope of the line, and b is the y-intersect. The regression line lets one

to predict the value of dependent variable Y from the independent variable X (Schneider

et al., 2010). To mention a few examples, we would be able to predict a person’s salary

from his or her years of experience. In our case, we can use linear regression to predict

future traffic situation to predict different types of vehicle contributing to the traffic based

on the traffic situation.

Polynomial Regression In the previous paragraph, we discussed the linear regression and

how the dependent and independent variables could be related. However, the relationship

between these variables is not always linear. Polynomial regression studies the relationship

of variables which are related to each other with higher degrees. The polynomial function

of order k consists of using the explanatory variable X in different powers, including the

power of k in the regression equation.
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Y = a0X + a1X
2 + ...+ akX

k + b (7)

Adding an order to the equation adds a segment with different slop signs to the curve

representing the fitted values (Polynomial-Regression, 2019)(LEGENDRE, 1998).

Random Forest Regression The idea of the Random Forest was proposed by Beri-

man (Breiman, 2001), which added another layer of randomness to bagging. Unlike stan-

dard trees that each node splits using the best split between all variables, in the Random

Forest, each tree splits based on the best subset of predictors, which are randomly selected

at the given node. In comparison to other approaches like SVMs and even neural networks,

this idea proved to be performing better and being robust against over fitting (Breiman,

2001)(Liaw et al., 2002).

The random forest regression algorithm can be summarized in three steps (Liaw et al.,

2002):

1. Draw ntree bootstrap samples from the original dataset

2. For each of the bootstrap samples, at each node randomly sample mtry of the predic-

tors and chose the best split from those variables.

3. For regression task, the predictions are calculated by getting the average of the pre-

dictions of the ntree trees

Later we explain that how we used Sklearn to create the random forest regression model

and find the best number of predictors with a simple search.

2.6.2 Deep Learning Methods

In the previous section, we explored different types of regression models and explored the

mathematical ideas behind them. In this section, we discuss more complex approaches and

18



dive into the idea of neural networks and deep learning methodology. Just like regression

analysis, there are lots of different types of neural networks that are suitable for the time

series forecasting tasks. First, we explore the simplest form of neural networks, which is

Artificial Neural Networks (ANN). Next, we reuse the CNN with a different design for a

times series forecasting task. Later we explore another type of neural network, which is

the Recurrent Neural Networks (RNN), and see how they learn better by perceiving some

of the information in each neuron. In the end, we discuss another type of RNNs, which is

Long Short Term Memory (LSTM), and see how it can fix the issues of not recalling the

far past information that we had in RNN.

Artificial Neural Networks (ANN) Artificial neural networks are known as computing

systems inspired by biological neural networks that constitute animal brains. The neural

network is a framework for different machine learning algorithms to process complex data

inputs. These data inputs can be images, signals, voice recordings. Just like a human brain,

you can train such a system to perform tasks not by coding explicitly but rather through

considering similar examples.

The most basic structural and functional unit of a neural network is a neuron, which is

illustrated in figure 6. These neurons are generally stacked together in the layered structure

connected via weights, as shown in figure 7. These systems are self-learning and trained

through backward or forward propagation. Neural networks are the fundamental blocks on

which deep architectures are built.

Each cell can have multiple inputs and multiple outputs. To produce the outputs of

the neuron, input signals are multiplied by their weight and then combined together and

passed to the transfer function. The most commonly used transfer function is sigmoid

function (Agatonovic-Kustrin and Beresford, 2000), which produces a value between 0

and 1.

ANNs without cycles are called feedforward neural networks (FNNs). The most widely
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Figure 6: Model of an Artificial Neuron. Courtesy of (Agatonovic-Kustrin and Beresford,
2000)

Figure 7: Model of an Artificial Neural Network. Courtesy of (Anderson and McNeill,
1992)
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used form of FNN is the multi-layer perception (MLP) (Rumelhart et al., 1985)(Bishop

et al., 1995).

Recurrent Neural Network (RNN) In the previous paragraph, we discussed ANNs in

which their connections did not form cycles. By adding cycles to the neural network, we

can create an RNN. Just like ANNs, there are many types of RNNs proposed by many

researchers as well (Kawakami, 2008).

As discussed in the previous paragraph, an MLP only maps from input to output vectors,

but RNNs can map from the entire history of previous input vectors to each of the output

vectors. This helps the neural network to persist some of the information from previous

inputs in the network’s internal state and affects the output. Figure 8 shows a Recurrent

Neural Network alongside the unfolding version where the information from previous steps

is conveyed to the next steps (Tai and Liu, 2016).

Figure 8: On the left side we can see a typical RNN and on the right side is the unfolding
version. Courtesy of (Tai and Liu, 2016).

In this thesis, we are interested in one of the variations of RNNs, Long Short Term

Memory(LSTM), which solves a fundamental issue with this type of neural network, and

that is not being able to remember key information from far past.

Long Short Term Memory(LSTM) As mentioned before, Recurrent neural networks

can use their feedback connections to store representations of recent input events in the

form of activation. Although the idea is fascinating, there is a problem when it comes to
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practical use. The problem, as (Hochreiter and Schmidhuber, 1997) explained, is the error

signals flowing backward in time tend to either first, blow up, or second vanish. Basically,

what it means is that the RNN has a problem with remembering the information from the

very past. (Hochreiter and Schmidhuber, 1997) represents the idea of LSTM as a novel

recurrent network architecture. In Figure 9 we can see the architecture of an LSTM cell.

Figure 9: LSTM Memory Cell with Gates. Courtesy of (Soutner and Müller, 2013).

2.6.3 Time series Forecasting Models

In the previous sections, we explored different algorithms from regression analysis and

deep learning models. In this section, we discuss two well-known time series forecasting

platforms. The first platform is ARIMA, which has been around for a few decades, and

there are lots of research utilizing ARIMA to implement a time series forecasting model.

The second platform, Prophet, which is recently developed by the Facebook company, has

the same goal of automating time series forecasting tasks.

ARIMA Almost everyone who is dealing with time series forecasting had heard the name

of ARIMA. ARIMA is one of the widely used time series forecasting models and stands for
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Auto-regressive integrated moving average and created by Box and Jenkins in 1970(Box

et al., 2015). ARIMA models can represent several different types of time series tasks like

Auto-regressive, Moving average, and the combination of these two. One of the significant

downsides of this library is the pre-assumed linear form of the model, which means that

ARIMA is only able to capture the pattern of the data if there is a linear correlation structure

that exists between the time series values(Zhang, 2003).

ARIMA model has three components, which are the pure autoregressive model (p), the

moving average model (q), and the number of differences needed to make the time series

model stationary (d). This model is usually organized as the following formation(Chen

et al., 2008):

∇d = (1− B)d (8)

Φ(B) = 1− ∅1B − · · · − φpB
p (9)

Θ(B) = 1− θ1B − · · · − θ0Bq (10)

where p, d and q are all integers.

Φ(B)∇dxt = Θ(B)εt (11)

E(εt) = 0, V ar(εt) = σ2
ε , E(εtεs) = 0, s 6= t (12)

Exsεt = 0, ∀s < t (13)

The εt is the estimated residual at each point and σ2
ε is the variance of residuals.

The formulation of the ARIMA model can be summarized in the following four steps(Tseng
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and Tzeng, 2002)(Chen et al., 2008):

1. Identifying the components of the ARIMA model which are the p, q, and d

2. Coefficient estimation

3. Fitting test on the estimated residuals

4. create future forecasted values based on the historical data

Prophet Like ARIMA, Facebook Prophet is a time series forecasting model that uses

the analyst-in-the-loop approach. This approach helps analysts to use their knowledge to

alter the model and add some coefficient to it without having any understanding of the

underlying statistics(Taylor and Letham, 2018). Figure 10 illustrate the model approach.

Figure 10: Analyst in the loop model. Courtesy of (Taylor and Letham, 2018)

To alter the model for achieving better results, there are for coefficients that can be

identified to the model:

• Capacities: To specify the total market size

• Changepoints: Known dates of change points

• Holidays and seasonality: If a holiday has an impact on the data and the predictions

it can be specified beforehand
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• Smoothing parameters: The analyst can directly change the global or local effect of

holiday magnitude and tell the model how much variation is expected.

The Facebook Prophet model can be decomposed into three components: trend, sea-

sonality, and holidays and they are combined in the following equation(Taylor and Letham,

2018):

y(t) = g(t) + s(t) + h(t) + εt (14)

In (14), three different things are affecting the final results, which are the periodic s(t)

and non-periodic g(t) trends plus the holidays h(t) which occur on irregular schedule over

one or more days. The error term εt represents the changes which model could not capture.

2.7 Conclusion

Before we started surveying other scientific research and implementing our methodology,

we needed to familiarize ourselves with some basic definitions, platforms, algorithms, and

libraries. In this section, we started the discussion with the introduction of several deep

learning libraries and explained how each one of them could help us to achieve our goals.

Later we reviewed different performance metrics and explored their differences. Then

we discussed object detection and classification algorithms and explored the very idea of

computer vision and how we can utilize it for our research. At last, we explored time series

forecasting algorithms and models, which can help us predict future trends of traffic based

on the historical data.
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Chapter 3

Literature Review

3.1 Introduction

In the previous section, we reviewed some definitions, platforms, algorithms, and libraries.

Our goal in this section is to explore other researchers’ approaches and ideas to see how

they are utilizing these tools to conduct research and see their results. First, we explore

researches related to object detection and classification and divide the papers into two dif-

ferent classes. In the first class, we explore application-focused researches in which the

researcher is trying to apply the same methodologies on different problems and manages

to achieve better results. In the second class, we explore researches in which the researcher

managed to develop a new algorithm or improved the existing algorithms. Later we explore

the time series forecasting algorithms and approaches as well and divide them into two dif-

ferent classes. In the first class, we explore researches which are directly applied to the

traffic data, and the goal is to predict future traffic situation. In the second class, we explore

researches that used time series forecasting methods to predict events, stock market, price

of a good or commodity, and future demands.
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3.2 Object Detection and Classification

3.2.1 Application Focused Researches

The goal of (Cai et al., 2018) is to build a family monitoring alarm system based on deep

learning methods to distinguish the types of invaders by training a model and focusing

on the different characteristics of multiple species. They managed to build an intelligent

monitoring system based on the YOLO network with high detection precision and speed.

Furthermore, the author claims that the false detection rate is zero in the background of

home remote monitoring.

(Jiang and Learned-Miller, 2017) demonstrated state-of-art face detection results using

Faster R-CNN on three different datasets. The authors suggest that the face detector model

performs well even when trained on one dataset and tested on another. The experimental

results of this research show that the effectiveness of Faster R-CNN comes from the region

Proposal Network Module(RPN).

Pedestrian safety is one of the research areas which is receiving increasing attention in

academia. (Zhao et al., 2016) presents a Faster R-CNN based pedestrian detection system

to detect a specific class of objects. In this research, a VGGNet (Simonyan and Zisserman,

2014) model was tuned and trained. The author suggests that the proposed system can

process images of arbitrary size and outputs their bounding box coordinates alongside the

pedestrian scores.

One of the problems that computer vision is seeking to find a solution is anomaly de-

tection. (Mahadevan et al., 2010) proposed a novel framework for anomaly detection in

crowded scenes. The authors identified three properties as important factors to design a

localized video representation suitable for anomaly detection in such scenes. The authors

proposed a different approach for each of the properties and suggested that the results are

showing the proposed model is outperforming the various state of the art anomaly detection
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techniques.

3.2.2 Model Improvement Oriented Researches

(Fan et al., 2016) aims to conduct multiple experiments using Faster R-CNN on the

KITTI (Geiger et al., 2013) dataset to study the object proposing, localization vs. recog-

nition and iterative training. The goal of this research is having a deeper understanding of

how to tune and modify Faster R-CNN for specific applications and datasets and improve

the default performance of the Faster R-CNN for vehicle detection on the KITTI dataset.

To improve the accuracy of vehicle detection (Gong et al.) proposed a multitask Cas-

cade Convolution Neural Network(MC-NN) based on Full Frame Histogram Equaliza-

tion(FFHE) algorithm. The authors proposed an object detection algorithm based on Faster

R-CNN, which removes the shadow of complex background and outputs every object lo-

cation in the image. Moreover, they proposed an object classification algorithm based on

CNN, which outputs the characteristics of the vehicle. The authors compared the purposed

algorithm’s accuracy with the Faster R-CNN without FFHE and suggested that the accuracy

of the proposed algorithm has been greatly improved.

(Hsu et al., 2018) proposed a simplified fast region-based convolutional neural network

(R-CNN) for vehicle detection. The proposed detection system consists of several convolu-

tions and max-pooling layer, followed by a region-of-interest pooling layer and connected

to a sequence of fully-connected layers. The fully-connected layers branches into two and

produce the probability of the existence of a vehicle and the and four real values numbers

for the bounding box enclosing the vehicle. The authors show that the proposed method

can detect and localize vehicles in various views effectively.

(Dong et al., 2015) proposed a semi-supervised convolutional neural network that was

applied to the vehicle frontal-view images. The authors introduced a sparse Laplacian

filter learning to obtain the filters of the network with large amounts of unlabeled data. A
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Softmax classifier is trained by multi-task learning with a small amount of labeled data.

The model can provide the probability of each type of vehicle and the class it belongs to.

The results on the dataset which the authors created show the effectiveness of the proposed

method.

(Byeon and Kwak, 2017) presents a performance comparison between Faster RCNN

and ACF to do the pedestrian detection task. The results of this research indicated that the

precision of the Faster RCNN model is 56.73% higher than the precision of ACF on the

manual work. Moreover, the authors applied an additional method, HOG-SVM, but the

faster RCNN showed that its precision is much higher than other approaches.

3.3 Time Series Forecasting

3.3.1 Road Traffic Prediction Related Researches

(Min and Wynter, 2011) developed a method for traffic prediction at a fine granularity

and over multiple periods. The method takes into account the spatial characteristics of a

road network, which reflects the distance and the average speeds of the links. The authors

suggest that the accuracy the managed to achieve with the developed model exceeds that

of other published works on 15-min data and can achieve very good accuracy on the more

volatile 5-min data.

In (Yasdi, 1999) The authors analyzed the potential of neural networks for the prediction

of road traffic and developed a neural network to predict the future values of the traffic time

series using its past values. The results of the proposed method show that the MSE is less

than 0.003, and the results are better than the compared methods. The model improved the

forecasting by 20% for the road traffic flow.

Previous traffic measure parameters required to predict both long-range and short-range

dependencies. (Shu et al., 1999) provides a procedure to model and predict traffic using
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FARIMA models. The results illustrated that the FARIMA model is able can capture the

property of the actual traffic. The authors provided guidelines to simplify the FARIMA

model fitting procedure and reduce the time of the traffic modeling.

In (Xu et al., 2017), a real-time road traffic state prediction based on the auto-regressive

integrated moving average(ARIMA) and the Kalman Filter is proposed. The ARIMA

model is a time series built on the basis of the historical road traffic data and combined

with the Kalman Filter to construct the road traffic state prediction algorithm. The experi-

mental results of this research show that the proposed model can predict the real-time road

traffic state prediction with high accuracy.

3.3.2 Non Road Traffic Prediction Related Researches

In (Siami-Namini et al., 2018) compares the accuracy of two models, ARIMA and LSTM,

as the primary techniques when forecasting time series data. The authors implemented and

applied a model with each approach and compared the results on a set of financial datasets.

The results of this research indicate that the LSTM achieved better results than ARIMA.

Moreover, the LSTM algorithm improved the results by 85% on average in comparison to

the ARIMA model.

One of the most interesting applications of the time series forecasting is predicting the

future of the stock price. (Pai and Lin, 2005) proposed a hybrid methodology that exploits

the unique strength of the ARIMA model and the SVMs model in forecasting the stock

price problem. In this research, real data of the stock process were used to examine the

forecasting accuracy of the proposed model. The authors suggest that the obtained results

with the proposed model are very promising.

The electric power demand forecast is really important to the electric industry. To

forecast the monthly electric power demand per hour in Spain (Garcia-Ascanio and Maté,
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2010) presents a comparison between two different models. The first model is vector au-

toregressive(VAR) forecasting applied to interval time series(ITS), and the second model

is the multi-layer perceptron model adapted to interval data. The authors suggest that the

ITS forecasting method can be used as a tool to reduce the risk when making power system

planning and operational decisions.

In (Palomares-Salas et al., 2009), an ARIMA model and a backpropagation type neural

network are developed in order to forecast the wind speed. The data for the experiment

were acquired from a unit located in Southern Andalusia, with a soft orography(10 minutes

between measurements). The results of this research indicate that the ARIMA model is

better than NNT for short-time-interval to forecast.

3.4 Conclusion

In this chapter, we reviewed other researches in both areas of object detection/classification

and time series forecasting. In the first section, we saw that most of the researchers got

good results when applying the Faster R-CNN model on their dataset to detect or classify

different objects in a set of images. Moreover, we reviewed road traffic-related researches

and got familiar with the most powerful tools and algorithms in order to get better results

when dealing with this kind of task.
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Chapter 4

Methodology

4.1 Introduction

In the previous section, we discussed the related works that have been done in the area of

object detection classification and time series forecasting. First, We are familiarized with

the top-notch algorithms and best practices to detect and classify objects in images and

found out that the Faster R-CNN object detection model is doing a better job than other

algorithms. Moreover, we reviewed different time series forecasting models and how other

researchers used them on their data to get better prediction results. Our goal in this chapter

is to train an object detection model with our collected data and create a numerical data

set for traffic time series forecasting. Later, we apply different algorithms and develop

different models to achieve the best traffic prediction results.

4.2 High-level Model Description

In previous sections, we explained the general idea of how we will conduct the research. In

this section, we explore how we get to the predictions by collecting the image dataset with

more details. In figure 11, you can see each step and how they are connected. The results
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and output of one step will be used as the input for the next steps.

Figure 11: The Methodology Steps. From left to Right: (1) Getting Data from Traffic
Cameras, (2) Using Computer Vision to Extract Information, (3) Creating the Historical
Dataset of the Vehicle and Congestion Count, (4) Develop Several Time Series Forecasting
Models, (5) Visualize the Predictions, Compare the Results and Find the Best Model

1. Data Collection, Cleaning, and Preprocessing

As we mentioned in previous paragraphs, our goal in this thesis is to predict traffic

congestion by using image datasets instead of GPS or sensor-generated data. In the

first step, We built an image dataset from the Autoroute 40 in the city of Montreal

traffic cameras. We collected more than 400,000 images for five consecutive weeks.

After analyzing the data, we developed an image classifier to clean the data and

reduce the amount of noise in the image dataset.

2. Implementing Object detection and Classification Models

The next step after building the image dataset is extracting information out of them.

We trained an object detection and classification model using the Faster RCNN algo-

rithm and managed to detect each type of vehicle and traffic congestion in an image.

3. Creating and Analyzing Vehicle Count Dataset

We applied The object detection and classification model to the entire image dataset

and created a vehicle count dataset. After analyzing the data, we managed to find the

contribution of each type of vehicle to the traffic, traffic flow behavior, peak hours,

and trends for each type of vehicle.

4. Developing Multiple Time Series Forecasting Models

After creating the vehicle count dataset, we can use this dataset to predict future
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demand and traffic congestion. In order to do this task, we developed multiple time

series forecasting models with different Regression, Deep Learning, and time series

forecasting algorithms.

5. Predictions and the Best Models

Finally, We research to find the best model and how we can get the best prediction

results with different architectures. We use the best model for each metric to do the

predictions.

4.3 Data Acquisition

For making any predictions, we need to have historical data. The data that we are going

to use should be without any noise and distortion to have the best prediction results. In

this section, we explain how we collected the data from different sources and what was our

approaches to ensure the data is flawless and without any issues.

4.3.1 Data Collection

Montreal is the largest city in Canada’s province of Quebec. It is set on an island in the Saint

Lawrence River and named after Mt. Royal, the triple-peaked hill at its heart. We are able to

collect images of the road from the different locations during different hours of the day from

traffic cameras installed all over the city and province by the city of Montreal, The Société

des traversiers du Québec. Quebec511 is an information service that makes it possible

for road users to find the information needed about the Quebec road network (Quebec511,

2019). In Figure 12 we can see the map of the city of Montreal and the traffic cameras that

are installed in the major auto routes.

In this study, we focus on Autoroute 40, which Also known as Autoroute Felix-Leclerc

outside of Montreal and Metropolitan Autoroute within the city of Montreal. Autoroute 40
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Figure 12: Traffic cameras provided by Quebec511 in city of Montreal. Courtesy
of (Google-Maps, 2019)(Quebec511, 2019)

is a freeway on the north shore of the St. Lawrence River in the province of Quebec, and

currently, it is 347 km long (Google-Maps, 2019). In Figure 13 Autoroute 40 is marked

with red color.

For collecting data from the Quebec511 website, we developed a web crawler to down-

load images and information related to each road from the website. The entire program is

in Python programming language, and it saves the images, date and time, road name, and

direction in which the camera is looking alongside the image file.

In figure 14, you can see some of the images which are collected from traffic cameras

from different locations. There are around 42 traffic cameras in Autoroute 40, and the

majority of them are functional 24/7. There is periodic maintenance, which makes the

camera unavailable, and a message is shown instead of the footage. We collected images

from these cameras every five minuets for five consecutive weeks and aggregated more than

400,000 images during this period. Later we divided the images into separate folders based

on the date of the collected image to have a better-organized dataset.
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Figure 13: Auto route 40. Courtesy of (Google-Maps, 2019)

Figure 14: Images Collected from Traffic Cameras. Courtesy of (Quebec511, 2019)
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Table 1 is the list of all the information we collected from the Quebec 511 website

alongside all the images.

Data Description

Image The footage from the traffic camera
Time The exact time of the current footage
Date The date of the current footage

Address The location of the camera
Direction The direction which the camera is looking at

Table 1: Collected Information from Quebec 511 website

4.4 Object Detection and Classification

In the previous section, we presented how we collected the images and mentioned that

we collected more than 400,000 images for five weeks. It is a really time consuming and

frustrating task for humans to count all the different vehicles in an image and repeat this

task for the entire data set. In this section, First, we try to make sure that the data that we

are dealing with is flawless and without any problem. Later, we explore the ways that we

can automate the feature extraction task by applying different practices and algorithms to

create a dataset containing the information extracted from the images.

4.4.1 Data Preparation

We collected images every five minutes, and more than 400,000 images were collected

for five weeks. Since the environment that we are dealing with is a non-deterministic

environment, we should expect different kinds of footage while we are collecting the data.

However, most of the time, the images are without any noise or distortion. If the camera

is under maintenance, no footage is shown, and instead, a message appears. Figure 15

indicates that there is a problem with the camera, and no footage is available.
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Figure 15: Traffic Camera Footage is Unavailable(No-Footage). Courtesy of (Quebec511,
2019)

The table 2 is the list of expected footage from the traffic cameras.

Data Cleaning As mentioned in the previous paragraph during the data collection phase,

we may end up introducing some noise to the dataset due to unexpected events. Our goal

in this section is to find the reason behind it and the occurring pattern and a way to clean

the dataset from the noise.

The first step to clean the dataset is to find a way to clean the image dataset from the no-

footage images, which can be seen in figure 15. Following approaches can help us remove

this type of noise from the image dataset:

• Find which camera has a scheduled maintenance time and remove the downloaded

images from that specific window of time.

• With a simple image subtraction method, we can subtract the downloaded image

from figure 15 and delete the image if they were matched. We can use the OpenCV

Python library to do this task.

Although for the no-footage images, we can have systematic approaches, for the dis-

torted images, we can not find a simple approach like what we mentioned above. This type

of noise happens without any scheduled time and has a random pattern. For these kinds
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Image Condition

Normal day camera
footage

Normal night camera
footage

Rainy day camera
footage

Rainy night camera
footage

Distorted image

Table 2: Table of all the footages we expect from traffic cameras

of images, we need to come up with a more sophisticated way to remove them from the

dataset. The best way to do this task is to create an image classifier and train it with dis-

torted and not distorted images. We selected a pre-trained model and trained it on our own

dataset to detect the classify the distorted and not distorted images.
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4.4.2 Supervised pre-training

Image Labeling When we train any machine learning model, we never explicitly code

or tell our model what exactly to do in each situation. We want the model to learn on itself

with the examples we provide. To teach our model to find different types of vehicles, we

need to provide different examples of each vehicle in different situations. In each image,

we may have lots of objects, and it makes it hard to tell the model to look for a specific

object, so we need to find a way to annotate the object within the image and give them a

specific label. As explained in the definition chapter, LabelImg is a tool that we can use to

mark each object in an image and create an XML file with all the coordinates of the marked

objects. Later we use the XML files alongside the images to feed them to the model for

training and testing. Figure 16 is an example of an image in which all the different vehicles

are marked in it.

Figure 16: An Example of an Image with All the Object Marked in it Using LabelImg

Train and Test sets As mentioned before, we need to create a dataset for training and a

dataset for testing our model. We used around 1000 images with different weather situa-

tions and from different locations on the island of Montreal. Table 3 is the weather situation

according to NOAA(National Centers For Environmental Information) (NOAA, 2019).
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Month High/Low(◦C) Rainy/Snowy Days

January -4◦ / -12◦ 11 days
February -3◦ / -11◦ 10 days
March 2◦ / -6◦ 11 days
April 9◦ / 1◦ 10 days
May 17◦ / 8◦ 10 days
June 24◦ / 15◦ 10 days
July 26◦ / 18◦ 10 days

August 26◦ / 17◦ 9 days
September 21◦ / 13◦ 9 days

October 13◦ / 6◦ 10 days
November 6◦ / 0 ◦ 10 days
December -1◦ / -8 ◦ 13 days

Table 3: Weather Situation in City of Montreal During the Year (NOAA, 2019).

As the table suggests, We have almost 10 days of rain each month, which roughly one-

third of each month. This fact proves that one-third of our image dataset is collected in

the rain, and if we do not address this issue, we lose a large amount of data. On the other

hand, again, almost one-third of the data which is 8 out of 24 hours of data were collected

throughout the night and if our model does not work in the low light setting we will lose

another huge chunk of our data again. For addressing this issue, our model should be able

to detect and classify objects in the night, in the rain, and both. To make our model robust,

we collected data during the night while it was raining during the day and during the night

to cover all the situations and labeled our data. We passed the labeled dataset alongside the

data that we collected from sunny days to train the model and created a train set and test

set for this purpose.

4.4.3 Faster R-CNN Model

We previously discussed the Faster R-CNN algorithm and how it works. Furthermore, we

reviewed some of the works that compared the Faster R-CNN algorithm with the other state
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of the art algorithms and proved that, as of now, the Faster R-CNN method is one of the

most accurate algorithms for object detection and classification. Tensorflow provided an

object detection API with different models like MobileNet (Howard et al., 2017) versions

one and two, different types of ResNet (He et al., 2016), and Faster R-CNN. We use a

pre-trained Faster R-CNN model and use our annotated data to train it with our dataset.

Training In the previous section, we created the training and testing dataset of images

and the coordinate of the location of objects as XML files. Since we are using the pre-

trained Tensorflow object detection API, we need to create a TFrecord to pass alongside

our data to the model to train it. TFrecord, as explained in the Tensorflow documentation,

is a file that contains a sequence of records that can only be read sequentially. Tensorflow

provides a method to apply a function to each element of the dataset, and the function must

operate in Tensorflow graph mode(Tensorflow, 2019). To prepare all the requirements, we

need to do the following steps:

1. Create the CSV file from the coordinate XML files We labeled all the images and

created the XML file of coordinates for each of them. We need to create a CSV file

of all the coordinates to create the TFrecord. We utilize the OS library to open each

XML file, and Pandas library functions to create a data frame of coordinates and save

it as a CSV file. We need to create one CSV file for the train set and one CSV file for

the test set.

2. Create the label map class We are trying to detect multiple types of objects in

images. Since we labeled them with names, we need to create a label map to map the

categorical labels to integers to identify each object by a number rather than a name.

The objects that we are trying to identify are personal cars, trucks, buses, and traffic

congestion.
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3. Generate the TFrecord After compeleting the previous steps, we are now able to

generate the TFrecord. Tensorflow provides the necessary codes and functions to

generate the TFrecord, and we need to provide the right inputs. The inputs are the

CSV file and output address to create the TFrecord for both train and test sets.

After creating the TFrecord we need to create a configuration file to pass addresses

and pre-defined values to our model. This file should contain the address to train and test

TFrecord files and training hyperparameters. Hyperparameters are non-learnable values

that can affect the results of our model. Some of these metrics are:

• Batch size

• Epochs

• Loss Function

• Activation Function

• Optimizer

• Initial learning rate

• Decay steps

• Decay rate

In the configuration file, we can also define the fine-tune checkpoints as well. These

checkpoints contain everything that model learned by far. The model can continue the

training process from each of these checkpoints as well.
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4.5 Time Series Traffic Forecasting

4.5.1 Data Preparation

We collected data for 5 weeks, and we use the first 4 weeks to train the model and last

week to see how close the predictions are to the target values. The reason that we are not

randomizing the train and test datasets is that we have to make sure the model never sees

the data from the last week to make sure the predictions are made without any knowledge of

the target. This task can be easily done by using Numpy array functionalities for chunking

an array to different sizes. The final result would be four datasets that we use for different

purposes.

Data Cleaning and pre-processing In this section we are interested to investigate the

dataset and see if we have any abnormalities, missing values or scaling issues. The goal is

to clean the dataset from the mentioned problems in case we have it. In order to do it we

can use the following approaches to clean and pre-process the data:

1. Removing the Null values

2. Removing the outliers

3. One-Hot encode the categorical data

4. Scale the data if the measurement unit of the features are different

Feature-Based Approach We have four numerical features in our dataset, which are the

number of personal cars, trucks, buses, and congestion. In this approach, our goal is to

predict traffic congestion based on the number of vehicles on the road. We use the first 4

weeks of personal cars, trucks, and busses as the matrix of features for training purposes.

The first four weeks of the congestion column are used as the vector of the dependent
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variable. Finally, the last week of the congestion column is used as the Y-test dataset,

and other columns are the matrix of features for X-test dataset. One of the disadvantages

of this approach is that we are using the present data from one metric to predict another

metric behavior. This means that we do not consider a data point for the future, and we are

not able to predict the future. The next approach, Time Step, solves the aforementioned

problem.

Sliding or Rolling Window approach This approach, as mentioned previously, instead

of focusing on the feature, tries to capture the relation of the values regarding the time of

the occurrence. We define a window of time, like seven, and then we assign the first day

as independent values, and what happens on day eighth would be the result of the previous

seven days and the dependent variable. This way, every seven consecutive days of the

first four weeks in our data set are part of the X-train dataset, and each eighth day of the

mentioned seven days would be in the Y-train dataset. The same methodology applied in

other to create the test datasets. This way, we can predict the data points in the future.

4.5.2 Regression Analysis

Linear Regression Our goal in this section is to train a Linear Regression model with

our data and fit the model to our test dataset to evaluate the model and the predictions. We

created the Linear Regression model using the Scikit-Learn library which contains all the

regression models that we are going to use. As explained before, we have two ways of

feeding the data to train the model. First, we explore the feature-based approach.

To create the feature-based datasets for training and testing purposes, we use the "per-

sonal_car", "truck" and "bus" for creating the matrix of independent variables or X and the

"congestion" as the vector of dependent variables or y. We keep the last week away from

the reach of the model to make sure that model predictions are not affected by the target
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values and be sure that the predictions are valid. The Linear Regression function does not

need any extra argument as input for the training, and we can call it by using the Sklearn

library.

The next approach is based on the time step datasets. Like the previous approach, we

use the first four weeks for training purposes and last week for test and evaluation. In this

approach, the matrix of independent variables is constructed with a window of each seven

consecutive days, and the vector of variables is constructed with the immediate 8Th day

of the window. We use the same Scikit-learn library to train the Linear Regression model,

and to check the predictions, we plot them next to the target values, which is the last week

of our data or the y_test dataset. In this approach, we can predict future data points and

values.

In the end, to see how the model is performing, we evaluate the predicted result by using

our performance metrics and plotting the prediction result alongside the target values.

Polynomial Regression For training a Polynomial Regression model, we follow the same

path just as we did for Linear Regression but with one difference, the degree of Polynomial.

We know that the degree of a Linear Regression is always one, but for Polynomial Regres-

sion, we need to find the best degree to fit the model on our data. One of the simplest ways

to do it finding the best degree is by plotting the accuracy of the model for each degree and

chose the degree with the best accuracy. Like Linear Regression, we have two approaches

to train the model based on the different datasets that we created.

Just Like Linear Regression, to see how our Polynomial Regression model is doing, we

use our performance metrics to evaluate the model, and also we plot the prediction results

alongside the target values to how close the model and predict.
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Random Forest Regression Unlike Linear Regression and Polynomial Regression, Ran-

dom Forest is an ensemble learning method that has two sub-classes, Random Forest Clas-

sifier and Random Forest Regressor. Since we are dealing with numerical values and our

goal is not classification but rather prediction, we use the Random Forest Regressor model.

As explained before[ref], Random Forest consists of many decision trees, and the number

of trees affects the prediction results. One of the ways to find the best number of trees is to

do a simple search.

The Scikit-learn library has a built-in Random Forest Regressor model, which accepts

many arguments as input. The most important input for us is the n_estimator, which defines

the number of decision trees. To be able to create the same results each time with the same

data, another input can be given as the random state to make sure the results are not different

in each run.

Our approach for training the model and feeding the data to it is exactly like Linear

Regression and Polynomial regression. We create two different datasets, feature-based,

and time step for different purposes and train the model with them. Later, to see how

the model is performing, we use our performance metrics to evaluate the model and the

prediction results. Later we plot the predicted results alongside the target values to see how

close the model can predict.

4.5.3 Deep Learning Methods

In the previous section, we explored the ways we that we can utilize Regression Analysis to

predict either another features behavior or future values of a feature. In this section, we are

interested to see how Neural Network models would perform with the same datasets. We

explore different algorithms with different structures and try to fine-tune them to get the

best results. We mainly use the Keras platform with the Tensorflow back end to create and

47



train our models. Furthermore, we use other libraries like Numpy for mathematical calcu-

lations and Scikit-Learn for performance metrics. At last, we use the Matplotlib library to

plot our predictions and our figures.

Convolutional Neural Network Previously we used CNN to detect and classify objects

in our image dataset. In this section, we explore the CNN again to see how well it can

perform on our time series dataset and compare the results and the performance of the

model with other models.

Unlike regression models, deep learning models can have different architectures, which

ultimately yield different results. Furthermore, we need to find the best hyper-parameters as

well. We explained before that hyper-parameters are those parameters that are not learnable

but can affect the accuracy of the model. Some of these hyperparameters are learning rate,

number of epochs, decay rate and etc. Additionally, we need to set an activation function

and a loss function for the model as well. We built our model with Keras platform with

a Tensorflow backend. It has CNN in layer for different dimensions, and each layer can

have different activation and loss functions as well. With the Help of Keras, we can specify

how many layers of CNN and in layer how many neurons we need independently. This

functionality helps us to implement and to have a better understanding of the architecture

of our CNN. After we designed the model with different layers, we can compile the model

and train it with our datasets.

Our goal is to build several convolutional neural networks and compare them with each

other and see which model is performing better to predict the traffic situation for the next

seven days. To build several models, we have to change the hyperparameters or change

the architecture completely. Table 4 is representing four of the mentioned models that we

created to predict our metrics with convolutional neural networks. Later in the following

chapter, we discuss the results and use the best model to make the predictions.

Aside from the hyper parameters the architecture of the model is really important as
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Model Epochs Batch size Optimizer Layers Loss Function
CNN 1 100 20 Adam 1 CNN + Max Pool-

ing + 1 Dense
MSE

CNN 2 128 10 Adam 2 CNN + Max Pool-
ing + 2 Dense

MSE

CNN 3 50 7 Nadam 3 CNN + Max Pool-
ing + Flatten + 1
Dense

MAE

CNN 4 75 7 Nadam 2 CNN + Max Pool-
ing + Flatten + 2
Dense

MAE

Table 4: Convolutional Neural Network Model Architectures for Time Series Forecasting
Models

well. If the model is too simple it will not learn and if it is too complex the error will

propagate through the network and reduce the accuracy of the model. Figure 17 is one the

architecture of one of the CNN models we created for time series forecasting purpose.

Figure 17: CNN Time Series Forecasting Model Architecture Flowchart

In this model, the data is reshaped and fed to the first convolution layer with 64 filters

and a kernel size of two with the ReLU activation function. Then the output is fed to the

second convolution layer with 32 filters and the same kernel size and activation function.

The output of convolution layers is the Fourier transformed data in two dimensions. The

output of previous steps is fed to the max-pooling layer with a pool size of two to reduce the

number of parameters. Max pooling, as we mentioned before, can help reduce the noise as

well. In the next layer, we flatten the data, which means that we reduce the dimensions from

two to one and feed it to the first dense layer. The first dense layer has 50 neurons with the

ReLU activation function, and the second dense layer has seven neurons, which represents
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Model Epochs Batch size Optimizer Layers Loss Function
LSTM 1 150 7 Adam 1 LSTM + 1 Dense MSE
LSTM 2 128 7 Adam 2 LSTM + 1 Dense MSE
LSTM 3 50 7 Nadam 2 LSTM + 1

Dropout Layer + 2
Dense

MSE

LSTM 4 75 7 Nadam 3 LSTM + 1 Dense MAE
LSTM 5 70 7 Nadam 4 LSTM + 3

Dropout + 1 Dense
MAE

Table 5: Long Short Term Memory Time Series Forecasting Models

the next seven days that we are trying to predict. Dense layers are fully connected layers

that we mostly use at the end of the network to produce the outputs.

Long Short Term Memory As mentioned in the previous paragraph, for deep learning

models, we can have several architectures, and it is also true for our LSTM models. LSTM

model is more complicated and requires more time for training and testing. On the other

hand, we can achieve much better results with it.

To build the LSTM models, we use the same library that we used for CNN, which is

Keras, and we use the Tensorflow backend as well. LSTM layers are available in Keras as

a built-in module. We simply create a sequential model and add the LSTM and Dropout

Layers to it, compile it, and fit the model to our datasets. We try different models with dif-

ferent hyperparameters and different architectures to build a model that can predict future

values of our metrics with more accuracy. In table 5, we can see some of the models that

we tried to achieve this goal.

Like CNN, we can have different architectures for an LSTM model as well. In fig-

ure 18 we can see one of the models. The mentioned model has three LSTM layers, which

sequentially make the prediction. These kinds of models are also known as stacked LSTM

models. The input data for LSTM has to be three dimensional, and creating it is our first

step. Next, we feed the data to the LSTM layers, which have 100 neurons and use the
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ReLU activation function. The last layer of the network is a fully connected or dense layer

to produce the outputs for the next seven days with seven neurons and the ReLU activation

function.

Figure 18: LSTM Time Series Forecasting Model Architecture Flowchart

4.5.4 Time Series Forecasting Models

In the previous sections, we tried to develop models with regression analysis or deep learn-

ing methods to do the time series forecasting task. In this section, we use two out-of-the-

box libraries that were developed for the same purpose. We got familiar with them in the

Definition section, and here we see the functionalities and how we can create a model to fit

on our datasets. First, we start with ARIMA and see the approaches we can use to build a

model. Then we explore the functionalities of Facebook Prophet and build several models

and compare them with each other. Later in the last chapter, we compare the results and

select the best model to do the prediction task.

ARIMA We discussed the ARIMA and how it can predict future values based on histor-

ical data. ARIMA was originally a package developed for R programming language, and

later it was developed for the Python programming language with the same functionalities

as well. In order to build the ARIMA model, we need to use the "statsmodel" library, which

has the ARIMA model already built-in. ARIMA requires three parameters as input, which

the standard way to show it is ARIMA(p,d,q). Each of these values is positive integers and

defined as follows:

• p: The lag order, which is the number of lags of observations(represents AR).
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• d: The degree of difference, which is the number of times that the raw observations

are different (represents I).

• q: The moving average, which the size of the moving average windows(represents

MA)

We can build several models with different values for p,d, and q. However, we need

to find the optimal values which make the ARIMA model make the predictions with more

accuracy based on the data. One of the ways to find the best combination for these values

is grid search. ARIMA model has a built-in function called AIC, which stands for Akaike

Information Criteria, and has the ability to quantifies the fitness and the simplicity of the

model into a single statistic. With the help of this function, we search through all of the

models and find the most accurate one and fit it on our dataset to predict future values for

seven days.

Prophet Facebook Prophet is a Time Series Forecasting Model like ARIMA. The main

goal of the Prophet is to involve the analysts more into the process of making the predictions

and that is the main reasons this model is much more tweak-able than ARIMA. Facebook

prophet, by default, only requires one value which is the number of the days in future we

need to predict, but we can pass the following parameters as well:

• Growth

• Holiday

• Change-points

• Seasonalities

In the definition chapter, we explained each of these parameters, but we build several

models with each of these parameters and compare them with each other to see which
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model is performing better on our datasets. Later we use the best model to do the prediction

task with it.

4.6 Conclusion

In this chapter, we started with approaches and ways that we can build a regression model

to predict future values with time series forecasting method. We explored the ways we can

build different models with different parameters. Moreover, we explored different algo-

rithms of the deep learning method and discussed different models with different hyper-

parameters and architectures. At the end of this chapter, we discussed two of the most

prominent time series forecasting libraries and explored how we can build the most opti-

mal models with each of them. In the following chapter, we see the results of each model

and compare them with each other.
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Chapter 5

Experimental Results

5.1 Introduction

In the previous section, we presented how we developed different object detection and

classification models and time series forecasting models. In this section, first, we explore

the data itself and visualize it with different charts from a different perspective to have a

better understanding and insight regarding our data. Moreover, we will plot the results

from different models and compare them to see which model is doing a better job in object

detection and classification or predicting the future traffic situation.

5.2 Object Detection and Classification Models

The first step for us is the results for the object detection and classification models. In this

section, first, we go over the results of our image classifier and see if the results are reliable.

Later, we see the results of the training and testing process of our object detection models

and visualize the results to see how good our models are doing. Later we create the traffic

dataset with the results we achieved in this section.

54



5.2.1 Data Cleaning Image Classification Model

As discussed in the data acquisition section while we were collecting data, lots of noise

introduced into the dataset. In order to reduce the noise and improve the accuracy of the

object detection and classification model we need to clean the data and remove the noise

from it. To do this task we used a pre-trained Inception V3 model which was trained on

ImageNet (Deng et al., 2009) images initially and used our own dataset to retrain the model.

We collected around 200 distorted images and around 1600 not distorted images. For each

class we tried to find as many examples as we can to make sure that model is robust and

able to classify the images in any condition. We used 90% of the images for training and

10% of them for the testing process. The following figures are generated using Tensorboard

and its functionalities.

The Loss and the Accuracy of the Model In this paragraph we are interested to see the

accuracy and loss of the model. The classification model that we created here is much sam-

pler and lighter than the models we will create in following sections for the vehicle detec-

tion and classification. Figure 19 shows the cross entropy loss of the Inception v3 (Szegedy

et al., 2016) image classification model.

Figure 19: Cross Entropy Loss of the Inception v3 Data Cleaning Image Classification
Model

We can see that at the beginning of the training process the training loss is 0.3545 and
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the validation loss is 0.5424 and after 2000 steps the loss is reduced to 0.0757 and 0.1307

correspondingly.

Figure 20 shows the accuracy of the model for both training and validation.

Figure 20: Accuracy of the Inception v3 Data Cleaning Image Classification Model

As shown in the figure 20 at the beginning of the training process the accuracy of the

model for the validation is 0.66 and for the training is 0.91. After 2000 steps the accuracy

of the model improved to 0.953 and 0.9788 accordingly.

Results In previous paragraph we discussed about the training and validation accuracy

of the model. In this paragraph we are interested to check the model accuracy by applying

it on our images dataset and see how the model is doing. In order to this task we input an

image at a time to the model and record the output of the model for each image. Our goal is

to see if the model can perform well on each image with different type of distortion. Later

we will apply the model on the entire dataset and remove the images with high score of

distortion.

In table 6 we can see the output of the classification model for some of the example

images. Note that these images were not part of the training nor the test set. As we can see

for both day and night the model has good accuracy of classifying the images into distorted

and not distorted classes.

The final accuracy of the model on the test set is 95.9% which means the the model is
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Image Classification Model Output

not distorted (score = 0.98590)
distorted (score = 0.01410)

not distorted (score = 0.99954)
distorted (score = 0.00046)

distorted (score = 0.97715)
not distorted (score = 0.02285)

distorted (score = 0.98736)
not distorted (score = 0.01264)

Table 6: Table of the Results of the Data Cleaning Image Classification Model on Different
Images

doing the classification task with a good accuracy based on comparing the model results

and the grand truth.

5.2.2 Vehicle Detection and Classification Model

Training and Hyper-Parameters As we mentioned in the previous chapters, we built

a pre-trained Faster R-CNN model with a Tensorflow object detection API (Huang et al.,

2019). We used around 1000 images to train the model and around 10% of it for testing

and evaluating the model. We labeled the images with an image label tool and created an
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Model Classes Batch Size Steps Gradient Clipping Optimizer
Faster RCNN NAS 4 2 200000 10 Momentum

Table 7: Faster RCNN Model Hyper-Parameters

Optimizer Learning rate steps momentum optimizer value
Momentum Optimizer 0.0003 900000 10

Table 8: Momentum Optimizer Hyper-Parameters

XML file containing coordinates of the bounding boxes of objects for each image. Later a

dictionary of the corresponding bounding boxes to each class was created and used to create

the frozen graph, which ultimately is used to do the object detection and classification task.

The four classes are personal cars, trucks, buses, and congestion.

Furthermore, we need to pass a configuration file containing all the hyper-parameters

as well, which we can fine-tune the model and get better results. In the configuration file,

there are around 50 hyper-parameters, but we do not need to change all of them. In the

following tables, we show some of these values and explain their function.

Table 7 shows some of the hyper-parameters used to train the Faster R-CNN model.

Batch size is the number of the images we are feeding to the model at the same time, and

the main reason we used the value two is due to limitation in calculation power.

For the optimizer the Momentum optimizer is used and table 8 shows some of the

hyper-parameters of the optimizer.

Furthermore, in table 9 we can more hyper-parameters for loss function. The main goal

of the loss function is to give feedback to the model to show n how close the results and

target values in each iteration are.

Score Threshold IOU Localization loss weight Objectness loss weight Score converter
0.5 0.7 2.0 1.0 SOFTMAX

Table 9: Faster RCNN Model Loss Function Hyper-Parameters
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Losses After the training process, we are interested to see how the model learned and

how it managed to reduce the error rates. The model has to deal with two different tasks at

the same time, detection and classification. After each iteration, the model gets feedback

from the results and learn from the previous errors. Tensorflow comes initially with a tool

to plot all the results and losses during or after the training process. We discussed more

the functionalities of Tensorbord in the definition chapter, and we are going to use it for

plotting our losses during the training. As we mentioned before, the model must tackle two

different tasks at the same time, and we have a loss function for each of these tasks.

First, we start the detection task. We have to find the location of the object that we are

looking for in the image, and then we can classify it. Figure 21 shows the localization loss

of the model during the 15660 steps. The initial error rate was around 5.34 and reduced

after each iteration to reach the minimum value of 0.36 at the end. In table 7, we mentioned

that the first number of steps is 200000, but the model stopped after 15660 steps. The reason

behind it is that the model reaches a plateau in error rate after around 15660 steps, and since

no improvements are made, the model stops the training.

Figure 21: Classification(Objectness) Loss Of the Faster RCNN Model

After localizing the objects, the model does the classification task. We have four differ-

ent classes for the objects that we are looking for in the images, which are personal cars,

trucks, buses, and traffic congestion. In Figure 22, we can see the curve of the classification
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loss after around 15660 steps. The initial error rate was 21.6, and in the end, the minimum

amount of error is 1.7.

Figure 22: Localization(Detection) Loss Of the Faster RCNN Model

The final step is the total error, which is the sum of the localization and classification

error. Figure 23 shows that the initial total error is 26.85, and after 15660 steps, the total

amount of error is 2.41.

Figure 23: The Sum of the Classification and Localization Loss(Total Loss)
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Result Images In the previous paragraphs, we explored model hyper-parameters and

losses and saw how the model is reducing the error in each step. In this paragraph, we

present the image results of the model and explain how the model managed to detect and

label the objects in each image. In the data preparation section, we explained that we are

expecting different weather and lighting situations, and we need to build a robust model

to make sure it can detect and classify different types of vehicles in every situation. The

following images are the output of our object detection and classification model in different

situations.

• Day Images

Day images are normal images during the day without any condition, which makes

the images blurry. Since the data was collected during April and May, most of the

images fall into this category, and to make sure the model can do the detection and

classification task with more accuracy, we select the most of the training images from

this category. Figure 24 is an example of these images, and we can see the model can

detect and classify the objects with relatively high scores.

Figure 24: An Example of the Object Detection Model Output on Images with Normal Day
Light Setting
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• Night Images

Night images are images collected during the night, and the light setting can make

the detection and classification tasks harder for the model. In these images, we do not

have any condition that makes the image blurry. After normal day images, most of

the images fall into this category. Figure 25 is an example of these images. Since the

light setting is good in most parts of auto-route 40, the model can detect and classify

the vehicles with good scores.

Figure 25: An Example of the Object Detection Model Output on Images with Normal
Night Light Setting

On the other hand, in some locations, lack of proper lighting infrastructure reduce

the quality of the image and ultimately reduce the accuracy of object detection and

classification task. We provided enough examples to the model to make sure that even

in these situations, it can still detect and classify the objects and keep the confidence

level of the model relatively high. Figure 26 is another example of images with low

Light Setting.

• Rainy Day Images
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Figure 26: An Example of the Object Detection Model Output on Images with Low Light
Setting

As mentioned before, based on the weather forecast, about 30% of our images are

on rainy days. To get better results, we included images with rain conditions to our

training set, and here we are interested to see the goodness of the results. Figure 27

shows the results of object detection in the rainy condition in daylight. Although lots

of noise introduced to the image, we can see the model is doing a good job detecting

and classifying the vehicles.

• Rainy Night Images

One of the hardest tasks for the model is detecting and classifying the vehicles on a

rainy night. Like rainy days, we tried to feed enough data with a similar condition to

the model to make sure it can do the task as accurately as possible. Figure 30 shows

the result of the detection and classification task on a rainy night.

• Complex Day Images

In some of the images, we can see vehicles in different directions, and the architecture

of the road is complex. In figure 29 We can see an overpass above a highway, and the
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Figure 27: An Example of the Object Detection Model Output on Images with Rain Con-
dition

Figure 28: An Example of the Object Detection Model Output on Images with Low Light
and Rain Condition
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camera angle is a wide shot, which makes the detection and classification task harder

for the model.

Figure 29: An Example of the Object Detection Model Output on Images with Complex
Road Architecture

• Complex Night Images

We explained the difficulty of detection and classification tasks in images with com-

plex road architecture. On top of this complexity, if we have a poor light setting as

well, the model struggles if we do not provide enough examples of similar conditions.

In figure 30, we can see the model is doing a good job detecting and classifying the

vehicles in the image.

In the following images, we are interested to see the classification capabilities of the

model. We want to see if the model can detect different types of vehicles and able

to classify them correctly. We provided enough examples of each type of vehicle to

make sure the model does this task as precisely as possible.

• Images with Personal Cars

The most common type of vehicles on the roads are personal cars. Most of the images
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Figure 30: An Example of the Object Detection Model Output on Images with Complex
Road Architecture and Low Light Setting

that we provided to the model contain a personal car from different perspectives or

angles. Figure 31 shows one of the images which model was able to detect two

personal cars in it. The model avoided detection of the light reflect as a personal car

and able to detect personal cars with a high score.

• Images with Trucks

The other type of vehicle that we are interested in collecting data about is trucks. We

would like to know their contribution to the traffic, and in which parts of the city,

they are most active. We introduced many examples of trucks from different sizes

and colors to different angels to the model to make sure that it can detect this type of

vehicle with good accuracy as well. Figure 32 is the result of our model showing one

detected truck on a rainy night.

• Images with Buses

In the process of collecting data, we could not collect a lot of data about buses,

which is due to the situation in autoroute 40. Although there are not many buses in
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Figure 31: An Example of the Object Detection Model Output on Images with Personal
Cars In Them

Figure 32: An Example of the Object Detection Model Output on Images with Trucks In
Them
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our dataset, we tried to feed as many data with bus examples as possible to make sure

the model can detect and classify a bus in a photo with a good score. In figure 33

alongside other types of vehicles, we were able to detect a bus in a relatively far

distance.

Figure 33: An Example of the Object Detection Model Output on Images with Buses In
Them

• Images with Traffic congestion

Earlier in the research, we understand that the total number of vehicles is not nec-

essarily a good representation of traffic congestion. The width of the road and the

angle of the camera can affect this decision. To find the traffic metrics, we intro-

duced another layer to the training dataset, congestion. We manually labeled traffic

congestion in an image and provided different examples from different locations and

different situations to the model. Here we are interested to see the results of detec-

tion and classification of the traffic congestion in images. In figure 34 we can see

alongside the personal cars and a truck the model detected the traffic congestion and

its location as well.

• Example of Crowded Images without Traffic Congestion
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Figure 34: An Example of the Object Detection Model Output on Images with Road Traffic
Congestion In Them

As we explained in the previous paragraph, the main reason that we introduced an-

other layer to our dataset is that the number of vehicles alone can not represent the

traffic situation. In figure 35, we can see although like figure 34 many personal cars

and a truck are detected, but there is no traffic congestion in the road.

Creating The Traffic Dataset In the previous section, we presented how we are gener-

ating images with bounding boxes in them, defining the detected objects. To make traffic

predictions, we need to export this information from images to a single CSV file and create

out traffic dataset. The final dataset is a giant spreadsheet with features as columns and in-

formation of each image as rows. In figure 36, we can see a sample of the entire dataset. We

have seven columns that represent the features and 328376 rows, which is the information

of each image.

The columns are date, time, personal_car, truck, bus, congestion, and address. The first

two columns, date and time, are collected with a Python script and assigned to each image.

The address is collected alongside the image from the Quebec511.info (Quebec511, 2019)

website. The main four features, personal_car, truck, bus, and congestion, are collected
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Figure 35: An Example of the Object Detection Model Output on Images with Lots of
Vehicles in Them but No Traffic Congestion

Figure 36: The Vehicle Count Dataset
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by passing each image to the trained model exporting the numerical output of the count of

each vehicle.

5.3 Data Visualization

One of the best ways to explore the data is by visualizing it. Now that we created our

numerical traffic dataset, we want to explore it more and see how it looks like from different

angles. Our goal in this section is to visualize the numerical data and try to explore it

from different perspectives and see what we can learn from them. We used Matplotlib and

Seaborn to plot our datasets.

Line plots of distribution of features in each hour during the month We are interested

to see which hour during the day are the most crowded hours and how each type of vehicle

is participating in it.

• Personal Cars

In Figure 37 you can see the distribution of personal cars during the day in each hour.

Figure 37: Total Number of Personal Car in each Hour of the Day

One of the things that we can easily notice from Figure 37 is that we have a sudden

71



increase in the number of personal cars around 4 am, which reaches a local maximum

around 8 am and again we have the global maximum around 5 pm. We are interested

to see if other metrics are following the same order.

• Trucks We used the same approach to plot the total number of trucks recorded in

each hour of the day. Figure 38 is the result.

Figure 38: Total Number of Trucks in each Hour of the Day

Just like personal cars, the number of trucks recorded by the cameras started to in-

crease around 4 am and reached a local maximum of around 6 am. The total number

of truck stays almost the same until 9 am and starts to decrease afterward. We can

also see that the total number of trucks between 9 pm to 4 am is below 1000.

• Busses

As we mentioned before, in our data set, there are not many buses recorded, and data

may not be accurate. We mentioned that the reason is we are just collecting data from

autoroute 40, and not many buses use the autoroute. We used the same approach and

plotted the total number of busses we recorded during the day. Figure 39 show how

the total number of buses is distributed in each hour.

Since the number of buses is small, we can easily see the distribution range in each
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Figure 39: Total Number of Buses in each Hour of the Day

hour as well. Like personal cars and truck, the total number of busses start to increase

around 4 am as well and reach a local maximum of 20 buses around 7 am. Further-

more, in the afternoon around 5 pm, we can see another peak hour with around 20

buses recorded at that time as well. The total number of buses drop below 5 around

9 pm and is almost the same till 4 am.

• Congestion

To find congestion, we introduced a new bounding box in our object detection model

to not estimate the traffic situation based on the total number of cars visible in front

of the camera. Here we are interested to see the results and to compare them with the

data that we collected from the total number of personal cars, trucks, and buses. Fig-

ure 40 shows the distribution of traffic congestion during the day, which is collected

for the entire month.

As we suspected, there is an obvious correlation between the number of personal

cars, trucks, and buses, and the congestion level. We can see that from 5 am the

congestion level starts to increase till the local maximum around 7 am, and 8 am. On

the other hand, in the afternoon, we have a huge spike around 4 pm, which marks the
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Figure 40: Total Number of Recorded congestion in each Hour of the Day

peak hour. The results from Figure 40 prove that our initial assumption about having

a separate label for congestion is correct, and the data is more reliable.

Bar plots of distribution of features in each location during the month In this section,

we are interested to see which part of the city is the most congested place. We would like to

know how each type of vehicle is most common in different parts of the autoroute 40. This

information can help us to prioritize the most congested areas to build new infrastructure.

• Personal Cars First explore the most congested areas with personal cars. Having this

information can help us come up with better solutions to alleviate the traffic situation

designed for personal cars in these areas. In Figure 41 we plotted total number of

cars recorded in each location.

Based on the information we gathered and plotted, following places has highest

record in total number of cars:

1. Boulevard Sainte-Croix

2. Rue Stinson

3. Avenue Deslauries
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Figure 41: Total Number of Personal Cars in each Location During the Month
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4. Avenue Papineau

5. Boulevard Saint-Michel

• Trucks The other feature, which is important to us, is the total number of trucks. We

are interested to see the distribution of trucks in autoroute 40. Figure 42 shows most

congested areas with truck.

Figure 42: Total Number of Trucks in each Location During the Month

Based on the provided information we can see that truck were more populated in the

following areas:

1. Boulevard Sainte-Croix

2. Rue du Marche-Central
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3. Rue Stinson

4. Avenue Deslauries

5. Boulevard de l’Acadie

• Buses Although the total number of buses was no as much as personal cars or trucks,

we are still interested to see how the buses participated in the traffic and which part

of the autoroute 40 they have been the most. Figure 43 shows most congested areas

with buses.

Figure 43: Total Number of Buses in each Location During the Month

Based on the collected information in following areas we witness most of the buses.

1. Boulevard Lacordaire
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2. Boulevard Cavandish

3. Golf de I’lle de Montreal

4. Avenue Rheaume

5. Rue du Marche-Central

• Congestion In the previous parts, we saw how different types of vehicles are dis-

tributed, and we are interested to see the traffic situation distribution as well. Fig-

ure 44 show the distribution of traffic in autoroute 40.

Figure 44: Total Number of Congestion Recorded in each Location During the Month

Based on the collected information following areas are the most congested areas.

1. Boulevard Saint-Laurant
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2. West of the Decarie Interchange(westbound)

3. Rue Stinson

4. Boulevard Sainte-Croix

5. Cote-de-Liesse Interchange

Heatmap of Correlation Matrices In the previous section, we plotted all the metrics

and explored more about them regarding their distribution during the day and location.

Now we are trying to find out which metric is contributing more to the traffic congestion.

We created a heatmap based on the correlation matrix of the features. Figure 45 show the

correlation of the metrics to each other and traffic congestion. The darker each tile has, the

more correlation exists between the features.

Figure 45: Heatmap of Correlation Between the Features

From the heatmap, we can understand that the number of personal cars has the highest

correlation to traffic congestion, followed by the number of trucks and buses.
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5.4 Time Series Forecasting

In previous sections, we constructed a dataset based on the information we collected from

the images. Then we visualized the data and got better insights about it, now we are inter-

ested to see the results of our models for the time series traffic tasks.

5.4.1 Regression Analysis Models

As mentioned in previous chapters, we got familiarized with three regression models and

explored the ways to develop them. We developed three regression models for each task,

and we are curious to see how each model is performing. In this section, we explore the

regression model’s performance.

Linear Regression We used each of our metrics independently and developed a univari-

ate Linear Regression model based on the time step approach. The following are the results

for each of our metrics.

As mentioned before, we used the first four weeks of the data for training purposes, and

last week for evaluating the model. It means that the model never saw the data from last

week, and the goal is to predict these values.

• Personal Cars

First, we explore the prediction for the number of personal cars with the Linear Re-

gression. In Figure 46, we can see the data we collected and trained the model based

on in green and grand truth or the target values in orange. The blue line is the predic-

tion results of our Linear Regression model for the last week of the data.

In Table 17, we can see the performance of the model calculated with different per-

formance metrics, but we are mainly interested in the r2 score of the model, which is

almost 0.45.
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Figure 46: Prediction Results for Number of Personal Cars with Linear Regression Model

Target Values Linear Regression Model Predictions
42439 48196.2897
54708 50253.6545
56015 57843.0119
57367 56304.7188
58890 54358.9869
60349 55286.9023
41518 50373.9975

R2 Score 0.4498
MAE 3575.2183
MSE 16996951.5623

Table 10: Prediction Results and the Performance Metrics of the Linear Regression Model
on Total Number of the Personal Car
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• Trucks

We used the same methodology to develop a Linear Regression model to predict

the number of trucks for the seven days of last week. In Figure 47, we can see the

predictions for the last week in the blue line, target values in orange, and training

data in green.

Figure 47: Prediction Results for Number of Trucks with Linear Regression Model

We can see the results for predicting the number of trucks in Table 11 and the r2

score that we achieved with the model, which is 0.75. For a simple model like Linear

Regression, this prediction results are really good.

• Buses

We developed a Linear Regression model for buses as well, like the total number of

personal cars and trucks. In Figure 48, you can see the prediction results for number

buses for the last week.

One of the main reasons of the negative value of r2 score in Table 12 is that we did

not have enough data, and it is hard for the linear model to predict based on that.
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Target Values Linear Regression Model Predictions
430 444.4231

2654 2323.0764
3136 2758.2367
2240 1731.0966
2347 2261.9273
2824 3370.8444
621 915.0013

R2 Score 0.7488
MAE 397.4485
MSE 236759.8716

Table 11: Prediction Results and the Performance Metrics of the Linear Regression Model
on Total Number of the Trucks

Figure 48: Prediction Results for Number of Buses with Linear Regression Model
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Target Values Linear Regression Model Predictions
3 4.6433
9 5.2413
8 12.5940
6 4.8377
9 2.2049
11 3.7347
5 11.1372

R2 Score -2.0544
MAE 3.9056
MSE 21.9825

Table 12: Prediction Results and the Performance Metrics of the Linear Regression Model
on Total Number of the Buses

Furthermore, a negative r2 score means that the model is doing a worse job than just

getting the mean of the data. On the other hand, the reason that mean absolute error

and mean squared error are better in predicting number of busses than personal cars

or truck, is because the total number is much smaller than the mentions metrics and

these two performance metrics rely on the magnitude of the data.

• Congestion

Just like previous metrics, we developed a univariate Linear Regression model for

the total number of recorded congestion as well. You can see the predictions results

in Figure 53. Like previous plots, the prediction values are in blue, and the target

values are in orange, and the green line represents the historical data that we used to

train the model.

Based on Table 13, the r2 score for our Linear Regression model to predict the next

seven days of traffic situation is 0.4942. We can improve the r2 score by applying

more sophisticated approaches in the next sections.
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Figure 49: Prediction Results for Number of Recorded congestion with Linear Regression
Model

Target Values Linear Regression Model Predictions
59 24.3638

376 425.1287
488 464.1596
349 315.6578
374 504.1421
379 401.4689
61 72.3213

R2 Score 0.4942
MAE 90.0127
MSE 12980.5399

Table 13: Prediction Results and the Performance Metrics of the Linear Regression Model
on Total Number of Road Traffic Congestion
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Target Values Polynomial Regression Model Predictions
42439 43847.9530
54708 58282.3072
56015 60753.8089
57367 54976.1864
58890 57715.1357
60349 55738.9814
41518 46190.5077

R2 Score 0.3253
MAE 3858.5803
MSE 20393889.2532

Table 14: Prediction Results and the Performance Metrics of the Polynomial Regression
Model on Total Number of Personal Car

Polynomial Regression After Linear Regression we are interested to see how a polyno-

mial regression model would perform on our dataset. The main difference between linear

regression and polynomial regression is the degree that we need to define for the model. In

order to find the best regression model we searched through the degrees and selected the

best degree with the best r2 score results. First, we start with the total number of personal

cars and find the best polynomial degree and build a model with it. we will do the same

thing for other metrics and plot the results for each of them. We used the first four weeks

of data in order to train the model and last week for the test purpose.

• Personal Cars After searching for the best polynomial degree on the total number

of personal cars we got the best results with the polynomial degree of three. We can

see the polynomial regression results with degree three in table 18.

The r2 score is 0.3253 which is lower than the linear model. It means the the linear

model can make better predictions than polynomial model with degree of three. It

may be due to the behaviour of our data.

• Trucks We applied the same method on the total number of the trucks and found

the best polynomial degree for this metric as well. We got the best results with
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Figure 50: Prediction Results for Total Number of Personal Car with Polynomial Regres-
sion Model with Degree Three

polynomial degree of two and fit the model on our data to get the results for the

prediction. In table 15 we can see the results for this model.

• Buses We applied the same approach for the polynomial regression on the bus metric

as well. First we searched through the degrees to find the best results. We got the best

results with polynomial degree of two and fit the model on the data to get the results.

In table 16 we can see the predictions alongside the performance of the model for

this metric.

• Congestion The last metric is congestion. After searching for the best polynomial

degree we got the best results with degree two.

Random Forest Regression In the previous section, we explored the results for two dif-

ferent Regression models. In this section, we explore how the Random Forest Regression

model is performing the prediction task on our data. Like previous sections, we start with
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Target Values Polynomial Regression Model Predictions
430 349.2531

2654 1146.8583
3136 1661.2473
2240 2388.7453
2347 2376.8041
2824 4034.4875
621 1418.3530

R2 Score 0.3960
MAE 615.1382
MSE 584332.9466

Table 15: Prediction Results and the Performance Metrics of the Polynomial Regression
Model on Total Number of Trucks

Figure 51: Prediction Results for Total Number of Trucks with Polynomial Regression
Model with Degree Two
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Target Values Polynomial Regression Model Predictions
3 4.349
9 3.1114
8 14.8195
6 3.1194
9 7.9338
11 -0.4654
5 15.6249

R2 Score -4.9567
MAE 5.2607
MSE 43.79475

Table 16: Prediction Results and the Performance Metrics of the Polynomial Regression
Model on Total Number of the Buses

Figure 52: Prediction Results for Total Number of Bus with Polynomial Regression Model
with Degree Two
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Target Values Polynomial Regression Model Predictions
59 -187.7558

376 260.9183
488 454.8129
349 449.6281
374 418.1361
379 643.1869
61 -56.9476

R2 Score -1.3102
MAE 177.1153
MSE 56203.9212

Table 17: Prediction Results and the Performance Metrics of the Polynomial Regression
Model on Total Number of Road Congestion

Figure 53: Prediction Results for Total Number of Personal Car with Polynomial Regres-
sion Model with Degree Two
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Target Values Random Forest Regression Model Predictions
42439 46015.2777
54708 53147.1666
56015 57272.77
57367 56447.555
58890 57146
60349 54417.2222
41518 48028.7222

R2 Score 0.56378
MAE 3227.9546
MSE 14168119.8282

Table 18: Prediction Results and the Performance Metrics of the Random Forest Regression
Model on Total Number Personal Cars

the total number of personal cars and finish with the results of the univariate random forest

regression model for the congestion metric.

To train the random forest regression model, we need to specify the number of estima-

tors. Estimator, as we mentioned before, is the number of our decision trees. First, we need

to find the optimal number of decision trees, and then we can train a random regression

model with the optimal number of estimators. We explained in the methodology chapter

that since we have limited resources and our dataset is relatively simple, we do not need

to choose extreme values for the number of estimators, and a simple search gives us the

desired results.

• Personal Cars

As mentioned before, first, we searched for the optimal number of the estimators, and

then we train the random forest regression model. For the total number of personal

cars, we found out that the optimal number of estimators is 18, and we trained the

model 18 decision trees. we can see the prediction results in Figure 54. The predic-

tion values are specified with the blue line, orange represents the target values, and

green stands for the historical data and the data that we used to train or model.
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Figure 54: Prediction Results for Number of Personal Cars with Random Forest Regression
Model with 18 Estimator

• Trucks

We developed a random regression model with the same idea for predicting the total

number of trucks for the 5th week of the data. First, we explored what the optimal

number of the estimator for our random forest model is, based on the data we col-

lected for the total number of trucks. After searching, we got the best results for

prediction with 1 estimator.

Figure 55 show the predictions in the blue line, target values in orange, and the

historical data which we used for training in green.

Table 19 shows how the model is performing based on different performance metrics.

Our r2 score value is 0.6694, which is in an acceptable range for this model.

• Buses

Like previous metrics, we applied the same idea for developing the random forest

regression for predicting the total number of buses as well. In our search to find the
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Figure 55: Prediction Results for Number of Trucks with Random Forest Regression Model
with One Estimator

Target Values Random Forest Regression Model Predictions
430 1042

2654 2411
3136 2899
2240 2997
2347 2947
2824 739
621 472

R2 Score 0.6694
MAE 403.8367
MSE 313307.5510

Table 19: Prediction Results and the Performance Metrics of the Random Forest Regression
Model on Total Number of Trucks
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optimal number of estimators, we found out that we are getting the best prediction

results with four estimators. The figure shows the prediction results in blue, the target

values in orange, and historical data in green.

Figure 56: Prediction Results for Number of Buses with Random Forest Regression Model
with Four Estimator

As we mentioned in previous sections, the lack of data for this metric makes it hard

for our models to predict the last week values with good accuracy. The r2 score for

the predictions of this metric, as marked in Table 20, is 0.0706.

• Congestion

We are interested to see the future of traffic congestion and to know how accurate our

random forest regression model can predict it. We developed a univariate random

forest regression model to this task, and Figure 57 shows the results.

To do the random forest, we searched for the optimal number of the estimator to

predict traffic congestion and got the best results with five estimators.

In Table 21 we can see the best results that we can get with the mentioned number of
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Target Values Random Forest Regression Model Predictions
3 5.25
9 8.75
8 7.25
6 5.
9 5.

11 6.75
5 7.25

R2 Score 0.0706
MAE 1.9540
MSE 6.64158

Table 20: Prediction Results and the Performance Metrics of the Random Forest Regression
Model on Total Number of Buses

Figure 57: Prediction Results for Traffic Congestion with Random Forest Regression
Model with Five Estimator
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Target Values Random Forest Regression Model Predictions
59 88.
376 347.2
488 479.8
349 443.4
374 390.6
379 402.2
61 148.

R2 Score 0.6370
MAE 76.4897
MSE 9280.6840

Table 21: Prediction Results and the Performance Metrics of the Random Forest Regression
Model on Total Number of Road Traffic Congestion

estimators.

5.4.2 Deep Learning Models

In the previous section, we saw the results of our regression analysis models. In this section,

we explore the results of the models that we created with each deep learning algorithm and

see how we can fine-tune them to get better results. First, we explore the CNN results and

see how they are doing on a non-image dataset. Later we discuss the results of the LSTM

models and see which model is doing a better prediction job. At last, we compare the

results of both algorithms and see which model and architecture did a better job predicting

the future of traffic congestion.

Convolutional Neural Network After developing different regression analysis models

with different algorithms, we developed deep learning models, starting with convolutional

neural networks. We built different CNN models to do the time series forecasting prediction

task, and among them, we got the best results with models in table 22. We apply each model

on every metric and plot the best results.

• Personal Car
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Model Epochs Batch size Optimizer Layers Loss Function
CNN 1 100 7 Adam 2 Conv. Layer

[200,100] + Flatten
Layer + 1 Dense
Layer[7]

MAE

CNN 2 100 7 Nadam 4 Conv.
Layer[128,64,32,16]
+Flatten Layer+ 2
Dense Layer[50,7]

MAE

CNN 3 100 7 Nadam Conv. Layer[64] +
Dense Layer[32] +
Conv. Layer[32]+
Flatten Layer +
Dense[32,7]

MAE

Table 22: Convolutional Neural Network Time Series Forecasting Models

We trained each model in table 22 with the first four weeks of data and compared

the prediction results of the last week with the real values. Table 23 shows the pre-

dicted values for the last seven days alongside the real values and how each model

performed in different performance metrics.

Based on the table 23, we can see that the CNN model 2 predictions are closer to the

real values and has the highest r2 score, 0.8467, and the lowest mean absolute error

and mean squared error. In figure 58, we plotted the prediction values alongside the

target values to see the differences and how well the CNN model 2 performed.

• Truck

Just like personal cars, we applied the models in table 22 on the truck metric data and

achieved different results. The results of each model are in table 24.

Based on the table 24, we can see that the model 3 prediction results are better than

the other two models. We got the r2 score of 0.83586 and lower mean absolute and

meant squared error. We plotted the prediction values alongside the target values in

figure 24 to see the differences.
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Target Values CNN 1 CNN 2 CNN 3
42439 48398.324 43917.934 43221.11
54708 53836.305 48674.152 52041.65
56015 57303.23 56180.6 52528.203
57367 57829.918 56115 55370.086
58890 60760.07 56788 59579.76
60349 55988.56 58357.29 61334.508
41518 46726.92 44179.484 47506.156

R2 Score 0.75824 0.8467 0.83154
MAE 2860.2287 2240.7968 2370.7996
MSE 12541529.7113 7951186.5039 8738793.7287

Table 23: Convolutional Neural Network Time Series Forecasting Models Results with
Performance Metrics for Personal Cars

Figure 58: Prediction Results for Total Number of Personal Car with CNN Model 2
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Target Values CNN 1 CNN 2 CNN 3
430 1565.5918 892.48553 799.7568

2654 2855.138 2484.7798 3016.493
3136 2774.5 2556.2808 3255.0613
2240 2412.0923 2136.1108 2486.5923
2347 1929.9503 1991.7736 2094.0676
2824 2482.4749 2304.5706 2187.9421
621 1613.8171 1066.2959 1192.1664

R2 Score 0.6009 0.8292 0.83586
MAE 517.3877 376.4665 365.4371
MSE 395225.5626 169096.7016 162554.279

Table 24: Convolutional Neural Network Time Series Forecasting Models Results with
Performance Metrics for Trucks

Figure 59: Prediction Results for Total Number of Trucks with CNN Model 3
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Target Values CNN 1 CNN 2 CNN 3
3 6.0576844 2.3426623 4.0255723
9 8.356019 2.2464995 6.8501797
8 7.265272 5.351576 7.0361266
6 7.900469 3.3484209 7.0700936
9 9.282643 8.645057 11.856122
11 8.394331 7.023836 10.845278
5 6.6095595 4.240264 6.0598717

R2 Score 0.4854 -0.6861 0.6246
MAE 1.5478 2.54309 1.3257
MSE 3.3394 10.9428 2.4360

Table 25: Convolutional Neural Network Time Series Forecasting Models Results with
Performance Metrics for Buses

• Bus

After the total number of personal cars and trucks, we applied the same method on

the number of buses as well. The results for each model can are in table 25.

We got the best results for the total number of buses with CNN model 3. The r2 score

is 0.6246, which is better than other models but much lower than other metrics. We

explained in the previous section that since we do not have enough data for the total

number of buses, the prediction task error for this metric is bigger. We plotted the

prediction results alongside the target values in figure 59.

• Congestion

The last metric is congestion. We applied all the three models in table 22 on this

metric as well to see which model is performing better. The results can be seen in

table 26.

Based on table 26, we can see that CNN model 1 is performing better than other

models. The r2 score for this model is 0.9183, which is good. We plotted the pre-

diction values alongside the target values in figure 61 to see how close these values

are.
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Figure 60: Prediction Results for Total Number of Buses with CNN Model 3

Target Values CNN 1 CNN 2 CNN 3
59 121.04735 74.44145 156.02776

376 346.10715 312.85147 290.31763
488 467.24347 413.51785 536.63275
349 335.15387 398.70264 366.04407
374 305.8225 342.00693 376.00873
379 316.65878 325.32727 392.27982
61 56.429523 42.458046 87.69699

R2 Score 0.91830 0.9032 0.8808
MAE 37.3760 43.8546 41.4817
MSE 1988.7845 2356.0343 2900.6595

Table 26: Convolutional Neural Network Time Series Forecasting Models Results with
Performance Metrics for Road Traffic Congestion
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Figure 61: Prediction Results for Total Number of Road Traffic Congestion with CNN
Model 1

Long Short Term Memory In this section, we explore the results for our LSTM models

on different features. Like CNN, we start with personal cars and explore different model

architectures see how each of these models is performing. We then continue with trucks,

buses, and congestion, plot the predictions, and select the best model to do the prediction

task.

As we explained in the Methodology chapter, we explored and tested different archi-

tectures to find the best approach to predict each feature. After exploring and fine-tuning

many models, we built four models. The optimizer for all of these models is Nadam (Dozat,

2016), the loss function is mean absolute error, the batch size is seven, the epochs are 75,

and the activation function for each layer is ReLU (Nair and Hinton, 2010). Table 27 Shows

the univariate time series forecasting models that we are going to use to predict the total

number of personal cars, trucks, buses, and congestion.

• Personal Car

We trained each model in table 27 with the first four weeks of data and compared
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Model Epochs Batch size Optimizer Layers Loss Function
LSTM 1 75 7 Nadam 3 LSTM [100,100,100] + 1

Dense[7]
MAE

LSTM 2 75 7 Nadam 3 LSTM[128,64,32] + 1
Dense[7]

MAE

LSTM 3 75 7 Nadam 3 LSTM[128,64,32] + 2
Dropout Layer[0.02,0.02]
+ 1 Dense[7]

MAE

LSTM 4 75 7 Nadam 3 LSTM + 1 Dropout
Layer[0.02] + 1 Dense[7]

MAE

Table 27: Long Short Term Memory Time Series Forecasting Models

Target Values LSTM 1 LSTM 2 LSTM 3 LSTM 4
42439 44807.617 48204.1 49675.98 46394.08
54708 52216.7 50689.684 50914.344 52712.543
56015 56359.668 58275.98 57033.465 57755.96
57367 56488.125 59633.996 58351.098 58989.53
58890 57204.95 60618.074 58451. 59452.062
60349 55756.273 57522.793 55494.63 56484.707
41518 46347.8 51821.566 51922.785 52097.254

R2 Score 0.8348 0.5132 0.44707 0.5801
MAE 2455.86 4167.03 4104.47 3474.23
MSE 8566807.60 25253104.87 28684089.5352 21779618.85

Table 28: Long Short Term Memory Time Series Forecasting Models Results and Perfor-
mance Metrics for Total Number of Personal Cars

the predicted results of the last week with the real values. Table 28 shows the pre-

dicted values for the last seven days alongside the real values and how each model

performed calculated with R2 score, MAE, and MSE.

Based on the table 28 we got the best results with LSTM model 1. The r2 score is

0.8348, which is better in comparison to other models. We plotted the prediction

values alongside the target values in figure 62 to see how close these values are.

• Truck

After the personal cars, we applied all the LSTM models in table 27 on the total
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Figure 62: Prediction Results for Total Number of Personal Cars with LSTM Model 1

number of trucks and predicted future values. Table 29 shows the predicted values

for the last seven days alongside the real values and how each model performed.

We got the best results with LSTM model 3. The r2 score is 0.9039, which is close

to LSTM model 2 and better than other models. Figure 63 shows how close the

predicted values are to the target values.

• Bus

After the total number of trucks, we fit the LSTM models in table 27 on our bus

metric. Since there is a lack of data for this metric, we are interested to see how

LSTM models are performing. Table 30 shows the predicted values for the last seven

days alongside the real values and how each model performed.

As presented in table 30, we got the best results with LSTM model 4. The other mod-

els showed poor performance, and interestingly, LSTM model 4 has much simpler

architecture. We managed to get better results with CNN for this metric. Figure 64

shows how close the predicted values are to the target values.
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Target Values LSTM 1 LSTM 2 LSTM 3 LSTM 4
430 718.4146 729.79236 306.83942 837.06067

2654 2608.4116 2537.8638 2228.8328 1662.4645
3136 2944.561 2955.7976 2642.8774 2435.2598
2240 2995.934 2734.8108 2578.45 1996.3715
2347 3119.7402 2670.6091 2645.5342 1683.9783
2824 3013.2131 2389.7944 2809.3508 1885.3081
621 774.1186 703.9281 772.5591 676.5154

R2 Score 0.8053 0.9017 0.90393 0.5639
MAE 342.34 275.95 263.5203 571.4562
MSE 192817.26 97258.30 95137.3350 431865.0092

Table 29: Long Short Term Memory Time Series Forecasting Models Results and Perfor-
mance Metrics for Total Number of Trucks

Figure 63: Prediction Results for Total Number of Trucks with LSTM Model 2
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Target Values LSTM 1 LSTM 2 LSTM 3 LSTM 4
3 2.74 5.351 3.803 5.083
9 0.42 3.821 5.113 6.468
8 5.11 6.614 5.064 6.565
6 9.3 5.366 4.207 6.922
9 7.98 5.714 9.883 8.143

11 6.11 6.014 3.240 7.808
5 6.37 8.428 3.467 5.519

R2 Score -1.6428 -0.8066 -1.0012 0.4530
MAE 3.1929 3.0355 2.7990 1.6485
MSE 17.15 11.7245 12.9880 3.5497

Table 30: Long Short Term Memory Time Series Forecasting Models Results and Perfor-
mance Metrics for Total Number of Buses

Figure 64: Prediction Results for Total Number of Buses with LSTM Model 4
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Target Values LSTM 1 LSTM 2 LSTM 3 LSTM 4
59 120.44719 133.25793 43.595146 196.46846

376 293.75287 334.33902 367.57687 344.3339
488 412.9298 485.76373 482.43088 420.79974
349 377.2233 420.43713 387.16214 343.81744
374 388.82367 361.11984 364.10248 391.03378
379 331.50214 392.96768 325.36612 302.96353
61 110.91818 95.95277 37.219933 176.62398

R2 Score 0.8712 0.9181 0.9686 0.7424
MAE 51.31 35.9132 22.1243 64.3159
MSE 3134.29 1991.54 762.2383 6269.0931

Table 31: Long Short Term Memory Time Series Forecasting Models Results and Perfor-
mance Metrics for Total Number of Road Traffic Congestion

• Congestion

The last metric is traffic congestion, and like other metrics, we applied the LSTM

models in table 27 and compared the results. In table 31, we can see all the real

values and predicted values alongside the performance of each model.

We got the best results with LSTM model 3. The r2 score is 0.9686, which is better

than the other models and much better than the results we got from CNN models.

Figure 65 shows how close the predicted values are to the target values.

5.4.3 Time Series Forecasting Models

In previous sections, we developed different regression and deep learning algorithms and

tried different architectures to achieve better results. In this section, we are interested to see

the results of the most popular time series forecasting libraries, ARIMA and Prophet, and

compare them with each other and previous results from different algorithms. Each library

has different parameters and coefficients, and they are tweakable in their ways. We start

with ARIMA and explore different variations of input to get better results with our dataset.

Later we try to build different prophet models and see how each parameter can affect the
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Figure 65: Prediction Results for Total Number of Road Traffic Congestion with LSTM
Model 3

results.

ARIMA In previous sections, we discussed time series forecasting libraries and explored

ARIMA and its functionalities. In this section, we develop a seasonal ARIMA model and

see how good the model is performing on our dataset.

To build the model, we used the pmdarima (ARIMA, 2019) library, which finds the best

combination of the values automatically for your model. One of the most important values

that we manually set for the model is the period for seasonal differencing, which based on

the visualizations from the data and based on the results of different ARIMA models, this

value should be set to weakly seasonal.

We Trained the model with first four weeks of the data and did the prediction for next

seven days for each metric. Later we compared the results with the target values and see

how well the model is performing on each metric.

• Personal Car Like other approaches we start with the total number of personal cars
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Target Values ARIMA
42439 47655.956243
54708 56661.524226
56015 61062.380681
57367 58935.143889
58890 63031.255085
60349 61815.507265
41518 55821.432691

R2 Score 0.22107
MAE 4813.885
MSE 40408120.046

Table 32: ARIMA Model Results and Performance Metrics for Total Number of Personal
Cars

and fir the model on this metric. In table 32 we can see the results of the ARIMA

model compared to the target values.

Based on table 32 we can see that r2 score of the model for this metric is around 0.22

which is really low in comparison to other models. In figure 66 we can see that the

predicted values are not really close to the target values.

Figure 66: Prediction Results for Total Number of Personal Cars with ARIMA Model
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Target Values ARIMA
430 566.762161

2654 2010.346487
3136 2605.862798
2240 2452.439853
2347 2871.606039
2824 2367.612787
621 729.875989

R2 Score 0.81904
MAE 373.2659
MSE 179217.80612

Table 33: ARIMA Model Results and Performance Metrics for Total Number of Trucks

We applied the same model on the other metrics to see if the results are better.

• Truck We applied the same model on the total number of trucks and predicted next

seven days and compare them with the target values. The results can be seen in

table 33.

The r2 score is around 0.82 which is much better than the results of this model on per-

sonal car. We plotted the results in figure 67 and we can see that the predicted value

are much closer to the target values in comparison to the total number of personal

cars.

• Bus

We applied the model on the bus metric and we compared the results with the target

value. The results are in table 34 and we can see that for this metric the ARIMA

model is relatively doing better than other regression and deep learning models.

In table 34 we can see that r2 score is 0.60. The prediction results can be seen in

figure 68. Although the prediction are not close to the target values, we can see that

ARIMA model did a relatively good job predicting the next seven days of traffic for

total number of buses.
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Figure 67: Prediction Results for Total Number of Trucks with ARIMA Model

Target Values ARIMA
3 3.143433
9 9.146315
8 7.223554
6 8.167135
9 9.087948
11 7.530667
5 4.268439

R2 Score 0.60552
MAE 1.07459
MSE 2.56007

Table 34: ARIMA Model Results and Performance Metrics for Total Number of Buses
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Figure 68: Prediction Results for Total Number of Buses with ARIMA Model

• Congestion The last metric is traffic congestion and applied the same ARIMA model

on this metric as well. The results can be seen in table 35.

The r2 score for this metric with ARIMA model is around 0.90 which is better than

the results of this model for other metrics but still not as accurate as deep learning

methods. The predictions can be seen in figure 69 alongside the target values.

Prophet We explored the prophet model and discussed the parameters of this model.

In this section we are interested to see how a Prophet model can perform on our dataset.

Training a Prophet model is relatively easy and it can be done by calling the model in your

code and set the parameters in a way that results in best accuracy. Like other models we

train the Prophet model on the first four weeks of the dataset and predict the next seven

days and compare the results with the target values. We will apply the same model on

every metric and see how it is performing.

• Personal Car After building the prophet model we applied it on the total number of

personal cars and managed to make the predictions for the fifth week of the data. In
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Target Values ARIMA
59 84.187179

376 371.954381
488 442.974812
349 417.394477
374 340.063760
379 288.217361
61 87.308903

R2 Score 0.8976
MAE 41.95432
MSE 2491.592490

Table 35: ARIMA Model Results and Performance Metrics for Total Number of Road
Traffic Congestion

Figure 69: Prediction Results for Total Number of Road Traffic Congestion with ARIMA
Model
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Target Values Prophet
42439 45242.8911
54708 53197.70756
56015 59317.97528
57367 56960.99031
58890 62711.86704
60349 56695.41250
41518 48433.4466

R2 Score 0.73289
MAE 3202.0099
MSE 13856578.6167

Table 36: Prophet Model Results and Performance Metrics for Total Number of Personal
Cars

table 36 we can see the prediction values and performance of the model.

Unlike the ARIMA model, the Prophet model is predicting the next seven days of the

data with better accuracy and the predicted values are much close to the target values.

The r2 score of the Prophet model is 0.732 and we can see how model is performing

in figure 70.

Figure 70: Prediction Results for Total Number of Personal Cars with Prophet Model
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Target Values Prophet
430 563.1236

2654 2239.3212
3136 2821.2456
2240 2491.92471
2347 2896.8353
2824 2598.50928
621 787.8648

R2 Score 0.89423
MAE 293.8103
MSE 104746.51691

Table 37: Prophet Model Results and Performance Metrics for Total Number of Trucks

• Truck

We applied the same Prophet model on the total number of trucks and predicted the

values for the next seven days. We can see the results for the last week of the data

alongside the predictions and performance metrics in table 37.

Based on the table 37 the r2 score is around 0.90 which it means that predictions are

close to the target values and the it can be seen in the figure 71.

Figure 71: Prediction Results for Total Number of Trucks with Prophet Model
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Target Values Prophet
3 3.64011
9 9.44791
8 7.044762
6 7.645617
9 8.8472
11 7.44545
5 3.64043

R2 Score 0.587540
MAE 1.25081
MSE 2.676777

Table 38: Prophet Model Results and Performance Metrics for Total Number of Buses

• Bus We applied the same prophet model on the bus metric and predicted the next

seven days. The predictions are in table 38 alongside the target values and perfor-

mance metrics.

Based on the table 38 we can see that the r2 score of the Prophet model for this metric

is 0.587. In comparison to other metrics the r2 score is low but in comparison to other

models for this metric Prophet is giving us relatively good results. The predictions

are in table 72 alongside the target values and performance metrics.

• Congestion The last metric is congestion and we applied the same model on this

metric as well. The results of the time series prediction task for last week can is in

table 39 alongside real values and performance metrics.

Beased on the table 39 we can see that model has the r2 score of 0.8891 which is

really close to the ARIMA model. The predictions are in table 38 alongside the

target values and performance metrics.
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Figure 72: Prediction Results for Total Number of Buses with Prophet Model

Target Values Prophet
59 90.52057

376 338.11567
488 453.11865
349 423.52934
374 440.93801
379 402.75042
61 129.1773

R2 Score 0.88913
MAE 48.24019
MSE 2699.0037

Table 39: Prophet Model Results and Performance Metrics for Total Number of Road
Traffic Congestion
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Figure 73: Prediction Results for Total Number of Road Traffic Congestion with Prophet
Model

5.5 Conclusion

In the previous chapter, we described in detail each regression and deep learning model and

how to implement them. In this chapter, we developed the models and generated the results

and compared them with each other for each metric to see which models are doing a better

job in predicting the last week of the data.

Based on the results in the regression analysis section, we discovered that the random

forest regression is better than the other regression model since the predicted values were

closer to the target values based on the r2 scores we achieved with this model.

In the deep learning section, we discovered that the LSTM model is doing a better job

of predicting the congestion metric. On the other hand, a CNN model can predict the last

week of the data for the bus metric with closer values to the target values based on the r2

score we get from these models.

In the last section, we build two models with time series forecasting libraries and pre-

dicted the values for the last seven days of the dataset fro each metrics and compared the
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results with target values. We saw a significant difference in the total number of personal

car predictions between two libraries, and the Prophet model managed to achieve better

results. On the other hand, we got almost similar results in other metrics.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we explored the idea of predicting traffic conditions by collecting and ana-

lyzing image data. We collected more than 400,000 images from Quebec511(Quebec511,

2019) website for five weeks from multiple traffic cameras with different weather and light

conditions.

After cleaning and prepossessing the data, we built an object detector and classifier to

detect different types of vehicles in each image with a state-of-the-art algorithm, Faster

RCNN. We managed to reduce the error rate for both detection and classification tasks

by building a robust model to different conditions and tried to increase the accuracy by

introducing blurry, rainy, and low light images to the model.

Furthermore, we created a dataset based on the information in each image. We cleaned

and prepossessed the data to reduce the noise and make sure that the data is valid. After

analyzing and visualizing the dataset, we find out the most congested areas, road traffic

behavior in each day, peak hours, and the contribution of each type of vehicle to the traffic

condition. We noticed a weekly seasonal behavior of the number of vehicles for each type

of vehicle and the same trends for road traffic congestion as well. The dataset indicates
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that Saturdays and Sundays are the least congested, and on the other hand, Tuesdays and

Wednesdays are the most crowded days of the week. We discovered that personal cars are

contributing the most to the traffic congestion. The morning peak hour for both of these

metrics is between 7 am, and 8 am, and in the afternoon is around 4 pm. Top areas with most

personal cars recorded are Bulevard Sainte-Croix, Rue Stinson, and Avenue Deslauriers.

For the trucks, we detected that Boulevard Sainte-Croix, Rue de Marche-Central, and Rue

Stinson are top areas with the most recorded number of this type of vehicle. We saw a

different behavior of peak hours for trucks in comparison to personal cars and congestion

having the total number of trucks start increasing around 4 am and a 6 am morning peak

hour. Although we need to do more investigation for the buses, we also find out that

Boulevard Lacordaire, Boulevard Cavendish, and Gold de I’lle de Montreal are the areas

with the most amount of the number of recorded buses.

Moreover, we build multiple Regression and Deep Learning, time series forecasting

models to predict future traffic situation and compare the performance of each model and

see which model is doing a better prediction job for each metric. We discovered that the

deep learning models could capture the behavior of the data better than other algorithms

and make more accurate predictions for all of the metrics. For the total number of personal

cars, we managed to predict the coming seven days with 84% accuracy using a CNN model.

We got the best results for the total number of buses with another CNN model with 62%

accuracy due to a lack of data. For the total number of trucks and congestion incidents,

we got the best prediction results with LSTM models. For the trucks, the accuracy of the

prediction for seven days in the future was 90%, and for the traffic congestion was 96%.

Since the hyper-parameters can affect the results of the prediction, we will explore the idea

of hyper-parameter optimization, and we will be able to improve these models by setting

the optimal and fine-tuned values.
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6.2 Future Works

We already built a pipeline to get the data automatically, preprocess the data, apply object

detection and classification, create the dataset, and predict future demand based on the

historical data. For the next steps, we would like to collect image data from the entire

island of Montreal for at least one year to have a more rich dataset. By obtaining more data

following objectives could be achieved as well:

• Data Collection

– Get the video feeds of each camera

– Improve the quality of the images by either getting the source data or using the

state-of-the-art approaches

– Use camera footage of other cities to implement transfer learning

• Object Detection and Classification Models

– New class for the object detection model to able to detect electric cars

– Improve the object detection and classification model to be able to track the

objects and calculate the speed of each type of vehicle

– Utilize more computational power to do the object detection and classification

task real-time or near real-time

• Time Series Forecasting Models

– Build more models by trying new algorithms and approaches

– Implement a hyper-parameter optimization method to find the most optimized

combination automatically

– Apply attention mechanism on deep learning models to achieve better results
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• Explore the idea of generating data by utilizing approaches like Generative Adver-

sarial Networks

• Build an on-line pipeline to feed the real-time data back to each model and update

the detection and prediction results

123



Bibliography

S Agatonovic-Kustrin and R Beresford. Basic concepts of artificial neural network (ann)
modeling and its application in pharmaceutical research. Journal of pharmaceutical and
biomedical analysis, 22(5):717–727, 2000.

Dave Anderson and George McNeill. Artificial neural networks technology. Kaman Sci-
ences Corporation, 258(6):1–83, 1992.

ARIMA. Auto ARIMA for python. http://alkaline-ml.com/pmdarima/, 2019.
Accessed: 2019-11-13.

Shashank Bharadwaj, Sudheer Ballare, Chandel MK Rohit, and MK Chandel. Impact
of congestion on greenhouse gas emissions for road transport in mumbai metropolitan
region. Transportation Research Procedia, 25:3538–3551, 2017.

Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university
press, 1995.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Yeong-Hyeon Byeon and Keun-Chang Kwak. A performance comparison of pedestrian
detection using faster rcnn and acf. In 2017 6th IIAI International Congress on Advanced
Applied Informatics (IIAI-AAI), pages 858–863. IEEE, 2017.

Chengtao Cai, Boyu Wang, and Xin Liang. A new family monitoring alarm system based
on improved yolo network. In 2018 Chinese Control And Decision Conference (CCDC),
pages 4269–4274. IEEE, 2018.

Peng Chen, Hongyong Yuan, and Xueming Shu. Forecasting crime using the arima model.
In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery,
volume 5, pages 627–630. IEEE, 2008.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

124

http://alkaline-ml.com/pmdarima/


Zhen Dong, Yuwei Wu, Mingtao Pei, and Yunde Jia. Vehicle type classification using a
semisupervised convolutional neural network. IEEE transactions on intelligent trans-
portation systems, 16(4):2247–2256, 2015.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Gilles Duranton and Matthew A Turner. The fundamental law of road congestion: Evidence
from us cities. American Economic Review, 101(6):2616–52, 2011.

Quanfu Fan, Lisa Brown, and John Smith. A closer look at faster r-cnn for vehicle detec-
tion. In 2016 IEEE intelligent vehicles symposium (IV), pages 124–129. IEEE, 2016.

Carolina Garcia-Ascanio and Carlos Maté. Electric power demand forecasting using in-
terval time series: A comparison between var and imlp. Energy Policy, 38(2):715–725,
2010.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
The kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237,
2013.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on com-
puter vision, pages 1440–1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

Hua Gong, Yong Zhang, Ke Xu, and Fang Liu. A multitask cascaded convolutional neu-
ral network based on full frame histogram equalization for vehicle detection. In 2018
Chinese Automation Congress (CAC), pages 2848–2853. IEEE.

Google-Maps. Google maps. https://www.google.ca/maps/, 2019. Accessed:
2019-11-13.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Shih-Chung Hsu, Chung-Lin Huang, and Cheng-Hung Chuang. Vehicle detection using
simplified fast r-cnn. In 2018 International Workshop on Advanced Image Technology
(IWAIT), pages 1–3. IEEE, 2018.

125

https://www.google.ca/maps/


Jonathan Huang, Vivek Rathod, Derek Chow, Chen Sun, Menglong Zhu, Matthew
Tang, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song,
Sergio Guadarrama, Kovalevskyi Viacheslav Uijlings, Jasper and, and Kevin Murphy.
Github repository of tensorflow object detection api. https://github.com/
tensorflow/models/tree/master/research/object_detection,
2019. Accessed: 2019-11-13.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

Huaizu Jiang and Erik Learned-Miller. Face detection with the faster r-cnn. In 2017 12th
IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017),
pages 650–657. IEEE, 2017.

Kazuya Kawakami. Supervised sequence labelling with recurrent neural networks. Ph. D.
thesis, 2008.

Keras. Keras: The python deep learning library. https://keras.io/, 2019. Ac-
cessed: 2019-11-13.

Janaki Koirala et al. Food object recognition: An application of deep learning. 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

PIERRE LEGENDRE. Model ii regression user’s guide, r edition. R Vignette, 14, 1998.

Jonathan I Levy, Jonathan J Buonocore, and Katherine Von Stackelberg. Evaluation of
the public health impacts of traffic congestion: a health risk assessment. Environmental
health, 9(1):65, 2010.

Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly detection
in crowded scenes. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1975–1981. IEEE, 2010.

Matplotlib. Matplotlib website. https://matplotlib.org/, 2019. Accessed: 2019-
11-13.

Wanli Min and Laura Wynter. Real-time road traffic prediction with spatio-temporal corre-
lations. Transportation Research Part C: Emerging Technologies, 19(4):606–616, 2011.

126

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://keras.io/
https://matplotlib.org/


Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

NOAA. National centers for environmental information. https://www.ncdc.noaa.
gov/, 2019. Accessed: 2019-11-13.

Numpy. Numpy website. https://numpy.org/, 2019. Accessed: 2019-11-13.

Ping-Feng Pai and Chih-Sheng Lin. A hybrid arima and support vector machines model in
stock price forecasting. Omega, 33(6):497–505, 2005.

JC Palomares-Salas, JJG De La Rosa, JG Ramiro, J Melgar, A Aguera, and A Moreno.
Arima vs. neural networks for wind speed forecasting. In 2009 IEEE International
Conference on Computational Intelligence for Measurement Systems and Applications,
pages 129–133. IEEE, 2009.

Bei Pan, Ugur Demiryurek, and Cyrus Shahabi. Utilizing real-world transportation data for
accurate traffic prediction. In 2012 IEEE 12th International Conference on Data Mining,
pages 595–604. IEEE, 2012.

Pandas. Pandas website. https://pandas.pydata.org/, 2019. Accessed: 2019-
11-13.

Markos Papageorgiou, Christina Diakaki, Vaya Dinopoulou, Apostolos Kotsialos, and Yib-
ing Wang. Review of road traffic control strategies. Proceedings of the IEEE, 91(12):
2043–2067, 2003.

Polynomial-Regression. Polynomial regression, daniel borcard, département de sciences
biologiques, université de montréal. http://biol09.biol.umontreal.ca/
PLcourses/Polynomial_regression.pdf, 2019. Accessed: 2019-11-26.

Quebec511. Québec 511 website. https://www.quebec511.info/, 2019. Ac-
cessed: 2019-11-13.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-
sentations by error propagation. Technical report, California Univ San Diego La Jolla
Inst for Cognitive Science, 1985.

Astrid Schneider, Gerhard Hommel, and Maria Blettner. Linear regression analysis: part
14 of a series on evaluation of scientific publications. Deutsches Ärzteblatt International,
107(44):776, 2010.

127

https://www.ncdc.noaa.gov/
https://www.ncdc.noaa.gov/
https://numpy.org/
https://pandas.pydata.org/
http://biol09.biol.umontreal.ca/PLcourses/Polynomial_regression.pdf
http://biol09.biol.umontreal.ca/PLcourses/Polynomial_regression.pdf
https://www.quebec511.info/


Scikit-learn. scikit-learn: Machine learning in python. https://scikit-learn.
org/, 2019. Accessed: 2019-11-13.

Seaborn. Seaborn: statistical data visualization. https://seaborn.pydata.org/,
2019. Accessed: 2019-11-13.

Yantai Shu, Zhigang Jin, Lianfang Zhang, Lei Wang, and Oliver WW Yang. Traffic predic-
tion using farima models. In 1999 IEEE International Conference on Communications
(Cat. No. 99CH36311), volume 2, pages 891–895. IEEE, 1999.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A comparison of arima and
lstm in forecasting time series. In 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 1394–1401. IEEE, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.
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