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Abstract 

Production Planning in Remanufacturing Systems with Uncertain 

Component Processing Time 

Ruo Liang 

 

Today’s manufacturing industries in many countries have developed systematic product 

recovery, remanufacturing and recycling procedures in an environmentally supportive manner 

to release the regulatory pressure as well as to achieve economic benefit. This thesis presents 

a mixed integer programming model addressing production planning problems in hybrid 

system of manufacturing and remanufacturing. The objective of solving the mathematical 

model is to minimize the total cost based on the optimal quantity of new items to manufacture 

and the optimal quantity of returned products to remanufacture in each period of the planning 

horizon. The proposed model has a distinctive feature that considers the uncertainty of 

remanufacturing time for the same type of returned products. A new heuristic solution method, 

similar to Silver-Meal heuristic for solving traditional lot-sizing problems, is developed to 

solve the considered production planning problems in hybrid manufacturing-remanufacturing 

systems is developed in this thesis. The developed heuristic is examined using various example 

problems generated in three dimensions (problem size, returned products quantity and category 

quantity). The results show that it can generate optimal or close-to-optimal solutions for all 

tested example problems with much reduced computational time. The model and the solutions 

were analyzed and sensitive analysis is conducted to investigate the performance of the 

developed model and solution method. 
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Chapter 1 Introduction 

 

This chapter introduces the background of the research as well as presents a brief summary of 

the research work conducted in this thesis. 

 

1.1 Introduction 

Today’s manufacturing industries in many countries have started to develop systematic product 

recovery, remanufacturing and recycling procedures in an environmentally supportive manner 

to release the regulatory pressure. In addition, economic benefit of remanufacturing is another 

important motivation. As a complete form of product reuse, it maintains much of the value 

assed from original manufacture to material and reprocessing conservation, leading to lower 

production costs and improved firm profitability (Hesse et al. 2005; Kim et al. 2006). 

Remanufacturing in the US is estimated to generate $100 billion of goods sold each year and 

employs over 500,000 people (Hagerty and Glader 2011). 

 

1.2 Remanufacturing 

The process of remanufacturing involves getting back end-of-life (EOL) products or 

components to upgrade or turn them into their original specifications (Li, 2007). A formal 

definition of remanufacturing can be found in Sundin (2002): “The process of rebuilding a 

product, during which: the product is cleaned, inspected, and disassembled; defective 

components are replaced; and the product is reassembled, tested and inspected again to ensure 

it meets or exceeds newly manufactured product standards”. In other words, remanufacturing 

is a process in which a used product or parts of the product are restored to like-new conditions. 
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Nowadays many everyday goods are remanufactured, from expensive jet engine fans, 

automobile engines and medical equipment to less valued goods such as cameras, auto parts, 

computer equipment and machine tools (Franke, 2006). 

 

1.3 Motivation 

For remanufacturing industry, there are two primary factors driving the growth of it. The first 

factor is the positive impact on the environment. In the age of increasing environmental 

awareness, governmental and consumer pressure have induced companies to consider carefully 

the environmental impacts of their products as well as their process. This has become 

particularly evident in Europe in the form of environmental legislations. In the US, 

environmental regulations have put increasing pressure on industries to reduce waste disposal. 

Companies are increasingly being held responsible for their products throughout their life cycle. 

 

The second reason is the cost of remanufactured goods can be much lower than the traditionally 

manufactured goods, so the manufacturers can gain competitiveness in the market by lowering 

the sale prices of their products. Remanufacturing is profitable and efficient when a large 

fraction of materials used in a product, and the value added to it when it is made, can be 

recovered at a low cost compared with that of the original manufacture. 

 

1.4 Contributions 

This research proposes a mathematical model for production planning in a hybrid system of 

manufacturing-remanufacturing. In the proposed model, new constraints of uncertainty 
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regarding different remanufacturing time due to worn out conditions are considered. The 

objective function of the model is to minimize the total cost of production, including 

manufacturing cost, remanufacturing cost, set-up cost and holding cost.  

 

A new heuristic method is introduced to solve the model for getting the optimal solution or 

close-to-optimal solution in shorter computational time in solving the NP-hard production 

planning model. The proposed heuristic is developed based on Silver-Meal heuristic. The 

approach is tested and validated using numerical examples with data generated in three 

dimensions: problem size, quantity of returned products and returned product quality levels in 

different product categories. The results are compared with optimal solution obtained using 

ILOG CPLEX and the heuristic solutions are very close to optimal solutions if they are different 

from the optimal ones. The proposed heuristic method provides a more efficient way to solve 

the model.  

 

1.5 Outline of the Thesis 

The remainder of this thesis is organized as follows. Chapter 2 categorizes and summarizes 

some of the relevant literatures on production planning, inventory models, and uncertainty 

effect of remanufacturing. In Chapter 3, we present the production planning problem of a 

hybrid system of manufacturing-remanufacturing with uncertain remanufacturing time and 

introduce a mixed integer programming model for solving the problem. A Silver-Meal based 

heuristic method is proposed and explained after the two versions of the developed 

mathematical model are presented. Chapter 4 presents numerical example problems to illustrate 
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the developed model and solution method with computational results compared and analyzed. 

A sensitivity analysis is conducted and reported in this chapter. Finally, Chapter 5 concludes 

the study with a summary and directions for future research. 
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Chapter 2 Literature Review 

 

This chapter presents a review of the literature on research in the area of production planning 

in manufacturing and remanufacturing systems as well as other related topics. 

 

2.1 Introduction 

In recent years, increasing number of manufacturers in developed and developing countries 

have taken actions in sustainable development based on public environmental awareness and 

recycling regulations. They have recognized the need to produce and dispose of products in an 

environmentally responsible manner. Remanufacturing is a life cycle strategy that allows end-

of-life products to re-enter the manufacturing process to be refurbished, repaired or 

remanufactured to become as-good-as-new products, usable modules or components (Morgan 

and Gagnon 2013). It can not only help the manufacturers to meet environmental regulations 

but also bring enormous economic benefits to them. Research in remanufacturing and related 

topics has also been very active with literature abundant in the past several decades. In 

particular, many researchers developed various mathematical and numerical models, optimal 

or heuristic solution algorithms to solve different challenging problems arising from 

remanufacturing and related practice. In this chapter, a literature review related to 

remanufacturing modeling and methodologies is presented into three main sections: production 

planning, inventory modeling, uncertainty effect. 

 

2.2 Production Planning 

The basic problem for remanufacturing production planning and control is to determine the 
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optimal values of a number of inter-related decision variables including how much to produce 

and/or order for new materials, how much and when to disassemble and to remanufacture. 

 

2.2.1 Manufacturing 

In the field of production planning of manufacturing, a classic and well-known method is 

Wagner-Whitin algorithm. Wagner and Whitin (1958) proposed a forward algorithm for a 

solution to a single-item multiple-periods economic lot sizing problem. In this problem, 

demands in each period, inventory holding charges and setup costs all vary over periods. 

Wagner-Whitin algorithm can guarantee to obtain the optimal solution for minimizing the total 

relevant cost. Another well-known method for solving lot sizing problem is Silver-Meal 

algorithm. It is an extension of Wagner-Whitin method to consider the total relevant cost per 

unit of time. Compared with Wagner-Whitin, Silver-Meal algorithm is much simpler in terms 

of user understanding and implementation and can achieve close-to-optimal solutions in 

solving many testing problems. In many cases, the difference is less than 1% from optimal 

(Silver and Meal 1973). Therefore, Silver-Meal algorithm is still being discussed and utilized 

in production planning modeling and solution method development today. 

 

There is extensive research development on different extensions of Silver-Meal method after it 

was first introduced in Silver and Meal (1973). For example, Gaafar (2006) proposed two 

constructive heuristics for solving single-level uncapacitated dynamic lot-sizing problems 

based on  a modified  Silver-Meal method . The major difference between the modified 

heuristic method and Silver-Meal method is in the way it handles demand periods with zero 
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demand requirements. For calculating the average period cost, the modified heuristic divides 

the total cost by the total number of non-zero demand periods, Silver-Meal method divides it 

by the total number of demand periods regardless of whether or not the demand in a particular 

period is zero. In that paper, the second heuristic uses an improved tie-breaking rule and a local 

optimal search to enhance the performance of the modified Silver-Meal method. In addition, a 

large-scale simulation study was performed by controlling scheduling horizon, proportion of 

periods with zero demand and setup cost to unit holding cost ratio. The author compared the 

two proposed heuristics with the original Silver-Meal method as well as 6 other constructive 

heuristics in the literature. The results show that the proposed heuristic could achieve better 

and more robust performance. 

 

Helber, Sahling, and Schimmelpfeng (2013) presented a stochastic version of single-level, 

multi-product dynamic lot-sizing problem subject to a capacity constraint. In the problem, the 

demand of each period is random and the unmet demand can be back-ordered. The problem 

was formulated as a non-linear optimization model and was approximated by two separate 

linear programming models. In the first approximation model, the authors used a scenario 

analysis approach with the random samples. In the second approximation, the expected 

quantity of inventory level and the backlog are considered as functions of accumulated 

production and were approximated by piecewise linear functions.  Computational results of 

the two different approximation models were analyzed with a numerical example. The results 

show that the second approximation model performed particularly well. Though the first 

approximation turned out to be less accurate, it was more flexible with respect to probabilistic 
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dependencies of the demands within a single scenario. 

 

2.2.2 Remanufacturing 

Jayaraman (2006) proposed an analytical approach to solve a production planning problem of 

a closed-loop supply chain which includes both manufacturing and remanufacturing. The 

author presented a linear programming model to minimize the total cost per remanufactured 

item. In the model, material recovery rates, material replacement quantities, workloads and 

total labor hours were considered as conditional on the level of nominal quality. This model 

can assist decision-makers to decide the number of returned units with a nominal quality level 

to be disassembled, remanufactured and acquired in an intermediate to long range period. The 

solutions of this model also determine the inventory levels at the end of each period as well.  

 

Torkaman et al. (2017) studied a capacitated production planning problem of closed-loop 

supply chain of multi-stages, for multi-products in multi-periods. In formulating and solving 

the problem, both the setup for changing product and the setup for changing the process were 

considered. The problem was formulated as a mixed-integer programming (MIP) model. The 

model was solved by four MIP-based heuristic algorithms. The four algorithms employ non-

permutation and permutation heuristics using rolling horizon. The problem was also solved by 

a simulated annealing (SA) algorithm with the initial solution provided by a heuristic. Taguchi 

method was applied to calibrate the parameters of the SA algorithm. The result shows that 

compared with other heuristic methods, the SA based algorithm may solve the problem faster 

within reasonable computational time. 
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In Teunter, Bayindir, and Van Den Heuvel (2006), a dynamic lot sizing problem for systems 

with products returns and remanufacturing was studied. In the considered problem, the demand 

and return amounts were deterministic over a finite planning horizon. Demand could be met 

with both manufactured new items and remanufactured ones. The objective of solving the 

problem was to minimize the total cost composed of holding costs for returns and 

manufactured-remanufactured products and set up costs by determining the lot sizes for 

manufacturing and remanufacturing of each period. The authors discussed modifications of 

three well-known methods: Silver-Meal (SM), Least Unit Cost (LUC) and Part Period 

Balancing (PPB) heuristics. The results of an extensive numerical study showed that: (1) the 

SM and LUC heuristics perform much better than PPB, (2) demand predictability is more 

important than variation, and (3) periods with more returns than demand should, if possible, be 

avoided by “matching” demand and returns. 

 

Schulz (2011) extended the Silver-Meal based approach in Teunter et al. (2006) by adding two 

simple improvement steps. The first improvement step was to check whether two consecutive 

time windows can be combined and the second step was to check whether a remanufacturing 

lot can be increased. With the two improvement steps, the original SM heuristic method can be 

improved as tested by several numerical example problems.  The average gap to the optimal 

solution was reduced s to 2.2% when applying the improvement steps. Comparing  with the 

heuristic method introduced in Teunter et al. (2006), the average  optimality gap was reduced 

more than 50%. 
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2.3 Inventory Models of Remanufacturing 

In this section, deterministic and stochastic inventory models will be discussed.   

 

2.3.1 Deterministic Models 

Deterministic inventory models can be divided into stationary demands and dynamic demands 

as discussed below. 

 

2.3.1.1 Stationary Demand 

In stationary demand problems, the classic Economic Order Quantity (EOQ) logic is generally 

used to build deterministic models for determining the optimal trade-off between setup costs 

and holding costs in a production system. 

 

Among other works presented by the two authors, Dobos and Richter (2000) developed integer 

non-linear models to analyze EOQ repair and waste disposal problems with integer  number 

of setups. The result from testing example problems show that “pure strategies” (total repair or 

total waste disposal) can lead to optimal solutions.  In Dobos and Richter (2003), the authors 

discussed a manufacturing-remanufacturing system by assuming that there was only one 

recycling lot and one production lot. They proposed a mixed strategy for the cases that the pure 

strategy was not feasible technologically or some of the returned products cannot be 

remanufactured.   Their work was extended  to situations with multiple production lots and 

multiple recycling lots in Dobos and Richter (2004).  The model was further extended by 

relaxing the assumption of perfect quality of the returned items in Dobos and Richter (2006). 
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Roy et al. (2009) investigated a manufacturing-remanufacturing system for a single product 

with constant demand. The items included the defective ones from manufacturing and recycled 

products from customers. The defectiveness rate of the manufacturing system was represented 

by a constant and a fuzzy parameter in two separate models. When precise defective rate could 

not be determined, optimistic and pessimistic equivalent of fuzzy objective function was 

obtained by using credibility measure of fuzzy event by taking fuzzy expectation. In modeling 

the problem, it is assumed that the remanufacturing system started from the second production 

cycle and after that both the manufacturing and remanufacturing processes continued 

simultaneously. The models were formulated for maximum total profit out of the whole system. 

The decision variables were the total number of cycles in the time horizon. A Genetic Algorithm 

based solution method was developed with Roulette wheel selection, arithmetic crossover and 

random mutation applied to evaluate the maximum total profit and the corresponding optimum 

decision variables.  

 

Polotski, Kenne, and Gharbi (2015) addressed an optimal scheduling problem for a hybrid 

system of manufacturing (manufacturing mode) and remanufacturing (remanufacturing mode). 

The considered system has one facility and necessitates setup for switching from one 

production mode to another. The flow rate of returned products was a fixed percentage of the 

demand rate, so it was necessary to switch from one mode to another. The authors developed 

the feasibility conditions for such systems and categorized them for mainly manufacturing 

systems and for mainly remanufacturing systems. The solution of the model was to meeting 

customer demand with minimized manufacturing cost by determining the production and setup 
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scheduling. First, the optimal cyclic trajectories corresponding to the production runs (for both 

system types) were obtained with the consideration of the setup cost and negligible setup times. 

Then, these results were generalized for non-zero setup times. At last, transitional trajectories 

corresponding to optimal policies in the vicinity of the limit cycles were described. The results 

of the paper can be helpful for production scheduling in companies involved in both 

manufacturing and remanufacturing and using the same production facility for both processes. 

 

2.3.1.2 Dynamic Demand 

Richter and Sombrutzki (2000) studied the reverse Wagner-Whitin’s dynamic production 

planning and inventory control model and certain types of its extensions. They extended the 

Wagner-Whitin algorithm for a deterministic recovery system by assuming a linear cost 

function without backordering and with negligible lead times. They proved that in the product 

recovery models, the optimal solutions have the property of zero inventory. The demands of 

each period were fulfilled by new products or remanufactured products determined by Wagner-

Whitin algorithm. In addition, the paper showed that with some combinations of the original 

and the reverse models, the reverse problems can be solved more efficiently. In the follow-up 

paper (Richter and Weber 2001), the model was extended with the consideration of variable 

manufacturing and remanufacturing costs. The authors proposed a model combining the 

classical Wagner-Whitin model and a pure reverse Wagner-Whitin model with deterministic 

quantity of recycling products. With the analysis of the alternate application of remanufacturing 

and manufacturing processes, the combined model is more suitable for practice. 
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Fazle Baki, Chaouch, and Abdul-Kader (2014) discussed the lot sizing problem of product 

returns and remanufacturing over a finite planning horizon. The problem was to determine the 

optimal production plan with forecasted demands and product returns to meet both demands at 

minimum costs. The considered total cost included the fixed setup expenses associated with 

manufacturing and-or remanufacturing lots and the inventory holding costs. In the paper, a 

heuristic method was proposed to exploit the structure of optimal solutions. The authors 

observed that the feasible solution to this problem can split into a sequence of blocks with a 

distinct structure in the way that both manufacturing and remanufacturing setups occur. Based 

on the observation, a heuristic method was proposed to use dynamic programming and the 

Wagner-Whithin algorithm to solve the problem. The results of extensive numerical testing 

show that the heuristic performed well in terms of percentage cost error. Moreover, since the 

heuristic method is effective and produce high-quality solutions, it can be embedded within 

CPLEX to speed up the optimization process.  

 

Sifaleras, Konstantaras, and Mladenović (2015) suggested a variable neighborhood search 

(VNS) metaheuristic algorithm to solve the economic lot sizing problem with product returns 

and recovery. In the problem, the dynamic demand was known for a finite planning horizon. 

The number of returns was given for all periods and assumed to be dynamic. The objective was 

to satisfy the demand of items in each period at the lowest possible total cost. For solving the 

problem, two novel VNS metaheuristic algorithms were proposed to employ new strategies for 

both the local search step and the shaking process. Several new neighborhoods were presented 

for this combinatorial optimization problem with an efficient local search method for exploring 
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them. In addition, a new simple heuristic initialization method was described for this problem. 

Finally, a new benchmark set with 52 periods instance was developed. The results from the set 

show that the proposed VNS approach is quite efficient in solving large problems with small 

optimality errors.  

 

2.3.2 Stochastic Models 

In stochastic models, stochastic processes are employed to model demand and returns. 

Continuous and periodic review policies are two common approaches used in stochastic models 

(Ali and Gupta 2010). 

 

2.3.2.1 Continuous Review Models 

These models use continuous time axis and try to determine the optimal static control policies 

based on minimization of the long-run average costs per unit of time (Fleischmann et al. 1997).  

 

Heyman (1977) presented the first study in this area by considering a continuous review 

strategy for a single item inventory system with remanufacturing and disposal. Queueing model 

was used to describe the system. When the return and demand processes follow Poisson 

distribution, the model can be solved to exact solutions. For more general processes, a diffusion 

approximation was used to the model and obtained approximate solutions. From the results of 

numerical examples, the diffusion approximation can provide good solutions when the 

parameters for Poisson processes were used. Diffusion model only uses the first two moments 

of the return and repair processes and such information is likely to be available in practice. 
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Nakashima et al. (2004) studied an optimal control problem of a remanufacturing system under 

stochastic demand. The system was described by a Markov decision process. It is a class of 

stochastic sequential processes in which the reward and transition probability depend only on 

the current state of the system and the current action. In the system, the actual product inventory 

in a factory and the virtual inventory used by a customer were considered. Both inventory levels 

defined the state of the remanufacturing system together. The optimal production policy 

minimized the expected average cost per period. Some scenarios under various conditions were 

also considered and an example of controlling the remanufacturing system was shown. The 

numerical results illustrate the property of the optimal control of the remanufacturing system. 

It also means that the proposed approach is applicable to different systems by choosing the 

parameters based on different conditions. 

 

In Konstantaras and Skouri (2010), a manufacturing-remanufacturing inventory system was 

considered. The cost structure of the system included the EOQ-type setup costs, holding costs 

and shortage costs. The authors first studied the model with no shortage in serviceable 

inventory. Then they discussed the serviceable inventory shortage case. Both models were 

considered for the case of variable setup numbers of equal sized batches for manufacturing and 

remanufacturing processes. The authors proposed sufficient conditions for the model 

parameters to determine the class of policies in which the optimal one falls. In the end, these 

sufficient conditions were given based on the closed form formulae for the total cost function 

of the system.  
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2.3.2.2 Periodic Review Models 

Periodic review models search for optimal policies based on the minimization of expected costs 

over a finite planning horizon (Fleischmann et al. 1997). 

 

Mahadevan, Pyke, and Fleischmann (2002) studied a remanufacturing facility that received a 

stream of returned products according to Poisson process. The demand in the system was 

uncertain and followed a Poisson process. There were two problems needed to be solved: when 

to release the returned products to the remanufacturing line and how many new products to 

manufacture. In the paper, a “push” policy was employed to combine these two decisions. 

Moreover, bounds and heuristics were developed based on traditional approximate inventory 

models. Each heuristic method was based on simple, intuitive adjustments to the parameters of 

the traditional model. The first two approaches relied on an approximation of the manufacturing 

and remanufacturing sources by a single aggregate channel. The third approach explicitly 

considered the impact of both channels separately. All the three heuristics perform quite well 

on average, with average total cost errors of 3.27%, 5.96% and 0.44%, respectively. 

 

Wang et al. (2011) discussed a single-item, dynamic lot-sizing problem for systems with 

remanufacturing and outsourcing. Demand and return amounts were both deterministic over a 

finite planning horizon. Demand could be satisfied with new manufactured items, 

remanufactured items and outsourcing but could not be backlogged. The objective of the study 

was to determine the lot sizes for manufacturing, remanufacturing and outsourcing that 

minimize the total cost including relevant costs. A dynamic programming approach was 
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proposed to derive the optimal solution in the case of large quantities of returned product. The 

paper establishes the characteristics of single-item lot sizing with remanufacturing and 

outsourcing and develops a polynomial algorithm for the model.  

 

Helmrich et al. (2014) discussed two variants of the economic lot-sizing problem with 

remanufacturing. The quantities of returned products were known in each period. In every 

period, one can choose to set up a process to manufacture new products or remanufacture 

returned products. These processes could have separate or joint setup costs. These two variants 

were discussed in the paper and they were both shown to be NP-hard. Furthermore, the authors 

also proposed several alternative mixed-integer programming formulations of both problems 

and tested their efficiency on a wide variety of test instances. The test results show that, for 

both problem variants, the shortest path formulation performed better than the Original and 

other formulations, especially in terms of the quality of the LP-relaxation.  

 

2.4 Uncertainty Effect of Remanufacturing 

One important problem related to remanufacturing is the uncertainties associated with the 

process of a remanufacturing system. The uncertainties in quantity, quality and the required 

time to process the returned products make the analysis of remanufacturing systems more 

complicated. 

 

2.4.1 Static Modeling Method 

Ferrer (2003) developed decision models to deal with limited information on remanufacturing 
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yields and potentially long supplier lead time. To make a better decision, managers may attempt 

to identify the reparable parts early in the remanufacturing process, to develop a responsive 

supplier with short lead time, or to get more information about the status of the recycled 

machines. In the paper, the author provided a single-part lot-size decision model then analyzed 

the model according to each of these scenarios. Last the relative values of these alternatives 

were compared under a broad range of parameters. The results show that: (1) when the yield 

variance increases, developing early detection capability of the process yield is more important 

than having suppliers with short lead time; (2) when the shortage cost increases, it is better to 

have a responsive supplier who has a short lead time; (3) when the purchase, repair of holding 

cost increases, it is better to be capable to detect process yield early.  

 

In Ketzenberg, Laan, and Teunter (2009), the value of information (VOI) was explored in the 

context of a firm that faces uncertainty with respect to demand, product return and product 

recovery. The discussion started with a single-period problem with normally distributed 

demands and returns. Then the problem was extended to the multi-period case. The returns in 

a period were correlated with demands in the previous period. The objective was to evaluate 

the VOI from reducing one or more uncertainties by measuring the reduction in total expected 

holding and shortage costs. Estimators were developed to predict the value and sensitivity of 

different information types. The main contribution of the paper is that the estimators can be 

used to determine potential gains from investing in information on demand, return and yield. 
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2.4.2 Dynamic Control Method 

In Hilger et al. (2016), the authors considered a dynamic multi-product capacitated lot sizing 

problem with stochastic demand and return in remanufacturing. In the problem, the demands 

and return quantity were both random. Two models were proposed for this integrated stochastic 

production and remanufacturing problem. In the first model, the problem was transferred into 

a mixed-integer problem by representing the nonlinear functions with piecewise linear 

functions. In this way, a standard mixed-integer programming solver could be used to solve the 

problem. In the second model, the expected values were replaced by sample averages of 

independent scenarios. The two different models demonstrate that the problem considered 

could be well solved through a simulation model. The results show that the integrated planning 

approach is advantageous compared with a sequential planning approach. 

 

Macedo et al. (2016) studied hybrid manufacturing and remanufacturing lot-sizing problems 

with several uncertainties. Unlike the other papers, this problem included multiple products, 

disposal, backlogging, and the inherent uncertainties of demands, return rates of usable 

products, and setup costs. The authors proposed a scenario-based two-stage stochastic 

programming model to solve the problem with uncertainties. In the model, production and 

setup costs were assumed as first-stage decision variables and inventory, disposal and 

backlogging were taken as second-stage decision variables. To reduce the risk associated with 

the dispersion of the second-stage cost, risk-averse constraints were aggregated via a mean-

risk model. The results indicate that if the objective is to propose a solution with less risk, the 

expected total cost will increase slightly. Moreover, the combined lines of both manufacturing 
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and remanufacturing cost less but provide more economic viability than the isolated lines of 

both processes. 

 

Mukhopadhyay and Ma (2009) considered a hybrid system where both used and new parts 

could serve as inputs in the production process to satisfy an uncertain demand. In the system 

the yield of the used parts was random as well. Both the used parts and the new parts were 

processed in the same production line. Three different cases were discussed depending on the 

amount of information about the yield rate which included deterministic yield model, random 

yield rate model and a special case of uniform distributed yield rate and demand. In the random 

yield rate model, the cases of short and long delivery lead time of new parts were further 

discussed. In each model, the optimal procurement and production quantity were determined. 

Extensive numerical analyses were presented and the results of the sensitivity analyses on 

various problem parameters were discussed. 

 

Assid, Gharbi, and Hajji (2019) considered a hybrid system using both raw materials and 

returned products in the production process with the presence of random events including 

facilities failures, delivery lead times of raw materials and returns. For the system, it was 

important to determine the appropriate storage spaces and adaptive strategies to manage the 

manufacturing, remanufacturing and disposal operations as well as the supply of both raw 

materials and returns. This paper mainly aimed to propose and efficient structure of joint 

control policies integrating simultaneously the production and disposal activities as well as the 

procurement of both return and raw material. A simulation-based optimization approach was 
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applied of determine the optimal control parameters including the raw material supply and the 

storage space sizing finished products, raw materials and returns while minimizing the total 

incurred cost. After that, the robust behavior and the usefulness of the proposal was shown by 

an in-depth sensitivity analysis. The results show that the proposed control policies achieved 

important cost savings which varied between 6.26% and 54.14% comparing with the instances 

from literatures. 

 

In Li, Li, and Saghafian (2013), some insights were generated into the acquisition management 

and production planning of a hybrid manufacturing and remanufacturing system with stochastic 

acquisition price and random yield in  the remanufacturing process. In the paper, it was shown 

how to maximize the total expected profit by coordinating the acquisition pricing, 

remanufacturing and manufacturing decisions. Two different cases were considered for 

sequential and parallel manufacturing-remanufacturing processes. In each case, a stochastic 

dynamic programming was used to formulate and analyze the model, showing that the optimal 

policy was characterized by several critical values and functions. By comparing the two cases, 

it shows that the optimal acquisition price and remanufacturing quantity are both higher in the 

case of sequential process. 

 

Kenné, Dejax, and Gharbi (2012)  studied the production planning and control of a single 

product involving combined manufacturing and remanufacturing operations within a closed-

loop reverse logistics network with machines subject to random failures and repairs. There 

were three types of inventories involved in the network. The first and second inventories stored 
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manufactured and remanufactured items and the third inventory was for the returned products 

which would be then remanufactured or disposed of. A new generic model was proposed based 

on stochastic optimal control theory. The objective of the model was to minimize the sum of 

the holding and backlog costs for manufacturing and remanufacturing products. The decision 

variables were the production rates of the manufacturing and the remanufacturing machines. 

This optimal control problem was solved by a computational algorithm based on numerical 

methods. At last, the usefulness of the proposed approach was illustrated by a numerical 

example and a sensitivity analysis. 

 

2.5 Summary 

In this chapter, literature related to modeling and algorithms of remanufacturing was presented. 

Different aspects of the considered problem and various versions and extensions of different 

solution approaches were discussed. In the next chapter, a new heuristic model based on Silver-

Meal method will be presented to solve a new version of lot-sizing problem in a manufacturing-

remanufacturing system. 
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Chapter 3 Modeling 

 

In this chapter, details of the production planning problem in a remanufacturing system studied 

in this thesis are presented with the development of the mathematical programming model for 

solving the considered problems. A new heuristic method is developed to search for optimal or 

near-optimal solutions with reduced computational time in solving the considered 

remanufacturing production planning problems. 

 

3.1 Problem Definition 

We consider that a hybrid manufacturing-remanufacturing system produces one type of 

products with deterministic but time-varying demands during a finite planning time horizon. 

This system uses both manufactured and remanufactured components to assemble products. 

The manufacturing process makes new components with new materials. The remanufacturing 

process covers inspection, disassembly, cleaning and remanufacturing to produce “as good as 

new” components. The two processes can be executed individually or together in the 

considered system. 

 

We consider that the quantity of returned products is deterministic over the planning horizon. 

When a returned product is received, two options are available for the returned products: 

remanufacturing or disposal. The products that could be remanufactured will be inspected, 

disassembled, cleaned and remanufactured in the remanufacturing system. In this considered 

problem, we assume that inspection, disassembling and cleaning require similar amount of time 

for all the returned products, but the required remanufacturing time may vary depending on 
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different levels of worn-out of each component.  The different remanufacturing time required 

to make the returned products to become “as good as new” products affect inventory levels and 

production planning decisions. As presented in the literature review in the previous chapter, 

research in developing and solving optimization models for remanufacturing production 

planning problems with varying remanufacturing time is very limited. In most of the existing 

remanufacturing production planning models, it typically assumes that similar amount of 

remanufacturing time is required to process all disassembled components. In the 

remanufacturing production planning problems considered in this thesis, we consider that 

remanufacturing time may take one to several time periods depending on the quality level of 

the disassembled components. 

 

In the considered problem, the returned products will be inspected and disassembled to retrieve 

useful components at the beginning of each period.  The remanufacturing time of each 

component can be estimated based on their levels of worn-out. The ones that can be 

remanufactured within 1 time period (for example, 1 work day) are considered as category 1, 

between 1 and 2 time periods are considered as category 2, and so forth. To remanufacture the 

components in different categories is associated with different remanufacturing costs since 

longer remanufacturing time typically leads to higher cost.  

 

The main problem feature considered in this research that disassembled components may 

require different processing time periods to remanufacture can be further illustrated in Figures 

3.1 and 3.2. Figure 3.1 shows an example of the situation that all components require same 
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remanufacturing time. The planning horizon is 5 periods and each period gets some returned 

products. Period 1 and period 3 are planned to remanufacture the components disassembled 

from returned products. All the remanufacture components can be finished in the current period. 

In the problem considered in this research, however, remanufacturing time can be different for 

the disassembled components depending on their categories as shown in Figure 3.2. For the 

components remanufactured in period 1, only category 1 components can satisfy the demand 

of period 1 since the components in categories 2 and 3 require more remanufacturing time to 

complete.  

 

 

Figure 3.1 Schematic diagram of the problem in previous literature 

 

 

Figure 3.2 Schematic diagram of the problem in this thesis 
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In the hybrid manufacturing-remanufacturing system considered in this research, final products 

are made from either new components or recovered components. Demand for the final products 

does not differentiate that they are made from new or used components since recovered 

components have been remanufactured to the level of “as good as new”.  At the beginning of 

any time period, a manager will decide if some of the returned products should be processed 

including inspection, disassembling, cleaning and remanufacturing. If some of them will not 

be processed, they will be placed in inventory and be available for processing in the following 

time periods.  

 

More specifically, we consider the following problem features in the considered 

remanufacturing production planning problem. 

1. Demands for the final products in a time horizon with multiple time periods are known. 

2. The quantities of returned products from customers in each period are known as well. 

3. The final products can be produced using new components from suppliers or using 

remanufactured components from disassembled returned products. 

4. There are no differences between products made from new components or “as good as 

new” components. 

5. After a recoverable product is disassembled, the reusable components will be sorted 

into different categories according to the levels of worn-out and corresponding 

remanufacturing time required.  
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6 The returned products which are not disassembled in the current period will be stored 

in the recoverable inventory to be processed in the remaining periods in the considered 

time horizon. 

7 No limit on the inventory capacities of new components, returned products or final 

products. 

 

In this research, we developed a mathematical programming model to solve the hybrid 

manufacturing-remanufacturing production planning problem. The model development is 

based on the above described features. The solution of the developed integer programming 

model is to determine the optimal values of a number of inter-related decision variables 

including the amount and time  periods to produce new components and remanufactured 

components in minimizing  total production cost of the system  in the considered time 

horizon. Variable and parameter definitions used in developing the model are explained in the 

next section.  

 

3.2 Definitions 

Some of the terms used in developing the math model will be explained in detail.  

 

3.2.1 Holding Cost 

Holding cost is the cost to keep an item in inventory at each unit of time. In our problem, the 

inventory of returned products and the inventory of final products are considered separately. 

Since the condition and requirement of storing returned products and final products are 
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different, the holding cost of these two inventories are considered differently as well. 

 

3.2.2 Set-up Cost 

Set-up cost is the cost incurred to get the system ready to produce components. This cost is 

independent of the quantity of the components processed. In the considered hybrid 

manufacturing-remanufacturing system, the set-up costs for both manufacturing and 

remanufacturing are considered, which means when the process is set up for either 

manufacturing or remanufacturing, the corresponding set-up cost is incurred.  

 

3.2.3 Category of Disassembled Components 

As mentioned earlier, in this research, we consider that to remanufacture the components may 

require different processing time based on the levels of worn-out of the component. We assume 

that the remanufacturing time can vary from one time period to several time periods. And define 

the category of disassembled components by the amount of time they need to be 

remanufactured. The components requiring 1 time period or less to remanufacture are 

considered as category 1 components; requiring 1 to 2 time periods category 2 components, 

and so forth. The category of components is an important feature of the problem representing 

one of the important aspects of remanufacturing planning considered in this research. This 

feature also reflects the uncertainty in remanufacturing systems and does not exist in regular 

manufacturing systems. 
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3.3 Modeling of Single-Item Production Planning Problem 

We first present the model considering only one type of disassembled components. The 

problem is similar to single-item lot sizing problem. Specific assumptions and model notations 

are given below.  

 

3.3.1 Model Assumption 

1. The considered production planning time horizon has multiple time periods. 

2. Demands are satisfied with final products made from either new components or 

remanufactured components. 

3.  A final product contains one type of components, manufactured or remanufactured. 

4. After the returned products are disassembled, all components are inspected and 

categorized according to their quality levels. 

5. Components in different categories require corresponding processing time to be 

remanufactured before they can be used to make final products. 

6. Remanufacturing cost includes cost of inspection, disassembly, cleaning and 

remanufacturing. 

7. No limit on inventory capacities of new components, recoverable products or final 

products. 

8. Setup cost incurred for manufacturing can be different from setup cost incurred for 

remanufacturing. 
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3.3.2 Notations 

Sets, parameters and variables used in the model are defined below. 

Sets: 

𝑇  Set of production planning periods, 𝑡 = 1. . 𝑇 

𝐽  Set of component categories disassembled from the returned products, 𝑗 = 1. . 𝐽 

 

Parameters: 

𝐷𝑡  Demand in period 𝑡 

𝑅𝑡  The quantity of returned products in period 𝑡 

L  The quantity of the component contained in the returned product 

𝑃𝑗  The percentage of component category 𝑗 disassembled from the returned products 

CM  Cost of manufacturing a new component 

𝐶𝑅𝑗  Cost of remanufacturing a component of category 𝑗 

𝐶𝐻𝑌𝑡 Holding cost of returned products inventory in period 𝑡 

𝐶𝐻𝑍𝑡 Holding cost of final products inventory in period 𝑡 

𝐾𝑀𝑡 Set-up cost for manufacturing in period 𝑡 

𝐾𝑅𝑡  Set-up cost for remanufacturing in period 𝑡 

𝑀  A large number 

Decision variables: 

𝑚𝑡  Quantity of component manufactured in period 𝑡 

𝑟𝑡  Quantity of products remanufactured in period 𝑡 

𝑦𝑡  Inventory of returned products at the end of period 𝑡 
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𝑧𝑡  Inventory of final products at the end of period 𝑡 

𝜃𝑡
𝑚 = {

1,   if the system is set up to manufacture product in period t

0,   otherwise
 

𝜃𝑡
𝑟 = {

1,   if the system is set up to remanufacture product in period t

0,   otherwise
 

 

3.3.3 Mathematical Model 

The mathematical model is presented as follows: 

𝑀𝑖𝑛 𝐶 =  ∑ ∑ (𝐶𝑀 × 𝑚𝑡 + 𝐿 × 𝑃𝑗 × 𝐶𝑅𝑗 × 𝑟𝑡 + 𝐾𝑀𝑡 × 𝜃𝑡
𝑚 + 𝐾𝑅𝑡 × 𝜃𝑡

𝑟+𝐶𝐻𝑌𝑡 ×
𝐽
𝑗=1

𝑇
𝑡=1

𝑦𝑡 + 𝐶𝐻𝑍𝑡 × 𝑧𝑡)                                                                

(1) 

s.t. 

𝐿 × 𝑃1 × 𝑟𝑡 + ∑ 𝐿 × 𝑃𝑡+1−𝜎 × 𝑟𝜎
𝑡−1
𝜎=1 + 𝐿 × 𝑧𝑡−1 + 𝑚𝑡 − 𝐿 × 𝑧𝑡 = 𝐿 × 𝐷𝑡      ∀ 𝑡 ∈ 𝑇    (2) 

𝑦𝑡 = 𝑦𝑡−1 + 𝑅𝑡 − 𝑟𝑡               ∀ 𝑡 ∈ 𝑇         (3) 

𝑚𝑡 ≤ 𝑀 × 𝜃𝑡
𝑚              ∀ 𝑡 ∈ 𝑇         (4) 

𝑟𝑡 ≤ 𝑀 × 𝜃𝑡
𝑟              ∀ 𝑡 ∈ 𝑇         (5) 

𝑟𝑡 ≤ 𝑦𝑡−1 + 𝑅𝑡              ∀ 𝑡 ∈ 𝑇         (6) 

𝑦0 = 𝑧0 = 0              ∀ 𝑡 ∈ 𝑇           (7) 

0 ≤ 𝑃𝑗 ≤ 1                       ∀ 𝑗 ∈ 𝐽            (8) 

𝑚𝑡,  𝑟𝑡, 𝑦𝑡, 𝑧𝑡 ≥ 0              ∀ 𝑡 ∈ 𝑇          

(9) 

𝜃𝑡
𝑚, 𝜃𝑡

𝑟 = {0, 1}              ∀ 𝑡 ∈ 𝑇         (10) 

 

The objective function (1) is the minimization of the total cost over all time periods. The 
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objective function included six parts: cost of manufacturing new components, cost of 

remanufacturing components, set up cost of manufacturing, set up cost for remanufacturing, 

holding cost of the inventory of returned products, holding cost of the inventory of final 

products. Constraints (2) and (3) ensure the inventory balance in returned products and final 

products, respectively.   Constraints (4) and (5) relates production and system setup where 

𝑀   is a large number. Constraint (6) limits the remanufactured products quantity in each 

period. Constraint (7) enforces the initial inventories to be zero. Inequality (8) ensures the 

percentages of component category ranges between 0 and 1. Constraints (9) and (10) are non-

negativity and binary constraints.  

 

3.4 Modeling of Multi-Item Production Planning Problem 

When the product contains multiple types of components, then the problem is considered as a 

multi-item production planning problem. The mathematical model of multi-item production 

planning problem is presented below. Objective function and constraints are explained in detail 

as well. 

 

3.4.1 Model Assumptions 

1. The considered production planning time horizon has multiple time periods. 

2. Demands are satisfied with final products made from either new components or 

remanufactured components. 

3. A final product contains multiple types of components, manufactured or 

remanufactured. 
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4. After the returned products are disassembled, all components of each type are inspected 

and categorized according to their quality levels. 

5. Components in different categories of each type require corresponding processing time 

to be remanufactured before they can be used to make final products 

6. Remanufacturing cost includes cost of inspection, disassembly, cleaning and 

remanufacturing. 

7. No limit on inventory capacities of new components, recoverable products or final 

products. 

8. Setup cost incurred for manufacturing can be different from setup cost incurred for 

remanufacturing. 

 

3.4.2 Notations 

Sets, parameters and variables used in the model are defined below. 

Sets: 

𝑇  Set of production planning periods, 𝑡 = 1, . . 𝑇 

𝐼  Set of component types disassembled from the returned products, 𝑖 = 1. . 𝐼 

𝐼𝐽  Set of categories of component 𝑖, 𝑗 = 1. . 𝐽, 𝑖 = 1, … , 𝐼 

Parameters: 

𝐷𝑡  Demand in period 𝑡 

𝑅𝑡  The quantity of returned products in each period 𝑡 

𝐿𝑖  The quantity of the component 𝑖 contained in the returned product 

𝑃𝑖𝑗 The percentage of category 𝑗  of component 𝑖  disassembled from the returned 
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products 

𝐶𝑀𝑖  Cost of manufacturing a new component 𝑖 

𝐶𝑅𝑖𝑗 Cost of remanufacturing a component of category 𝑗 of component 𝑖 

𝐶𝐻𝑌𝑡 Holding cost of returned products inventory in period 𝑡 

𝐶𝐻𝑍𝑡 Holding cost of final products inventory in period 𝑡 

𝐾𝑀𝑡 Set-up cost for manufacturing in period 𝑡 

𝐾𝑅𝑡  Set-up cost for remanufacturing in period 𝑡 

𝑀  A large number 

Decision variables: 

𝑚𝑖𝑡  Quantity of component 𝑖 manufactured in period 𝑡 

𝑟𝑡  Quantity of returned products remanufactured in period 𝑡 

𝑦𝑡  Inventory of returned products at the end of period 𝑡 

𝑧𝑡  Inventory of final products at the end of period 𝑡 

𝜃𝑡
𝑚 = {

1,   if the system is set up to manufacture product in period t

0,   otherwise
 

𝜃𝑡
𝑟 = {

1,   if the system is set up to remanufacture product in period t

0,   otherwise
 

 

3.4.3 Mathematical Model 

The mathematical model is presented as follows: 

𝑀𝑖𝑛 𝐶 =  ∑ ∑ ∑ (𝐶𝑀𝑖 × 𝑚𝑖𝑡 + 𝐿𝑖 × 𝑃𝑖𝑗 × 𝐶𝑅𝑖𝑗 × 𝑟𝑡 + 𝐾𝑀𝑡 × 𝜃𝑡
𝑚 + 𝐾𝑅𝑡 × 𝜃𝑡

𝑟 +𝐽
𝑗=1

𝑇
𝑡=1

𝐼
𝑖=1

𝐶𝐻𝑌𝑡 × 𝑦𝑡 + 𝐶𝐻𝑍𝑡 × 𝑧𝑡)                                                      (1) 

s.t. 

𝐿𝑖 × 𝑃𝑖1 × 𝑟𝑡 + ∑ 𝐿𝑖 × 𝑃𝑖(𝑡+1−𝜎) × 𝑟𝜎
𝑡−1
𝜎=1 + 𝐿𝑖 × 𝑧𝑡−1 + 𝑚𝑖𝑡 − 𝐿𝑖 × 𝑧𝑡 = 𝐿𝑖 × 𝐷𝑡     



35 
 

            ∀ 𝑡 ∈ 𝑇, ∀ 𝑖 ∈ 𝐼                  

(2) 

𝑦𝑡 = 𝑦𝑡−1 + 𝑅𝑡 − 𝑟𝑡         ∀ 𝑡 ∈ 𝑇                       (3) 

𝑚𝑖𝑡 ≤ 𝑀 × 𝜃𝑡
𝑚          ∀ 𝑡 ∈ 𝑇                       (4) 

𝑟𝑡 ≤ 𝑀 × 𝜃𝑡
𝑟          ∀ 𝑡 ∈ 𝑇                       (5) 

𝑟𝑡 ≤ 𝑦𝑡−1 + 𝑅𝑡          ∀ 𝑡 ∈ 𝑇                       (6) 

𝑦0 = 𝑧0 = 0          ∀ 𝑡 ∈ 𝑇                        (7) 

0 ≤ 𝑃𝑖𝑗 ≤ 1                               ∀ 𝑗 ∈ 𝐽                          (8) 

𝑚𝑖𝑡,  𝑟𝑡, 𝑦𝑡 , 𝑧𝑡 ≥ 0         ∀ 𝑡 ∈ 𝑇                        (9) 

𝜃𝑡
𝑚, 𝜃𝑡

𝑟 = {0, 1}          ∀ 𝑡 ∈ 𝑇                       (10) 

 

The objective function (1) is the minimization of the total cost over all time periods. The 

objective function included six parts: cost of manufacturing new components, cost of 

remanufacturing components, set up cost of manufacturing, set up cost for remanufacturing, 

holding cost of the inventory of returned products, holding cost of the inventory of final 

products. Constraints (2) ensures the inventory balance in final products on component level. 

Constraints (3) ensures the inventory balance in returned products. Constraints (4) and (5) 

relates production and system setup where 𝑀  is a large number. Constraint (6) limits the 

remanufactured products quantity in each period. Constraint (7) enforces the initial inventories 

to be zero. Inequality (8) ensures the percentages of component category ranges between 0 and 

1. Constraints (9) and (10) are non-negativity and binary constraints. 
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3.5 Solution Method 

The mathematical programming model for production planning for the considered 

manufacturing-remanufacturing systems can be solved using CPLEX or other off-shelf 

optimization software. Optimal solutions can be found quickly in solving the considered 

production planning problems if the problem sizes are not large. However, since the considered 

problem is NP-hard in nature, in this research, we developed a heuristic method for solving the 

considered problem efficiently for potentially large-scale problem solving in practical 

applications. The developed solution method is based on Silver-Meal (Silver and Meal, 1973) 

heuristic. Silver-Meal heuristic is a method that determines the optimal lot size by comparing 

the average cost per period. Following the same logic, we developed a heuristic that determines 

both the manufacturing and remanufacturing lot sizes in each period to achieve the minimum 

cost over a finite planning horizon. In this heuristic method, before comparing the average cost 

between different periods, the costs of satisfying demands with or without remanufacturing 

within the current period are compared first. The remanufacturing lot size in each period can 

then be determined and the manufacturing lot size is subsequently determined following the 

same logic of the Silver-Meal method. 

  

In developing the heuristic solution method, we assume that in a time period that the 

remanufacturing system is set-up for production, all the returned and recoverable products will 

be processed. This is based on the consideration that set-up cost is one-time fixed cost and 

remanufacturing cost is typically lower than manufacturing cost. The total cost should be 

reduced when the remanufacturing process is activated to process all returned recoverable 
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products.  

 

In addition, for both single-item problem and multi-item problem, the calculation procedures 

are generally the same with difference in the calculation of manufacturing-remanufacturing 

cost.  The multi-item problem includes more than one type of parts and each part type has its 

own categories and costs of remanufacturing in each category.  Such differences must be 

included in calculating the cost.  The heuristic method explained below is the general solution 

method which can be used to solve both single-item problem and multi-item problem. 

 

The heuristic method contains 5 general steps.  

Heuristic Solution Method 

Step 1. Start from the initial period. Compute the costs of satisfying the demand of this period 

by manufacturing only and by both manufacturing and remanufacturing together. The costs 

include set-up cost, manufacturing-remanufacturing cost and holding cost. The quantity of 

remanufacturing is the total recoverable inventory. 

 

Step 2. Compare the two cost values obtained from Step 1. If the cost with manufacturing only 

is lower, there is only manufacturing in this period and the products of recoverable inventory 

will be stored till next time period. If the cost with both manufacturing and remanufacturing is 

lower, the system will be setup to perform both manufacturing and remanufacturing in this 

period and all the products in recoverable inventory are remanufactured.  
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Step 3. Consider the next period together with the previous time periods. Based on the results 

of Step 2, compute the costs of satisfying the demand of the considered periods with and 

without remanufacturing in the next period. Then compute the average costs over the 

considered periods. 

 

Step 4 and Step 5. Find the lowest average cost by repeating Step 3 and considering next time 

periods. When the lowest average cost is found, the quantities of manufacturing-

remanufacturing of each period can be determined. The following period is set as initial period 

and the computation repeat from Step1. The algorithm stops when all of the periods are 

considered and all the decision variables are determined. 

 

Following the general steps described above, the heuristic algorithm was coded in MATLAB 

with the pseudocode of the computational procedure presented below. A flow chart depicts the 

interactions of the procedure is shown in Figure 3.3.  

 

Step 0. Initial 𝑡 = 1, 𝜏 = 1, 𝑑 = 𝑑1; 

Step 1. Determine the cost of satisfying 𝑑 only with new components. Set this cost as 𝑐𝑚(𝑡). 

Determine the cost of satisfying 𝑑  with both new components and remanufactured 

components (𝑦𝑡−1 + 𝑅 is remanufactured). Set this cost as 𝑐𝑟𝑚𝑚(𝑡). 

Set 𝐶𝑚𝑎𝑡(𝑡) = 𝑚𝑖𝑛{𝑐𝑚(𝑡), 𝑐𝑟𝑚𝑚(𝑡)}. 

Step 2. If 𝑐𝑚(𝑡) > 𝑐𝑟𝑚𝑚(𝑡), 

  𝑟𝑡 = 𝑦𝑡−1 + 𝑅, 
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  𝑦𝑡 = 0, 

Update 𝑧𝑡, 𝑚𝑖𝑡 using Equation (2). 

Else 

  𝑟𝑡 = 0, 

  𝑦𝑡 = 𝑦𝑡−1 + 𝑅, 

Update 𝑧𝑡, 𝑚𝑖𝑡 using Equation (2). 

End if 

Step 3. Set 𝜏 = 𝜏 + 1, 𝑑 = 𝑑 + 𝑑𝜏 

Determine the average period cost 𝐴𝑉𝐺𝑚 (from period 𝑡 to period 𝜏) of satisfying 

𝑑 only with manufacturing in period 𝑡. 

Determine the average period cost 𝐴𝑉𝐺𝑟𝑚𝑚  (from period 𝑡  to period 𝜏 ) of 

satisfying 𝑑 with manufacturing in period 𝑡 and remanufacturing 𝑦𝜏−1 + 𝑅 in period 𝜏. 

Set 𝐶𝑚𝑎𝑡(𝜏) = min {𝐴𝑉𝐺𝑚, 𝐴𝑉𝐺𝑟𝑚𝑚}. 

Step 4. If 𝐶𝑚𝑎𝑡(𝜏) > 𝐶𝑚𝑎𝑡(𝜏 − 1), 

  Set 𝑡 = 𝜏 and repeat from Step 1. 

Else, 

 Go to step 5. 

End if. 

Step 5. If  𝐴𝑉𝐺𝑚 > 𝐴𝑉𝐺𝑟𝑚𝑚, 

  𝑟𝜏 = 𝑦𝜏−1 + 𝑅, 

  𝑦𝜏 = 0, 

  Update 𝑧𝜏, 𝑚𝑖𝜏 using Equation (2). 
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 Else, 

  𝑟𝜏 = 0, 

  𝑦𝜏 = 𝑦𝜏−1 + 𝑅, 

Update 𝑧𝜏 , 𝑚𝑖𝜏 using Equation (2). 

 End if. 

Repeat Step 3 until 𝐶𝑚𝑎𝑡(𝜏) > 𝐶𝑚𝑎𝑡(𝜏 − 1) or period 𝜏 is the last period. 

End. 



41 
 

 
Figure 3.3 Flow Chart of Heuristic Method Solution 
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3.6 Summary 

In this chapter, we discuss the details of the considered production planning problem in a hybrid 

system of manufacturing and remanufacturing. In this problem, the remanufacturing time of 

the components to be recovered can vary depending on their conditions. Some of them can be 

remanufactured within one period and some of them need longer time. A mixed integer 

programming model is proposed to solve the considered lot-sizing problem to minimize total 

cost. We also present a heuristic solution method to find close-to-optimal solutions with less 

computational time. In the next chapter, we will present several numerical example problems 

to demonstrate the developed model and solution method. 
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Chapter 4 Numerical Examples and Analysis 

 

In this chapter, we present several numerical examples to illustrate the developed mathematical 

model and the heuristic solution method discussed in Chapter 3. Computational results are 

analyzed to demonstrate the effectiveness and efficiency of the developed heuristic solution 

method. In addition, sensitivity analysis is conducted to investigate the impact of various values 

of model parameters. CPLEX is used as the software to solve the problem for optimal solution. 

The proposed heuristic method is coded and solved in MATLAB. CPLEX and MATLAB codes 

are presented in Appendix A and Appendix B.  

 

4.1 Single-item Problem 

4.1.1 Example Problem and Data 

An example problem is presented to test the validity and practicability of the proposed model 

and solution methodology presented in Chapter 3. This hypothetical example problem is based 

on the example given in Naeem (2013). Certain adjustments and assumption were made in the 

data to fit in the considered problem in this research. 

 

The original problem is a single item dynamic lot sizing problem with manufacturing and 

remanufacturing provisions. The demands and returns are considered as both stochastic and 

deterministic. The goal of the mathematical model is to minimize the total cost, including 

production cost, holding cost for returns and finished goods, and backlog cost. 

 

The example is to solve a production planning problem with 10 periods. The considered system 
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produces one type of product from new materials or from returned products. The product 

contains one type of component. According to the historical data, the components disassembled 

from returned products could be divided into 3 different categories. Each category needs 

different remanufacturing time. The remanufacturing time, cost and percentage of each 

category are shown in Table 4.1. Table 4.2 presents the demand of product over 10 periods. In 

this problem, the holding cost and set-up cost are taken as: 𝑐ℎ𝑦 = 3, 𝑐ℎ𝑧 = 4, 𝐾𝑚 = 250, 

𝐾𝑟 = 200. The quantity of returned products in each period is 80. The cost of manufacturing 

a new component is set as 𝑐𝑚=30. The maximum capacities of recoverable and serviceable 

inventories are infinite. 

 

Table 4.1 Remanufacturing time and percentages of categories 

Category (𝑗) Remanuf. Time Remanuf. Cost (𝑐𝑟𝑗) Percentage (𝑝𝑗) 

1 1 period 10 50% 

2 2 periods 11 25% 

3 3 periods 12 25% 

 

Table 4.2 Demands of product over 10 periods 

Period (𝑡) 1 2 3 4 5 6 7 8 9 10 

Demand (𝑑𝑡) 184 189 169 205 190 197 210 200 195 191 

 

4.1.2 Computational Results and Analysis 

The example problem is solved by CPLEX and MATLAB 2017b. CPLEX gives the optimal 

solutions and the proposed heuristic in Chapter 3 is coded and solved in MATLAB.  
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The minimum total cost of optimal solution is 48800 and the result of heuristic is 49948. The 

result of heuristic is very close to optimal solution and the error is only 2.35%. In terms of time, 

CPLEX takes 0.1689s to get the optimal solution, and MATLAB only takes 0.0224s to 

complete the heuristic solution calculation, which is 13.26% of the time getting optimal 

solution. Though the time getting optimal solution is short in the example problem, for more 

complicated and more realistic problems, it may take a long time to get optimal solution. In 

that situation, the proposed heuristic would be more efficient with greater computational 

advantages. 

 

Table 4.3 and Table 4.4 show the detailed production planning of the optimal solution and 

heuristic solution. They present the quantity of products that should be manufactured and 

remanufactured in each period. Table 4.3 illustrates that in the production planning of optimal 

solution, all the returned products in each period need to be remanufactured and the system has 

to manufacture new products during all the periods. Table 4.4 is the production planning given 

by heuristic method. In Tables 4.3 and 4.4, 𝑚𝑡 and 𝑟𝑡 are quantity of manufactured products 

and quantity of remanufactured products in period 𝑡, as defined in Chapter 3. The results show 

that in certain time periods, demand can be combined and manufactured in one period with 

remanufacturing the returned products in each period. 

 

Table 4.3 Production planning of optimal solution 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 144 129 89 125 110 117 130 120 115 111 

𝑟𝑡 80 80 80 80 80 80 80 80 80 80 
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Table 4.4 Production planning of heuristic method 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 362 0 0 235 0 117 250 0 115 111 

𝑟𝑡 80 80 80 80 80 80 80 80 80 80 

 

Table 4.5 shows the detailed costs associated with the optimal solution and the heuristic 

solution, including manufacturing cost for new products, remanufacturing cost for returned 

products, set-up cost for both manufacturing and remanufacturing, holding cost for recoverable 

inventory and serviceable inventory. From the table we can tell that though the optimal solution 

and heuristic method provide different production planning, the manufacturing and 

remanufacturing costs are the same. That means the total quantities of manufacturing or 

remanufacturing products in the 10 periods of both planning are equal. The gap is mainly 

caused by the balance of the set-up cost and holding cost. In the production planning of optimal 

solution, all the serviceable products are used to satisfy the demand of current period, so there 

is no holding cost. In the production planning of heuristic method, since some demands of 

several periods are manufactured together in one period, the set-up cost is relatively lower. But 

on the other hand, the holding cost is incurred because the surplus serviceable products are held 

to the next periods. 

Table 4.5 Detailed costs of the optimal solution and heuristic 

Costs Optimal solution Heuristic Method 

Manufacturing Cost 35700 35700 

Remanufacturing Cost 8600 8600 

Set-up Cost 4500 3500 

Holding Cost 0 2148 

Total 48800 49948 
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4.1.3 Experimental Results 

To further investigate the performance of the proposed heuristic method, 9 additional example 

problems are generated. The developed heuristic is tested on the instances and the results are 

compared with optimal solution. Same as the previous example, all the problem data are coded 

and solved by CPLEX to get the optimal solutions and the solution of heuristic method is coded 

and solved by MATLAB. 

 

The example problems are generated in three dimensions: problem size (quantity of periods), 

quantity of returned products, quantity of categories. For the problem size, we consider the 

problems with 5 periods, 10 periods and 20 periods to represent small-size problem, medium-

size problem and large-size problem respectively. In the terms of returned products, two 

scenarios are considered: returned products are much less than the demand and returned 

products are close to demand. Returned products more than demand is not considered because 

it is a rare situation in reality. Furthermore, quantity of categories is considered as 3 or 5 in the 

examples. 

 

Table 4.6, Table 4.7 and Table 4.8 show the results of experiments. The key parameters (return 

quantity and category) are shown in these tables. The other parameters of each problem and 

production planning are presented in Appendix C and Appendix D. The results illustrate 0.25% 

cost gap in small-size problem, 3.94% cost gap in medium-size problem and 3.18% cost gap 

in large-size problem between the heuristic method and optimal solution.  On average, 

calculation time is saved 82.5% in small-size problem, 89.3% in medium-size problem and 
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87.87% in large-size problem. In Example 1 and 3, the optimal solution and heuristic method 

obtain the same cost and production planning. That means in some cases the heuristic method 

can get the optimal solution. The results show that the proposed heuristic method can reach 

optimal or near optimal solution for the tested problems within a very short computational time. 

Table 4.6 Results of Small-size Problems 

Example Parameters 

Total Cost Time(s) 
Cost 

Gap 

Time 

Saved 
Optimal 

Solution 

Heuristic 

Method 

Optimal 

Solution 

Heuristic 

Method 

1 

Return 100 

3 Categories 

(20, 30, 50) 

83830 83830 0.1743 0.0081 0 95.3% 

2 

Return 200 

3 Categories 

(40, 60, 100) 

55470 55890 0.1260 0.0139 0.75% 62.5% 

3 

Return 100 

5 Categories 

(10, 20, 20, 20, 

30) 

87300 87300 0.1131 0.0118 0 89.6% 

     

 

Average 

 

0.25% 82.5% 

 

Table 4.7 Results of Medium-size Problems 

Example Parameters 

Total Cost Time 
Cost 

Gap 

Time 

Saved 
Optimal 

Solution 

Heuristic 

Method 

Optimal 

Solution 

Heuristic 

Method 

4 

Return 80 

3 Categories 

(40, 20, 20) 

48800 49948 0.1689 0.0224 2.35% 86.7% 

5 

Return 170 

3 Categories 

(70, 50, 50) 

33260 34549 0.1568 0.0150 3.88% 90.4% 

6 

Return 168 

5 Category 

(50, 45, 30, 

23, 20) 

36885 38952 0.1718 0.0155 5.60% 90.9% 

     

 

Average 

 

3.94% 89.3% 
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Table 4.8 Results of Large-size Problems 

Example Parameters 

Total Cost Time (s) 
Cost 

Gap 

Time 

Saved 
Optimal 

Solution 

Heuristic 

Method 

Optimal 

Solution 

Heuristic 

Method 

7 

Return 170 

3 Categories 

(70 50 50) 

189420 199114 0.2615 0.0228 5.12% 91.3% 

8 

Return 70 

3 Categories 

(40 20 10) 

308000 313340 0.1512 0.0236 1.73% 84.4% 

9 

Return 70 

5 Categories 

(20 15 15 10 

10) 

312500 320940 0.1533 0.0185 2.70% 87.9% 

     

 

Average 

 

3.18% 87.87% 

 

Table 4.9 shows the detailed cost of the examples. It clearly shows that manufacturing and 

remanufacturing costs are the same for both optimal solution and heuristic method. The 

difference of total cost is caused by set-up cost and holding cost. More specifically, the set-up 

cost of heuristic, on average, is 22.75% lower than that of optimal solution. Holding cost of 

heuristic is much higher than that of optimal solution. As a result, the proposed heuristic method 

schedules the production differently from the optimal solution with the same manufacturing-

remanufacturing quantity and it tends to reduce set-up cost but increase holding cost. 
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Table 4.9 Detailed Cost for Each Example 

 Manuf. Cost Remanf. Cost Set-up Cost Holding Cost Total Cost 

Exam. O H O H O H O H O H 

1 72000 72000 8250 8250 3500 3500 80 80 83830 83830 

2 33310 33310 18400 18400 3000 1000 760 3180 55470 55890 

3 72000 72000 10500 10500 4500 4500 300 300 87300 87300 

4 35700 35700 8600 8600 4500 3500 0 2148 48800 49948 

5 11400 11400 18500 18500 3000 2000 360 2649 33260 34549 

6 15120 15120 18160 18160 3000 2000 605 3645 36885 38952 

7 61000 61000 117000 117000 11100 7800 320 13314 189420 199114 

8 250000 250000 46000 46000 12000 11100 0 6240 308000 313340 

9 257500 257500 50000 50000 5000 4400 0 9040 312500 320940 

 

4.2 Multiple-item Problem 

4.2.1 Example 1 – Problem and Data 

The difference between multiple-item problem and single-item problem (discussed in Section 

4.1) is that the product considered in multiple-item problem contains more than one types of 

component and each type has its own categories and cost. The example of multiple-item 

problem is similar with single-item example, which is explained in section 4.1.1. The extra 

considered parameters of this problem are related to components. In this problem, the product 

contains 3 types of components and each type has different category quantities and 

remanufacturing cost. The related parameters are shown in Table 4.10. 
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Table 4.10 Related Parameters of Components 

Component 

(𝑖) 

Quantity 

in product 

(𝑙𝑖) 

Manuf. 

Cost 

Category 

(𝐼𝑗) 

Remanuf. 

Time of Each 

Category 

Remanuf. 

Cost of 

Each 

Category 

(𝑐𝑟𝑖𝑗) 

Percentage 

of Each 

Category 

(𝑝𝑖𝑗) 

1 5 20 
1 1 period 5 70% 

2 2 periods 10 30% 

2 8 30 

1 1 period 10 50% 

2 2 periods 11 30% 

3 3 periods 12 20% 

3 10 30 

1 1 period 10 30% 

2 2 periods 11 30% 

3 3 periods 12 30% 

4 4 periods 13 10% 

 

The planning horizon of this problem is 10 periods. The demands of each period are shown in 

Table 4.11. The holding cost and set-up cost are taken as: 𝑐ℎ𝑦 = 3 , 𝑐ℎ𝑧 = 5 , 𝐾𝑚 = 250 , 

𝐾𝑟 = 150. The quantity of returned products in each period is 170. The maximum capacities 

of recoverable and serviceable inventories are infinite. 

Table 4.11 The demands of product over 10 periods 

Period (𝑡) 1 2 3 4 5 6 7 8 9 10 

Demand (𝑑𝑡) 184 189 169 205 190 197 210 200 195 191 

 

4.2.2 Example 1 – Computational Results and Analysis 

Same as single-item problem, the example is solved by CPLEX and MATLAB 2017b. CPLEX 

gives the optimal solution and the proposed heuristic in Chapter 3 is coded and solved in 

MATLAB. 
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The minimum total cost of optimal solution is 637295 and the result of heuristic is 696890. The 

results show 9.3% gap between the developed heuristic and optimal solution. It takes 0.2075s 

to solve the problem with CPLEX to optimality and 0.0349s is required to solve the problem 

with heuristic in MATLAB, which is 83.18% shorter.  

 

Table 4.12 and Table 4.13 show the detailed production planning of the optimal solution and 

heuristic solution. They present the quantity of each type of component (𝑚1𝑡, 𝑚2𝑡, and 𝑚3𝑡) 

that should be manufactured and the quantity of product should be remanufactured in each 

period. In both of the production planning, all the returned products in each period are 

remanufactured. Table 4.12 shows the system should manufacture all the three component 

types in every period except period 3(𝑚2𝑡 = 0, 𝑚3𝑡 = 0). Table 4.13 illustrates the system 

only needs to manufacture the three component types in period 1 and 7. 

 

Table 4.12 Production planning of optimal solution 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 325 95 0 170 100 135 200 150 125 105 

𝑚2𝑡 792 424 0 272 160 216 320 240 200 168 

𝑚3𝑡 1330 870 160 350 200 270 400 300 250 210 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

 

Table 4.13 Production planning of heuristic method 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 825 0 0 0 0 0 580 0 0 0 

𝑚2𝑡 1864 0 0 0 0 0 928 0 0 0 

𝑚3𝑡 3180 0 0 0 0 0 1160 0 0 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 
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Table 4.14 shows the detailed costs of optimal solution and heuristic method. Same as single-

item problem, the gap between results is caused by set-up cost and holding cost. The heuristic 

method decreases set-up cost but increases holding cost leading to the total cost is higher than 

optimal solution. 

 

Table 4.14 Detailed costs of the optimal solution and heuristic 

Costs Optimal solution Heuristic Method 

Manufacturing Cost 242060 242060 

Remanufacturing Cost 391170 391170 

Set-up Cost 4000 2000 

Holding Cost 65 61660 

Total 637295 696890 

 

4.2.3 Example 2 – Problem and Data 

The background of Example 2 is the same as Example 1. The situation is different that the set-

up cost of remanufacturing is much higher than that of manufacturing and the difference 

between holding cost of recoverable inventory and serviceable inventory is larger. The 

parameters of components in Example 2 are shown in Table 4.15. 
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Table 4.15 Related Parameters of Components 

Component 

(𝑖) 

Quantity 

in product 

(𝑙𝑖) 

Manuf. 

Cost 

Category 

(𝐼𝑗) 

Remanuf. 

Time of Each 

Category 

Remanuf. 

Cost of 

Each 

Category 

(𝑐𝑟𝑖𝑗) 

Percentage 

of Each 

Category 

(𝑝𝑖𝑗) 

1 1 10 
1 1 period 2 90% 

2 2 periods 3 10% 

2 2 10 
1 1 period 2 90% 

2 2 periods 4 10% 

3 3 10 

1 1 period 2 80% 

2 2 periods 3 10% 

3 3 periods 4 10% 

 

The planning horizon of this problem is 5 periods. The demands of each period are shown in 

Table 4.16. The holding cost and set-up cost are taken as: 𝑐ℎ𝑦 = 0.1, 𝑐ℎ𝑧 = 5, 𝐾𝑚 = 3000, 

𝐾𝑟 = 11000. The quantity of returned products in each period is 220. The maximum capacities 

of recoverable and serviceable inventories are infinite. 

 

Table 4.16 The demands of product over 5 periods 

Period (𝑡) 1 2 3 4 5 

Demand (𝑑𝑡) 220 280 360 140 270 

 

4.2.4 Example 2 – Computational Results and Analysis 

Example 2 is solved by CPLEX and MATLAB 2017b as well. CPLEX gives the optimal 

solution and the proposed heuristic in Chapter 3 is coded and solved in MATLAB. 
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The minimum total cost of optimal solution is 88093 and the result of heuristic is 89302. The 

results show 1.4% gap between the developed heuristic and optimal solution. It takes 0.2030s 

to solve the problem with CPLEX to optimality and 0.0028s is required to solve the problem 

with heuristic in MATLAB, which is 98.62% shorter.  

 

Table 4.17 and Table 4.18 show the detailed production planning of the optimal solution and 

heuristic solution. Unlike Example 1, in Example 2, the optimal solution and heuristic method 

obtain different remanufacturing production planning over the horizon. Table 4.17 shows the 

system should remanufacture 310 returned products in period 2 and 130 returned products in 

period 4. Table 4.18 illustrates the system only needs to remanufacture 440 returned products 

in period 2.  

 

Table 4.17 Production planning of optimal solution 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 221 0 352 0 257 

𝑚2𝑡 442 0 704 0 514 

𝑚3𝑡 756 0 1002 0 771 

𝑟𝑡 0 310 0 130 0 

 

Table 4.18 Production planning of heuristic method 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 220 0 340 0 270 

𝑚2𝑡 440 0 680 0 540 

𝑚3𝑡 660 0 1020 0 810 

𝑟𝑡 0 440 0 0 0 
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Table 4.19 shows the detailed costs of optimal solution and heuristic method in Example 2. The 

manufacturing cost in optimal solution is slightly higher than that of heuristic method. That is 

because in optimal solution, among the 130 remanufactured in period 4, the third category of 

component 3 are not available in period 5 so the inadequate components need to be 

manufactured. The general trend is same with the previous examples that the heuristic method 

decreases set-up cost but increases holding cost leading to the total cost is higher than optimal 

solution. 

 

Table 4.19 Detailed costs of the optimal solution and heuristic 

Costs Optimal solution Heuristic Method 

Manufacturing Cost 50190 49800 

Remanufacturing Cost 5808 5808 

Set-up Cost 31000 20000 

Holding Cost 1095 13694 

Total 88093 89302 

 

4.2.5 Experimental Results 

To validate the proposed heuristic method for multiple-item problem, 9 example problems are 

generated. All the problems are coded and solved by CPLEX to get the optimal solutions and 

the solution of heuristic method is coded and solved by MATLAB.  

  

Similar with single-item problem, the multiple-item example problems are generated in three 

dimensions as well: problem size (quantity of periods), quantity of returned products and 

quantity of component types. Small-size problem, medium-size problem and large-size 
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problem are still considered with 5 periods, 10 periods and 20 periods, respectively. In the 

terms of returned products, two scenarios are considered: returned products are much less than 

the demand and returned products are close to demand. For the component types, 3 types and 

5 types are set as two different situations in the examples. The category quantity of each 

component type is assumed randomly. 

 

Table 4.20, Table 4.21 and Table 4.22 show the experiment results of multi-item problems. The 

key parameters (return quantity and category) are shown in these tables. The other parameters 

of each problem and production planning are presented in Appendix C and Appendix D. The 

results illustrate 1.57% cost gap in small-size problem, 3.80% cost gap in medium-size problem 

and 1.10% cost gap in large-size problem between the heuristic method and optimal solution.  

On average, calculation time is saved 96.23% in small-size problem, 84.73% in medium-size 

problem and 87.90% in large-size problem. The heuristic method gets the optimal solution and 

minimize cost in Example 14.  

Table 4.20 Results of Small-size Problems 

Example Parameters 

Total Cost Time(s) 
Cost 

Gap 

Time 

Saved 
Optimal 

Solution 

Heuristic 

Method 

Optimal 

Solution 

Heuristic 

Method 

10 

Return 100 

3 Component 

Types 

76800 77220 0.1356 0.0073 0.5% 94.6% 

11 

Return 200 

3 Component 

Types 

71100 73180 0.1247 0.0017 2.9% 98.6% 

12 

Return 100 

5 Component 

Types 

333675 338115 0.1159 0.0052 1.3% 95.5% 

     

 

Average 

 

1.57% 96.23% 
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Table 4.21 Results of Medium-size Problems 

Example Parameters 

Total Cost Time (s) 
Cost 

Gap 

Time 

Saved 
Optimal 

Solution 

Heuristic 

Method 

Optimal 

Solution 

Heuristic 

Method 

13 

Return 170 

3 

Component 

Types 

637295 696890 0.2075 0.0349 9.3% 83.2% 

14 

Return 80 

3 

Component 

Types 

538800 538800 0.1866 0.0499 0 73.3% 

15 

Return 200 

5 

Component 

Types 

799035 815910 0.1536 0.0036 2.1% 97.7% 

     

 

Average 

 

3.80% 84.73% 

 

Table 4.22 Results of Large-size Problems 

Example Parameters 

Total Cost Time (s) 
Cost 

Gap 

Time 

Saved 
Optimal 

Solution 

Heuristic 

Method 

Optimal 

Solution 

Heuristic 

Method 

16 

Return 170 

3 

Component 

Types 

626856 632592 0.1972 0.0278 0.9% 85.9% 

17 

Return 70 

3 

Component 

Types 

1111770 1126514 0.1555 0.0050 1.3% 96.8% 

18 

Return 70 

5 

Component 

Types 

4009309 4054858 0.1111 0.0211 1.1% 81.0% 

     

 

Average 

 

1.10% 87.90% 
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Table 4.23 shows the detailed cost of the multiple-item examples. Same as single-item 

problems, it indicates that manufacturing and remanufacturing costs are the same for both 

optimal solution and heuristic method. The proposed heuristic method tends to reduce set-up 

cost but increase holding cost. On average, the set-up cost of heuristic is 17.1% lower than 

optimal solution. Whereas holding cost of heuristic is much higher than optimal solution. 

 

Table 4.23 Detailed Cost for Each Example 

 Manuf. Cost Remanf. Cost Set-up Cost Holding Cost Total Cost 

Exam. O H O H O H O H O H 

10 49600 49600 14700 14700 12500 11000 0 1920 76800 77220 

11 19480 19480 32340 32340 17000 14000 2280 7360 71100 73180 

12 242775 242775 83400 83400 7500 6500 0 5440 333675 338115 

13 242060 242060 391170 391170 4000 2000 65 61660 637295 696890 

14 371840 371840 152960 152960 14000 14000 0 0 538800 538800 

15 89655 89655 594400 594400 12300 7600 102680 124255 799035 815910 

16 210280 210280 293760 293760 80000 75000 42816 53552 626856 632592 

17 770370 770370 281400 281400 60000 56000 0 18744 1111770 1126514 

18 2865470 2865470 1074039 1074039 60000 54000 9800 61349 4009309 4054858 

 

4.3 Sensitivity Analysis 

We take the single-item problem example described in section 4.1.1 to perform a sensitivity 

analysis to investigate the impact of various value of model parameters to the total cost. Figure 
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4.1 to 4.5 show the relationship between total cost and each parameter with the other parameters 

being fixed. 

 

Figure 4.1 Total Cost versus Manufacturing Cost 

 

 
Figure 4.2 Total Cost versus Set-up Cost for Manufacturing 

 

Figure 4.1 and Figure 4.2 show the total cost is positively correlated with manufacturing cost 

and manufacturing set-up cost. Because the returned product quantity (80) is less than the 

demand (average 193), manufacturing has to occur in every period. These two parameters do 
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not influence the production planning, so when they increase, the total cost increase accordingly. 

 

Figure 4.3 Total Cost versus Avg. Remanufacturing Cost 

 

 

Figure 4.4 Total Cost versus Set-up cost for Remanufacturing 

 

Figure 4.3 and Figure 4.4 present the change of total cost when the average remanufacturing 

cost of three categories or the remanufacturing set-up cost increasing. They both show that 

within certain ranges, total cost increases when average remanufacturing cost or set-up cost 
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grows. Out of the ranges, total cost keeps stable regardless of remanufacturing cost and set-up 

cost. The reason is that when remanufacturing cost or set-up cost is large enough, the economic 

advantage of remanufacturing will disappear, the system will satisfy demands only with 

manufacturing. In that case, the remanufacturing quantity will be zero and its cost and set-up 

cost cannot affect the total cost. 

 
Figure 4.5 Total Cost versus Returned Products Quantity 

 

Figure 4.5 shows that with returned products quantity raising, the total cost decreases first and 

then increases. The remanufacturing cost is lower than manufacturing cost, so with more 

returned products, the system will remanufacture more parts and the total cost will be lower. 

But when there are too much returned products (above 200 in this example), a part of them can 

be remanufactured to satisfy all the demands. The leftover has to be held in the inventory, which 

increases the holding cost and leads the total cost to increase as a result.  
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Figure 4.6 Total Cost versus Holding Cost of Serviceable Inventory 

 

 
Figure 4.7 Total Cost versus Holding Cost of Recoverable Inventory 

 

Figure 4.6 and Figure 4.7 show that with the holding cost of serviceable inventory or 

recoverable inventory increasing, total cost increases at first and then remains stable. When the 

holding cost is relatively low, the system tends to produce products of several periods to avoid 

occurring more set-up cost. When the holding cost is high, the system will product products in 

each period to avoid holding cost so the total cost stays stable.  

 

34500

35000

35500

36000

36500

37000

37500

0 5 10 15 20 25 30 35

T
o

ta
l

C
o

st

Holding Cost of Serviceable Inventory (chz)

36450

36500

36550

36600

36650

36700

36750

36800

36850

36900

36950

0 2 4 6 8 10 12

T
o

ta
l

C
o

st

Holding Cost of Recoverable Inventory (chy)



64 
 

4.4 Summary 

In this chapter, for testing the developed model and the proposed heuristic method, we 

generated 9 examples for single-item problem and 9 examples for multi-item problem. These 

examples are generated in three dimensions: problem size, quantity of returned products and 

quantity of categories. On average, the results from the heuristic show that there is 2.46% gap 

between heuristic and optimal solution in single-item problem and 2.16% gap in multi-item 

problem. The results of both single-item problems and multi-item problems show that the 

heuristic method tends to obtain a production planning with lower set-up cost and higher 

holding cost compared with the optimal solutions. At last, sensitivity analysis is performed to 

investigate the impact of various value of model parameters to the total cost. 

 

 

 

 

 

 

 

 

 

 

 



65 
 

Chapter 5 Conclusion and Future Research 

 

In this chapter we present a summary of the research carried out in this thesis. It also includes 

several concluding remarks based on the problem modeling. Future research directions are 

discussed as well. 

 

5.1 Conclusion 

Production planning problem in hybrid manufacturing remanufacturing system with uncertain 

remanufacturing time is studied in this thesis. The objective of solving the mathematical model 

is to minimize the total cost based on the optimal quantity of new items to manufacture and the 

optimal quantity of returned products to remanufacture in each period of the planning horizon. 

The considered problem has a distinctive feature that considers the uncertainty of 

remanufacturing time for the same type of returned products. The definition of category is 

introduced to differentiate components with different remanufacturing time. The percentages 

and remanufacturing costs of categories are different as well. Both single-item and multiple-

item problems are studied in the thesis.  

 

A mixed integer programming is developed to obtain optimal solution of the considered 

problem. The objective of the model is to minimize the total cost of production, including 

manufacturing cost, remanufacturing cost, set-up cost and holding cost. To solve the MIP 

model efficiently, a heuristic solution procedure based on Silver-Meal heuristic is developed.  

 

To validate the proposed heuristic method, 18 example instances of single-item problem and 
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multiple-item problem are tested and the results are compared with optimal solution obtained 

using ILOG CPLEX. It shows that the optimal solution or close-to-optimal solution can be 

obtained with the proposed heuristic in a relatively short time. On average, the results from the 

heuristic show that there is 2.46% gap between heuristic and optimal solution in single-item 

problem and 2.16% gap in multi-item problem. The results of both single-item problems and 

multi-item problems show that the heuristic method tends to obtain a production planning with 

lower set-up cost and higher holding cost compared with the optimal solutions. Following the 

numerical experiments, a sensitivity analysis is performed to investigate the impact of various 

value of model parameters to the total cost.  

 

The main contributions of this research are the consideration of uncertain remanufacturing time 

in the model and the Silver-Meal based heuristic method. Several numerical example problems 

and different instances are used to test the developed model and heuristic method extensively 

with results showing the advantages of the development made in this thesis. The proposed 

heuristic method provides a more efficient way to solve the model. The model may be used as 

a framework in development more formal systems for production planning, inventory control 

and end-of-life product recovery. The model is made for general hybrid system of 

manufacturing and remanufacturing; therefore, its use is not limited to specific area in the 

remanufacturing industry. 

 

5.2 Future Work 

There are several options to extend the research presented in this thesis. Our suggestions for 
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future research in this area are: 

 Considering dynamic demands for new products and dynamic returned product quantity. 

 Considering more detailed inventory control strategies with limited capacity and back 

orders. 

 The uncertain parameters can be modeled with possibility distributions. 

 Considering the combined assembly of new products from new and remanufactured 

components at the same time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

References 

1. Mahadevan, B., & Pyke, D. F., & Fleischmann, M. (2003). Periodic Review, Push 

Inventory Policies for Remanufacturing. European Journal of Operational Research, 151, 

536-551.  

2. Assid, M., & Gharbi, A., & Hajji, A. (2019). Production Planning of an Unreliable Hybrid 

Manufacturing–Remanufacturing System under Uncertainties and Supply Constraints. 

Computers and Industrial Engineering, 136, 31–45.  

3. Baki, M. F., & Chaouch, B. A., & Abdul-Kader, M. (2014). A Heuristic Solution Procedure 

for the Dynamic Lot Sizing Problem with Remanufacturing and Product Recovery. 

Computers and Operations Research, 43, 225–236. 

4. Dobos, I., & Richter, K. (2000). The Integer EOQ Repair and Waste Disposal Model-

Further Analysis. Cejor, 8, 173-194. 

5. Dobos, I., & Richter, K. (2003). A Production / Recycling Model with Stationary Demand 

and Return Rates. Cent. Eur. J. Oper. Res, 11, 35–45. 

6. Dobos, I., & Richter, K. (2004). An Extended Production/Recycling Model with Stationary 

Demand and Return Rates. International Journal of Production Economics, 90, 311–323. 

7. Dobos, I., & Richter, K. (2006). A Production/Recycling Model with Quality 

Consideration. International Journal of Production Economics, 104, 571–579. 

8. Ferrer, G. (2003). Yield Information and Supplier Responsiveness in Remanufacturing 

Operations. European Journal of Operational Research, 149, 540–556. 

9. Fleischmann, M., & Bloemhof-Ruwaard, J. M., & Dekker, R., & Van Der Laan, E., & Van 

Nunen, J.A.E.E., & Van Wassenhove, L.N. (1997). EUROPEAN JOURNAL OF 



69 
 

OPERATIONAL RESEARCH Quantitative Models for Reverse Logistics: A Review. 

European Journal of Operational Rcsearch, 103, 1–17. 

10. Franke, C., & Basdere, B., & Ciupek, M., & Selinger, S. (2006). Remanufacturing of 

mobile phones—capacity, program and facility adaptation planning. International Journal 

of Management Science, 34, 562–570. 

11. Gaafar, L. (2006). Applying Genetic Algorithms to Dynamic Lot Sizing with Batch 

Ordering. Computers and Industrial Engineering, 51, 433–444. 

12. Hagerty, J. R., & Glader, P. (2011). U.S. News: From Trash Heap to Store Shelf – 

Refurbished Goods Industry Seeks U.S. Support for Freer Global Trade, more R&D. Wall 

Street Journal. 24 January, A.3. 

13. Helber, S., & Sahling, F., & Schimmelpfeng, K. (2013). Dynamic Capacitated Lot Sizing 

with Random Demand and Dynamic Safety Stocks. OR Spectrum, 35, 75–105. 

14. Helmrich, M. J. R., & Jans, R., & Van Den Heuvel, W., & Wagelmans, A. P. M. (2014). 

Economic Lot-Sizing with Remanufacturing: Complexity and Efficient Formulations. IIE 

Transactions (Institute of Industrial Engineers), 46, 67–86. 

15. Hesse, H. S., & Cattani, K., & Ferre, G., & Gilland, W., & Roth, A. V. (2005). Competitive 

Advantage Through Take-Back of Used Products. European Journal of Operational 

Research, 164, 143-157. 

16. Heyman, D. P. (1977). Optimal Disposal Policies for a Single-Item Inventory. Naval 

Research Logistics, Quarterly, 385–405. 

17. Hilger, T., & Sahling F., & Tempelmeier, H. (2016). Capacitated Dynamic Production and 

Remanufacturing Planning under Demand and Return Uncertainty. OR Spectrum, 38, 849–



70 
 

876. 

18. Ilgin, M. A., & Gupta, S. M. (2010). Environmentally Conscious Manufacturing and 

Product Recovery ( ECMPRO ): A Review of the State of the Art. Journal of 

Environmental Management, 91, 563–591.  

19. Jayaraman, V. (2006). Production Planning for Closed-Loop Supply Chains with Product 

Recovery and Reuse: An Analytical Approach. International Journal of Production 

Research, 44, 981–998. 

20. Kenné, J., & Dejax, P., & Gharbi, A. (2012). Production Planning of a Hybrid 

Manufacturingremanufacturing System under Uncertainty within a Closed-Loop Supply 

Chain. International Journal of Production Economics, 135, 81–93. 

21. Ketzenberg, M. E., & Van Der Laan, E., & Teunter, R. H. (2009). Value of Information in 

Closed Loop Supply Chains. Production and Operations Management, 15, 393–406. 

22. Kim, K., & Song, I., & Kim, J., & Jeong, B. (2006). Supply Planning Model for 

Remanufacturing System in a Reverse Logistics Envi- ronment. Computers and Industrial 

Engineering, 51, 279–287. 

23. Konstantaras, I., & Skouri, K. (2010). Lot Sizing for a Single Product Recovery System 

with Variable Setup Numbers. European Journal of Operational Research, 203, 326–335. 

24. Li, X., & Li, Y., & Saghafian, S. (2013). A Hybrid Manufacturing/Remanufacturing 

System with Random Remanufacturing Yield and Market-Driven Product Acquisition. 

IEEE Transactions on Engineering Management, 60, 424–437. 

25. Macedo, P. B., & Alem, D., & Santos, M., & Junior, M. L., & Moreno, A. (2016). Hybrid 

Manufacturing and Remanufacturing Lot-Sizing Problem with Stochastic Demand, Return, 



71 
 

and Setup Costs. International Journal of Advanced Manufacturing Technology, 82, 1241–

1257. 

26. Morgan, S. D., & Gagnon, R. J. (2013). A Systematic Literature Review of 

Remanufacturing Scheduling. International Journal of Production Research, 51, 4853–

4879. 

27. Mukhopadhyay, S. K., & Ma, H. (2009). Joint Procurement and Production Decisions in 

Remanufacturing under Quality and Demand Uncertainty. International Journal of 

Production Economics, 120, 5–17. 

28. Nakashima, K., & Arimitsu, H., & Nose, T., & Kuriyama, S. (2004). Optimal Control of a 

Remanufacturing System. International Journal of Production Research, 42, 3619–3625. 

29. Polotski, V., & Kenne, J. P., & Gharbi, A. (2015). Optimal Production Scheduling for 

Hybrid Manufacturing-Remanufacturing Systems with Setups. Journal of Manufacturing 

Systems, 37, 703–714. 

30. Richter, K., & Sombrutzki, M. (2000). Remanufacturing Planning for the Reverse 

Wagner/Whitin Models. European Journal of Operational Research, 121, 304–315. 

31. Richter, K., & Weber, J. (2001). The Reverse Wagner/Whitin Model with Variable 

Manufacturing and Remanufacturing Cost. International Journal of Production 

Economics, 71, 447–456. 

32. Roy, A., & Maity, K., & Kar, S., & Maiti, M. (2009). A Production-Inventory Model with 

Remanufacturing for Defective and Usable Items in Fuzzy-Environment. Computers and 

Industrial Engineering, 56, 87–96. 

33. Schulz, T. (2011). A New Silver-Meal Based Heuristic for the Single-Item Dynamic Lot 



72 
 

Sizing Problem with Returns and Remanufacturing. International Journal of Production 

Research, 49, 2519–2533. 

34. Sifaleras, A., & Konstantaras, I., & Mladenović, N. (2015). Variable Neighborhood Search 

for the Economic Lot Sizing Problem with Product Returns and Recovery. International 

Journal of Production Economics, 160, 133–143. 

35. Sundin, E. (2002). Design for remanufacturing from a remanufacturing process 

perspective (Licentiate dissertation). Linköpings universitet, Linköping. Retrieved from 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145985. 

36. Teunter, R. H., & Bayindir, Z. P., & Van Den Heuvel, W. (2006). Dynamic Lot Sizing with 

Product Returns and Remanufacturing. International Journal of Production Research, 44, 

4377–4400. 

37. Torkaman, S., & Ghomi, S. M. T. F., & Karimi, B. (2017). Multi-Stage Multi-Product 

Multi-Period Production Planning with Sequence-Dependent Setups in Closed-Loop 

Supply Chain. Computers and Industrial Engineering, 113, 602–613. 

38. Wagner, H. M, & Whitin, T. M. (1958). Dynamic Version of the Economic Lot Size Model 

Dynamic Version of the Economic Lot Size Model. Source: Management Science, 50, 

1770–1774. 

39. Wang, N., & He, Z., & Sun, J., & Xie, H., & Shi, W. (2011). A Single-Item Uncapacitated 

Lot-Sizing Problem with Remanufacturing and Outsourcing. Procedia Engineering, 15, 

5170–5178. 

 

 

 



73 
 

Appendix A 

Codes of single-item example problem in CPLEX: 

range T=1..10; 

range H=0..10; 

int M=10000; 

int d[1..10]=[184, 189, 169, 205, 190, 197,210, 200, 195, 191]; 

int N=80; 

range J=1..3; 

int rm[1..3]=[40, 20, 20]; 

int cm=30; 

int cr[1..3]=[10, 11, 12]; 

int chy=3; 

int chz=4; 

int km=250; 

int kr=200; 

 

dvar int+ m[T]; 

dvar int+ r[T]; 

dvar int+ y[H]; 

dvar int+ z[H]; 

dvar boolean bm[T]; 

dvar boolean br[T]; 

 

dexpr float C=sum(t in T) (m[t]*cm+br[t]*sum(j in J)(rm[j]*cr[j])+ km*bm[t]+kr*br[t]+chy*y[t]+ 

chz*z[t]); 

 

minimize C; 

 

subject to{ 

  z[0]+m[1]+rm[1]*br[1]-d[1]==z[1]; 

  y[1]==y[0]+N-r[1]; 

  m[1]<=M*bm[1]; 

  r[1]<=M*br[1]; 

  r[1]<=y[0]+N; 

  y[0]==0; 

  z[0]==0; 

 

  sum (t in T) br[t]==sum(t in T)(r[t]/N);//in case of r[t]=0, br[t]=1 which satisfy            

r[t]<=M*br[t] but C will be incorrect 

 

  forall(t in 2..10){ 

   y[t]==y[t-1]+N-r[t]; 
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   r[t]<=M*br[t]; 

   r[t]<=y[t-1]+N; 

   m[t]<=M*bm[t]; 

  } 

 

  br[2]*rm[1]+br[1]*rm[2]+z[1]+m[2]-z[2]==d[2]; 

  br[1]*rm[3]+br[2]*rm[2]+br[3]*rm[1]+z[2]+m[3]-z[3]==d[3]; 

 

  forall(t in 4..10){ 

   br[t-2]*rm[3]+br[t-1]*rm[2]+br[t]*rm[1]+z[t-1]+m[t]-z[t]==d[t]; 

  } 

} 

 

Codes of multi-item example 1 problem in CPLEX: 

range T=1..10; 

range H=0..10; 

int M=10000; 

int d[1..10]=[184, 189, 169, 205, 190, 197,210, 200, 195, 191]; 

int N=170; 

range J=1..4;//the most categories 

range P=1..3;//number of part types in the product 

int npp[1..3]=[5,8,10];//number of each type of part in the product 

int rm[1..3][1..4]=[ 

[595,255,0,0], 

[680,408,272,0], 

[510,510,510,170]]; 

int cm[1..3]=[20,30,30]; 

int cr[1..3][1..4]=[ 

[5,10,0,0], 

[10,11,12,0], 

[10,11,12,13]]; 

int chy=3; 

int chz=5; 

int km=250; 

int kr=150; 

 

dvar int+ m[P][T]; 

dvar int+ r[P][T]; 

dvar int+ y[P][H]; 

dvar int+ z[P][H]; 

dvar boolean bm[T]; 
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dvar boolean br[T]; 

 

dexpr float C=sum(p in P)sum(t in T) (m[p][t]*cm[p]+br[t]*sum(j in 

J)(rm[p][j]*cr[p][j])+chy*y[p][t]+chz*z[p][t])+sum(t in T)(km*bm[t]+kr*br[t]); 

 

minimize C; 

 

subject to{ 

 forall(p in P){ 

  z[p][0]+m[p][1]+rm[p][1]*br[1]-d[1]*npp[p]==z[p][1]; 

  y[p][1]==y[p][0]+N*npp[p]-r[p][1]; 

  m[p][1]<=M*bm[1]; 

  r[p][1]<=M*br[1]; 

  r[p][1]<=y[p][0]+N*npp[p]; 

  y[p][0]==0; 

  z[p][0]==0; 

 } 

 sum (t in T) br[t]==sum(t in T)(r[1][t]/(N*npp[1]));//in case of r[t]=0, br[t]=1 which satisfy 

r[t]<=M*br[t] but C will be incorrect 

 forall(t in 2..10, p in P){ 

  y[p][t]==y[p][t-1]+N*npp[p]-r[p][t]; 

  r[p][t]<=M*br[t]; 

  r[p][t]<=y[p][t-1]+N*npp[p]; 

  m[p][t]<=M*bm[t]; 

 } 

 

 //for p=1,the first part with 2 categories 

  br[2]*rm[1][1]+br[1]*rm[1][2]+z[1][1]+m[1][2]-z[1][2]==d[2]*npp[1]; 

 

  forall(t in 3..10){ 

   br[t-1]*rm[1][2]+br[t]*rm[1][1]+z[1][t-1]+m[1][t]-z[1][t]==d[t]*npp[1]; 

  } 

   

 //for p=2, the second part with 3 categories 

  br[2]*rm[2][1]+br[1]*rm[2][2]+z[2][1]+m[2][2]-z[2][2]==d[2]*npp[2]; 

  br[1]*rm[2][3]+br[2]*rm[2][2]+br[3]*rm[2][1]+z[2][2]+m[2][3]-z[2][3]==d[3]*npp[2]; 

 

  forall(t in 4..10){ 

   br[t-2]*rm[2][3]+br[t-1]*rm[2][2]+br[t]*rm[2][1]+z[2][t-1]+m[2][t]-

z[2][t]==d[t]*npp[2]; 

  } 

 

 //for p=3, the third part with 4 categories 

  br[2]*rm[3][1]+br[1]*rm[3][2]+z[3][1]+m[3][2]-z[3][2]==d[2]*npp[3]; 
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  br[1]*rm[3][3]+br[2]*rm[3][2]+br[3]*rm[3][1]+z[3][2]+m[3][3]-z[3][3]==d[3]*npp[3]; 

  br[1]*rm[3][4]+br[2]*rm[3][3]+br[3]*rm[3][2]+br[4]*rm[3][1]+z[3][3]+m[3][4]-

z[3][4]==d[4]*npp[3]; 

 

  forall(t in 5..10){ 

   br[t-3]*rm[3][4]+br[t-2]*rm[3][3]+br[t-1]*rm[3][2]+br[t]*rm[3][1]+z[3][t-1]+m[3][t]-

z[3][t]==d[t]*npp[3]; 

  } 

} 
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Appendix B 

Codes of heuristic method of single-item example problem in MATLAB 2017b: 

function [z, x, Cmat] = silver_meal(d, K, c, h) 

tic 

d = [184 189 169 205 190 197 210 200 195 191];   %demand 

k = 250;                                  %manufacturing setup cost 

rk = 200;                                 %remanu setup cost 

h = 4;                                    %holding cost of part per period 

rh = 3;                                    %holding cost of returned product  per period 

rm = [40 20 20];                       %remanu quantity of 3 catagories in each period 

rn = 80;                                  %returned product in each period 

rc = [10 11 12];                       %remanu cost for 3 catagories 

c = 30;                                   %manu cost 

J = length(rm);                           % number of catergories of remanu 

p= [0.5 0.25 0.25];                        %percentages of categories 

 

%----------------------- 

  

n           = length(d); 

Cmat        = zeros(1, n); 

crmm        = zeros(1, n); 

cm = zeros(1, n); 

x           = zeros(1, n); 

xr           = zeros(1, n); 

flg         = zeros(1, n); 

flgrm    = zeros(1,n); 

drm = zeros(1,n); 

r           = 1; 

s           = 1; 

t           = 0; 

A = 0;                % for calculating the demand when produce the 

demand for several periods together 

crema = 0;          %sum of the remanu cost 

irema = 0;          % inventory of remanufactured products 

irecy = 0;         % inventory of returned products 

  

% -----------------------------start iteration-------------------------- 

  

% r is for exploring the production period. s and t are loop variables. 

  

while s < (n + 1) 

    if (s-r) == 0                             %if =0, this is a production period 
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        flg(r) = 1;                          %indicate this is a manu period 

        crmm(s) = k+(d(s)-rm(1)-irema)*c+rk;     %cost of setup+manu 

        for j=1:J 

            crmm(s)=crmm(s)+rc(j)*(rn+irecy)*p(j); %plus cost of remanu 

        end                                                         

        cm(s) = k+(d(s)-irema)*c + rh* rn;           %cost of manu, no remanu 

                 

        if crmm(s) < cm(s) 

            Cmat(s) = crmm(s);                     %for the comparision with next period 

            flgrm(r) = 1;                            %indicate this is a remanu period 

            x(r)=d(s)-rm(1)-irema; 

            A=A+1; 

            irema=0; 

                if A<J 

                    for a=1:A 

                        irema = irema+rm(a+1)*flgrm(A+1-a); 

                    end 

                else 

                    for a = 1:(J-1) 

                        irema=irema+rm(a+1)*flgrm(A+1-a); 

                    end 

          end 

          xr(r)=rn+irecy;      %update the remanu quantity  

          irecy = 0; 

        else 

            Cmat(s) = cm(s); 

            x(r)=d(s)-irema; 

            irema = 0;                                           

            irecy = irecy+rn;               %updte inventory of recycled products 

            flgrm(r) = 0;                   %indicate this is not a remanu period 

        end 

         

        s=s+1; 

%=====================finish updating remanu inventory=========================         

    else 

        drm(s) = d(s)-irema; 

        for j=1:J 

            crema=crema+rc(j)*(rn+irecy)*p(j);          % cost of remanu 

        end 

       crmm(s) = (Cmat(s-1)*(s - t - 1) + (drm(s)-rm(1))*c+rk+crema+(drm(s)-rm(1)) * h * (s - t - 

1))/(s-t); 

        cm(s) = (Cmat(s-1)*(s - t - 1) + drm(s)*c+ drm(s)*h * (s - t - 1)+(irecy+rn)*rh)/(s-t); 

        if crmm(s)<cm(s) 

            Cmat(s) = crmm(s); 
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            crema = 0; 

        else 

            Cmat(s) = cm(s); 

            crema = 0; 

        end 

        if Cmat(s)>Cmat(s-1) 

            r = s; 

            t= s-1; 

            xr(r)=rn+irecy; 

        else 

            if crmm(s)<cm(s) 

                flgrm(s)=1;                %indicate this is a remanu period 

                xr(s)=rn+irecy; 

                x(r)=x(r)+d(s)-rm(1)-irema; 

                A = A+1;  

                irema=0; 

                if A<J 

                    for a=1:A 

                        irema = irema+rm(a+1)*flgrm(A+1-a); 

                    end 

                else 

                    for a = 1:(J-1) 

                        irema=irema+rm(a+1)*flgrm(A+1-a); 

                    end 

                end 

                 irecy = 0; 

            else 

                flgrm(s)=0;                %indicate this is not a remanu period 

                xr(s)=0; 

                x(r)=x(r)+d(s)-irema; 

                A = A+1;  

                irema=0; 

                if A<J 

                    for a=1:A 

                        irema = irema+rm(a+1)*flgrm(A+1-a); 

                    end 

                else 

                    for a = 1:(J-1) 

                        irema=irema+rm(a+1)*flgrm(A+1-a); 

                    end 

                end 

              

                irecy = irecy+rn;           %updte inventory of recycled products 

            end 
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            flg(r) = flg(r)+1; 

            s = s+1; 

        end 

    end 

end 

T = flg(flg ~= 0);                         % period numbers for each produciton 

end_T= cumsum(flg(flg ~= 0));            % the period before each production 

avgC = Cmat(end_T);                     % average cost 

z = dot(T, avgC);                         % total cost 

toc 
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Codes of heuristic method of multi-item example 1 problem in MATLAB 2017b: 

function [z, x, Cmat] = silver_meal(d, K, c, h) 

d = [184 189 169 205 190 197 210 200 195 191];  %demand 

k = 250;                                  %manufacturing setup cost 

rk = 150;                                 %remanu setup cost 

h = 5;                                     %holding cost of part per period 

rh = 3;                                    %holding cost of returned product  per period 

rn = 170;                                 %returned product in each period 

npp =[5 8 10];                            %number of each type of part in the product 

np = length(npp);                            %number of part types in the product 

rnp = zeros(1,np);                      %returned parts quantity 

rc = [5 10 0 0; 10 11 12 0;10 11 12 13 ];       %remanu cost of all the parts catagories 

c = [20 30 30];                               %manu cost 

p= [0.7 0.3 0 0;0.5 0.3 0.2 0; 0.3 0.3 0.3 0.1];   %category percentages of all the parts 

J = 4;                             % the column quantity from p. 

%----------------------- 

n = length(d); 

dp= zeros(np,n);                          %demand of parts 

Cmat = zeros(1, n); 

crmm = zeros(1, n); 

cm = zeros(1, n); 

x = zeros(np, n); 

xr = zeros(np, n); 

flg = zeros(1, n); 

flgrm = zeros(1,n); 

drm = zeros(np,n); 

r = 1; 

s = 1; 

t = 0; 

A = 0;        % for calculating the demand when produce the demand for several periods together 

crema = zeros(np,n);       %sum of the remanu cost 

irema = zeros(1,np);       % inventory of remanufactured parts 

irecy = zeros(1,np);       % inventory of returned products 

% -----------------------------start iteration-------------------------- 

tic 

% r is for exploring the production period. s and t are loop variables. 

for i=1:np 

    dp(i,:)=d*npp(i);                     %calculate the demands of all the parts 

end 

for i=1:np 

    rnp(1,i)=rn*npp(i);                    %calculate the returned quantity of all the parts 

end 

while s < (n + 1) 
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    if (s-r) == 0                            %if =0, this is a production period 

        flg(r) = 1;                         %indicate this is a manu period 

        crmm(s) = k+rk;          %setup cost of manu and remanu 

        for i = 1:np 

            crmm(s)=crmm(s)+(dp(i,s)-p(i,1)*rnp(1,i)-irema(1,i))*c(i);       %plus manu cost 

        end 

        for i =1:np                           %loop of parts 

            for j=1:J                         %loop of categories 

                crmm(s)=crmm(s)+rc(i,j)*(rnp(1,i)+irecy(1,i))*p(i,j);    %plus remanu cost 

            end 

        end                                  %(remanu+manu) cost 

        cm(s) = k;                            %setup cost 

        for i=1:np 

            cm(s)=cm(s)+(dp(i,s)-irema(1,i))*c(i);     %plus manu cost 

        end 

        irecyrn=0; 

        for i = 1:np 

            irecyrn=irecyrn+irecy(1,i)+rnp(1,i);     %calculate the recovery inventory 

        end 

        cm(s)=cm(s)+rh*irecyrn; 

        if crmm(s) < cm(s) 

            Cmat(s) = crmm(s);                       %for the comparision with next period 

            flgrm(r) = 1;                              %%indicate this is a remanu period 

            for i=1:np 

                x(i,r) = dp(i,s)-p(i,1)*rnp(1,i)-irema(1,i);     %manu quantity of all the parts 

            end 

            A=A+1; 

            for i =1:np 

                irema(1,i)=0; 

                if A<J 

                    for a=1:A 

                       irema(1,i) = irema(1,i)+p(i,a+1)*rnp(1,i)*flgrm(A+1-a); 

                    end 

                else 

                    for a = 1:(J-1) 

                        irema(1,i) = irema(1,i)+p(i,a+1)*rnp(1,i)*flgrm(A+1-a); 

                    end 

                end 

            end 

           for i =1:np 

                xr(i,r) = rnp(1,i)+irecy(1,i);       %update the remanu quantity  

                irecy(1,i) = 0; 

           end 

        else 
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            Cmat(s) = cm(s); 

             for i=1:np 

                x(i,r) = dp(i,s)-irema(1,i);      %manu quantity of all the parts 

                irema(1,i) = 0;                                           

                irecy(1,i) = irecy(1,i)+rnp(1,i);    %updte inventory of returned products 

            end 

            flgrm(r) = 0;                         %indicate this is not a remanu period 

        end 

        s=s+1; 

%=====================finish updating remanu inventory=========================         

    else 

        for i=1:np 

            drm(i,s) = dp(i,s)-irema(1,i); 

        end 

        for i=1:np 

            for j=1:J 

                crema(i,s)=crema(i,s)+rc(i,j)*(rnp(1,i)+irecy(1,i))*p(i,j);      % remanu cost  

            end 

                                               %remanu cost of all the parts 

        end 

       cdrm = 0; 

       ccrema=0; 

       cdrmrm=0; 

       cdrmcm=0; 

       drmrm=0; 

       irecyrn=0; 

       for i = 1:np 

           cdrm = cdrm+(drm(i,s)-p(i,1)*rnp(1,i))*c(1,i); 

           ccrema=ccrema+crema(i,s);    

           cdrmrm=cdrmrm+drm(i,s)-p(i,1)*rnp(1,i); 

           cdrmcm=cdrmcm+drm(i,s)*c(1,i); 

           drmrm=drmrm+drm(i,s); 

           irecyrn=irecyrn+irecy(1,i)+rnp(1,i); 

       end 

       crmm(s) = (Cmat(s-1)*(s - t - 1) + cdrm+rk+ccrema+cdrmrm * h * (s - t - 1))/(s-t); 

        cm(s) = (Cmat(s-1)*(s - t - 1) + cdrmcm+ drmrm*h * (s - t - 1)+irecyrn*rh)/(s-t); 

        if crmm(s)<cm(s) 

            Cmat(s) = crmm(s); 

            crema(:,s) = 0; 

        else 

            Cmat(s) = cm(s); 

            crema(:,s) = 0; 

        end 

        if Cmat(s)>Cmat(s-1) 
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            r = s; 

            t= s-1; 

            for i=1:np 

                xr(i,r) = rnp(1,i)+irecy(1,i);  

            end 

        else 

            if crmm(s)<cm(s) 

                flgrm(s)=1;                   %indicate this is a remanu period 

                for i=1:np 

                    xr(i,s)=rnp(1,i)+irecy(1,i); 

                    x(i,r) = x(i,r)+dp(i,s)-p(i,1)*rnp(1,i)-irema(1,i); 

                end 

            A=A+1; 

            for i =1:np 

                irema(1,i)=0; 

                if A<J 

                    for a=1:A 

                       irema(1,i) = irema(1,i)+p(i,a+1)*rnp(1,i)*flgrm(A+1-a); 

                    end 

                else 

                    for a = 1:(J-1) 

                        irema(1,i) = irema(1,i)+p(i,a+1)*rnp(1,i)*flgrm(A+1-a); 

                    end 

                end 

                irecy(1,i) = 0; 

            end 

            else 

                flgrm(s)=0;                   %indicate this is not a remanu period 

                for i=1:np 

                    xr(i,s)=0; 

                    x(i,r)=x(i,r)+dp(i,s)-irema(1,i); 

                end 

                 A=A+1; 

            for i =1:np 

                irema(1,i)=0; 

                if A<J 

                    for a=1:A 

                       irema(1,i) = irema(1,i)+p(i,a+1)*rnp(1,i)*flgrm(A+1-a); 

                    end 

                else 

                    for a = 1:(J-1) 

                        irema(1,i) = irema(1,i)+p(i,a+1)*rnp(1,i)*flgrm(A+1-a); 

                    end 

                end 
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                 irecy(1,i) = irecy(1,i)+rnp(1,i);   %updte inventory of returned products 

            end 

            end 

            flg(r) = flg(r)+1; 

            s = s+1; 

        end 

    end 

end 

T = flg(flg ~= 0);                                % period numbers for each produciton 

end_T = cumsum(flg(flg ~= 0));                  % the period before each production 

avgC = Cmat(end_T);                           % average cost 

z = dot(T, avgC);                                % total cost 

toc 
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Appendix C 

Single-item example problems parameters:  

Table C.1 The demands of product over 5 periods for Example 1-3 

Period (𝒕) 1 2 3 4 5 

Demand (𝒅𝒕) 220 280 360 140 270 

 

Table C.2 The demands of product over 10 periods for Example 4-6 

Period (𝒕) 1 2 3 4 5 6 7 8 9 10 

Demand (𝒅𝒕) 184 189 169 205 190 197 210 200 195 191 

 

Table C.3 The demands of product over 10 periods for Example 7-9 

Period (𝒕) 1 2 3 4 5 6 7 8 9 10 

Demand (𝒅𝒕) 184 189 169 205 190 197 210 184 189 169 

Period (𝒕) 11 12 13 14 15 16 17 18 19 20 

Demand (𝒅𝒕) 200 195 191 205 190 197 210 200 195 191 

 

Table C.4 Parameters of Example 1 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 10 20% 

2 2 periods 15 30% 

3 3 periods 20 50% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

100 80 6 2 

𝑲𝒎 𝑲𝒓   

250 500   
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Table C.5 Parameters of Example 2 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 10 20% 

2 2 periods 20 30% 

3 3 periods 30 50% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

200 80 2 6 

𝑲𝒎 𝑲𝒓   

250 500   

 

Table C.6 Parameters of Example 3 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 10 40% 

2 2 periods 20 20% 

3 3 periods 30 20% 

4 4 periods 30 10% 

5 5 periods 40 10% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

100 80 2 6 

𝑲𝒎 𝑲𝒓   

500 500   
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Table C.7 Parameters of Example 4 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 10 50% 

2 2 periods 11 25% 

3 3 periods 12 25% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

80 30 3 4 

𝑲𝒎 𝑲𝒓   

250 200   

 

Table C.8 Parameters of Example 5 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 10 41.2% 

2 2 periods 11 29.4% 

3 3 periods 12 29.4% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

170 30 3 5 

𝑲𝒎 𝑲𝒓   

250 150   
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Table C.9 Parameters of Example 6 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 10 29.8% 

2 2 periods 10 26.8% 

3 3 periods 11 17.9% 

4 4 periods 12 13.7% 

5 5 periods 13 11.8% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

168 30 2 5 

𝑲𝒎 𝑲𝒓   

250 150   

 

Table C.10 Parameters of Example 7 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 30 41.2% 

2 2 periods 35 29.4% 

3 3 periods 40 29.4% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

170 100 15 20 

𝑲𝒎 𝑲𝒓   

300 300   
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Table C.11 Parameters of Example 8 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 30 57.1% 

2 2 periods 35 28.6% 

3 3 periods 40 14.3% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

70 100 15 20 

𝑲𝒎 𝑲𝒓   

300 300   

 

Table C.12 Parameters of Example 9 

Category (𝒋) Remanuf. Time Remanuf. Cost (𝒄𝒓𝒋) Percentage (𝒑𝒋) 

1 1 period 30 28.6% 

2 2 periods 35 21.4% 

3 3 periods 35 21.4% 

4 4 periods 40 14.3% 

5 5 periods 45 14.3% 

Returned Quantity Manufacturing Cost 𝒄𝒉𝒚 𝒄𝒉𝒛 

70 100 15 20 

𝑲𝒎 𝑲𝒓   

150 100   
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Multi-item example problems parameters:  

Table C.13 The demands of product over 5 periods for Example 10-12 

Period (𝒕) 1 2 3 4 5 

Demand (𝒅𝒕) 220 280 360 140 270 

 

Table C.14 The demands of product over 10 periods for Example 13-15 

Period (𝒕) 1 2 3 4 5 6 7 8 9 10 

Demand (𝒅𝒕) 184 189 169 205 190 197 210 200 195 191 

 

Table C.15 The demands of product over 10 periods for Example 16-18 

Period (𝒕) 1 2 3 4 5 6 7 8 9 10 

Demand (𝒅𝒕) 184 189 169 205 190 197 210 184 189 169 

Period (𝒕) 11 12 13 14 15 16 17 18 19 20 

Demand (𝒅𝒕) 200 195 191 205 190 197 210 200 195 191 
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Table C.16 Parameters of Example 10 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 1 10 
1 1 period 3 80% 

2 2 periods 5 20% 

2 2 10 
1 1 period 3 60% 

2 2 periods 7 40% 

3 3 10 

1 1 period 4 50% 

2 2 periods 6 20% 

3 3 periods 8 30% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

100 5 8 1500 1000 

 

Table C.17 Parameters of Example 11 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 1 10 
1 1 period 3 80% 

2 2 periods 5 20% 

2 2 10 
1 1 period 3 60% 

2 2 periods 7 40% 

3 3 10 

1 1 period 4 50% 

2 2 periods 6 20% 

3 3 periods 8 30% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

220 1 8 3000 10000 
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Table C.18 Parameters of Example 12 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 3 10 
1 1 period 4 60% 

2 2 periods 6 40% 

2 5 15 

1 1 period 8 25% 

2 2 periods 8 25% 

3 3 periods 10 30% 

4 4 periods 12 20% 

3 4 15 
1 1 period 5 50% 

2 2 periods 9 50% 

4 2 20 
1 1 period 12 60% 

2 2 periods 15 40% 

5 3 25 

1 1 period 10 10% 

2 2 periods 15 40% 

3 3 periods 20 50% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

100 5 8 1000 500 
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Table C.19 Parameters of Example 13 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 5 20 
1 1 period 5 70% 

2 2 periods 10 30% 

2 8 30 

1 1 period 10 50% 

2 2 periods 11 30% 

3 3 periods 12 20% 

3 10 30 

1 1 period 10 30% 

2 2 periods 11 30% 

3 3 periods 12 30% 

4 4 periods 13 10% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

170 3 5 250 150 
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Table C.20 Parameters of Example 14 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 4 40 
1 1 period 20 80% 

2 2 periods 25 20% 

2 4 30 
1 1 period 18 50% 

2 2 periods 22 50% 

3 2 20 

1 1 period 10 40% 

2 2 periods 15 30% 

3 3 periods 17 30% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

80 10 15 1000 400 
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Table C.21 Parameters of Example 15 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 2 30 
1 1 period 15 50% 

2 2 periods 20 50% 

2 4 30 

1 1 period 10 60% 

2 2 periods 17 30% 

3 3 periods 20 10% 

3 5 20 

1 1 period 10 50% 

2 2 periods 12 10% 

3 3 periods 14 40% 

4 7 15 

1 1 period 8 20% 

2 2 periods 10 20% 

3 3 periods 13 60% 

5 10 15 

1 1 period 5 50% 

2 2 periods 9 20% 

3 3 periods 9 20% 

4 4 periods 10 10% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

200 15 20 900 600 
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Table C.22 Parameters of Example 16 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 3 10 

1 1 period 5 20% 

2 2 periods 8 60% 

3 3 periods 8 20% 

2 5 20 

1 1 period 5 60% 

2 2 periods 7 20% 

3 3 periods 7 20% 

3 8 25 
1 1 period 5 30% 

2 2 periods 5 70% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

170 5 8 5000 2000 
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Table C.23 Parameters of Example 17 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 1 50 
1 1 period 30 90% 

2 2 periods 40 10% 

2 4 20 
1 1 period 10 80% 

2 2 periods 15 20% 

3 6 30 

1 1 period 20 70% 

2 2 periods 20 10% 

3 3 periods 25 20% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

70 5 8 2000 1000 
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Table C.24 Parameters of Example 18 

Component 
(𝒊) 

Quantity 
in 

product 
(𝒍𝒊) 

Manuf. 
Cost 

Category 
(𝑰𝒋) 

Remanuf. 
Time of 

Each 
Category 

Remanuf. 
Cost of 
Each 

Category 
(𝒄𝒓𝒊𝒋) 

Percentage 
of Each 

Category 
(𝒑𝒊𝒋) 

1 2 20 
1 1 period 12 50% 

2 2 periods 16 50% 

2 3 20 
1 1 period 10 70% 

2 2 periods 12 30% 

3 5 50 

1 1 period 25 60% 

2 2 periods 30 10% 

3 3 periods 35 30% 

4 8 60 

1 1 period 30 50% 

2 2 periods 30 30% 

3 3 periods 40 20% 

5 10 60 

1 1 period 30 50% 

2 2 periods 35 20% 

3 3 periods 40 10% 

4 4 periods 45 20% 

Returned Quantity 𝒄𝒉𝒚 𝒄𝒉𝒛 𝑲𝒎 𝑲𝒓 

70 5 8 2000 1000 
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Appendix D 

Production planning of optimal solution and heuristic method of single-item example problems: 

Table D.1 Production planning of optimal solution of Example 1 

Periods (𝑡) 1 2 3 4 5 

𝑚𝑡 200 230 300 0 170 

𝑟𝑡 100 100 100 100 100 

 

Table D.2 Production planning of heuristic method of Example 1 

Periods (𝑡) 1 2 3 4 5 

𝑚𝑡 200 230 300 0 170 

𝑟𝑡 100 100 100 100 100 

 

Table D.3 Production planning of optimal solution of Example 2 

Periods (𝑡) 1 2 3 4 5 

𝑚𝑡 180 180 160 0 50 

𝑟𝑡 200 200 200 200 0 

 

Table D.4 Production planning of heuristic method of Example 2 

Periods (𝑡) 1 2 3 4 5 

𝑚𝑡 180 340 0 0 50 

𝑟𝑡 200 0 400 200 0 
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Table D.5 Production planning of optimal solution of Example 3 

Periods (𝑡) 1 2 3 4 5 

𝑚𝑡 180 220 330 0 170 

𝑟𝑡 100 100 100 100 100 

 

Table D.6 Production planning of heuristic method of Example 3 

Periods (𝑡) 1 2 3 4 5 

𝑚𝑡 180 220 330 0 170 

𝑟𝑡 100 100 100 100 100 

 

Table D.7 Production planning of optimal solution of Example 4 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 144 129 89 125 110 117 130 120 115 111 

𝑟𝑡 80 80 80 80 80 80 80 80 80 80 

 

Table D.8 Production planning of heuristic method of Example 4 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 362 0 0 235 0 117 250 0 115 111 

𝑟𝑡 80 80 80 80 80 80 80 80 80 80 

 

Table D.9 Production planning of optimal solution of Example 5 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 134 138 0 79 0 29 74 0 50 0 

𝑟𝑡 168 168 168 168 168 168 168 168 168 168 
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Table D.10 Production planning of heuristic method of Example 5 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 380 0 0 0 0 0 124 0 0 0 

𝑟𝑡 168 168 168 168 168 168 168 168 168 168 

 

Table D.11 Production planning of optimal solution of Example 6 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 114 69 0 54 0 27 70 0 46 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

 

Table D.12 Production planning of heuristic method of Example 6 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 264 0 0 0 0 0 116 0 0 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

 

Table D.13 Production planning of optimal solution of Example 7 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 114 69 0 34 20 27 54 0 19 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚𝑡 29 25 21 35 20 27 40 30 25 21 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 
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Table D.14 Production planning of heuristic method of Example 7 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 264 0 0 0 0 0 72 0 0 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚𝑡 76 0 0 55 0 27 116 0 0 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

 

Table D.15 Production planning of optimal solution of Example 8 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 144 129 99 135 120 127 140 114 119 99 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚𝑡 130 125 121 135 120 127 140 130 125 121 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

 

Table D.16 Production planning of heuristic method of Example 8 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 144 228 0 135 120 127 254 0 218 0 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚𝑡 130 125 121 135 120 127 140 130 125 121 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

 

 

 



104 
 

Table D.17 Production planning of optimal solution of Example 9 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 164 154 119 145 120 127 140 114 119 99 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚𝑡 130 125 121 135 120 127 140 130 125 121 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

 

Table D.18 Production planning of heuristic method of Example 9 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚𝑡 164 273 0 265 0 127 254 0 218 0 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚𝑡 130 125 121 135 120 127 140 130 125 121 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 
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Production planning of optimal solution and heuristic method of multi-item example problems: 

Table D.19 Production planning of optimal solution of Example 10 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 140 180 260 40 170 

𝑚2𝑡 320 360 520 80 340 

𝑚3𝑡 510 630 780 120 510 

𝑟𝑡 100 100 100 100 100 

 

Table D.20 Production planning of heuristic method of Example 10 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 140 180 300 0 170 

𝑚2𝑡 320 360 600 0 340 

𝑚3𝑡 510 630 900 0 510 

𝑟𝑡 100 100 100 100 100 

 

Table D.21 Production planning of optimal solution of Example 11 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 44 60 140 0 0 

𝑚2𝑡 176 120 280 0 0 

𝑚3𝑡 330 378 420 0 0 

𝑟𝑡 220 220 220 220 220 
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Table D.22 Production planning of heuristic method of Example 11 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 44 60 60 0 50 

𝑚2𝑡 176 120 120 0 100 

𝑚3𝑡 330 378 180 0 150 

𝑟𝑡 220 220 220 220 220 

 

Table D.23 Production planning of optimal solution of Example 12 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 480 540 780 120 510 

𝑚2𝑡 975 1150 1400 200 850 

𝑚3𝑡 680 720 1040 160 680 

𝑚4𝑡 320 360 520 80 340 

𝑚5𝑡 630 690 780 120 510 

𝑟𝑡 100 100 100 100 100 

 

Table D.24 Production planning of heuristic method of Example 12 

Periods (𝑡) 1 2 3 4 5 

𝑚1𝑡 480 540 900 0 510 

𝑚2𝑡 975 1150 1600 0 850 

𝑚3𝑡 680 720 1200 0 680 

𝑚4𝑡 320 360 600 0 340 

𝑚5𝑡 630 690 900 0 510 

𝑟𝑡 100 100 100 100 100 
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Table D.25 Production planning of optimal solution of Example 13 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 325 95 0 170 100 135 200 150 125 105 

𝑚2𝑡 792 424 0 272 160 216 320 240 200 168 

𝑚3𝑡 1330 870 160 350 200 270 400 300 250 210 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

 

Table D.26 Production planning of heuristic method of Example 13 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 825 0 0 0 0 0 580 0 0 0 

𝑚2𝑡 1864 0 0 0 0 0 928 0 0 0 

𝑚3𝑡 3180 0 0 0 0 0 1160 0 0 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

 

Table D.27 Production planning of optimal solution of Example 14 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 480 436 356 500 440 468 520 480 460 444 

𝑚2𝑡 576 436 356 500 440 468 520 480 460 444 

𝑚3𝑡 304 266 178 250 220 234 260 240 230 222 

𝑟𝑡 80 80 80 80 80 80 80 80 80 80 
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Table D.28 Production planning of heuristic method of Example 14 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 480 436 356 500 440 468 520 480 460 444 

𝑚2𝑡 576 436 356 500 440 468 520 480 460 444 

𝑚3𝑡 304 266 178 250 220 234 260 240 230 222 

𝑟𝑡 80 80 80 80 80 80 80 80 80 80 

 

Table D.29 Production planning of optimal solution of Example 15 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 168 0 0 0 0 0 0 0 0 0 

𝑚2𝑡 256 36 0 96 0 68 120 80 104 0 

𝑚3𝑡 420 345 0 0 0 0 0 0 0 0 

𝑚4𝑡 1008 763 0 0 0 0 0 0 0 0 

𝑚5𝑡 840 490 0 0 0 0 0 0 0 0 

𝑟𝑡 200 200 200 200 200 200 200 200 200 200 

 

Table D.30 Production planning of heuristic method of Example 15 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 168 0 0 0 0 0 0 0 0 0 

𝑚2𝑡 256 36 0 96 0 68 120 80 104 0 

𝑚3𝑡 420 345 0 0 0 0 0 0 0 0 

𝑚4𝑡 1008 763 0 0 0 0 0 0 0 0 

𝑚5𝑡 840 490 0 0 0 0 0 0 0 0 

𝑟𝑡 200 200 200 200 200 200 200 200 200 200 
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Table D.31 Production planning of optimal solution of Example 16 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 450 360 0 369 0 183 366 0 258 0 

𝑚2𝑡 410 265 0 270 0 135 270 0 95 0 

𝑚3𝑡 1064 152 0 432 0 216 432 0 152 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚1𝑡 192 342 0 369 0 183 414 0 342 0 

𝑚2𝑡 145 230 0 275 0 135 350 0 230 0 

𝑚3𝑡 232 368 0 440 0 216 560 0 368 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

 

Table D.32 Production planning of heuristic method of Example 16 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 810 0 0 369 0 183 366 0 258 0 

𝑚2𝑡 670 0 0 275 0 135 270 0 90 0 

𝑚3𝑡 1208 0 0 440 0 216 432 0 144 0 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚1𝑡 369 0 165 369 0 183 591 0 0 165 

𝑚2𝑡 275 0 105 275 0 135 475 0 0 105 

𝑚3𝑡 440 0 168 440 0 216 760 0 0 168 

𝑟𝑡 170 170 170 170 170 170 170 170 170 170 
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Table D.33 Production planning of optimal solution of Example 17 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 121 119 99 135 120 127 140 114 119 99 

𝑚2𝑡 512 476 396 540 480 508 560 456 476 396 

𝑚3𝑡 810 798 594 810 720 762 840 684 714 594 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚1𝑡 130 125 121 135 120 127 140 130 125 121 

𝑚2𝑡 520 500 484 540 480 508 560 520 500 484 

𝑚3𝑡 780 750 726 810 720 762 840 780 750 726 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

 

Table D.34 Production planning of heuristic method of Example 17 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 121 218 0 135 120 127 254 0 119 99 

𝑚2𝑡 512 872 0 540 480 508 1016 0 476 396 

𝑚3𝑡 810 1392 0 810 720 762 1524 0 714 594 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚1𝑡 130 125 121 135 120 127 140 130 125 121 

𝑚2𝑡 520 500 484 540 480 508 560 520 500 484 

𝑚3𝑡 780 750 726 810 720 762 840 780 750 726 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 
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Table D.35 Production planning of optimal solution of Example 18 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 298 238 198 270 240 254 280 228 238 198 

𝑚2𝑡 405 357 297 405 360 381 420 342 357 297 

𝑚3𝑡 710 700 495 675 600 635 700 570 595 495 

𝑚4𝑡 1192 1064 792 1080 960 1016 1120 912 952 792 

𝑚5𝑡 1490 1400 1130 1350 1200 1270 1400 1140 1190 990 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚1𝑡 260 250 242 270 240 254 280 260 250 312 

𝑚2𝑡 390 375 363 405 360 381 420 390 375 510 

𝑚3𝑡 650 625 605 675 600 635 700 650 625 815 

𝑚4𝑡 1040 1000 968 1080 960 1016 1120 1040 1000 1248 

𝑚5𝑡 0 0 0 0 0 0 0 0 0 0 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 
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Table D.36 Production planning of heuristic method of Example 18 

Periods (𝑡) 1 2 3 4 5 6 7 8 9 10 

𝑚1𝑡 298 436 0 270 240 254 508 0 436 0 

𝑚2𝑡 405 654 0 405 360 381 762 0 654 0 

𝑚3𝑡 710 1195 0 675 600 635 1270 0 1090 0 

𝑚4𝑡 1192 1856 0 1080 960 1016 2032 0 1744 0 

𝑚5𝑡 1490 2530 0 1350 1200 1270 2540 0 2180 0 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

Periods (𝑡) 11 12 13 14 15 16 17 18 19 20 

𝑚1𝑡 260 250 242 270 240 254 280 260 250 242 

𝑚2𝑡 390 375 363 405 360 381 420 390 375 363 

𝑚3𝑡 650 625 605 675 600 635 700 650 625 605 

𝑚4𝑡 1040 1000 968 1080 960 1016 1120 1040 1000 968 

𝑚5𝑡 1300 1250 1210 1350 1200 1270 1400 1300 1250 1210 

𝑟𝑡 70 70 70 70 70 70 70 70 70 70 

 

 


