
AUTOMATION TOOLS FOR THE ANIMATION

PIPELINE

Maksym Perepichka

A thesis

in

The Department

of

Computer Science Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

May 2020

c© Maksym Perepichka, 2020

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Maksym Perepichka

Entitled: Automation Tools for the Animation Pipeline

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Sudhir Mudur
Chair

Sudhir Mudur
Examiner

Marta Kersten
Examiner

Tiberiu Popa
Supervisor

Approved
Latar Narayanan, Chair

Department of Computer Science and Software Engineering

2020

Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Automation Tools for the Animation Pipeline

Maksym Perepichka

Video-games and animated movies require a sophisticated multistage set of processes

known as the animation pipeline for collecting animation data, beginning with actors

in a Motion Capture Studio and ending in animated digital characters. Through-

out the animation pipeline, varying levels of manual human intervention are typically

needed to ensure animation quality. Passive markers used for Motion Capture require

manual cleanup by trained MOCAP artists to fix issues such as marker occlusions,

marker swaps, and noise. This thesis proposes a novel method to automate this

process that works by identifying broken marker path segments and subsequently

reconstructing broken markers using a kinematic reference. The result is a state-

of-the-art method that outperforms existing solutions by being simultaneously more

accurate as well as easier to integrate into existing animation pipelines. Once marker

data is cleaned, studios will often want to retarget the captured data onto different

characters, a step that usually requires the manual tweaking of various retargeting

parameters in proprietary software. This thesis proposes a batch mesh-based retar-

geting algorithm that uses Jacobian Inverse Kinematics tracking mesh vertices to

retarget animations between different skeletal rigs. This results in an efficient algo-

rithm that is capable of retargeting multiple animation clips without requiring the

manual tweaking of parameters specified.

iii

Acknowledgments

I would like to acknowledge the help of my supervising professor Tiberiu Popa, as

well as my industry supervisor Daniel Holden for their enormous help and guidance

throughout the last two years. My Master’s degree would not have been a success

without their feedback and ideas. I would also like to thank everyone at Ubisoft

La Forge and Ubisoft Alice for providing resources, reference data, as well as vital

feedback. I also acknowledge the support of the Natural Sciences and Engineering

Research Council of Canada (NSERC).

iv

“Animation can explain whatever the mind of man can conceive. This facility makes

it the most versatile and explicit means of communication yet devised for quick mass

appreciation.”

Walt Disney

v

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Computer Animation . 1

1.2 Motion Capture . 2

1.3 Animation Pipeline . 4

1.3.1 MOCAP Shoot . 4

1.3.2 Marker Tracking . 4

1.3.3 Marker Solving . 4

1.3.4 Animation Retargeting . 5

1.3.5 Delivery . 5

1.4 Contribution . 5

1.4.1 Motion Capture Cleanup . 6

1.4.2 Animation Retargeting . 7

2 Background 9

2.1 Animation Representation . 9

2.2 Forward Kinematics . 10

2.3 Inverse Kinematics . 11

2.4 Linear Blend Skinning . 12

3 Robust Marker Trajectory Repair for MOCAP using Kinematic Ref-

erence 14

3.1 Introduction . 14

vi

3.2 Related Work . 16

3.3 Method . 18

3.3.1 Kinematic Solver Improvements 19

3.3.2 Marker Reconstruction . 20

3.3.3 Erroneous Marker Interval Detection 21

3.3.4 Gap Filling . 22

3.4 Results and Discussion . 24

3.4.1 Comparison . 25

3.4.2 Parameter Selection . 26

3.4.3 Performance . 27

4 Mesh Based Animation Retargeting 34

4.1 Introduction . 34

4.2 Related Work . 35

4.3 Method . 36

4.3.1 Subsampling . 38

4.3.2 Mesh Mapping . 40

4.3.3 Normalization . 40

4.3.4 Blend Mask . 41

4.3.5 Cumulative Weights . 41

4.3.6 Jacobian . 41

4.3.7 Error . 43

4.3.8 Solving . 44

4.4 Implementation . 45

4.5 Results . 45

5 Conclusion 54

Bibliography 56

vii

List of Figures

1 Image of me in a MOCAP suit. 3

2 A mesh rigged with a skeleton, with mesh deformation being driven by

the skeleton deformation via LBS. 12

3 Marker paths visualized alongside a kinematic solution in 3D 14

4 Overview of entire pipeline. a: Initial corrupted marker data. b:

Solved skeleton using NN. c: Solved skeleton using commercial soft-

ware. d: Reconstructed marker paths using LBS. e: Comparison of

kinematic solutions to determine erroneous markers. f: Filling of in-

correct marker paths. g: Filled marker paths. h: Final kinematic

solution . 18

5 Example of marker filling from reference path 30

6 Marker paths before and after gaps in valid data 30

7 3D visualization of the filled marker paths passed through a kinematic

solver (Ȳ). 31

8 2D visualization of the left upper leg joint from the filled marker paths

passed through a kinematic solver. 31

9 Visualization of a marker along with a 3D visualization of the corre-

sponding kinematic solution. 32

10 3D visualization of the filled marker paths passed through a kinematic

solver (Ȳ). Hard example with two characters wrestling and numerous

erroneous markers. 32

11 Visualization of a marker along with a 3D visualization of the corre-

sponding kinematic solution. 33

12 Two rigged meshes overlayed on each-other, with the animation from

the green character being retargeted onto the red character. 34

viii

13 Autodesk MotionBuilder animation software. Character tool shown on

right hand side, displaying mapping to an intermediate skeleton. . . . 36

14 Three subsampled versions of the same mesh. The squares indicate

the vertices chosen by the subsampling algorithm. The leftmost mesh

is subsampled at 128:1 vertices, middle one at 64:1, and rightmost one

at 32:1. 38

15 Illustration demonstrating the cumulative weights. A,B,C,D,E rep-

resent joints in a hierarchy, while V is a vertex. The w represents the

skinning weight between the two while ŵ represents the cumulative

skinning weights. 42

16 Illustration motivating the derivation of
∂Pi

t

∂θj
. The red points visualizes

the vertex position Pi
t while the blue arm visualizes a joint hierarchy

starting at Tj
t . ∆Pi

t represents the displacement of the vertex position

as as a result of the rotation of joint Tj
t around axis rjt by angle ∆θjt 43

17 Illustration motivating the derivation of
∂Ni

t

∂θj
. The red points visualizes

the vertex normal Ni
t while the blue arm visualizes a joint hierarchy

starting at Tj
t . ∆Ni

t represents the displacement of the vertex normal

as as a result of the rotation of joint Tj
t around axis rjt by angle ∆θjt 44

18 Figure demonstrating mesh based retargeting from the source character

(green) to the target character (red). 46

19 Figure demonstrating mesh based retargeting on different scale char-

acters, from the source character (green) to the target character (red).

Blue lines on the hand indicate vertex position constraints. 47

20 Figure demonstrating mesh based retargeting on different scale char-

acters, from the source character (green) to the target character (red). 48

21 Figure demonstrating mesh based retargeting from the source character

(green) to the target character (red). 49

22 Figure demonstrating mesh based retargeting from the source character

(green) to the target character (red) for a walking motion. 49

23 Figure demonstrating mesh based retargeting from the source character

(green) to the target character (red) for a kneeling down motion. . . . 49

24 Figure demonstrating mesh based retargeting from the source character

(green) to the target character (red) for a walking motion. 50

ix

25 Figure demonstrating mesh based retargeting from the source character

(green) to the target character (red) for a jogging motion. 53

x

List of Tables

1 Comparison between different marker filling methods in terms of the

mean per-frame error between their kinematic solutions and the ideal

path recreated by an artist. ∆pos represents the error between the

global joint positions (in cm) while ∆rot represents the error between

the global joint rotations (in degrees). 24

2 Performance of our pipeline computed on a typical sequence of 10,920

frames. Percentages calculated using largest remainder method. . . . 27

3 Relative performance metrics for a single iteration of the retargeting

algorithm, separated by the individual components. Percentages are

rounded to the nearest integer. 47

4 Performance metrics of processing time of one 4000 frame clip based

on the subsampling rate. 48

xi

Chapter 1

Introduction

1.1 Computer Animation

Computer animation can be defined as the process of digitally generating an animated

sequence, whether it be of images, 3D poses, or other formats. Much of modern

computer animation take its roots from traditional animation, where artists would

draw animated scenes frame-by-frame and then record these sequences of images.

Another important source of inspiration is stop-motion animation, where artists would

manipulate 3D objects by small increments, take still-pictures at each time-interval,

and play them back frame-by-frame.

The digitization of this process allowed greater robustness for artists working in

the field. For traditional 2D frame animation, this meant that animators could now

save time that they would traditionally spend redrawing frames by using the computer

to load previously created frames and slightly modify them. For 3D animations, the

development of digital 3D graphics resulted in the ability to display realistic 3D scenes

capable of accurately representing perspective. Furthermore, borrowing from the

aforementioned work in stop-motion animation, animated 3D characters could now

be created, allowing artists to manipulate theirs joints on a frame-by-frame basis.

This idea was expanded upon with the introduction of keyframe animation. Artists

no longer had to define each individual frame of a particular animation. Instead,

artists would define keyframes which would define transition points of an animation.

For instance, if an artist wants to represent a human character moving their arm

in a circular fashion for 1 minute at 24 FPS, instead of defining the motion using

1

24×60×60 = 8640 frames, they would simply define a handful of keyframes at spaced

out intervals and the computer would automatically fill in the rest by interpolating

between them.

This explosion in efficiency resulted in an increase of more ambitious projects

being undertaken throughout the animation industry. With the release of Toy Story

1995 as the first fully computer-animated full feature, a new standard of quality was

created.

Likewise, the gaming industry also took notice of this technological evolution.

Throughout the 70-80s, videogames would usually represent 2D scenes, where anima-

tion was done using sprites. However, with the development of 3D graphics, games

representing 3D scenes were now becoming possible. Two notable examples of this

were Wolfenstein 3D 1992 and Doom 1993, which although not technically being

first to-do-so, introduced 3D looking environments to players. Although these games

didn’t technically utilize 3D scenes as we define them today and used 2D sprites

for much of their content, they forever changed the gaming landscape. Games that

followed, such as Quake 1996, would now use full 3D scenes, where weapons, ene-

mies and the surrounding world would be represented in full 3D. Most importantly,

game characters were now represented in 3D, which greatly complicated the task of

animating them compared to animating traditional sprites.

The new scale of projects in both film and videogames created a demand for 3D

animation. Even with keyframing and other time-saving techniques, animating was

a long and often tedious process. If only there were a way of capturing motion in the

real world and transferring it to the 3D scenes and characters represented in these

mediums. With this idea, motion-capture was born.

1.2 Motion Capture

Although the idea of capturing motion and transferring it to digital scenes was an

obvious one, the implementation of this technique was less-so. Many competing

techniques emerged as methods to undertake this task.

One approach involves using various forms of sensors to track human motion. An

actor would wear a suit with gyroscopes, accelerators and other sensors embedded

throughout. Motion could then be recreated by integrating the acceleration data

2

Figure 1: Image of me in a MOCAP suit.

received from these sensors.

Another approach was to use optical systems to track human motion. Since motion

was difficult to extract from raw video, marker-based systems were created where

human characters would wear suits with optical markers attached to them, such as

the one seen in Figure 1. The system would then only need to track these markers

in-order to recreate human motion. These systems could be further subdivided into

both active and passive markers. Active markers would use different colors or patterns

within the markers to allow the system to disambiguate between different markers.

Passive systems would have identical markers, with the role of disambiguation left

completely to the system.

Due to a combination of factors including ease of set-up, marker redundancy, and

accuracy, passive marker-based optical systems remain the go-to method of motion

capture for AAA (high production value) video-game studios today, over 20 years

after their initial introduction. Video-game studios will often have their own in-house

capture systems, being able to record actors performing various movements.

However, even with the benefit of being able to capture human motion and transfer

it into digital 3D scenes, this does not make the whole process seamless. A large

3

number of individual steps must be undertaken before an actor’s motion can be used

in a video-game. The sum of these processes is known as the animation pipeline.

1.3 Animation Pipeline

1.3.1 MOCAP Shoot

The animation pipeline starts with a motion capture shoot. Studios will often list

out particular actions that they want for theirs games and actors are hired to act out

these sequences of motions. Arrays of static infrared cameras record the actors doing

their movements, with a MOCAP technician typically being present to supervise

this process. The zone being recorded by the cameras is typically referred to as the

MOCAP volume. The number of cameras varies based on a number of factors, such

as the desired precision and the size of the volume.

1.3.2 Marker Tracking

The next step after a motion is captured is known as the tracking phase. Marker

tracking involves taking as input the video stream from the MOCAP cameras and

solving for the marker positions in 3D space. This process is typically done in parallel

with the MOCAP shoot so that technicians are able to spot issues as they arise. Once

a shoot is completed, MOCAP artists will review the generated marker positions and

correct any errors present in the data.

1.3.3 Marker Solving

The solving stage involves taking as input the 3D marker positions and generating

a set of hierarchical joint rotations that define the movement of a character. Since

character motion in most modern video-games is represented in this format, this is

a vital step in the process. As with the last step, this is often done in parallel with

the MOCAP shoot. An initial ROM (Range of Motion) is done in-order to determine

certain characteristics such as joint lengths. Then, marker positions are mapped onto

joint rotations. As with the marker tracking phase, once a shoot is complete, MOCAP

artists need to review the data and correct any errors presents.

4

1.3.4 Animation Retargeting

While the data is now represented as a set of hierarchical joint transformations that

is usable by games, the animation pipeline is not necessarily over. Game companies

will often want to represent characters of differing proportions without necessarily

hiring actors of those proportions. The animation retargeting phase of the pipeline

involves the problem of transferring animation data from one skeletal structure to

another. In the case where their proportions and scales match, this problem is triv-

ial and simply involves copying over the joint angles. In all other cases involving

differing proportions, scales, contacts, and props, this problem becomes much more

challenging. For AAA games, an artist is usually involved in this step as well, as

retargeting animation between sufficiently different characters can lead to ambiguity.

For instance, if we wish to retarget an animation of a tall character holding a weapon

at shoulder height onto a shorter character, it is ambiguous whether or not we want

the weapon to move or the character to move.

1.3.5 Delivery

Finally, once all previous steps are completed, the animation data is delivered to a

studio and ready for use. Sometimes, when a MOCAP shoot is done and animators

aren’t quite satisfied with the exact nature of a certain pose, they will manually edit

sections of the animation data using keyframes in-order to better conform to their

artistic vision.

1.4 Contribution

A fully automated animation pipeline has been the goal for animators and game stu-

dios. However, as described, the animation pipeline is large with several individual

interdependent components. Each component requires various levels of manual inter-

vention by specialized artists and has rigorous standards of quality. Any automated

solution needs to not only solve the problems in each component, but do so without

sacrificing quality and with sufficient robustness as to allow for manual intervention

if necessary. All of this makes the automation of the entire pipeline a challenging

endeavor. This thesis works towards the goal of an automated pipeline by tackling

5

two specific challenges: MOCAP cleanup and Animation Retargeting.

1.4.1 Motion Capture Cleanup

During the marker tracking and solving phases, several issues can arise with the input

marker data. Optical markers are prone to becoming occluded from camera view,

due to limbs, other actors, or props blocking the camera’s line of sight. Obstructed

markers can cause problems in two ways. If the system fails to properly detect a

marker as obstructed, it will retain the position it had when it was last seen. When

the marker reappears, it will suddenly pop to its new positions, resulting in jittery

unrealistic movements. Second, even if the system properly detects a marker as being

obstructed, it can still fail if enough markers get obstructed simultaneously, since

there won’t be enough marker data to input into the marker solving phase. Markers

coming within close proximity with one another are susceptible to being swapped. For

instance, if an actor passes his wrist alongside his hips, the system might believe that

the wrist marker is the hip marker and vice-versa. In this scenario, the system will

then utilize this erroneous information to construct an unusable skeleton animation.

Swaps can occur with only one actor in the scene and result in corrupted data, but

are even worse in situations with multiple actors. For instance, in the case where

two actors are wrestling, markers can get swapped between the two actors, resulting

in broken motion for both characters. An example of this can be seen in Figure 10

from Chapter 3. Markers are also vulnerable to high-frequency noise, which render

their positions inaccurate and result in a corrupted skeleton animation. Such noise

can from several sources, including but not limited to dirty or unfocused camera

lenses. Existing methods to solve these problems are problematic, either generating

solutions of insufficient quality or generating solutions that are hard to integrate into

existing animation pipelines. All these issues typically require manual intervention,

with artists manually analyzing marker curves and correcting them on a case-by-case

basis.

The contribution to this problem is a novel method for detecting and repairing

broken segments of MOCAP marker data. Unlike existing methods, it results in high

quality marker cleanup while allowing for artist intervention in cases of system failure.

Using a state-of-the-art kinematic solver as a reference to detect broken segments

of marker data, broken markers are subsequently reconstructed using Linear Blend

6

Skinning from the kinematic solver and blended with the remaining markers using

a spline-based blending algorithm. The result is a set of markers where corrupted

markers are reconstructed and uncorrupted markers are untouched. This work was

were submitted to MIG 2019 under the title ”Robust Marker Trajectory Repair for

MOCAP using Kinematic Reference”.

1.4.2 Animation Retargeting

Animation retargeting is a process that requires a significant amount of manual work

by artists, which can be attributed to multiple factors. Typically, existing retarget-

ing solutions can achieve impressive result, but require manual selection of dozens to

hundreds of parameters. These parameters control aspects of the retargeting such as

which sections of the skeleton are given priority in the solving process. These pa-

rameter aren’t trivial to select, and will vary depending on input character structure.

Furthermore, even for an identical character structure, there exists a range of viable

parameters. For example, if retargeting an animation of a short character shooting

a weapon onto a tall character, one can think of two different sets of parameters.

The first set would preserve the weapon’s global position by sacrificing animation

fidelity, while the second would preserve animation fidelity by sacrificing the weapons

position. This inherent ambiguity makes animation retargeting a difficult area to au-

tomate. This problem is magnified when old animations are reused. Unlike with new

MOCAP shoots where it is possible to justify the cost of manual animation retarget-

ing, this is not the case for old animation data. In these cases, a batch retargeting

algorithm is desirable, that can efficiently process hundreds of animated clips and

output decent quality animations.

The contribution to this problem is a mesh based retargeting algorithm that is

sufficiently robust to choice of input skeleton and in capable of retargeting many

different animation clips in an efficient manner. Starting with a source skeleton

containing the animation and a target skeleton onto which we wish to retarget, each

skeleton is rigged with its own mesh. The mesh is subsampled and a mapping is

created between the source and target meshes. Then, Jacobian Inverse Kinematics is

used to compute joint angles for the target skeleton results in the target mesh vertices

tracking the source mesh vertices. The result is a retargeting algorithm that is robust

to different skeletal structures and requires minimal manual intervention. Although

7

not always rivaling the quality of manually selected parameters, it allows for a good

quality automatic solution for cases where manual intervention is not possible.

8

Chapter 2

Background

Within the computer animation community, there are several omnipresent techniques

that deal with processing animation data. This chapter aims to recap some of the

concepts that appear in Chapters 3 and 4.

2.1 Animation Representation

There exists a multitude of ways for representing animated 3D characters. One popu-

lar method used predominantly in the games industry relies on storing animation on a

hierarchical structure known as a skeleton. Skeletons can take on various sizes, propor-

tions, and structures, but for humanoid characters, usually roughly resemble a simpli-

fied version of the human skeleton. Animated sequences are then expressed as skeletal

deformations, with joints being able to rotate with 3 degrees of freedom. For a joint

hierarchy with nj number of joints, a pose can be expressed in terms of joint trans-

lations and rotations with respect to their parent joints LP ∈ Rnj×3,LR ∈ Rnj×4.

Note that joint rotations LR are expressed using quaternions. These translations and

rotations are described with respect to the reference frame of their parent joint, and

thus known as local transformations. Translation and rotation information can also

be combined into a homogeneous transformation matrices T ∈ Rnj×3×3.

The notation can be extended to animated sequences by adding another axes

to our representation, defining LR ∈ Rn×nj×4, where n represents the number of

frames in a particular animation. Although it is possible for joint translations to also

vary over time, due to constraints imposed by many game-engines, joint lengths are

9

assumed to be fixed in this thesis.

2.2 Forward Kinematics

Although describing animation using local reference frames is convenient, it is often

useful to have access to the global joint positions. The process of going from local joint

transformations to global joint transformations in a hierarchical structure is known

as forward kinematics (FK). Although there are multiple algorithms for achieving

this, the simplest method is to iterate over a joint hierarchy starting at the root joint,

computing the global transformations of each of the roots descendants one at a time,

as seen in Algorithm 1. Note that this particular implementation assumes that the

joints are stored in a preorder traversal of the joint hierarchy. Note that the function

Parent(i) returns the index of joint i’s parent within the hierarchy.

Algorithm 1 Pseudocode for a forward kinematics algorithm. Taking as input the
set of local translations LP as well as quaternion rotations LR it outputs the set
of global translations and rotations GP,GR.

Function FK (LP ∈ Rnj×3,LR ∈ Rnj×4)
// Create initial empty global transformation arrays
GP ∈ Rnj×3,GR ∈ Rnj×4 ← ∅
// Fills first values
GP0,...,GR0,... ← LP0,...,LR0,...

// Iterate over predefined number of joints
for j = 1...nj do

// Get index of parent joint
pj ← Parent(j)
// Compute global positions
GPj,... ← GRpj,...Tj,... + GPpj,...

// Compute global rotations
GRj,... ← GRpj,...LRj,...

end for
return GP,GR

End

10

2.3 Inverse Kinematics

Inverse kinematics (IK), as the name suggests, is essentially the opposite of forward

kinematics. Instead of going from local joint transformations to global joint trans-

formations, we wish to go from global joint positions to local joint angles. Unlike

FK which is relatively straight-forward, computing IK is usually more complicated.

For the simplest cases where a joint hierarchy only has 2 joints, IK can be computed

analytically. For joint hierarchies such as the ones used for character animations,

iterative approaches are usually used to approximate a solution. Depending on the

problem, an exact solution might not exist. One such method for numerically solv-

ing this problem is known as Jacobian Inverse Kinematics, extensively detailed in S.

Buss, 2004 and summarized in this section. The Jacobian J ∈ R3nt×3nj is defined as

a matrix of partial derivatives of nt number of end-effectors translations with respect

to changes in nj joint angles θ. End-effectors are defined as as a set of joints within

the hierarchy that are chosen to be tracked. Typically, nt <= nj, but this is not

necessarily the case (as seen in Chapter 4). nt is multiplied by 3 for each positional

axes (x,y,z), while nj is multiplied by 3 for each rotational axes of the given joint.

The individual entries of the Jacobian matrix can be expressed as follows:

Ji,j =
∂pi
∂θj

(1)

The derivation of the individual partial derivatives will vary according to several

factors, most notably the format of the joint rotations. The follow is the the partial

derivative for rotational joints:

∂pi

∂θj
= rj × (si − pj) (2)

In equation 2, rj represents the rotation axis of joint j, si represents the end-

effector position, pj represents the joint positions, and × represents the cross-product

operation.

From this, we wish to derive the joint angles θ such that the previously mentioned

end-effectors s match their target positions s ∈ Rnt×3. This can be achieved through

an iterative approach, solving the equation:

ti − si = J∆θ (3)

11

Various methods exists for solving this equation, one of which is known as Damped

Least Squares:

∆θ = J>(JJ> + λI)−1(t− s) (4)

In this equation, λ is known as the damping factor, a small non-zero constant

that ensures that the resulting matrix is invertible, as well as adding stability to the

system.

2.4 Linear Blend Skinning

Figure 2: A mesh rigged with a skeleton, with mesh deformation being driven by the
skeleton deformation via LBS.

Although joint hierarchies are used to represent characters in videogames, they

aren’t seen by the end-user. Instead, a process known as rigging is used to fit the

skeleton into a mesh (seen in figure 2). The deformation of this mesh is then driven

by the skeletal deformations, through a process called skinning. Linear Blend Skin-

ning (LBS), also known as pose space deformation as described in Lewis, Cordner,

and Fong, 2000, is a simple skinning technique that is used generate mesh defor-

mations from skeletal deformations. LBS defines mesh vertex positions are a linear

combination of joint deformations. For a joint hierarchy with transformation matri-

ces T ∈ Rnj×3×3, a mesh with vertex positions v ∈ Rnv×3 vertices, a set of skinning

weights w ∈ (0, 1)nj×nv is used to determine how much each joint affects each vertex.

12

The modified vertex position v̂ ∈ Rv×3 can be derived as follows:

v̂j =

nj∑
i=1

wi,jTjvj (5)

Another interesting problem is computing normals for mesh vertices, labeled

n ∈ Rv×3. Typically, due to a problem described by Tarini, Panozzo, and Sorkine-

Hornung, 2014, the following does not hold:

n̂j =

nj∑
i=1

wi,jTjnj (6)

Although this would normally be a problem, through experimentation, we deter-

mined that this does not impact this particular use case in Chapter 4, due to large

amount of normals being tracked and the relatively low rate at which the errors occur.

As such, equation 6 is used in Chapter 4 even though it does not necessarily hold in

the general case.

The LBS algorithm is further simplified with an assumption that each vertex is

only affected by a maximum of n joints, where n = 4 for most practical applications.

Due to its simple nature, there are many issues with LBS which have resulted in

many other skinning techniques being proposed in academic literature. However, the

simplicity of LBS coupled with its ease of implementation has resulted in it still being

one of the principal methods used by game companies.

13

Chapter 3

Robust Marker Trajectory Repair

for MOCAP using Kinematic

Reference

Figure 3: Marker paths visualized alongside a kinematic solution in 3D

3.1 Introduction

Marker based motion capture systems (MOCAP) are still the most popular way to

capture kinematic motion. Current commercial MOCAP systems achieved commer-

cial maturity and scalability such that they are used ubiquitously in movie and game

productions. Some MOCAP systems now can deploy hundreds of cameras and track

in real-time a very large numbers of markers from several simultaneous actors.

14

One inherent problem with marker based systems is that their temporal trajec-

tories have significant gaps and errors. Gaps in the data are usually due to occlu-

sions and self-occlusions, while trajectory errors frequently occur during capture when

marker paths cross each other creating an ambiguity that can lead to the MOCAP

system swapping their trajectories (Begon, Wieber, and Yeadon, 2008). Trajectory

errors also frequently occur when markers can drop from the body during high energy

motion. To address these issue there are two problems to be solved: detecting the

markers and the time interval where trajectory errors occur and fill in the trajectory

data when it is missing or it is incorrect.

Both these problems can be handled fundamentally in two ways: at the kinematic

level (Holden, 2018) or at the marker level (Aristidou, Cohen-Or, et al., 2018). A

kinematic level solution does not detect or fill in the geometric trajectories of spe-

cific markers, but rather computes directly the kinematic motion in a holistic way

using all the information available, including the potentially missing and erroneous

trajectories. A marker level solution focuses on each marker trajectory individually

to detect trajectory errors and fills in the erroneous or missing trajectories in their

geometric space.

For most MOCAP applications the marker tracking is simply a transitional step

in obtaining the kinematic motion of an articulated model that is usually expressed

as joint angles. Therefore, kinematic approaches have the advantage that the recon-

struction can be framed as a regression problem that is more robust as the marker

set used contains many markers and has some redundancy built in. The disadvantage

of this approach is that the new kinematic motion does not always conform to the

marker trajectories, even for the markers which had initially correct trajectories. This

is a major problem for production teams that sometimes require the actor to do a

precise motion that may be lost in the process. Addressing the problem at a marker

level is very challenging because marker trajectories are highly correlated. Another

issue is that, for cases where the kinematic approach fails to create an adequate solu-

tion, the motion becomes difficult to manually fix, as manual marker tracking artists

are trained to work by modifying the marker paths which are no longer available.

In this work we present a novel method for the detecting and filling of marker

trajectories that leverages the benefits of both approaches. It uses a state-of the-

art robust kinematic solver (Holden, 2018) to construct an initial kinematic motion.

15

Using this motion as a reference, our method detects erroneous trajectories and fills

erroneous and missing trajectories by transferring the paths from the kinematic solver

in a shape preserving way. We show that our method is robust and outperforms state-

of-the-art techniques.

The rest of the paper is structured as follows. Section 3.2 presents related work.

Section 3.3 presents an overview of the method. Section 3.4 presents ours results and

comparisons with alternatives methods. Chapter 5 concludes and presents possible

avenues for future work.

3.2 Related Work

MOCAP data is typically acquired as time-synchronized 3D-trajectories of a fairly

large number of markers. The problem of MOCAP clean-up is identifying the portions

of these trajectories that contain errors and correcting them.

There are several ways to look at this data. One is as a high-dimensional time-

series and frame the problem as a smoothing problem as seen in X. Liu et al., 2014.

Another is to model the problem as a dynamic system and use variations of Kalmann

filters (Julier and Uhlmann, 1997; Wan and Van Der Merwe, 2000) to optimize for

the unknown trajectories (H. J. Shin et al., 2001; Tak and Ko, 2005; Li, McCann,

N. S. Pollard, et al., 2009; Aristidou and Lasenby, 2013). Kalman filter methods can

be improved by adding additional kinematic constraints, seen in Herda et al., 2000;

Gleicher, 2001; Li, McCann, N. Pollard, et al., 2010.

Aggregating all trajectories into one data-stream makes the data monolithic, un-

scalable and difficult to handle. In contrast, the data can be decoupled based on

markers and be seen as a set of time-parameterized 3D curves yielding to a geometric

view of the problem. However, naive geometric filling (Lee and S. Y. Shin, 1999)

(i.e. spline curves) is suitable for very short segments, but it fails for long sequences

because the trajectories over large periods of time are complex and highly correlated

with the trajectories of adjacent markers. This trajectory correlation can be mod-

eled in several ways. The correlation between marker trajectories can be modeled

using PCA, seen in G. Liu and McMillan, 2006; P. A. Federolf, 2013; Gløersen and

P. Federolf, 2016 or using probabilistic model averaging estimating the distance from

one marker knowing the trajectories of the rest of the markers (Tits, Tilmanne, and

16

Dutoit, 2018). Most of these methods work very well if the data corruption is limited

to one or two markers, but they are understandably less robust in the presence of

multiple marker failures.

Another approach to address this limitation is to use a database of existing MO-

CAP clips and extract from them the best fitting trajectory (Hsu, Gentry, and

Popović, 2004; Baumann et al., 2011; Shen et al., 2012; X. Wang, Chen, and W.

Wang, 2014; Zhang and Panne, 2018). This works well if the motion already exists

in the database. To address the existence of a database, Aristidou, Cohen-Or, et al.,

2018 present a data-driven method based on self-similarity.

With the recent advances in deep-learning there are a number of methods that

frame the problem using neural networks, such as Fragkiadaki et al., 2015; Jain et al.,

2016; Mall et al., 2017; Butepage et al., 2017; Kucherenko, Beskow, and Kjellström,

2018; Holden, 2018.

Some of these methods such as Mall et al., 2017; Holden, 2018 use a recursive

neural network or a feed forward neural network to directly obtain the kinematic

output (i.e. the skeleton joints and their angles). As mentioned before, the methods

that directly generate the kinematic information of the skeleton are generally more

robust and produce feasible poses, but sometimes deviate from the motion executed

by the mocap actor. This is an undesirable production artifact.

Many of the methods mentioned above assume that the interval where the data is

incorrect is given as an input and focus on the repair step of the problem. However,

the detection step is equally important, but, it has received far less focus. While it

is true that many of the capture problems occur when the markers are occluded (a

case easily detectable), there are a number of common scenarios which are harder

to detect, such as marker swaps, where maker paths are corrupted, often in a cluster

with other markers.

The most common approach is to use statistical analysis to detect when the motion

is natural (Ren et al., 2005; W. Kim and Rehg, 2008). However, these methods

operate at the kinematic level and they will provide the interval when the motion

is unnatural, but not which markers are the culprits. Invalidating all markers in

a certain interval is unpractical. Aristidou, Cohen-Or, et al., 2018 proposes a novel

method based on self similarity that allows for more granularity in detecting anomalies

in the motion captured data.

17

Figure 4: Overview of entire pipeline. a: Initial corrupted marker data. b: Solved
skeleton using NN. c: Solved skeleton using commercial software. d: Reconstructed
marker paths using LBS. e: Comparison of kinematic solutions to determine erroneous
markers. f: Filling of incorrect marker paths. g: Filled marker paths. h: Final
kinematic solution

3.3 Method

Our method is designed to complement a standard MOCAP system taking a set of

marker paths and a set of joint transforms. Given a character consisting of m markers

for n frames, the set of marker positions is denoted by X ∈ Rn×m×3 (Fig. 4a) where

Xj
i is the 3D position of marker j at frame i. For j joints, we define a set of transforms

Y ∈ Rn×j×3×4 (Fig. 4c) where the Y j
i is a 3× 4 transformation matrix of the marker

j at frame i. The set of joint transforms is a naive kinematic solution generated using

commercial software (Software, 2019) on the raw marker data. It contains numerous

errors but the associated marker paths coincide with the original input.

To correct the erroneous marker paths, a second state-of-the-art kinematic solution

is used as reference. In our experiments we used an modified version of Holden, 2018,

as seen in (Fig. 4b) and elaborated on in section 3.3.1. However, our method is not

exclusively tied to using this solver; any sufficiently robust kinematic solver can be

used instead. While the original, naive, kinematic solution conforms to the original

markers, it can contain erroneous poses. To the contrary, the robust solution contains

only feasible poses, but it does not conform to the original markers even over time

intervals where the marker paths are correct. We denote the output of this kinematic

solver Ŷ ∈ Rn×j×3×4.

18

We use the second kinematic path to regenerate markers trajectories using linear

blend skinning (Fig. 4d), which is denoted by X̂ ∈ Rn×m×3. This process is explained

in section 3.3.2. We determine the time intervals where the original marker paths are

invalid by looking at the difference between poses (Fig. 4e), explained in section 3.3.3.

We then recompute the invalid markers paths by augmenting their paths using the

data from the robust kinematic solver, preserving the position and velocities at the

boundaries of the time interval (Fig. 4f) section 3.3.4. This results in a set of marker

paths X̄ ∈ Rn×m×3 that is a blend of the other two (Fig. 4g).

Finally, we regenerate a kinematic solution for the filled markers (Fig. 4h) in-order

to conduct our result analysis in section 3.4. This is done using the same process that

is used to go from X(Fig. 4a) to Y(Fig. 4b), resulting in a kinematic solution that

we denote as Ȳ ∈ Rn×j×3×4. The following sections will describe the individual

components of the process in more detail.

3.3.1 Kinematic Solver Improvements

The robust neural network based kinematic solver method as presented in Holden,

2018 works well for many examples, but as mentioned in the original paper, has

certain failures cases when the input marker paths represent poses that were not

covered in the training set or when the rigid body fitting process fails. In order to

improve its performance, we slightly modify the algorithm from Holden, 2018 by using

artificial data augmentation. This is done by computing correlations of individual

local joint rotations, positions and scales from the training set and using this data

to augment existing poses on a per-joint basis, with the magnitude being controlled

by a standard Gaussian distribution. The following demonstrates this process for the

position component, with the process for the other two components being similar:

We define Lpos ∈ Rn×3j as being the local space representations of the positional

component of Y, computed using an inverse kinematics method based on S. Buss,

2004. We then apply the following process:

Apos ∼ N (0, apos) ∈ Rn×3j (7)

Here Apos controls the amount of local positional perturbations that are applied,

with apos is a manually set scalar value which controls the average magnitude of these

19

perturbations.

Lpos ← Lpos + AposCpos (8)

Here Cpos ∈ R3j×3j represents the lower triangular matrix from the Cholesky decom-

position of the covariance matrix computed on the local joint positions found within

the entire data set. After applying positional, rotational and scaling perturbations,

the global rotations and positions are recomputed from the modified local values

using forward kinematics. This method enforces correlations between joint trans-

formations found within the data set onto the perturbations that are added in the

preprocessing phase. Additionally, we also modify the artificial marker corruption

process presented in Holden, 2018, increasing the likelihood that clusters of nearby

markers are corrupted. This is used to simulate scenarios such as marker occlusion,

where multiple nearby markers will often be occluded simultaneously.

3.3.2 Marker Reconstruction

From a valid kinematic solution Ŷ, we reconstruct the markers using the same ap-

proach as in Holden, 2018: a linear blend skinning function is used, which will generate

the reconstructed marker data X̂ = LBS(Ŷ,Z), defined as:

LBS(Ŷ,Z) =

j∑
i=0

wi � (Ŷi ⊗ Zi) (9)

where Z ∈ Rj×3 contains the rest pose marker offsets, w ∈ Rm×j contains the

marker weights, � represents component-wise multiplication and ⊗ represents matrix

multiplication. Alternative skinning methods could be used instead, however it would

also likely require their use in the training process of the neural network that generates

Ŷi. The output of this process is X̂, which represents the set of reconstructed marker

paths. Due to their generation via linear blend skinning from a cleaned series of

joint transforms, these marker paths will necessarily have a valid kinematic solution.

However, due to limitations with the solver, the reconstructed marker paths will have

two main issues. Firstly, small details in motion present in the original marker data

such as finger movement will often be lost, potentially due to its use of a Savitzky-

Golay filter Savitzky and Golay, 1964. Second, the recreated marker paths will

oftentimes be offset from the original marker paths, even when those sections in the

20

original marker paths are not corrupted.

3.3.3 Erroneous Marker Interval Detection

Algorithm 2 Given two kinematic solutions, an erroneous one and a clean one,
determine the set of missing markers paths

Function DetectBad (Y ∈ Rn×j×3×4, Ŷ ∈ Rn×j×3×4)
// Get differences between two kinematic solutions
∆P ∈ Rn×j ← ||Ŷ −Y||
∆R ∈ Rn×j ← Angle(ŶY>)
// Get joints surpassing allowed threshold

J ∈ (0, 1)n×j ←

1,
if ∆P−∆Pmax >= 0

or ∆R−∆Rmax >= 0

0, otherwise

// Get markers associated with joints surpassing threshold

ŵ ∈ (0, 1)m×j ←

{
1, if w > 0

0, otherwise

M ∈ (0, 1)n×m ← J ŵ
return M

End

In parallel to the marker reconstruction, another component of the process is

used to detect erroneous sections in the marker paths X and remove them, leaving

behind gaps in the marker data. This process is described in Algorithm 2 and further

elaborated on here. To start with, all sections of marker paths detected as being

outliers in Holden’s method Holden, 2018 are added to the list of gaps. Subsequently,

the two kinematic solutions Ŷ and Y are used to determine additional gaps. The

positional and rotational components of the two joint transforms are compared. When

either the rotational or positional differences between the two joints exceed their

respective thresholds (∆Pmax and ∆Rmax), the violating joint is marked as being

erroneous for the duration of the time that the threshold is exceeded. There is an

inverse correlation between the magnitudes of the selected thresholds and the amount

of frames marked as missing. The exact values chosen as well as the reasoning behind

them is given in section 3.4.2. After determining the invalid frames on a per-joint

basis, we determine which markers are to be marked as erroneous. The mapping from

joints to markers is done using the same marker weight matrix w seen in equation 9,

21

by setting markers as missing if they have weights greater than 0 with respect to the

violating joints.

The missing values are combined with the originally obtained outlying marker

values to get a combined matrix of missing markers M ∈ (0, 1)n×m, where 0 indicates

the presence of the marker and 1 indicates its absence at a given keyframe.

3.3.4 Gap Filling

Before the marker paths can be fixed, some processing steps are performed to

improve the system’s performance. Firstly, in-order to simplify the system of marker

gaps, the Boolean mask M is converted to a list of marker gaps G ∈ Ng×3, where

g is the total number of gaps present across all markers. For some gap i, Gi ∈ N3

represents the index of the frame where the gap begins, the index of the frame where

the gap ends, and the index of the associated marker, respectively.

Depending on the underlying reason for the gap in the tracked markers, the mark-

ers found at the frames before the start of the gap as well as the frames found after

the gap are of limited reliability. As seen in Fig. 6, markers will often fly off erratically

before and after disappearing. It is therefore useful to remove the keyframes found

immediately before and after any given gap in a marker path. A simple approach is

to cut off a preset amount of frames from both sides of all gaps in a given take. If

set to a sufficiently high value, this method will remove most erroneous marker paths

found near marker gaps. However, this will also cut off a decent number of useful

keyframes, as well as not guaranteeing that the remaining marker path will be able

to be correctly filled with the reference path in the next section. For this, a more

sophisticated solution is used, cutting enough frames until the difference in slopes

between the last uncut frame on the original path and the corresponding point on

the reference path is minimized. A threshold can be set in-order not to cut out too

many frames. Our chosen value is given in section 3.4.2.

Small tracks and gaps will often appear within the marker gap data. Small tracks

are short sections of potentially valid marker frames that are surrounded by missing

markers, and small gaps are short gaps surrounded by valid marker data. These ar-

tifacts can be present in the marker data due to issues propagated from the actual

MOCAP system, due to the gap detection algorithm, where a kinematic solution can

22

repeatedly enter and leave the threshold limit, or due to the smart padding. Regard-

less of the underlying reason, small gaps are filled with a naive polynomial spline.

Small tracks of marker data are simply removed and considered as missing, as they

are of limited reliability. The thresholds for these two processes are tweakable, with

our chosen values and reasoning behind them described in section 3.4.2. The order

of these two operations is important, as it will generate different results depending

on which one is run first. In our pipeline, we run the marker track removal first and

then subsequently fill in any small gaps, which results in more gaps and less tracks

filled in using the polynomial spline. This order is chosen since the subsequent step

in our pipeline will use a more sophisticated algorithm to fill in larger gaps.

As seen in Algorithm 3, we start by iterating over the individual marker gaps M.

For an individual gap such as the one seen in Fig. 5, we compute the differences in

positions between the reference marker path X̂ and the original marker path X at

the last frame before the start of the gap and the first frame after the end of the gap.

Similarly, we compute the differences in velocities between the reference marker path

M̂ and the original marker path M before and after the gap. The use of positional

constraints will ensure the C0 continuity of our filled curve, while the velocity con-

straint swill ensure C1 continuity. Both positional and velocity constraints are needed

in-order to produce filled marker paths that behave realistically with no unnatural

jumps in marker position or velocity. These four values computed on the differences

between the reference and original marker paths are then used to fit a cubic Hermite

spline. This spline is then subtracted from the reference marker path between the

start and end frames. The result is a set of marker paths X̄ ∈ Rn×m×3 which transfers

the motion from the reference path onto the original marker path, all while conserving

the smoothness of the curve.

Certain degenerate cases exist within the gap filling algorithm. A marker gap

could have its end index be equal to n, its start index equal to 0, or both. The

last two cases do not occur frequently but the first case is quite common, as once a

marker is missing, it is likely to not reappear. We deal with the first case by setting

∆ye = ∆ys,∆y′e = 0 and the second case by setting ∆ys = ∆ye,∆y′s = 0. For

the case where a marker is missing for the entire take, we can either simply take the

reference path as is or simply ignore the marker, depending on whether the kinematic

23

solver used is robust enough to deal with fully missing markers.

Another case exists when velocities between the original marker path and the

reference marker path are of sufficiently different magnitudes. In this case, it can

occur that filled marker paths will stray from the reference path in order to try and

satisfy the C1 continuity constraint of the curve. The gap processing step of trimming

frames until the velocities are sufficiently similar mostly mitigates this issue, but it

may still intermittently occur. For this, we clamp the difference between the velocities

of the reference path and the original path. This will limit the smoothness of the

generated curve, but is a preferable solution to having a curve not follow the desired

path. Our chosen clamping value is described in section 3.4.2.

3.4 Results and Discussion

The evaluation methodology for most state-of-the-art methods consists of artificially

removing parts of the marker paths and filling in the gaps. The advantage of this ap-

proach is that it allows comparison against a ground truth. However, it also presents

two major flaws. First, the deviation from ground truth in marker space is not the

most relevant measure: it is possible to obtain a curve close to the ground truth that

will generate a skeleton that is less kinematically correct than a curve that is further

from the ground truth. Second, natural gaps in the data occur when the data is more

difficult to estimate than when the system was able to construct it.

Table 1: Comparison between different marker filling methods in terms of the mean
per-frame error between their kinematic solutions and the ideal path recreated by an
artist. ∆pos represents the error between the global joint positions (in cm) while ∆rot

represents the error between the global joint rotations (in degrees).

Method ∆pos ∆rot

Original 1.841 35.220
Naive Polynomial 10.678 42.93
Commerical 1.053 22.101
Gloersen 2016 0.716 23.827
TMT 2018 0.603 8.038
Holden 2018 1.337 19.604
Ours 0.288 4.727

24

We provide comparisons for both marker curve similarity and kinematic correct-

ness on both data with natural gaps and artificial gaps. We define natural gaps as

sections of the data that were initially missing within our input, X̄. Artificial gaps

are defined as sections of marker data that wasn’t initially missing, but was deemed

invalid by our detection algorithm. Since the ground truth itself is broken in the case

where a gap occurs naturally, we compare our data to a professional motion capture

tracking artist’s handmade corrections.

3.4.1 Comparison

We compare a variety of different methods in various scenarios. Only a subset of

these methods are visualized at once, either due to legibility considerations or be-

cause the other methods failed to run for the given example. The following are the

methods we compare: Original is the original kinematic solution on the raw marker

data (Y), Naive Polynomial is a simple algorithm that fills a marker gap with a naive

Hermite spline, and Commercial is a proprietary commercial filling algorithm Soft-

ware, 2019 that interpolates a marker’s path in-order to fill it. Additionally, we with

compare several state-of-the-art methods: Gloersen 2016 (Gløersen and P. Federolf,

2016), TMT 18 (Tits, Tilmanne, and Dutoit, 2018), and Holden 2018*, which is our

retrained and slightly modified version of Holden, 2018, essentially representing Ŷ

(Fig. 4b) in our method.

As seen within (Tab. 1) and (Fig. 8), our method generates marker paths that are

more kinematically sound compared to the alternatives, being the closest to the ideal

kinematic path recreated by a professional tracking artist. This is most notable on

the naturally generated gaps, where our system outperforms all the other compared

systems, including our modified version of Holden, 2018.

Figure 7 demonstrates a fairly simple example, where three markers on the hips

go missing. Our method (b) is clearly closest to the ground truth, with each of the

others having different issues. Gloersen 2016 (a) has a broken leg, crooked spine and

incorrect arm position. Naive Polynomial has has the hips too far back compared

to the actual motion. TMT 2018 (e) fails to accurately place the hip joint and has

bending in the neck. Commercial Linear (f) manages to accurately place the arms,

but has a crooked spine and neck.

Figure 9 demonstrates the importance of visualizing the kinematic solution Ȳ

25

that corresponds to the marker paths X̄. Plotting out a single marker path, in this

case a marker found on hips, it is hard to determine which marker paths are superior.

While the TMT 18 method (c) clearly deviates more from the rest, it is hard to

determine what effect this has on the final result. Analyzing the kinematic solution,

we can see that the deviation in marker path results in a completely broken skeleton.

Additionally, we notice minor spine curving within the Gloersen 2016 method, which

would have been hard to determine using the marker paths.

Figure 10 demonstrates a hard to solve example, with an animation consisting

of two characters wrestling on the ground, with multiple marker occlusions, marker

swaps and otherwise corrupt marker paths. Although all methods fail to completely

fix this animation, our method (b) performs the best, generating a smooth spine and

intact joint contacts. TMT 2018 (d) is second best, managing the recover the spine

of the character on top but failing to properly correct the right arm of the bottom

character.

3.4.2 Parameter Selection

Our pipeline has several parameters, all of which were determined experimentally.

For the threshold values ∆Pmax and ∆Rmax in section 3.3.3, we used the values

of ∆Pmax = 10 cm and ∆Rmax = 30 degrees. The motivation behind choosing a

relatively large value for ∆Rmax is to handle smaller joints, namely those on the

hand. Due to the nature of the joints on the hand, their positional error will often be

small even when they visually appear invalid, while their rotational error will usually

be quite high. The exact value of the threshold values will depend on a multitude of

factors, namely the quality of the solver, the precision of the MOCAP system used,

the complexity of movements depicted within the motion capture shoot, as well as

the importance allotted to keeping fine details in the original motion. For instance,

cinematic shoots might prefer to utilize a greater threshold value to preserve more

of the original motion and deal with any leftover errors by hand, while game-play

shoots will not put as much value on fine detail preservation, allowing for a smaller

threshold value.

The amount of frames trimmed in section 3.3.4 is set to a maximum of 120 frames,

corresponding to 1 second of footage. We found that this value can be set relatively

high due to the ability of our system to reproduce marker paths for long gaps. Due

26

Table 2: Performance of our pipeline computed on a typical sequence of 10,920 frames.
Percentages calculated using largest remainder method.

Method FPS Time (%)
NN Preprocessing 4029 2
NN Evaluation 1339 6
Filtering 5527 1
IK Retargeting 108 74
Marker Reconstruction 2278 4
Gap Detection 10749 1
Gap Preprocessing 904 9
Marker Filling 2620 3
Total 81 100

to the robustness of our reference filling algorithm, the threshold limit for the naive

small gap filling algorithm is set to a low value of 5 frames. Similarly, the robustness

of our system likewise allows for a high threshold value for small track removal of 120

frames, which is equivalent to 1 second of footage. For the clamping threshold ∆max,

we clamp the velocity at 0.25. This choice of this value will depend on how much

deviation from a smooth marker path is acceptable.

3.4.3 Performance

Table 2 presents performance metrics for each individual stage of our algorithm,

described as follows: NN Preprocessing represents preprocessing stages before neural

network execution, such as outlier marker removal and data normalization, NN Eval-

uation represents the evaluation of the network, Filtering represents the passing the

network through the Savitzky-Golay filter, IK Retargeting represents inverse kine-

matic based retargeting, Reconstruction represents the marker reconstruction process

presented in section 3.3.2, Gap Detection represents the erroneous marker interval

detection presented in section 3.3.3, Gap Preprocessing represents the preprocessing

done on marker gaps presented in section 3, and Gap Fill represents the marker filling

process presented in section 3.3.4. The algorithm is run on a 91 second clip containing

a single character, evaluated at 120 frames per second. Runtimes vary significantly

based on the length of the clip, percentage of erroneous marker at each frame, and

threshold values set by the user. However, the ratios between each stage remains

roughly similar.

The retargeting stage is the biggest bottleneck of the pipeline, taking 74 % of the

runtime to execute. The first four stages represent an implementation of the original

algorithm presented in Holden, 2018. The last four stages represent the sum of steps

27

required for our gap filling algorithm. The cost of executing our blending algorithm

is relatively inexpensive, taking 17 % of the runtime, in comparison to the original

four stages which take 83 %.

28

Algorithm 3 Given a gap in marker data, fill the gap by referring to a reference
marker path

Function GapFill (X ∈ Rn×m×3, X̂ ∈ Rn×m×3,M ∈ Ng×3)
// Copy over marker paths
X̄ ∈ Rn×m×3 ← X
// Loop over all gaps in a clip
for i ... g do

// Get start, end and marker indices
s, e,m←Mi,1,Mi,2,Mi,3

// Get differences in positions

∆ys ∈ R3 ←


X̂m
s−1 −Xm

s−1, if s > 1

X̂m
e+1 −Xm

e+1, if e < n

0 otherwise

∆ye ∈ R3 ←


X̂m
e+1 −Xm

e+1, if e < n

X̂m
s−1 −Xm

s−1, if s > 1

0 otherwise

// Get differences in velocities

∆y′s ∈ R3 ←

{
(X̂s−1−X̂s−3)

2
− (Xs−1−Xs−3)

2
, if s > 1

0 otherwise

∆y′e ∈ R3 ←

{
(X̂e+3−X̂e+1)

2
− (Xe+3−Xe+1)

2
, if e < n

0 otherwise

// Clamp velocity differences

∆y′s ← AbsClamp(∆y′s,∆max)
∆y′e ← AbsClamp(∆y′e,∆max)
// Fit cubic polynomial using constraints

P ← HermiteSpline(∆ys,∆ye,∆y′s,∆y′e)
// Subtract polynomial from reference

X̄m
s...e ← X̂m

s...e − Ps...e
end for
return X̄

End

29

Figure 5: Example of marker filling from reference path

Figure 6: Marker paths before and after gaps in valid data

30

Figure 7: 3D visualization of the filled marker paths passed through a kinematic
solver (Ȳ).

Figure 8: 2D visualization of the left upper leg joint from the filled marker paths
passed through a kinematic solver.

31

Figure 9: Visualization of a marker along with a 3D visualization of the corresponding
kinematic solution.

Figure 10: 3D visualization of the filled marker paths passed through a kinematic
solver (Ȳ). Hard example with two characters wrestling and numerous erroneous
markers.

32

Figure 11: Visualization of a marker along with a 3D visualization of the correspond-
ing kinematic solution.

33

Chapter 4

Mesh Based Animation

Retargeting

Figure 12: Two rigged meshes overlayed on each-other, with the animation from the
green character being retargeted onto the red character.

4.1 Introduction

Despite recent promising advances, gathering animation data for games remains a

costly and time-consuming process. MOCAP Shoots require the hiring of actors,

MOCAP technicians, and artists, as well as a considerable time-investment in-order

for the animation data to be processed. One possible avenue to circumvent this is-

sue is by reusing animation data from previously worked on projects. Although not

34

guaranteed to have the exact sequences of animations needed, previously worked on

animation data can certainly remove the need to conduct new MOCAP shoots for

basic animation data such as character locomotion. However, this itself is problem-

atic since skeletal proportions, structures as well as mesh topologies will often differ

between various projects, making transferring the animation a non-trivial process.

This process of transferring animation data from one skeletal rig to another is

known as animation retargeting. Typically, artists will spend considerable resources

using proprietary software in-order to achieve quality retargeting for games. It is

arguable that some artistic input is unavoidable, as some retargeting cases present

ambiguities that might have different solutions depending on the project’s particular

vision. However, there are some cases where an artist manually tweaking parameters

for each retargeted clip is simply not feasible. For instance, if a production decides to

modify the skeletal hierarchy of the base skeleton they use for their MOCAP shoots.

Any old animation data is now incompatible with new data gathered going forward.

An automatic batch retargeting algorithm is desirable for these situation, as it would

permit the reuse of old data without significant manual intervention.

In this chapter, a mesh based retargeting algorithm is proposed. Starting from

a source skeleton coupled with a source mesh and a target skeleton coupled with a

target mesh, mesh vertices are first evenly subsampled. A correspondence is built be-

tween the two meshes if their topologies differ. Subsequently, animation is retargeted

from the source rig to the target rig using an iterative Jacobian Inverse Kinematics

algorithm that computes target joint angles needed in-order for vertices of the meshes

to match.

4.2 Related Work

Gleicher, 1998 introduces the problem of animation retargeting for characters with

bones of differing proportions, proposing an IK based method that is capable of

satisfying multiple constraints.

Monzani et al., 2000 propose using an intermediate skeleton for retargeting, al-

lowing for retargeting between characters of differing topologies, enforcing constraints

using Inverse Kinematics. The intermediate skeleton approach remains popular, with

industry standard tool MotionBuilder (Autodesk, 2020) allowing users to retarget

35

Figure 13: Autodesk MotionBuilder animation software. Character tool shown on
right hand side, displaying mapping to an intermediate skeleton.

animation through an intermediate skeleton known as the ”character” tool as seen

in Fig. 13. Professional retargeting artists utilize this tool to retarget animation,

manually tweaking dozens of parameters to achieve high quality retargeting.

Baerlocher and Boulic, 2004 propose a real-time IK based retargeting framework

capable of handling multiple priorities and incorporating joint limits. Kulpa, Multon,

and Arnaldi, 2005 demonstrate a morphology independent animated motion repre-

sentation that effectively bypasses the traditional retargeting problem.Meredith and

Maddock, 2005 enhance a traditional IK solver, allowing for individualized retargeting

that adapts to both the chosen terrain and the target character.

Avril et al., 2016 proposes a method capable of deriving correspondences between

source and target character meshes, solving for joint positions, rotations and skinning

weights.

4.3 Method

The method implements mesh-based animation retargeting from a source rigged

mesh to a target rigged mesh using both vertex positions and normals. Essen-

tially treating mesh vertices as end-effectors, it attempts to find angles in the target

skeleton such that the target mesh vertices track the source vertices, effectively

transferring the animation from the source skeleton onto the target skeleton.

Taking as input the 3×4 transformation matrices for the source and target joints,

36

defined as Ts ∈ Rjs×3×4 and Tt ∈ Rjt×3×4 respectively, where js is the number of joints

in the source skeleton and jt is the number of joints in the target skeleton. The source

skeletal animation is defined as set of Euler angles representing the per-frame set of

joint rotations θs ∈ Rn×js×3, where n is the number of frames in the animation, js

is the number of joints in the source skeleton. θs ∈ Rn×jt×3 represents the unknown

that is solved for, i.e. the set of joint rotations that need to be computed on the

target skeleton. The mesh vertex rest positions for the source and target meshes are

represented as Ps ∈ Rvs×3 and Pt ∈ Rvt×3, where vs is the number of vertices in the

source mesh and vt is the number of vertices in the target mesh. Similarly, we take

as input the mesh vertex normal vectors for both meshes, defined as Ns ∈ Rvs×3 and

Nt ∈ Rvt×3.

The skeleton-to-mesh mapping is defined using skinning weights ws ∈ Rvs×js and

wt ∈ Rvt×jt . The skinning is accomplished using LBS, as this is still the principal

skinning method used in games. In theory, it could be extended to use other less

error prone skinning methods such as DQS (Dual Quaternion Skinning), however,

the Jacobian matrix would differ.

Algorithm 4 demonstrates a rough pseudo code overview of the algorithm, with the

individual parts being elaborated on in the relevant subsections. First, a preprocessing

step subsamples the mesh and removes undesirable vertices (section 4.3.1). If the

mesh topologies differ between the two rigs, a mapping is created between the two

meshes (section 4.3.2). Standard Forward Kinematics and Linear Blend Skinning is

then precomputed for the source vertices. Subsequently, a normalization algorithm

normalizes the data (section 4.3.3). A blend mask is computed in-order to control

which vertices are tracked via normals and which are tracked via positions (section

4.3.4). Then, the frames are looped over, with the first frame being initialized at

the rest pose of the animation, with subsequent frames using previously computed

frames as a starting point. A single iteration of the solver can be seen in pseudo-code

in Algorithm 6. As seen, a single iterations recomputes global joint positions using FK

(section 2.2, recomputes global vertex positions using LBS (section 2.4, normalizes

the new data (section 4.3.3, builds the Jacobian (section 4.3.6), computes the error

(section 4.3.7), and solves the system (section 4.3.8).

37

Figure 14: Three subsampled versions of the same mesh. The squares indicate the
vertices chosen by the subsampling algorithm. The leftmost mesh is subsampled at
128:1 vertices, middle one at 64:1, and rightmost one at 32:1.

4.3.1 Subsampling

Typical meshes used in video-game productions are made up of tens of thousands of

vertices. This makes it impractical to retarget animations based on them as it is sim-

ply too computationally expensive. For instance, using Jacobian inverse kinematics,

a rigged mesh with vs vertices and js joints will result in a Jacobian matrix of size

vs × js × 3. Even with optimizations exploiting the sparsity of said matrix, inverting

said matrix and solving the corresponding system is computationally expensive. In

addition, the corresponding system is non-linear, thus it would take a number of it-

erations per-frame for it to converge to the solution. All these factors make utilizing

the set of all mesh vertices impractical for animation retargeting. As such, we wish

to reduce the number of vertices by subsampling. This subsection covers the various

subsampling problems and solutions.

This section covers the cases where the source and target mesh topologies are

identical, i.e. P = Ps = Pt and N = Ns = Nt. For the case where the previous

statements don’t hold, subsampling is done on the source meshes, i.e. P = Ps,

N = Ns and a mapping is subsequently created, explained in detail in section 4.3.2.

In the following, v̄ indicates the subsampled number of vertices. P̄ and N̄ indicate

the subsampled versions of P and N, respectively.

A naive approach to the problem is to simply take every n vertices, where n = v
v̄
.

Our subsampled vertex positions P̄ and normals N̄ could then be represented as:

38

P̄, N̄ := P::n,3,N::n,: (10)

This approach is computationally inexpensive but has two glaring flaws. First,

mesh vertices are seldom stored in a consistent manner. Sampling every n vertices

could result in some areas of the mesh not being covered. Secondly, the mesh vertices

themselves are are seldom sampled evenly. High detail areas such as the face and

hands will contains a greater vertex concentrations compared to lower detail areas

such as the torso. It is not atypical to see the face alone contain more vertices than

in the entire rest of the mesh. More sampled points in a certain area implies more

points being tracked by the IK algorithm in that area, which biases the algorithm

to reduce error in that specific region. To fix this issue, a nearest neighbor based

subsampling algorithm is used to ensure even sampling, as seen in Algorithm 5.

It is also important to consider the minimum amount of sampled vertices for a

given joint. A minimum of 3 vertices per-joint is required in-order to be able to prop-

erly position said joint. Meshes used in production will often contain features that

aren’t suitable for tracking. These can be holes, extrusions or jagged edges. Track-

ing these vertices is undesirable, since their normal displacements will differ from

vertices nearby and introduce error to the solving algorithm. To curb this, during

the subsampling, a selected vertex normal is compared against the average normal

of its neighbors. If the difference between the two exceeds a set threshold, deter-

mined experimentally to be 0.05, this vertex is excluded from selection. Algorithm

5 can be modified to solve both of these problems. It is sufficient to change the

line Sk ← argmaxi...v (minj...k (||Diff i,j,...||2)) into argsorti...v (minj...k (||Diff i,j,...||2)).

Then, instead of having the best match, a list of matches is generated and looped

over. Each vertices normal’s are checked against the average of their neighbors to

ensure they fall within the preset threshold. If this condition is satisfied, another

check is performed to ensure that each joint gets at least 3 subsampled vertices each.

These checks slow down the subsampling process considerably. However, since they

only need to be performed once per mesh, this isn’t a crucial issue.

39

4.3.2 Mesh Mapping

In the case that the source and target meshes differ, it is necessary to create a mapping

between corresponding vertices in each mesh. We wish to pick vertex mapping that

minimizes the difference between the corresponding vertices. We define this as an

optimization problem:

Ss,Sp := argmin
i,k...vs,vp

||Pi
s −Pk

t || (11)

Computing mesh vertices is a computationally expensive process but only needs

to be done once for each mesh pairing. This process can be sped by only executing the

subsampling process on one mesh and subsequently computing the nearest neighbor.

4.3.3 Normalization

One issue with retargeting based on both vertex positions and normals is the difference

in the scale of the data. The scale of vertex positions will differ based on a number

of factors, notably, the scale and proportions of the characters. The scale of vertex

normals will always be 1, as they are normalized vectors. For effective solving that

doesn’t bias the system to solve for one over the other, it is essential to normalize

the data such that the scale of its input data is roughly similar. The ideal method

for normalization would be to subtract the mean value and divide by the standard

deviation, resulting in a distribution centered at 0 with standard deviation of 1.

However, this method is problematic for two reasons. Firstly, computing the mean

and standard deviation at each iteration of the algorithm would considerably slow

down the algorithm. Secondly, Pt must remain in the scale as GPt, as their difference

will be used in the computation of the Jacobian in section 4.3.6. The solution to these

problems is to normalize by dividing by a single standard deviation computed at the

start. The source and target mesh vertex positions, Ps and Pt respectively, as well as

the global joint positions GPt will be divide by σ = Ps.σ (the standard deviation of

the source mesh vertex positions, computed once at the start of the algorithm). Note

that the Ps can be normalized once at the beginning of algorithm 4, while Pt and

GPt need to re-normalized at each iteration (algorithm 6). As the vertex normals

are already of length 1, it is unnecessary to normalize them.

40

4.3.4 Blend Mask

It this retargeting system, it is useful to control which vertices are tracked using their

positions and which ones are tracked using their normals. Typically, we wish to track

sections of the body such as the torso using vertex normals. If vertex positions are

used to track the torso, the system can generate solutions such as ones with unnatural

looking crumpled spine in-order to satisfy the constraints. On the other hand, it is

desirable to track end-effectors such as hands, feet and sometimes the head using

their corresponding vertex positions. This is because these joints will often have

interactions with the outer world, and it is desirable to track their positions. We

define a blend mask B ∈ {0, 1}v̄, where 0 indicates tracking the positions and 1

indicates tracking the normals. The blend mask parameters can be set manually on

a per-mesh basis, or automatically computed. . In principle, the blend mask doesn’t

necessarily need to binary: it is possible to setup a system to track a combination of

both. However, for simplicity, this chapter will only address the binary mask case.

4.3.5 Cumulative Weights

For computing the Jacobian in section 4.3.6, it is useful to precompute cumulative

weights that will indicate whether or not a vertex is dependent upon any given joint,

and to which degree. A vertex i will be dependant on joint j if and only if joint j or

one of the children of joint j has a non-zero skinning weight associated with vertex

v. The dependency value is computed as a cumulative sum of the skinning weight

of j and its descendant joints associated with vertex v. Figure 15 demonstrates this

relationship.

4.3.6 Jacobian

Jacobian Inverse Kinematics, as described in S. Buss, 2004, defines an iterative ap-

proach. This requires the explicit computation of derivatives. It is possible to avoid

this step by using the finite-difference method for derivative estimation, but results

in much slower computation times. Luckily, the explicit derivative for mesh based

inverse kinematics is in-fact a trivial modification of the original inverse kinematic

formula seen in S. Buss, 2004 and summarized in section 2.3.

41

Figure 15: Illustration demonstrating the cumulative weights. A,B,C,D,E represent
joints in a hierarchy, while V is a vertex. The w represents the skinning weight
between the two while ŵ represents the cumulative skinning weights.

Equation 2 can be extended to meshes by considering the linear relationship be-

tween vertices deformed using LBS and their respective joints. Using the equations

shown in section 2.4, we can derive the partial derivatives for mesh based retargeting.

For vertex positions, the derivation can be seen motivated by Figure 16. By

taking the cross product between the axis of rotation rjt and the difference between

the global vertex position and the global joint position Pi
t −GPj

t , we get ∆Pi
t. This

example demonstrates the simple case of of a 1-to-1 mapping between joint and vertex

positions.

Ji,jP =
∂Pi

t

∂θj
= rj ×

(
ŵi,jTj

t(P
i
t −GPj

t)
)

(12)

For a vertex normals, the derivation is similarly motivated in Figure 17. However,

unlike the vertex positions, the vertex normals don’t depend on the distance between

them and the joint. As such,

Ji,jN =
∂Ni

t

∂θj
= rj ×

(
ŵi,jTj

tN
i
t

)
(13)

42

Figure 16: Illustration motivating the derivation of
∂Pi

t

∂θj
. The red points visualizes

the vertex position Pi
t while the blue arm visualizes a joint hierarchy starting at Tj

t .
∆Pi

t represents the displacement of the vertex position as as a result of the rotation
of joint Tj

t around axis rjt by angle ∆θjt

The overall Jacobian matrix can be computed using the previous defined blend

mask in section 4.3.4, as:

J = (1−B)� JP + B� JN (14)

4.3.7 Error

The error can be defined as a combination of positional error ~eP ∈ Rv̄,3 and normal

error ~eN ∈ Rv̄,3. Both can be expressed simply as the difference between their source

and target counterparts:

43

Figure 17: Illustration motivating the derivation of
∂Ni

t

∂θj
. The red points visualizes

the vertex normal Ni
t while the blue arm visualizes a joint hierarchy starting at Tj

t .
∆Ni

t represents the displacement of the vertex normal as as a result of the rotation
of joint Tj

t around axis rjt by angle ∆θjt

~eP = Ps −Pt (15)

~eN = Ns −Nt (16)

Using the blend mask derived in section 4.3.4, the overall error can be expressed

as:

~e = (1−B)� ~eP + B� ~eN (17)

4.3.8 Solving

An iterative approach of Damped Jacobian Inverse Kinematics S. Buss, 2004 is used

to retarget the source motion onto the target rig. This process involves solving the

44

following equation:

∆θ = J>(JJ> + λ I)−1~e (18)

One important consideration in solving this system is the choice of damping factor

λ. Through experimentation, it was determined that a low damping factor of λ = 5.0

is sufficient to stabilize the system. More advanced damping can be added, such as

selectively damped least squares described in S. R. Buss and J.-S. Kim, 2005 but is

usually not required.

4.4 Implementation

The Mesh Based Retargeting algorithm was implemented in Python, using Numpy,

Scipy, and Numba libraries Processing was done on an 6 Core Intel Xeon E5-1650 v3

CPU clocking in at 3.50 GHz

Performance gains were achieved through multiple optimizations. Firstly, data

was stored and processed in Numpy, allowing for data-type specifications and faster

performance than traditional python. Numba was utilized as a JIT (Just-In-Time)

compiler, allowing Python code to be compiled speeding up operations such as FK by

two orders of magnitude. Scipy was used for a sparse matrix library. In production

settings, skinning weights are sparse, with one vertex usually being limited to 4 non-

zero skinning weights. This inherent sparsity in the skinning weights results in a sparse

Jacobian. The resulting equation can be solved much faster by storing the Jacobian

in a sparse matrix container, as most operations would in-effect be multiplications by

zero.

4.5 Results

Figure 18 demonstrates the retargeting of a basic pose from a source character onto

a target character of similar scale and proportions. Although the mesh topologies are

the same, the skeletal structures are different, with the target skeleton missing finger

bones. Figure 19 demonstrates a similar example, keeping identical proportions but

changing the scale of the character. Hands and feet are still tracked using vertex

positional constraints, while the torso is tracked using vertex normals. This results

45

Figure 18: Figure demonstrating mesh based retargeting from the source character
(green) to the target character (red).

in the target character attempting to reach for the source characters hand. Figure 20

demonstrates the same scenario, with the source and target scales flipped.

Figure 21 and 25 demonstrate retargeting done on characters of differing propor-

tions.

Figures 22, 23, and 24 demonstrate overlayed meshes to visualize the retargeting

process. The red and green spikes represent the vertices tracked by their normals,

while the blue lines represent vertices tracked by their positions.

Table 2 demonstrates relative performance metrics for a single iteration of the

retargeting algorithm for each individual component of the algorithm. As seen, the

solving step takes a large chunk of the processing time for an iteration. The next

biggest chunks are the FK and LBS passes, which are necessary in-order to recon-

struct the mesh vertices at each step. The ”Other” item in this table refers to other

non-algorithm specific steps that are done during an iteration, such as logging and

storing statistics. 4 demonstrates performance comparison between different levels

of subsampling for an animated clip of 4000 frames, with 5 iterations per-frame. As

seen, it is possible to achieve speed-ups by decreasing the number of vertices being

tracked.

46

Figure 19: Figure demonstrating mesh based retargeting on different scale characters,
from the source character (green) to the target character (red). Blue lines on the hand
indicate vertex position constraints.

Table 3: Relative performance metrics for a single iteration of the retargeting al-
gorithm, separated by the individual components. Percentages are rounded to the
nearest integer.

Stage Time (%)
FK 13
LBS 22
Normalization 1
Axes Computation 6
Building Jacobian Matrix 7
Error Computation 4
Solving System 41
Other 6
Total 100

47

Figure 20: Figure demonstrating mesh based retargeting on different scale characters,
from the source character (green) to the target character (red).

Table 4: Performance metrics of processing time of one 4000 frame clip based on the
subsampling rate.

Subsampling Ratio Time (s)
128:1 43.5
64:1 48.9
32:1 58.9
Total 100

48

Figure 21: Figure demonstrating mesh based retargeting from the source character
(green) to the target character (red).

Figure 22: Figure demonstrating mesh based retargeting from the source character
(green) to the target character (red) for a walking motion.

Figure 23: Figure demonstrating mesh based retargeting from the source character
(green) to the target character (red) for a kneeling down motion.

49

Figure 24: Figure demonstrating mesh based retargeting from the source character
(green) to the target character (red) for a walking motion.

50

Algorithm 4 Pseudocode for the mesh retargeting algorithm.

Function Retarget (Ps,Ns,Ts,ws,θs,Pt,Nt,Tt,wt)
// Subsample at ratio of 1:128
v̄ = vs/128
P̄s, N̄s ← Subsample(Ps,Ns, v̄)
// Compute mesh mapping (if differing mesh topologies)
P̄t, N̄t ← MapMesh(Pt,Nt, P̄s, N̄s)
// FK Pass to get updated global joint positions and rotations
GPs ∈ Rn×js×3,GRs ∈ Rn×js×3 ← FK(Ts,θs)
// LBS Pass to get vertex global positions and normals for each frame
P̂s ∈ Rn×vs×3, N̂s ∈ Rn×vs×3 ← LBS(Ps,Ns,GPs,GRs,ws)
// Normalize the source data
σ = P̂s.σ
P̂s ← P̂s/σ
// Create empty array of Euler angles
θt ∈ Rn×jt×3 ← ∅
// Populate first frame using rest pose transformations
θ1
t ← MatrixToEuler(Tt)

// Define Blend Mask
B ∈ (0, 1)v̄ ← BlendMask(v̄)
// Compute Cumulative Weights
ŵt ← CumulativeWeights(wt)
// Iterate over frames
for f = 1...n do

// Iterate over predefined number of iterations
for k = 1...10 do

θft ← RetargetIteration(P̄t, N̄t,T
f,...
t , P̂f,...

s , N̂f,...
s)

end for
// Initialize next frame from current frame
θf+1,...
t ← θf,...t

end for
return θt

End

51

Algorithm 5 Given a mesh containing v vertices, subsample such that the resulting
number of vertices is equal to v̄.

Function Subsample (P ∈ Rv×3,N ∈ Rv×3, v̄ ∈ N+)
// Define subsampled vertex indices
S← ∅ ∈ [0, v]v̄

// Pick random initialization point
S0 ← Random(0, v)
// Loop over number of subsampled points
for k = 1...vs do

// Get differences
Diff i,j,... ∈ Rv,k,3 ← ∅
for i = 1...k do

for j = 1...vs do
Diff i,j,... ← Pj,... − Si,...

end for
end for
// Get furthest point away from average
Sk ← argmaxi...v (minj...k (||Diff i,j,...||2))

end for
// Return subsampled points
return PS,NS

End

Algorithm 6 Pseudocode for a single iteration of the mesh retargeting algorithm.

Function RetargetIteration (Pt,Nt,Tt, P̂s, N̂s)
// FK Pass to get updated vertex global joint transformations
GPt ∈ Rjt×3,GRt ∈ Rjt×3 ← FK(Tt,θt)
// LBS Pass to get updated vertex global vertex positions and normals
P̂t ∈ Rv̄×3, N̂t ∈ Rv̄×3 ← LBS(Pt,Nt,GPt,GRt,wt)
// Recompute axes of rotation
rt ∈ Rjt,3,3 ← Axes(GPt,GRt)
// Normalize the data
GPt ← GPt/σ
P̂t ← P̂t/σ
// Build the Jacobian for normals and positions
J← Jacobian(P̂t, N̂t,GPt, rt)
// Compute the error
~e← Error(P̂t, N̂t, P̂s, N̂s)
// Solve the system
∆θt ← Solve(J>(JJ> + λ I)−1~e)
// Return added change
return θt + ∆θt

End

52

Figure 25: Figure demonstrating mesh based retargeting from the source character
(green) to the target character (red) for a jogging motion.

53

Chapter 5

Conclusion

This thesis presents two methods for automating the animation pipeline. Together,

they can help automate the animation pipeline in game studios by substantially re-

ducing the manual effort needed from artists to cleanup and tweak animation data.

To address the issue of marker cleanup, we present a novel method for invalid

marker detection and filling by comparing two different kinematic solutions to deter-

mine erroneous marker paths and using a marker filling algorithm to combine them.

Our solution outperforms existing techniques for numerous examples, generating so-

lutions that are closer to the ground truth than the alternatives. Our method achieves

these results while also being less disruptive to existing motion capture work-flows,

allowing the flexibility of tracking artists being able to intervene in cases where au-

tomatic solutions fail.

The main limitation of our method is the reliance on a robust kinematic solver in-

order for both erroneous marker path detection and marker path filling. Although our

method will often outperform the original kinematic solver by outputting data that is

closer to the ground truth, it is ultimately limited by the performance of said solver

and will suffer from many of the same shortfalls found within it. Its performance

is likewise limited by the original algorithm, with the retargeting portion taking the

longest to execute. However, as our method is agnostic to which kinematic solver is

used, suffice that it is sufficiently robust, it would be of interest to attempt to utilize

other kinematic solutions and compare the resulting marker paths.

Additionally, when professional marker tracking artists fill in gaps in marker data,

they will often refer to a reference video of the original shoot in-order to recreate the

54

desired motion. This is often the case when large clusters of marker data go missing.

Without this video, the artist will be unable to recreate the marker paths as the

desired animation becomes ambiguous. Unlike the artist, our system does not have

access to such data and thus will never be able to fully recreate the desired motion

if a sufficient amount of markers are missing. To this effect, a potential avenue for

future research would be to augment our system with a markerless kinematic solver

that takes as input the reference video. Our marker filling method could then be used

to combine marker paths generated from this solver with the other two set of paths,

resulting in a solution that could potentially combine the capabilities of each system.

To address the issue of animation retargeting and aid the reuse of existing anima-

tion data, we present a method to automatically retarget animations from one rigged

mesh to another by tracking the mesh vertex positions and normals. The solution

grants fast and good quality batch animation retargeting and subsequently allows

for the re-use of existing animation data previously captured without much manual

intervention.

This retargeting method leaves many avenues for possible future works, some of

which I have began exploring. The Jacobian Inverse Kinematics can be improved

using Selective Damping S. R. Buss and J.-S. Kim, 2005 to change the priority of

constraints to satisfy. Some problems may arise with the use of Euler angles, which

have known limitations such as the Gimbal Lock. These can be avoided by using

quaternions represented using exponential mapping Grassia, 1998. Regularization

could be added to the solver in multiple ways, such as joint limits, mesh volumetric

constraints and angle clamping. The marker cleanup could be augmented with this

retargeting method, replacing the simple Jacobian IK method that it uses.

The animation pipeline remains a large process that is yet to be fully automated.

However, the methods presented in this thesis can help speed up significant parts of

the pipeline on the road to a fully automated system.

55

Bibliography

Aristidou, Andreas, Daniel Cohen-Or, et al. (2018). “Self-similarity Analysis for Mo-

tion Capture Cleaning”. In: Computer Graphics Forum. Vol. 37. 2. Wiley Online

Library, pp. 297–309.

Aristidou, Andreas and Joan Lasenby (2013). “Real-time marker prediction and CoR

estimation in optical motion capture”. In: The Visual Computer 29.1, pp. 7–26.

Autodesk, Inc. (2020). Autodesk MotionBuilder. url: https://www.autodesk.com/

products/motionbuilder/overview.

Avril, Quentin et al. (2016). “Animation setup transfer for 3D characters”. In: Com-

puter Graphics Forum. Vol. 35. 2. Wiley Online Library, pp. 115–126.

Baerlocher, Paolo and Ronan Boulic (2004). “An inverse kinematics architecture en-

forcing an arbitrary number of strict priority levels”. In: The visual computer 20.6,

pp. 402–417.

Baumann, Jan et al. (2011). “Data-Driven Completion of Motion Capture Data.” In:

VRIPHYS, pp. 111–118.

Begon, Mickael, Pierre-Brice Wieber, and Maurice Raymond Yeadon (2008). “Kine-

matics estimation of straddled movements on high bar from a limited number of

skin markers using a chain model”. In: Journal of biomechanics 41.3, pp. 581–586.

Buss, Samuel (2004). “Introduction to Inverse Kinematics with Jacobian Transpose,

Pseudoinverse and Damped Least Squares methods”. In:

Buss, Samuel R and Jin-Su Kim (2005). “Selectively damped least squares for inverse

kinematics”. In: Journal of Graphics tools 10.3, pp. 37–49.

Butepage, Judith et al. (2017). “Deep representation learning for human motion pre-

diction and classification”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 6158–6166.

Doom (1993).

56

https://www.autodesk.com/products/motionbuilder/overview
https://www.autodesk.com/products/motionbuilder/overview

Federolf, Peter Andreas (2013). “A novel approach to solve the “missing marker prob-

lem” in marker-based motion analysis that exploits the segment coordination pat-

terns in multi-limb motion data”. In: PloS one 8.10, e78689.

Fragkiadaki, Katerina et al. (2015). “Recurrent network models for human dynam-

ics”. In: Proceedings of the IEEE International Conference on Computer Vision,

pp. 4346–4354.

Gleicher, Michael (1998). “Retargetting motion to new characters”. In: Proceedings

of the 25th annual conference on Computer graphics and interactive techniques,

pp. 33–42.

— (2001). “Comparing constraint-based motion editing methods”. In: Graphical mod-

els 63.2, pp. 107–134.

Gløersen, Ø and P Federolf (2016). “Predicting Missing Marker Trajectories in Human

Motion Data Using Marker Intercorrelations”. In: PLoS ONE 11.3, e0152616.

Grassia, F Sebastian (1998). “Practical parameterization of rotations using the expo-

nential map”. In: Journal of graphics tools 3.3, pp. 29–48.

Herda, Lorna et al. (2000). “Skeleton-based motion capture for robust reconstruction

of human motion”. In: Proceedings Computer Animation 2000. IEEE, pp. 77–83.

Holden, Daniel (2018). “Robust solving of optical motion capture data by denoising”.

In: ACM Transactions on Graphics (TOG) 37.4, p. 165.

Hsu, Eugene, Sommer Gentry, and Jovan Popović (2004). “Example-based control

of human motion”. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics

symposium on Computer animation. Eurographics Association, pp. 69–77.

Jain, Ashesh et al. (2016). “Structural-RNN: Deep learning on spatio-temporal graphs”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pp. 5308–5317.

Julier, Simon J and Jeffrey K Uhlmann (1997). “New extension of the Kalman filter

to nonlinear systems”. In: Signal processing, sensor fusion, and target recognition

VI. Vol. 3068. International Society for Optics and Photonics, pp. 182–193.

Kim, Wooyoung and James M Rehg (2008). “Detection of unnatural movement us-

ing epitomic analysis”. In: 2008 Seventh International Conference on Machine

Learning and Applications. IEEE, pp. 271–276.

57

Kucherenko, Taras, Jonas Beskow, and Hedvig Kjellström (2018). “A neural network

approach to missing marker reconstruction in human motion capture”. In: arXiv

preprint arXiv:1803.02665.

Kulpa, Richard, Franck Multon, and Bruno Arnaldi (2005). “Morphology-independent

representation of motions for interactive human-like animation”. In: Computer

Graphics Forum. Vol. 24. 3. Wiley Online Library, pp. 343–351.

Lee, Jehee and Sung Yong Shin (1999). “A hierarchical approach to interactive motion

editing for human-like figures”. In: Siggraph. Vol. 99, pp. 39–48.

Lewis, John P, Matt Cordner, and Nickson Fong (2000). “Pose space deformation:

a unified approach to shape interpolation and skeleton-driven deformation”. In:

Proceedings of the 27th annual conference on Computer graphics and interactive

techniques, pp. 165–172.

Li, Lei, James McCann, Nancy S Pollard, et al. (2009). “Dynammo: Mining and

summarization of coevolving sequences with missing values”. In: Proceedings of

the 15th ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, pp. 507–516.

Li, Lei, James McCann, Nancy Pollard, et al. (2010). “Bolero: a principled technique

for including bone length constraints in motion capture occlusion filling”. In: Pro-

ceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation. Eurographics Association, pp. 179–188.

Liu, Guodong and Leonard McMillan (2006). “Estimation of missing markers in hu-

man motion capture”. In: The Visual Computer 22.9-11, pp. 721–728.

Liu, Xin et al. (2014). “Automatic motion capture data denoising via filtered sub-

space clustering and low rank matrix approximation”. In: Signal Processing 105,

pp. 350–362.

Mall, Utkarsh et al. (2017). “A deep recurrent framework for cleaning motion capture

data”. In: arXiv preprint arXiv:1712.03380.

Meredith, Michael and Steve Maddock (2005). “Adapting motion capture data using

weighted real-time inverse kinematics”. In: Computers in Entertainment (CIE)

3.1, pp. 5–5.

Monzani, Jean-Sébastien et al. (2000). “Using an intermediate skeleton and inverse

kinematics for motion retargeting”. In: Computer Graphics Forum. Vol. 19. 3.

Wiley Online Library, pp. 11–19.

58

Quake (1996).

Ren, Liu et al. (2005). “A data-driven approach to quantifying natural human mo-

tion”. In: ACM Transactions on Graphics (TOG). Vol. 24. 3. ACM, pp. 1090–

1097.

Savitzky, Abraham. and M. J. E. Golay (1964). “Smoothing and Differentiation of

Data by Simplified Least Squares Procedures.” In: Analytical Chemistry 36.8,

pp. 1627–1639. doi: 10.1021/ac60214a047.

Shen, Wei et al. (2012). “Exemplar-based human action pose correction and tagging”.

In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,

pp. 1784–1791.

Shin, Hyun Joon et al. (2001). “Computer puppetry: An importance-based approach”.

In: ACM Transactions on Graphics (TOG) 20.2, pp. 67–94.

Software, Vicon (2019). Vicon Shogun. url: https://www.vicon.com/products/

software/.

Tak, Seyoon and Hyeong-Seok Ko (2005). “A physically-based motion retargeting

filter”. In: ACM Transactions on Graphics (TOG) 24.1, pp. 98–117.

Tarini, Marco, Daniele Panozzo, and Olga Sorkine-Hornung (2014). “Accurate and

efficient lighting for skinned models”. In: Computer Graphics Forum. Vol. 33. 2.

Wiley Online Library, pp. 421–428.

Tits, Mickaël, Joëlle Tilmanne, and Thierry Dutoit (July 2018). “Robust and auto-

matic motion-capture data recovery using soft skeleton constraints and model av-

eraging”. In: PLOS ONE 13.7, pp. 1–21. doi: 10.1371/journal.pone.0199744.

url: https://doi.org/10.1371/journal.pone.0199744.

Toy Story (1995).

Wan, Eric A and Rudolph Van Der Merwe (2000). “The unscented Kalman filter

for nonlinear estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems for

Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373).

Ieee, pp. 153–158.

Wang, Xin, Qiudi Chen, and Wanliang Wang (2014). “3D human motion editing and

synthesis: A survey”. In: Computational and Mathematical methods in medicine

2014.

Wolfenstein 3D (1992).

59

https://doi.org/10.1021/ac60214a047
https://www.vicon.com/products/software/
https://www.vicon.com/products/software/
https://doi.org/10.1371/journal.pone.0199744
https://doi.org/10.1371/journal.pone.0199744

Zhang, Xinyi and Michiel van de Panne (2018). “Data-driven Autocompletion for

Keyframe Animation”. In: MIG ’18: Motion, Interaction and Games (MIG ’18).

60

	List of Figures
	List of Tables
	Introduction
	Computer Animation
	Motion Capture
	Animation Pipeline
	MOCAP Shoot
	Marker Tracking
	Marker Solving
	Animation Retargeting
	Delivery

	Contribution
	Motion Capture Cleanup
	Animation Retargeting

	Background
	Animation Representation
	Forward Kinematics
	Inverse Kinematics
	Linear Blend Skinning

	Robust Marker Trajectory Repair for MOCAP using Kinematic Reference
	Introduction
	Related Work
	Method
	Kinematic Solver Improvements
	Marker Reconstruction
	Erroneous Marker Interval Detection
	Gap Filling

	Results and Discussion
	Comparison
	Parameter Selection
	Performance

	Mesh Based Animation Retargeting
	Introduction
	Related Work
	Method
	Subsampling
	Mesh Mapping
	Normalization
	Blend Mask
	Cumulative Weights
	Jacobian
	Error
	Solving

	Implementation
	Results

	Conclusion
	Bibliography

